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Preface

The two of us have worked together academically for more than a quarter century, first as

graduate students, and then as university faculty. Given our close collaboration, our common

research and teaching interests in the field of derivatives, and the frequent pedagogical

discussions we have had on the subject, this book was perhaps inevitable.

The final product grew out of many sources. About three-fourths of the book came

from notes developed by Raghu for his derivatives course at New York University as well

as for other academic courses and professional training programs at Credit Suisse, ICICI

Bank, the International Monetary Fund (IMF), Invesco-Great Wall, J.P. Morgan, Merrill

Lynch, the Indian School of Business (ISB), the Institute for Financial Management and

Research (IFMR), and New York University, among other institutions. Other parts grew

out of academic courses and professional training programs taught by Sanjiv at Harvard

University, Santa Clara University, the University of California at Berkeley, the ISB, the

IFMR, the IMF, and Citibank, among others. Some chapters were developed specifically

for this book, as were most of the end-of-chapter exercises.

The discussion below provides an overview of the book, emphasizing some of its special

features. We provide too our suggestions for various derivatives courses that may be carved

out of the book.

An Overview of the Contents

Themain body of this book is divided into six parts. Parts 1–3 cover, respectively, futures and

forwards; options; and swaps. Part 4 examines term-structure modeling and the pricing of

interest-rate derivatives, while Part 5 is concerned with credit derivatives and the modeling

of credit risk. Part 6 discusses computational issues. A detailed description of the book’s

contents is provided in Section 1.5; here, we confine ourselves to a brief overview of

each part.

Part 1 examines forward and futures contracts, The topics covered in this span include

the structure and characteristics of futures markets; the pricing of forwards and futures;

hedging with forwards and futures, in particular, the notion of minimum-variance hedging

and its implementation; and interest-rate-dependent forwards and futures, such as forward-

rate agreements or FRAs, eurodollar futures, and Treasury futures contracts.

Part 2, the lengthiest portion of the book, is concerned mainly with options. We begin

with a discussion of option payoffs, the role of volatility, and the use of options in incor-

porating into a portfolio specific views on market direction and/or volatility. Then we turn

our attention to the pricing of options contracts. The binomial and Black-Scholes models

are developed in detail, and several generalizations of these models are examined. From

pricing, we move to hedging and a discussion of the option “greeks,” measures of option

sensitivity to changes in the market environment. Rounding off the pricing and hedging

material, two chapters discuss a wide range of “exotic” options and their behavior.

The remainder of Part 2 focuses on special topics: portfolio measures of risk such as

Value-at-Risk and the notion of risk budgeting, the pricing and hedging of convertible bonds,

and a study of “real” options, optionalities embedded within investment projects.

Part 3 of the book looks at swaps. The uses and pricing of interest rate swaps are covered

in detail, as are equity swaps, currency swaps, and commodity swaps. (Other instruments

bearing the “swaps” moniker are covered elsewhere in the book. Variance and volatility

xvi
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swaps are presented in the chapter on Black-Scholes, and credit-default swaps and total-

return swaps are examined in the chapter on credit-derivative products.) Also included in

Part 3 is a presentation of caps, floors, and swaptions, and of the “market model” used to

price these instruments.

Part 4 deals with interest-rate modeling. We begin with different notions of the yield

curve, the estimation of the yield curve from market data, and the challenges involved in

modeling movements in the yield curve. We then work our way through factor models of

the yield curve, including several well-known models such as Ho-Lee, Black-Derman-Toy,

Vasicek, Cox-Ingersoll-Ross, and others. A final chapter presents the Heath-Jarrow-Morton

framework, and also that of the Libor and Swap Market Models.

Part 5 deals with credit risk and credit derivatives. An opening chapter provides a

taxonomy of products and their characteristics. The remaining chapters are concerned with

modeling credit risk. Structural models are covered in one chapter, reduced-form models

in the next, and correlated-default modeling in the third.

Part 6, available online athttp://www.mhhe.com/sd1e, looks at computational issues.

Finite-differencing and Monte-Carlo methods are discussed here. A final chapter provides

a tutorial on the use of Octave, a free software akin to Matlab, that we use for illustrative

purposes throughout the book.

Background Knowledge

It would be inaccurate to say that this book does not pre-suppose any knowledge on the

part of the reader, but it is true that it does not pre-suppose much. A basic knowledge of

financial markets, instruments, and variables (equities, bonds, interest rates, exchange rates,

etc.) will obviously help—indeed, is almost essential. So too will a degree of analytical

preparedness (for example, familiarity with logs and exponents, compounding, present

value computations, basic statistics and probability, the normal distribution, and so on). But

beyond this, not much is required. The book is largely self-contained. The use of advanced

(from the standpoint of an MBA course) mathematical tools, such as stochastic calculus, is

kept to a minimum, and where such concepts are introduced, they are often deviations from

the main narrative that may be avoided if so desired.

What Is Different about This Book?

It has been our experience that the overwhelming majority of students in derivatives courses

go on to become traders, creators of structured products, or other users of derivatives, for

whom a deep conceptual, rather than solely mathematical, understanding of products and

models is required. Happily, the field of derivatives lends itself to such an end: while

it is one of the most mathematically-sophisticated areas of finance, it is also possible,

perhaps more so than in any other area of finance, to explain the fundamental principles

underlying derivatives pricing and risk-management in simple-to-understand and relatively

non-mathematical terms. Our book looks to create precisely such a blended approach, one

that is formal and rigorous, yet intuitive and accessible.

To this purpose, a great deal of our effort throughout this book is spent on explaining

what lies behind the formal mathematics of pricing and hedging. How are forward prices

determined?Why does the Black-Scholes formula have the form it does?What is the option

gammaandwhy is it of such importance to a trader?The option theta?Whydo term-structure

models take the approach they do? In particular, what are the subtleties and pitfalls in

modeling term-structure movements? Howmay equity prices be used to extract default risk
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of companies? Debt prices? How does default correlation matter in the pricing of portfolio

credit instruments?Whydoes itmatter in thisway? In all of these cases andothers throughout

the book, we use verbal and pictorial expositions, and sometimes simple mathematical

models, to explain the underlying principles before proceeding to a formal analysis.

None of this should be taken to imply that our presentations are informal or mathemati-

cally incomplete. But it is true that we eschew the use of unnecessary mathematics. Where

discrete-time settings can convey the behavior of a model better than continuous-time set-

tings, we resort to such a framework.Where a picture can do the work of a thousand (or even

a hundred) words, we use a picture. And we avoid the presentation of “black box” formulae

to the maximum extent possible. In the few cases where deriving the prices of some deriva-

tives would require the use of advanced mathematics, we spend effort explaining intuitively

the form and behavior of the pricing formula.

To supplement the intuitive and formal presentations,wemake extensive use of numerical

examples for illustrative purposes. To enable comparability, the numerical examples are

often built around a common parametrization. For example, in the chapter on option greeks,

a baseline set of parameter values is chosen, and the behavior of each greek is illustrated

using departures from these baselines.

In addition, the book presents several full-length case studies, including some of themost

(in)famous derivatives disasters in history. These include Amaranth, Barings, Long-Term

Capital Management (LTCM), Metallgesellschaft, Procter & Gamble, and others. These

are supplemented by other case studies available on this book’s website, including Ashanti,

Sumitomo, the Son-of-Boss tax shelters, and American International Group (AIG).

Finally, since the best way to learn the theory of derivatives pricing and hedging is by

working through exercises, the book offers a large number of end-of-chapter problems.

These problems are of three types. Some are conceptual, mostly aimed at ensuring the basic

definitions have been understood, but occasionally also involving algebraic manipulations.

The second group comprise numerical exercises, problems that can be solved with a calcu-

lator or a spreadsheet. The last group are programming questions, questions that challenge

the students to write code to implement specific models.

Possible Course Outlines

Figure 1 describes the logical flow of chapters in the book. The book can be used at the

undergraduate and MBA levels as the text for a first course in derivatives; for a second (or

advanced) course in derivatives; for a “topics” course in derivatives (as a follow-up to a first

course); and for a fixed-income and/or credit derivatives course; among others. We describe

below our suggested selection of chapters for each of these.

A first course in derivatives typically covers forwards and futures, basic options material,

and perhaps interest rate swaps. Such a course could be built around Chapters 1–4 on futures

markets and forward and futures pricing; Chapters 7–14 on options payoffs and trading

strategies, no-arbitrage restrictions and put-call parity, and the binomial and Black-Scholes

models; Chapters 17–19 on option greeks and exotic options; and Chapter 23 on interest

rate swaps and other floating-rate products.

A second course, focused primarily on interest-rate and credit-riskmodeling, could begin

with a review of basic option pricing (Chapters 11–14), move on to an examination of more

complex pricing models (Chapter 16), then cover interest-rate modeling (Chapters 26–30)

and finally credit derivatives and credit-risk modeling (Chapters 31–34).

A “topics” course following the first course could begin again with a review of basic op-

tion pricing (Chapters 11–14) followed by an examination of more complex pricing models
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FIGURE 1
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(Chapter 16). This could be followed by Value-at-Risk and risk-budgeting (Chapter 20);

convertible bonds (Chapter 21); real options (Chapter 22); and interest-rate, equity, and

currency swaps (Chapters 23–25), with the final part of the course covering either an intro-

duction to term-structure modeling (Chapters 26–28) or an introduction to credit derivatives

and structural models (Chapters 31 and 32).
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Finally, a course on fixed-income derivatives can be structured around basic forward

pricing (Chapter 3); interest-rate futures and forwards (Chapter 6); basic option pricing and

the Black-Scholes model (Chapters 11 and 14); interest rate swaps, caps, floors, and swap-

tions, and the Black model (Chapter 23); and the yield curve and term-structure modeling

(Chapters 26–30).

A Final Comment

This book has been several years in the making and has undergone several revisions in that

time. Meanwhile, the derivatives market has itself been changing at an explosive pace. The

financial crisis that erupted in 2008 will almost surely result in altering major components

of the derivatives market, particularly in the case of over-the-counter derivatives. Thus, it is

possible that some of the products we have described could vanish from the market in a few

years, or the way these products are traded could fundamentally change. But the principles

governing the valuation and risk-management of these products are more permanent, and

it is those principles, rather than solely the details of the products themselves, that we have

tried to communicate in this book. We have enjoyed writing this book. We hope the reader

finds the final product as enjoyable.
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Chapter1
Introduction
Theworld derivativesmarket is a huge one. TheBank for International Settlements estimates

that byDecember 2008, the volumeof derivatives outstandingworldwide,measured in terms

of notional outstanding, was a staggering $592 trillion. The gross market value of these

derivatives was a more modest, but still respectable, $33.9 trillion. By way of comparison,

the gross domestic product in 2007 of the United States, the world’s largest economy, was

“only” about $13.8 trillion.

Not only is the market immense; it has also been growing at a furious pace. The notional

amount outstanding in derivatives contracts worldwide increased more than sevenfold in the

nine years ending December 2007, doubling in just the last two years of that span (Tables 1.1

and 1.2). The global financial crisis that erupted in 2008 took its toll on the market, but at

the end of December 2008, the notional outstanding was roughly the same as at the end

of December 2007, and the gross market value of these derivatives was more than 130%

higher.

The growth has been truly widespread. There are now thriving derivatives exchanges not

only in the traditional developed economies of North America, Europe, and Japan, but also

in Brazil, China, India, Israel, Korea, Mexico, and Singapore, among many other countries.

A survey by the International Swaps and Derivatives Association (ISDA) in 2003 found

that 92% of the world’s 500 largest companies use derivatives to manage risk of various

forms, especially interest-rate risk (92%) and currency risk (85%), but, to a lesser extent,

also commodity risk (25%) and equity risk (12%). Firms in over 90% of the countries

represented in the sample used derivatives.

Matching—and fueling—the growth has been the pace of innovation in the market.

Traditional derivatives were written on commodity prices, but beginning with foreign cur-

rency and other financial derivatives in the 1970s, new forms of derivatives have been intro-

duced almost continuously. Today, derivatives contracts reference awide range of underlying

instruments including equity prices, commodity prices, exchange rates, interest rates, bond

prices, index levels, and credit risk. Derivatives have also been introduced, with varying suc-

cess rates, on more exotic underlying variables such as market volatility, electricity prices,

temperature levels, broadband, newsprint, and natural catastrophes, among many others.

This is an impressive picture. Yet derivatives have also been the target of fierce criticism.

In 2003, Warren Buffet, perhaps the world’s most successful investor, labeled them “finan-

cial weapons of mass destruction.” Derivatives—especially credit derivatives—have been

widely blamed for enabling, or at least exacerbating, the global financial markets crisis that

began in late 2007. Victims of derivatives (mis-)use over the decades include such promi-

nent names as the centuries-old British institution Barings Bank, the German industrial

conglomerate Metallgesellschaft AG, the Japanese trading powerhouse Sumitomo, and the

giant US insurance company, American International Group (AIG).

1
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TABLE 1.1 BIS Estimates of World Derivatives Market Size: 2006–2008

Notional Amounts Outstanding Gross Market Values

End 2006 End 2007 End 2008 End 2006 End 2007 End 2008

Total contracts 414.8 596.0 592.0 9.7 14.5 33.9

Foreign exchange contracts 40.3 56.2 49.8 1.3 1.8 3.9
Forwards and forex swaps 19.9 29.1 24.6 0.5 0.7 1.7
Currency swaps 10.8 14.3 14.7 0.6 0.8 1.6
Options 9.6 12.7 10.5 0.2 0.3 0.6

Interest rate contracts 291.6 393.1 418.7 4.8 7.2 18.4
Forward-rate agreements 18.7 26.6 39.3 0.0 0.0 0.2
Interest rate swaps 229.7 309.6 328.1 4.2 6.2 16.6
Options 43.2 57.0 51.3 0.6 1.0 1.7

Equity-linked contracts 7.5 8.5 6.5 0.9 1.1 1.1
Forwards and swaps 1.8 2.2 1.6 0.2 0.2 0.3
Options 5.7 6.3 4.9 0.7 0.9 0.8

Commodity contracts 7.1 9.0 4.4 0.7 0.8 1.0
Gold 0.6 0.6 0.4 0.1 0.1 0.0
Other commodities 6.5 8.4 4.0 0.6 1.8 0.9
Forwards and swaps 2.8 5.6 2.5
Options 3.7 2.8 1.6

Credit default swaps 28.7 57.9 41.9 0.2 0.9 5.7
Single-name instruments 17.9 32.2 25.4 1.6 1.6 3.7
Multi-name instruments 10.8 25.6 16.1 0.0 0.0 2.0

Unallocated 39.7 71.2 70.7 0.0 0.0 3.8

Source: Bank for International Settlements (BIS) website (http://www.bis.org).

What is a derivative? What are the different types of derivatives? What are the benefits

of derivatives that have fueled their growth? The risks that have led to disasters? How is

the value of a derivative determined? How are the risks in a derivative measured? How

can these risks be managed (or hedged)? These and other questions are the focus of this

book. We describe and analyze a wide range of derivative securities. By combining the

analytical descriptions with numerical examples, exercises, and case studies, we present an

introduction to the world of derivatives that is at once formal and rigorous yet accessible

and intuitive. The rest of this chapter elaborates and lays the foundation for the book.

What Are Derivatives?
A derivative security is a financial security whose payoff depends on (or derives from) other,

more fundamental, variables such as a stock price, an exchange rate, a commodity price,

an interest rate—or even the price of another derivative security. The underlying driving

variable is commonly referred to as simply the underlying.

The simplest kind of derivative—and historically the oldest form, dating back thousands

of years—is a forward contract. A forward contract is one in which two parties (commonly

referred to as the counterparties in the transaction) agree to the terms of a trade to be

consummated on a specified date in the future. For example, on December 3, a buyer and

seller may enter into a forward contract to trade in 100 oz of gold in three months (i.e., on

March 3) at a price of $900/oz. In this case, the seller is undertaking to sell 100 oz in three
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TABLE 1.2 BIS Estimates of World Derivatives Market Size: 1998–2008

Notional Amounts Outstanding

Dec. 1998 Dec. 2000 Dec. 2002 Dec. 2004 Dec. 2007 Dec. 2008

Total contracts 80.3 95.2 141.7 257.9 596.0 592.0

Foreign exchange contracts 18.0 15.7 18.4 29.3 56.2 49.8
Forwards and forex swaps 12.1 10.1 10.7 15.0 29.1 24.6
Currency swaps 2.3 3.2 4.5 8.2 14.3 14.7
Options 3.7 2.3 3.2 6.1 12.7 10.5

Interest rate contracts 50.0 64.7 101.7 190.5 393.1 418.7
Forward-rate agreements 5.8 6.4 8.8 12.8 26.6 39.3
Interest-rate swaps 36.3 48.8 79.1 150.6 309.6 328.1
Options 8.0 9.5 13.7 27.1 57.0 51.3

Equity-linked contracts 1.5 1.9 2.3 4.4 8.5 6.5
Forwards and swaps 0.1 0.3 0.4 0.8 2.2 1.6
Options 1.3 1.6 1.9 3.6 6.3 4.9

Commodity contracts 0.4 0.7 0.9 1.4 9.0 4.4
Gold 0.2 0.2 0.3 0.4 0.6 0.4
Other commodities 0.2 0.4 0.6 1.1 8.4 4.0
Forwards and swaps 0.1 0.2 0.4 0.6 5.6 2.5
Options 0.1 0.2 0.2 0.5 2.8 1.6

Credit default swaps 6.4 57.9 41.9
Single-name instruments 5.1 32.2 25.4
Multi-name instruments 1.3 25.6 16.1

Unallocated 10.4 12.3 18.3 25.9 71.2 71.2

Source: Bank for International Settlements (BIS) website (http://www.bis.org).

months at a price of $900/oz while the buyer is undertaking to buy 100 oz of gold in three

months at $900/oz.

One common motivation for entering into a forward contract is the elimination of cash-

flow uncertainty from a future transaction. In our example, if the buyer anticipates a need

for 100 oz of gold in three months and is worried about price fluctuations over that period,

any uncertainty about the cash outlay required can be removed by entering into a forward

contract. Similarly, if the seller expects to be offloading 100 oz of gold in three months

and is concerned about prices that might prevail at the end of that horizon, entering into a

forward contract locks in the price received for that future sale.

In short, forward contracts may be used to hedge cash-flow risk associated with future

market commitments. Forward contracts are commonly used by importers and exporters

worried about exchange-rate fluctuations, investors and borrowers worried about interest-

rate fluctuations, commodity producers and buyers worried about commodity price fluctu-

ations, and so on.

A slightly more complex example of a derivative is an option. As in a forward, an option

contract too specifies the terms of a future trade, but while a forward commits both parties

to the trade, in an option, one party to the contract retains the right to enforce or opt out of

the contract. If it is the buyer who has this right, the option is called a call option; if the

seller, a put option.

The key difference between a forward and an option is that while a forward contract is

an instrument for hedging, an option provides a form of financial insurance. Consider, for
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example, a call option on gold in which the buyer has the right to buy gold from the seller

at a price of (say) $900/oz in three months’ time. If the price of gold in three months is

greater than $900/oz (for example, it is $930/oz), then the buyer will exercise the right in

the contract and buy the gold for the contract price of $900. However, if the price in three

months is less than $900/oz (e.g., is $880/oz), the buyer can choose to opt out of the contract

and, if necessary, buy the gold directly in the market at the cheaper price of $880/oz.

Thus, holding a call option effectively provides the buyerwith protection (or “insurance”)

against an increase in the price above that specified in the contract even while allowing the

buyer to take full advantage of price decreases. Since it is the seller who takes the other side

of the contract whenever the buyer decides to enforce it, it is the seller who provides this

insurance to the buyer. In exchange for providing this protection, the seller will charge the

buyer an up-front fee called the call option premium.

Analogously, a put option provides the seller with insurance against a decrease in the

price. For instance, consider a put option on gold in which the seller has the right to sell

gold to the buyer at $900/oz. If the price of gold falls below $900/oz, the seller can exercise

the right in the put and sell the gold for $900/oz, but if the price of gold rises to more than

$900/oz, then the seller can elect to let the put lapse and sell the gold at the higher market

price. Holding the put insures the seller against a fall in the price below $900/oz. The buyer

provides this insurance and will charge an up-front fee, the put premium, for providing this

service.

Options offer an alternative to forwards for investors concerned about future price fluc-

tuations. Unlike forwards, there is an up-front cost of buying an option (viz., the option

premium) but, compensating for this, there is no compulsion to exercise if doing so would

result in a loss.

Forwards and options are two of the most common and important forms of derivatives.

In many ways, they are the building blocks of the derivatives landscape. Many other forms

of derivatives exist, some which are simple variants of these structures, others much more

complex or “exotic” (a favorite term in the derivatives area for describing something that is

not run-of-the-mill or “plain vanilla”). We elaborate on this later in this chapter and in the

rest of the book. But first, we present a brief discussion on the different criteria that may be

used to classify derivatives.

Classifying Derivatives
A popular way to classify derivatives is to group them according to the underlying. For

example, an equity derivative is one whose underlying is an equity price or stock index

level; a currency or FX (short for foreign-exchange) derivative is one whose underlying is

an exchange rate; and so on. Much of the world’s derivatives trade on just a few common

underlyings. Table 1.1 shows that interest-rate derivatives (derivatives defined on interest

rates or on interest-rate-sensitive securities such as bonds) account for almost half the gross

market value of the derivatives market, with smaller shares being taken by currency, equity,

commodity, and credit derivatives.

While these are the most common underlyings, derivatives may, in principle, be defined

on just about any underlying variable. Indeed, a substantial chunk of the growth in derivatives

markets in the first years of the 2000s came from credit derivatives (derivatives dependent

on the credit risk of specified underlying entities), a category of derivatives that did not

even exist in 1990. As noted earlier in this chapter, derivatives have also been introduced

on a number of exotic underlying variables including electricity prices, temperature levels,

broadband, newsprint, and market volatility.

Derivatives can differ greatly in the manner in which they depend on the underlying,

ranging fromvery simple dependencies to very complex ones.Nonetheless,most derivatives
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fall into one of two classes: those that involve a commitment to a given trade or exchange

of cash flows in the future and those in which one party has the option to enforce or opt

out of the trade or exchange. Included in the former class are derivative securities such as

forwards, futures; and swaps; derivatives in the latter class are called options.

Forwards and options have already been defined above. Futures contracts are similar

to forward contracts except that they are traded on organized exchanges; we discuss the

differences more precisely below. Swaps are contracts in which the parties commit to mul-

tiple exchanges of cash flows in the future, with the cash flows to be exchanged calculated

under rules specified in the contract; thus, swaps are like forwards except with multiple

transactions to which the parties commit.

Tables 1.1 and 1.2 use both of these schemes of classification, first breaking down the

world derivatives market by underlying and then into forwards, swaps, and options. The

breakdown reveals some interesting variations. For example, while swaps account for the

great bulk (roughly 80%) of interest-rate derivatives, options constitute over 75% of equity

derivatives.

A third classificationof derivatives of interest is into over-the-counter (OTC)or exchange-

traded derivatives. Over-the-counter derivatives contracts are traded bilaterally between two

counterparties who deal directly with each other. In such transactions, each party takes the

credit risk of the other (i.e., the risk that the other counterparty may default on the contract).

In exchange-traded contracts, the parties deal though anorganized exchange, and the identity

of the counterparty is usually not known. Forwards and swaps are OTC contracts, while

futures are exchange traded. Options can be both OTC and exchange traded.

1.1 Forward and Futures Contracts

A forward contract is an agreement between two parties to trade in a specified quantity of

a specified good at a specified price on a specified date in the future. The following basic

terminology is used when discussing these contracts:

• The buyer in the forward contract is said to have a long position in the contract; the seller

is said to have a short position.

• The good specified in the contract is called the underlying asset or, simply, the underlying.

• The date specified in the contract on which the trade will take place is called thematurity

date of the contract.

• The price specified in the contract for the trade is called the delivery price in the contract.

This is the price at which delivery will be made by the seller and accepted by the buyer.

We will define the important concept of a forward price shortly. For the moment, we note

that the forward price is related to, but is not the same concept as, the delivery price.

The underlying in a forward contract may be any commodity or financial asset. Forward

contracts may be written on foreign currencies, bonds, equities, or indices, or physical

commodities such as oil, gold, or wheat. Forward contracts also exist on such underlyings

as interest rates or volatility which cannot be delivered physically (see, for example, the

forward-rate agreements or FRAs described inChapter 6, or the forward contracts onmarket

volatility known as variance and volatility swaps, described in Chaper 14); in such cases,

the contracts are settled in cash with one side making a payment to the other based on rules

specified in the contract. Cash settlement is also commonly used for those underlyings for

which physical delivery is difficult, such as equity indices.

As has been discussed, a primary motive for entering into a forward contract is hedging:

using a forward contract results in locking-in a price today for a future market transaction,
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and this eliminates cash-flow uncertainty from the transaction. Foreign currency forwards,

for example, enable exporters to convert the payments received in foreign currency into

home currency at a fixed rate. Interest-rate forwards such as FRAs enable firms to lock-in

an interest rate today for a future borrowing or investment. Commodity forwards such as

forwards on oil enable users of oil to lock-in prices at which future purchases are made and

refiners of oil to lock-in a price at which future sales are made.

Forward contracts can also be used for speculation, that is, without an underlying expo-

sure already existing. An investor who feels that the price of some underlying is likely to

increase can speculate on this view by entering into a long forward contract on that under-

lying. If prices do go up as anticipated, the investor can buy the asset at the locked-in price

on the forward contract and sell at the higher price, making a profit. Similarly, an investor

wishing to speculate on falling prices can use a short forward contract for this purpose.

Key Characteristics of Forward Contracts
Four characteristics of forward contracts deserve special emphasis because these are exactly

the dimensions along which forwards and futures differ:

• First, a forward contract is a bilateral contract. That is, the terms of the contract are

negotiated directly by the seller and the buyer.

• Second, as a consequence, a forward contract is customizable. That is, the terms of the

contract (maturity date, quality or grade of the underlying asset, etc.) can be “tailored”

to the needs of the buyer and seller.

• Third, there is possible default risk for both parties. Each party takes the risk that the

other may fail to perform on the contract.

• Fourth, neither party can walk away unilaterally from the contract or transfer its rights

and obligations in the contract unilaterally to a third party.

We return to these characteristics when discussing futures contracts.

Payoffs from Forward Contracts
The payoff from a forward contract is the profit or loss made by the two parties to the

contract. Consider an example. Suppose a buyer and seller enter into a forward contract

on a stock with a delivery price of F = 100. Let ST denote the price of the stock on the

maturity date T . Then, on date T ,

• The long position is buying for F = 100 an asset worth ST . So the payoff to the long

position is ST −100. The long position makes a profit if ST > 100, but loses if ST < 100.

• The short position is selling for F = 100 an asset worth ST . So the payoff to the short

position is 100−ST . The short positionmakes a profit if ST < 100, but loses if ST > 100.

For example:

• If ST = 110, then the long is buying for 100 an asset worth 110, so gains 10, but the

short is selling for 100 an asset worth 110, so loses 10.

• If ST = 90, the long is buying for 100 an asset worth only 90, so loses 10, while the

short is selling for 100 an asset worth only 90, so gains 10.

Table 1.3 describes the payoff to the two sides for some other values of ST . Two points

about these payoffs should be noted. First, forwards (like all derivatives) are zero-sum

instruments: the profits made by the long come at the expense of the short, and vice versa.

The sum of the payoffs of the long and short is always zero. This is unsurprising. Except

when the delivery price F exactly coincides with the time-T price ST of the underlying,

a forward contract involves an off-market trade (i.e., a trade at a different price from the
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TABLE 1.3 The

Payoffs from a

Forward Contract

This table describes the payoff to the long and short positions
on the maturity date T of a forward contract with a delivery price of 100. ST
is the price of the underlying asset on date T .

Time-T Price ST Payoff to Long Payoff to Short

.

.

.

.

.

.

.

.

.

70 −30 +30
80 −20 +20
90 −10 +10

100 – –

110 +10 −10
120 +20 −20
130 +30 −30

.

.

.

.

.

.

.

.

.

prevailing market price). In any off-market trade, the benefit to one side is exactly equal to

the loss taken by the other.

Second, as Figure 1.1 illustrates, forwards are “linear” derivatives. Every $1 increase in

the price ST of the underlying at date T increases the payoff of the long position by $1 and

reduces the payoffs of the short position by $1. Linearity is a consequence of committing to

the trade specified in the contract. In contrast, aswewill see, options,which are characterized

by their “optionality” concerning the trade, are fundamentally nonlinear instruments, and

this makes their valuation and risk management much trickier.

What Is the “Forward Price”?
By convention, neither party pays anything to enter into a forward contract. So the delivery

price in the contract is set so that the contract has zero value to both parties. This “breakeven”

delivery price is called the forward price.

The figure shows the payoffs to the long and short positions

on the maturity date T of a forward contract with delivery

price F as the time-T price ST of the underlying asset

varies.

FIGURE 1.1
Forwards Are “Linear”

Derivatives

F
ST

Payoffs from

long forward

Payoffs from

short forward

0

Payoffs
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Is the forward price a well-defined concept? That is, is it obvious that there is only one

breakeven delivery price? At first glance, it appears not. Certainly, it is true that if the

delivery price is set very high, the short will expect to profit from the contract and the long

to lose; that is, the contract will have positive value to the short and negative value to the

long. Similarly, if the price is set too low, the contract will have positive value to the long

(who will expect to profit from having access to the asset at an excessively low price) and

negative value to the short. But it is not obvious that between these extremes, there is only

one possible breakeven delivery price at which both parties will agree the contract has zero

value. Intuitively, it appears that such idiosyncratic factors as risk-aversion and outlooks

concerning the market ought to matter.

In Chapter 3, we examine this issue. We show that under fairly general conditions, the

forward price is, in fact, a well-defined concept and that regardless of attitudes to risk and

other factors, everyone must agree on the breakeven delivery price. Possible violations of

these conditions and their consequences for the pricing theory are examined in Chapter 4.

The principal assumption we make there, and throughout this book, is that markets do not

permit arbitrage. The no-arbitrage assumption is just theminimal requirement that identical

assets or baskets of assets must trade at identical prices.

Futures Markets
A futures contract is, in essence, a forward contract that is traded on an organized exchange.

But while futures and forwards are functionally similar (i.e., they serve the same economic

purpose), the involvement of the exchange results in some important differences between

them.

First, in a futures contract, buyers and sellers deal through the futures exchange, not

directly. Buyers submit buy orders to the exchange, sellers submit sell orders, and these are

matched via the exchange. The counterparties are unlikely to know each other’s

identities.

Second, because buyers and sellers do not meet, futures contracts must be standardized.

Standardization covers the set of possible delivery dates and delivery locations, the size of

one contract, and the quality or grade of the underlying that may be delivered under the

contract, and is one of the most important functions performed by the exchange.

Third, counterparties are not exposed to each other’s default risk. Rather, the exchange

interposes itself between buyer and seller and guarantees performance on the contracts.

(This is necessary because the counterparties have no way of gauging each other’s credit

risk.) Thus, each party to a futures transaction is exposed only to the default risk of the

exchange. In well-run futures exchanges, this risk is generally very low.

Fourth, an investor may, at any time, close out or reverse a futures position. Closing

out involves taking an opposite position to the original one. For example, if the investor

was initially long 10 futures contracts in gold for delivery in March, closing out involves

taking short positions in 10 futures contracts for delivery in March. These positions are

netted against each other, and, as far as the exchange is concerned, the investor has no net

obligations remaining.

Fifth, having guaranteed performance on the futures contracts, the exchange must put

safeguards in place to ensure it is not called upon to honor its guarantee too often. That

is, it must ensure that the parties to the contract do not default in the first place. For this

purpose, a system based on the use of “margin accounts” (a.k.a. “performance bonds”) are

commonly used.

Table 1.4 summarizes these main differences between futures and forwards. The insti-

tutional features of futures markets are designed to enhance the integrity and liquidity of

the market, thereby making it more attractive to participants. However, they also have eco-

nomic consequences. For example, futures prices—the breakeven delivery prices for futures
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TABLE 1.4
Differences between

Forwards and Futures

Criterion Futures Forwards

Buyer-seller interaction Via exchange Direct
Contract terms Standardized Can be tailored
Unilateral reversal Possible Not possible
Default-risk borne by Exchange Individual parties
Default controlled by Margin accounts Collateral

contracts—are typically close to, but do not quite coincide with, forward prices because of

these differences, as Chapter 3 discusses.

1.2 Options

An option is a financial security that gives the buyer the right (but not the obligation) to buy

or sell a specified asset at a specified price on or before a specified date. In dealing with

options, we adopt the following terminology:

• Buyer = Holder = Long Position: The buyer of the option, also called the holder of the

option, is said to have a long position in the option.

• Seller =Writer = Short Position: The seller of the option, also called the writer of the

option, is said to have a short position in the option.

• The asset specified in the option contract is called the underlying asset or simply the

underlying.

• The price specified in the contract is called the strike price or the exercise price of the

option.

• The date specified in the contract is called the maturity date or the expiration date of the

option.

We differentiate between options along two fundamental dimensions:

• Calls vs. Puts If the option provides the holder with the right to buy the underlying asset

at the specified strike price, we call it a call option. If the option provides the holder with

the right to sell the underlying at the specified strike price, it is a put option.

• American vs. European If the right in the option can be exercised at any time on or

before the maturity date, it is called an American-style (or simply, American) option. If

the right can be availed of only on the maturity date, it is called a European-style (or

simply, European) option. American options are generally more valuable than otherwise

identical European ones.

Traditional call and put options, whether European or American, are referred to as plain

vanilla (or just vanilla) options. Options that differ from plain vanilla options in any way are

called exotic options. Bermudan options are an example; in a Bermudan option, exercise is

allowed on any one of a set of specified dates. Not quite as valuable as American options,

which may be exercised at any time, they are more valuable than European options, which

may be exercised only at maturity.

Options can be written on any asset, though financial options are the most common.

Options on equities, equity indices, and foreign currencies are traded both in the over-the-

counter market and on exchanges. Options on interest rates come inmany forms. Exchange-

traded interest-rate options include options on bond futures (i.e., the option is written on

a futures contract that, in turn, is written on an underlying bond). In the over-the-counter

market, popular interest-rate options include caps and floors, which are options written



10 Chapter 1 Introduction

directly on London Interbank Offered Rates (or “Libor”) rates, and swaptions, which are

options on interest rate swaps.

In addition to options qua options, many financial securities are sold with embedded

options. A common example is a callable bond. A callable bond is a bond issued by a

corporation or other entity that may be purchased back by the issuing entity under specified

conditions at a fixed price. Thus, a callable bond is a combination of a straight bond and a call

option that gives the issuing entity the right to buy back (or “call”) the bond under specified

conditions at a fixed price. A more complex example is a convertible bond. A convertible

bond is a bond issued by a company that may be converted, at the holder’s option, into shares

of equity of the issuing company. Convertible bonds in the United States are usually also

callable, so both the issuer and the buyer of the bond hold options. Embedded options are

also present in more mundane securities. In the United States, for example, mortgages may

be prepaid at any time, usually without penalty, at the mortgage-holder’s option.

As discussed earlier in this chapter, an option is a form of financial insurance. Since an

option comes with a right but not an obligation, the holder of the option will exercise it only

if it is in his interest to do so. Thus, the option protects the holder against downside risk, but

provides full upside potential. In exchange for providing this insurance, the buyer of the op-

tion makes an up-front payment to the writer, called the option price or the option premium.

1.3 Swaps

A swap is a bilateral contract between two counterparties that calls for periodic exchanges

of cash flows on specified dates and calculated using specified rules. The swap contract

specifies (a) the dates (say, T1, T2, . . . , Tn) on which cash flows will be exchanged and

(b) the rules according to which the cash flows due from each counterparty on these dates

are calculated. Importantly, the frequency of payments for the two counterparties need not be

the same. For example, one counterparty could be required to make semiannual payments,

while the other makes quarterly payments.

Swaps are differentiated by the underlying markets to which payments on one or both

legs are linked. (The “leg” of a swap refers to the cash flows paid by a counterparty. Thus,

each swap has two legs.) The largest chunk of the swaps market is occupied by interest-rate

swaps, in which each leg of the swap is tied to a specific interest-rate index. For example,

one leg may be tied to a floating interest rate such as Libor, while the other leg may specify

a fixed interest rate (e.g., 8%). Other important categories of swaps include:

• Currency swaps, in which the two legs of the swaps are linked to payments in different

currencies. For example, the swapmay require the exchangeofUSdollar (USD)payments

calculated on the basis of the USD-Libor rate for Euro payments calculated based on a

fixed interest rate.

• Equity swaps, in which one leg (or both legs) of the swap is linked to an equity price or

equity index. For example, the swap may call for the exchange of annual returns on the

S&P 500 equity index for interest payments computed using a fixed interest rate.

• Commodity swaps, in which one leg of the swap is linked to a commodity price. For

example, the swap may call for an exchange of the price of oil (observed on the payment

dates) against a fixed dollar amount.

• Credit-risk linked swaps (especially credit-default swaps) in which one leg of the swap

is linked to occurrence of a credit event (e.g., default) on a specified reference entity.

Uses of Swaps
Swaps are among the most versatile of financial instruments with new uses being discov-

ered (invented?) almost every day. A principal source of swap utility is that swaps enable
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converting the exposure to one market into exposure to another market. Consider, for ex-

ample, a three-year equity swap in which

• One counterparty pays the returns on the S&P 500 on a given notional principal P .

• The other counterparty pays a fixed rate of interest r on the same principal P .

In such a swap, the first counterparty in this swap is exchanging equity-market returns

for interest-rate returns over this three-year horizon. An equity-fund manager who enters

this swap is converting his equity returns into fixed-income returns through the swap. The

second counterparty is doing the opposite exchange. A fixed-income manager who takes

this side of the swap is converting his fixed-income exposure into equity exposure.

In similar vein, an interest rate swap that involves (say) the exchange of Libor for a

fixed rate of interest enables converting floating-rate interest exposure to fixed rates and

vice versa; a currency swap that requires the exchange of (say) USD payments based on

USD-Libor for Japanese yen (JPY) payments based on JPY-Libor facilitates converting

floating-rate USD exposure to floating-rate JPY exposure; and so on.

A second valuable contribution made by swaps is in providing pricing links between

different financial markets. Consider the equity swap example again. By convention, swaps

do not generally involve up-front payments, so at inception, the fixed rate r in this swap

is set such that the swap has zero value to both parties, i.e., such that the present value of

all cash flows expected from the equity leg is equal to the present value of the cash flows

from the interest-rate leg. This means the interest rate r represents the market’s “fair price”

for converting equity returns into fixed-income returns. Thus, the equity swap not only

enables transferring equity risk into interest-rate risk but also specifies the price at which

this transfer can be done.

Similarly, interest rate swaps provide a link between different interest-rate markets, for

example, between floating-rate markets and fixed-rate markets; currency swaps provide a

link between interest-rate markets in different currencies, for example, between USD float-

ing rates and euro fixed rates, or between euro floating rates and JPY fixed rates, and so on.

1.4 Using Derivatives: Some Comments

Derivatives can be used for both hedging and speculation. Hedging is where the cash

flows from the derivative are used to offset or mitigate the cash flows from a prior market

commitment. For example, an exporter who anticipates receiving foreign currency in a

month can eliminate exchange-rate risk by using a short forward contract on the foreign

currency, or by using a put option that gives the exporter the right to sell the foreign currency

received at a fixed price. Speculation is where the derivative is used without an underlying

prior exposure; the aim is to profit from anticipated market movements.

Derivatives usage in various contexts is discussed throughout this book. Here we present

two examples to make some simple points about the advantages and disadvantages of using

different derivatives to achieve a given end. Ultimately, the examples illustrate that there are

pluses and minuses to all courses of actions–including not using derivatives at all. There is

no one strategy that is dominant.

Derivatives in Hedging
A US-based company learns on December 13 that it will receive 25 million euros (EUR)

in the coming March for goods that it had exported to Europe. The company is exposed

to exchange-rate risk because the USD it receives in March will depend on the USD/EUR

exchange rate at that point. It identifies three possible courses of action:

1. Do nothing. It canwait untilMarch and convert themoney received then at theUSD/EUR

exchange rate prevailing at that point.
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2. Use futures. It can enter into a short futures contract and commit to selling the euros at

a fixed price.

3. Use options. It can buy a put option contract that gives it the right to sell the euros

received at a specified strike price.

To keep things simple,we ignore “basis risk” issues, i.e., possiblemismatches concerning

the delivery dates of the futures and options contracts, and the date the company will receive

the money.

If the companydecides to gowith futures, itwill use the euro futures contracts available on

the Chicago Mercantile Exchange (CME). Like all futures contracts, these are standardized

contracts. One futures contract calls for the short position to deliver 125,000 euros. To hedge

the entire exposure of 25 million euros, the company must therefore take a short position

in 200 March futures contracts. Finally, suppose that on December 13, the futures price

(USD/EUR) for March expiry is 1.0328; this is the fixed exchange rate the company can

lock in if it decides to use the futures contract.

If the company decides to use options, it will use the euro options contract available on

the Philadelphia Exchange (PHLX). One options contract on the PHLXcalls for the delivery

of 62,500 euros, so to cover the full amount of 25 million euros, a total of 400 contracts with

March expiry must be used. A final decision the company must make concerns the choice

of strike price. Suppose that the company has decided to use a strike price (USD/EUR) of

1.03 and that a put option with a strike of 1.03 and March expiry costs USD1,056.25 per

contract. Then, if the company decides to use options, the total outlay required is

USD (400× 1,056.25) = USD422,500.00

To illustrate the impact of the different alternatives, we consider two possible exchange

rates (USD/EUR)in March: (a) 0.9928 and (b) 1.0728. The following table summarizes the

USD cash flow in March from each of the three alternatives. Note that the options cash flow

does not include the initial cash outlay of USD 422,500. The payoffs are obtained in the

obvious way. For example, under the do-nothing alternative, if the spot rate of $0.9928/euro

were to prevail, the cash flow that results is 25 million × 0.9928 = $24.82 million.

Alternative $0.9928/euro $1.0728/euro

Do nothing 24.82 million 26.82 million
Futures contract 25.82 million 25.82 million
Put option 25.75 million 26.82 million

There are three important criteria under which we may compare the alternatives:

1. Cash-flow uncertainty. This is maximal for the do-nothing alternative, intermediate for

the option contract, and least for the futures contract.

2. Up-front cost. The do-nothing and futures contract alternatives cost nothing. However,

there is an up-front cost of $422,500 for entering into the option contract.

3. Exercise-time regret. With an option contract, exercise-time outcomes are guaranteed to

be favorable (if the USD/EUR exchange rate is greater than the strike rate, the option is

allowed to lapse; otherwise it is exercised). With the other two alternatives, this is not

the case:

• In the do-nothing case, a “favorable” spot price movement (i.e., the high USD/EUR

exchange rate of 1.0728) is beneficial, but an “unfavorable” spot price movement (the

low USD/EUR exchange rate of 0.9928) hurts.
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TABLE 1.5
Derivatives in

Hedging: Comparing

the Alternatives

USD/EUR USD/EUR Cash-Flow
Alternative Increases Decreases Uncertainty Cost

Do nothing Gain Lose Maximal 0
Futures Lose Gain Minimal 0
Options Gain Protected Intermediate +ve

• In the futures contract, the high spot exchange rate hurts (we cannot take advantage

of it because the delivery price is locked-in); however, the low spot exchange rate

leaves us off for having locked in a higher rate.

Table 1.5 summarizes this comparison. The key point that emerges here is that there

is no outcome that is dominant, i.e., that is better in all circumstances. Doing nothing is

sometimes better than using futures or options but sometimes not. (In a sense, doing nothing

is akin to betting on a favorable movement in prices, in this case, on the USD/EUR rate

increasing. Like all speculation, this bet can go wrong.) Using futures provides cash-flow

control, but the ex post outcome may not always look good. For instance, if the exchange

rate moves to $1.0728/euro, the company is worse off for having hedged using futures—and

it is useful to keep in mind here that regardless of our ex ante intentions, we are almost

always judged in this world on ex post outcomes. Using options provides protection but

involves a substantial up-front cost that may not be recouped by the gains from exercising

the option—and that is fully lost if the option lapses unexercised.

Derivatives in Speculation
The preceding example dealt with hedging: the reduction of cash-flow uncertainty from a

prior market commitment. Derivative securities can also be used to speculate i.e., to make

profits by taking views on market direction.

Suppose, for example, that an investor believes that the Japaneseyen (JPY)will appreciate

significantly with respect to the US dollar (USD) over the next three months. The investor

can speculate on this belief using derivatives in at least two ways:

1. By taking a long position in JPY futures deliverable in three months.

2. By buying a call option on JPY with an expiry date in three months.

(There is also the third alternative of buying the JPY in the spot market today and holding

it for three months, but this strategy does not involve the use of derivatives.) In both cases,

the investor makes money if his belief is vindicated, and the yen appreciates as expected.

With the futures contract, the investor has locked-in a price for the future purchase of yen;

any increase in price of yen over this locked-in rate results in a profit. With the call option,

the investor has the right to buy yen at a fixed price, viz., the strike price in the contract. Any

increase in the price of yen above this strike results in exercise-time profits for the investor.

However, there are costs to both strategies. In the case of the futures, the cost is that the

anticipated appreciation may fail to be realized; if the price of JPY instead falls, the futures

contract leads to a loss, since it obligates the investor to buy yen at the higher locked-in

price. In the case of options, the up-front premium paid is lost if the yen depreciates and

the option lapses unexercised; but even if the option is exercised, the profits at exercise time

may not be sufficient to make up the cost of the premium. Thus, once again, there is no one

“best” way to use derivatives to exploit a market view.
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1.5 The Structure of this Book

The main body of this book is divided into five (unequal) parts with a sixth technical part

supplementing the material.

Part 1 of the book (Chapters 2–6) deals with futures and forwards. Chapter 2 discusses

futures markets and their institutional features. Chapters 3 and 4 deal with the pricing of

futures and forward contracts. Chapter 3 develops the pricing theory, while Chapter 4 looks

at the empirical performance of the theory and discuses extensions of the basic theory.

Chapter 5 is concerned with hedging strategies in futures and forward markets, in particular

the development and implementation of minimum-variance hedging strategies in situations

in which a perfect hedge is impossible because of a mismatch between the risk being

hedged and the available futures or forward contracts. Chapter 6 looks at a special class of

futures and forward contracts—those defined on interest rates or bond prices, a category

that includes some of the most successful contracts ever introduced, including eurodollar

futures and Treasury futures.

Part 2, which deals mainly with options, is the longest segment of the book, comprising

Chapters 7–22. Chapters 7 and 8 cover preliminary material, including the role of volatility

and a discussion of commonly used “trading strategies.” Chapters 9–16 are concerned

with option pricing, beginning with no-arbitrage restrictions on these prices (Chapter 9)

and put-call parity and related results (Chapter 10). Chapter 11 then provides a gentle

introduction to option pricing and its key concepts (such as the option delta and risk-neutral

pricing). Building on this foundation, Chapters 12 and 13 develop the binomial model of

option pricing, while Chapters 14 and 15 present the Black-Scholes model. Chapter 16

discusses several generalizations of the basic binomial/Black-Scholes approach including

jump-diffusions, stochastic volatility/GARCH-based models, and local volatility models.

Moving from pricing to the management of option risk, Chapter 17 looks at the “option

greeks,” measures of option sensitivity to changes in market conditions. Chapters 18 and 19

move this discussion beyond the realm of plain vanilla options. Chapter 18 examines a range

of “path-independent” exotic options, while Chapter 19 studies “path-dependent” exotics.

The remainder of Part 2 looks at special topics. Themeasurement of portfolio risk and the

concepts ofValue-at-Risk (orVaR) and risk-budgeting are introduced inChapter 20.Convert-

ible bonds and their pricing and hedging are the subject of Chapter 21. Finally, Chapter 22

examines the field of “real options,” optionalities embedded within investment projects.

Part 3 of the book (Chapters 23–25) examines swaps. Chapter 23 looks at interest rate

swaps, which constitute the great bulk of the swaps market. The workhorse of the interest

rate swap market, the plain vanilla fixed-for-floating swap, is examined in detail, as are

several others. This chapter also introduces caps, floors, and swaptions, and presents the

so-called “market model” commonly used to value these instruments. Chapter 24 moves

on to equity swaps, their uses, pricing, and hedging, while Chapter 25 completes the swap

material with a discussion of currency and commodity swaps. As we noted in the Preface,

other products that bear the “swaps” moniker are discussed elsewhere in the book: volatility

and variance swaps are discussed in the chapter on the Black-Scholesmodel, and total return

swaps and credit default swaps are discussed in the chapter on credit derivative products.

Part 4 of the book (Chapters 26–30) deals with interest-rate modeling. Chapters 26

and 27 deal with the yield curve and its construction (i.e., estimation from the data). Chap-

ter 28 provides a gentle introduction to term-structure modeling and its complications and

discusses the different classes of term-structure models. Chapter 29 presents several well-

known “factor models” of interest rates. It begins with a detailed presentation of two well-

known members of the “no-arbitrage” class of term-structure models from the 1980s and
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early 1990s, namely, the models of Ho and Lee (1986) and Black, Derman, and Toy (1992).

Then, it develops one-factor and multi-factor models of interest rates, including, as special

cases, the models of Vasicek and Cox-Ingersoll-Ross, among others. Finally, it presents

the important result of Duffie and Kan (1996) on “affine” term-structure models. Build-

ing on this background, Chapter 30 develops the two classes of models that have formed

the backbone for much of the modeling of interest-rate risk in practice: the framework of

Heath-Jarrow-Morton and that of the Libor and Swap Market models.

Part 5 of the book (Chapters 31–34) deals with credit-risk modeling and credit deriva-

tives. Chapter 31 introduces the many classes of credit derivatives and discusses their uses.

Chapters 32 and 33 deal with credit risk measurement. Chapter 32 details the class of mod-

els that comprise the “structural” approach to credit-risk extraction, while Chapter 33 does

likewise for the “reduced-form” approach. The structural and reduced-form approaches are

concerned with extracting information about the default risk of an individual entity from the

market prices of traded securities issued by that entity. Chapter 34 discusses the modeling

of correlated default, i.e., of modeling default risk at the portfolio level rather than at the

level of the individual entity.

Part 6, the final part of the book, deals with computational methods. Chapter 35 looks

at the method of finite-differencing, and Chapter 36 describes Monte-Carlo methods. An

introduction to the programming language Octave, a freeware version of Matlab that we

use throughout the book for illustrative purposes, may be found in Chapter 37.

Case Studies
Thebookprovides a number of full-length case studies. These studies include the rise and fall

of the GNMA-CDR futures contract, the first interest-rate futures contract to be introduced

on a futures exchange; the Procter & Gamble–Bankers Trust scandal of the 1990s; and

the sagas of Amaranth, Barings, LTCM, and Metallgesellschaft, major derivatives disasters

all. Shorter case studies are also scattered throughout the book, especially to assist in

highlighting specific points. In addition, the website of this book (www.mhhe.com/sd1e)

contains a number of other case studies including the stories of the Ashanti Gold hedge that

failed, Orange County’s 1994 bankruptcy, Sumitomo Corporation’s huge copper losses, the

Son-of-Boss tax schemes, and the AIG debacle of 2008, among others.

1.6 Exercises 1. What is a derivative security?

2. Give an example of a security that is not a derivative.

3. Can a derivative security be the underlying for another derivative security? If so, give

an example. If not, explain why not.

4. Derivatives may be used for both hedging and insurance.What is the difference in these

two motives?

5. Define forward contract. Explain at what time cash flows are generated for this contract.

How is settlement determined?

6. Explain who bears default risk in a forward contract.

7. What risk is being managed by trading derivatives on exchanges?

8. Explain the difference between a forward contract and an option.

9. What is the difference between value and payoff in the context of derivative securities?
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10. What is a short position in a forward contract? Draw the payoff diagram for a short

position at a forward price of $103 if the possible range of the underlying stock price is

$50–150.

11. Forward prices may be derived using the notion of absence of arbitrage, and market

efficiency is not necessary. What is the difference between these two concepts?

12. Suppose you are holding a stock position and wish to hedge it. What forward contract

would you use, a long or a short? What option contract might you use? Compare the

forward versus the option on the following three criteria: (a) uncertainty of hedged

position cash flow, (b) up-front cash flow, and (c) maturity time regret.

13. What derivatives strategy might you implement if you expected a bullish trend in stock

prices? Would your strategy be different if you also forecast that the volatility of stock

prices will drop?

14. What are the underlyings in the following derivative contracts?

(a) A life insurance contract.

(b) A home mortgage.

(c) Employee stock options.

(d) A rate lock in a home loan.

15. Assume you have a portfolio that contains stocks that track the market index. You now

want to change this portfolio to be 20% in commodities and only 80% in the market

index. How would you use derivatives to implement your strategy?

16. In the previous question, how do you implement the same trading idea without using

futures contracts?

17. You buy a futures contract on the S&P 500. Is the correlation with the S&P 500 index

positive or negative? If the nominal value of the contract is $100,000 and you are required

to post $10,000 as margin, how much leverage do you have?
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Chapter 2
Futures Markets

2.1 Introduction

Futures markets offer an excellent platform for the study of several market phenomena

including market design, contract design, market manipulation, and financial crises. The

broad characteristics of futures markets and contracts were described in Chapter 1. This

chapter looks in further detail at thesemarkets. It describes their important common features,

the economic rationale for these features, and their desirable and sometimes not-so-desirable

consequences. Three case studies involving futures markets are used to highlight some of

the chapter’s main points.

While futures markets have been around for quite a while, they have undergone some

dramatic changes in recent years. Hollywood afficionados may recall the image portrayed

in the Eddie Murphy–Dan Ackroyd film Trading Places: frenzied traders in loud jackets

using extraordinary hand signals to trade in commodities such as wheat, corn, or even—as

in the case of Mr. Ackroyd’s and Mr. Murphy’s characters—orange juice. Colorful though

this image is, it is no longer representative of futures markets both in terms of how trading

is done and what is traded. To put the rest of the chapter in prespective, we begin with a

description of the changing face of futures markets.

2.2 The Changing Face of Futures Markets

As economic mechanisms go, forward contracts are very old. The Futures Industry Associ-

ation cites evidence of forward trading going back as many as 4,000 years. (Appendix 2A

reviews the history of futures trading and its regulation.) Organized futures trading is more

recent, but it too is several hundred years old. The world’s first futures market was likely

the Dojima Rice Market set up in Osaka, Japan, in 1730. Active futures trading in the US

began with the establishment of the Chicago Board of Trade (CBoT) in 1848.

Three trends have marked the recent evolution of futures markets and have radically

altered the face of these markets in terms of where trading occurs, how it occurs, and what

is traded.

Fewer and Larger Exchanges
The first trend is one of consolidation. Of themore than thousand commodity exchanges that

existed in the US in the late 19th century, only a small handful survive today. Consolidation

has been the watchword of especially the last two decades. The two largest New York

exchanges, the New York Mercantile Exchange (NYMEX) and the Commodity Exchange

(COMEX),merged in 1994, and the two largest Chicago exchanges, the ChicagoMercantile

19
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Exchange (CME) and the CBoT, in 2007. In 2008, the CME acquired NYMEX too, making

it the world’s largest and most diversified derivatives exchange.

Europe’s largest futures and options exchange, Eurex, was similarly a joint creation of

German and Swiss exchanges. Its principal European rival, Euronext, was formed as a

holding company through the merger of the Amsterdam, Brussels, and Paris exchanges in

2000; the Paris exchange had itself been formed in 1999 through the merger of four French

entities. In 2002, Euronext acquired the London International Financial Futures andOptions

Exchange (LIFFE), and, in a cross-Atlantic expansion in 2007, merged with the New York

Stock Exchange (NYSE) to create NYSE Euronext.

Nor has consolidation been limited to the developed economies. In 2008, the integration

of the Brazilian Mercantile and Futures Exchange (BM&F) with the Sao Paolo Stock

Exchange (Bovespa) resulted in the formation of BM&FBovespa, Latin America’s leading

exchange.

Technology and the Trading Platform
The second trend is technological. Until recently, most exchanges worldwide used some

version of a floor-based trading system with traders in the exchange’s “pits” calling out

buy and sell orders and determining futures prices through an open-outcry system. In the

last decade, many trading floors have fallen silent as the use of electronic trading systems

has spread. European exchanges, including Eurex and LIFFE, are now wholly electronic.

While large US exchanges including the CME, CBoT, and NYMEX have maintained some

of their trading pits, they have also introduced electronic trading—and with considerable

success. The CME, for instance, estimated that 61% of its total trading volume in the third

quarter of 2004 was electronic, up from 44% in the first quarter of 2003.

The Rise of Financial Futures
The third, and perhaps the most significant, trend has been the changing product mix in

futures exchanges. Through most of the 4,000 year history of forward and futures trading,

the underlying asset in the contract was a commodity such as wheat or gold. The picture

changed dramatically with the introduction of financial futures—futures contracts written

on a financial security or variable—in the early 1970s.

The first financial futures contracts were currency futures introduced in 1972 by the

CME. Futures contracts on mortgage-backed securities (the GNMA contract discussed in

Section 2.7) were offered in 1975 by the CBoT and were the first interest-rate futures con-

tracts. Treasury bill futures were introduced by the CME in 1976 and Treasury bond futures

on the CBoT in 1977. Futures on stock indices and other products followed soon thereafter.

Although total trading volume has increased significantly since the 1970s, the increase in

volume of financial futures has been far more spectacular. Table 2.1 describes the changing

TABLE 2.1 The

Changing Nature

of Futures Trading

This table describes the spectacular growth in the trading of financial futures in the first
two decades of their existence. The volume numbers in the table are in terms of the
number of contracts traded at the CBoT and indicate the changing product mix at the
exchange.

Volume

1976 1981 1990

Financial futures 0.13 million 16.36 million 114.39 million
All futures 18.90 million 49.08 million 154.23 million
Financial futures % 0.68% 33% 73%
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TABLE 2.2 The

Top 15 Futures

Contracts Worldwide

This table describes the most widely traded futures contracts in the world during the
first half of 2008 measured by trading volume (in millions of contracts). The figures are
from the Futures Industry Association. NSE is the National Stock Exchange of India. The
remaining exchanges are mentioned in the main text.

Contract Underlying Exchange Volume

Eurodollar Interest-rate CME 356,262,782
E-mini S&P 500 Equity CME 276,146,082
DJ EuroStoxx 50 Equity Eurex 194,904,054
10-year US Treasury Note Interest-rate CME 154,732,086
Euro-Bund Interest-rate Eurex 150,263,897
Euribor Interest-rate LIFFE 132,965,091
Euro-Schatz Interest-rate Eurex 101,894,877
5-year US Treasury Note Interest-rate CME 98,689,353
1-day Inter-Bank Deposit Interest-rate BM&F 97,955,779
Euro-Bobl Interest-rate Eurex 87,222,810
S&P CNX Nifty Equity NSE 87,072,050
White Sugar Agricultural ZCE 70,853,581
Light Sweet Crude Oil Energy NYMEX 70,507,281
Short Sterling Interest-rate LIFFE 64,801,289
E-mini Nasdaq 100 Equity CME 53,295,145

product mix at the CBoT in the first two decades since the introduction of financial futures.

In 1976, the volume of financial futures trading at CBoT was negligible, but by 1990, it

accounted for almost three-fourths of the number of contracts traded.

Table 2.2 describes the top 15 futures contracts worldwide based on the volume of trad-

ing (measured in terms of number of contracts) during the first half of 2008. There are no

non-financials in the top 10, and only two in the top 15: the White Sugar futures contract

on China’s Zhengzhou Commodity Exchange (ZCE) at No. 12 and the Light Sweet Crude

Oil futures contract on NYMEX at No. 13. This dominance in terms of number of contracts

is even more impressive when one considers that the typical financial futures contract is

substantially larger in monetary terms than the typical commodity futures contract (see

Table 2.4 further below).

2.3 The Functioning of Futures Exchanges

A futures exchange performs two essential functions. First, it provides a marketplace where

buyers and sellers may interact and arrive at agreements. Second, it provides a mechanism

to protect either party from a possible default by the other. The two organizations central

to the functioning of every futures market, the exchange corporation and the clearinghouse

corporation, perform these tasks.

The exchange corporation provides the marketplace. It determines such matters as the

rules of trading (who may trade? when and how may they trade?); the standardization

of contracts and provision of delivery options (what may be traded? how is settlement

to be effected?); and margin requirements (how much collateral should be required of

participants?). The details of futures trades—quantity, price, time of delivery—must be

agreed to under the rules of the exchange.

After a trade has been agreed to, it must be recorded (“cleared”) by the clearinghouse.

Clearing is the matching of buy and sell records to ensure there are no discrepancies in the
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price and/or quantity. Once the trade is cleared, the clearinghouse corporation guarantees

the trade by assuming ultimate responsibility for contract performance. Effectively, the

clearinghouse becomes the buyer to all sellers and the seller to all buyers.

Of all the features that distinguish futures markets from forward markets, three are of

particular importance:

• The standardization of contracts.

• The ease of reversing positions.

• The use of margin accounts to manage default risk.

Each of these is discussed in a separate section below (see Sections 2.4–2.6).

First, however, it is useful to review briefly several concepts of importance to the func-

tioning of a futures exchange, such as types of orders, prices, how delivery is effected, etc.

The remainder of this section takes us through this material. The presentation is in eight

parts: (a) players in futures markets, (b) kinds of orders, (c) opening, closing, and settlement

prices, (d) price ticks and price limits, (e) delivery and settlement procedures, (f) position

limits, (g) the clearinghouse and contract performance, and (h) reading futures prices in the

financial press.

(A) Players in Futures Markets
Buyers and sellers in futures markets may be divided into three broad categories based on

their motivation for trading: hedgers, speculators, and arbitrageurs.

Hedgers

Hedgers are investors who have a pre-existing commitment to buy or sell and are using the

futures market trade to offset the price risk from this commitment. For example, an exporter

who anticipates receipt of foreign currency in the future might use short curency futures

to lock-in an exchange rate at which the foreign curency can be converted to the home

currency; a jewelry manufacturer who makes regular gold purchases might use long gold

futures to eliminate the risk of fluctuations in the spot price of gold; and a mortgage banker

might use interest-rate futures to offset the sensitivity of the value of her existing portfolio

to changes in interest rates.

Speculators

Speculators are those who take directional bets either on prices or on the difference of two

prices (for instance, that this difference will narrow from existing levels). Unlike hedgers,

speculators have no prior risk that is being offset by the futures trade. To bet on individual

prices (e.g., that silver prices will rise), speculators can simply use the relevant individual

futures contracts (in this example, long silver futures). To bet on the difference of two

prices, strategies known as “spread orders,” that involve the simultaneous use of two futures

contracts, are used. Spread orders are described further below under “(B) Kinds of Orders.”

Exchanges generally treat speculators less generously than hedgers, for example, restricting

their maximum position sizes more severely.

Arbitrageurs

An arbitrage or riskless profit opportunity is one where two equivalent securities or bas-

kets of securities sell for different prices. Arbitrageurs are those who exploit these profit

opportunities. In the context of futures markets, this may simply involve trading the same

futures contract on two different exchanges. For example, futures on the Nikkei 225 in-

dex are traded both in Osaka and in Singapore, and any difference in futures prices in

the two markets creates an arbitrage opportunity that may be exploited by buying in one

market and simultaneously selling in the other. Alternatively, as we describe in Chapters 3
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and 4, futures arbitrage may involve simultaneous trading in futures markets and the un-

derlying spot market if the futures contract becomes over- or under-valued relative to the

spot price.

Intermediaries

Of the intermediaries in futures markets, the most important are futures commission mer-

chants, or FCMs. FCMs are the stockbrokers of the futures world, connecting customers to

exchanges. They provide the facilities to execute customer orders on the exchange andmain-

tain records of each customer’s positions and margin deposits. FCMs may be independent

institutions or have a parent institution such as a bank or be affiliated with a national

brokerage.

Other intermediaries include introducing brokers, or IBs, who are individuals or organi-

zations who solicit and accept orders to buy or sell futures contracts and direct the business

to FCMs; commodity pool operators, or CPOs, who, akin to mutual funds, pool funds col-

lected from investors and use them to trade commodity futures or options; and commodity

trading advisers, or CTAs, who offer trading advice in futures in exchange for a fee. Finally,

there are associated persons, or APs, individuals who solicit orders, customers, or customer

funds on behalf of an FCM, IB, CTA, or CPO. APs are effectively salespersons for the other

categories of intermediaries.

Other Participants

Traders on the floor of an exchange are divided into two groups. Floor brokers are those

who execute trades on behalf of others. Locals trade on their own accounts. Locals are

of particular importance in futures markets since they add substantially to the market’s

liquidity. Locals who hold positions for very short periods of time are known as scalpers.

(B) Kinds of Orders
A futures order must specify the particular futures contract (wheat? gold? eurodollars?),

the delivery month for the contract (contracts expiring in June? July?), and whether the

position is a long or short one. If a customer wishes, further contingencies may be specified

in the order. The three most popular kinds of orders are market orders, limit orders, and

stop orders.

Market Orders

Market orders are the simplest kind of orders: they are just buy or sell orders with no

restrictions. Market orders are matched as soon as possible at the best available price. (For

a buyer, “best available price” means the lowest price currently being offered by sellers; for

sellers, it is the highest price currently available from buyers.) In some cases, safeguards

may be applied to the principle of immediate matching. For example, the price at which the

order is executed may be required to lie within a maximum range around the last trade.

Limit Orders

A limit order is one where the customer specifies a limit price. For a buyer, the limit price

represents the maximum price he is willing to pay; for a seller, it is the minimum price she

is willing to accept. For example:

• A limit order to buy 10May wheat futures contracts with a limit price of $3.60 per bushel

is an order to take long positions at a price of $3.60 per bushel or lower.

• A limit order to sell 10 May gold futures contracts with a limit price of $350 per ounce

(oz) is an order to sell at a price of $350 per ounce or higher.
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Limit prices are typically below the current futures price for buy orders and above it for sell

orders.

Limit orders may be placed with restrictions regarding the time frame over which the

order remains valid. The popular types are described below. Not all exchanges offer all of

these variations, but virtually all exchanges offer most of them.

• A fill-or-kill (FOK) limit order (also called a complete volume or CV order) is one that

must be filled immediately and completely or not at all.

• An immediate-or-cancel (IOC) limit order is one that must be filled immediately either

partially or completely, or not at all.

• A good-for-day (GFD) limit order is one that is canceled at the end of the trading day if

it has not been filled by then.

• A good-till-canceled (GTC) limit order is one that remains valid until the customer

cancels or a maximum time limit (e.g., one year) is reached.

Limit orders have the advantage that they will never be executed at a price less favorable

than the one the customer wants, but it is also possible that the order may never be executed.

Consider, for example, a limit order to buy May wheat futures with a limit price of $3.60 a

bushel. If the order is executed, the futures price will not exceed $3.60 per bushel. However,

there may be no seller willing to sell at $3.60 or lower, or there may be buyers willing to pay

more than $3.60 per bushel whose offers take precedence, so the order may never be filled.

Stop Orders

A stop order is an order that becomes a market order once the market price for the contract

reaches a specified price limit (the “stop price”). Stop-buy orders are orders to buy as soon

as the stop price is reached; stop-sell orders are orders to sell as soon as this price is reached.

A stop order offers a way of limiting one’s losses in the face of an unfavorable trend in

prices. A prospective buyer who sees prices increasing can wait to see if they come down

before buying. The danger with this is that prices may continue to increase and the price

the buyer finally pays may be very high. A stop-buy order allows the buyer to wait until a

specified point is reached and then have his order executed before prices get too high. The

price limit is typically set above the current price for stop-buy orders.

For example, consider an investor who wishes to go long gold futures but is hesitant to

do so at the current futures price of (say) $365 per oz. By using a stop-buy order with a

price limit of $370 per oz, the investor ensures that if gold prices increase further, he will

at worst be able to get a futures price of around $370 per oz.

Similarly, a prospective seller who sees the price declining can place a stop-sell order to

limit her losses before prices get too low. The price limit in a stop-sell is typically set below

the current price.

Besides market, limit, and stop orders, futures exchanges typically offer several other

types of orders too (though not all exchanges offer all of these). Here is a description of

some of them:

Market-if-Touched Orders

A market-if-touched or MIT order is one that must be executed at the best possible price

once a trade occurs at a price at least as favorable as a specified limit price. The limit price

is typically below the market price for an MIT-buy order and above it for an MIT-sell order.

An MIT order offers a way of locking-in one’s gains in the face of favorable price moves.

A buyer seeing declining prices or a seller seeing increasing prices can lock-in their gains

beyond a point by using MIT-buy and MIT-sell orders, respectively. Thus, an MIT order

serves the opposite function of a stop order.
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Stop-Limit Orders

A stop-limit order is a stop order that becomes a limit order once the stop price is reached.

The stop price and the limit price may be the same, but they may also differ. For example,

a stop-limit buy order for gold futures may have a stop price of $375/oz and a limit price

of $380/oz. This effectively means that as soon as the futures price reaches $375/oz, the

investor is willing to buy, but only at a price of $380/oz or below.

Spread Orders

A spread order involves simultaneous long and short positions in two futures contracts.

It is typically a bet on the behavior of the price differential (or “spread”) between two

commodities or securities, e.g., that the spread will widen from its present level. Spread

orders can involve different months of the same commodity (e.g., buy May wheat futures,

sell July wheat futures) or can involve futures on two different underlyings (e.g., buy 10-

year US Treasury futures, sell 5-year US Treasury futures). A spread order can be entered

at the current price (like a market order). Alternatively, the investor may specify a price

difference between the commodities that triggers when the order is to be filled (e.g., if the

spread exceeds a given amount).

One-Cancels-the-Other

In a one-cancels-the-other or OCO order, the investor places two simultaneous orders on

the same contract with the understanding that the execution of one cancels the other order.

For example, an investor may submit the following orders on S&P 500 index futures: a

limit-buy order with a limit price of 1,195 and a stop-buy order with a stop price of 1,215,

OCO. In this case, the investor is interested in going long S&P 500 futures; ideally, the order

will be executed at a price of 1,195 or below, but in the event of themarket’s sharply trending

up without the limit price being reached, the stop order limits the investor’s downside.

Market-on-Close/Open

A market-on-close or MOC is an order that will be filled during the closing seconds of the

market at whatever price prevails then. Its twin is the market-on-open or MOO order which

is filled at the best available price in the opening range.

As these descriptions indicate, the flexibility offered to customers in placing orders in

futures exchanges is quite substantial.

(C) Opening, Closing, and Settlement Prices
As buy and sell orders are matched, futures prices are determined. This price will fluctuate

over the day and over the life of the contract as the patterns of buy and sell orders vary.

Three daily prices for each futures contract are commonly reported in the financial press:

the opening price, the closing price, and the settlement price.

The opening price is the first price at which the contract is traded at the beginning of a

trading session. The term opening range is used more generally to describe the first bids

and offers that were made. The exchange recognizes an opening range only after the first

trade is made.

The closing price is the last price at which a contract is traded at the close of a trading

session. The closing range is that of the high and low prices or of bids and offers during

the official close, which is usually the final 30 seconds of trading for most contracts and the

final 60 seconds for currencies.

The settlement price is a representative price from the closing range chosen by the

exchange, and is the official closing price of the exchange. The settlement price plays

a major role in futures exchanges since margin accounts gains and losses are calculated

with respect to this price (see Section 2.6). Deliveries are also invoiced at this price. The
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procedure guiding the selection of this price is of obvious importance. As one example, the

Eurex website notes that in the Euro-Bund futures contract on Eurex,

[The daily settlement price is] the closing price determined within the closing auction. If no

price can be determined in the closing auction or if the price so determined does not

reasonably reflect the prevailing market conditions, the daily settlement price will be the

volume-weighted average price of the last five trades of the day, provided these are not older

than 15 minutes; or, if more than five trades have occurred during the final minute of trading,

the volume-weighted average price of all trades that occurred during that period. If such a

price cannot be determined, or if the price so determined does not reasonably reflect the

prevailing market conditions, Eurex will establish the official settlement price.

A related concept is that of the final settlement price, the settlement price on the last

trading day of a contract. The rules for determining the final settlement price may differ

from those for the daily settlement prices. For example, for the Euro-Bund futures contract

on Eurex, the Eurex website states that

The volume-weighted average price of the last ten trades, provided they are not older than

30 minutes—or, if more than ten trades have occurred during the final minute of trading, then

the volume-weighted average price of all the trades during that period—is used to determine

the final settlement price.

(D) Price Ticks and Price Limits
Exchanges place limits on theminimum amount by which prices can move up or down. This

amount is known as the tick. The tick varies from contract to contract. Specification of the

tick is part of the standardization of the contract. Here are some examples, all corresponding

to tick sizes in July 2009.

• On the corn futures contract on the CBoT, the tick is 0.25 cents per bushel. Since one

corn futures contract on the CBoT has a standard size of 5,000 bushels, this means the

minimum futures price move per contract is $(5,000× 0.0025) = $12.50.

• On the Light Sweet Crude Oil futures contract on NYMEX, the tick is $0.01 per barrel.

Since one futures contract is for 1,000 barrels, this corresponds to a minimum futures

price move of $10 per contract.

• On the S&P futures contract on the CME, the tick is 0.10. Since one contract is for 250

units of the index (i.e., of the basket of stocks that comprise the index), this implies a

minimum futures price move of $25 per contract.

• On the Gilt futures contract on LIFFE, the minimum price move is £10 per contract.

Exchanges also establish maximum limits by which the futures prices can fluctuate in a

day. These are called the daily price limits, and are stated in terms of movements measured

from the previous day’s closing price. The limits vary from contract to contract. For example,

the daily price limit in August 2009 was $1,200 on the Live Cattle futures contract on the

CME, and $10,000 on the Light Sweet Crude futures contract on NYMEX. For some

contracts (e.g., the corn or wheat futures contracts on the CBoT), daily price limits are

eliminated during the spot month (i.e., the month the contract expires).

The operation of the daily price limit varies from contract to contract. In many cases,

once the daily price limits are hit, no trading outside the limits is possible until the next

trading day. In others, the price limits act as “circuit breakers.” For example, as of August

2009, trading in the Light Sweet Crude futures contract on NYMEX halts for five minutes

each time the price limit is reached. When trading resumes, the price limit is expanded

by $10,000 per contract in each direction from the previous limit. However, there is no

maximum price fluctuation during any one trading session. A similar, but more complex,
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set of circuit-breaker rules holds for the equity futures contracts on the CME, though there

is also a maximum amount by which prices may fall in a given trading day.

Daily price limits set by the exchanges are subject to change. They may, for instance, be

increased once the market price has increased or decreased by the existing limit for a given

number of successive days. The presence of such limits implies that it may not always be

possible to close out futures contracts when desired.

(E) Delivery and Settlement Procedures
Each futures contract is associated with a specific maturity month (e.g., the “May 2004

wheat futures contract”). For assets involving physical delivery (see below), delivery can

often take place at any time during the delivery month.

There are three ways in which futures contracts are settled: physical delivery, cash set-

tlement, and exchange-for-physicals. The normal method of settlement on most futures

contracts is physical delivery. The contract specifies a set of locations where delivery may

be made. If alternative locations are permitted, the contract may specify price adjustments

to be made. Commodity futures contracts and many financial futures contracts including

currency futures and Treasury futures are settled by physical delivery.

For some financial futures contracts, settlement by physical delivery is nontrivial. With

stock index futures, for example, delivering an index requires delivering the basket of

stocks in the index in the exact proportions in which they are present in the index. Given the

complexities of physical settlement, such contracts are cash settled, i.e., one side pays the

other cash equal to the change in contract value occurring on account of changes in the index

level. Cash settlement takes place through the margin account described in Section 2.6.

An EFP or exchange-for-physicals is an alternative settlement mechanism for futures

contracts in the US authorized under the Commodity Exchange Act. In an EFP, a long

position and a short position with equal position sizes negotiate a price off-exchange and

communicate their decision to settle their trades with physical delivery at the agreed-upon

price. There are typically no restrictions on the prices at which EFPs may occur, but the

EFPs must involve a trade with physical delivery at that price. EFPs are examples of ex-pit

transactions, transactions done outside the trading framework of the exchange. EFPs are

also known as “cash for futures” or “vs. cash” transactions; the word “cash” here refers to

the cash market (i.e., spot) transaction accompanying the EFP. In the context of interest-rate

futures, EFPs are also called exchange basis facilities, or EBFs.

(F) Position Limits
Exchanges and regulators establish limits on the maximum number of speculative positions

a single investor may hold at a time. These position limits vary over different underlying

assets. Table 2.3 provides examples of position limits on several contracts on the CBoT and

CME. The purpose of these limits is to prevent any one trader from exercising excessive

influence over prices. Limiting any one trader’s positions also acts as a soft curb on the

benefits from market manipulation.

In the US, the Commodity Exchange Act (CEA) authorizes the Commodity Futures

Trading Commission (CFTC) to set limits on the size of speculative positions. The CFTC

may stipulate limits to be imposed by the exchanges, or it may provide guidance on the

limits, which are then implemented by the individual exchanges. In addition, exchanges

may also choose to set limits on nonspeculative positions.

In terms ofmagnitude, a rough average of the position limit tends to be around 10%of the

open interest up to about 25,000 contracts of open interest with small increases thereafter.

In the spot month (i.e., the delivery month of the contract), position limits may be set lower

to offset the natural increase in price fluctuation from physical trading.
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TABLE 2.3 Position Limits in Futures Contracts

The table lists position limits for various futures contracts as of July 2009. The units in the table are in numbers of
contracts. The “spot month” is the delivery month of the futures contract.

Position Limits (No. of Contracts) in

Underlying Exchange Spot Month Single Month All Months

Agri commodities

Corn CME Group 600 13,500 22,000
Soybean CME Group 600 6,500 10,000
Wheat CME Group 600 5,000 6,500
Oats CME Group 600 1,400 2,000

Livestock

Live cattle CME Group 450 5,400 None
Lean hogs CME Group 950 4,100 None

Forest

Lumber CME Group 435 1,000 None

Interest rate

30-year US T-Bonds CME Group None None None
10-year US T-Notes CME Group None None None
5-year US T-Notes CME Group None None None
US T-Bill CME Group None None 5,000
3-month Eurodollar CME Group None None None
1-month Libor CME Group None None None

Currency

Euro (EUR) CME Group None None None
British pound (GBP) CME Group None None None
Japanese yen (JPY) CME Group None None None
Swiss franc (CHF) CME Group None None None
Canadian dollar (CAD) CME Group None None None
Brazilian real (BRL) CME Group None 24,000 40,000
Israeli shekel (ILS) CME Group 2,000 None None

Stock indices

S&P 500 CME Group None None 20,000
Big Dow CME Group None None 50,000
Nasdaq 100 CME Group None None 10,000
Nikkei 225 (yen) CME Group None None 5,000

Metals

Gold COMEX 3,000 6,000 6,000
Silver COMEX 1,500 6,000 6,000

Energy

Light sweet crude NYMEX 3,000∗ 10,000 20,000

∗ Last 3 days of spot month

An important aspect of the limits is that they be set relative to the likely physical supply

of the commodity, decreasing when supply is likely to be short. Thus, there are no position

limits on currency futures contracts at the CME or on Treasury futures contracts at the

CBoT, since supply is not a constraint in these markets.
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Accounts that are under common ownership, even though they are booked as separate

positions, are subject to position limits in aggregate so that the spirit of the regulations is

adhered to. Limits may also be aggregated across time, that is, across expiry months. The

idea here is that since speculation across maturities may also result in unreasonable price

fluctuations, control needs to be exercised for all contracts against a given underlying.

Once a market has been in place for at least 12 months, position limits may be replaced

by accountability rules. This is usually done in liquid markets. Traders that reach a preset

accountability level (and satisfy other stated criteria) are granted exemption from position

limits.

Investors accepted by the exchange as bona fide “hedgers” do not normally face formal

position limits. In practice, this means they may be given much higher limits than those

allowed speculators so that there remains in place some limit that prompts future review if

necessary.

(G) The Clearinghouse and Contract Performance
At the end of the day, all positions must be recorded (“cleared”) by the clearinghouse. In

many futures markets, the clearinghouse corporation is a separate legal entity from the

exchange corporation (though they may share common members). The same clearinghouse

may serve several exchanges simultaneously. For example, in April 2003, some years prior

to their merger, CBoT and CME announced an agreement for CME to provide clearing

and related services for all CBoT products. In some cases, however, the clearinghouse is

organized as an entity within the exchange itself. NYMEX is one such case.

Members of the clearinghouse are called clearing members. Non-members must clear

their transactions through clearingmembers. Clearingmembers are responsible to the clear-

inghouse for contract performance. If an investor on an exchange defaults and his margin

balance is inadequate to cover his losses, the clearing member who cleared that investor’s

contracts is first held responsible for the defaulted amount. If the clearing member also

defaults, then the clearinghouse assumes ultimate responsibility for contract performance.

Duffie (1989) describes the incentives used by clearinghouses to provide clearing mem-

bers with an incentive to fulfill their obligations. First, members are required to maintain a

margin with the clearinghouse.Margin accounts are described in Section 2.6 below. Second,

members pay a fee per contract cleared (and sometimes also a monthly fee) that is held in

a surplus fund. Third, members are required to post a performance bond that is held in a

guarantee fund.

Upon any default by a clearingmember, the clearinghouse closes out all of that member’s

positions. Any deficit is then met by using in succession the member’s margin account, the

member’s guarantee bond, the surplus fund, and the guarantee fund. If all of this still proves

insufficient, the system collapses. No clearinghouse in US history has yet defaulted on its

obligations.

(H) Futures Prices in the Financial Press
Figure 2.1 describes the presentation of futures prices in The Wall Street Journal and is a

typical example of how futures prices are reported in the financial press. The upper panel

presents the prices as they once appeared in the print edition, the lower panel as they now

appear online on the paper’s website. There are some differences in the details (the online

version does not provide the lifetime highs and lows, and the settlement price in the upper

panel appears as the last price in the lower one), but these are minor and unimportant, so

we focus our description on the upper panel. In this panel, the contract underlying (“Cattle-

Live”), the exchange onwhich it is traded (“CME”), the size of each contract (“40,000 lbs.”),

and the units in which prices are quoted (“cents per lb.”) are listed on the top.
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FIGURE 2.1
Futures Prices in The

Wall Street Journal

       Lifetime Open
 Open High Low Settle Change High Low Interest

   CATTLE—LIVE (CME) 40,000 lbs.; cents per lb.
Dec 67.85 68.25 67.85 68.17 +.40 68.25 61.75 30,828
Fb96 67.10 67.40 67.05 67.35 +.27 68.30 62.80 15,490
Apr 67.20 67.42 67.20 67.37 +.17 68.32 63.90 9,324
June 63.37 63.55 63.37 63.50 +.17 63.55 60.95 4,161
Aug 62.00 62.12 61.92 62.05 ....   62.90 60.05 1,768
Oct 63.05 63.05 62.87 62.95 +.10 63.05 61.30 531
  Est vol 8.888; vol Wed 9.426; open int 62.110. +325

Thursday, October 26, 1995
Open Interest Reflects Previous Trading Day

–LIVESTOCK & MEAT–

Each horizontal line corresponds to a particular contract maturity month. All entries in

each line barring the last pertain to price information. The first entry is the opening price

of the contract in the last trading session. For example, the December futures contract in

Figure 2.1 opened at a price of 67.85 cents per lb. The next two entries give themaximumand

minimumprices on that contract observed in the last trading session. The difference between

these two is one indicator of how volatile trading in the contract was during that session.

The fourth entry is the all-important settlement price while the fifth provides the change

in settlement price from the previous day. A positive sign indicates the settlement price has

increased, while a negative sign indicates it has decreased. The use of settlement prices in

calculating gains and losses is described in Section 2.6 below.

The sixth and seventh entries describe the highest and lowest prices observed on this

contract since it began trading. Observe that the December Live Cattle futures contract

settled at close to its lifetime high.

Finally, the last entry indicates the number of contracts currently held by market partic-

ipants. It is the sum of all the contracts held by long positions or, equivalently, the sum of

all the contracts held by short positions. (As we discuss in Section 2.5, futures positions do

not have to be held to maturity, but may be closed-out or “reversed” before then. The open

interest measures only the number of futures positions that have not yet been reversed.) The

size of the open interest is an important measure of the liquidity of that contract; a high

open interest indicates a large number of participants and so a relatively liquid contract. As

is typical in most futures markets, Figure 2.1 shows that open interest is high in short-dated

futures contracts, but liquidity rapidly dries up as one looks at longer maturities.

2.4 The Standardization of Futures Contracts

The remainder of this chapter focusses on the three features that distinguish futures markets

from forward markets:

• The standardization of contracts.
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• The ease of reversing positions.

• The use of margin accounts to manage default risk.

This section deals with the standardization of futures contracts. The next two examine

reversal and margining, respectively.

The standardization of futures contracts is perhaps the most important task performed

by the exchange. It involves three decisions: specifying the quantity or size of one futures

contract; specifying the minimum acceptable quality that may be delivered; and specifying

the delivery options available to the short position. Successful standardization goes a long

way in promoting contract liquidity; poor standardization, as in the case of GNMA futures

discussed later in this chapter, can lead to the failure of the contract.

The Size of a Futures Contract
Futures contracts are traded in standardized sizes. Table 2.4 summarizes the standard sizes

of several futures contracts and the approximate value of the delivered quantity at spot

market prices observed in July 2009.

As the table shows, commodity futures contracts in general have a value under $50,000.

For example, one corn futures contract on the CBoT calls for the delivery of 5,000 bushels

of corn, worth roughly $17,250 in July 2009 prices. The aluminium futures contract on the

London Metals Exchange (LME) requires the delivery of 25 tonnes, which puts the worth

of the delivered quantity at around $38,250 in July 2009. Of course, with fluctuations in

commodity prices, the values of the assets in these contracts fluctuate too.

Financial futures contracts tend to be larger in size. One Treasury bond futures contract

on the CBoT calls for the delivery of $100,000 in face value of US Treasury bonds; one

S&P 500 Index futures contract on the CMEwas worth around $225,000 in July 2009, while

the British pound futures contract on the PHLX was worth a little over $100,000 around the

same time.

Many futures exchanges also offer what are called “mini” futures contracts in smaller

standard sizes aimed at attracting smaller investors. Thus, while one wheat futures contract

on the CBoT is for 5,000 bushels of wheat, the exchange also offers a mini-wheat futures

contract of size 1,000 bushels. The Dow Jones Index futures contract on the CBoT is for

10 times the Dow Jones index, but there is also a mini-Dow Jones futures contract that is for

5 times the index. (There is also a “Big Dow” contract for 25 times the index.) Mini-futures

contracts have now become popular and established presences in futures exchanges.

The Standard Grade in a Futures Contract
Every futures contract also specifies the standard deliverable grade or grades of the un-

derlying asset. For example, the LME’s aluminium futures contract requires the delivered

aluminium to have a purity of at least 99.7%; the COMEX gold contract requires the deliv-

ered gold to be of at least 0.995 fineness; and the oat futures contract on the CBoT calls for

the delivery of either No. 2 Heavy or No. 1 grades.

For some financial futures contracts, quality is a non-issue (e.g., currency or index

futures), but for others such as Treasury futures, it is of central importance. The “quality”

of a bond depends on two features: the coupon paid by the bond and the bond’s maturity.

Every Treasury futures contract must spell out the acceptable quality on these two fronts.

The standard coupon in the US Treasury bond and note futures contracts on the CBoT

is 6%. The Treasury bond futures contract requires the delivered instruments to have at

least 15 years to maturity or first call while the Treasury note futures contract calls for the

delivery of Treasury notes with between 61
2
and 10 years left to maturity. US Treasury bills

are discount instruments that pay no coupons; the Treasury bill futures contract on the CME

requires the delivered instruments to have 13 weeks to maturity.
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TABLE 2.4 Futures Contract Sizes

This table describes the standard sizes of several futures contracts and the approximate value of the asset in one
contract measured using July 2009 prices. For the US Treasury futures contracts, the “contract size” and “market
value” refer to the face value of the instruments that must be delivered, while for the Eurodollar futures contract,
these terms refer to the principal amount on which interest is computed.

Approximate USD
Underlying Exchange Contract Size Value (July 2009)

Agri commodities
Corn CME Group 5,000 bushels 17,250
Wheat CME Group 5,000 bushels 25,000
Oats CME Group 5,000 bushels 10,250
Soybean CME Group 5,000 bushels 56,000

Livestock
Live cattle CME Group 40,000 lbs 34,000
Lean hogs CME Group 40,000 lbs 24,400

Forest
Lumber CME Group 110,000 board feet 19,800

Interest rate
30-year US T-Bonds CME Group USD 100,000 100,000
10-year US T-Notes CME Group USD 100,000 100,000
5-year US T-Notes CME Group USD 100,000 100,000
US T-Bill CME Group USD 1,000,000 1,000,000
3-month Eurodollar CME Group USD 1,000,000 1,000,000
1-month Libor CME Group USD 1,000,000 3,000,000

Currency
Euro (EUR) CME Group EUR 125,000 173,750
British pound (GBP) CME Group GBP 62,500 101,250
Japanese yen (JPY) CME Group JPY 12,500,000 135,000
Swiss franc (CHF) CME Group CHF 125,000 115,000
Canadian dollar (CAD) CME Group CAD 100,000 86,000
Brazilian real (BRL) CME Group BRL 100,000 49,000
Israeli shekel (ILS) CME Group ILS 1,000,000 250,000

Stock indices
S&P 500 CME Group USD 250 times index 225,000
Big Dow CME Group USD 25 times index 210,000
Nasdaq 100 CME Group USD 100 times index 142,500
Nikkei 225 CME Group JPY 500 times index 46,250

Metals
Aluminium LME 25 tonnes 38,250
Copper LME 25 tonnes 121,000
Gold COMEX 100 Troy oz 91,000
Silver COMEX 5,000 Troy oz 63,000

Energy
Light sweet crude NYMEX 1,000 barrels 60,000
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Delivery Options
Specifying the deliverable grade narrowly in a commodity futures contracts may limit

overall supply and facilitate market corners or squeezes. Corners and squeezes are market

manipulation attempts in which the manipulator takes on more long positions in a given

futures contract than the short position has ability to make delivery. This is achieved by

the long either controlling all of the available spot supply (a “corner”) or at least a suffi-

cient quantity so that the short position has difficulty finding adequate deliverable supply

(a “squeeze”). In a successful attempt, the price of the commodity is driven up by the lack

of supply. The short position must buy the required quantity for delivery at a high price and

sell it back to the long position at the fixed price agreed to in the contract (or equivalently

must compensate the long position for the difference in prices).

Partly to reduce the opportunity for such behavior, the short position in a futures contract

is provided with delivery options. Delivery options allow the short position to substitute an

alternative grade or quality for the standard quality at an adjustment in the delivery price.

The specification of the contract lists the alternative deliverable grades to the standard grade

and describes how the price will be adjusted for each grade.

Example 2.1 The standard grade in the corn futures contract on the CBoT is No. 2 Yellow. However, at
the time of writing, the contract also allows the short position to deliver No. 1 Yellow or
No. 3 Yellow with the proviso that if No. 1 Yellow is delivered, the delivery price is increased
by 1.5 cents a bushel, while if No. 3 Yellow is delivered, the delivery price is lowered by
1.5 cents a bushel. ■

Example 2.2 Several delivery options are also offered in US Treasury bond futures contracts on the CBoT.
The most important is the “quality option” (other options are discussed in Chapter 6). The
quality option allows the short position to deliver any coupon rate in place of the standard
6% as long as the delivered instruments meet the maturity requirements. The delivered
cash flows are then discounted at the standard 6% rate to obtain a “conversion factor” for
adjusting the delivery price.
If the delivered bond has a 6% coupon, the conversion factor equals 1, since we are

then discounting 6% coupons at a 6% rate. However, if the delivered bond has a coupon
rate that is higher than the standard 6% (so is of “superior” quality to the standard), the
conversion factor exceeds 1 because we are discounting higher-than-6% coupons at a 6%
rate. Similarly, if the delivered bond is inferior to the standard grade (i.e., it has a coupon
under 6%), the conversion factor is less than 1.
Section 6.5 and Appendix 6C describe the general formula used to calculate Treasury

futures conversion factors, but here is a simple example. Suppose the short position in a
Treasury bond futures contract delivers a 20-year, 8% coupon bond. Assume for simplicity
that the last coupon was just paid. Then, on a face value of $1, the delivered bond will
provide cash flows of $0.04 every sixmonths for 20 years and a cash flow of $1 (the principal)
after 20 years. To obtain the conversion factor, we have to discount these cash flows at a
6% rate. Since the Treasury market follows a semiannual compounding convention, a 6%
discount rate means a semiannual discount rate of 3%. Thus, the conversion factor for this
bond is

0.04

1.03
+
0.04

(1.03)2
+ · · · +

0.04

(1.03)39
+

1.04

(1.03)40
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which is approximately 1.23. This means that the long position must pay the short position
1.23 times the agreed-upon delivery price. Conversion factors for each deliverable bond are
published and updated by the various exchanges. ■

The Impact of Delivery Options
As both the corn and US Treasury futures examples indicate, a mechanical rule is often

used to determine the price adjustment in a futures contract for delivering a grade different

from the standard. This means the price adjustment may not equal the actual difference in

market prices between the delivered and standard grades.

This presents the short position with a profit opportunity. The price adjustment specifies

what the short position receives for delivering a particular grade,while themarket price is the

cost of that grade. The short can search over the deliverable grades and select the one that is

the most profitable to deliver. This is (somewhat confusingly) called the cheapest-to-deliver

grade.

The profit opportunity presented by delivery options comes at the expense of the long

position and has consequences for both pricing and hedging using futures contracts. From

the standpoint of hedging, delivery options degrade the quality of the hedge for the long

position. One particular case of interest is the GNMA CDR futures contract discussed in

Section 2.7 in which the quality of the hedge was so degraded that the contract itself failed.

Delivery options also affect the pricing of futures contracts. Futures prices depend on not

only the standard grade but also the cheapest-to-deliver grade (since that is, by definition,

the grade that will be delivered). However, the cheapest-to-deliver grade will not be known

with certainty until maturity of the contract, so the price really depends on the market’s

anticipation of the grade thatwill be the cheapest-to-deliver. This complicates the theoretical

pricing problem substantially.

Nonetheless, one implication of the provision of delivery options is clear: other things

being equal, the futures price will be lower than the forward price for a contract written on

the standard grade. The reason is simple: the forward contract provides no delivery options

to the short position, while the futures contract provides such options. The presence of such

options makes the futures contract more attractive to the short (who cannot lose from having

this extra option) but less attractive to the long. With fewer “buyers” (long positions) and

more “sellers” (short positions), the futures price will be lower than the forward price.

2.5 Closing Out Positions

Unlike forward contracts, the holder of a futures contract can unilaterally reverse his position

by closing it out or offsetting it. To close out a futures position, the investor must simply

take the opposite position to the original. The investor then has no further obligations to

the exchange. For example, suppose an investor has a long position in 10 COMEX gold

contracts for delivery in May. To get out of this contract, the investor need only take a short

position in 10 COMEX gold contracts for delivery in May. In contrast, if the holder of a

long forward with one counterparty (say, Counterparty A) enters into an offsetting short

forward position with a different counterparty (Counterparty B), she is not freed of her

obligations to Counterparty A. To the contrary, her obligations now extend to both contracts

and counterparties.

Of course, reversal of futures positions may not be costless. The investor can take posi-

tions only at the prevailing futures price at any point, so the initial price and the close-out

price could differ, leading to a profit or loss for the investor. For example, suppose the

long position in the 10 COMEX gold contracts was taken at a futures price of $340 per

ounce. Suppose the price at the time of close-out is $332 per ounce. Then the investor has
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effectively agreed to buy at $340 per ounce and sell at $332 per ounce for a net loss of $8

per ounce. Since one COMEX gold contract is for 100 ounces of gold, this leads to a total

loss on the 10 contracts of 10× 100× 8 = $8,000. This loss is settled through the margin

account described in the next section.

Futures exchanges permit reversal of positions for a number of reasons. The most im-

portant is that investors may not desire to make or take delivery from the standard locations

prescribed in the exchange contract (for example, because it would be inconvenient given

their geographical location or because they would rather buy from their usual vendor). By

entering into and closing out the futures contract, investors can obtain the relevant hedge

without delivery.

Example 2.3 Consider a bakery that estimates its requirement of wheat in May as 50,000 bushels. The
bakery can hedge its price risk by going long 10 May wheat futures contracts on the CBoT
at the currently prevailing futures price for May delivery (say, $3.25 a bushel) and then
accepting delivery at this price in May. The cost to the bakery is then $(50,000 × 3.25) =
$162,500.
As an alternative to taking delivery, the bakery can adopt the following strategy:

1. Take 10 long May wheat futures contracts at the prevailing futures price of $3.25/bushel.

2. Close out the futures position in May at the futures price F T that prevails then.

3. Buy 50,000 bushels of wheat in the spot market in May at the spot price ST prevailing
then.

On the futures market, the bakery buys 50,000 bushels at a price of $3.25 per bushel and
sells them at a price of F T per bushel for a total gain of 50,000× (F T − 3.25). On the spot
market, the bakery incurs a cost of 50,000× ST . Thus, the net cost to the company is

50,000 ST − 50,000 (F T − 3.25) = 162,500+ 50,000 (ST − F T ) (2.1)

However, the futures contract is already at maturity in May, so it is a contract for immediate
delivery. This means the futures price F T must equal the spot price ST at this point. (This is
called the “convergence of futures to spot.”) The last term in (2.1) drops out, so the net cash
outflow for the company is just $162,500. This is the same outcome as accepting delivery
on the futures contract. ■

Closing Out Contracts Prior to Maturity
The ability to close out positions means that even in the presence of a delivery mismatch

(i.e., when the investor’s desired date and the delivery date of the futures contract do not

coincide), the investor can still obtain an approximate hedge by opening a futures position

and closing it out.

For instance, suppose that the bakery in Example 2.3 needs the wheat by April 20.

Consider the same strategy as described in the example, except that both the closing out of

the futures position and the spot market purchase take place on April 20. Since April 20 is

“close” to the maturity date of the futures contract, the futures price FT and the spot price ST
on that date will be “close” to each other. The last term in (2.1) will be small relative to the

first one, resulting in a cash flow of approximately $162,500. Of course, the hedge is only

approximate now, but a perfect hedge is impossible in the event of a mismatch. Chapter 6

explores “optimal” hedging in such circumstances.

Overwhelmingly, futures positions in the US are closed out prior to maturity. Only a

very small number of contracts (probably under 5%) are actually held open for delivery.

Of course, delivery is still important: it is the possibility of making delivery that forces the

convergence of futures price to spot at maturity and so makes the hedge in (2.1) feasible.
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2.6 Margin Requirements and Default Risk

Since futures exchanges guarantee performance on the contracts, they are exposed to risk

of default by investors. To control this risk, exchanges require investors to post margins.

Futures margins are collateral against default by the investor and should not be confused

with stock margins, which are a form of down payment. Indeed, the CME calls its margins

“performance bonds.”

The level at which futures margins are set is crucial to providing market liquidity. If

margins are set very high, they can virtually eliminate default risk, but market participation

will be inhibited. If they are set too low, market participation is encouraged, but default risk

increases. Thus, setting the level of margin requirements can be a delicate task.

In practice, margin requirements are set using sophisticated statistical techniques that

take into account the volatility of the price of the underlying asset and other factors. A

methodology known as SPAN (an acronym for Standard Portfolio Analysis of Risk) has

become particularly popular in the industry with many exchanges now using it to determine

their margin levels. An important input into the computations is the volatility of the price of

the underlying: greater price volatility means greater price movements over the course of

a trading day, and this in turn means that a larger “cushion” is needed as collateral to guard

against default.

The Margining Procedure
The margining procedure has three parts. First, an investor opening a futures account is

required to deposit a specified amount of cash into an account called the margin account.

The amount deposited initially is called the initial margin.

Second, at the end of each day, the balance in the margin account is adjusted to re-

flect the investor’s gains and losses from futures price movements over the day. This pro-

cess is called marking-to-market. The changes to the margin account are called variation

margin.

Third, if the balance in the margin account falls below a critical minimum level (called

the maintenance margin), the investor receives a margin call requiring the account to be

topped up back to the level of the initial margin. The maintenance margin is typically set at

around 75% of the level of initial margin. (More accurately, the initial margin is typically

set at 135% of the maintenance margin.) If the account is topped up, the position continues

until the investor decides to close out his contract or the contract is at maturity. If the investor

does not meet the margin call, then the account is closed out immediately.

Example 2.4 Suppose that onMarch 1, a customer takes a long position in 10Maywheat futures contracts
at a futures price of $3.60 per bushel. One futures contract calls for the delivery of 5,000
bushels. Thus, the initial futures price is $18,000 per contract.
Let the initial margin be $878 per contract, and let the maintenance margin be $650 per

contract. Since the position involves 10 contracts, the total initial margin is $8,780, and the
maintenance margin is $6,500. The initial price and margin balance and the remainder of
the example are summarized in Table 2.5.
Suppose that the settlement price at the end of the first day is $3.58 per bushel (or

$17,900 per contract). The customer’s original position called for a delivery price of $18,000
per contract. Thus, she has made an effective loss of $100 per contract, or a total loss of
$1,000. This $1,000 is immediately debited from her margin account, taking the margin
balance to $7,780. Of course, the short position on these contracts has made a gain of
$1,000, so the short’s margin balance would increase by $1,000.
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TABLE 2.5 The Margining Procedure: Example

This table describes the evolution of the margin balance for Example 2.4. The prices are all in terms of prices
per contract and the total gain or loss refers to the gain over loss over the example’s holding of 10 long futures
contracts.

Initial/Settle- Change in Total Gain Margin Account Margin
ment Price Price or Loss Balance Call?

Contract Opening $18,000 $8,780
End of day 1 17,900 −100 −$1,000 7,780 No
End of day 2 17,800 −100 −1,000 6,780 No
End of day 3 17,650 −150 −1,500 5,280 Yes

Now suppose the settlement price on the second day is $3.56 per bushel (or $17,800
per contract). The customer has effectively lost an additional $(17,900 − 17,800) = $100
per contract. The total loss over 10 contracts is another $1,000. This amount is removed
from the margin account, reducing the balance to $6,780. Since the balance is still above
the maintenance margin level of $6,500 for 10 contracts, there is no margin call.
On the third day, say the settlement price fixes at $3.53 per bushel (or $17,650 per

contract). This means a further loss to the customer of $(17,800 − 17,650) = $150 per
contract, or a total loss over 10 contracts of $1,500. This amount is removed from the
margin account, reducing the balance to $5,280.
Since the margin account balance is now below the maintenance margin amount of

$6,500, the customer will receive a margin call requiring her to bring the balance back up
to $8,780. If the extra funds are deposited, the situation continues. If not, the customer’s
position is closed out. Of course, the account can be closed out only when trading resumes
by which time prices may have fallen further. Any further loss incurred as a consequence of
the close-out is met by the $5,280 balance in the margin account. ■

Margins and Default
As the example shows, the marking-to-market procedure involves (a) rewriting the in-

vestor’s futures contract at the current settlement price, and (b) settling immediately the

gains or losses to the investor from the rewriting. The procedure breaks up the total gain

or loss that occurs over the life of a futures contract into daily gains or losses, and re-

quires the investors to pay as they go along. The economic motivation for daily margining

is obvious: an investor who is unable to meet “small” losses (as occur from daily price

movements) is unlikely to be able to meet larger losses that might result over a longer time

span.

Historically, margining has worked very well in inhibiting default. Defaults have oc-

curred, but these have been few and far between. One of the largest defaults that occurred

was in the now-defunctMaine potato contract onNYMEX inMay 1976. The default appears

to have been caused by a classic market squeeze play in which the supply of Maine potatoes

was simply not enough to cover the open long positions, leading to default on thousands of

contracts.

Exchanges can typically alter margin requirements at any time. This right has been

invoked in specific cases to defuse market-threatening situations. One was in the Silver

Crisis in 1980 when COMEX margin requirements were increased dramatically, in some

cases to $60,000 per contract (see Appendix 9B of Duffie, 1989). Another was during the

Metallgesellschaft episode in 1994 when NYMEX doubled the firm’s margin requirements;

we discuss the Metallgesellschaft case in Section 2.7.
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Margin Sizes and Leverage
Table 2.6 summarizes initial and maintenence margin requirements for several futures con-

tracts. As a comparison of Tables 2.4 and 2.6 shows, margins are typically small relative to

the value of assets underlying futures contracts. In many contracts, margins are under 5%

of the value of the contract, and in a comfortable majority of contracts, they are under 10%.

TABLE 2.6 Futures Margin Levels

This table describes initial and maintenance margin levels for several futures contracts as of July 2009. The
margin levels are for nonhedgers. For hedgers, the initial and maintenence margins are typically both equal to
the maintenance margin level given here.

Initial Margin
Initial Maintenance as % of

Underlying Exchange Margin (USD) Margin (USD) Contract Value

Agri commodities
Corn CME Group 1,620 1,200 9.4%
Wheat CME Group 2,700 2,000 10.8%
Oats CME Group 1,080 800 10.5%
Soybean CME Group 4,050 3,000 7.2%

Livestock
Live cattle CME Group 1,080 800 3.2%
Lean hogs CME Group 1,418 1,050 5.8%

Forest
Lumber CME Group 1,650 1,100 8.3%

Interest rate
30-year US T-Bonds CME Group 4,320 3,200 3.6%
10-year US T-Notes CME Group 2,430 1,800 2.1%
5-year US T-Notes CME Group 1,350 1,000 1.2%
US T-Bill CME Group 405 300 0.04%
3-month Eurodollar CME Group 1,148 850 0.11%
1-month Libor CME Group 810 600 0.03%

Currency
Euro (EUR) CME Group 4,725 3,500 2.7%
British pound (GBP) CME Group 2,700 2,000 2.7%
Japanese yen (JPY) CME Group 4,050 3,000 3.0%
Swiss franc (CHF) CME Group 4,185 3,100 3.6%
Canadian dollar (CAD) CME Group 2,430 1,800 2.8%
Brazilian real (BRL) CME Group 4,900 3,500 10.0%
Israeli shekel (ILS) CME Group 8,100 6,000 3.2%

Stock indices
S&P 500 CME Group 28,125 22,500 12.5%
Big Dow CME Group 32,500 26,000 15.5%
Nasdaq 100 CME Group 17,500 14,000 12.3%
Nikkei 225 (in JPY) CME Group 625,000 500,000 13.5%

Metals
Gold COMEX 5,399 3,999 5.9%
Silver COMEX 8,100 6,000 12.9%

Energy
Light sweet crude NYMEX 7,763 5,750 12.9%
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The size of the margin requirement determines the extent of leverage provided by a

futures contract. A margin requirement of 5% of contract value means that by putting 5%

in cash up front, the customer gets full exposure to movements in futures prices, implying

a leverage ratio of 20:1. Given the small size of margins in practice, it is clear that futures

are highly levered instruments.

Margining and Valuation
From the standpoint of valuation,margining complicatesmatters because it creates uncertain

interim cash flows. Typically, the initial margin earns interest, but the variation margin does

not. (Investors are, however, free to withdraw any balance in their margin accounts in excess

of the initial margin, so this does not impose an economic cost.) The interest rate could

itself change over the contract life. Thus, the holder of the contract receives uncertain cash

flows that earn interest at possibly uncertain rates. It is not easy to see whether this implies

futures prices will be higher or lower than the corresponding forward prices. We examine

this issue later (see Section 3.8).

Margining and Hedging
Daily marking-to-market also has a subtle effect on hedges using futures contracts. The

purpose of hedging, by definition, is to reduce cash-flow uncertainty from market com-

mitments. If a forward market commitment (say, a commitment to deliver wheat in four

months) is hedged using a futures contract, there is a cash-flow mismatch. On the forward

contract, any gains or losses are realized only at maturity, whereas in a futures, you settle

as you go along. If these interim cash-flow requirements are large, they may complicate—

or even ruin—an otherwise sound hedging strategy. The most spectacular case in which

this occurred was the more than $1 billion in losses taken by Metallgesellschaft in 1994

(see Section 2.7).

Clearinghouse Margins
Just as an investor is required to post margins with clearing members, the latter are required

to postmarginswith clearinghouses. In this case, the initial andmaintenancemargins usually

coincide. The clearing member must maintain the account at the original margin times the

number of contracts outstanding.

2.7 Case Studies in Futures Markets

This section presents three case studies in futuresmarkets, each of which provides important

insights into and lessons concerning futures markets operations and trading.

The first concerns the GNMA CDR futures contract on the CBoT, the very first interest-

rate-sensitive futures contract to be introduced on a US exchange. It offers an excellent

look into the intricacies of futures contract design, particularly the specification of delivery

options. A detailed analysis of the rise and fall of this contract is presented in Johnston and

McConnell (1989); our presentation reports their research.

The second case study is that of the Metallgesellschaft episode of 1994, perhaps unique

in the annals of derivatives-related debacles in that many analysts believe it involved not

deliberately speculative positions (as, for example, in the case of Barings Bank) or at-

tempted market manipulation (as in the case of Sumitomo) but rather what appeared to be

a theoretically sound hedging strategy.

The third case study looks at the case of the hedge fund Amaranth whose $4-billion-

plus losses from trading in natural gas futures and related derivatives made it the largest
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hedge fund failure of its time, and, indeed, among the largest losses suffered by a financial

institution prior to the financial crisis of 2008. The Amaranth case highlights, in particular,

the leverage and liquidity risks that can arise in futures market trading.

Case Study 1

The GNMA CDR Futures Contract

The Government National Mortgage Association (GNMA) Collateralized Depository

Receipt (CDR) futures contract was introduced in 1975 on the CBoT. It was the first interest-

rate futures contract traded on an exchange. The assets underlying the futures contract are

GNMA mortgage-backed securities. Deliverable securities in the contract were backed by

pools of single-familymortgages with initial maturities of 29–30 years. Themortgages were

insured against default by either the Federal Housing Association (FHA) or the Veterans

Administration (VA). Every mortgage in the pool could be prepaid (“called”) at any time.

Figure 2.2 describes the rise and fall of the contract. The contract enjoyed spectacular

success in its early yearswith trading volumegrowing rapidly from1975 to 1980. It remained

stable for about two years and then began declining rapidly, reaching near-zero trading

volumes by 1987. The spectacular rise and fall of the contract can be traced directly to its

design, notably the delivery options in the contract that made it a bad hedge vehicle.

An important—and intuitive—point in hedging with futures is that for a futures contract

to provide a good hedge vehicle, the futures price must bear a close relationship to the spot

price of the asset being hedged. (Hedging with futures is examined in detail in Chapters 5

and 6 where this point is formalized.) In the case of commodities, the underlying spot risk is

usually well defined (the prices of lumber, corn, crude oil, etc.), but in dealing with interest-

rate securities, one must be careful in identifying precisely which risk it is that investors are

seeking to hedge.

GNMA CDR futures contracts are futures on mortgage-backed securities. The ques-

tion is: which mortgage-backed securities are investors seeking to hedge? It turns out that

This figure describes the growth and decline in trading volumes in the GNMACDR

futures contract between its introduction in 1975 and 1987.

FIGURE 2.2
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hedging demand in mortgage-backed securities is concentrated in current-coupon mort-

gages. Hedging demand comes primarily from mortgage bankers who originate mortgages

and then package and sell them in the secondary market. Mortgage bankers are exposed to

interest-rate risk on mortgages written at current coupon rates between the time the loans

are made and the time they are sold on the secondary market.

Therefore, for the GNMA CDR futures contract to be useful as a hedge vehicle, it is

necessary that the futures price of this contract bear a close relationship to current-coupon

mortgages. In the presence of delivery options, the futures price is determined by the

cheapest-to-deliver grade. Thus, it is the cheapest-to-deliver grade that must bear a close

relationship to current coupon mortgages. Did the specification of the contract meet this

requirement?

Key Features of the GNMA CDR Futures Contract

The “standard” contract called for the delivery of GNMA securities with $100,000 in

remaining principal and an 8% coupon. Several delivery options were also provided. Un-

usually, and perhaps uniquely among futures contracts, one of these was provided to the

long position in the contract: at maturity, the long could elect to receive a Collateralized

Depository Receipt (CDR) entitling him to receive $635 per month in interest payments as

long as he held the CDR and to exchange the CDR for the actual GNMA securities at any

time by giving 15 business days’ notice.

The most important delivery option, however, was the “quality option” provided to

the short. The quality option allowed the short to deliver any interest rate in place of the

standard 8%. In the manner later used in the successful US Treasury bond futures contract,

the contract provided for an adjustment in the price through a “conversion factor” which

was calculated by discounting the cash flows from the delivered mortgage at the standard

8% rate. One problem here, however, lay in the length of time for which these cash flows

could be assumed to last, since the mortgages could be prepaid at any time. The GNMA

CDR futures contract assumed that cash flows from deliveredmortgages would continue for

exactly 12 years at the end of which the mortgage would be repaid in full. The conversion

factor was calculated under this assumption, and the principal balance the short was required

to deliver was stated as $100,000 divided by this conversion factor.

The Problem

In practice, mortgage prepayments often occur because mortgage holders are able to re-

finance their mortgages at lower interest rates. Given this motivation, borrowers holding

mortgages with high interest rates aremore likely to find lower interest rates and prepay their

existingmortgages than holders of low-couponmortgages. The quality option in theGNMA

CDR futures contract ignored this propensity for high-coupon mortgages to be prepaid

earlier. By assuming that all mortgages last 12 years, the contract undervalued the prepay-

ment option in high interest-rate mortgages relative to low interest-rate mortgages; equiva-

lently, it overstated the maturity of high interest-rate mortgages relative to low interest-rate

ones.

The Consequence

The impact of this is not hard to see. By overstating the relative maturity of cash flows

from high-couponmortgages, the conversion factor of high-couponmortgages is overstated

relative to that of low-coupon securities. (Intuitively, the higher cashflows are assumed to last
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FIGURE 2.3
US 30-Year Mortgage
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longer than they really do.) Ceteris paribus, therefore, the short will find it advantageous

to deliver high-coupon mortgages; i.e., high-coupon mortgages will be the cheapest-to-

deliver grade. Reflecting this, the futures price will bear a close relation to the high-coupon

mortgages.

However, we have seen that for the GNMA CDR futures contract to be a good hedge

vehicle, its price has to bear a close relationship to current-couponmortgages. Thus, as long

as high and current coupons are the same, there is no problem.

Between 1975 and 1982, this was in fact the case. In March 1975, the interest rate was

8.25%. It rose more or less steadily to a peak of 17% in September 1981 and remained at

around 16%–17% through early 1982. (See Figure 2.3.) In late 1982, however, interest rates

began a rapid decline. A low of 11% was reached by 1983, and until 1987, interest rates

remained well below 16%. As a consequence, until 1982, it was the case that the GNMA

CDR futures contract was an effective hedging vehicle for current-coupon mortgages, but

by late 1983, this was no longer the case. Johnston and McConnell show that by this

time, Treasury bond futures contracts had become better hedge vehicles for current-coupon

mortgages than GNMA CDR futures contracts, and the contract died.

Case Study 2

Metallgesellschaft AG

The Metallgesellschaft episode was, as we have mentioned, unusual in the annals of

derivatives-related debacles of the 1990s in that it involved a hedging strategy gone sour.1

The protagonist in this episode was Metallgesellschaft Refining & Marketing (MGRM),

a subsidiary of Metallgesellschaft AG of Germany. Metallgesellschaft was, at this time,

1 Several postmortem analyses of the Metallgesellschaft episode are available, some siding with

Metallgesellschaft’s senior management in their terminating the hedge, and others faulting them.

One vigorous presentation of the latter viewpoint is Culp and Miller (1995). Our summary here

draws on their work among others.
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a 112-year-old company mostly owned by institutional investors such as Deutsche Bank,

Dresdner Bank, and Daimler Benz.

Begining in 1992, MGRM began selling contracts to supply gasoline, heating oil, and

diesel fuel at fixed prices over 5- and 10-year periods. The details in the contracts varied

to some extent. Many called for monthly delivery for the period specified in the contract,

while others had lower delivery frequencies. The contracts were marketed aggresively and

very successfully. By November 1993, MGRM had built up long-term supply commitments

of 160 million barrels. This was eight times the commitment of October 1992, and more

than twice the commitment of May 1993.

The fixed-price contracts left MGRM exposed to increases in spot prices. The company

decided to hedge this exposure using gasoline, heating oil, and crude oil futures contracts on

NYMEX. This allowed the company to focus on the storage and marketing of oil products

where it possessed special expertise.

The hedge was complicated by the immensity of MGRM’s total exposure. Position

limits on NYMEX made it impossible to completely hedge MGRM’s total commitments

of 160 million barrels using only futures contracts. MGRM used long futures positions

of 55 million barrels on NYMEX. It then entered into bilateral over-the-counter (OTC)

swaps arrangements to hedge the remaining exposure. These large positions also made it

impossible for the company to maintain anonymity in trading, a fact that compounded its

problems when it ran into cash-flow difficulties.

The “Stack-and-Roll” Strategy

The “ideal” hedging strategywould have been tomatch thematurity of the exposurewith the

maturity of the futures contract. For example, if there is a commitment to deliver 1 million

barrels in three months, this particular exposure is hedged using a three-month futures

contract. Although NYMEX offers oil futures contracts several years out, the contracts are

relatively illiquid beyond the first fewmonths. Culp andMiller (1995) note that liquiditywas

an important consideration in MGRM’s approach because it lowered the cost of managing

its positions to meet seasonal changes in the demand and supply of heating oil and gasoline.

As an alternative,MGRMdecided to use a “stack-and-roll” hedging strategyusing futures

contracts. Such a strategy involves the following steps. The firm takes long positions in

futures contracts to cover its entire exposure. All positions are in the nearby futures contract,

i.e., for delivery at the end of the current month. (This is the “stack” part.) At the end of

each month, the company closes out its position, and opens new long positions to cover its

remaining exposure. (This is the “roll” part.)

As a simple example, suppose the commitment is to supply 1,000 barrels a month for

the next 60 months. In a stack-and-roll hedging strategy, we take long positions in the entire

commitment of 60,000 barrels in one-month futures. At the end of the month, we roll over

the remaining part of the commitment (59,000 barrels) by closing out the existing futures

positions and reopening long positions in 59,000 new one-month futures.

Theoretically, it can be shown that under some assumptions, a stack-and-roll strategy

should provide a good hedge for the forward exposure. A proof is provided in Section 3.2.

Intuitively, hedging using a stack-and-roll strategy is a matter of offsetting losses on the

forward commitments with gains in futures and vice versa. If oil prices rise, there would

be a loss on the forward contracts but a gain on the long futures positions. If oil prices

fall, there would be losses on the long futures positions, but these would be offset by the

increased economic value of the forward commitments.
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Potential Problems with the Hedge

In practice, a number of cash-flow-related problems may arise in implementing such a

strategy. MGRM’s strategy entailed two specific risks: (a) a steep fall in oil prices leading

to margin calls on the long futures positions and (b) a change in the oil market from

backwardation to contango. (The terms backwardation and contango are defined below.)

In addition, MGRM faced basis risk from the futures/forward mismatch, viz., the problem

that the values of short-term futures and long-term forwards react differently to changing

market conditions. We examine each of these in turn.

Problem 1: A Fall in Oil Prices
The first problem MGRM faced had to do with the interim cash-flow pressures potentially

created by the use of futures contracts in general. MGRM had long positions in 55 million

barrels of futures contracts. Thus, every $1 fall in oil prices would lead to a $55 million

cash outflow on the futures margin accounts alone. A steep oil price fall would thus create

an immediate and large cash requirement to meet margin calls and keep the hedge alive. Of

course, the fall in prices would make the forward contracts with their locked-in prices more

attractive, but the corresponding gains on the short forward positions would not translate

into cash inflows until some date in the future. Thus, although the economic value of the

position is unaffected (it remains hedged), a severe short-term cash-flow requirement is

created.

Unfortunately for MGRM, this scenario came true: oil prices plummeted in late 1993.

This led to an immediate cash requirement of around $900 million to meet margin calls (on

the futures positions) and the demand for extra collateral (on the OTC positions).

Problem 2: From Backwardation to Contango
A futures market is said to be in backwardation if futures prices are below spot. It is said to

be in contango if futures prices are above spot. Aswewill see in Chapters 3 and 4, in a typical

commodity market with a positive cost-of-carry, the theoretical futures is above the spot,

i.e., the market should be in contango. However, in some commodity markets (especially

oil) futures prices are often below spot. This phenomenon is commonly attributed to the

presence of a large “convenience yield” from holding the spot commodity, an issue we

discuss further in Chapter 4.

The “roll” part of MGRM’s strategy meant it faced the risk of a possible shift in the

oil market from backwardation to contango. Why? Rolling over futures positions at the

end of each month involves closing out the existing long futures position by taking a short

futures position in the expiring contract and taking a long futures position in the new nearby

contract. The existing contract is atmaturity, so it is being sold at the current spot price. Thus,

rolling the contract over involves effectively selling at the current spot price and buying at

the current one-month futures price. In backwardation, rollover creates cash inflows, but in

contango, rollover creates cash outflows.

Through much of the mid- and late-1980s, the oil futures market was in backwardation.

If this situation had continued, MGRM could have expected to receive cash inflows on the

rollover. Unfortunately for MGRM, in late 1993, the oil market went into contango. As a

consequence, by end-1993, MGRM was incurring a cash outflow of up to $30 million each

month on rollover costs alone.

Basis Risk: A Further Issue?
It has been suggested that a further issue that hurtMGRM is basis risk. MGRMwas hedging

long-term forwardswith short-term futures. These two pricesmay not move in lockstep, that
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is, long-term forward prices may react to movements in the spot price of oil differently from

short-term futures. Thus, perfect offsetting of cash flows is not generally possible, so there

is what is known as basis risk in hedging. In the presence of such risk, a well-developed

theory (see Chapter 5 for details) shows that it is not, in general, optimal to use a hedge

ratio of unity (i.e., to hedge exposures one-for-one with futures). However, MGRM does

appear to have used a hedge ratio of unity, which may have further degraded the quality of

the hedge, adding to losses.

The Denouement

When MGRM’s cash requirements became public information, its problems were com-

pounded. NYMEX first doubled MGRM’s margin requirements. Later, NYMEX also re-

moved MGRM’s hedger’s exception, effectively halving MGRM’s position limits. Counter-

parties on their OTC contracts also demanded increased collateral for rolling over contracts.

In response, Metallgesellschaft AG’s senior management decided to close out the po-

sitions and terminate the hedging strategy in place. A number of arguments were offered

in favor of terminating the hedge. It was suggested that the strategy’s cash requirements

had become excessive; the rollover costs alone were around $30 million a month. It was

also suggested that the long-term forward contracts were not “watertight,” i.e., significant

credit-risk existed. The possibility of basis risk frommismatch in assets underlying forward

and futures contracts was also cited.

Led by Nobel Prize—winning economist Merton Miller and his student Christopher

Culp, counter arguments appeared in the financial press and academic journals suggesting

that the parent company’s actions had been intemperate and unwise. For one, the termination

of the hedge converted paper losses into real ones. Second, if the market went back into

backwardation (which had, after all, been its “normal” state for several years), rollover

profits would arise; removal of the hedge eliminated this possibility. Third, the removal of

hedge left MGRM vulnerable to price increases.

As it happens, MGRM’s positions were unwound near the bottom of the market: oil

prices rebounded during 1994 (see Figure 2.4), though this could not have been foreseen

at the time of closeout. But the eventual consequences were severe. The termination of the

hedge resulted in losses of well over $1 billion, bankrupting the parent company.

FIGURE 2.4
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Case Study 3

Amaranth

Amaranth LLC started as a hedge fund specializing primarily in the trading of convertible

bonds.As returns from its conventional areas of strength tapered off in 2004, the fund greatly

expanded its energy-trading book, an area into which it had entered in 2002 following the

collapse of Enron. This expansion coincided with the hiring of Brian Hunter, the principal

author of Amaranth’s spectacular success in 2005 and its even more spectacular implosion

in 2006. What follows is a summary of the Amaranth saga.2

The Natural Gas Market

Natural gas is one of the principal energy sources of the US economy, accounting for nearly

a quarter of the country’s energy consumption. Around half of US homes use natural gas

heating in winter. Natural gas is also used to generate around a fifth of US electricity and

is used in other commercial and industrial activities. Natural gas is commonly measured in

terms of its energy content (British thermal units or Btu). Both cash and futures prices are

usually quoted per million Btu, written MMBtu.

The natural gas market is an unusual one in many ways. Demand is highly seasonal

with winter demand exceeding summer demand, especially if the winters are severe. (As

one might expect, the seasonality is primarily caused by residential heating demand.) The

relatively inelastic nature of winter heating demand means that winter prices tend system-

atically to be higher than summer prices and that winter price spikes are common if there

is a cold snap.

There is a large and active spot (or “cash”) market in natural gas. Traditionally, spot

market pricing referenced spot price indices constructed by industry groups such as Platts;

these indices are based on surveys of spot transactions at key delivery locations or “hubs,”

such as the Henry Hub in Louisiana. In the years preceding the Amaranth episode, the

market moved increasingly towards referencing the near-month NYMEX futures contract

in cash market trades, using the final settlement price for that contract. As a consequence,

by 2006, the index price and NYMEX final settlement price had become virtually the same

thing (see Figure 2.5).

Natural Gas Derivatives: NYMEX Futures
and ICE Swaps

Futures contracts on natural gas are traded on NYMEX. The contracts have monthly ex-

piries running out to several years. Trading ceases on the third business day before the de-

livery month (e.g., the February 2005 futures contract will cease trading on the third-to-last

business day of January 2005.) The “final settlement price” of the contract is based on the

prices observed during the last 30 minutes of trading prior to the contract’s expiry. The con-

tracts are physically settled. One contract calls for the delivery of 10,000 MMBtu of natural

gas. Delivery must be made at a uniform flow (to the extent possible) over the delivery

month.

2 Our presentation of the case draws mainly on the Senate Report (2007).
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This figure appears as Figure 14b in theSenateReport (2007). It shows the difference

between the popular cash market Platt’s index and NYMEX final settlement prices

on the near-month contracts. The difference is very small except for the spike in

September 2005 that followed Hurricane Katrina.

FIGURE 2.5
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While NYMEX is a regulated US exchange, futures-like contracts on natural gas also

trade on the InterContinental Exchange or ICE, an unregulated US electronic exchange.

Called natural gas “swaps,” these contracts trade in standardized sizes of 2,500MMBtu and

have monthly expiries out to several years. Unlike the NYMEX futures contracts, they are

cash settled at maturity but are otherwise designed to mimic the behavior of the NYMEX

futures contracts. Indeed, at the time of theAmaranth episode in 2006, the ICE swap contract

even specified that its final settlement price would be set equal to the final settlement price

of the corresponding NYMEX futures contract, so the two contracts were functionally

identical.

There was, however, one important operational difference. As a regulated exchange,

NYMEX specified position limits and/or “accountability levels” (position levels that trig-

gered disclosure requirements and could lead to mandatory reductions at the exchange’s

discretion) for all its participants, although these limits could be (and, in practice, were)

relaxed for specific participants by NYMEX. In contrast, as an unregulated exchange, ICE

imposed no position limits at all, so participants coming up against trading or position limits

at NYMEX could always shift into equivalent contracts on ICE. We will see the importance

of this shortly in the context of Amaranth.

Finally, reflecting the seasonality of demand for natural gas, natural gas futures prices

also reflect an oscillatory pattern as Figure 2.6 illustrates. Both panels of the figure show

futures prices out to five years; the upper panel presents prices observed on June 1, 2007,

while the lower panel shows prices observed on January 28, 2009.

Amaranth’s Trading Strategies

Amaranth’s problems leading to its collapse in 2006 were largely caused by futures trading,

but its energy-trading book also used a number of other strategies and instruments. One,

for example, that proved a hugely successful bet in 2005 was the purchase of deep out-of-

the-money call options on natural gas futures. These options gave Amaranth the right to
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The upper panel of this figure shows natural gas futures prices as of June 1, 2007, for

a range of maturities, while the lower panel shows the futures prices as of January 28,

2009. The upper panel appears as Figure 17 in the Senate Report (2007). The lower panel

is based on data downloaded from the NYMEX website http://www.nymex.com.

Accessed January 29, 2009.
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enter into long futures contracts at fixed futures prices. (Options on futures are described

in Chapter 14.) When Hurricanes Katrina and Rita hit the US in 2005, natural gas prices

soared and Amaranth recorded handsome returns.

The main strategy followed by Amaranth in 2006 is often described as one that was

long winter–short summer, that is, as based on a view that the difference between futures

prices for winter delivery and those for summer delivery would widen. Broadly speaking,

this is correct, but the actual implementation, using NYMEX futures and ICE swaps, was

more nuanced and involved several different substrategies. Some of the key substrategies

are described below.

Short SummerAt the beginning of 2006, based on the relatively warm 2005–06 winter and

the presence of plentiful gas supplies, Amaranth took the view that gas prices would fall
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and so took a large short position of over 30,000 contracts in Mar-06 futures. In February,

this was rolled over into short Apr-06 futures, and the rollover continued through the early

summer as Amaranth continued to bet on falling gas prices through summer and early fall.

The position sizes were also increased so that by end-July 2006, the short position in Sep-06

futures was over 60,000 contracts.

The Jan-07/Nov-06 Spread A second key component of Amaranth’s strategy concerned

the behavior of winter 2006–07 prices. Amaranth’s view was that winter prices would rise

and particularly that January prices would rise more sharply than November prices, that is,

that the Jan-07/Nov-06 price differential would increase. So, in February 2006, Amaranth

went long around 25,000 Jan-07 contracts and short around 25,000 Nov-06 contracts. These

positions were gradually built up over the following months until, by June 2006, Amaranth

was long around 60,000 Jan-07 futures contracts and short over 50,000 Nov-06 futures

contracts. Frommid-July-06 onward, the short Nov-06 position in this strategy was replaced

with a short Oct-06 position.

The Mar-07/Apr-07 Spread Historically, with March signifying the end of the winter

heating period, the March-April price differential has been very volatile. Amaranth bet on

an increase in the Mar-07/Apr-07 differential, going long Mar-07 futures and short Apr-07

futures. In May 2006, Amaranth was long 20,000 Mar-07 and short 20,000 Apr-07 futures.

By end-July, these positions had grown enormously; Amaranth was long around 59,000

Mar-07 futures and short around 80,000 Apr-07 futures.

Besides these, Amaranth had a vast range of other positions in other maturities including

long or short positions in many other months in 2006. By late summer, Amaranth also had

positions in the Mar-08/Apr-08 and Mar-10/Apr-10 spreads.

Unquestionably themost striking feature of Amaranth’s trading bookwas the size of each

position. Thesewere immensemeasured in dollar terms and in relation toAmaranth’s capital

base. For example, assuming a price of $8 per MMBtu, each futures contract of size 10,000

MMBtu represents a notional value of $80,000. A futures position of 30,000 contracts then

represents a notional value of $2.4 billion in this one contract alone. As we have seen,

Amaranth held several positions of this size or bigger (much bigger in many cases).

But the sizes of Amaranth’s positions are even more impressive when taken as fractions

of the entire market. Amaranth’s positions in many contracts often exceeded 50% of the

total open positions in that contract on NYMEX. For example, in mid-June 2006, Amaranth

held around 52% of the open interest in the Jan-07 futures on NYMEX and around 57%

of the open interest in the Nov-06 contract. By end-July 2006, the size of Amaranth’s long

position in the Jan-07 futures was nearly equal to the entire actual nationwide consumption

of natural gas by US residential customers during January 2007! These huge position sizes

created severe liquidity issues for Amaranth, as we shall see shortly.

Performance: Early 2006

Through most of early 2006, Amaranth’s strategies did very well. The fund’s year-to-date

returns by end-April exceeded 30% with returns of over $1 billion in April alone. Much of

this success came because prices behaved as Amaranth had bet. For example:

• In April 2006, the price of the Jun-06 futures fell by over $0.80 per MMBtu, or $8,000

per contract. Since Amaranth had a short position in approximately 30,000 of these

contracts, this position alone would have resulted in a marked-to-market profit of around

$240 million.
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• The Jan-07/Nov-06 spread, which had been less than $1 in January 2006, increased

steadily and in April 2006 widened sharply by $0.63, moving from $1.59 to $2.22. This

meant a profit of around $6,300 on each long Jan-07/short Nov-06 position. Amaranth

had, by April 2006, around 30,000 contracts in this spread, implying a marked-to-market

gain of over $180 million on this position.

The First Sign of Trouble: May 2006

In May came a sharp reversal, the “worst month since inception,” as the firm later reported

to its investors. Amaranth looked to lock-in the profits registered on some of its positions

and exit the market but ran into a problem: in many contracts, it held a huge share of

the total open positions, so it was hard for the firm to exit—or even reduce—its positions

without triggering large price effects. In post-mortems of the Amaranth collapse, it has

been suggested that Amaranth’s marked-to-market profits in the year to date were, at least

to some extent, illusory because they had been created by Amaranth’s own trading. That

is, for example, its continued large purchases of the Jan-07/Nov-06 spread themselves

widened the spread, making Amaranth’s previously obtained positions in the spread appear

profitable. Given the huge shares of the open positions Amaranth held in many contracts,

this appears plausible; it is not then surprising that Amaranth was unable to “capture” the

marked-to-market profits by liquidating its holdings.

Compounding this liquidity problem, the market too turned sharply against Amaranth,

particularly in the last week of May. There was widespread sentiment in the market that

spreads had grown too large relative to fundamentals and to historical patterns (perhaps

driven precisely by Amaranth’s trading). The Jan-07/Nov-06 spread fell from $2.15 to

$1.73, resulting in large losses on that position for Amaranth. Overall, the firm lost over

$1.15 billion in May. But thanks to the strong performance in earlier months, it ended May

still comfortably up for the year.

Buildup: June-July 2006

After the liquidity problems it had encountered in May, Amaranth reportedly had internal

discussions concerning reducing its portfolio and liquidating its positions even at a loss.

Ultimately, however, the firm spentmost of June and July increasingmany of these positions:

• Amaranth continued rolling over its short position for the summer and early fall months.

In June, the firm was short over 40,000 Aug-06 contracts. In July, it rolled these into

Sep-06 positions, ending the month short around 63,000 Sep-06 contracts.

• Amaranth’s long Jan-07 position reached 60,000 contracts in June and nearly 80,000

contracts in end-July. Against this, it had a short position of 51,000 Nov-06 contracts in

June, which it changed to a short position of 42,000 Oct-06 contracts in July.

• The Mar-07/Apr-07 position increased by end-July to a long position in nearly 59,000

Mar-07 contracts and a short position in nearly 80,000 Apr-07 contracts.

The buildup of the Mar-07/Apr-07 spread was particularly sharp. On a few select days

(May 26, June 15, July 31), Amaranth dominated futures trading in these contracts, ac-

counting for between 40% and 60% of the trading volume with a noticeable effect on the

spread on those days (see Figure 2.7). By end-July, Amaranth held around 40% of the total

open interest in the 2006–07 winter months futures contracts on NYMEX.
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This figure shows the behavior of the difference between the futures prices for the

Mar-07 and Apr-07 futures contracts on NYMEX. The figure is taken from the Senate

Report (2007) and appears there as Figure 38.

FIGURE 2.7
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More Volatility: August 2006

In early August 2006, concerned by the size of Amaranth’s positions, NYMEX forced

Amaranth to reduce the size of its positions. Amaranth complied but simultaneously opened

or increased its positions on the unregulated ICE with the result that its overall exposure

actually increased.

One particular position it adopted was to increase its short Sep-06 position while buying

back someOct-06 contracts. In the presence of plentiful supplies that pointed to a downward

trend in prices, this was effectively a bet that September prices would fall faster thanOctober

prices. In the last week ofAugust, the price of Sep-06 futures fell by over $1 (or over $10,000

per contract), possibly aided by Amaranth’s own enormous increase in its short Sep-06

position during this week from under 60,000 contracts to over 100,000. Simultaneously,

the Oct-06/Sep-06 spread widened dramatically to around 35 cents compared to its normal

level of 7–8 cents.

The sharp departure from historical spread levels despite no obvious change in funda-

mentals led many traders to take the position opposite to Amaranth. The largest of these

was another hedge fund, Centaurus. On the final day of trading in the September contract,

Amaranth ceased its trading activities anhour before trading terminated,mainly atNYMEX’s

request. But Centaurus continued trading in enormous quantities, and as a consequence, the

Oct-06/Sep-06 spread fell almost 40 cents in the last hour even as the price of the September

contract rose by 60 cents, or $6,000 per contract. The resulting one-day loss to Amaranth

was a staggering $600 million, over 6% of its total assets under management.

The End: September 2006

Despite the huge loss on August 29, Amaranth still finished the month up over $630million.

But the size of the firm’s positions and the volatility of its profit and loss (P&L) had started

creating serious concerns in the market. Its margin requirements, which had exceeded
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$2 billion by mid-August, crossed $3 billion in early September. Concomitant with the

increased portfolio size, the firm’s leverage had also increased. Chincarini (2006) reports

that by end-August, the firm’s leverage (the ratio of the value of its futures positions to its

capital base) exceeded 5. This made it especially vulnerable to sharp moves in the market.

Subsequent testimony in the US Senate revealed that while a number of market partic-

ipants had viewed winter/summer spreads as overpriced in summer 2006, they had been

reluctant to take the opposite position, being mindful of the sharp price effect Hurricanes

Katrina and Rita had had the previous year. There was also a general perception that a

large market trader with considerable resources (Amaranth) had been buying these spreads

propping up the price. But Amaranth no longer had the resources to increase its positions.

As hurricane season ended with no major catastrophes and gas supplies heading into winter

appeared plentiful, spreads collapsed.

The end when it came was swift. The Jan-07/Oct-06 spread registered a sharp decline,

tumbling by almost 25% between September 1 and September 15. The Mar-07/Apr-07

spread, which had already fallen almost 25% in the last week of August, continued to slide

precipitously (see Figure 2.7). Amaranth was hemorrhaging money.

In an attempt to shore up its cash position, the firm attempted to sell its Mar-07/Apr-07

spread position to Centaurus, but the offer was rebuffed. Centaurus’ CEO, John Arnold,

noted in his e-mail communication to Brian Hunter at Amaranth3 that in his opinion, despite

its tumble in recent days, the spread at $1 was still substantially overpriced. He suggested

a fair price of 45–60 cents for the spread, which Amaranth refused.

Mr. Arnold’s estimates proved prophetic. A week later on September 21, on what would

turn out to be Amaranth’s last trading day, the spread stood at 58 cents. Other spreads had

similarly collapsed. Amaranth sold its energy book to JP Morgan Chase and liquidated the

remainder of its portfolio to meet margin calls. In just three weeks in September, the fund

had lost $4.35 billion, or 45% of its total assets under management of $9.67 billion.

Leverage, Liquidity, and Volatility

A little reflection shows that three factors didAmaranth in, the first two related toAmaranth’s

strategy and the third to market characteristics:

1. Leverage All futures contracts are levered positions in that a small margin payment

supports the entire position value. A margin payment of (for example) 20% implies a 5:1

leverage. Naked futures positions are, thus, very sensitive to changes in the levels of futures

prices. With spread positions, the risk is somewhat different. It is not the level of futures

prices that matters so much as its term-structure, that is, the way futures prices change

with maturities. In particular, what matters is how the differences between futures prices at

different maturities change. Speculative trades on seasonal effects are levered bets on the

shape of this term structure.

In either case, it is leverage that creates the possibility of both large returns and large

losses. Chincarini’s (2006) estimate of a leverage of 5.29 for Amaranth by August 2006

means that the firm’s total assets undermanagement of $9.67 billionwere supporting futures

positions of over $50 billion! It is easy to see that a sharp change in futures prices (and/or

the shape of the term-structure of futures prices) could cause catastrophic losses. Amaranth

estimated that the probability of such price moves was small, but judging from the reactions

of other participants, this view was not widely shared.

3 See Senate Report (2007), p. 113.
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2. Liquidity. The ill-effects of leverage are compounded by taking on too much of the same

leveraged trade. It is even worse when that trade is a significant part of the entire market.

Amaranth found that the size of its positions just did not allow it to unwind trades profitably,

and in fact, even partial unwinding resulted in immediate adverse price moves, ensuring

that the remaining positions would sell only at a loss. Marked-to-market “profits” in such

situations can be largely illusory.

Leverage amplifies the impact of price moves. The absence of liquidity means that larger

(adverse) price moves result when attempting to trade out of a position. Together, the two

Ls can form a lethal combination as they did in Amaranth’s case and as many financial

institutions learned to their cost in the crisis of 2008–09.

3. Volatility. Commodities markets are characterized by high levels of volatility. Large

price swings and swift changes in the term structure of futures prices are not uncommon.

Around the time of the Amaranth debacle, natural gas options were trading at volatilities in

the 80%–100% range. (By comparison, the volatilities on major equity indices were in the

15%–20% range.) High volatility means larger price swings, so combined with leverage,

you can win big but you can lose just as big too. Certainly, when things began to go badly

for Amaranth, the high volatility did not help.

Amaranth’s case stands out because of its size, not because of the uniqueness of the factors

that led to its collapse. Eight years earlier, another hedge fund had incurred catastrophic

losses and had almost threatened the stability of the financial system. The 1998 failure

of Long-Term Capital Management (see Chapter 23) had also been caused by the lethal

leverage-liquidity combination. There really is not that much new under the sun, at least

not in terms of the behavior of financial market participants.

2.8 Exercises 1. What are “delivery options” in a futures contract? Generally, why are delivery options

provided to the short but not to the long position?

2. How do delivery options affect the relationship of futures prices to forward prices?

3. Towhat do the following terms refer: initial margin,maintenancemargin, and variation

margin?

4. What are price ticks?

5. Explain price limits and why they exist.

6. What are position limits in futures markets? Why do we need these? Are they effective

for the objective you state, or can you think of better ways to achieve the objective?

7. What are the different ways in which futures contracts may be settled? Explain why

these exist.

8. What is meant by open interest?

9. Discuss the liquidity and maturity of futures contracts.

10. Describe the standard bond in the Treasury Bond futures contract on the CBoT and the

delivery option regarding coupons.

11. Suppose the delivered bond in the Treasury Bond futures contract has a remaining

maturity of 20 years and a 7% coupon. Assume the last coupon was just paid. What is

its conversion factor?
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12. Suppose there are two deliverable Bonds in the Treasury Bond futures contract, a

15-year 8% coupon bond and a 22-year 8% coupon bond. Assume the last coupon on

both bonds was just paid. Which bond has the higher conversion factor? (Guess the

answer first, and then verify it by computation.)

13. What is meant by the “delivery grade” in a commodity futures contract? What is the

problem with defining the delivery grade too narrowly?

14. Identify the main institutional differences between futures contracts and forward

contracts.

15. Explain the term “delivery options.”What is the rationale for providing delivery options

to the short position in futures contracts? What disadvantages for hedging are created

by the presence of delivery options? For valuation?

16. What is the “closing out” of a position in futures markets? Why is closing out of

contracts permitted in futures markets?Why is unilateral transfer or sale of the contract

typically not allowed in forward markets?

17. An investor enters into a long position in 10 silver futures contracts at a futures price of

$4.52/oz and closes out the position at a price of $4.46/oz. If one silver futures contract

is for 5,000 ounces, what are the investor’s gains or losses?

18. What is the settlement price? The opening price? The closing price?

19. An investor enters into a short futures position in 10 contracts in gold at a futures price

of $276.50 per oz. The size of one futures contract is 100 oz. The initial margin per

contract is $1,500, and the maintenance margin is $1,100.

(a) What is the initial size of the margin account?

(b) Suppose the futures settlement price on the first day is $278.00 per oz. What is the

new balance in the margin account? Does a margin call occur? If so, assume that

the account is topped back to its original level.

(c) The futures settlement price on the second day is $281.00 per oz. What is the new

balance in the margin account? Does a margin call occur? If so, assume that the

account is topped back to its original level.

(d) On the third day, the investor closes out the short position at a futures price of

$276.00. What is the final balance in his margin account?

(e) Ignoring interest costs, what are his total gains or losses?

20. The current price of gold is $642 per troy ounce. Assume that you initiate a long position

in 10 COMEX gold futures contracts at this price on 7-July-2006. The initial margin

is 5% of the initial price of the futures, and the maintenance margin is 3% of the initial

price. Assume the following evolution of gold futures prices over the next five days,

and compute the margin account assuming that you meet all margin calls.

Date Price per Ounce
7-Jul-06 642
8-Jul-06 640
9-Jul-06 635
10-Jul-06 632
11-Jul-06 620
12-Jul-06 625

21. When is a futures market in “backwardation”? When is it in “contango”?

22. Suppose there are three deliverable bonds in a Treasury Bond futures contract whose

current cash prices (for a face value of $100,000) and conversion factors are as follows:
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(a) Bond 1: Price $98,750. Conversion factor 0.9814.

(b) Bond 2: Price $102,575. Conversion factor 1.018.

(c) Bond 3: Price $101,150. Conversion factor 1.004.

The futures price is $100,625. Which bond is currently the cheapest-to-deliver?

23. You enter into a short crude oil futures contract at $43 per barrel. The initial margin is

$3,375 and the maintenance margin is $2,500. One contract is for 1,000 barrels of oil.

By how much do oil prices have to change before you receive a margin call?

24. You take a long futures contract on the S&P 500 when the futures price is 1,107.40,

and close it out three days later at a futures price of 1,131.75. One futures contract is

for 250 × the index. Ignoring interest, what are your losses/gains?

25. An investor enters into 10 short futures contracts on the Dow Jones Index at a futures

price of 10,106. Each contract is for 10 × the index. The investor closes out five

contracts when the futures price is 10,201, and the remaining five when it is 10,074.

Ignoring interest on the margin account, what are the investor’s net profits or losses?

26. A bakery enters into 50 long wheat futures contracts on the CBoT at a futures price

of $3.52/bushel. It closes out the contracts at maturity. The spot price at this time is

$3.59/bushel. Ignoring interest, what are the bakery’s gains or losses from its futures

position?

27. An oil refining company enters into 1,000 long one-month crude oil futures contracts on

NYMEX at a futures price of $43 per barrel. At maturity of the contract, the company

rolls half of its position forward into new one-month futures and closes the remaining

half. At this point, the spot price of oil is $44 per barrel, and the new one-month futures

price is $43.50 per barrel. At maturity of this second contract, the company closes out

its remaining position. Assume the spot price at this point is $46 per barrel. Ignoring

interest, what are the company’s gains or losses from its futures positions?

28. Define the following terms in the context of futuresmarkets:market orders, limit orders,

spread orders, one-cancels-the-other orders.

29. Distinguish between market-if-touched orders and stop orders.

30. You have a commitment to supply 10,000 oz of gold to a customer in three months’

time at some specified price and are considering hedging the price risk that you face.

In each of the following scenarios, describe the kind of order (market, limit, etc.) that

you would use.

(a) You are certain you wish to hedge and want to take up a futures position regardless

of the price.

(b) Gold futures prices have been on an upward trend in recent days and you are not

sure you want to enter the market right now. However, if the trend continues, you

are afraid you will be locked into too high a price. Weighing the pros and cons, you

decide you want to take a futures position if the price continues to trend up and

crosses $370 per oz.

(c) Consider the same scenario as in b, but now suppose also that you expect a news

announcement that you think will drive gold prices sharply lower. If matters turn

out as you anticipate, you want to enter into a futures position at a futures price

of $350/oz or lower. However, you recognize there is a probability the news an-

nouncement may be adverse and gold prices may continue to trend up. In this case,

you want to buy futures and exit if prices touch $370/oz.

(d) You want to institute a hedge only if you can obtain a gold futures price of $365/oz

or less.
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(e) Gold futures prices have been on a downward trend in the last few days. You are

hoping this continues but don’t anticipate prices will fall too much below $362/oz,

so you are willing to take the best price you can get once prices are at $364/oz.

31. The spot price of oil is $75 a barrel. The volatility of oil prices is extremely high at

present. You think you can take advantage of this by placing a limit order to buy futures

at $70 and a limit order to sell futures at $80 per barrel. Explain when this strategy will

work and when it will not.

32. The spread between May and September wheat futures is currently $0.06 per bushel.

You expect this spread to widen to at least $0.10 per bushel. How would you use a

spread order to bet on your view?

33. The spread between one-month and three-month crude oil futures is $3 per barrel. You

expect this spread to narrow sharply. Explain how you would use a spread order given

this outlook.

34. Suppose you anticipate a need for corn in three months’ time and are using corn futures

to hedge the price risk that you face. How is the value of your position affected by a

strengthening of the basis at maturity?

35. A short hedger is one who is short futures in order to hedge a spot cash-flow risk. A

long hedger is similarly one who goes long futures to hedge an existing risk. How does

a weakening of the basis affect the positions of short and long hedgers?

36. Suppose you deliver a grade other than the cheapest-to-deliver grade on a futures

contract. Would the amount you receive (the conversion factor times the futures price)

exceed, equal, or fall short of the spot price of the grade you deliver?
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Appendix 2A

Futures Trading and US Regulation:
A Brief History
As economicmechanisms go, forward trading is very old.1 TheFutures IndustryAssociation

traces the origin of forward trading to India around the year 2,000BC. There is also evidence

of forward markets in Greco-Roman Europe. More recently, there were organized forward

markets in 17th-century Japan and Europe. The world’s first futures exchange was likely

the Dojima Rice Market set up in Osaka, Japan, in 1730.

Nonetheless, it is with 19th-century America, particularly the grain markets of Chicago,

that modern futures markets are most closely associated. Their immediate predecessor in

the US was a contract form called the “to arrive” contract by which buyers and sellers

contracted for the delivery of grain in the future at a fixed price. By the time of the US Civil

War, the “to arrive” contracts had themselves become traded instruments, bought and sold

in anticipation of price movements and used for both speculation and hedging. These were

replaced by standardized “futures contracts” on the Chicago Board of Trade (CBoT), the

first organized futures exchange in the US.

The CBoT was established in 1848 and received a charter from the State of Illinois in

1859. It was swiftly followed by a number of other exchanges. The Milwaukee Chamber

of Commerce was organized in 1858 to serve as a mechanism for trading grain. The New

York Produce Exchange opened for commodity trading in 1861, and the New York Gold

Exchange,NewYorkCottonExchange, andNewYorkButter andCheeseExchange (later the

NewYorkMercantile Exchange) followed in 1864, 1870, and 1872, respectively. TheKansas

City Board of Trade was incorporated in 1876, the same year the Merchant Association of

St. Louis was organized. In all, over a thousand exchanges sprang up all over the US by the

late 19th century.

The rapid growth was accompanied by rampant abuses and attempts at market manip-

ulation. “Plungers,” as market manipulators were called, made repeated attempts to corner

or squeeze the market. Such attempts were commonplace. According to Markham (1987),

“it was reported that [at the CBoT in 1868] there were three corners in wheat, two in corn,

one in oats, one attempted corner in rye, and another threatened in pork.”

Many corners were run successfully and made fortunes for the plungers. Others were

spectacular failures leading to huge losses. One such failure was the attempted corner of the

December 1897 wheat futures contract on the CBoT by Joe Leiter, a speculator. The corner

was broken when the “meat king” P. D. Armour, who was the largest short, hired a fleet of

boats to break through the ice and bring grain into Chicago. Another was “Black Friday” in

New York’s gold market in 1869. An attempted corner of the gold market by Jay Gould and

Jim Fisk failed when President Ulysses Grant’s decision to sell gold from the US Treasury

led to a collapse in the price of gold and a suspension of gold dealings for a week.

Instances of market manipulation have come down dramatically in recent years but have

not vanished. A huge default in 1976 on thousands of contracts on the now-defunct Maine

potato contract on the NYMEX appears to have been caused by a classic squeeze play in

which the size of the long positions far exceeded available supply. In 1980, the “SilverCrisis”

1 An excellent reference, and the source of much of the historical material in this section, is Markham

(1987).



58 Part One Futures and Forwards

occurred when the Hunt brothers of Texas attempted to corner the world silver market. It is

estimated that at one time, between their long spot and long futures positions, they controlled

about 200 million oz of silver, about 50% of the US annual consumption level. The price

of silver rose from about $6/oz in December 1980 to around $50/oz six months later. The

attempted corner was broken by a combination of intervention by regulators and tough

action by the exchanges that forced the Hunt brothers to unwind their positions and take

losses in the billions of dollars.

Futures Regulation in the US

The earliest attempt at US federal regulation of futures markets came in 1861. In the early

years of the US Civil War, the price of gold rose and fell with the fortunes of the Union

army. Congress responded by prohibiting futures trading in gold in an attempt to stabilize its

price. The legislation was repealed after a few weeks when it proved ineffective. By the late

19th century, however, speculative trading in futures markets was widely—and in the eyes

of its supporters, unfairly—blamed for price swings in agricultural commodities. Congress

and the states made numerous attempts to regulate or abolish futures trading.

Federal involvement began in 1914 with the Cotton Futures Act, which established the

use of federal standards for grading cotton. Active regulation came in 1922 with the Grain

Futures Act, which established a licensing system for futures exchanges or “contract mar-

kets” as they were called. The Grain Futures Act was replaced by the Commodity Exchange

Act (CEA) of 1936. The CEA extended regulatory oversight to traders and brokerage firms

and established the Commodity Exchange Administration, the principal regulator of futures

trading in the US for almost four decades. In 1974, Congress enacted the Commodity Fu-

tures Trading Act, giving birth to the Commodity Futures Trading Commission (CFTC) as

the regulatory agency in charge of futures markets.

The birth of the financial futures market in the 1970s (see Section 2.2) was the first

challenge to the regulatory authority of theCFTC.TheSecurities andExchangeCommission

(SEC) challenged the CFTC’s approval of futures trading on GNMA mortgage-backed

securities. The SEC argued that since the asset underlying the proposed futures contract

was a security rather than a commodity, the SEC, not the CFTC, should have the power to

approve trading in the contract.

The enactment of the Shad-Johnson Accords by Congress in 1982 delineated responsi-

bility between the agencies. (John Shad was then the chairman of the SEC and Phil Johnson

was his counterpart in the CFTC.) The SECwas given jurisdiction over options on securities

and options on indices of securities (e.g., stock indices). The CFTC was given jurisdiction

over all futures contracts including futures on securities, futures on indices of securities,

and options on futures on such indices. But the 1982 legislation gave the SEC effective

veto power over new stock index futures contracts to ensure they were not capable of easy

manipulation.

In 2000, the Commodity Futures Modernization Act (CFMA) was signed into US law

by President Bill Clinton, after very little debate on its provisions in either the House or

the Senate. The CFMA provided for a major overhaul of the CEA as well as regulatory

domains of the SEC and CFTC. It allowed the trading of futures contracts on single stocks

and on “narrowly based” stock indices, futures contracts that had been prohibited under

the Shad-Johnson Accord. The SEC and CFTC were given joint regulatory oversight of

these instruments. The CFMA also explicitly excluded certain over-the-counter derivatives

transactions (mainly swapagreements) fromCFTCoversight. Perhaps themost controversial
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part of the CFMAwas the “Enron loophole,” which exempted most over-the-counter energy

trades and trading on electronic energy commodity markets from government regulation.

Following the financial crisis of 2008–09 and the heavy losses incurred byAIG and others

from dealing in credit default swaps among other instruments, the CFMA has come in for

substantial criticism for de-emphasizing regulation of the derivatives industry. It seems very

likely at the time of writing this chapter (early 2009) that the CFMA will be repealed or

modified in important ways in the near future.



Chapter3
Pricing Forwards and
Futures I: The Basic
Theory

3.1 Introduction

This chapter and the next mark the begining of our exploration into the pricing of derivative

securities. This chapter is mainly theoretical: it presents and develops the basic ideas that

drive the pricing of forwards and futures, first in the context of forward contracts, then

futures. Building on this foundation, Chapter 4 then examines how well the theory does in

practice and also a number of other issues of importance.

The pricing of forward contracts—actually, the pricing of all derivatives—is based on a

simple but very powerful concept known as replication. Simply put, replication is the idea

that the price of a derivative should be the cost of creating the same outcome synthetically

(i.e., by using other securities). A maintained assumption in this process is that of no

arbitrage, that is, that markets do not permit the creation of something out of nothing. We

begin by making this assumption precise.

The Main Assumption: No Arbitrage
Throughout the book, we assume that markets do not permit arbitrage opportunities. The

word “arbitrage” has acquired a variety of meanings in the popular finance lexicon, ranging

from its original connotation of a riskless profit opportunity to a more liberal interpretation

as a portfolio that generates a superior risk-adjusted return. In this book, we use the word

only in its narrow classical sense: an arbitrage is a portfolio that guarantees net cash

inflows without any net cash outflows. Such a portfolio is a free lunch, the equivalent of

the metaphorical $10 bill lying on the pavement. It represents an extreme form of market

inefficiency in which two baskets of assets that are essentially identical trade at different

prices.

The no-arbitrage assumption is not to be taken literally as implying that arbitrage oppor-

tunities can never arise in the market, but rather that they cannot persist. That is, while a

misalignment of prices may create such opportunities, market participants take advantage

of them as they arise, and prices adjust to eliminate the arbitrage. (Someone eventually

trousers the $10—it does not continue lying there.) As such, the no-arbitrage condition is a

statement of minimal market rationality.

60
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The Guiding Principle: Replication
The principle of replication that underlies the pricing and hedging of all derivative securities

is based on a simple idea. The payoffs of a derivative are determined by changes in the price

of the underlying asset. Therefore, it “should” be possible to re-create these payoffs by

directly using the underlying asset and, perhaps, cash (borrowing or lending at the risk-free

rate). If such a portfolio can be constructed, it is called a replicating portfolio; the derivative

is then said to be “synthesized” by the replicating portfolio.

The derivative and its replicating portfolio lead, by definition, to identical outcomes, so,

under the no-arbitrage condition, they must have the same cost. The cost of the replicating

portfolio is readily computed since it consists of only the underlying spot asset and cash.

Thus, the cost of the derivative, its so-called “fair price,” is identified.

The key step in exploiting these ideas is identifying the composition of the replicating

portfolio. For forward contracts, this is a simple task, as we now describe.

3.2 Pricing Forwards by Replication

Some notation first. Let date 0 denote the current date and date T the maturity date of a

given forward contract. The length of the contract is thus T years. (We always measure time

in years.) Let S denote the current price of the asset underlying the forward contract and let

ST denote its price at T .

Consider an investor with a long position in a forward contract with delivery price F .

At maturity of the contract, the investor receives one unit of the underlying asset and pays

the agreed-upon delivery price. To replicate this final holding, the investor can simply buy

one unit of the underlying asset at date 0 and hold it to date T . Both strategies result in the

investor’s holding one unit of the asset at time T . Therefore, their costs in present value

terms must also coincide.

What are these costs? The forward contract involves no cash flows up to date T and a

single cash outflow equal to the delivery price F on date T . Viewed from date 0, the cost

of this strategy is PV (F), the present value of an amount F payable at time T .

The replicating strategy results in a cash outflow of S at date 0 for purchasing the spot

asset. It may, in addition, involve other cash flows. These could be cash inflows such as

dividends or coupons received as a result of holding the asset (e.g., if the asset is a financial

security like a stock or bond); we call these “holding benefits.” Alternatively, there may be

further cash outflows such as storage or insurance costs (“holding costs”), especially if the

asset is a physical commodity such as wheat or gold. Let M denote the present value of the

net holding costs:

M = PV (Holding Costs) − PV (Holding Benefits) (3.1)

The net cost of the replicating strategy is then

S + M (3.2)

Setting this equal to the cost of the forward contract, we have

PV (F) = S + M (3.3)

Equation (3.3) is the fundamental theoretical pricing equation for forward contracts. If

it does not hold, an arbitrage opportunity arises:

• If PV (F) > S + M , the forward is overvalued relative to the cost of replication. We

can sell forward, buy spot, and make a riskless profit. This is called “cash-and-carry”

arbitrage.
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• If PV (F) < S + M , the forward is undervalued relative to the cost of replication. We

can buy forward, sell spot, and make a riskless profit. This is “reverse cash-and-carry”

arbitrage.

From (3.3), the unique delivery price F at which arbitrage is not possible may be deter-

mined from knowledge of three things: (i) the current spot price S, (ii) the present value M

of the cost of holding the spot asset to date T , and (iii) the level of interest rates, which is

needed to calculate present values. This is the central message of this chapter. The argument

leading to (3.3) is called the “cost of carry” method of pricing forwards since it determines

the forward price as a function of the cost of “carrying” the spot asset to maturity.

Some Assumptions
Todevelop these ideas in a simple and concisemanner,wewillmakeuseof three assumptions

in addition to the main no-arbitrage condition:

Assumption 1. There are no transactions costs.

Assumption 2. There are no restrictions on short sales. In particular, the full proceeds

of short sales are available immediately for investment to the short seller.

Assumption 3. The (default-)risk-free rate of interest is the same for borrowing and

lending.

These assumptions are imposed in the interests of simplicity and to keep attention focused

on the main ideas. They are not, of course, always realistic (particularly Assumption 2). In

the next chapter (see Sections 4.2–4.4), we show that each assumption can be dropped at the

cost of adding a bit of complication to the analysis. In particular, we obtain an arbitrage-free

“band” of prices rather than a single price, with the size of the band depending on the extent

of violation of the assumptions (e.g., the size of transactions costs).

Interest-Rate Convention
Finally, to compute the present values in expression (3.3), we need the interest rates to be

used for discounting cash flows occurring between dates 0 and T . In practice, the convention

for quoting interest rates varies widely across markets and contracts. Appendix 3A describes

different compounding conventions (annual, semiannual, continuous, etc.).

Different compounding and interest-rate conventions are, however,merely differentmea-

suring sticks for the same concept, analogous to measuring height in feet and inches instead

of meters and centimeters. As illustrated in Appendix 3A, interest-rate quotes under one

compounding conventionmay easily be converted to quotes under any other convention. The

exact convention we choose to use to develop the theory is solely a matter of convenience.

We adopt the convention in this chapter that interest rates are quoted in continuously

compounded terms on an annualized basis. Thus, a T -year interest rate of r means that $1

invested for T years at the rate r grows by maturity to $erT . In the numerical examples,

we further simplify matters by treating each month as 1/12 of a year. Thus, a three-month

interest rate of 10% means that $1 invested at this rate for three months grows to

e(0.10)(1/4)
= $1.0253

Forward Pricing Formulae with Continuous Compounding
Let r be the rate of interest applicable to a T -year horizon. Under the continuous com-

pounding convention,

PV (F) = e−rT F
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Using this in the formula (3.3), we obtain e−rT F = S + M , or

F = erT (S + M) (3.4)

Equation (3.4) is the promised forward pricing formula under continuous compounding.

For the special case where there are no holding costs or benefits (M = 0), it becomes

F = erT S (3.5)

3.3 Examples

We present two examples in this section to illustrate the mechanics of arbitrage when the

forward pricing formula is violated. The first example keeps matters simple by assum-

ing no holding costs or benefits, while the second example allows for such interim cash

flows.

Example 3.1 Suppose the current spot price of gold is S0 = $350 per oz, the risk-free three-month rate
of interest is 3%, and there are no costs of holding gold. What is the three-month forward
price of gold?

From (3.5), the unique arbitrage-free forward price is

F = e
(0.03)(1/4)

× 350 = 352.635 (3.6)

Any other forward price will lead to an arbitrage opportunity as we now show.

(A) Arbitrage from an Overvalued Forward
Suppose F > 352.635, say F = 355. Then, the forward is overvalued relative to spot by
the amount 355 − 352.635 = 2.365. To take advantage, we sell the relatively overvalued
contract (the forward) and buy the relatively undervalued one (the spot asset). The specific
strategy is:

1. Enter into a short forward position to deliver 1 oz of gold in three months at the delivery
price of $355.

2. Buy 1 oz of gold in the spot market and hold it for three months.

3. Borrow $350 for three months at the interest rate of 3%.

Why is borrowing part of this strategy? The short forward position results in a cash inflow
only in three months’ time whereas purchasing the spot asset requires a cash outflow today.
This cash outflow must be funded either explicitly (by borrowing) or implicitly (by utilizing
surplus cash, in which case we are borrowing from ourselves, so the interest represents an
opportunity cost). As a consequence of the borrowing, all net cash flows are moved to the
maturity date of the forward contract.

The resulting set of cash flows is summarized in Table 3.1. There are no net cash flows
at inception since the required cash outflow of $350 to buy the spot asset is matched by

TABLE 3.1 Cash

Flows in Example 3.1

from Arbitraging an

Overvalued Forward

Source of Cash Flow Initial Cash Flow Final Cash Flow

Short forward – +355.000
Long spot −350.000 –
Borrowing +350.000 −352.635

Net cash flows – +2.365
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TABLE 3.2 Cash

Flows in Example 3.1

from Arbitraging an

Undervalued Forward

Source of Cash Flow Initial Cash Flow Final Cash Flow

Long forward – −351.000
Short spot +350.000 –
Investment −350.000 +352.635

Net cash flows – +1.635

the inflow of $350 from the borrowing, and, of course, there is no up-front cost to enter
a forward contract. Nor are there any interim cash flows between inception and maturity
since there are no costs of holding gold by assumption.

At maturity of the forward contract, the 1 oz of gold is delivered to the long forward
position, resulting in a cash inflow of $355 from the forward. There is also a cash outflow
of e(0.03)(1/4)

× 350 = $352.635 towards repaying the borrowing. Thus, there is a net cash
inflow of $2.365 at this point, representing the arbitrage profits.

(B) Arbitrage from an Undervalued Forward
Now suppose that F < 352.635, say F = 351. Now the forward is undervalued relative
to spot by $1.635, so we buy forward and sell spot to take advantage of the mispricing.
Specifically:

1. Enter into a long forward position to purchase 1 oz of gold in three months at the delivery
price of $351.

2. Short 1 oz of gold in the spot market and hold the short position for three months.

3. Invest the proceeds of $350 from the short sale for three months at the interest rate of
3%.

The investment in this strategy plays the same role as the borrowing in the earlier strategy.
The cash flows are summarized in Table 3.2. Once again, there are no net cash flows at
inception since the cash inflow of $350 from the short sale is matched by the cash outflow
of $350 for the investment. There are no net interim cash flows since gold has no holding
costs.

At maturity, we pay $351 and receive 1 oz of gold from the forward contract that we use
to cover our short position. We also receive a cash inflow of e(0.03)(1/4)

× 350 = $352.635
from the investment. Thus, there is a net cash inflow of $1.635, representing our arbitrage
profits. ■

The assumption that there are no holding costs or benefits is often not a reasonable one.

Holding financial assets such as bonds or equities may result in holding benefits in the

form of coupons or dividends. Holding commodities may involve substantial storage and

insurance costs; the costs of storing oil, for instance, amount, on an annualized basis, to

about 20% of the cost of the oil itself. Such interim costs or benefits affect the cost of the

replication strategy and should be taken into account in calculating the forward price. The

following example deals with such a situation.

Example 3.2 Consider a six-month forward contract on a bond. Suppose the current spot price S of
the bond is $95 and that the bond will pay a coupon of $5 in three months’ time. Finally,
suppose the rate of interest is 10% for all maturities. What is the arbitrage-free forward price
of the bond?
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In terms of our notation, we are given S = 95, T = 6 months = 1/2 year, and r = 10%.
Since holding the bond involves a cash inflow, M is negative and is given by minus the
present value of $5 receivable in 3 months:

M = −e
−(0.10)(0.25)

× 5 = −4.877

Therefore, from the forward-pricing formula (3.4), we have

F = e
(0.10)(1/2)

× (95− 4.877) = e
(0.10)(1/2)

× (90.123) = 94.74

Any other delivery price leads to an arbitrage opportunity.

(A) Arbitrage from an Overvalued Forward
Suppose F > 94.74, for example, F = 95.25. Then, the forward is overvalued relative to
spot by $0.51, so we should buy spot, sell forward, and borrow. There are many ways to set
up the precise strategy. One is to split the initial borrowing of $95 into two parts with one
part repaid in three months with the $5 coupon and the other part repaid after six months
with the delivery price received from the forward contract. More precisely:

1. Enter into a short forward position to sell the bond in six months’ time for $95.25.

2. Buy 1 unit of the spot asset for $95 and hold it up to T .

3. Borrow P V (5) = e−(0.10)(1/4) × 5 = $4.877 for repayment in three months and $90.123
for repayment in six months.

The cash flows from this strategy are summarized in Table 3.3. There are no net cash flows
at inception since the cash outflow of $95 required to purchase the bond is matched by the
total inflows from the borrowings (4.877+90.123 = 95). The only interim cash flows occur
in three months. At that point, an amount of $5 is due to repay the three-month borrowing,
but we receive $5 as coupon from the bond we hold. Thus, there are no net cash flows at
this point either.

At maturity of the forward contract, there is a cash inflow of $95.25 from the forward
position when the bond is delivered, and a cash outflow of

e
(0.10)(0.50)

× 90.123 = 94.74

towards repaying the six-month borrowing. Thus, there is a net cash inflow of $95.25 −
94.74 = 0.51, representing the arbitrage profits.

(B) Arbitrage from an Undervalued Forward
Now suppose F < 94.74, say F = 94.25. Then the forward is undervalued relative to spot
by $0.49, so we buy forward, sell spot, and invest. In greater detail:

1. Enter into a long forward position to sell the bond in six months’ time for $94.25.

TABLE 3.3 Cash

Flows in Example 3.2

from Arbitraging an

Overvalued Forward

Source of Cash Flow Initial Cash Flow Interim Cash Flow Final Cash Flow

Short forward – – +95.25
Long spot −95.000 +5.000 –
3-month borrowing +4.877 −5.000 –
6-month borrowing +90.123 – −94.74

Net cash flows – – +0.51
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TABLE 3.4 Cash

Flows in Example 3.2

from Arbitraging an

Undervalued Forward

Source of Cash Flow Initial Cash Flow Interim Cash Flow Final Cash Flow

Long forward – – −94.25
Short spot +95.000 −5.000 –
3-month investment −4.877 +5.000 –
6-month investment −90.123 – +94.74

Net cash flows – – +0.49

2. Short 1 unit of the bond for $95 and hold the short position up to T .

3. Invest P V (5) = e−(0.10)(1/4) × 5 = $4.877 for three months and $90.123 for six months.

Table 3.4 summarizes the resulting cash flows. There are no net initial cash flows. There
is a cash inflow of $5 after three months from the three-month investment, but there is also
a coupon of $5 due on the short bond. Thus, there is no net cash flow at this point either.
After six months, the contract is at maturity. At this point, we receive

e
(0.10)(0.50)

× 90.123 = $94.74

from the six-month investment. We pay $94.25 on the forward contract and receive the
bond, which we use to close out the short position. This leaves us with a net cash inflow of
$0.49 representing arbitrage profits. ■

3.4 Forward Pricing on Currencies and Related Assets

An important difference between a currency and other underlyings such as wheat is that

when we buy and store one bushel of wheat, it remains one bushel of wheat at maturity

(assuming, of course, that the rats don’t get at it!). In contrast, when we buy and store

currency, the currency earns interest at the appropriate rate, so one unit of the currency

grows to more than one unit over time. This means that the fundamental forward pricing

formula (3.3) must be modified for such cases.

As a specific motivation, consider a currency forward contract (say, on British pound

sterling denoted £) maturing in T years. An investor taking a long position in this contract

pays the delivery price $F at time T and receives £1 at that point. To replicate this outcome

using the spot asset, the investor cannot simply buy £1 today and hold it to T . Why not?

The pound sterling the investor holds earns interest at the rate applicable to T -year sterling

deposits, so the £1 would grow to more than £1 at T . For example, if T = 3 months and

the three-month interest rate on sterling is 8%, then the initial £1 will grow to

e(0.08)(1/4)
= £1.02

in three months, so the investor will end up overreplicating the outcome of the forward

contract.

To correct for this, we must take interest yield into account in constructing the replicating

strategy. We do this by adjusting the number of units of the spot currency we buy at the

outset so that we are left with exactly one unit at maturity. In this example, this may be

accomplished by buying only £(1/1.02) = £0.98 initially. When this amount is invested at

the 8% rate for three months, we will receive £1 at maturity.

We describe the forward pricing formula that results when the replicating strategy is

modified in this way. Then we provide an example to illustrate the arguments.
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The General Pricing Formula for Currency Forwards
For simplicity,we continue referring to the foreign currency as pound sterling (GBP).Denote

the spot price of this currency by S. As usual, S denotes the current price in US dollars

(USD) of one unit of the underlying spot asset. Here, the underlying is pound sterling, so S

refers to the exchange rate USD per GBP. Here, and elsewhere in the book where it helps

to simplify exposition, we shall use the common symbols $ for USD and £ for GBP.

If we take a long forward position with a delivery price of F , then in T years, we pay $F

and receive £1. Viewed from today, the cost of this strategy in USD is PV ($F), or what is

the same thing,

F · PV ($1) (3.7)

(We write the $ sign inside the parentheses to emphasize that present values are computed

using the USD interest rate.)

To replicate the outcome of the forward, we must construct a strategy that leaves us with

£1 in T years. But this is a simple task: all we need do is buy the present value of £1 today

and invest it so that it grows to £1 by time T . Of course, to calculate this present value,

we must use the interest rate on pounds, not on dollars, since we can invest the purchased

pounds only at the pound interest rate. To emphasize this point, we write PV (£1) for the

present value.

The cost of this replicating strategy in dollars is the number of pounds purchased today

(which is PV (£1)) times the current dollar price per pound (which is S):

S · PV (£1) (3.8)

Equating the costs of the two strategies, we obtain

F · PV ($1) = S · PV (£1) (3.9)

so that

F = S
PV (£1)

PV ($1)
(3.10)

Expression (3.10) is the fundamental pricing equation for foreign currency forwards. It

is also referred to as covered interest-rate parity. It expresses the arbitrage-free forward

price as a function of three variables: the spot exchange rate, domestic interest rates, and

interest rates on the foreign currency.

Currency Forward Prices under Continuous Compounding
Suppose we express interest rates on both currencies using a continuous compounding

convention. Let d denote the T -year interest rate on pound sterling, and, as usual, let r be

the T -year interest rate on the dollar. Then, from (3.10), we have

F = S
e−dT

e−rT

Rearranging this expression, we obtain

F = e(r−d)T S (3.11)

Expression (3.11) is the currency forward pricing formula when interest rates are expressed

in continuously compounded terms. This formula has an intuitive interpretation. When we

buy the spot asset, we give up dollars, which has an opportunity cost represented by the

dollar interest rate r . However, we receive pound sterling in exchange, which carries a

holding benefit represented by the sterling interest rate d. The difference r − d represents

the net cost of holding spot that is reflected in forward prices.
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Example 3.3 Consider a forward contract on pound sterling. Suppose the spot exchange rate is $1.60/£.
Suppose also that the three-month interest rate on dollars is 6%while the three-month inter-
est rate on pounds is 8%, both in continuously compounded terms.What is the arbitrage-free
three-month forward price?

In terms of our notation, we are given: S = 1.60, T = 3 months = 1/4 year, r = 0.06,
and d = 0.08. Therefore, from (3.11), the unique arbitrage-free forward price is

F = e
(0.06−0.08)(1/4)(1.60) = 1.592

(A) Arbitrage from an Overvalued Forward
Suppose the delivery price in the forward contract differed from this quantity; for example,
suppose we have F = 1.615. Then, the forward is overvalued relative to spot, so we sell
forward and buy spot to create a riskless profit. The complete strategy is:

1. Enter into a short forward contract to deliver £1 for $1.615 in three months.

2. Buy £e−dT
= £0.98 at the spot price of $1.60/£.

3. Invest £0.98 for three months at the interest rate of 8%.

4. Finance the spot purchase by borrowing $(0.98)(1.60) = $1.568 for three months at
6%.

Note that we buy only £e−dT units at the outset because we want to have only £1 at maturity.
There are clearly no net initial cash flows in this strategy, nor, of course, are there interim

cash flows. At maturity, we receive £1 from the investment, which we deliver on the for-
ward contract and receive $1.615. We must also repay the borrowing. This leads to a cash
outflow of

$1.568× e
(0.06)(1/4)

= $1.592

Thus, there is a net cash inflow of $0.023 at maturity representing arbitrage profits from the
mispricing.

(B) Arbitrage from an Undervalued Forward
Similarly, suppose the delivery price in the forward contract is less than 1.592, say F = 1.570.
Then, the forward is undervalued relative to spot, so we should buy forward and sell spot.
The complete strategy is:

1. Enter into a long forward contract to buy £1 for $1.57 in three months.

2. Sell £e−dT
= £0.98 at the rate of $1.60 per pound and receive $(1.60)(0.98) = $1.568.

3. Borrow £0.98 for three months at the interest rate of 8%.

4. Invest $1.568 for three months at the interest rate of 6%.

Note, once again, that we borrow and sell only £e−dT initially, since this will lead to a
cash outflow of £1 at maturity, which we can meet from the £1 received on the forward
contract.

Once again, there is no net initial cash flow and there are no interim cash flows. At
maturity, we pay $1.57 and receive £1 from the forward contract. We owe

£0.98× e
(0.08)(1/4)

= £1

on the borrowing. Finally, we receive

$1.568× e
(0.06)(1/4)

= 1.592

from the dollar investment. Summing all this up, we have a net cash inflow at maturity of
$0.022 representing arbitrage profits from the mispricing. ■
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Pricing Forwards on Stock Indices
In addition to currency forwards, the formula (3.11) has other uses also. One lies in the

pricing of forwards on stock indices. A stock index is a basket of a number of stocks con-

structed according to specified rules. In the next chapter, we consider stock index forwards

and show that one simple way to price these forwards is to use the formula (3.11) with d

denoting the dividend yield on the index. The details are in Section 4.6.

3.5 Forward-Rate Agreements

The idea of replication can also be used to price forward contracts such as forward-rate

agreements or FRAs—and generalizations of FRAs such as interest rate swaps—that

depend directly on the level of an interest rate rather than on the price of a traded asset

or commodity. FRAs are treated in detail in Chapter 6, so we do not present the ideas

here.

3.6 Concept Check

In recent years, several countries have pegged their currency to a foreign currency, thereby

fixing the exchange rate. Argentina and Hong Kong, for example, have used pegs tying their

currencies to the US dollar.

Consider a currency (call it the “tiger”) that is pegged to the dollar. Suppose for specificity

that it is pegged at 10 tigers per dollar. Suppose that the peg is widely considered credible

in financial markets, i.e., market participants do not believe it is likely to break. What is the

one-month forward price on the tiger? Think carefully before attempting an answer!

A little reflection shows that the forward price cannot be greater than 10 tigers per dollar.

Suppose, for instance, that it is 11 tigers/dollar. Then an arbitrage can be created by buying

tigers forward at 11 tigers/dollar (i.e., roughly at $0.09/tiger), waiting until maturity of the

forward contract, and selling the delivered tigers at the spot price of 10 tigers/dollar (i.e., at

$0.10/tiger).

Similarly, it cannot be less than 10 tigers per dollar. Suppose it were (say) 9 tigers per

dollar. An arbitrage can be created by selling tigers forward at 9 tigers/dollar (i.e., roughly

at $0.11/tiger), waiting until maturity of the forward contract, and buying and delivering

the required tigers at the spot price of 10 tigers/dollar (i.e., at $0.10/tiger).

Thus, the forward price must be 10 tigers/dollar. We have identified this arbitrage-free

forward price without knowledge of the interest rates as required by the formula (3.11) for

currency forwards. Does this mean that (3.11) does not apply to this case?

On the contrary! We have shown that (3.11) must always hold or there is an arbitrage.

So how are these two statements to be reconciled?

The key lies in noting that we derived the forward price of 10 tigers/dollar assuming the

peg was fully credible. But if the peg is fully credible, the dollar interest rate r must be the

same as the tiger interest rate d. If the dollar interest rate is lower, we can create a simple

arbitrage by borrowing in dollars at the dollar interest rate, converting to tigers, investing

at the tiger interest rate, and converting back to dollars at maturity. The reverse strategy

creates an arbitrage if the dollar interest rate is higher. Thus, we must have r = d, so using

the formula (3.11) would have given us the same answer.

All these arguments rely on the peg being credible beyond doubt. If there is some

suspicion that the peg might break, spot and forward prices will not coincide; neither
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will dollar and tiger interest rates. In all cases, however, forward and spot prices must be

linked via (3.11), or an arbitrage opportunity arises.

3.7 The Marked-to-Market Value of a Forward Contract

In dealing with a portfolio of derivatives, we are often faced with the question: how much is

a particular derivative contract, entered into a while ago but not yet at maturity, worth

today? That is, what is its marked-to-market value? This value is used in practice to

settle forward contracts prior to maturity. This section examines the answer for forward

contracts.

An Intuitive Answer
Consider a specific example. Suppose we hold a long position in a forward contract on

copper with a delivery price D = $0.80 per lb that was entered into earlier and now has one

month left to maturity. Suppose that the current forward price for the same contract (i.e.,

copper of the same grade with one month to maturity) is $F per lb. What is the marked-to-

market value (henceforth, simply “value”) of the contract we hold? That is, how much better

or worse off are we for having locked-in a delivery price of D = $0.80 per lb compared to

the prevailing forward price of F?

An intuitive answer to this question is easily given. Suppose F > D, say F = $0.82.

Then, we are better off by $0.02 per lb for having locked-in the delivery price of D = $0.80.

This difference of $0.02 in the delivery price is realized only in a month’s time when the

contract is at maturity, so has a present value of PV (0.02). This is the value of the contract

we hold.

Analogously, suppose F < D, say, F = $0.79 per lb. Then, we are worse off by $0.01

per lb for having locked-in a delivery price of $0.80 per lb, so the contract now has a value

of PV (−0.01).

These arguments suggest that, in either case, the value of the contract to the long position

is PV (F − D). The value to the short position is just the negative of this value and is given

by PV (D− F). If F > D, the contract has positive value to the long position and negative

value to the short. If F < D, the opposite is true.

Valuation by Reversal
We can derive these expressions more formally by examining the question: how much value

would be gained (or lost) if we were to unwind the contract right away and lock-in our

profits or losses?

We cannot unwind a forward contract by selling it unilaterally. Nonetheless, we can

achieve the functional equivalent of a sale by reversal. Reversal simply involves taking the

opposite position to the original in another forward contract with the same maturity date

as the original. Thus, for example, if our original contract was a long position in a forward

contract to buy 100 barrels of oil in April, we enter into a short forward contract to sell 100

barrels of oil in April.

Note that reversal entails some credit risk unlike the closing-out of a futures position.

If the counterparty with whom we signed our original forward agreement defaults, our

obligations still remain on the contract used to reverse the original one.

Ignoring credit risk, reversal achieves the same outcome as a sale of the contract in that

there is no net obligation in the underlying at maturity: the long and short positions are

equal in size and cancel each other out. However, there is a net cash flow: the original long
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position had a delivery price of D while the new contract used for reversal can be entered

into only at the prevailing forward price F . This means we pay D on the original long

forward position but receive F on the short forward contract used for reversal. The net cash

flow is F − D. The present value of this net cash flow, PV (F − D), is the value of the

original contract to a long position. The negative of this quantity, PV (D− F), is the value

of the original contract to a short position.

Example 3.4 A US investor holds a one-month short forward position on pound sterling. The contract
calls for the investor to sell £2 million in one month at a delivery price of $1.61 per pound.
The current forward price for delivery in one month is F = $1.5850 per pound. Suppose
the one-month rate of interest is 6%. What is the value of the investor’s position?

The investor has locked in a delivery price of D = $1.61 per pound compared to the
prevailing forward rate of F = $1.5850 per pound. As the holder of a short forward, the
investor is better off by $0.0250 per pound. This difference will be received in one month’s
time, so its present value is

P V (D − F ) = e
−(0.06)(1/12)

× 0.0250 = 0.024875

Since the contract calls for the delivery of £2 million, the value of the investor’s position is

2,000,000× 0.024875 = $49,750

If the parties to the contract agree to unwind it today, the long position in the contract
would have to pay the investor $49,750. ■

Example 3.5 Suppose an investor holds a long forward position on 10,000 shares of Microsoft stock with
a delivery price of $25 per share and maturity in two months. Assume no dividends are
expected from Microsoft over the next two months. Suppose the two-month interest rate
is 4% and Microsoft stock is currently trading at $24.50. What is the arbitrage-free forward
price $F on the stock for delivery in two months? Given $F , what is the marked-to-market
value of the investor’s position?

In our notation, we are given D = 25 (the delivery price already locked in) and T =

2 months = 1/6 year. We are not given F , but are asked to calculate it from the given
information. Since no dividends are expected on the stock, the arbitrage-free forward price
can be obtained using the zero holding costs formula (3.5). This results in

F = e
(0.04)(1/6)

× 24.50 = 24.664

Since the investor has a long forward position, the value per share of having a delivery
price of D = 25 is

P V (F − D) = e
−(0.04)(1/6)

× [24.664− 25] = −0.3339

Since the forward contract calls for the delivery of 10,000 shares, the total marked-to-market
value of the investor’s position is

10,000×−0.3339 = −3,339

Thus, if the two sides to the contract agree to unwind it today, the investor would have to
pay the short position in the contract $3,339. ■
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3.8 Futures Prices

Valuing a futures contract analytically (i.e., identifying an exact relationship between futures

and spot prices) is difficult for two reasons. The first is the presence of delivery options in

futures contracts, which creates uncertainty about the grade that will actually be delivered

at maturity. The second is the daily marking-to-market procedure in futures markets, which

creates interim cash flows of uncertain size. Either factor raises the difficulty of the pricing

problem considerably.

So rather than focus on the technical issue of valuation, we discuss the qualitative

relationship between otherwise identical futures and forwards. “Otherwise identical” means

(a) that the two contracts have the same maturity date and same delivery price, and (b) that

the grade of the spot asset in the forward contract is the standard grade specified in the

futures contract. The only differences in the contracts are that the futures contract has daily

marking-to-market and perhaps also delivery options.

The Impact of Delivery Options
Aswehave seen, delivery options are provided only to the short position in a futures contract.

The presence of this option makes the futures contract more attractive to the short position

than an otherwise identical forward, while the long position, who is effectively the writer of

this option, finds the futures less attractive. Ceteris paribus, therefore, the price of a futures

contract will be lower than that of a forward contract;1 indeed, the difference in prices on

this account will be precisely the value of the delivery option.

How much lower will the futures price be? That is, how valuable is the delivery option?

In general, this depends on the range of alternative deliverable grades and the price adjust-

ment mechanism specified in the futures contract. Economic intuition, however, suggests a

plausible answer.

The delivery option in futures contracts is provided mainly to guard against squeezes

by the long position. The presence of this option, however, degrades the hedge offered by

the contract to the long position since it creates uncertainty about the quality that will be

delivered. The more economically valuable this option to the short position, the more the

hedge is degraded, and the less attractive the contract to the long position. In a successful

contract, then, one would expect that while the range of delivery options is wide enough to

ensure market integrity, the economic value of the option will be low so as to degrade the

hedge minimally.

Empirical studies support this position. Hemler (1990) and Duffie (1989) examine the

value of the delivery option on the Chicago Board of Trade’s Treasury bond futures contract.

They compute the loss to the short position from fixing the grade to be delivered a given

length of time before maturity compared to choosing it at maturity. Duffie finds that if the

bond to be delivered is chosen three months ahead of time, the average loss suffered by the

short position is $270, or 0.27% of the contract’s face value of $100,000. If the choice is

made with six months to go, the average loss is $430, or 0.43%, of the contract’s face value.

(The higher values at longer maturities reflect the fact that interest rates can change more

over longer periods.) Fixing the delivered bond one year ahead of time, Hemler finds the

average loss to be around $660, or 0.66%, of the contract’s face value.

One final point is important. As discussed in Chapter 2, delivery options have eco-

nomic value onlywhen the price adjustmentmechanism specifies price differentials between

1 Intuitively, short positions represent “sellers” and long positions “buyers” in these markets. If shorts

find futures more attractive and longs have the opposite preference, the futures market has more

sellers and fewer buyers, hence a lower price.
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alternative deliverable grades that differ from the price differentials prevailing in the spot

market at delivery time.Themore the price adjustmentmechanism reflects actual differences

in spot prices of the different deliverable grades at delivery time, the lower is the value of the

delivery option. The option ceases to have economic value when delivery price adjustments

on the futures contract exactly equal the prevailing spot price differentials at that point.

The Impact of Daily Marking-to-Market
The presence ofmargining and dailymarking-to-market in futuresmarkets creates uncertain

interim cash flows that have no counterpart in forward markets. Two questions of interest

arise as a consequence: (a) Given that the margin account earns interest, is there any reason

to expect futures and forward prices to differ? (b) If so, in what direction is the difference?

The key to answering these questions turns out to lie in the joint behavior of interest rates

and futures prices. It can be shown that:

• If futures price movements and interest rate movements are positively correlated, then

futures prices will be higher than forward prices.

• If futures price movements and interest rate movements are negatively correlated, then

futures prices will be lower than forward prices.

• If futures price movements and interest rate movements are uncorrelated, then futures

and forward prices will coincide.

A formal derivation of these results may be found in Cox, Ingersoll, and Ross (1981) and

Duffie and Stanton (1992).2 The proofs are quite technical, so here we limit ourselves to

discussing the intuition behind them. Appendix 3B considers the case of constant interest

rates (a special case of zero correlation) and shows that futures and forward prices are indeed

equal in this case.

Suppose futures price changes are positively correlated with changes in interest rates.

When futures prices increase, the margin account balance of a long position also increases.

Thepositive correlation implies that this larger balance earns interest at a higher rate. Positive

correlation also means that when margin balances fall on account of falling futures prices,

the losses are financed at lower interest rates. Thus, with positive correlation, long positions

find the daily marking-to-market of futures more attractive than the one-time settlement at

maturity offered by forwards.

For short positions, the opposite preference obtains. The short’s margin balances move

in the opposite direction to futures price movements. When futures prices rise and margin

balances fall, the losses have to be financed at higher interest rates. When futures prices fall

and margin balances rise, the increased balance earns interest at a lower rate.

Thus, with positive correlation, longs prefer futures to forwards while shorts prefer

forwards to futures. This means futures prices will be higher than forward prices.

An analogous argument indicates that with negative correlation, short positions find

futures more attractive and long positions find them less attractive, so futures prices will be

less than forward prices. Combining these arguments suggests that with zero correlation,

futures prices will be equal to forward prices.

Of course, even if futures and forward prices differ, the relevant question from a prac-

tical standpoint is how large these differences can be. Once again, the empirical answer

2 Other relevant papers include Jarrow and Oldfield (1981) and Richard and Sundaresan (1981).

Amerio (2005) provides a description of forward prices in terms of futures prices by means of a

convexity drift adjustment that captures the instantaneous correlation between futures prices and

interest rates.
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appears to be: not very, at least not for short-dated futures contracts. Intuitively, margining

exists to inhibit default. Subject to achieving this end, it is best, from a hedging standpoint,

to minimize the interim cash-flow uncertainty this procedure creates. In practice, margin

requirements are quite small as a percentage of the face value of the contract (see Chap-

ter 2). The impact of interest-rate changes on the changes in margin account is even smaller

relative to the face value of the contract. Typically, therefore, we would expect the differ-

ence between forward and futures prices caused by margining to be small on short-dated

contracts.

Empirical investigations support this expectation. The “best” laboratory for testing the

impact of marking-to-market is in currency markets where delivery options do not exist. A

study of currency markets by Cornell and Reinganum (1981) reported that currency futures

and forward prices typically differ by less than the bid–ask spread in the currency market;

later studies by Chang and Chang (1990) and Dezhbaksh (1994) report similar findings. A

more broad-based study by French (1983) compares futures and forward prices in several

markets and finds the differences to typically be very small.

Over very long horizons, however, the factors that differentiate futures and forwards

can drive a measurable wedge between the prices. For example, Gupta and Subrahmanyam

(1999) compare rates derived from swap and Libor futures markets and find that, for the

period 1987–1996, there were substantial differences that cannot be explained by default

risk effects, term structure effects, or information or liquidity differences between swaps

(forward) and futures markets. They attribute this to a “convexity effect” arising from the

daily marking-to-market in futures markets that is absent in the forward market.

In Summary . . .
. . . empirical studies show that neither delivery options nor daily marking-to-market appear

to be very important from a pricing standpoint, especially for short-dated contracts. Eco-

nomic intuition suggests too that this should be the case. In the sequel, therefore, we often

treat futures and forward prices as if they are the same. This is an assumption of convenience

that works well for short-dated contracts, but some caution should be employed in applying

this to long-term contracts.

3.9 Exercises 1. Briefly explain the basic principle underlying the pricing of forward contracts.

2. True or false: The theoretical forward price decreases with maturity. That is, for exam-

ple, the theoretical price of a three-month forward must be greater than the theoretical

price of a six-month forward.

3. List the factors that could cause futures prices to deviate from forward prices. How

important are these factors in general?

4. The forward price of wheat for delivery in three months is $3.90 per bushel, while the

spot price is $3.60. The three-month interest rate in continuously compounded terms is

8% per annum. Is there an arbitrage opportunity in this market if wheat may be stored

costlessly?

5. A security is currently trading at $97. It will pay a coupon of $5 in two months. No

other payouts are expected in the next six months.

(a) If the term structure is flat at 12%, what should be the forward price on the security

for delivery in six months?

(b) If the actual forward price is $92, explain how an arbitrage may be created.
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6. Suppose that the current price of gold is $365 per oz and that gold may be stored

costlessly. Suppose also that the term structure is flat with a continuously compounded

rate of interest of 6% for all maturities.

(a) Calculate the forward price of gold for delivery in three months.

(b) Now suppose it costs $1 per oz per month to store gold (payable monthly in advance).

What is the new forward price?

(c) Assume storage costs are as in part (b). If the forward price is given to be $385

per oz, explain whether there is an arbitrage opportunity and how to exploit it.

7. A stock will pay a dividend of $1 in one month and $2 in four months. The risk-free rate

of interest for all maturities is 12%. The current price of the stock is $90.

(a) Calculate the arbitrage-free price of (i) a three-month forward contract on the stock

and (ii) a six-month forward contract on the stock.

(b) Suppose the six-month forward contract is quoted at 100. Identify the arbitrage

opportunities, if any, that exist, and explain how to exploit them.

8. A bond will pay a coupon of $4 in two months’ time. The bond’s current price is $99.75.

The two-month interest rate is 5% and the three-month interest rate is 6%, both in

continuously compounded terms.

(a) What is the arbitrage-free three-month forward price for the bond?

(b) Suppose the forward price is given to be $97. Identify if there is an arbitrage oppor-

tunity and, if so, how to exploit it.

9. Suppose that the three-month interest rates in Norway and the US are, respectively, 8%

and 4%. Suppose that the spot price of the Norwegian kroner is $0.155.

(a) Calculate the forward price for delivery in three months.

(b) If the actual forward price is given to be $0.156, examine if there is an arbitrage

opportunity.

10. Consider a three-month forward contract on pound sterling. Suppose the spot exchange

rate is $1.40/£, the three-month interest rate on the dollar is 5%, and the three-month

interest rate on the pound is 5.5%. If the forward price is given to be $1.41/£, identify

whether there are any arbitrage opportunities and how you would take advantage of them.

11. Three months ago, an investor entered into a six-month forward contract to sell a stock.

The delivery price agreed to was $55. Today, the stock is trading at $45. Suppose the

three-month interest rate is 4.80% in continuously compounded terms.

(a) Assuming the stock is not expected to pay any dividends over the next three months,

what is the current forward price of the stock?

(b) What is the value of the contract held by the investor?

(c) Suppose the stock is expected to pay a dividend of $2 in one month, and the one-

month rate of interest is 4.70%. What are the current forward price and the value of

the contract held by the investor?

12. An investor enters into a forward contract to sell a bond in three months’ time at $100.

After one month, the bond price is $101.50. Suppose the term-structure of interest rates

is flat with interest rates equal to 3% for all maturities.

(a) Assuming no coupons are due on the bond over the next two months, what is now

the forward price on the bond?

(b) What is the marked-to-market value of the investor’s short position?

(c) How would your answers change if the bond will pay a coupon of $3 in one month’s

time?
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13. A stock is trading at 24.50. Themarket consensus expectation is that it will pay a dividend

of $0.50 in two months’ time. No other payouts are expected on the stock over the next

three months. Assume interest rates are constant at 6% for all maturities. You enter into

a long position to buy 10,000 shares of stock in three months’ time.

(a) What is the arbitrage-free price of the three-month forward contract?

(b) After one month, the stock is trading at $23.50. What is the marked-to-market value

of your contract?

(c) Now suppose that at this point, the company unexpectedly announces that dividends

will be $1.00 per share due to larger-than-expected earnings. Buoyed by the good

news, the share price jumps up to $24.50. What is now the marked-to-market value

of your position?

14. Suppose you are given the following information:

• The current price of copper is $83.55 per 100 lbs.

• The term-structure is flat at 5%, i.e., the risk-free interest rate for borrowing/investment

is 5% per year for all maturities in continuously compounded and annualized terms.

• You can take long and short positions in copper costlessly.

• There are no costs of storing or holding copper.

Consider a forward contract in which the short position has to make two deliveries:

10,000 lbs of copper in one month, and 10,000 lbs in two months. The common delivery

price in the contract for both deliveries is P , that is, the short position receives P upon

making the one-month delivery and P upon making the two-month delivery. What is the

arbitrage-free value of P?

15. This question generalizes the previous one from two deliveries to many. Consider a con-

tract that requires the short position to make deliveries of one unit of an underlying at

time points t1, t2, . . . , tN . The common delivery price for all deliveries is F . Assume

the interest rates for these horizons are, respectively, r1, r2, . . . , rN in continuously com-

pounded annualized terms. What is the arbitrage-free value of F given a spot price

of S?

16. In the absence of interest-rate uncertainty and delivery options, futures and forward

prices must be the same. Does this mean the two contracts have identical cash-flow

implications? (Hint: Suppose you expected a steady increase in prices. Would you

prefer a futures contract with its daily mark-to-market or a forward with its single

mark-to-market at maturity of the contract? What if you expected a steady decrease in

prices?)

17. Consider a forward contract on a non-dividend-paying stock. If the term-structure of

interest rates is flat (that is, interest rates for allmaturities are the same), then the arbitrage-

free forward price is obviously increasing in the maturity of the forward contract (i.e.,

a longer-dated forward contract will have a higher forward price than a shorter-dated

one). Is this statement true even if the term-structure is not flat?

18. The spot price of copper is $1.47 per lb, and the forward price for delivery in three

months is $1.51 per lb. Suppose you can borrow and lend for three months at an interest

rate of 6% (in annualized and continuously compounded terms).

(a) First, suppose there are no holding costs (i.e., no storage costs, no holding benefits).

Is there an arbitrage opportunity for you given these prices? If so, provide details of

the cash flows. If not, explain why not.

(b) Suppose now that the cost of storing copper for three months is $0.03 per lb, payable

in advance. How would your answer to (a) change? (Note that storage costs are
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asymmetric: you have to pay storage costs if you are long copper, but you do not

receive the storage costs if you short copper.)

19. The SPX index is currently trading at a value of $1265, and the FESX index (the Dow

Jones EuroSTOXX Index of 50 stocks, subsequently referred to as “STOXX”) is trading

at €3671. The dollar interest rate is 3% per year, and the Euro interest rate is 5% per

year. The exchange rate is $1.28/euro. The six-month futures on the STOXX is quoted

at €3782. All interest rates are continuously compounded. There are no borrowing costs

for securities. For simplicity, assume there are no dividends on either index.

(a) Compute the correct six-month futures prices of the SPX, STOXX, and the currency

exchange rate between the dollar and the euro.

(b) Is the futures on the STOXX correctly priced? If not, show how to undertake an

arbitrage strategy assuming you are not allowed to undertake borrowing or lending

transactions in either currency. (Assume that the futures on SPX is correctly priced.)

20. The current level of a stock index is 450. The dividend yield on the index is 4% per

year (in continuously compounded terms), and the risk-free rate of interest is 8% for

six-month investments. A six-month futures contract on the index is trading for 465.

Identify the arbitrage opportunities in this setting, and explain how you would exploit

them.

21. In the US, interest rates in the money market are quoted using an “Actual/360” conven-

tion. The word “Actual” refers to the actual number of days in the investment period. For

example, if the interest rate for a three-month period is given to be 7% and the actual

number of calendar days in the three-month period is 91, then the actual interest received

on a principal of $1 is

0.07×
91

360

Many other countries too (including the Euro zone) use the Actual/360 convention, but

the British money-market convention uses Actual/365. This question and the next four

pertain to calculating forward prices given interest rates in themoney-market convention.

Suppose the 90-day interest rate in the US is 3%, the 90-day interest rate in the

UK is 5% (both quoted using the respective money-market conventions), and the spot

exchange rate is £1 = $1.75.

(a) What is the present value of $1 receivable in 90 days?

(b) What is the present value of £1 receivable in 90 days?

(c) What is the 90-day forward price of £1?

22. The 181-day interest rate in the US is 4.50% and that on euros is 5%, both quoted using

the money-market convention. What is the 181-day forward price of the euro in terms

of the spot exchange rate S?

23. The three-month interest rate in both the US and the UK is 12% in the respective money-

market conventions. Suppose the three-month period has 92 days. The spot exchange

rate is £1 = $1.80. What is the arbitrage-free three-month forward price of £1?

24. The spot exchange rate is $1.28/euro. The 270-day interest rate in the US is 3.50%

and that on euros is 4%, both quoted using the money-market convention. What is the

270-day forward price of the euro?

25. The three-month interest rates in the US and the UK are 3% and 6% in the respec-

tive money-market conventions. Suppose the three-month period has 91 days. The spot

exchange rate is £1 = $1.83. What is the arbitrage-free three-month forward price

of £ 1?



78 Part One Futures and Forwards

26. Consider three exchange rates, dollar/euro, yen/euro, and yen/dollar. Provided below

are their spot FX rates and one-year interest rates (assume a continuous-compounding

convention):

Spot exchange rates:

dollar/euro = 1.2822

yen/euro = 146.15

yen/dollar = 113.98

Interest rates:

dollar = 3%

euro = 5%

yen = 1%

(a) Check whether triangular arbitrage exists in the spot FX market.

(b) Check whether triangular arbitrage exists in the one-year forward FX market.

(c) Why does or why does not triangular arbitrage hold in forward markets?
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Appendix 3A

Compounding Frequency
Interest rates in practice are quoted with a compounding frequency that indicates how often

interest is compounded on an underlying investment. For example, if interest is compounded

annually, then interest is computed once a year. Thus, an interest rate of 12% means that an

investment of $1 will grow in one year’s time to

1+ 0.12 = 1.12 (3.12)

If the compounding is semiannual, then interest is computed and compounded every six

months. So an interest rate of 12% on a principal of $1 means that the principal grows to

1+
0.12

2
= 1.06 (3.13)

in six months’ time. If the investment lasts a year, then this augmented principal earns

interest for the next six months. Thus, at the end of one year, a principal of $1 grows to

1.06 ×

 
1+

0.12

2

 
= (1.06)2

= 1.1236 (3.14)

Similarly, if the compounding takes place three times a year, interest is computed and

compounded every four months (= 1/3 of a year). An interest rate of 12% on a principal

of $1 means that the principal grows to

1+
0.12

3
= 1.04 (3.15)

in four months’ time. If the investment horizon is one year, interest on this augmented

principal is computed for the next four months, and then the procedure is repeated for the

last four months. So the initial investment of $1 grows at the end of one year to

1.04 ×

 
1+

0.12

3

 
×

 
1+

0.12

3

 
= (1.04)3

= 1.124864 (3.16)

Similarly, we can define interest rates that are compounded four times a year, five times

a year, and so on. By applying the above arguments, if interest is compounded k times a

year, then an interest rate of 12% means that a principal of $1 grows in one year to 
1+

0.12

k

 k
(3.17)

Of course, there is no reason the investment horizon has to be one year. If we take an

investment horizon of t years and are given an interest rate of r that is compounded k times

a year, then an investment of $1 grows at the end of t years to 
1+

r

k

 kt
(3.18)

A special case of (3.18) that comes in especially handy in modeling is the case of

continuous compounding k = ∞. In this case, it can be shown, by letting k →∞ in (3.18),

that an investment of $1 at a continuously compounded interest rate of r grows in t years

to the sum

ert (3.19)

where e is the exponential constant (given by 2.71828 . . . ).
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As these expressions and examples indicate, specifying the compounding frequency is

very important. A principal of $1 invested for a year at an interest rate of 12% will return

• 1.12 if interest is compounded annually (k = 1).

• 1.1236 if interest is compounded semiannually (k = 2).

• 1.1255 if interest rate is compounded quarterly (k = 4).

• 1.1275 if interest is compounded continuously (k = ∞)

Thus, an interest rate of r compounded twice a year is evidently not the same as an interest

rate of r compounded four times a year.

Present Values under Different Compounding
Frequencies

Suppose the interest-rate applicable to a t-year horizon is r (k)(t) expressed in terms of

a compounding frequency of k times a year. What is the present value of $1 receivable at

time t?

With a compounding frequency of k times a year, $1 invested for t years at the rate r (k)(t)

grows by time t to  
1+

r (k)

k

 kt
(3.20)

Thus, the present value of $1 receivable at time t is

1 
1+ r (k)

k

 kt (3.21)

With continuous compounding, $1 invested for t years at the rate r grows to ert by time t .

Thus, the present value of $1 receivable at time t is

e−r t (3.22)

Converting from One Frequency to Another

What is important in carrying out an investment is the amount to which the investment will

grow by maturity, not how interest rates are quoted. So, ideally, no matter what quotation

conventions are used, we would like to convert them to a common convention. How do we

accomplish this? That is, for example, suppose we want to express everything in terms of

continuous compounding. Given an interest rate of r (k) that is compounded k times a year,

what continuously compounded rate r is equivalent to this rate?

An investment of $1 at the rate r (k) for one year would grow to the amount 
1+

r (k)

k

 k
in one year, while an investment of $1 at the continuously compounded rate of r for one

year would grow to

er
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If the two rates are to be equivalent, these amounts have to be the same, so we must have

er =

 
1+

r (k)

k

 k
or

r = ln

  
1+

r (k)

k

 k 
= k × ln

 
1+

r (k)

k

 
(3.23)

Expression (3.23) describes how to convert rates under any compounding frequency to

equivalent continuously compounded rates. For example, suppose we are given an inter-

est rate of 12% compounded annually. From (3.23), this is equivalent to a continuously

compounded interest rate of

ln(1.12) = 11.334%

In a similar way, we can convert rates under any frequency to equivalent rates under any

other frequency. For example, suppose we are given an interest rate of r (k) compounded

k times a year. To what interest rate r ( ) that is compounded  times a year is this rate

equivalent? Following the same lines of argument, we have to find the value of r ( ) such

that an investment of $1 leads to the same sum under either rate at the end of one year, that

is, the value of r ( ) such that  
1+

r ( )

 

  

=

 
1+

r (k)

k

 k
(3.24)

This gives us

r ( )
=  ×

  
1+

r (k)

k

 k/ 
− 1

 
(3.25)

For example, suppose we are given an interest rate of 10% compounded semiannually

(k = 2) and we wish to convert this to an equivalent rate r (4) that is compounded quarterly

(k = 4). From (3.25), this equivalent rate is

r (4)
= 4×

  
1+

0.10

2

 2/4

− 1

 
= 9.878% (approx)

In summary, knowledge of the compounding frequency is important to be able to compute

accurately the interest due on an investment or borrowing, but it has no significance beyond

that. It does not matter whether we measure the distance from London to Glasgow in miles

or kilometers as long as we know how to convert distances from miles to kilometers and

vice versa. Analogously, what is important is knowing how to convert interest rates from

one compounding convention to another, not the one with which we actually work.

Appendix 3B

Forward and Futures Prices with Constant
Interest Rates
In this appendix, we show that forward and futures prices must coincide if interest rates are

constant. This is a special case of a more general result that forward and futures prices are

equal whenever futures price changes are uncorrelated with interest-rate changes.
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Since futures contracts are marked-to-market on a daily basis, it helps to change notation

and count time in days. So suppose we are looking at futures and forward contracts with T

days tomaturity. Let day 0 denote the current day, and day T thematurity day of the contracts.

Let ρ denote the constant daily interest rate expressed in simple terms and unannualized.

That is, an investment of $1 grows to $(1+ρ) at the end of one day. For notational simplicity,

let R = (1+ ρ). Finally, let  F denote the forward price on date 0 and F denote the futures

price at this point. We wish to show that  F = F ; we show that if this equality does not hold,

an arbitrage opportunity arises.

Consider first a strategy of taking a long position in RT forward contracts. Each forward

contract has a payoff of ST −  F on date T , where ST is the (currently unknown) spot price

of the underlying on date T . Thus, the total payoff on date T from RT forwards is

RT (ST −  F) (3.26)

Now consider the following strategy with futures contracts:

• On day 0, open R long futures contracts at the futures price F . Close them out on day 1

at whatever futures price F1 is prevailing at that point. Carry the net cash flow R(F1−F)

to day T by rolling it over at the rate ρ up to day T .

• On day 1, open R2 long futures contracts at the futures price F1. Close them out on

day 2 at whatever futures price F2 is prevailing at that point. Carry the net cash flow

R2(F2 − F1) to day T by rolling it over at the rate ρ up to day T .

...

• On day t , open Rt+1 long futures contracts at the futures price Ft . Close them out on

day t + 1 at whatever futures price Ft+1 is prevailing at that point. Carry the net cash

flow Rt (Ft+1 − Ft ) to day T by rolling it over at the rate ρ up to day T .

...

• On day T − 1, open RT long futures contracts at the futures price FT−1. Close them out

on day T at the futures price FT at that point. Receive the net cash flow RT (FT − FT−1).

What are the time-T cash flows from the futures strategy? The day 1 total net cash flow

of R(F1 − F) is invested for T − 1 days. Thus, by day T , it grows to

RT−1
× R(F1 − F) = RT (F1 − F)

The day 2 net cash flow of R2(F2 − F1) is invested for T − 2 days. Thus, by day T it has

grown to

RT−2
× R2(F2 − F1) = RT (F2 − F1)

In general, the day t net cash flow of Rt (Ft − Ft−1) is invested for T − t days. Thus, by day

T it has grown to

RT−t × Rt (Ft − Ft−1) = RT (Ft − Ft−1)

Summing up these cash flows, the total day-T cash flow from the futures strategy is

RT (F1 − F) + RT (F2 − F1) + · · · + R
T (Ft − Ft−1) + · · · + R

T (FT − FT−1)

which after canceling common terms is just

RT (FT − F)
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However, on the last day T , the spot and futures prices must coincide since the futures

contract is now at maturity, so the total cash flow from the futures strategy is given by

RT (ST − F) (3.27)

Compare (3.26) and (3.27). If the former is larger, we have an arbitrage opportunity in

which we go long the forward strategy and short the futures strategy. If the latter is larger,

there is an arbitrage opportunity in which we go short the forward strategy and long the

futures strategy. There is no arbitrage opportunity only if the two are equal This occurs only

if  F = F , that is, if futures and forward prices coincide.

Appendix 3C

Rolling Over Futures Contracts
We discussed the mechanics of rolling over futures contracts in Chapter 2. Based on the

pricing formulae derived in this chapter, we demonstrate in this appendix that under constant

interest rates, rolling over a futures contract has the same cash-flow implications as taking

a single long-term contract. This result provides a theoretical justification for the common

practice of hedging long-term exposures with short-term futures contracts and rolling them

over.

For simplicity, we consider only a single rollover. With additional notation, the arguments

easily extend to multiple rollovers. Consider time points 0 (the current time), T1 (the time

of the first rollover), and T2 (the maturity date). It may help to think of T1 and T2 as one and

two months, respectively.

We compare a futures contract with maturity T2 to a futures contract with maturity T1

that is rolled over at T1 into another contract with maturity T2. Throughout these arguments,

we treat futures contracts as if they are forward contracts. This is justified by the constant

interest rate assumption, but in any event, as pointed out in the text, the empirical differences

between futures and forward prices tend not to be too significant. For simplicity, we also

assume that the underlying asset has no payouts.

Let S0, S1, and S2 denote the current spot price and the spot prices on dates T1 and T2,

respectively, and let F1 and F2 denote the current futures prices for contracts of maturities

T1 and T2, respectively. If r denotes the interest rate, then we must have

F1 = S0e
rT1 and F2 = S0e

rT2

The payoff at T2 to a T2-maturity long futures position taken today is

S2 − F2 = S2 − S0e
rT2 (3.28)

Consider a long futures position taken today in the T1-maturity futures contract. At T1,

this contract has a payoff of

S1 − F1 = S1 − S0e
rT1 (3.29)

The rollover process involves closing out this contract at T1 and opening a new futures

position with maturity T2. Note that the futures price for this contract (denoted F12, say) is

given by

F12 = S1e
r (T2−T1) (3.30)
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The rolled-over contract has cash flows at T2 from two sources. First, there is the settle-

ment amount (3.29) on the original futures contract carried over to T2 at the rate r . By date

T2, this amounts to

er (T2−T1) [S1 − S0e
rT1 ] = erT2−rT1 S1 − e

rT2 S0 (3.31)

Second, there are the resettlement profits from the rolled-over futures contract. These

amount to

S2 − F12 = S2 − S1e
r (T2−T1) (3.32)

Combining (3.31) and (3.32) and canceling common terms, the total cash flow from the

rolled-over contract at time T2 is

S2 − e
rT2 S0 (3.33)

This cash flow is identical to the cash flow (3.28) from the single long-dated futures contract,

completing the proof.



Chapter 4
Pricing Forwards and
Futures II: Building on
the Foundations

4.1 Introduction

In the last chapter, we examined the theoretical pricing of forward and futures contracts

based on replication. We now build on this theoretical foundation in several important

directions.

Section 4.2 looks at the empirical performance of the theory. Section 4.3 then develops

the concept of the implied repo rate, the rate at which one can effect synthetic borrowing or

investment using spot and forward (or futures) markets. Section 4.4 examines the impact of

transactions costs, while Section 4.5 discusses the relationship between the forward/future

prices and the expected price of the spot asset at maturity of the contract. Finally, Section 4.6

presents the notion of index arbitrage.

In the course of developing these ideas, this chapter achieves a second important ob-

jective. The theory developed in Chapter 3 utilized three assumptions: (a) short-selling is

costless with the full proceeds of short sales available immediately to the investor, (b) bor-

rowing and lending rates are the same, and (c) there are no transactions costs. In this chapter,

we show that the violation of any of these assumptions results in a band of possible prices

within which the forward price could lie without giving rise to arbitrage opportunities.

Short-selling costs are discussed in Section 4.2, a wedge between borrowing and lending

rates in Section 4.3, and transactions costs in Section 4.4.

4.2 From Theory to Reality

The pricing formulae derived in Chapter 3 were identified under ideal market conditions

such as the ability to take long and short positions with equal facility. How well do they

fare in the less-than-ideal real world?

In a few special cases, the answer is obvious. The replication argument depends on being

able to buy and hold the spot asset. In some contracts (catastrophe futures, for example), the

underlying is not a traded asset. In others—such as electricity forwards—the spot asset is

traded but cannot be stored except at extraordinarily high cost. In either case, the derivative

85
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TABLE 4.1 Currency Futures Prices

This table describes futures prices on the British pound (dollars/pound) and the euro (dollars/euro) as of Decem-
ber 15, 2003. The data is from PHLX and is the set of settlement prices on that date for the different contracts.
The December 2003 price is the spot price. The theoretical futures prices are computed as described in the text.

Contract British Pound British Pound Euro Euro
Month Settlement Price Theoretical Price Settlement Price Theoretical Price

Dec 2003 1.7470 1.7470 1.2294 1.2294
Jan 2004 1.7423 1.7428 1.2282 1.2283
Feb 2004 1.7385 1.7386 1.2273 1.2274
Mar 2004 1.7342 1.7344 1.2263 1.2263
June 2004 1.7210 1.7218 — —
Sep 2004 1.7083 1.7094 — —

cannot be replicated and so is not a “redundant security” (one whose outcomes can be

synthetically created from the spot asset). The theory simply does not apply. Forward and

futures prices in such markets are determined by demand and supply factors including

expectations of future spot prices and degrees of risk-aversion, and not just by no-arbitrage

arguments.

Now for the good news. The vast majority of assets on which active futures or forward

contracts exist are themselves traded assets that are storable. In such cases, the predictions

of the theory are violated only to the extent that the assumptions fail to hold. The rest of

this section elaborates.

Financial Forwards and Futures
When the underlying asset is a financial asset (e.g., a stock or an interest rate or a currency),

the assumptions we have made are very good approximations of reality. Transactions costs

are quite low, especially for large players, and taking short positions in the spot asset

does not typically pose a problem. Consequently, the theory does very well at predicting

forward/futures prices in these markets.

As an example, Table 4.1 looks at futures settlement prices on the Philadelphia Exchange

of British pounds and euros. The table compares these prices to the theoretical prices that

obtain using the forward pricing formula (3.11) for currencies. In computing the latter, we

use the simple assumption of a constant continuously compounded interest rate in each of

the three currencies (1.2% for the dollar, 4.1% for the pound, and 2.2% for the euro). In

reality, during the period in the table, the dollar Libor rate varied from about 1.15% for one

month to 1.27% for six months. On the pound, the one- to six-month range was from about

3.90% to 4.20%, and on the euro from about 2.15% to 2.25%.

Despite the approximations, the table shows that the cost-of-carrymodel does remarkably

well in approximating currency futures prices.

Commodity Forwards and Futures
With commodity forwards and futures, the story can be a little different. An important

difference between a commodity and a financial security is that the former is used in

production and gets consumed in the process. Inventories of commodities are held by

producers because this provides them with the flexibility to alter production schedules

or with insurance against a stock-out that could cause business disruptions. The value of

these options to consume the commodity out of storage is referred to as the commodity’s

convenience yield.
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The convenience yield is not an observable quantity but it is nonetheless very real. It

distinguishes commodities from financial securities. Its presence implies that those with

inventories will not be willing to lend the commodity to an arbitrageur without charging a

fee (for example, a lease rate) to compensate them for the loss of this yield. Thus, short-

selling becomes more expensive, and this affects the pricing theory.

To put this in formal terms, let c denote the annualized convenience yield on a commodity

in continuously compounded terms. Suppose, for simplicity, that there are no storage or

other costs. Then, ignoring the convenience yield, the thoretical forward price is S0e
rT . In

Appendix 4A, we show that the convenience yield introduces a band in which arbitrage-free

forward prices must lie: there is no arbitrage as long as F satisfies

S0e
(r−c)T

≤ F ≤ S0e
rT (4.1)

The intuition leading to (4.1) is simple. F cannot exceed the theoretical price S0e
rT since

an arbitrageur can always then buy spot and sell forward. However, if F lies below the

thoretical price S0e
rT , an arbitrageur looking to short sell the commodity has to compensate

the holder for the loss of convenience yield c, so unless the forward price is below the

theoretical level by more than the convenience yield, there is no arbitrage.1

A practical problem with (4.1) is that the convenience yield c is unobservable. This

makes (4.1) of limited use in pricing forwards, but it does enable us to understand observed

deviations from theoretical prices. From (4.1), the range of permissible deviations depends

on the size of c.

If the current supply of a commodity is “large” relative to its consumption demand, its

convenience yield will be low since producers desiring to use the commodity can always

access it via the market. For such commodities, short-selling costs will be low, meaning the

lower and upper bounds in (4.1) are close together. So the observed and theoretical forward

prices will not differ substantially.

The gold market is one such case. Gold’s available supply has generally equaled several

years’ worth of consumption demand. The consequent low convenience yield from gold

is reflected in the low lease rates for gold (about 1% per year) observed empirically. The

theoretical model does well at pricing such futures/forwards.

Table 4.2 provides an example. The table considers gold futures settlement prices taken

from NYMEX and compares them to the theoretical price computed using the simple zero

cost-of-carry model. As in Table 4.1, interest rates are assumed constant at 1.2%. The

theoretical prices are very close to the actual settlement prices.

However, if spot supplies are tight relative to consumption demand, the convenience

yield is large, so theoretical and observed prices may differ considerably. The oil market is,

perhaps, the pre-eminent example of this situation. In this case, forward prices may not just

be substantially less than the theoretical level but (as in the case of oil) less than even the

spot price of the commodity itself.

Table 4.3 illustrates this point. The table describes settlement prices on NYMEX for light

sweet crude oil futures. The settlement prices are obviously inconsistent with the theoretical

pricing formula (3.4) for assets with a positive holding cost. The theoretical formula predicts

that the forward price should be above spot and should also increase with maturity (since

holding costs increase with the horizon). Both conditions are violated in the table.

1 The convenience yield accrues only to those such as producers who have a use for the commodity,

and not to arbitrageurs who are long the spot asset. Hence, the convenience yield does not affect the

upper bound in (4.1). Of course, if an active lease market existed for the commodity that reflected

the convenience yield, and if any long investor were in a position to lease out the commodity at this

rate, then the forward price would simply be equal to S0e
(r−l )T where l is the lease rate.
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TABLE 4.2 Gold

Futures Prices
This table describes gold futures prices ($/oz) as of December 15, 2003. The data is from
the COMEX division of NYMEX and is the set of settlement prices on that date for the
different contracts. The December 2003 price is the spot price. The theoretical futures
prices are computed as described in the text.

Month Settlement Price Theoretical Price

Dec 2003 409.4 409.4
Jan 2004 409.7 409.8
Feb 2004 410.1 410.2
April 2004 411.0 411.0
June 2004 411.9 411.9
Aug 2004 412.8 412.7

TABLE 4.3 Oil

Futures Prices
This table describes futures settlement prices ($/bbl) on
light sweet crude oil as of December 15, 2003. The data
is from NYMEX.

Month Settlement Price

Jan 2004 33.04
Feb 2004 32.95
Mar 2004 32.36
April 2004 31.78
May 2004 31.23
June 2004 30.70

Backwardation and Contango
Contango refers to amarket situationwhere forward (or futures) prices exceed spot prices. If

convenience yields are ignored, contango is the “normal” situation predicted for commodity

forward prices by our pricing model: since holding commodities typically involves storage

and other costs, theoretical forward prices exceed the spot price. Moreover, since carry

costs are greater for longer horizons, the predicted forward price increases as T increases,

a situation referred to as a normal market.

For commodities with low convenience yields, the predicted structures match observa-

tions well. Gold futures prices, for example, exceed spot prices and increase with maturity

of the futures contract (see Table 4.2). Normal markets are also the predicted and actual

cases for those financials for which the yield d on the underlying asset is less than the

interest rate r .

However, for commodities with high convenience yields, we have seen that forward

prices may be lower than the theoretical price (a situation called weak backwardation) and

perhaps lower even than the spot price S0 (a case referred to as strong backwardation or

simply backwardation). The oil futuresmarket is one example of amarket that has frequently

been in strong backwardation and for large periods of time. Oil futures prices, moreover,

are often observed to decrease as maturity increases, which is called an inverted market.

(Oil futures prices also exhibit other patterns such as a hump shape with futures prices first

increasing and then decreasing with maturity.) Table 4.3 illustrates all of these points.

One plausible source of an inverted market in oil is the volatility of spot prices. The

convenience yield measures the value of the option to consume the asset out of storage,

and as we will see later in this book, the value of an option increases as the volatility of the
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price of the underlying asset increases. The greater volatility of spot oil prices over longer

horizons gives rise to rapidly increasing convenience yields that likely cause futures prices

to decline as maturity increases.

4.3 The Implied Repo Rate

In our development of the pricing theory, we have assumed that borrowing and lending

costs are the same. We now examine how arbitrage opportunities from mispricing may be

identified when this assumption is dropped. A central role in this process is played by the

concept of the implied repo rate.

Intuitively, the implied repo rate is the interest rate embedded in futures or forward prices,

i.e., it is the interest rate that would make observed forward or futures prices equal to the

theoretical prices predicted under no-arbitrage given values for the spot price and other

variables. Suppose, for example, that the forward contract is on an asset that involves no

payouts. Then, the forward and spot prices are related by the expression

F = SerT (4.2)

Therefore,

F

S
= erT

so taking natural logs on both sides, we obtain

ln

 
F

S

 
= rT

Rearranging this expression and using the fact that ln(F/S) = ln F− ln S, the implied repo

rate given F , S, and T works out to:

r =
1

T
(ln F − ln S) (4.3)

Similarly, if we consider an asset that has a continuous dividend yield of d, the forward

and spot prices are linked via

F = Se(r−d)T (4.4)

Manipulation of (4.4) along similar lines as above shows that the implied repo rate in this

case is given by

r = d +
1

T
(ln F − ln S) (4.5)

The Implied Repo Rate as a Synthetic Borrowing/Lending Rate
A numerical example will help illustrate how implied repo rates are interpreted. Let the

underlying asset be a stock on which no dividends are expected over the next three months.

Suppose the current spot price of the stock is S0 = $25 and the forward price for delivery

in three months is F = $26. Note that the implied repo rate in this case is

r =
1

1/4
[ln 26− ln 25] = 15.69%

Consider a strategy in which you simultaneously go short the stock and long the forward

(as, for instance, you would in an arbitrage strategy where the forward was undervalued).

Then, you have sold the spot asset today for $25 and have agreed to buy it back at T for $26.

From a cash-flow standpoint, this means a cash inflow at time 0 of $25 and a cash outflow



90 Part One Futures and Forwards

at time T of $26. Effectively, it is as if you have borrowed $25 at time 0 and agreed to repay

$26 at time T . Thus, this strategy represents just a synthetic borrowing using the spot and

forward markets.

The implicit interest rate in this synthetic borrowing is the rate of interest that would

make $25 at time 0 grow to $26 by time T . That is, it is the interest rate r that solves

26 = 25erT

But this expression is just (4.2) with F = 26 and S = 25, so the required rate r is just the

implied repo rate (in this case, 15.69%)! Thus:

• The implied repo rate represents the rate at which an investor can borrow synthetically

by simultaneously going short spot and long forward.

Consider the opposite situation now where you go long spot and short forward. Then

you have bought the spot asset for $25 today and agreed to sell it for $26 at time T . From a

cash-flow standpoint, this means a cash outflow of $25 at time 0 and a cash inflow of $26 at

time T . This is effectively a synthetic investment using the spot and forward markets. The

rate at which this investment occurs is, once again, the implied repo rate (here, 15.69%).

Therefore:

• The implied repo rate also represents the rate at which an investor can effect a synthetic

investment by simultaneously going long spot and short forward.

These interpretations of the implied repo rate do not depend on the no-dividends as-

sumption. Consider, for example, a currency forward in which the current forward price is

F , the spot exchange rate is S0, and the foreign currency yield is d. Suppose we go long

e−dT units of the spot foreign currency and short one forward contract (as we would in

an arbitrage strategy where the forward was overvalued). Assume, as usual, that the spot

holdings are invested at the rate d and grow to one unit of the foreign currency by T .

From a cash-flow standpoint, this strategy implies a cash outflow at time 0 of e−dT S0 and

a cash inflow at time T of F , with no interim or other cash flows. This is just a synthetic

investment of e−dT S0 at time 0, which grows to F by time T . The implicit interest rate on

this investment is the interest rate r that solves

F = erT × e−dT S0 = e(r−d)T S0 (4.6)

Thus, r is just the implied repo rate given by (4.5). That is, the implied repo rate r in (4.5)

represents the rate at which investors can invest synthetically by simultaneously going long

spot and short forward in the currency market. By reversing the strategy, it also represents

the rate at which investors can borrow synthetically by going short spot and long forward

in the currency market.

The Implied Repo Rate and Arbitrage
The identification of the implied repo rate with a synthetic borrowing/lending rate makes it

easy to see how the implied repo rate may be used to identify arbitrage opportunities:

• Suppose the implied repo rate in a given market is r , and you can borrow at a rate rb < r .

Then you can create an arbitrage by borrowing at the rate rb and investing synthetically

at the rate r , i.e., by borrowing at the rate rb, buying spot, and selling forward.

• Suppose the implied repo rate is r and you can lend at a rate rl > r . Then you can create

an arbitrage by synthetically borrowing at the rate r and lending at rl , i.e., by buying

forward, selling spot, and lending.
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Arbitrage is precluded as long as the implied repo rate lies above the best interest rate

available to lenders who can short the asset and below the best rate available to borrowers,

i.e., we have rl < r < rb. This means that there is an interval of forward prices that is

consistent with no-arbitrage when borrowing and lending rates differ. For example, on an

asset with zero costs of carry, the forward price can vary from

F = S0e
rl T

to

F = S0e
rbT

without there being arbitrage opportunities. The closer rb and rl are to each other, the

narrower is this permissible interval of forward prices, and, of course, when rl = rb, we

obtain a unique forward price consistent with no-arbitrage.

Example 4.1 Suppose the current spot price of gold is $330 per oz, and the forward price for delivery in
one month is $331.35. Suppose also that the one-month borrowing and lending rates you
face are 5% and 4.85%, respectively. Finally, suppose that it costs nothing to store gold. Is
there an arbitrage opportunity?
In our notation, we have S0 = 330, T = 1/12, and F = 331.35. Since there are no costs

of carry, the implied repo rate given these prices may be calculated using (4.3):

r =
1

1/12
[ln 331.35− ln 330] = 4.9%

Since the implied repo rate lies between the lending and borrowing rates, there is no arbi-
trage opportunity here. ■

Example 4.2 This second example is based on the formula for pricing stock index futures developed below
in Section 4.6 on index arbitrage. It should be read subsequent to reading that section.
Consider a futures contract on a stock index. Suppose that the current index level is 1400,

the three-month index futures level is 1425, the dividend yield on the index is 2%, and you
can borrow for three months at 8%. Is there an arbitrage opportunity present here?
Since we are given only the borrowing rate, we use the implied repo rate to check if there

is an arbitrage. Treating the index as an asset with a continuous dividend yield, the implied
repo rate is given by expression (4.5):

r = d +
1

T
[ln F − ln S]

We are given S = 1400, F = 1425, d = 0.02, and T = 1/4. Thus:

r = 0.02+
1

1/4
[ln 1425− ln 1400] = 0.0908

or 9.08%. Since you can borrow cheaper than this rate, there is an arbitrage opportunity in
which you borrow, buy spot, and sell forward. The complete strategy is:

1. Enter into a short forward position.

2. Buy e−dT
= 0.995 units of the index.

3. Borrow Se−dT
= 1393.02 for three months at 8%.

4. Invest all dividends into buying more of the index.
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Note that we buy only e−dT units of the index initially since the reinvested dividends make
our holding grow to one unit by date T .
At inception, there are no net cash inflows from this strategy: the cash outflow of

$1393.02 towards the spot purchase is matched by the cash inflow of $1393.02 from the
borrowing. There are no net interim cash flows either since all dividends are reinvested in
purchasing more of the index. At maturity, there is a cash inflow of $1425 from the forward.
There is also a cash outflow of

1393.02× e
(0.08)(1/4)

= 1421.16

towards repaying the borrowing. This leaves a net cash inflow of +3.84, representing arbi-
trage profits. ■

4.4 Transactions Costs

Transactions costs are costs that create a wedge between what one obtains for selling a

commodity or a security and what one has to pay to buy it. Since brokers and market

makers charge a fee for their services, the “ask” price (the price at which one can buy) is

larger in practice than the “bid” price (the price at which one can sell). Suppose there is

such a bid-ask spread. Let Sa0 denote the ask price and Sb0 denote the bid price on the spot

asset; define Fa and Fb analogously. Note that we have Sa0 > Sb0 and F
a > Fb.

How do these bid-ask spreads affect our pricing results? The answer is simple: exactly

as the wedge between borrowing and lending rates did, this spread creates an interval of

forward prices at which arbitrage is not possible. Outside this interval, there is an arbitrage

opportunity.

To see this, note that arbitrage involves one of two strategies: either we buy spot and sell

forward, or we sell spot and buy forward. Assuming for simplicity that there are no costs of

carry, the former strategy involves a cash outflow of Sa at time 0 and a cash inflow of Fb at

time T . In present value terms, the net cash inflow from this strategy is

PV (Fb) − Sa (4.7)

The latter strategy—selling spot and buying forward—involves a cash inflow of Sb at time

0 and a cash outflow of Fa at time T . Thus, the present value of the net cash inflow from

this strategy is

Sb − PV (Fa) (4.8)

For there to be no arbitrage opportunities, each of these net cash inflowsmust be nonpositive.

Any spot and forward prices outside this set leads to a riskless profit opportunity.

4.5 Forward Prices and Future Spot Prices

A commonly held belief regarding forward prices is that they reflect the market’s expec-

tations of future spot prices. This is called the unbiased expectations hypothesis. Yet the

central point of the preceding sections is that for many assets, the price of a forward contract

can be identified solely from knowledge of interest rates and the cost of buying and holding

spot. To what extent are these statements mutually consistent?

For financial assets, the answer is easily seen. Consider, for example, a forward contract

on a stock that is not expected to pay dividends over the life of the contract. If S0 denotes

the current price of the stock, then the arbitrage-free forward price of the stock is

F = erT S0 (4.9)
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Suppose the forward price is also the expected spot price at T :

F = E[ST ] (4.10)

From (4.9) and (4.10), we then have

E[ST ] = erT S0 (4.11)

Equation (4.11) states that the expected rate of growth in the stock price between dates

0 and T is the risk-free rate r . But the stock is a risky asset and—unless its risk is fully

diversifiable—investors in a risk-averse world will demand a risk-premium to hold it. That

is, the expected return z on the stock will strictly exceed r . This means F cannot be the

expected time-T stock price. Indeed, F systematically underpredicts the expected future

stock price since z > r implies

E[ST ] = S0e
zT > S0e

rT
= F

Thus, the unbiased expectations hypothesis fails to hold for financial assets. More generally,

it fails for any underlying for which the smoothness conditions of Chapter 3 hold at least

approximately. There is no more information in the forward price concerning the future

spot price than is already available in the current spot price and interest rate information.

For commodities with large convenience yields, however, the cost-of-carry model pre-

dicts only a range (4.1) within which forward prices may lie. Where in this region forward

prices actually lie may be influenced both by expectations of future spot prices and factors

such as risk-aversion. In such markets, therefore, forward prices may contain some infor-

mation concerning the market’s expectations about the future. This is also evidently true

of markets where the cost-of-carry model does poorly because of very large storage costs,

such as electricity.

4.6 Index Arbitrage

A stock index is simply a basket of stocks weighted according to specific rules. The level

of the index represents the price of this basket. As such, we can specify a forward or futures

contract on a stock index in the same way we do for other financial assets.

There aremany actively traded futures contracts on stock indices. As just a few examples:

in the US, there are futures on the Dow Jones Industrial Average traded on the CBoT; on

the S&P 500 index traded on the CME; and on the Nasdaq 100 also on the CME. In Asia,

futures on Japan’sNikkei 225 index trade inOsaka aswell as in Singapore on SGX (formerly

SIMEX), and futures on the Korean KOSPI 200 trade on the Korean Stock Exchange. In

Europe, futures on the British FTSE 100 index trade on NYSE Liffe, while futures on the

Dow Jones STOXX 50, the Swiss SMI, the Finnish HEX 25, and the German DAX all trade

on Eurex.

Index futures contract sizes are standardized in size, with the standard size specified

as a multiple of the index (i.e., as multiples of the basket of stocks underlying the index).

Thus, one Dow Jones Industrial Average futures contract on the CBoT is for 10 times the

Dow Jones index, meaning that at maturity of the contract, the short position has to deliver

10 units of the basket of stocks that go into defining the Dow Jones index. Similarly, one

S&P 500 futures contract is for 250 times the S&P 500 index, while one Nasdaq 100 futures

contract is for 100 times the Nasdaq 100 index.

Unlike many other financial assets, however, the physical delivery of an index (i.e.,

the actual basket of stocks underlying the index in the correct proportions) is difficult,

particularly so in the case of broad-based indices consisting of a large number of stocks. As

a consequence, index futures are cash settled, not by physical delivery of the actual index.
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Contracts are marked-to-market at the end of the last trading day, and positions are declared

closed.

Index futures contracts have a wide variety of uses. Equity portfolio managers can use

them to change the nature of risk in the managed portfolio in a relatively costless manner.

Consider, for example, an equity fund manager whose portfolio tracks the S&P 500 index.

Since S&P 500 index futures must move in lockstep with the spot level of the index, the

manager can eliminate equity risk in the portfolio by shorting an appropriate amount of

S&P 500 index futures. By going long Treasury bond futures in addition, the manager can

change the exposure of the portfolio from equity risk to interest-rate risk. More generally,

as we discuss in the next chapter, index futures can be used to change (increase or decrease)

the beta of an equity portfolio.

Pricing Forwards on Stock Indices
A stock index may be viewed as an asset that pays dividends, so forwards/futures on the

index may be priced accordingly. Operationalizing this idea, however, involves some tricky

issues. There are two ways of proceeding, each of which has its supporters.

One method is to use the known cash holding costs formula

F = erT (S + M) (4.12)

with S denoting the current level of the index, and M the dollar value of dividends that will

be received over the T -year horizon of the contract. Computationally, one issue with this

method is that with a large number of stocks, we have to predict the dollar value and timing

of dividends from each of the stocks and sum up their present values to obtain M .

An alternative procedure is to use the dividend yield on the index. The dividend yield on

a stock index is expressed in annualized terms and refers to the value of dividends received

over a year from the stocks in the index expressed as a percentage of the cost of the index.

Put differently, a dividend yield of 2% means that if we reinvest the dividends received in

buying more units of the index, then the number of units in our holding of the index will

grow at a 2% annualized rate.

This points to an analogy between holding a foreign currency and holding a stock index.

If we hold one unit of a foreign currency and invest it at the applicable interest rate for that

currency (say, d) for T years, our holding of the foreign currency at maturity is edT units. If

we hold one unit of a stock index that has a dividend yield of d (expressed in continuously

compounded terms) and we reinvest all the dividends in buying more units of the index,

then in T years, we will have edT units of the index.

This means we can use the formula (3.11) developed for currency forwards to also price

forward contracts on a stock index. If S0 denotes the initial level of the index and d the

dividend yield expressed in continuously compounded terms, the forward price is

F = e(r−d)T S0 (4.13)

Treating forward and futures prices as the same thing, (4.13) also represents the futures

price on an index whose current level is S0.

It should be recognized, however, that this is an approximation. There is no problem in

using this formula to price currency forwards since we can lock in the interest rate earned on

investing the foreign currency when making the investment. With stock indices, one cannot

be certain of the dividends that will be received at the time of investing in the index. The

dividend yield d used in the formula represents an estimate, and the accuracy of the forward

price depends on the accuracy of this estimate. Put differently, (4.13) should be interpreted

as the correct forward price given the anticipated dividend level d.
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Of course, analogous comments are also true if we use the formula (4.12). In that case,

the computation of M is based on forecast dividends over the life of the futures contract, so

the formula is accurate only to the extent the forecast is.

Index Arbitrage
Index arbitrage is the exploitation of differences between this theoretical price for the

futures contract and the actual level of stock index futures. An example will help illustrate

the concept. The example is based on the dividend yield formula (4.13).

Example 4.3 Consider a three-month futures contract on the S&P 500 index. Suppose that the present
level of the index is 1020, the dividend yield on the index is 1.4%, and the three-month
rate of interest is 3%. To keep the exposition simple, we treat the futures contract as if it is
a forward contract with a single marking-to-market once at the end of the contract. In our
notation, we have: S0 = 1020, r = 0.03, d = 0.014, and T = 1/4. Therefore, the index
futures price should be:

F = e
(r−d)T

S0 = e
(0.03−0.014)(1/4)(1020) = 1,024.80

Suppose the observed level of the index futures is 1,027.40. Then, the futures is overvalued
relative to spot, so we should sell futures, buy spot, and borrow. The specific strategy is:

1. Enter into a short futures position to deliver the index at a futures price of 1,027.40.

2. Buy e−dT
= 0.9965 units of the index for $(1020)(0.9965) = $1,016.43.

3. Borrow $1,016.43 for three months at 3%.

4. Reinvest all dividends into buying more of the index.

Note that, analogous to the currency forwards situation, we buy only e−dT units of the
index initially. When dividends from the index are reinvested in buying more of the index,
our holding of the index grows at the rate d, so we are left with one unit of the index at
maturity.
There are no net initial cash flows from this strategy, and since all dividends are reinvested

in the index, there are no net interim cash flows either. At maturity, there is a cash inflow of
1,027.40 from the futures position. There is also a cash outflow of

e
(0.03)(1/4)(1,016.43) = 1,024.80

to repay the borrowing. The net result is a cash inflow of 2.90 representing arbitrage profits
from the mispricing. ■

Comments and Caveats
Index-arbitrage strategies have grown considerably in popularity since their introduction.

For example, Shalen (2002) reports that in July 2002, over 8% of trading volume at the

NYSE was related to index-arbitrage programs.

Of course, in reality, implementing index-arbitrage strategies is not as simple as the

example above suggests. Several problems may arise. One that we have already mentioned

is that the dividend level used in the calculations represents only a forecast. If we use the

cash dividend formula (4.12), we must estimate M , the present value of dividends expected

over the life of the futures contract. This must be done by using estimates of cash dividends

expected from each of the companies in the index and summing these up.

The alternative procedure of using a dividend yield is computationally simpler but con-

ceptually requires a bit more care. Since dividends tend to be bunched, there are seasonal
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effects to be taken into account. That is, the average dividend yield over a year may be higher

or lower than the yield over a specific shorter period. The dividend yield d used as an input

into the formula must be the appropriate one given the maturity of the futures contract.

In either case, it is possible that the realized dividend rate will differ from the estimate.

Thus, the profits from the strategy are uncertain and could even be negative. The use of the

word “arbitrage” in this context is somewhat liberal.

A second problem is that index-arbitrage strategies require buying or selling the spot

asset, which is the underlying index. Literally buying or selling the index (i.e., the basket of

stocks comprising the index)will entail substantial transactions costs among other problems.

In some cases, one can use traded instruments that track specific indices (for example,

Standard and Poor Depository Receipts, or SPDRs, which track the S&P 500 index). If no

such instruments are available, one can use a smaller basket of stocks that tracks the index

closely. In many countries, the emergence of exhange-traded funds (ETFs), which track

broad-market and sectoral indices, has also helped diminish the severity of this problem. Of

course, a tracking error may still remain between the exact performance of the index and

that of the tracking portfolio.

Other issues too may arise that are common to most derivatives arbitrage strategies. One

is execution risk. In the ideal case, the two legs of the arbitrage strategy should be executed

simultaneously at the observed respective prices. While electronic trading has facilitated

simultaneity considerably, some room for slippage exists. For example, the uptick rule

restricts when short-selling may be possible. Second, transactions costs (bid-offer spreads)

and differences in borrowing and lending rates must be taken into account in calculating

whether or not arbitrage opportunities exist.

Collectively, all of these factors suggest that while large deviations from the theoretical

fair price cannot persist, small deviationsmay not represent genuine arbitrage opportunities.

The data bears this out: index futures often deviate by small amounts from their theoretical

levels but rarely by substantial levels (see, for example, Figure 4.1 on the percentage mis-

pricing in the CBoT futures contract on the Dow Jones Industrial Average). Shalen (2002)

This figure, taken from Shalen (2002), shows the percentage mispricing in the clos-

ing level of the CBoT futures contract on the Dow Jones Industrial Average. The

mispricing is relative to the theoretically fair price.
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reports that, for example, the mean absolute mispricing in the DJIA futures contract on the

CBoT has been less than 0.20% since 2000 and less than 0.15% since 2001. Mispricing

tends to be highly correlated with volatility of the underlying index, perhaps because higher

volatility levels increase execution and implementation risk in the arbitrage strategy.

4.7 Exercises 1. What is meant by the term “convenience yield”? How does it affect futures prices?

2. True or false: An arbitrage-free forward market can be in backwardation only if the

benefits of carrying spot (dividends, convenience yields, etc.) exceed the costs (storage,

insurance, etc.).

3. Suppose an active lease market exists for a commodity with a lease rate  expressed

in annualized continuously compounded terms. Short-sellers can borrow the asset at

this rate and investors who are long the asset can lend it out at this rate. Assume the

commodity has no other cost of carry. Modify the arguments in the appendix to the

chapter to show that the theoretical futures price is F = e(r− )T S.

4. What is the “implied repo rate”? Explain why it may be interpreted as a synthetic

borrowing or lending rate.

5. Does the presence of a convenience yield necessarily imply the forward market will be

in backwardation? Why or why not?

6. How do transactions costs affect the arbitrage-free price of a forward contract?

7. Explain each of the following terms: (a) normal market, (b) inverted market, (c) weak

backwardation, (d) backwardation, and (e) contango.

8. Suppose that oil is currently trading at $38 a barrel. Assume that the interest rate is 3%

for all maturities and that oil has a convenience yield of c. If there are no other carry

costs, for what values of c can the oil market be in backwardation?

9. The spot price of silver is currently $7.125/oz, while the two- and five-month forward

prices are $7.160/oz and $7.220/oz, respectively.

(a) If silver has no convenience yield, what are the implied repo rates?

(b) Suppose silver has an active lease market with lease rate  = 0.5% for all matu-

rities expressed in annualized continously compounded terms. Using the formula

developed in Question 3, identify the implied repo rate for maturities of twomonths

and five months.

10. Copper is currently trading at $1.28/lb. Suppose three-month interest rates are 4% and

the convenience yield on copper is c = 3%.

(a) What is the range of arbitrage-free forward prices possible using

S0e
(r−c)T

≤ F ≤ S0e
rT (4.14)

(b) What is the lowest value of c that will create the possibility of the market being in

backwardation?

11. You are given the following information on forward prices (gold and silver prices are

per oz, copper prices are per lb):

Commodities Spot One Month Two Month Three Month Six Month

Gold 436.4 437.3 438.8 440.0 444.5
Silver 7.096 7.125 7.077 7.160 7.220
Copper 1.610 1.600 1.587 1.565 1.492
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(a) Which of these markets are normal? inverted? neither?

(b) Which are in backwardation? in contango?

(c) Which market appears prima facie to have the greatest convenience yield?

12. Suppose the convenience yield is close to zero for maturities up to six months, then

spikes up for the forward period between six and nine months, and then drops back to

zero thereafter. What does the oil market seem to be saying about political conditions

in the oil-producing countries?

13. Suppose there is an active lease market for gold in which arbitrageurs can short or lend

out gold at a lease rate of  = 1%. Assume gold has no other costs/benefits of carry.

Consider a three-month forward contract on gold.

(a) If the spot price of gold is $360/oz and the three-month interest rate is 4%, what is

the arbitrage-free forward price of gold?

(b) Suppose the actual forward price is given to be $366/oz. Is there an arbitrage

opportunity? If so, how can it be exploited?

14. A three-month forward contract on a non-dividend-paying asset is trading at 90, while

the spot price is 84.

(a) Calculate the implied repo rate.

(b) Suppose it is possible for you to borrow at 8% for three months. Does this give rise

to any arbitrage opportunities? Why or why not?

15. If the spot price of IBM today is $75 and the six-month forward price is $76.89, then

what is the implied repo rate assuming there are no dividends? Suppose the six-month

borrowing rate in the money market is 4% p.a on a semiannual basis. Is there a repo

arbitrage, and how would you construct a strategy to exploit it?

16. The current value of an index is 585, while three-month futures on the index are quoted

at 600. Suppose the (continuous) dividend yield on the index is 3% per year.

(a) What is the implied repo rate?

(b) Suppose it is possible for you to borrow at 6% for three months. Does this create

any arbitrage openings for you? Why or why not?

17. A three-month forward contract on an index is trading at 756, while the index itself is

at 750. The three-month interest rate is 6%.

(a) What is the implied dividend yield on the index?

(b) You estimate the dividend yield to be 1% over the next three months. Is there an

arbitrage opportunity from your perspective?

18. The spot US dollar-euro exchange rate is $1.10/euro. The one-year forward exchange

rate is $1.0782/euro. If the one-year dollar interest rate is 3%, then what must be the

one-year rate on the euro?

19. You are given information that the spot price of an asset is trading at a bid-ask quote

of 80 − 80.5, and the six-month interest rate is 6%. What is the bid-ask quote for the

six-month forward on the asset if there are no dividends?

20. Redo the previous question if the interest rates for borrowing and lending are not equal,

i.e. there is a bid-ask spread for the interest rates, which is 6− 6.25%.

21. In the previous question, what is themaximum bid-ask spread in the interest rate market

that is permissible to give acceptable forward prices?

22. Stock ABC is trading spot at a price of 40. The one-year forward quote for the stock is

also 40. If the one-year interest rate is 4%. and the borrowing cost for the stock is 2%,

show how to construct a riskless arbitrage in this stock.
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23. You are given two stocks, A and B. Stock A has a beta of 1.5, and stock B has a beta of

−0.25. The one-year risk-free rate is 2%. Both stocks currently trade at $10. Assume

a CAPM model where the expected return on the stock market portfolio is 10% p.a.

Stock A has an annual dividend yield of 1%, and stock B does not pay a dividend.

(a) What is the expected return on both stocks?

(b) What is the one-year forward price for the two stocks?

(c) Is there an arbitrage? Explain.
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Appendix 4A

Forward Prices with Convenience Yields
The presence of a convenience yield makes short-selling commodities more complex and

costly than short-selling financial securities. To see the impact of this on our theory, consider,

for simplicity, a commodity with zero storage costs. The theoretical forward price is F =

SerT . Let Fobs denote the observed forward price.

If Fobs > F (i.e., the forward is seen as overpriced), a price correction can always be

forced by arbitrageurs who buy spot and sell forward. Thus, forward prices cannot exceed

the theoretical price we have identified and we must have

Fobs
≤ SerT (4.15)

If Fobs < F (i.e., the forward is perceived as underpriced), a similar price correction

requires that arbitrageurs who do not own the spot asset be able to short sell the commodity

by borrowing it costlessly. Such borrowing has to be done from producers and others who

hold inventories of the commodity and are in a position to lend it to the arbitrageur. In the

presence of a convenience yield, however, those with inventories will not agree to lend the

commodity out costlessly; rather, they will charge a fee as compensation for the loss of this

yield.

Let c denote the annualized convenience yield on the commodity expressed in contin-

uously compounded terms. Then, an arbitrageur short-selling the asset will have to repay

S0e
cT units of the commodity for every unit borrowed today. Equivalently, for every unit to

be repaid at maturity, the arbitrageur receives e−cT units today.

Now consider the position of an arbitrageur who finds the forward undervalued at Fobs .

The arbitrageur

• enters into a long forward position,

• borrows and sells e−cT units of the commodity in exchange for returning one unit at

maturity, and

• invests the proceeds of the short sales, S0e
−cT , for maturity at T .

At T , the arbitrageur pays Fobs on the forward contract and receives one unit of the com-

modity, which is used to close out the short position. He also receives e(r−c)T S0 from the

investment. Thus, the net time-T cash flow is

S0e
(r−c)T

− Fobs

This is positive (i.e., arbitrage profits exist) only if S0e
(r−c)T > Fobs . Therefore, there is no

arbitrage possible from short-selling the spot commodity if

Fobs
≥ S0e

(r−c)T (4.16)

Combining (4.15) and (4.16), there is no arbitrage as long as

S0e
(r−c)T

≤ Fobs
≤ S0e

rT (4.17)

Thus, the presence of a convenience yield on commodities results in a range of possible

values for the forward price; in particular, forward prices may be less than not just the

theoretical level, but even the spot price of the commodity itself.



Chapter 5
Hedging with Futures
and Forwards

5.1 Introduction

The most important economic function played by a futures or forward contract is enabling

investors to hedge exposures, i.e., to reduce the riskiness of cash flows associated with

market commitments. In principle, hedging with a forward or futures contract is simple: if

an investor has a commitment to buy or sell a quantity Q of an asset T years from now,

cash-flow risk can be eliminated by locking in a price for this purchase or sale through a

forward or futures contract. We begin with a simple example to illustrate this point, and

then explain why matters are not quite as simple as the example suggests.

Example 5.1 Suppose a gold-wire manufacturer estimates its requirement of gold in three months’ time
to be 10,000 oz. The manufacturer can eliminate price uncertainty by entering into a long
futures (or forward) contract to buy 10,000 oz of gold in three months. Ignoring interest
on the margin account, the cost of gold to the company in three months is then 10, 000 F ,
where F is the current three-month futures price of gold.

Of course, the manufacturer can also obtain the required hedge without actually making
or accepting delivery on the futures position by using the following strategy:

1. Take long positions of size 10,000 oz in three-month gold futures contracts at the current
futures price F .

2. Close out the futures positions in three months’ time at the futures price F T prevailing
then.

3. Buy 10,000 oz in the spot market in three months’ time at the spot price ST prevailing
then.

Ignoring interest, the gain on the futures margin account is 10,000 (F T − F ), while the cost
of buying 10,000 oz spot is 10,000 ST . Thus, the total cash outflow is

−10,000 (F T − F ) + 10,000 ST = 10,000 F − 10,000 (F T − ST ) (5.1)

At time T , however, the futures contract is at maturity, so we must have F T = ST . Thus,
the last term in (5.1) drops out and the net cash flow is just the certainty amount
10,000 F . ■

In practice, as mentioned in Chapter 2, the vast majority of hedges are implemented in

this way, i.e., by closing out the futures position prior to delivery and covering the market

101
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commitment through spotmarket purchases or sales. Only a very small percentage of futures

contracts are held open until delivery.

Nonetheless, implementing a hedge using futures contracts is not as simple an affair as

this discussion suggests. The sections below explain.

The Problem: Basis Risk
The basis in a futures contract refers to the difference F − S between futures and spot

prices. (Sometimes the basis is defined as S− F .) As (5.1) shows, for a hedge to be perfect,

the basis FT − ST must be riskless on date T when the hedge is terminated—only this will

ensure a certainty cash flow from the hedge.

Market practitioners often comment that the only perfect hedge is in a Japanese garden.

This may be an overstatement, but there are at least two reasons why the basis FT − ST may

fail to be riskless on date T .

The first is a possible commodity mismatch. Futures contracts have standard grades (see

Chapter 2), and the standard grade underlying the futures contract may not be the same

as the grade of the asset being hedged. As a consequence, the futures price FT may not

coincide with ST , the time-T spot price of the asset being hedged. The basis FT − ST in

(5.1) is nonzero and of uncertain size. This is commodity basis risk, basis risk caused by a

commodity or grade mismatch.

The second is a possible delivery date mismatch. Futures contracts have standardized

delivery periods, and the available maturity dates contracts may not coincide with the

investor’s date ofmarket commitment. (Thewheat futures contract on theCBoT, for example,

has only five delivery months.) In this case, the futures position used for hedging must be

closed out on the date T of the hedger’s market commitment, before the contract is at

maturity. At this point, even if there is no commodity mismatch, the futures price FT will

not typically equal the spot price ST , so the basis FT − ST in (5.1) will be nonzero and of

uncertain size. This is delivery basis risk.

Basis riskmay also arise in hedgingwith forward contracts. An instance is cross-hedging,

that is, when exposure on one asset is hedged with a forward contract on another asset (e.g.,

when exposure to fluctuations in the Norwegian kroner/US dollar exchange rate is hedged

with a euro/US dollar forward contract). Cross-hedging obviously implies commodity basis

risk. It is typically used because there is no actively traded forward contract on the underlying

asset (Norwegian kroner in this example), so a forward contract on a “closely related” asset

(here, the euro) is used instead.

In this chapter, we develop a theory of optimal hedging in the presence of basis risk

that is equally applicable to both forwards and futures. For expositional simplicity, we use

the term “futures contracts” throughout in referring to the instruments used for hedging. The

only material in this chapter specific to futures contracts is Section 5.8, which considers

the impact of daily marking-to-market.

Handling Basis Risk: The Questions
The presence of basis risk implies that cash flows cannot be made entirely riskless by

hedging. What then is the best we can do in terms of reducing risk? This is the issue that

concerns us in this chapter.

The first thing we need is a measure of risk. As is usual in finance, we measure the risk

of a cash flow by its variance. To be sure, the variance does not completely capture all that

is meant by the word “risk,” but it is certainly a good first approximation. Thus, the task is

to identify the hedge that leads to the least cash-flow variance among all possible hedges.

We refer to this as the minimum-variance hedge. Identifying the minimum-variance hedge
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involves the answers to three questions:

1. What is the best choice of futures contract to be used for hedging?

2. What is the size of the futures position to be opened today?

3. Should this be a long position or a short position?

These questions form the focus of this chapter. Some comments outlining the intuition

of the results to come will be helpful.

5.2 A Guide to the Main Results

Hedging is an offsetting of risks. In hedging a spot exposure with futures (or forwards), we

are trying to offset the effects of spot price movements with futures price movements so

that the resulting net cash flow has minimum risk. For such offsetting to work well, futures

and spot prices must move “together” so that the effects of one can be canceled by the

other. That is, futures and spot price changes must be correlated. The higher the degree of

correlation, the greater the co-movement and the easier is the offsetting of risk. In the limit,

when correlation is perfect, the offsetting is also perfect, and we obtain a riskless hedge.

These observations suggest that in selecting a futures contract for hedging purposes, we

should choose one whose price changes are maximally correlated with changes in the spot

price of the asset being hedged. We show that this intuition is on the mark; indeed, we show

exactly how cash-flow uncertainty declines as a function of this correlation.

The Hedge Ratio
A central role in this process is played by the hedge ratio, denoted h. The hedge ratio is

the variable used to implement the optimal hedging strategy once the futures contract has

been chosen. It measures the number of futures positions taken per unit of spot exposure.

In notational terms, suppose the investor has a spot market commitment of Q units on date

T and hedges this with a futures position of size H . The hedge ratio h is then defined by

h = H

Q
(5.2)

For example, if the gold-wire manufacturer of Section 5.1 hedges his exposure of 10,000 oz

using futures contracts for 8,000 oz, he is using a hedge ratio of h = 8,000/10,000 = 0.80.

The Main Result
The most important lesson that will be derived in this chapter is the following:

In the presence of basis risk, it is not generally optimal to hedge exposures one-for-

one, i.e., to use a hedge ratio of unity. The variance-minimizing hedge ratio h∗

depends on the correlation between spot and futures price changes and increases as

this correlation increases.

Specifically, in the central result of this chapter, we show that the minimum-variance

hedge ratio is given by

h∗ = ρ
σ ( S)

σ ( F )
(5.3)

where:

• σ ( S) is the standard deviation of spot price changes over the hedging horizon.
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• σ ( F ) is the standard deviation of futures price changes over the hedging horizon.

• ρ is the correlation of spot and futures price changes.

That is, the minimum-variance hedge ratio is the correlation ρ multiplied by a “scaling

factor” σ ( S)/σ ( F ).

The Intuition
To see the intuition behind (5.3), consider the correlation first.With zero correlation between

spot and futures price changes, there is no offsetting of risks at all fromhedging using futures.

Any hedging activity only increases overall cash-flow risk by creating cash-flow uncertainty

from a second source (the futures position). Thus, the optimal hedge ratio becomes zero.

As correlation increases, however, greater offsetting of risks is facilitated, so we want to

use a higher hedge ratio to take advantage.

Why scale the correlation by the ratio of standard deviations? The aim of hedging is to

offset the effect of spot price changes with futures price changes. Suppose a “typical” move

in futures prices is twice the size of a “typical” move in spot prices. Then, other things

being equal, the size of the futures position used for hedging should be only half the size

of the spot exposure. With the size of “typical” price moves measured by their respective

standard deviations, it is this adjustment that the scaling factor provides.

Layout of this Chapter
The next three sections of this chapter are devoted to deriving this optimal hedge ratio h∗

and identifying various properties of the optimally hedged position. Readers not interested

in the derivation of h∗ can skip ahead to the numerical examples we present in Section 5.6.

Sections 5.7 and 5.8 discuss implementation of the hedging strategy. The final sections of

this chapter discuss extensions of the minimum-variance hedging idea to hedging equity

portfolios and fixed-income portfolios, respectively.

Some Mathematical Preliminaries
We recall some basic definitions and properties of random variables. Let X and Y be random

variables with variances σ 2
X and σ 2

Y , respectively. Let E(·) denote expectation. Then, the

covariance of X and Y is defined as

cov (X, Y ) = E(XY ) − E(X )E(Y )

The correlation ρ(X, Y ) between X and Y and cov (X, Y ) are related via

ρ(X, Y ) = cov (X, Y )

σXσY

If a is any constant, then

Variance (aX ) = a2Variance (X ) = a2σ 2
X

Finally, if a and b are any constants, then

Variance (aX − bY ) = a2Variance (X ) + b2Variance (Y ) − 2ab cov (X, Y )

5.3 The Cash Flow from a Hedged Position

Suppose that a specific futures contract has been chosen for hedging purposes. (We formalize

later the criterion that should guide this choice.) Let F denote the current price of the contract

and S the current spot price of the asset being hedged. Let FT and ST denote, respectively,

the time-T values of these quantities.
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We stress that one or both kinds of basis risk may be present: the asset underlying the

futures contract may not be the same as the asset being hedged, and the date T may not be

the maturity date of the futures contract. Thus, we may not have ST = FT .

We treat the futures contract as if it is a forward contract that is marked-to-market

once at termination. That is, the resettlement profits (or losses) from taking a long futures

position at inception and closing it out at time T are given by FT − F . The impact of daily

marking-to-market on the optimal hedge position is considered in Section 5.8 (see “Tailing

the Hedge”).

Consider first an investor with a commitment to buy Q units of the asset on date T . To

hedge this position, the investor

1. Takes a long futures position of size H at inception at the futures price F .

2. Closes out the futures position at time T by taking a short futures position of size H .

3. Buys the required quantity Q on the spot market at time T .

To handle the possibility that the initial futures position may be a short one, we will allow

H to take on negative values also and interpret a long position of (say)−10 units as a short
position of 10 units. Under this strategy, there is a cash outflow of QST at time T towards

the spot purchase. There are also resettlement profits from the futures position at this time

of H (FT − F). Thus, the net cash outflow is

QST − H (FT − F) (5.4)

The investor must choose H to minimize the variance of the cash flow (5.4).

Now consider an investor with a commitment to sell Q units of the asset on date T . To

hedge this, the investor

1. Takes a short futures position of size H at inception at the futures price F .

2. Closes out the futures position at time T by taking a long futures position of size H .

3. Sells the quantity Q on the spot market at time T .

Once again, we allow H to be negative to allow for the possibility that the initial futures

position is a long one. Under this strategy, there is a cash inflow of QST at time T from the

spot market sale. There are also resettlement profits from the futures position of H (F−FT ).

Thus, the net cash inflow is

QST + H (F − FT ) (5.5)

which is identical to (5.4). Thus, both a long and short investorwant to choose H tominimize

the variance of the cash flow (5.4).

5.4 The Case of No Basis Risk

If there is no basis risk, identifying the minimum variance hedge ratio is a simple matter.

In this case, we must have ST = FT , so (5.4) becomes

QST − H (FT − F) = QST − H (ST − F)

= (Q − H ) ST + H F (5.6)

At the time the hedging strategy is initiated, Q and F are known quantities, so the only

unknown here is ST . If we set H = Q, the term involving ST drops out of (5.6) and the

cash flow reduces to the known quantity H F = QF . The variance of this cash flow is zero.

Since variance cannot be negative, we cannot improve upon this situation. Thus, if there is
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no basis risk, it is optimal to hedge completely, i.e., the minimum-variance hedge ratio is

h∗ = 1, and this eliminates all risk.

The important question is, of course, what if basis risk is present? The next section

provides the answer.

5.5 The Minimum-Variance Hedge Ratio

To identify the minimum-variance hedge ratio, we first rewrite the cash flow (5.4) from a

hedged futures position in terms of price changes. Let  S = ST − S and  F = FT − F

denote the changes in spot and futures prices, respectively, over the hedging horizon. Add

and subtract the quantity QS to (5.4) to obtain

QST − QS + QS − H (FT − F) = Q(ST − S) − H (FT − F) + QS

= Q S − H F + QS (5.7)

Now, let h = H/Q denote the hedge ratio. The cash flow (5.7) can be expressed in terms

of the hedge ratio as

Q [ S − h F ]+ QS (5.8)

We want to pick h to minimize the variance of this quantity. Note that the last term QS is a

known quantity at the time the hedge is put on, so contributes nothing to the variance. From

(5.8), the variance of hedged cash flows comes from three sources:

• The variance of spot price changes  S . Denote this quantity by σ 2( S).

• The variance of futures price changes  F . Denote this quantity by σ 2( F ).

• The covariance between these quantities, denoted cov ( S ,  F ).

Using this notation, the variance of hedged cash flows (5.8) is

Var [Q ( S − h F )] = Q2 Var ( S − h F )

= Q2
 
σ 2( S) + h2 σ 2( F ) − 2h cov ( S ,  F )

 
(5.9)

The presence of the h2 term ensures that the last term is U-shaped as a function of h (see

Figure 5.1). To identify the point of minimum variance, we take the derivative of (5.9) with

respect to h and set it equal to zero. This yields

2h σ 2( F ) − 2cov ( S ,  F ) = 0

or hσ 2( F ) = cov ( S ,  F ). Thus, the variance-minimizing value of h is

h∗ = cov ( S ,  F )

σ 2
F

(5.10)

To express h∗ in terms of the correlation ρ between  S and  F , note that by definition

ρ = cov ( S ,  F )

σ ( S) σ ( F )
(5.11)

Thus, cov ( S ,  F ) = ρσ ( S)σ ( F ), so h∗ can also be written as

h∗ = ρ
σ ( S)

σ ( F )
(5.12)

Expression (5.12) is the main result of this chapter. In words, as mentioned earlier, it

says that the optimal hedge ratio is the correlation ρ between price changes adjusted by a

“scaling factor” σ ( S)/σ ( F ).
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FIGURE 5.1
The Minimum-
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The minimum-variance hedge ratio is illustrated graphically in Figure 5.1. The figure

considers a low level of correlation, a high level of correlation, and the limiting case of perfect

correlation. It highlights two points. First, the minimum-variance hedge ratio increases as

correlation increases. Second, the minimized cash-flow variance (i.e., the variance of cash

flows under the minimum-variance hedge ratio) is lower as correlation is higher, which is

intuitive: higher correlation implies a superior ability to offset cash-flow risk by hedging.

In the limit, when correlation is perfect, the minimized cash-flow variance is also zero.

Long or Short Futures Position?
The sign of the optimal hedge ratio is determined by the sign of the correlation ρ. If ρ > 0,

the hedge ratio is positive, meaning that if the hedger has a long spot exposure (i.e., a

commitment to buy on date T ), he must take a long initial futures position, and if he has a

short spot exposure (a commitment to sell on date T ), he must take a short initial futures

position. If ρ < 0, the hedge ratio is negative, meaning that a long spot exposure is hedged

with a short initial futures position while a short spot exposure is hedged with a long futures

position.

These sign implications are easily understood if one keeps in mind that hedging is

basically an offsetting of risks. Suppose, for example, that the investor has a long spot

exposure. Then, as a buyer, the investor “loses” on the spot position if spot prices increase.

Under the hedge, these lossesmust be offset with gains on the futures position.With positive

correlation, futures prices also increase when spot prices increase, so we must gain on the

futures position when futures prices increase. This mandates a long futures position. With

negative correlation, futures prices decrease when spot prices increase, so making a gain

on futures requires a short futures position.

The Minimized Cash-Flow Variance
What is the variance of cash flows from the hedged position under h∗? To identify the

answer, we substitute the value of h∗ into the cash-flow variance (5.9). Using the identity
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cov ( S ,  F ) = ρσ ( S)σ ( F ), this gives us

Q2

 
σ 2( S) + ρ2 σ 2( S)

σ 2( F )
σ 2( F ) − 2 ρ

σ ( S)

σ ( F )
ρσ ( S)σ ( F )

 
(5.13)

Canceling common terms and simplifying, this is just the quantity

Q2 σ 2( S) (1− ρ2) (5.14)

Note that this minimized variance will not be zero except in the trivial case where

ρ = ±1, i.e., when the futures and spot price changes are perfectly (positively or negatively)
correlated. But futures and spot prices are perfectly correlated (i.e., move in lockstep) only

when there is no basis risk, so (5.14) says that if basis risk is present, there is always some

residual uncertainty even after hedging.

Which Futures Contract?
The minimized variance (5.14) decreases as ρ2 increases, or, equivalently, as |ρ| increases.
Thismakes the choice of futures contract simple: as a general rule of thumb, pick the contract

whose price changes have the highest correlation (in absolute value) with changes in the

spot price of the asset being hedged. This will result in the maximum possible reduction in

cash-flow volatility.

Minimum-Variance Hedging Compared to Alternatives
There are two questions about the minimum-variance hedge ratio that are of interest:

1. Byhowmuchdoes optimal hedging reduce uncertainty over the alternative of not hedging

(i.e., using h = 0)?

2. How much larger is the variance of cash flows if we hedge one-for-one (i.e., set h = 1)

rather than using h∗?

(A) The Alternative of Not Hedging

If we do not put on a hedge, then h = 0. Substituting h = 0 in (5.9), the variance of the

unhedged cash flow is

Q2 σ 2( S) (5.15)

Comparing (5.14) and (5.15), we see that optimal hedging reduces cash-flow variance by

a factor of ρ2. For instance, if ρ = 0.90, then ρ2 = 0.81, so optimal hedging removes 81%

of the unhedged cash-flow variance, i.e., the variance of the hedged position is only 19% of

the variance of the unhedged position. On the other hand, if ρ = 0.30, then ρ2 = 0.09, so

even optimal hedging removes only 9% of the unhedged cash-flow variance.

(B) The Alternative of Hedging One-for-One

If we use a hedge ratio of h = 1, the cash-flow variance in (5.9) becomes

Q2
 
σ 2( S) + σ 2( F ) − 2cov ( S ,  F )

 
(5.16)

which can be rewritten as

Q2
 
σ 2( S) (1− ρ2)

 + Q2 [σ ( F ) − ρσ ( S)]
2 (5.17)

Comparing this to the variance (5.14) under h∗, we see that using a hedge ratio of unity
increases the variance by the amount (σ ( F ) − ρσ ( S))

2. The lower is ρ, the greater this
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quantity. This is intuitive: a lower correlation implies a lower minimum-variance hedge

ratio h∗, so the greater is the error we are making by using a hedge ratio of unity.

Indeed, hedging one-for-one may even be worse than not hedging at all! Compare (5.17)

and (5.15). The difference between these quantities is

Q2
 
σ 2( F ) − 2cov ( S ,  F )

 = Q2
 
σ 2( F ) − 2ρσ ( S)σ ( F )

 
(5.18)

If σF > 2ρσS , this difference is positive, which means the variance of the cash flow with a

hedge ratio of unity is higher than the variance of the unhedged cash flow.

5.6 Examples

In this section, we present two examples to illustrate minimum-variance hedging. Both

examples involve basis risk arising from commodity mismatches. The first example looks

at cross-hedging in currencies. The second example concerns hedging an equity portfolio

using futures on another portfolio.

Example 5.2 Cross-Hedging with Currencies
Suppose that a US exporter will receive 25 million Norwegian kroner (NOK) in three months
and wishes to hedge against fluctuations in the US dollar (USD)-NOK exchange rate. Assume
there is no active forward market in NOK, so the company decides to use a forward contract
on the euro (EUR) instead. The company has gathered the following data:

1. The standard deviation of quarterly changes in the USD/NOK exchange rate is 0.005.

2. The standard deviation of quarterly changes in the USD/EUR forward rate is 0.025.

3. The correlation between these changes is 0.85.

What should be the company’s minimum-variance hedging strategy?
The spot asset in this example is the NOK, so one “unit” of the spot asset is one NOK.

The company will receive 25 million NOK in three months, which must be converted to
USD. Thus, it is effectively as if the company has a commitment to sell Q = 25 million NOK
in three months, i.e., it has a short spot exposure.

The forward contract used to hedge this exposure has the euro as its underlying asset, so
one “unit” of the forward contract is a forward calling for delivery of one euro at maturity.
There is commodity basis risk since the asset underlying the forward contract and the asset
being hedged are not the same.

We are given σ ( S) = 0.005, σ ( F ) = 0.025, and ρ = 0.85. From (5.12), the variance-
minimizing hedge ratio is given by

h∗ = ρ
σ ( S)

σ ( F )
= 0.85 × 0.005

0.025
= 0.17

In words, the optimal hedge position is to take 0.17 units of forwards per unit of spot
exposure. Why only 0.17, i.e., why is the hedge position so “small”? Loosely speaking, the
euro trades roughly on par with the dollar (at the time of writing, around USD 1.45/EUR),
while the Norwegian kroner costs only a fraction of that (at the time of writing in September
2009, around USD 0.17/NOK). Reflecting these price differentials, the quarterly standard
deviation of the USD/EUR forward rate in the example is five times larger than the 0.005
quarterly standard deviation of the USD/NOK exchange rate.

In hedging NOK price risk with the euro, we are trying to compensate for losses from
NOK price movements with gains from euro price movements and vice versa. Since the
typical euro price move is five times as large as the typical NOK price move, we want to use
far fewer euros in the hedge position than the number of NOK in the spot exposure.
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Returning to the computations, since Q is given to be 25 million and we have estimated
h∗ = 0.17, the optimal forward position calls for the delivery of

H ∗ = h∗ Q = 4.25 million euros

Finally, note that since the hedge ratio is positive and the company has a short spot exposure,
this forward position must be a short one.

To summarize: the company’s optimal hedge is to take a short forward position calling
for the delivery of 4.25 million euros in three months. If the company’s data is correct, this
optimal hedge will remove ρ2 = (0.85)2 = 0.7225, or about 72% of the variance associated
with the unhedged position. ■

Example 5.3 Cross-Hedging with Equities
Consider the problem of hedging a portfolio consisting of S&P 100 stocks using S&P 500
index futures.1 Suppose that:

1. The value of the portfolio is $80,000,000.

2. The current level of the S&P 100 index is 800.

3. The current level of the S&P 500 index futures is 960.

4. One S&P 500 index futures contract is for 250 times the index.

The underlying asset in this problem is the S&P 100 index. That is, one “unit” of the
underlying asset is the basket of stocks used to construct the S&P 100 index. The current
price per unit S of this asset is simply the current level of the index, so S = 800. Since
the portfolio value is given to be $80 million, the number of “units” in the portfolio is
[80,000,000/800] = 100,000. Therefore, Q = 100,000.

The asset underlying the futures contract is the S&P 500 index, i.e., one “unit” of the
asset underlying the futures contract is the basket of securities used to construct the S&P 500
index. The current futures price per unit is simply the current level of the S&P 500 index
futures, which gives us F = 960. Note that the futures contracts are standardized in size:
one futures contract calls for delivery of 250 units of the S&P 500 index.

There is evidently basis risk in this problem since we are hedging one asset (the S&P 100
index) with futures written on another asset (the S&P 500 index). To determine the optimal
hedging scheme, therefore, we need information on variances of spot and futures price
changes over the hedging horizon, and the covariance of these price changes. Suppose we
are given the following information:

1. σ ( S) = 60.

2. σ ( F ) = 75.

3. ρ = 0.90.

Then, the optimal hedge ratio is

h∗ = ρ
σS

σF

= 0.90 × 40

50
= 0.72

i.e., to take 0.72 units of futures positions per unit of spot exposure. Since Q = 100,000,
the size of the optimal futures position is

H ∗ = h∗ · Q = (0.72)(100,000) = 72,000

1 This example is adapted from the class notes of Menachem Brenner at NYU.
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That is, the optimal futures position calls for the delivery of 72,000 units of the S&P 500
index. One unit of the futures contract is for 250 units of the index. Therefore, we should
take a futures position in (72,000)/250 = 288 contracts.

Should this be a long or short futures position? By hedging, we are trying to protect the
value over the hedging horizon of the S&P 100 portfolio that we hold. Thus, it is as if we
have a short spot exposure in three months and want to lock-in a value for this. Since the
hedge ratio is positive, our futures position should also be a short one. ■

5.7 Implementation

To implement a minimum-variance hedging scheme in practice we must identify h∗. There
are two equivalent ways in which this may be accomplished, both using historical data on

spot and futures price changes. The first is to estimate each of the three parameters (σ ( S),

σ ( F ), and ρ) that go into the computation of h∗. The second, and easier, method is to

estimate h∗ directly from the data using regression analysis. We describe both approaches

below.

In each case, we rely on the use of data on spot and futures prices at specified sampling

intervals. For specificity, we take the sampling interval to be daily, though, of course, data

of different frequency could also be used.

So, suppose that we have data on daily spot and futures price changes. Assume that price

changes across different days are independent and identically distributed. Let δS denote the

random daily spot price change and δF the random daily futures price change. Further, let

• σ 2(δS) denote the variance of daily spot price changes δS .

• σ 2(δF ) denote the variance of daily futures price changes δF .

• cov (δS , δF ) denote the covariance of δS and δF .

• ρ(δS , δF ) denote the correlation of δS and δF .

Each of these quantities may be estimated easily from historical time-series data on daily

spot and futures prices.

A First Method
Suppose there are K days in the hedging horizon. Since price changes over successive days

are independent, the total spot price change  S over the hedging horizon is just the sum of

K independent daily changes, each with a variance of σ 2(δS). Thus,

σ 2( S) = K σ 2(δS) (5.19)

Similarly, the total futures price change is just the sum of K independent daily futures price

changes, each with a variance of σ 2(δF ). Thus,

σ 2( F ) = K σ 2(δF ) (5.20)

Similarly, we also have

cov ( S ,  F ) = K cov (δS , δF ) (5.21)

From (5.19)–(5.21), the minimum-variance hedge ratio (5.10) can be written in terms of

the daily price changes as

h∗ = cov (δS , δF )

σ 2(δF )
(5.22)
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Of course, we can also express this hedge ratio in terms of the correlation rather than the

covariance. From (5.19)–(5.21), the covariance ρ(δS , δF ) of daily price changes is equal to

the correlation ρ between  S and  F since

ρ = cov ( S ,  F )√
σ 2( S) σ 2( F )

= K cov (δS , δF )√
Kσ 2(δS) Kσ 2(δF )

= ρ(δS , δF ) (5.23)

Thus, we can also write

h∗ = ρ(δS , δF )
σ (δS)

σ (δF )
(5.24)

In either case, h∗ depends only on the properties of daily price changes andmay be estimated

from historical data.

A Second Method
The second method estimates h∗ directly without first estimating daily variances and co-

variances. Suppose we have data on daily spot price changes (denoted δS) and daily futures

price changes (denoted δF ). Consider the regression

δS = a + b δF +  

Let  a and  b denote the estimates of a and b. Then, the regression estimate  b is precisely

the hedge ratio h∗!
Why is this the case? The regression estimates are, by definition, chosen to be unbiased

(i.e., to satisfy a + b δF = δS on average) and to minimize the variance of the error term  .

Now, since a is a constant, the variance of  is

Var ( ) = Var (δS − a − b δF ) = Var (δS − b δF )

Thus, the estimate b minimizes the variance of (δS − b δF ), the difference between daily

spot price changes and b times the daily futures price changes. The optimal hedge ratio h∗

was chosen to minimize the variance of ( S − h F ), the difference between spot price

change over the hedging horizon and h times the futures price change over this horizon.

Since total spot and future price changes over the hedging horizon are simply the sum of

daily price changes, the problems are the same and must have the same solution.

This gives us a quicker and more direct way of obtaining an estimate of h∗ from the data,

but, of course, the two methods are equivalent.

5.8 Further Issues in Implementation

In this section, we complete the discussion on implementation by focusing on three ques-

tions:

1. Thus far, the analysis has focused on using a single futures contract for hedging. Can we

extend this to the use of multiple futures contracts?

2. What about hedging multiple risks simultaneously?

3. How do we account for the effect of daily resettlement and marking-to-market in futures

contracts?

Hedging with Multiple Futures Contracts
In the presence of basis risk, there is no a priori reason why only a single futures contract

should be used in setting up the hedge. In hedging a single stock or a portfolio of stocks with
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index futures, for instance, it is plausible that using two different index futures contracts

simultaneously may result in a better performance than using just one. Similarly, high-yield

or “junk” bond returns tend to be highly correlatedwith equity returns. In hedging a portfolio

of high-yield bonds, using a combination of equity index futures and interest-rate futures

may be superior to using just one of the two.

When there are multiple futures contracts used for hedging, there are multiple hedge

ratios (one for each futures contract) to be determined in the optimal hedging strategy.

Determining these hedge ratios is simple. As earlier, let δS denote daily spot price changes.

Let δF1
, . . . , δFn

denote the daily price changes in the n futures contracts chosen for hedging.

Consider the regression:

δS = a + b1 δF1
+ · · · + bn δFn

+  (5.25)

Then, the regression estimates  b1, . . . ,  bn are precisely the hedge ratios of the n contracts.

The reasoning is the same as in the case of a single contract.

Should we use more than one contract? It is not possible to give an unambiguous answer

to this question. Much depends on the specifics of the problem. Statistically, one can always

improve the performance of a hedge by using more than one contract for exactly the same

reason that one can reduce the standard error of a linear regression by adding more explana-

tory variables. However, one should proceed with caution here. It is well known that the

improved standard error in a regression may be illusory if the added explanatory variables

are unrelated ones. Analogously, there may be no real improvement in the hedge perfor-

mance from using additional contracts; indeed, including a poorly related futures contract

in the hedge may actually worsen the hedge.

There are statistical tests (such as the F test) for comparing the fit of two regressions

that we can use to gauge the improvement. At a minimum, we should check to see if the

regression estimates are statistically significant and eliminate those futures that are not

significant. Ultimately, common sense is the best guide here.

Hedging Multiple Risks Simultaneously
So far we have considered hedging a single spot commitment (i.e., a single “risk”) with

futures. What if a firm faced several simultaneous risks, e.g., a firm that exports to many

countries and faces simultaneous foreign exchange risk in all the currencies? What is the

optimal hedging rule in such a situation?

The answer is a simple additive rule: identify the optimal size of the futures hedge for

each risk separately, and then add them all up. The optimality of this rule is easily checked

using the same approach as in deriving the optimal hedge ratio for a single risk. The details

are left as an exercise.

Tailing the Hedge
Thus far, we have treated the futures contract as if it is a forward contract that is marked-

to-market once at the end of the contract. Now we examine the impact of daily marking-to-

market on the size of the optimal hedge.

From (5.8), in determining the optimal hedge ratio, we are looking for the value of h that

minimizes

Var ( S − h F ) (5.26)

The term  S , which represents spot price changes over the hedging horizon, is unaffected

by daily marking-to-market, but the term F , which measures resettlement profits from the

futures position, depends on interest payments on the margin account. Suppose, as earlier,
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that there are K days in the hedging horizon. Let R denote one plus the daily interest rate

paid on margin accounts, i.e., $1 grows to $R at the end of one day. When daily marking-

to-market is ignored, we showed that the optimal hedge ratio is

h∗ = cov ( S ,  F )

σ 2( F )
(5.27)

If we take daily marking-to-market into account, it can be shown that the optimal hedge

ratio, denoted h∗∗, is simply h∗ multiplied by a “tail factor” g(R, K ):

h∗∗ = g(R, K ) h∗ (5.28)

where the tail factor g(R, K ) is given by

g(R, K ) = K

1+ R + R2 + · · · + RK−1 (5.29)

A proof of this result is given in Appendix 5A.

The tail factor g measures the impact of daily marking-to-market. This factor is equal to

1 if R = 1 (i.e., net interest rates are zero) but is strictly less than 1 if R > 1 (i.e., interest

rates are positive). However, it is very close to 1 if R and K are small. For example, if the

interest rate on margin accounts is 5% (annualized), then the tail factor is

• 0.9994 if K = 10.

• 0.9967 if K = 50.

• 0.993 if K = 100.

• 0.93 if K = 1000.

Thus, daily marking-to-market does not make a big difference for relatively short horizons.

However, over very long hedging horizons (such as the multiyear horizon of Metallge-

sellschaft in the case discussed in Chapter 2), tailing can make a substantial difference.

Ignoring tailing in such situations will result in “overhedging,” i.e., in the hedge ratio being

larger than optimal, and this can increase cash-flow risk substantially.

5.9 Index Futures and Changing Equity Risk

In the second example in Section 5.6, we saw that futures on the S&P 500 index could be

used to provide a hedge for an equity portfolio. We now examine a more general question:

how we can change the nature of risk in an equity portfolio (more specifically, the beta of

the portfolio) by using index futures. For this purpose, we assume that there is an index

that represents the “market portfolio” and that there is a futures contract that trades on this

index. In the US, the S&P 500 index futures contract plays this role; the S&P 500 index is

widely viewed in practice as a proxy for the market portfolio and is used as the performance

benchmark for managers of mutual funds and hedge funds.

Let P denote the value of the equity portfolio and let βo denote its current beta. Suppose

that the portfolio manager’s objective is to alter this beta to a new value βn . Let F denote

the current futures price per contract and suppose that the portfolio manager takes a futures

position of size H contracts. We allow H to be positive or negative; H > 0 indicates a long

futures position and H < 0 a short one.
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Then, the question we are interested in is: what is the value of H that will produce the

required change in the portfolio beta? The required number of futures contracts is

H ∗ = − P

F
(βo − βn) (5.30)

In particular, if the objective is to make the portfolio riskless (i.e., a zero-beta portfolio),

the number of futures contracts required is

H ∗ = − P

F
βo (5.31)

5.10 Fixed-Income Futures and Duration-Based Hedging

All hedging strategies using futures contracts are based on the same idea: that by choosing

the size of the futures position appropriately, it is possible to offest losses arising from spot

price movements with gains on futures positions and vice versa. Hedging fixed-income

instruments (e.g., a portfolio of bonds) with interest-rate futures is no different in this

regard. However, fixed-income instruments have one feature that distinguishes them from

other assets: both the spot price of such an instrument and the futures price of a contract

written on a fixed-income instrument depend on a common underlying variable—the level

of interest rates. This makes it possible to devise a special hedging strategy called duration-

based hedging.

Duration-based hedging is explored in the next chapter. Intuitively, duration-based hedg-

ing looks at how much a change in interest rates would affect (a) the value of the portfolio

we are looking to hedge and (b) the price of the interest-rate futures contract we are using

for hedging. We then choose the number of futures contracts to be used in the hedge so that

these value changes offset each other.

5.11 Exercises 1. What is meant by basis risk?

2. What is the minimum-variance hedge ratio?What are the variables that determine this?

3. How does one obtain the optimal hedge ratio from knowledge of daily price changes

in spot and futures markets?

4. What is tailing the hedge in the context of minimum-variance hedging? Why does one

tail the hedge?

5. In the presence of basis risk, is a one-for-one hedge, i.e., a hedge ratio of 1, always

better than not hedging at all?

6. If the correlation between spot and futures price changes is ρ = 0.8, what fraction of

cash-flow uncertainty is removed by minimum-variance hedging?

7. The correlation between changes in the price of the underlying and a futures contract is

+80%.The sameunderlying is correlatedwith another futures contractwith a (negative)

correlation of −85%. Which of the two contracts would you prefer for the minimum-

variance hedge?

8. Given the following information on the statistical properties of the spot and futures,

compute the minimum-variance hedge ratio: σS = 0.2, σF = 0.25, ρ = 0.96.

9. Assume that the spot position comprises 1,000,000 units in the stock index. If the hedge

ratio is 1.09, howmany units of the futures contract are required to hedge this position?
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10. You have a position in 200 shares of a technology stock with an annualized standard

deviation of changes in the price of the stock being 30. Say that you want to hedge this

position with the tech stock index that has an annual standard deviation of changes in

value of 20. The correlation between the two is 0.8. How many units of the index should

you hold to have the best hedge?

11. You are a portfolio manager looking to hedge a portfolio daily over a 30-day horizon.

Here are the values of the spot portfolio and a hedging futures for 30 days.

Day Spot Futures

0 80.000 81.000
1 79.635 80.869
2 77.880 79.092
3 76.400 77.716
4 75.567 77.074
5 77.287 78.841
6 77.599 79.315
7 78.147 80.067
8 77.041 79.216
9 76.853 79.204

10 77.034 79.638
11 75.960 78.659
12 75.599 78.549
13 77.225 80.512
14 77.119 80.405
15 77.762 81.224
16 77.082 80.654
17 76.497 80.233
18 75.691 79.605
19 75.264 79.278
20 76.504 80.767
21 76.835 81.280
22 78.031 82.580
23 79.185 84.030
24 77.524 82.337
25 76.982 82.045
26 76.216 81.252
27 76.764 81.882
28 79.293 84.623
29 78.861 84.205
30 76.192 81.429

Carry out the following analyses:

(a) Compute σ ( S), σ ( F ), and ρ.

(b) Using the results from (a), compute the hedge ratio you would use.

(c) Using this hedge ratio, calculate the daily change in value of the hedged portfolio.

(d) What is the standard deviation of changes in value of the hedged portfolio?Howdoes

this compare to the standard deviation of changes in the unhedged spot position?

12. Use the same data as presented above to compute the hedge ratio using regression

analysis. Explain why the values are different from what you obtained above.
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13. A US-based corporation has decided to make an investment in Sweden, for which it

will require a sum of 100 million Swedish kronor (SEK) in three-months’ time. The

company wishes to hedge changes in the US dollar (USD)-SEK exchange rate using

forward contracts on either the euro (EUR) or the Swiss franc (CHF) and has made the

following estimates:

• IfEURforwards are used:The standarddeviationof quarterly changes in theUSD/SEK

spot exchange rate is 0.007, the standard deviation of quarterly changes in the

USD/EUR forward rate is 0.018, and the correlation between the changes is 0.90.

• IfCHF forwards are used:The standarddeviationof quarterly changes in theUSD/SEK

spot exchange rate is 0.007, the standard deviation of quarterly changes in the

USD/CHF forward rate is 0.023, and the correlation between the changes is 0.85.

Finally, the current USD/SEK spot rate is 0.104, the current three-month USD/EUR

forward rate is 0.471, and the current three-month USD/CHF forward rate is 0.602.

(a) Which currency should the company use for hedging purposes?

(b) What is the minimum-variance hedge position? Indicate if this is to be a long or

short position.

14. You use silverwire inmanufacturing, looking to buy 100,000 oz of silver in threemonths’

time and need to hedge silver price changes in three months. One COMEX silver futures

contract is for 5,000 oz. You run a regression of daily silver spot price changes on silver

futures price changes and find that

δs = 0.03+ 0.89δF +  

What should be the size (number of contracts) of your optimal futures position. Should

this be long or short?

15. Suppose you have the following information: ρ = 0.95, σS = 24, σF = 26, K = 90,

R = 1.00018. What is the minimum-variance tailed hedge?

16. Using the equation for tailing the hedge, can you explain why the tailed hedge ratio is

always less than the ratio for untailed (static) hedge?

17. You manage a portfolio of GM bonds and run a regression of your bond’s price changes

on the changes in the S&P 500 index futures and changes in the 10-year Treasury note

futures. The regression result is as follows:

δP = 0.02− 0.2δS&P + 0.5δT RY , R2 = 0.7

where the regression above is in changes in index values for all the right-hand side

variables. What positions in the two index futures will you take? What proportion of the

risk remains unhedged? What implicit assumption might you be making in this case?

18. You are asked to hedge the forward price of a security S over a maturity T . The corre-

lations of S, and futures contracts F1, F2 are given by the following correlation matrix:

S F1 F2

S 1.00000 0.98757 0.82923
F1 0.98757 1.00000 0.84939
F2 0.82923 0.84939 1.00000

If the standard deviations of the returns on the three assets are given by

σ (S) = 0.30

σ (F1) = 0.25

σ (F2) = 0.15
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then, find the minimum-variance hedge for S using both futures contracts F1 and F2.

Express your solution in terms of the number of dollars you will place in positions in

F1 and F2 to hedge a $1 position in S. What can you say about the solution(s) you have

arrived at?

19. Our firm receives foreign exchange remittances in several different currencies. We are

interested in hedging two remittances in six months time from Europe (200 in EUR) and

from Japan (400,000 in JPY). If the sales were made today, we would receive the USD

equivalent of these remittances at today’s spot exchange rates. However, there may be a

big change in spot FX rates by the end of the six-month period. In order to ensure that

there are no surprises, we want to hedge the risk of changes in FX rates from now to six

months ahead. The following tables give the correlations and covariances of changes in

spot FX and forward FX rates. The notation below is such that S(usd, eur ) stands for

dollars per euro.

CORRMAT ΔS(usd, eur) ΔS(usd, jpy) ΔF (usd, eur) ΔF (usd, jpy)

 S(usd, eur ) 1
 S(usd, j py) 0.1480 1
 F (usd, eur ) 0.7099 0.0914 1
 F (usd, j py) 0.1441 0.7419 0.1008 1

COVMAT ΔS(usd, eur) ΔS(usd, jpy) ΔF (usd, eur) ΔF (usd, jpy)

 S(usd, eur ) 0.000107 0.000015 0.000106 0.000021
 S(usd, j py) 0.000015 0.000096 0.000013 0.000103
 F (usd, eur ) 0.000106 0.000013 0.000206 0.000020
 F (usd, j py) 0.000021 0.000103 0.000020 0.000200

Note that the matrices of changes above reflect the change in USD amounts per unit of

the foreign currency. This follows from the fact that the exchange rates are expressed as

dollars per unit of foreign currency. If we want to hedge an inflow of EUR 200 and JPY

400,000, how many units of foreign currency must we hold in forward FX contracts to

get the best hedge?Note that the best hedge is one that minimizes the variance of changes

in the total remitted amount. Carry out your analysis in the following three steps:

(i) Compute what the variance of changes in remitted USD amount is if we do no

hedging.

(ii) Compute what the variance of changes in remitted USD amount is if we do one-

for-one hedging.

(iii) Computewhat thevarianceof changes in remittedUSDamount is ifwedominimum-

variance hedging.

20. HoleSale Inc. USA exports manhole covers to Japan and Germany. Over the next six

months, the company anticipates sales of 1,000 units to Japan and 500 units to Germany.

The price of manhole covers is set at JPY 10,000 and EUR 80 in Japan and Germany,

respectively. The following information is given:

• The standard deviation of the JPY/USD exchange rate is 5.

• The standard deviation of the EUR/USD exchange rate is 0.05.

• The correlation of the JPY/USD and EUR/USD exchange rates is −0.4.
• The standard deviation of the EUR/USD six-month forward rate is 0.06.
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HoleSale Inc. is going to use the EUR/USD forward FXmarket to hedge all currency risk

across countries to which it sells its product by booking a single forward contract that

minimizes the company’s risk. Howmany units of this contract should the firm buy/sell?

21. You are attempting to cover a short forward position of S with a long futures contract

for the same maturity. Which do you prefer as a hedge: futures contract F1 or F2, where

σ (F1) > σ (F2), and given that the correlation of both futures contracts with S is the

same? Explain your reasoning.

22. You are planning to enter into a long forward hedge to offset a short forward posi-

tion. If you choose a futures contract over a forward contract, which of the following

circumstances do you want?

(a) Do you want the term structure of interest rates (i.e., the plot of interest rates against

maturities) to be sloped up or down?

(b) Do you want the volatility of interest rates to be increasing or decreasing?

(c) Do you want the volatility of the futures price change to be higher or lower than that

of the forward price?

(d) Do you want the correlation of the spot to futures to be higher or lower than that of

the spot to forwards?

23. You are trying to hedge the sale of a forward contract on a security A. Suggest a framework

you might use for making a choice between the following two hedging schemes:

(a) Buy a futures contract B that is highly correlated with security A but trades very

infrequently. Hence, the hedge may not be immediately available.

(b) Buy a futures contract C that is poorly correlated with A but trades more frequently.

24. Download data from the web as instructed below and answer the questions below:

(a) Extract one year’s data on the S&P 500 index from finance.yahoo.com. Also

download corresponding period data for the S&P 100 index.

(b) Download, for the same period, data on the three-month Treasury bill rate (constant

maturity) from the Federal Reserve’s web page on historical data:

www.federalreserve.gov/releases/h15/data.htm.

(c) Create a data series of three-month forwards on the S&P 500 index using the index

data and the interest rates you have already extracted. Call this synthetic forward

data series F .

(d) How would you use this synthetic forwards data to determine the tracking error of

a hedge of three-month maturity positions in the S&P 100 index? You need to think

(a) about how to set up the time lags of the data and (b) how to represent tracking

error.

25. Explain the relationship between regression R2 and tracking error of a hedge.Use the data

collected in the previous question to obtain a best tracking error hedge using regression.
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Appendix 5A

Derivation of the Optimal Tailed Hedge
Ratio h∗∗

Recall that to identify the minimum-variance hedge, we must find the value of h that

minimizes

 S − h  F (5.32)

where  S is the change in spot prices over the hedging horizon and  F represents the

resettlement profits on the futures position. When we ignored interest payments on the

margin account, we took the futures resettlement profits to be

 F = (F1 − F0) + (F2 − F1) + · · · + (FK − FK−1) (5.33)

With an interest rate of R, the first day’s profit or loss, (F1 − F0), will accumulate interest

at the rate R for K − 1 days and so will amount to RK−1(F1− F0) by maturity. The second

day’s profit or loss, (F2 − F1), will accumulate interest for K − 2 days and so grow to

RK−2(F2− F1) by maturity. Doing the same thing for the profits or losses on each of the K

days shows that the total resettlement profits from the futures position amount to

 F = RK−1(F1 − F0) + RK−2(F2 − F1) + · · · + (FK − FK−1) (5.34)

Assume daily price changes are independent and identically distributed (i.i.d.) Let δF denote

the random daily futures price change with variance σ 2(δF ). Then, viewed from time-0, the

overall resettlement profits amount to

 F =
 
RK−1 + RK−2 + · · · + R + 1

 
δF (5.35)

For notational simplicity, let f (R, K ) = 1+ R + · · · RK−1. Then,

 F = f (R, K ) δF (5.36)

The total spot price change  S remains, as earlier, the sum of daily price changes

 S = (S1 − S0) + (S2 − S1) + · · · + (SK − SK−1) (5.37)

If δS denotes the random daily spot price change (with variance σ 2(δS)), then

 S = K δS (5.38)

Therefore, with dailymarking-to-market, the total cash flow (5.32) from the hedged position

can be expressed in terms of daily price changes as

 S − h  F = K δS − h f (R, K )δF (5.39)

The variance of this total cash flow is

K 2σ 2(δS) + h2[ f (R, K )]2σ 2(δF ) − 2h K f (R, K ) cov(δS , δF ) (5.40)

The h2 term once again ensures that this variance is U-shaped as a function of h. To find

the point of minimum-variance, we take the derivative of (5.40) with respect to h and set it

equal to zero. After simplifying and eliminating common terms, this gives us

h f (R, K )σ 2(δF ) = K cov(δS , δF ) (5.41)
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from which we finally obtain the optimal hedge ratio as

h∗∗ = K

f (R, K )

cov(δS , δF )

σ 2(δF )
(5.42)

The last term on the right-hand side of (5.42) is exactly the optimal hedge ratio h∗ that
obtains when daily marking-to-market is ignored. Thus, if we define

g(R, K ) = K

1+ R + R2 + · · · + RK−1

the optimal hedge ratio with daily marking-to-market is simply the old hedge ratio h∗

multiplied by the “tail” factor g(R, K ):

h∗∗ = g(R, K ) h∗ (5.43)



Chapter 6
Interest-Rate Forwards
and Futures

6.1 Introduction

Interest-rate forwards and futures are contracts where the underlying is an interest rate or

depends on the level of interest rates. Two of the most widely used contracts of this form

are forward-rate agreements, which are over-the-counter (OTC) products, and eurodollar

futures, which are exchange-traded. In both contracts, payoffs depend directly on specified

interest rates. There are also other popular contracts, such as futures contracts on US trea-

suries, German government bonds or “bunds,” UK gilts, and Japanese government bonds,

in which the underlying asset is a bond. This chapter describes each of these products and

their characteristics.

Following these descriptions, this chapter looks at the notion of hedging fixed-income

risk. All strategies that aim to hedge spot price exposure with futures contracts are based

on the same idea, that of offsetting the effects of spot price changes with futures price

movements. Hedging fixed-income instruments (e.g., hedging a portfolio of bonds with

bond futures) is no different in this regard. However, fixed-income instruments have one

feature that distinguishes them from other assets: both the spot price of such an instrument

and the futures price of a contract written on a fixed-income instrument depend on a common

underlying variable—the level of interest rates. This makes it possible to devise a special

hedging strategy called duration-based hedging. The final section of this chapter examines

duration-based hedging.

Some of the most important products described in this chapter depend on the London

Interbank Offered Rate or Libor. We begin this chapter with an introduction to Libor rates

and the convention used to compute interest in this market.

6.2 Eurodollars and Libor Rates

US dollar deposits maintained in banks outside the US (including foreign branches of US

banks) are called eurodollar deposits. The term eurocurrency deposits or eurodeposits is

used more generally to refer to deposits in a currency maintained offshore relative to the

country of origination. For themost part, the eurodeposit market operates outside the control

of central banks. The euromarket operations of US banks are, for example, exempt from

reserve requirements and no FDIC premia are imposed against their eurodollar deposits.

Thus, every eurodollar received can be invested.

122
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The interest rate on eurodollar deposits in interbank transactions is called the London

Interbank Offered Rate or Libor. The spot Libor market is huge with especially great depth

in the three- and six-month segments. Libor is now the benchmark rate for several other

markets; swaps, commercial paper, and floating-rate eurodollar loans are, for example, all

indexed to Libor.

Libor rates are quoted using the moneymarket day-count convention. In the US, a “year”

in this convention is treated as 360 days. The interest payable per dollar of principal is then

computed as

Libor × d

360
(6.1)

where d is the actual number of days in the investment horizon. This is the “Actual/360

convention.” The euro money market similarly uses an Actual/360 day-count convention,

but the money market convention for pound sterling is Actual/365.

For example, suppose the Libor rate for the three-month period begining March 16

and ending June 15 is 4%. Consider the interest payable at maturity on an investment of

$1 million. The number of days in this investment horizon is 15 in March, 30 in April, 31

in May, and 15 in June for a total of 91 days. The interest due at maturity is

0.04 × 91

360
× 1,000,000 = 10,111.11 (6.2)

We denote by B(T ) the present value of $1 receivable in T months’ time computed using

Libor rates for discounting. If  T denotes the T -month Libor rate and d the number of days

in this horizon, a dollar invested at Libor for T months grows to

1 +  T

d

360
(6.3)

Thus, the present value of a dollar due in T months is

B(T ) = 1

1 +  T
d
360

(6.4)

For example, suppose the current three-month Libor rate is 9%. Suppose there are 91

days in these three months. Then, $1 invested today will grow to

1 + (0.09)
91

360
= 1.02275 (6.5)

in three months. Thus, the present value of $1 receivable after three months is

B(3) = 1

1.02275
= 0.9778 (6.6)

6.3 Forward-Rate Agreements

Forward-rate agreements or FRAs are forward contracts written on interest rates rather than

on the price of a traded security or commodity. Hugely popular in their own right, they are

also the bulding blocks of other popular interest-rate derivatives such as swaps.

FRAs enable investors to lock in an interest rate k for borrowing or lending a specified

principal amount P over a specified investment period [T1, T2] in the future, i.e., a period

beginning in T1 years and ending in T2 years. Such an FRA is referred to as a T1 × T2 FRA.

By market convention, the investment period is stated in terms of months; for example, a
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4×7 FRA refers to the three-month investment period beginning in four months and ending

in seven months. We adopt this convention in this chapter.

Payoffs from an FRA
An FRA is very similar to a commitment in which the long position agrees to borrow from

the short position the amount P at the fixed interest rate k for the period [T1, T2]. However,

there are some important differences. In an actual borrowing/lending of this form, the long

position would receive the principal amount P from the short position on date T1 and would

return the principal plus interest at the fixed rate k on date T2. The FRA modifies these cash

flows in two directions.

First, no actual exchange of the principal P takes place in an FRA. Rather, the long

position in the FRA receives from the short position the difference between a reference

interest rate  and the agreed-upon fixed rate k applied to the principal P for the period

[T1, T2]. Of course, if the difference  − k is negative, then this is interpreted as a payment

from the long position to the short position.

Second, in an actual borrowing or lending, the interest payment is due only at thematurity

date T2. Rather than wait until T2, however, the difference  − k in an FRA is settled on date

T1 itself by discounting the cash flows due on date T2 back to T1.

The reference interest rate in an FRA is commonly the Libor rate applicable to a period of

length [T1, T2]. For example, if the period [T1, T2] is three months long, then  is taken to be

three-month Libor. Throughout this section, we take the reference rate to be the appropriate

Libor rate.

The following example illustrates FRA payoffs. FRAs are money market instruments, so

the money market day-count convention is used to compute interest payments. In the US,

this is the Actual/360 convention described in the previous section.

Example 6.1 FRA Payoffs
Suppose today is March 15 and an investor enters into a long 4× 7 FRA where the floating
rate is three-month Libor, the principal amount is P = $5,000,000, and the fixed rate is
k = 5.00%. The investment period in this FRA begins on July 15 (four months from today)
and ends on October 15 (seven months from today), which is 92 days.

Suppose the actual three-month Libor rate that prevails on July 15 is  = 5.40%. The
difference  − k is +0.40%. Applying this difference to the principal amount of $5,000,000
for 92 days results in

0.004 × 92

360
× 5,000,000 = 5,111.11 (6.7)

This amount must be brought back to July 15. To do so, we discount it at the three-month
Libor rate prevailing on July 15. This gives us:

5,111.11

1 + (0.054) 92
360

= 5,041.54 (6.8)

This is the amount the investor receives from the short position on July 15.
Alternatively, suppose the three-month Libor rate on July 15 is  = 4.70%. The difference

 − k in interest rates is now 4.70 − 5.00 = −0.30%. Applying this to the principal amount
of $5,000,000, the difference in interest rates amounts to

−0.003 × 92

360
× 5,000,000 = −3,833.33 (6.9)



Chapter 6 Interest-Rate Forwards and Futures 125

FIGURE 6.1
FRA Payoffs
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Discounting this payoff back to July 15 at the three-month Libor rate  , we obtain

−
 

3,833.33

1 + (0.047) 92
360

 
= −3,787.83 (6.10)

The investor must now make this payment to the short position on July 15. ■

Figure 6.1 plots the payoffs that result to the long FRA position in Example 6.1 for

various possible values of the Libor rate  on July 15. The formula used to compute these

payoffs is

Payoff to long position = ( − 0.05) × 92
360

1 +  92
360

× 5,000,000 (6.11)

Note that although the payoffs in Figure 6.1 appear to be linear in  , there is actually a very

slight curvature present since the quantity  appears in both the numerator and denominator

of (6.11).

More generally, in an FRA with an investment period of d days, a principal amount of

P , and a fixed rate of k, we have

Payoff to long position = ( − k) × d
360

1 +  d
360

× P (6.12)

where  is the realized floating rate on the settlement date.

Pricing a New FRA
At the inception of an FRA, the fixed rate k is chosen so that the contract has zero value

to both parties. This rate is referred to as the “price” of a new FRA. In Appendix 6A, we

describe how this rate may be determined by replication, i.e., by constructing a portfolio

that mimics the cash-flow structure of the FRA. We show that the arbitrage-free price of a
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new T1 × T2 FRA must be

k∗ = B(T1) − B(T2)

B(T2)
× 360

d
(6.13)

where

• B(T ) denotes the present value of $1 receivable at date T computed using Libor rates

for discounting.

• d is the number of days between T1 and T2.

Example 6.2 Pricing a New FRA
Suppose the current three-month Libor rate is 4.00% and the six-month Libor rate is 4.50%.
Assume that there are 92 days in the first three-month period and 91 days in the second
three-month period. What is the price of a new 3 × 6 FRA?

We must first calculate the discount factors applicable to three- and six-month horizons.
Since the three-month Libor rate is 4%, $1 invested for three months will grow to

1 + (0.04)
92

360
= 1.01022

Thus, the three-month discount factor is

B (3) = 1

1.01022
= 0.98988 (6.14)

Similarly, $1 invested for six months grows to

1 + (0.045)
183

360
= 1.02288

so the six-month discount factor is

B (6) = 1

1.02288
= 0.97763 (6.15)

Now, using these discount factors in (6.13), the arbitrage-free price of a 3×6 FRA is seen
to be

k∗ = 0.98988 − 0.97763

0.97763
× 360

91
= 4.96% (6.16)

■

Valuing an Existing FRA
Consider an FRAwith notional principal amount P entered into some time ago with a fixed

rate of k. Let date 0 denote the current time and suppose that the FRA period is [T1, T2], i.e.,

the FRA begins in T1 months and ends in T2 months. How much is the FRA worth today?

Let d denote the number of days between T1 and T2. With B(T ) defined as above, we

show in Appendix 6A (see expression (6.66)) that the value of the FRA is then given by

P ×
 

B(T1) − B(T2)

 
1 + k

d

360

  
(6.17)
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Indeed, the price (6.13) of a new FRA is obtained just by setting this value to zero and

solving for k.

Example 6.3 Valuing an Existing FRA
Consider the 3 × 6 FRA from Example 6.2 above. The FRA is entered into at the fixed rate
of 4.96%. Suppose the principal amount is $25,000,000. After one month, the FRA has
become a 2 × 5 FRA. Suppose that at this time, the two- and five-month Libor rates are
5.50% and 6%, respectively. How much is the FRA worth today? Assume that there are 61
days in the first two-month period from today, and, as in the original example, that there
are 91 days in the three-month period of the FRA.

An investment of $1 for two months at the Libor rate of 5.50% grows to

1 + (0.055)
61

360
= 1.00932

by maturity. Thus, the two-month discount factor is

B (2) = 1

1.00932
= 0.99077 (6.18)

Similarly, the five-month discount factor is

B (5) = 0.97529 (6.19)

Substituting these values in (6.17), the current value of the FRA is seen to be

25,000,000 ×
 
0.99077 − (0.97529)

 
1 + (0.0496)

91

360

  
= +81,150.40

(6.20)

The positive value of the original FRA reflects the fact that interest rates have gone up since
the FRA was entered into. ■

Hedging with FRAs
If an FRA involves only an exchange of the difference in interest rates, how does it allow

borrowers and lenders to hedge interest-rate risk, i.e., to lock-in rates for borrowing/lending

in the future?

Consider a corporation that can borrow at Libor and that anticipates a borrowing need

for the period [T1, T2]. Suppose the corporation (a) enters into a long FRA today with a fixed

rate k, and then (b) borrows the required amount at time T1 at the then-prevailing Libor rate

 . Under this strategy, the corporation pays the interest rate  on the borrowed amount but

receives the difference  − k from the FRA. The net rate paid is  − ( − k) = k, which is

the fixed rate in the FRA.

Similarly, consider an investor who wishes to lock in an interest rate for lending over the

period [T1, T2] in the future. The investor can enter into a short FRA today and then lend

at T1 at the then-prevailing Libor rate  . The investor receives  from the lending but pays

 − k on the FRA, so receives a net rate of k, the fixed rate in the FRA.

Thus, by combining a position in an FRAwith borrowing or lending at the Libor rate  at

time T1, borrowers and investors effectively lock in the fixed rate in the FRA. The following

example provides an illustration.

Example 6.4 Hedging with FRAs
We build on Example 6.1 above. On March 15, a corporation anticipates a need to borrow
$5,000,000 for the three-month period from July 15 to October 15. The corporation enters
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into a long 4×7 FRA on March 15 and borrows the $5 million at Libor on July 15. The fixed
rate in the FRA is k = 5.00%.

We consider two possibilities for the Libor rate on July 15,  = 5.40% and  = 4.70%,
and show that the corporation’s net cash flows are the same in either case. Of course, these
two Libor rates are only illustrative; as the reader may check, the net cash flows are the same
whatever the Libor rate on July 15. For the calculations, note that there are 92 days in the
three-month period between July 15 and October 15.

Case 1: Libor on July 15 Is 5.40%
In this case, as we saw in Example 6.1, the long position (here, the corporation) receives
$5,041.54 on July 15 in settlement from the FRA. Investing these receipts at the prevailing
Libor rate of 5.40% for three months, the corporation receives the following cash inflow on
October 15:

5,041.54 ×
 
1 + (0.054)

92

360

 
= 5,111.11 (6.21)

The corporation must also pay interest on the $5,000,000 loan taken on July 15 at Libor.
This interest amounts to

5,000,000 × (0.054)
92

360
= 69,000.00 (6.22)

Thus, the net cash outflow facing the corporation is

69,000 − 5,111.11 = 63,888.89 (6.23)

Case 2: Libor on July 15 Is 4.70%
As we saw in Example 6.1, the long position must now pay the short position an amount
of 3,787.83 on July 15. Suppose the corporation borrows this amount on July 15 for three
months at the Libor rate of 4.70%. The resulting cash outflow in three months is

3,787.83 ×
 
1 + (0.047)

92

360

 
= 3,833.33 (6.24)

In addition, the corporation also owes interest on the $5,000,000 loan taken at Libor on
July 15. This interest is

5,000,000 × (0.047)
92

360
= 60,055.56 (6.25)

Thus, the net interest cost the corporation incurs is

60,055.56 + 3,833.33 = 63,888.89 (6.26)

which is identical to (6.23).

Remark
In practice, such perfect hedges are infeasible since companies may not be able to borrow
or invest at Libor flat for odd cash flows. The actual hedge will be very good but involve
some slippage. This raises an interesting question: why are FRAs settled in discounted form
rather than at maturity, when the latter would allow companies to obtain better hedges?
One reason, suggested by Flavell (2002), is that discounted settlement is preferred by banks
because it reduces the bank’s credit exposure to the holder of the FRA. ■



Chapter 6 Interest-Rate Forwards and Futures 129

6.4 Eurodollar Futures

Eurodollar futures are the exchange-traded counterparts of FRAs in that they too are instru-

ments designed to enable investors to lock-in Libor rates for future investment or borrowing.

But while they are similar to FRAs in many ways, there are also important differences that

stem from their standardization.

For practical purposes, a eurodollar futures contract may be thought of as an instrument

that enables investors to lock in a Libor rate for a three-month period beginning on the expiry

date of the contract. (Precise definitions of the contract and its payoffs are offered further

below.) So, for example, for a futures contract expiring in September, the locked-in Libor

rate applies to the three-month period from September to December. At any point in time,

the CME and SGX (the two dominant exchanges in eurodollar futures trading) offer 44

expiry dates on eurodollar futures contracts: contracts expiring in March, June, September,

and December for each of the next 10 years plus contracts in the four nearest serial expiry

months outside the quarterly cycle. This means investors can lock in three-month rates as

much as 10 years out in the future.

Note the contrast with FRAs here. In an FRA, the investment/borrowing period can

be specified as the counterparties wish; for example, a 4 × 10 FRA locks in an invest-

ment/borrowing rate for a six-month period beginning in four months. In the eurodollar

futures contract, this period is standardized both in terms of length (three months) and in

terms of its starting date (one of the 44 standard expiry dates of the futures contract). Other

differences with FRAs will be pointed out as we go along.

A more detailed description of the contract and its use in hedging interest-rate risk

follows. But first, some remarks to put the contract into perspective.

A Historical Note
Eurodollar futures were not the first interest-rate futures contracts. The Treasury bill and

Treasury bond futures contracts launched in 1976 and 1977, respectively, had come earlier,

and the short-lived GNMA CDR futures contract discussed in Chapter 2 preceded both of

these.1 But while Treasury futureswere useful inmanaging interest-rate risk onUSTreasury

obligations, the volatile nature of the spread between Treasury borrowing rates and rates

on private money market instruments meant that they did not do nearly as well in hedging

private short-term liabilities.

In the late 1970s, the Chicago exchanges introduced futures contracts on private debt

instruments such as commercial paper (CP) and certificates of deposit (CDs). These efforts

ultimately floundered because therewas a lack of homogeneity in the instruments deliverable

at the contract’s maturity. The troubles of such large banks as Continental Illinois and

ChaseManhattan during this period showed that CDs issued by even large banks could have

dissimilar credit risk, while Chrysler’s near-bankruptcy experience in 1980 highlighted the

same problem for issuers of CP.

The eurodollar futures contract was introduced against this backdrop in December 1981.

In a short period of five years, the contract overhauled CD futures and other competitors to

become easily the money-market futures contract of choice, indeed to become one of the

largest traded futures contracts in theworld. So how did it handle the settlement obstacle that

earlier contracts had trippedover?The answer is simplicity itself.Unlike its predecessors that

1 Burghardt (2003) presents a detailed analysis of eurodollar futures including a discussion of their

evolution. The historical description here is based on his work.
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had required physical settlement of the contract (so homogeneity of the delivered instrument

became a matter of concern), eurodollar futures contracts proposed cash settlement of

the contract. The acceptance of this then-novel proposal by the CFTC had far-reaching

consequences. Among other things, it paved the way for other cash-settled futures contracts

such as stock-index futures that have subsequently enjoyed great popularity.

Trading Volume and Liquidity
Eurodollar futures contracts are consistently among the largest traded futures contracts in

the world. Open interest in all contract months combined exceeded 3 million contracts in

June 2000 and 4.5 million contracts in June 2002. Since each contract has a face value of

$1,000,000, these figures represent a total notional outstanding of several trillions of dollars.

A noteworthy feature of eurodollar futures contracts, and one that distinguishes them

from virtually all other futures contracts, is the high trading volume and liquidity along the

entire maturity spectrum. In particular, there is substantial volume and open interest even

in back-month contracts. In contrast, for example, almost all the open interest in Treasury

futures contracts is concentrated in the first two expiry months.

Contract Specification
As we have seen, the payoffs of an FRA are specified directly in terms of the difference

between a fixed interest rate and the actual realized Libor rate at maturity. Eurodollar futures

payoffs are specified somewhat differently, but the net effect works out to be roughly the

same. This segment describes the formal specification of the eurodollar futures contract.

The following segments then discuss how eurodollar futures may be used to lock in interest

rates and so to hedge borrowing or investment exposure.

The underlying unit in the eurodollar futures contract is a $1,000,000 three-month (or,

more precisely, 90-day) eurodollar time deposit (TD). Time deposits, unlike CDs, cannot be

transferred or traded, so cash settlement is the only option in the eurodollar futures contract.

The price of a eurodollar futures contract is not quoted in terms of the interest rate directly

but rather as 100 minus a three-month Libor rate expressed as a percentage. For example,

a price of 95.50 corresponds to a Libor rate of 100 − 95.50 = 4.50%. It is this interest

rate that gets locked-in via the futures contract as we explain below. Note that an increase

of 1 basis point (one-hundredth of a percentage point) in the interest rate corresponds to a

decrease of 0.01 in the price and vice versa.

As in any futures contract, long positions lose and short positions gain from a price

decrease. In the case of eurodollar futures, the contract specifies that every 0.01 decrease

in the price leads to a loss of $25 for the long position in the contract and a corresponding

gain of $25 for the short position. Why $25? Because that is the impact of a 1 basis point

change in interest rates on a 90-day $1,000,000 time deposit. That is, from (6.1), an increase

of 1 basis point in the interest rate increases the interest payable on a 90-day $1,000,000

deposit by

1,000,000 ×
 
0.0001 × 90

360

 
= $25

The price tick in the eurodollar futures contract is 1 basis point (i.e., a price move of

0.01), which has a dollar value of $25. The minimum price move on the expiring eurodollar

futures contract (the one currently nearest to maturity) is 1/4 tick or a dollar value of $6.25.

On all other eurodollar futures contracts, it is 1/2 tick (or $12.50).

Trading on a eurodollar futures contract halts at 11:00 am London time on the second

London bank business day immediately preceding the third Wednesday of the contract
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month. When trading in the contract ceases, the exchange sets the final settlement price of

the contract to 100minus the spot three-monthLibor rate, or,more precisely, to 100minus the

British Bankers Association Interest Settlement Rate (BBAISR) for three-month interbank

eurodollar TDs rounded to the nearest 1/10,000th of a percentage point. Thus, for example,

if the spot three-month rate is 4.60%, the final settlement price is just 100 − 4.60 = 95.40.

To compute the BBAISR, the BBA polls a given number of major banks in London (at least

8; for the eurodollar at the time of writing, 16 banks are polled) and asks them for rates

at which they could borrow in the interbank market. After rank-ordering the results, the

arithmetic average of the middle two quartiles forms the BBAISR. This fixing is done at

11:00 am London time.

Hedging Interest-Rate Risk Using Eurodollar Futures
Suppose it is currently December and you anticipate a three-month borrowing need for

$1,000,000 begining in June. Suppose also that you can borrow at Libor flat, and you wish

to hedge the risk of interest-rate changes between now and June. One option is to take a

long position in a 6 × 9 FRA with a principal of $1,000,000 and use this to lock in a Libor

rate for that period.

An alternative is to use eurodollar futures. You can then adopt the following strategy:

• Take a short eurodollar futures position today that expires in June.

• Borrow the required amount at whatever Libor rate prevails in June at expiry of the

futures contract.

To see the cash flows that result from this strategy, let P be the current contract price

and k = (100 − P)/100 the Libor rate (expressed, as usual, as a decimal) implied by the

current price. Let  denote the Libor rate prevailing in June at contract maturity. Then, the

change in interest rates in basis points is 10,000 (k −  ). So the cash outflow on the futures

contract is

25 × 10,000(k −  ) = 250,000 (k −  ) (6.27)

If d denotes the number of days in the three-month borrowing horizon, then the cash outflow

on account of the interest costs of borrowing is

1,000,000 ×
 
 × d

360

 
(6.28)

Adding (6.27) and (6.28), the total outflow is

250,000 (k −  ) +
 
1,000,000  × d

360

 
(6.29)

rearranging which, we get

250,000 k +
 
1,000,000  ×

 
d

360
− 1

4

  
(6.30)

In particular, when d = 90, the net cash flow from the hedging strategy is just

250,000 k (6.31)

This depends on only the fixed rate k locked in through the eurodollar contract and not on

the Libor rate that happens to prevail in June. Thus, we have a perfect hedge.
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Matters Are Not Quite That Simple . . .
There are two reasons why the hedge from this strategy will not be as perfect as expression

(6.31) suggests. One is that in practice, the three-month hedging horizon will typically have

91 or 92 days in it, not 90. In this case, the second term of (6.30) will be small (since

d/360 ≈ 1/4), but it will not be zero, so the hedge will be only approximate. We ignore

this problem to keep notation simple; that is, we treat the borrowing as a 90-day borrowing

from now on.

The second reason has to do with cash-flow timing. The cash flow (6.27) occurs at expiry

of the futures contract, which is the beginning of the loan period. The cash flow (6.28) is

interest on the borrowed amount, which occurs at the end of the loan period. Clearly, we

cannot ignore this and just add up these cash flows. Rather, we must evaluate both cash

flows at the same point in time.

So suppose wemove the former cash flow also to the end of the loan period by reinvesting

the quantity (6.27) for 90 days at the rate  . The cash outflow from futures resettlement

(6.27) then becomes

250,000 (k −  ) ×
 
1 +  90

360

 
(6.32)

With d = 90, the total interest cost on the borrowing (6.28) becomes 250,000  . Summing

these up, we see that the net cash flow at the end of the 90-day borrowing horizon is now

250,000 k +
 
250,000 (k −  ) ×  90

360

 
(6.33)

This cash flow has a term dependent on  , so the hedge is no longer perfect.

. . . but “Tailing” the Hedge Helps
In principle, there is a way to restore the perfect hedge: rather than use one full futures

contract in the hedging strategy, we use only α futures contracts, where α is given by

α = 1

1 +  90
360

(6.34)

This is called “tailing” the hedge. If we tail the hedge in this way, then the cash outflow from

futures resettlement is given by α times the quantity (6.32), which is simply 250,000 (k − ).
This restores a perfect hedge, since, from (6.28), the cost of a 90-day borrowing at the rate

 is 250,000  .

Unfortunately, we cannot do this in practice because the rate  is known only in June at

expiry of the futures contract and not in December when we are setting up the hedge.2 In

practice, therefore, we must rely on approximations. One way to proceed is to use α̂ futures

contracts where

α̂ = 1

1 + k 90
360

(6.35)

Here, k is the eurodollar futures rate at the time we enter into the contract. Loosely speaking,

(6.35) treats the observed eurodollar futures rate as a good predictor of the eurodollar futures

rate that will prevail at maturity of the contract. Of course, α̂ cannot ensure a perfect hedge,

but it usually provides a good approximation. The example below illustrates.

2 Note that the payoffs from FRAs are tailed using the factor (6.34)—this is the discount factor used to

bring FRA payoffs back to the maturity date of the FRA contracts. See expression (6.12).
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Example 6.5 Suppose it is currently December and you anticipate a three-month borrowing need for
$100,000,000 begining in June. Suppose also that you can borrow at Libor flat, and you
wish to hedge the risk of interest-rate changes between now and June using eurodollar
futures. Finally, suppose that the eurodollar price of the June contract is currently 92, so
the implied eurodollar rate is k = 8% = 0.08. We continue assuming that the three-month
borrowing horizon has 90 days.

From (6.35), the hedge ratio should be

α̂ = 1

1 + (0.08) 90
360

= 0.9804

so the hedging strategy you will follow is:

• Take a short eurodollar futures position in 98.04 contracts today that expire in June.

• Borrow the required amount at whatever Libor rate  prevails in June at expiry of the
futures contract.

(For purposes of illustration, we assume that one can take positions in fractional contracts.)
To see how well this hedge works, consider two possible values for the three-month Libor
rate  in June.

Case 1:  = 8.25%
From (6.28), the cash outflow in September on the three-month borrowing made in June is
$250,000  per $1,000,000 of borrowing. (Recall that we are assuming d = 90.) Thus, the
total cash outflow in September on account of the borrowing is

100 × 250,000  = 2,062,500 (6.36)

In addition, there are the cash flows from the eurodollar futures positions. From (6.27), there
is a cash inflow in June per contract of 250,000 ( − k) = 250,000× 0.0025 = 625. Moving
this amount to September by investing it at the Libor rate of 8.25% results in a cash inflow
in September per futures contract of

625 ×
 
1 + (0.0825)

90

360

 
= 637.8906

Since we have a position in 98.04 futures contracts in all, the net cash inflow in September
on account of the futures contracts is

637.891 × 98.04 = 62,538.30 (6.37)

Subtracting (6.37) from (6.36), the net cash outflow in September is 1,999,961.70.

Case 2:  = 7.75%
In this case, the cash outflow in September on account of the June borrowing is

100 × 250,000  = 1,937,500 (6.38)

However, there is now a cash outflow on the futures position: per futures contract, this
outflow in June is 250,000 (k −  ) = 625. Moving this amount to September at the Libor
rate of 7.75%, there is a cash outflow in September per futures contract of

625 ×
 
1 + (0.0775)

90

360

 
= 637.11
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Since there is a position of 98.04 futures contracts in all, the total cash outflow on account
of the futures positions is

637.11 × 98.04 = 62,461.70 (6.39)

Summing (6.38) and (6.39), the total cash outflow in September is 1,999,961.70, the same
as the cash flow in Case 1. ■

Remark: Daily Marking-to-Market and PVBP Analysis
In the analysis above, we have implicitly assumed that the gains/losses on the futures

positions are realized only at the maturity of the contracts (in the example, for instance,

these cash flows occur in June). In reality, gains and losses in futures markets are realized

on a daily basis. In Appendix 6B, we examine how to design a hedging strategy that takes

this into account. The analysis is based on looking at the present value of the effect of a one-

basis-point change in interest rates on (a) the eurodollar futures position used for hedging

and (b) the borrowing that is being hedged. The objective is to choose the number of futures

contracts so that these effects cancel out, leaving the value of the position unchanged. This

is called PVBP analysis, short for the present value of a basis point.

FRAs vs. Eurodollar Futures: The “Convexity Bias”
While FRAs and eurodollar futures are very similar instruments, there are some important

differences between them. One is the so-called “convexity bias,” which we describe in this

segment.

Consider the following setting. Suppose we anticipate today that in six months, we will

need to borrow $100 million for a three-month period. Suppose too that we can borrow at

Libor flat. We consider the cash flows from two situations: (i) we hedge the borrowing with

a position in a long (6 × 9) FRA with a principal value of $100 million, and (ii) we hedge

the borrowing with a short position in 100 α̂ six-month eurodollar futures contracts, where

α̂ is given by (6.35). Suppose that in both cases, the locked-in rate is k.

Consider the FRAfirst. If the actual three-month interest rate in six-months’ time is  and

d is the actual number of days in the three-month borrowing horizon, then expression (6.12)

shows that the FRA leads to a cash inflow in six months of

100,000,000 ×
 
( − k) × d

360

1 +  × d
360

 
(6.40)

If we take d = 90 as the eurodollar futures contract implicitly assumes, this becomes

100,000,000 ×
 
( − k) × 90

360

1 +  × 90
360

 
(6.41)

Nowconsider the eurodollar futures contract. If the actual three-month rate in six-months’

time is  , the difference between the locked-in rate k and the actual rate  expressed in basis

points is

( − k) × 10,000

Per basis point change, each short futures contract provides a cash inflow of $25. Therefore,

the total cash inflow received from the short eurodollar positions is

100 α̂ × [( − k) × 10,000 × 25] (6.42)
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Substituting for α̂ from (6.35) and rearranging and rewriting the resulting expression, this

is exactly the same thing as

100,000,000 ×
 
( − k) × 90

360

1 + k 90
360

 
(6.43)

For any value of  , the amount (6.43) under eurodollar futures exceeds the amount (6.41)

under the FRA, i.e., either the eurodollar futures leads to a greater cash inflow or it leads

to a smaller cash outflow. This is the so-called “convexity bias.”

Before we show that the difference between (6.43) and (6.41) is positive in general, we

illustrate it with numbers for two cases. In both cases, we take the locked-in rate to be

k = 0.08.

Case 1: � = 11%

In this case, the cash flow from the FRA is given by

100,000,000 ×
 
(0.11 − 0.08) × 90

360

1 + (0.11) × 90
360

 
= +729,927.01

The cash flow from the eurodollar futures position is

100,000,000 ×
 
(0.11 − 0.08) × 90

360

1 + (0.08) × 90
360

 
= +735,294.12

The difference between the two is $5,367.11 in favor of the eurodollar futures.

Case 2: � = 5%

Now, the cash flow from the FRA is given by

100,000,000 ×
 
(0.05 − 0.08) × 90

360

1 + (0.05) × 90
360

 
= −740,740.74

while the cash flow from the eurodollar futures position is

100,000,000 ×
 
(0.05 − 0.08) × 90

360

1 + (0.08) × 90
360

 
= −735,294.12

The difference between the two is $5,446.62, again in favor of the eurodollar futures.

It is not hard to show directly from (6.41)–(6.43) that the cash flows are always biased

in favor of eurodollar futures. Subtracting (6.41) from (6.43), we obtain

100,000,000 ×
 
( − k) × 90

360

1 + k 90
360

− ( − k) × 90
360

1 +  90
360

 

Taking a common denominator for the terms inside the parentheses, some algebra shows

that this difference is

100,000,000 ×
 

( − k)2 × 1
16

(1 +  90
360

)(1 + k 90
360

)

 

which is, of course, always positive regardless of  .

Remark

The convexity bias has a simple mathematical source. The payoff (6.42) from eurodollar

futures is a linear function of the actual Libor rate  that prevails at maturity of the contract.
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On the other hand, the term  appears in both the numerator and denominator of the FRA

payoff (6.40), so the FRA payoff is not linear in  . In fact, this FRA payoff is concave in  ,

so the difference between eurodollar and FRA payoffs is convex in  .3

The convexity bias shows that eurodollar futures rates cannotbe the same as theFRArates

for the corresponding period. This convexity bias is typically small at short maturities (in

the example above, it is of the order of about $5,000 on a $100million borrowing), but it can

be substantial at longer maturities. For a more detailed treatment of this topic, see Burghardt

and Hoskins (1995a), Burghardt and Hoskins (1995b), Pozdnyakov and Steele (2001), or

Burghardt (2003).

6.5 Treasury Bond Futures

TheUSTreasury is chargedwith the responsibility of borrowingmoney fromcapitalmarkets

to meet government expenditures. Acting on behalf of the Treasury, the Federal Reserve

Board regularly auctions fixed-income securities of various maturities. Treasury securities

with less than a year tomaturity are known as Treasury bills; thosewithmaturities between 2

and 10 years are called Treasury notes. The term Treasury bonds refers to the longest-dated

of Treasury securities, those with a maturity of 30 years.

Begining in 1976, futures contracts have been introduced in US exchanges on many of

these instruments. In this section, we look at one of the most popular of these contracts—the

Treasury bond futures contract. The two sections following look at Treasury note futures

and Treasury bill futures, respectively.

Treasury bond futures were introduced by the CBoT in 1977 and enjoyed great success

almost immediately. For most of the period since then, they have been the instrument of

choice for hedging long-term interest-rate risk. However, the decision of the US Treasury

to de-emphasize issuance of 30-year bonds has led to a fall-off in the importance of this

contract (although thismay change if andwhen the Treasury reintroduces the 30-year bond).

US Treasury bonds are 30-year fixed-income obligations of the US government that bear

a semiannual coupon. Treasury bond prices are quoted for a face value of $100 and are

measured in dollars and 32nds of a dollar rather than dollars and cents. That is, a quote

of 99-05 means the quoted price is 99 5
32

for a bond with a face value of $100. The actual

cash price paid for the bond is the quoted price plus the accrued interest on the bond. The

accrued interest is calculated using an Actual/Actual day-count convention.

To illustrate, suppose, for example, that the quoted price for a 7% coupon US Treasury

bond on October 13 is 100-05. Suppose that the last coupon was paid on June 5 and the next

coupon is due on December 5. There are 130 days between June 5 and October 13, and 183

days between June 5 and December 5. Since each coupon is of size $3.50 (per face value

of $100), the accrued interest is

130

183
× 3.50 = 2.48

Thus, the cash price of the bond is 100 5
32

+ 2.48 = 102.64. For a bond of face value

$100,000, this translates to a cash price of $102,640.

3 A function f (x) is concave in x if the second derivative of f with respect to x is negative for all x; it

is convex in x if this second derivative is positive for all x. If f is a concave function of x, then the

negative of f is a convex function of x. (For example, the function f (x) = −x2 is a concave function
of x, and the function g(x) = x2 is a convex function of x.) Visually speaking, convex functions are

bowl-shaped (they can “hold water”), while concave functions are like inverted bowls.
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TABLE 6.1 Futures Contract Specifications

This table compares the specifications of five futures contracts: the US Treasury bond futures contract, the US
Treasury note futures contract, the bund futures contract, the long gilt futures contract, and the Japanese gov-
ernment bond (JGB) futures contract. The numbers 3, 6, 9, and 12 in the Expiry months row stand for March,
June, September, and December, respectively.

Treasury Bond Treasury Note Long Gilt Bund JGB

Face value $100,000 $100,000 £100,000 €100,000 ¥100 million
Standard coupon 6% 6% 7% 6% 6%

Minimum maturity 15 years 6 1
2
years 8 3

4
years 8 1

2
years 7 years

Maximum maturity 30 years 10 years 13 years 101
2
years 11 years

Expiry months 3,6,9,12 3,6,9,12 3,6,9,12 3,6,9,12 3,6,9,12

Specification of the Futures Contract
The success of the Treasury bond futures contract is often attributed to its specification.

The contract has been copied widely. The Treasury note futures contract on the CBoT, the

UK gilt futures contract on Euronext.liffe, the German government bond or “bund” futures

contract on Eurex and Euronext.liffe and the Japanese government bond futures contract on

the Tokyo Stock Exchange and Euronext.liffe all have designs based on the Treasury bond

futures contract. In particular, each defines a standard coupon and conversion factors in a

similar manner to the Treasury bond futures contract. Table 6.1 lists some other features of

these contracts.

The “standard” bond in the Treasury bond futures contract is one with a face value of

$100,000, at least 15 years to maturity or first call, and a coupon of 6%. (Prior to March

2000, the standard coupon was 8%.) The quoted price for the futures contract uses the same

convention as the cash market: prices are quoted in dollars and 32nds of a dollar per face

value of $100. Since the contract provides for a number of delivery options, the actual price

the long position has to pay depends on the delivered bond as well as the quoted price.

The Quality Option

The most important of the delivery options in the contract is the “quality option” that

allows the short position to substitute any coupon for the standard 6%. The price that the

long position has to pay is the quoted futures price times a conversion factor that depends

on the bond that is actually delivered. The conversion factor is calculated by discounting

the cash flows from the delivered bond at the standard 6% rate. The discounting process

uses semiannual compounding (i.e., we discount at 3% per six months) since coupons on

Treasury bonds are paid semiannually.

For example, suppose the bond that is delivered is an 8% 20-year bond. On a face value of

$100, this bond will result in cash flows of $4 every six months for 20 years and a repayment

of the principal amount of $100 after 20 years. For simplicity, suppose the last coupon was

just paid. Then, the conversion factor is

1

100

 
4

1.03
+ 4

1.032
+ · · · + 4

1.0340
+ 100

1.0340

 
= 1.2311 (6.44)

Thus, the long position has to pay the short position 1.2311 times the quoted price.

It is easy to see that if the delivered bond:

• has a coupon equal to the standard 6%, the conversion factor will be equal to 1 since we

are then discounting 6% cash flows at a 6% rate.
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• has a coupon higher than the standard 6% (so is of “superior” quality to the standard),

the conversion factor will be greater than 1.

• has a coupon less than the standard 6% (so is of “inferior” quality to the standard), the

conversion factor will be less than 1.

In practice, delivered bonds may have a wide range of maturities. The CBoT uses a

method of calculating the conversion factor that involves rounding off the maturity of the

bonds to the nearest quarter (i.e., three months). If after the rounding off the bond has a

maturity that is an integer multiple of six months, then the bond is treated as if the last

coupon was just paid and the next coupon is due in six-months’ time. The calculations

then proceed as in the above example. If after the rounding off the bond’s maturity leaves a

three-month remainder when divided by six months, then the next coupon is assumed to be

paid in three-months’ time, so accrued interest for the first three months must be subtracted

from the price. The details and a general formula for calculating the conversion factor are

provided in Appendix 6C.

Other Options

Besides the quality option, theTreasurybond futures contract also provides the short position

with other delivery options. One of these is the “wild card” option. Treasury bond futures

trading on the CBoT halts at 2 pm, and the settlement price is determined at this point.

However, the clearinghouse accepts delivery from the short position until 8 pm. So the

short position has time from 2 pm to 8 pm to decide whether to deliver that day at the fixed

settlement price, and if so, which of the deliverable bonds to deliver. This is the wild card

option. If the cash prices of the deliverable bonds experience a significant decline after 2 pm

and before 8 pm, the option becomes valuable to the short position.

If the wild card option is not exercised on a particular day, the short position again has

a wild card option the next day based on the next day’s settlement price. Delivery in the

Treasury bond futures contract can take place on any day during the delivery month. There

are roughly 15 trading days during this month, so the contract provides the short with about

15 of these options in all.

A third option, and one similar to the wild card option, is the end-of-month option.

Trading in the Treasury bond futures contract closes seven business days prior to the last

business day of the delivery month, and the final settlement price is fixed at this point.

However, the clearinghouse accepts delivery until the end of the month, so any decline in

bond prices during this period accrues to the short’s advantage. Of course, the price of the

futures contract will reflect the short’s holding of these options and will be lower than if

these options were not present.

Implications for Delivery

The presence of these options gives the short position a powerful incentive to delay delivery

until the end of the contract period. Broadie and Sundaresan (1992) look at the empirical

patterns of delivery on this contract. In accordance with intuition, they find that when the

yield curve is normal (long-term rates are higher than short-term rates), 90% of deliveries

take place in the last five days of the delivery month. However, with inverted yield curves,

there is negative carry and this militates against late delivery. In this case, deliveries tend

to take place earlier in the delivery month.

Pricing Futures on Treasury Bonds
It is mathematically very complex to take the delivery options into account in pricing a

Treasury bond futures contract. If we ignore the delivery options and assume there is only
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one deliverable bond (or we know which bond it is that will be delivered), then matters are

simplified considerably. Treasury bond futures may then be priced using the known cash

cost of carry formula F = erT (S + M) where S denotes the current price of the underlying

bond and −M is the present value of the coupons that will be received from the bond during

the life of the futures contract.

6.6 Treasury Note Futures

US Treasury notes are fixed-income obligations of the US government with maturities

between 2 and 10 years and with a semiannual coupon. Futures on 10-year US Treasury

notes were introduced by the CBoT in 1982. More recently, futures on 5-year US Treasury

notes were also introduced by the CBoT. Both contracts have been received well (see

Table 2.2 on their trading volumes). The former, in particular, has overtaken the Treasury

bond futures contract as the Treasury futures contract of choice on long-maturity Treasury

instruments (although this may change if and when the Treasury reintroduces the 30-year

bond).

Treasury note futures are similar in their design and specification to Treasury bond

futures, so the analysis above applies to Treasury notes futures too. The main difference

between the bond futures contract and the notes futures contracts is in the admissible

maturities of the deliverable instruments. In the case of the 10-year Treasury notes futures

contracts, deliverable instruments are US Treasury notes with remainingmaturities between

61
2
and 10 years. In the case of the 5-year Treasury notes futures contract, US Treasury notes

with remainingmaturities between 4 years 2 months and 5 years 3 months may be delivered.

6.7 Treasury Bill Futures

Treasury bill futures were introduced by the CME in 1976 and were the first futures con-

tract on Treasury securities. Popular at one time, their importance has waned since the

introduction of eurodollar futures.

Treasury bills are obligations of the US government and are issued with maturities of

91, 182, or 364 days (13, 26, or 52 weeks). Treasury bills bear no coupon; rather, they are

issued at a discount to their face value and accrete to par at maturity.

Prices on Treasury bills are quoted on a face value of $100. The quoted price is not the

cash price (i.e., how much it costs to buy the Treasury bill) but rather what is called the

discount rate on the Treasury bill. To motivate this convention, suppose the cash price of a

Treasury bill with maturity in d days and a face value of $100 is P . Then, the cash return

from investing in this Treasury bill is $(100 − P). This cash return is “annualized” in the

money market day-count convention by multiplying it by 360/d. This annualized return is

the quoted price Q:

Q = (100 − P)
360

d
(6.45)

Q is referred to as the discount rate on the Treasury bill. From (6.45), given a quoted price

of Q, the cash price P of a Treasury bill is

P = 100 − Q
d

360
(6.46)



140 Part One Futures and Forwards

For example, suppose a 91-day Treasury bill has a quoted price of 4.00. Then the cash

price of the Treasury bill is

P = 100 − (4.00)
91

360
= 98.989

Specification of the Futures Contract
The Treasury bill futures contract on the CME requires the short position to deliver bills

with a face value of $1,000,000 and 90 days to maturity. The delivery options in the contract

allow for the delivery of bills with 90, 91, or 92 days to maturity.

The Treasury bill futures price quote convention is similar to the cash market convention

in its use of a discount rate. However, the quoted price here is 100 minus the discount rate,

not the discount rate itself. Given a quoted price of (say) 100 − Q, the invoice price on the

futures (the amount the short position will receive) is determined by expression (6.46) with

d being the days left to maturity on the delivered instrument.

For example, suppose the quoted price is 94.60. Then, the discount rate is 100−94.60 =
5.40. If a 90-day Treasury bill is delivered, the short receives

100 − (5.40)
90

360
= 98.65 (6.47)

per $100 of face value delivered. Since the delivered face value must be $1,000,000, the

short position receives $986,500.

Pricing Futures on Treasury Bills
Since Treasury bills are zero-coupon instruments, we can price futures/forward contracts

on them using the zero cost-of-carry formula. Let T denote the maturity of the futures

contract and T ∗ denote the maturity of the underlying Treasury bill. (We must obviously

have T ∗ ≥ T .) Let r and r∗ denote the interest rates applicable to horizons of length T

and T ∗, respectively, expressed in continuously-compounded terms. Finally, let P be the

current price of the T ∗-maturity Treasury bill. Assume the bill has a face value of $100.

The futures price F is given by

F = erT P (6.48)

We can make (6.48) sharper. Since P is itself a zero-coupon instrument with a face value

of $100, we must have P = 100 e−r∗T ∗
. Therefore, the futures price can be expressed as

F = erT × 100 e−r∗T ∗ = 100 erT −r∗T ∗
(6.49)

6.8 Duration-Based Hedging

The purpose of this section is to describe a special hedging strategy called duration-based

hedging used to hedge portfolios of fixed-income instruments (e.g., bonds) with fixed-

income futures. Duration-based hedging exploits the observation that both spot and futures

prices in this case depend on a common underlying variable—the level of interest rates.

Intuitively, duration-based hedging looks at howmuch a change in interest rates would affect

(a) the value of the portfolio we are looking to hedge, and (b) the price of the interest-rate

futures contract we are using for hedging. We then choose the number of futures contracts

to be used in the hedge so that these value changes offset each other.

To implement a scheme of this sort, we need to be able to measure the sensitivity of

portfolio values and futures prices to changes in interest rates. We address these issues

first. Duration is most naturally presented in the context of a continuous-compounding

convention for interest rates, so we adopt that convention in the remainder of this chapter.
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The Notion of Duration
Let a portfolio of bonds be given. Suppose that the portfolio will result in a cash flow of ci

in ti years, i = 1, . . . n. Suppose also that the interest rate applicable to a period of length

ti years is ri in continuously-compounded terms. Then, the present value of the i-th cash

flow is e−ri ti ci , so the current value P of the portfolio is

P = c1e
−r1t1 + · · · + cne

−rn tn (6.50)

The weight wi contributed by the i-th cash flow to the overall portfolio value is

wi = ci e
−ri ti

P
(6.51)

The duration of the portfolio, denoted DP , is defined to be its weighted maturity:

DP = w1t1 + · · · + wntn (6.52)

The duration is a measure of the portfolio’s sensitivity to interest-rate changes. Namely,

a small parallel shift dr in the yield curve results in a change of approximately  P in the

portfolio value given by

 P = −DP P dr (6.53)

Appendix 6D explains why this is the case.

Thus, for example, suppose the portfolio consists solely of a zero-coupon bond. Then, the

duration of the portfolio is just the maturity t of the zero-coupon bond. In other words, every

basis point increase in interest rates will decrease the value of the portfolio by −t P (0.01).

Two points should be stressed here. First, the accuracy of duration as a measure of

sensitivity is only approximate. It is very accurate for small changes in the interest rate (say,

a few basis points) but becomes progressively less accurate as the size of the interest-rate

change increases. Second, it is an important part of the definition that all interest rates shift

by the same amount dr , i.e., that the yield curve experiences a parallel shift.

The Duration of a Futures Contract
Consider a futures contract written on a specific underlying bond. Let F be the current

futures price. How does F change when interest rates change by a small amount dr?

If we could define a duration measure for the bond futures price (denoted, say, DF ), then,

analogous to (6.53), the change  F in futures price would be

 F = −DF F dr (6.54)

Canwe, in fact, define such ameasure DF?The answer, it turns out, is yes! It can be shown

that the duration of a bond futures contract is simply the duration of the bond underlying

the futures contract but measured from the date of maturity of the futures contract. A proof

of this result may be found in Appendix 6E.

For example, consider the Treasury bill futures contract on the CME. At maturity of

the contract, the short position is required to deliver to the long position US Treasury bills

with a face value of $1 million and with 90 days left to maturity. Thus, the underlying in

this contract is a zero-coupon bond maturing three months after the futures contract. When

measured from the maturity date of the futures contract, the duration of this underlying

asset is simply the duration of a three-month zero-coupon bond, which, from (6.52), is 1/4.

Thus, the duration DF of the Treasury bill futures contract is 1/4.
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Duration-Based Hedging
Suppose we have a portfolio of bonds worth P with duration DP . Suppose that we wish

to protect ourselves from changes in the value of this portfolio over some given horizon.

Finally, suppose that we have chosen for hedging an interest-rate futures contract whose

current price is F . For specificity, assume this is a futures contract written on a bond.

How many futures contracts should we use? Consider a position of H contracts where

H > 0 denotes a long position in the futures and H < 0 a short position. Suppose that

interest rates shift by a small amount dr , and that, as a consequence, (a) the futures price

changes by an amount F , while (b) the portfolio value changes by an amount P . The net

change in the value of our position is then

 p + H  F (6.55)

Thus, for H to be a good hedge, we would like it to satisfy

 p + H  F = 0 (6.56)

or, what is the same thing,

H = − P

 F

(6.57)

Equation (6.57) states that to identify the optimal size of the futures position, we need

to know the changes P and F in portfolio value and futures prices, respectively, that are

caused by the interest-rate change dr . But these quantities are easily calculated. If DP and

DF denote the respective durations of the portfolio and the futures, then we have

 P = −DP P dr (6.58)

 F = −DF F dr (6.59)

Combining equations (6.57)–(6.59), we have

H ∗ = − P

 F

= − DP P dr

DF F dr
= − DP P

DF F
(6.60)

The hedging strategy given by expression (6.60) is called a duration-based hedging

strategy. In words, the strategy states that the optimal size of the futures position can be

determined from four variables:

1. The current value of the portfolio P .

2. The duration of the portfolio DP .

3. The current futures price F .

4. The duration of the futures contract DF .

Example 6.6 Suppose we are managing a portfolio of bonds whose current value is P = $5,000,000
and whose duration is  P = 1. Suppose also that we wish to hedge this portfolio using
Treasury bill futures. Finally, suppose that the current futures price is F = $990,000. How
many futures contracts should we use?

From what we have seen in Section 6.8, the duration of the Treasury bill futures contract
is 1/4. Therefore, from (6.60), the optimal hedge size is

H ∗ = − (1)(5,000,000)

(0.25)(990,000)
= −20.20 (6.61)

which is, approximately, a short position in 20 contracts. ■
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Potential Problems in Duration-Based Hedging
There are some problems that could result in duration-based hedging not working well in

practice. We review some of these potential pitfalls here.

First, duration as a sensitivity measure has two shortcomings. It works well only for

small interest-rate changes and it presumes parallel shifts in the yield curve. Duration-based

hedging implicitly involves the same assumptions. To the extent that these assumptions are

violated, duration-based hedging schemes will not perform well.

Careful choice of the futures contract can mitigate some of these problems. For instance,

suppose the portfolio being hedged consists of bonds with roughly the same maturity. If

we use a futures contract whose duration is “close” to the duration of these bonds, this will

ensure that the portfolio value and the futures price depend on similar interest rates. If the

portfolio consists of a large number of disparate bonds, we can separate it into blocks of

roughly similar maturity and hedge each block separately with a futures contract matching

it in duration.

Another problem in implementing a duration-based hedging scheme with a bond futures

contract is that the duration DF of the futures contract may be hard to identify on account of

delivery options in the futures contract. For instance, in the Treasury bond futures contract

on the CBoT, the short position may deliver any bond with at least 15 years to maturity (or

first call) and any coupon. Using the duration of the standard bond in the contract is also

problematic since the standard bond specifies only a coupon rate; its set of possiblematurities

remains large. One alternative in such a situation is to estimate the likely cheapest-to-deliver

bond and use its duration.

6.9 Exercises 1. Explain the difference between the following terms:

(a) Payoff to an FRA.

(b) Price of an FRA.

(c) Value of an FRA.

2. What characteristic of the eurodollar futures contract enabled it to overcome the settle-

ment obstacles with its predecessors?

3. How are eurodollar futures quoted?

4. It is currently May. What is the relation between the observed eurodollar futures price

of 96.32 for the November maturity and the rate of interest that is locked-in using the

contract? Over what period does this rate apply?

5. What is the price tick in the eurodollar futures contract? To what price move does this

correspond?

6. What are the gains or losses to a short position in a eurodollar futures contract from a

0.01 increase in the futures price?

7. You enter into a long eurodollar futures contract at a price of 94.59 and exit the contract

a week later at a price of 94.23. What is your dollar gain or loss on this position?

8. What is the cheapest to deliver in a Treasury bond futures contract? Are there other

delivery options in this contract?

9. Describe the standard bond in each of the following contracts: (a) Treasury bond futures,

(b) 10-year Treasury note futures, (c) 5-year Treasury note futures, and (d) Treasury

bill futures.
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10. Describe the conversion factor that applies if the delivered bond in a Treasury bond

futures contract is different from the standard bond.

11. Explain the notion of duration of a bond. Under what conditions is this measure reason-

ably accurate?

12. How does one measure the duration of a futures contract? That is, how is the duration

of a futures contract related to the duration of the underlying bond?

13. Explain the principles involved in duration-based hedging. How does the computation

of the hedge ratio here differ from that of the minimum-variance hedge computation?

14. On a $1,000,000 principal, 91-day investment, what is the interest payable if we use an

Actual/365 basis? What is the interest if the basis is Actual/360?

15. If the six-month interest rate is 6% and the one-year interest rate is 8%, what is the rate

for an FRA over the period from six months to one year? Assume that the number of

days up to six months is 182 and from six months to one year is 183.

16. If the three-month (91 days) Libor rate is 4% and the six-month (183 days) rate is 5%,

what should be the 3 × 6 FRA rate? If, at the end of the contract, the three-month Libor

rate turns out to be 5%, what should the settlement amount be?

17. In Japan, if the three-month (91 days) interbank rate is 1% and the six-month (183 days)

interbank rate is 0.25%, what is the 3 × 6 FRA rate? Is this an acceptable rate? Why or

why not?

18. If you expect interest rates to rise over the next three months and then fall over the three

months succeeding that, what positions in FRAs would be appropriate to take? Would

your answer change depending on the current shape of the forward curve?

19. A firm plans to borrow money over the next two half-year periods and is able to obtain a

fixed-rate loan at 6% per annum. It can also borrow money at the floating rate of Libor

+ 0.5%. Libor is currently at 4%. If the 6 × 12 FRA is at a rate of 6%, find the cheapest

financing cost for the firm.

20. You enter into an FRA of notional 6 million to borrow on the three-month underlying

Libor rate six months from now and lock in the rate of 6%. At the end of six months, if

the underlying three-month rate is 6.6% over an actual period of 91 days, what is your

payoff given that the payment is made right away? Recall that the ACT/360 convention

applies.

21. You have entered into the 6 × 9 FRA above at the rate of 6%. After three months, the

FRA is now a 3× 6 FRA. If the three-month Libor rate is 5%, and the nine-month Libor

rate is 7%, what is the current value of the FRA? Assume that the number of days from

three to six months is 92.

22. Given a 3× 6 FRA with a rate of 10% and a time interval between three and six months

of 92 days, plot the settlement amount if the three-month rate after three months ends

up anywhere from 1% to 20%. Is your plot linear, convex, or concave? Why? If you are

using FRAs to hedge your borrowing risk, does the shape of the payoff function cause

you concern and why?

23. You anticipate a need to borrow USD 10 million in six-months’ time for a period of

three months. You decide to hedge the risk of interest-rate changes using eurodollar

futures contracts (=90 days). Describe the hedging strategy you would follow. What if

you decided to use an FRA instead?

24. In the question above, suppose that the underlying Libor rate for three months after

six months (as implied by the eurodollar futures contract price) is currently at 4%. Say
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the underlying period is 91 days. Using the same numbers from the previous question

and adjusting for tailing the hedge, how many futures contracts are needed? Assume

fractional contracts are permitted.

25. Using the same numbers as in the previous two questions, compute the payoff after six

months (i.e., at maturity) under (a) an FRA and (b) a eurodollar futures contract if the

Libor rate at maturity is 5%. Also compute the payoffs if the Libor rate ends up at 3%.

Comment on the difference in payoffs of the FRA versus the eurodollar futures.

26. The “standard bond” in the Treasury bond futures contract has a coupon of 6%. If,

instead, delivery is made of a 5% bond of maturity 18 years, what is the conversion

factor for settlement of the contract?

27. Suppose we have a flat yield curve of 3%.What is the price of a Treasury bond of remain-

ing maturity seven years that pays a coupon of 4%? (Coupons are paid semiannually.)

What is the price of a six-month Treasury bond futures contract?

28. What is the price of a Treasury bill with a discount rate of 6% and maturity of 182 days?

What is the price of a 91-day futures contract on the 91-day Treasury bill if the 91-day

Treasury bill is trading at 95?

29. In the previous question, write down an expression for the payoff of the futures contract

if after 91 days the discount rate of the remaining 91-day Treasury bill varies from 1%

to 8%. Is the payoff function linear, convex, or concave? Why?

30. Suppose you own a zero-coupon bondwith face value $3million thatmatures in one year.

The bond is priced off the continuously compounded zero-coupon rate that is currently at

r = 7%. Suppose you want to hedge the price of the bond six months from now using the

three-month eurodollar futures contract that expires in six-months’ time, assuming that

the rate at that time remains unchanged for the shorter maturity. Howmany contracts will

you need to trade to construct this hedge? Can you explain intuitively why this number

is in the ballpark expected?

31. If we wish to hedge a bond that pays a cash flow of 2 million after six months and another

cash flow of 102million after twelve months, suggest a hedging scheme using eurodollar

futures contracts. Assume that the bond is priced on a semiannual compounding basis

and has a current yield to maturity of 4% per annum.

32. Qualitatively discuss how you would hedge a portfolio of bonds using eurodollar futures

contracts.

33. (Difficult) Assume that the yield curve is flat at 6%. All bonds pay semiannually. Bond

A has a coupon of 5.5% and a maturity of seven years. Bond B has a coupon of 6.2%

and a maturity of five years. We wish to short bond B to offset the risk (duration-based

hedging) of a long position in bond A. How many units of bond B do we need to short

for every unit of bond A to achieve this?

34. Refer to the previous question. A futures contract on bond B trades as well. What is

the price of the one-year bond futures contract on bond B? How many units of this

contract do we need to short to offset a one-unit long position in bond A over the next

year?

35. We are given a portfolio of bonds with value P = 100 and duration DP = 1. The

six-month Treasury bill future trades at price F1 = 95 and duration DF1 = 0.4. Also,

the twelve-month Treasury bill future trades at price F2 = 92 and duration DF2 = 0.9.

Suggest a duration-based hedging strategy for portfolio P . State clearly the assumptions

for your choice.
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36. The following market-based FRA rates are provided.

Period (months) Forward Rates (%)

0–6 3.00
6–12 4.00

12–18 5.00
18–24 6.00

Answer the following questions:

(a) Find the price of a two-year maturity security with a coupon of 4.5%.

(b) Find the price of a six-month bond future on this bond.

(c) What is the price of a twelve-month bond future on this bond?

(d) Find the durations of all the three instruments above.

(e) If we invest $100 in the two-year bond, then how many units of the two futures

contracts should we buy such that we have equal numbers of units in each contract,

and we optimize our duration-based hedge?

(f) After setting up the hedge, the next instant, the entire forward curve shifts up by 1%

at all maturities. What is the change in the value of the hedged portfolio? Is it zero?

If not, explain the sign of the change.
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Appendix 6A

Deriving the Arbitrage-Free FRA Rate
Let the current time be date 0. Consider a T1 ×T2 FRA entered into today.We are to identify

the value of the fixed rate k in the FRA that will make the contract have zero value to both

parties.

From expression (6.12), the payoff to the long position in an FRA at time T1 is

Payoff to long position = ( − k) × d
360

1 +  d
360

× P (6.62)

where  is the realized floating rate on date T1 for the period [T1, T2]. For any given k, we

identify the present value at time 0 of these payoffs to the long position, and then choose k

so that the present value is zero.

To this end, for any T , let B(T ) denote the present value at date T of $1 receivable at

time T . As the first step, add and subtract the principal amount P to the numerator of (6.62)

to obtain

Payoff to long position = P + P d
360

− P − Pk d
360

1 +  d
360

(6.63)

Expression (6.63) can be separated into two parts:

P + P d
360

1 +  d
360

− P + Pk d
360

1 +  d
360

= P − P
1 + k d

360

1 +  d
360

(6.64)

The first part of this cash flow, P , represents a certainty cash inflow at time T1. The second

part is an outflow of uncertain amount viewed from time 0 since the floating rate  is not

known until T1. However, regardless of the realized value of  , if this amount is invested at

rate  at time T1, it grows to the certainty amount

P
1 + k d

360

1 +  d
360

×
 
1 +  d

360

 
= P

 
1 + k

d

360

 
(6.65)

Thus, the uncertain cash outflow at time T1 in (6.64) is equivalent to the certainty outflow at

time T2 of the amount on the right-hand side of (6.65). This means that, viewed from time 0,

the cash flow (6.62) from the FRA is equivalent to the sum of the following two quantities:

1. A certainty inflow of P at time T1.

2. A certainty outflow of P (1 + k (d/360)) at time T2.

The time-0 present value of these outflows is just

B(T1) P − B(T2) P

 
1 + k

d

360

 
(6.66)

Expression (6.66) is the value of a general FRA with fixed rate k and an investment period

beginning in T1 months and ending in T2 months. At inception of a T1 × T2 FRA, this value

is zero. Setting it equal to zero and solving for k gives us the arbitrage-free FRA price as

k∗ = B(T1) − B(T2)

B(T2)
× 360

d
(6.67)
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Appendix 6B

PVBP-Based Hedging Using Eurodollar
Futures
The analysis of hedging using eurodollar futures in Section 6.4—in particular, the analy-

sis leading to expression (6.35) and the example following—assumed implicitly that the

gains/losses on the futures positions are realized only at the maturity of the contracts (in

the example, for instance, that these cash flows occur in June). In reality, gains and losses

in futures markets are realized on a daily basis. We examine here how to design a hedging

strategy that takes this into account.

For specificity, continue assuming as in the hedging example from Section 6.4 that it

is currently December and we are looking to lock-in a borrowing rate for a three-month

borrowing of $100,000,000 to be made next June, i.e., in six-months’ time. Our hedging

strategy is to take a short position in α̂ futures contracts today, close it out next June, and

borrow then for three months at whatever Libor rate happens to prevail at that point. What

should α̂ be if we wish to take daily marking-to-market into account?

To motivate the answer, consider the impact of a 1-basis-point increase in interest rates.

This has two effects. On the one hand, it leads to a cash inflow on the futures position.

On the other, it leads to a larger cash outflow on our borrowing. However, the cash inflow

on the futures position takes place immediately, while the cash outflow on the borrowing

takes place only at maturity of the borrowing, that is, in nine-months’ time. Our challenge

in designing a hedge is to choose α̂ so that the present value of these effects cancel out,

leaving the value of our position unchanged. This is called PVBP analysis since we are

using the present value of a basis point to identify the optimal hedge.

Applying PVBP analysis to the current example, an increase of 1 basis point in interest

rates results in an immediate cash inflow of $25 per contract, so over α̂ contracts, there is

an inflow of 25 α̂. On the borrowing, suppose the three-month borrowing period consists

of d days. Then the increase in borrowing costs occasioned by a one-basis-point increase

in interest rates is

I = 1,000,000 ×
 
0.01

100
× d

360

 

For example, if d = 90, then the increase in borrowing cost is I = 25. However, this

extra outflow takes place only at maturity of the borrowing, i.e., in nine-months’ time. If  T

denotes the current one-year Libor rate and D the number of days in the nine-month period,

the present value of this outflow is

PV ( I ) = I

1 + ( T × D
360

)
(6.68)

Thus, we want to choose α̂ so that 25 α̂ = PV ( I ), or

α̂ = PV ( I )

25
(6.69)

Expression (6.69) idenitifies the hedge ratio to be used if we take daily marking-to-

market into account. Of course, hedging using this ratio must be dynamic since the ratio

itself changes as time progresses. For a discussion of this and other practical aspects of

hedging using eurodollar futures, see Chapter 5 of Burghardt (2003).
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Appendix 6C

Calculating the Conversion Factor
To calculate the conversion factor on a given bond in the Treasury bond futures contract, the

CBoT rounds off the maturity of the bonds to the nearest quarter (i.e., three months). If after

the rounding off the bond has a maturity that is an integer multiple of six months, then the

bond is treated as if the last coupon was just paid and the next coupon is due in six-months’

time. If after the rounding off the bond’s maturity leaves a three-month remainder when

divided by six months, then the next coupon is assumed to be paid in three-months’ time,

so accrued interest for the first three months must be subtracted from the price.

For example, suppose the delivered bond is an 8% bond with a maturity of 20 years and

one month. Rounding off this maturity to the nearest three months, we obtain a maturity

of 20 years. Since 20 years is an integer multiple of six months (it contains exactly 40

six-month periods), the bond is treated as if its last coupon was just paid and its next coupon

will be in six-months’ time. Thus, its conversion factor is precisely as obtained in expression

(6.44) in the text, i.e., it is 1.2311.

Now suppose that the delivered bond instead has a maturity of 20 years and four months.

Rounding off this maturity to the nearest three months, we obtain a maturity of 20 years and

three months. This maturity is no longer an exact multiple of six months, so we treat the

bond as if the next couponwill be in three-months’ time. In three-months’ time, we receive a

coupon of 0.04 per $1 face value. The remaining portion of the bond is a 20-year 8% coupon

bond on which the last coupon was just paid. We have just seen that the conversion factor

for this remaining portion of the bond is 1.2311. Adding this to the coupon of 0.04 that

will be received in three months, we see that the delivered bond has an overall conversion

factor of 1.2711 in three months. We first discount this to bring it back to the present. Since

the discount factor for six months is 3%, the present value of 1.2711 receivable in three

months is

1.2711√
1.03

= 1.2525

Next, we deduct accrued interest. Of the coupon of 0.04 receivable in three months, the

accrued interest component is 0.02. Subtracting this from the discounted conversion factor,

we obtain the final conversion factor 1.2525 − 0.02 = 1.2325.

A General Formula

In general, the conversion factor may be computed using the following formula. Let N be

the number of whole years left to the bond’s maturity or first call (whichever is earlier),

let c denote the coupon on the delivered bond, and let x denote the number of months by

which the maturity of the delivered bond exceeds N years rounded down to the nearest three

months. Note that we must have x = 0, 3, 6, or 9 months. The conversion factor is then

given by the formula

(1.03)−x/6
 c

2
+

 c

0.06

 
1 − (1.03)−2N

 
+ (1.03)−2N

  
− c

2

 
6 − x

6

 
(6.70)
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Appendix 6D

Duration as a Sensitivity Measure
In this appendix, we derive (6.53); that is, we explain why the weighted maturity of a

portfolio (i.e., its duration) measures the sensitivity of the portfolio value to changes in

interest rates.

Consider first a zero-coupon bond with a maturity of t years and a face value of B. The

duration of this bond is simply t . If the t-year interest rate is r , the current price of the

bond is

P = e−r t B (6.71)

If interest rates change by a small amount dr , then the price of the bond becomes

P  = e−(r+dr )t B = e−r t e−dr t B (6.72)

Thus, the change  P in the bond value is

 P = e−r t e−dr t B − e−r t B = e−r t B [e−dr t − 1] (6.73)

Now, for small values of x , the exponential function ex is approximately4 equal to 1+ x .

Since e−r t B = P , we can rewrite (6.73) as

 P = P [(1 − dr t) − 1] = −t P dr (6.74)

which is precisely (6.53).

An analogous, if notationally more complex, argument establishes that (6.53) holds for

coupon bonds and, more generally, for portfolios of bonds. Consider a bond (or a portfolio

of bonds) with cash flows ci at times ti , i = 1, . . . , n. If the interest rate for a period of

length ti years is ri , the current price of this bond is

P = e−r1t1c1 + · · · + e−rn tn cn (6.75)

Suppose all interest rates change by an amount dr . Then, the change in the present value

of the first cash flow is

 1 = e−(r1+dr )t1c1 − e−r1t1c1 (6.76)

The same arguments as used above show that this quantity is approximately

 1 = e−r1t1c1((1 − dr t1) − 1) = −e−r1t1c1t1 dr (6.77)

Similarly, the change in the present value of the k-th cash flow is

 k = −e−rk tk ck tk dr (6.78)

The total change in the value of the bond  P is the sum of all these changes and so is

given by

 P = −
 
e−r1t1c1t1 + · · · + e−rn tn cntn

 
dr (6.79)

Now define wk to be the contribution of the k-th cash flow to portfolio value:

wk = e−rk tk ck

P
(6.80)

Note that the duration of the portfolio (its weighted maturity) is given by

DP = w1t1 + · · · + wntn (6.81)

4 More precisely, ex is defined as the infinite sum 1 + x + x2/2! + x3/3! + · · · . For small x, terms of the

order of x2 and higher become tiny and can be ignored as a first approximation.
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Moreover, wk P = e−rk tk ck for each k. Substituting this into (6.79), we obtain

 P = −[w1t1P + · · · + wntn P] dr

= −P [w1t1 + · · · + wntn] dr

= −PDP dr (6.82)

Expression (6.82) is exactly the relationship (6.53) that we wanted to prove.

Appendix 6E

The Duration of a Futures Contract
Weshowhere that the duration of a bond futures contract is just the duration of the underlying

bond measured from the expiry of the futures contract. We consider only the case where

the underlying in the futures contract is a zero-coupon bond (such as the CME’s Treasury

bill futures contract). The arguments may be easily extended to coupon bonds, but, as in the

previous section, this gets notationally messy.

Let T and T ∗ denote, respectively, the maturity dates of the futures contract and the

underlying zero-coupon bond. Let r and r∗ denote, respectively, the interest rates applicable
to these maturities. Finally, let B denote the face value of the zero and P its current price.

By treating the futures contract as a forward contract, the current price of the futures

contract may be determined from the zero cost-of-carry formula developed in Chapter 3.

This futures price is:

F = erT P (6.83)

But P itself is simply the price of a t∗-maturity zero, so its current price is simply

P = e−r∗t∗
B (6.84)

Combining (6.83) and (6.84), we have

F = erT −r∗T ∗
B (6.85)

Now suppose interest rates change by an amount dr . The change in the futures price F

is then

 F = e(r+dr )T −(r∗+dr )T ∗
B − erT −r∗T ∗

B (6.86)

Pulling out the common terms, this is

 F = erT −r∗T ∗
B
 
edr T −dr T ∗ − 1

 
(6.87)

Using the approximation ex = 1 + x (which, as mentioned above, is a very good

approximation for small x), we have

 F = erT −r∗T ∗
B (1 − [1 + (T − T ∗) dr ]) = erT −r∗T ∗

B [−(T − T ∗) dr ]

(6.88)
Now, erT −r∗T ∗

B is just the initial futures price F . Moreover, T − T ∗ is the maturity of

the underlying zero measured from the expiry date of the futures contract, which is DF as

defined in Section 6.8. Thus,

 F = −DF F dr (6.89)

which is exactly the result we are to prove.
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Chapter 7
Options Markets

7.1 Introduction

Options are often perceived as “new” financial instruments compared to, say, forwards

or futures, but they too have been around for a very long time. Luenberger (1997) cites

an early story involving successful speculation with options by the Greek scientist and

philosopher Thales of Miletus (624–547 BCE). It is likely that, like forwards, options

too were used in other ancient civilizations. Certainly, there is considerable evidence of

organized options trading dating back several hundred years. Joseph de la Vega, in his

delightful book “Confusion des Confusiones” published in 1688, discusses the trading of

call and put options in 17th century Amsterdam. Options also played a role in the Dutch

“Tulipmania” in the early 17th century. Options on common stocks were offered over a

hundred years ago on the London Stock Exchange. In the US, too, options were trading on

the CBoT in the 1930s although they were called “privilleges” rather than “options.”

To be sure, the options market has changed dramatically over the past few decades.

Volume has exploded; the Bank for International Settlements (BIS) estimates that in end-

2008, the notional outstanding on options worldwide exceeded $100 trillion. The nature

of the options traded has also changed. Options on equities and currencies continue to be

traded in large amounts, but as with forwards and futures, a substantial chunk of the market

is now occupied by interest-rate options, options written directly or indirectly on interest

rates. Innovation has continued apacewith the introduction of several new products in recent

years such as credit-spread, energy, electricity, and bandwidth options.

In this first chapter on options, we begin with a review of the basic definitions and termi-

nology, and introduce the important notion of options as a form of financial insurance. Then,

in the centerpiece of this chapter, we examine “naked” options positions (options positions

viewed in isolation) and how each naked option position corresponds to a unique combi-

nation of views on market direction and volatility. Chapter 8 builds on this material and

describes various commonly-employed trading strategies that use options to reflect specific

directional and/or volatility views. The appendix to this chapter describes options markets

worldwide, their breakdown by marketplace (exchange-traded versus over-the-counter) and

their compositions in terms of the underlying instrument (equities, currencies, etc.).

7.2 Definitions and Terminology

Options were defined in Chapter 1. We review the definitions here. Table 7.1 summarizes

the basic terminology.

An option is a financial security that gives its holder the right to buy or sell a specified

quantity of a specified asset (the “underlying asset” or simply the “underlying”) at a specified
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TABLE 7.1 Basic

Options Terminology
Term Meaning

Call option Right to buy the underlying asset
Put option Right to sell the underlying asset
Expiration/Maturity date Date on which the right expires
Strike/Exercise price Price at which right may be exercised
American-style option Right may be exercised at any point before maturity
European-style option Right may be exercised only at maturity
Long position/Holder/Buyer Party that holds the right in the contract
Short position/Writer/Seller Party with a contingent obligation in the contract

price onor before a specifieddate.Thedefining characteristic of anoption is its “optionality”:

the holder has the right to participate in the specified trade but is not obligated to do so.

Theunderlying asset in afinancial options contract is commonlyonewhosevalue depends

on equity prices (“equity options”), exchange rates (“currency options”), or interest rates

(“interest-rate options”) but may also be a commodity (such as gold or crude oil) or other

type of asset or financial variable (e.g., electricity or credit spreads).

There are two basic types of options. A call option gives its holder the right to buy the

specified asset at the price specified in the contract. A put option gives its holder the right

to sell the asset at the specified price. The specified price is itself referred to as the “strike

price” or “exercise price” of the option.

The date by which the right must be exercised is called the “maturity” or “expiration”

date of the contract. If the right is not exercised by this date, it expires. Options with infinite

life spans (“perpetual options”) are rare but do exist.

Options are also distinguished by when the right in the contract may be exercised. In an

American-style option, the right may be exercised at any time before expiry of the contract.

In a European-style option, the right may be exercised on only one date: the maturity date of

the contract. Options that may be exercised before maturity but only on certain pre-specified

dates are called Bermudan-style options; in this part of the book, we are concerned mainly

with only European- and American-style options.

There is an important difference in terminology between forwards and options. In a

forward contract, “long” and “short” refer, respectively, to the buyer and seller in the trade

underlying the contract. In an option, “long” refers to the party holding the right in the

contract; this right could be either the right to buy (if the option is a call) or the right to sell

(if a put). The terms “holder” and “buyer” are used interchangeably with long position.

The party on the other side of the option contract is said to have a “short position” in

the option and is also referred to as the “seller” or “writer” of the option. The option writer

has a contingent obligation in the contract: the writer must take part in the specified trade

if the option holder elects to exercise his right in the contract. (If I sell you the right to buy

Microsoft shares from me at a price of $25 a share, I am obligated to sell you the shares at

that price if you want to buy.)

7.3 Options as Financial Insurance

Insurance, in general, offers us protection from unpleasant surprises. Health insurance

protects us from financial consequences of shocks to our physical well-being. Earthquake

or fire insurance protects us fromfinancial consequences of homedamagedue to earthquakes

or fires. Options can protect us from the financial consequences of unfavorable changes in

market prices.
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The holder of an option has the right to participate in the trade specified in the contract

but can elect not to do so. Two simple examples will illustrate how this translates into

insurance.

Example 7.1 Puts as Insurance for Sellers
Consider an investor who plans to sell Widget Corp stock in a month’s time. Suppose Widget
Corp’s stock price is currently 95. The investor is exposed to the risk of a fall in the stock
price over the month. If the investor buys a put option on Widget Corp stock with a strike
of 95, then she is protected against this exposure:

• If Widget Corp’s price falls below 95, she can exercise the put and sell the stock for 95.

• If Widget Corp’s price rises above 95, she can let the put lapse and sell the stock at the
higher price.

This one-sided protection is exactly what we think of as “insurance.” Thus, a put option offers
a seller insurance against a price decrease while allowing the seller to take full advantage of
a price increase. ■

Example 7.2 Calls as Insurance for Buyers
Now consider an investor who is planning to buy Widget Corp stock in a month’s time.
The investor faces the risk that Widget Corp’s stock price could rise over this month. If
the investor buys a call option on Widget Corp with a strike of 95, he is protected from
this risk:

• If Widget Corp’s price rises above 95, he can exercise the call and buy the stock for 95.

• If Widget Corp’s price falls below 95, he can let the call lapse and buy the stock at the
cheaper price.

Thus, a call option offers a buyer one-sided protection against a price increase; that is, it
insures the buyer against a price increase while allowing the buyer to take advantage of a
price decrease. ■

The Option Price/Premium
The protection, in either case, is provided to the option holder by the option writer. In

exchange for this protection, the holder pays the writer an up-front fee that is called the

option price or the option premium. As with all insurance, the premium will depend on

many factors including the likelihood that the insurer will have to make a payout and the

size of the anticipated payout. The determination of the “fair” value of the option premium

is one of the central issues we will examine in this book.

Remark
One should not get carried away with the options-insurance analogy. If an investor has an

underlying exposure (is planning to buy IBM stock or to sell Japanese yen), then using op-

tions does indeed provide insurance-style protection on this exposure. But, unlike insurance,

which always presumes an underlying insurable risk, options may be used even by investors

who do not have any underlying exposure; that is, options can also be used to speculate. It is

also relevant to note that unlike most conventional forms of insurance, the risks underlying

options contracts typically correspond to traded securities with observable prices (e.g., IBM

stock prices or yen-dollar exchange rates). The properties of these underlying prices are key

to identifying the fair prices of financial options.
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7.4 Naked Option Positions

As the first step in our analysis, we begin with a study of “naked” options positions, i.e.,

options positions viewed in isolation. The material that follows forms the foundation for

both the trading and risk-management strategies using options discussed in the next chapter,

as well as the pricing material that follows in the succeeding several chapters.

The most important lesson that comes out of this analysis can be summarized in four

words: options react to volatility. That is, a fundamental determinant of option payoffs and

option values is the amount of uncertainty anticipated in the future price of the underlying

asset. This simple observation has profound implications. From a pricing standpoint, it

means that any attempt to value options must include a central role for the volatility of the

underlying asset. From a risk-management standpoint, it means that options may not only

be used to hedge against (or bet on) directional views concerning the market—for which

purpose one can also use “linear” derivatives such as futures or forwards—but uniquely

also on views regarding market volatility.

There are four basic naked option positions: (a) long call, (b) short call, (c) long put, and

(d) short put. We analyze these positions in this section and show that each position can be

associated with a unique combination of views on market direction and volatility. We use

the following notation:

• S: current price of the asset underlying the options contract.

• T : maturity date of option.

• ST : asset price at date T .

• K : strike price of option.

• C : current call price.

• P: current put price.

For specificity, we refer throughout to the asset underlying the contract as a “stock,” although

the analysis is unchanged if it is a bond, index, commodity, or foreign currency. We treat the

option as if it is European in style, so exercise occurs at date T . By reinterpreting T as the

exercise date of the option, much of the analysis may also be extended to American-style

options.

Payoffs from Long and Short Call Positions
Consider an example. Suppose you have a call option to buy the stock of XY Z corporation

at a strike price of K = 100. What will you do on date T ?

• If the price ST of XY Z is less than 100, it is obviously best to let the option lapse: there

is no point paying K = 100 for a stock that is worth less than that amount. The call is

said to be out-of-the-money in this case.

• If ST = 100, then you are indifferent between exercising the option and not exercising

the option (although transactions costs, which we ignore, may push you towards not

exercising). The call is said to be at-the-money in this case.

• Finally, if ST > 100, it is very much in your interest to exercise the call: the call allows

you to buy for 100 an asset that is worth ST > 100. The call is said to be in-the-money

in this case. The profit from exercising the call is ST − 100; the higher is ST , the greater

the profits.

What about the short position who sold you the option? The short position has only

a contingent obligation in the contract; the decision on exercise is made by you as the
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TABLE 7.2 Gross

Payoffs to Long and

Short Call Positions

ST Long Call Payoffs Short Call Payoffs

70 0 0
Out-of-the-money 80 0 0

90 0 0

At-the-money 100 0 0

110 10 −10
In-the-money 120 20 −20

130 30 −30

long position. So to identify the payoffs to the short, we must see when the option will be

exercised by the long position and calculate the consequences to the short.

• If ST < 100, then the option finishes out-of-the-money and lapses unexercised. Thus,

there are no payoffs to the short either in this case.

• The same is, of course, true at-the-money.

• If ST > 100, the option finishes in-the-money and is exercised. This means the short

position sells for 100 an asset worth ST > 100, so the short loses ST − 100.

These payoffs to both long and short positions are described in Table 7.2. Of course, all

these are gross payoffs. To obtain the net payoffs, the cost of the call C must be subtracted

from the payoffs of the long position and added to the payoffs of the short position.

We can also represent these payoffs in a graph. In general, when you exercise a long

call with a strike of K , you receive for K an asset worth ST . Thus, the payoffs to the long

position from exercise are

max{ST − K , 0} =

 
ST − K , if ST ≥ K

0, if ST < K
(7.1)

which means the payoffs to the short call are

−max{ST − K , 0} =

 
−(ST − K ), if ST ≥ K

0, if ST < K
(7.2)

Figures 7.1 and 7.2 represent these payoffs. The payoffs are nonlinear. The long call has

a payoff of zero when the option is out-of-the-money (i.e., ST < K ) and a slope of+1 when

FIGURE 7.1
Payoffs to a Long Call

Position

K ST0

⫺C

Long call

payoff

Gross payoff

Net payoff
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FIGURE 7.2
Payoffs to a Short Call

Position

K ST

0

C

Short call

payoffs

Gross payoff

Net payoff

the option is in-the-money (i.e., every increase of $1 in the price above K translates to an

extra $1 of profit for the long position). The payoffs of the short position are the mirror

image of the long call’s payoffs: zero when the option is out-of-the-money and decreasing

with a slope of −1 when the option is in-the-money.

Payoffs from Long and Short Put Positions
The payoffs to long and short put positions are computed in an analogous fashion. Consider,

for example, the payoffs to a long position in a put on XY Z stock with a strike of K = 100.

• If the price ST < 100, it is in the long position’s interest to exercise the put: the put

enables the long to sell for K = 100 an asset that is worth ST < 100. The put is in-the-

money in this case. The payoff from exercise is 100 − ST . The lower is ST , the greater

the profit from exercising the put.

• If ST = 100, the long is indifferent between exercising and not exercising the put: either

action leads to a payoff of zero. The put is said to be at-the-money in this case.

• If ST > 100, it is obviously best to let the option lapse: there is no point in selling for

K = 100 a stock that is worth more than 100. The put is said to be out-of-the-money in

this case.

The payoffs to the short position are the reverse of the payoffs to the long:

• If ST < 100, the short position buys for K = 100 an asset that is worth ST < 100. The

short loses 100− ST . For example, if ST = 90, the short is buying for 100 a stock worth

only 90, so loses 10. At ST = 80, the loss climbs to 20. And so on.

• If ST = 100, the payoff to the short is zero.

• If ST > 100, the put lapses unexercised, and the payoff to the short is once again zero.

These payoffs are summarized in Table 7.3. Once again, it must be stressed that these

are gross payoffs. To identify the net payoffs, the cost P of the put must be subtracted from

the long position’s payoffs and added to the short position’s payoffs.

To graph these payoffs, note that, in general, when a put is exercised, the long position

sells for K an asset worth ST . The payoffs received by the long put from exercise are

max{K − ST , 0} =

 
(K − ST ), if ST < K

0, if ST ≥ K
(7.3)
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TABLE 7.3 Gross

Payoffs from Long and

Short Put Positions

ST Long Put Payoffs Short Put Payoffs

70 30 −30
In-the-money 80 20 −20

90 10 −10

At-the-money 100 0 0

110 0 0
Out-of-the-money 120 0 0

130 0 0

FIGURE 7.3
Payoffs from a Long

Put Position
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FIGURE 7.4
Payoffs from a Short

Put Position
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Thus, the payoffs to the short position are

−max{K − ST , 0} = min{ST − K , 0} (7.4)

Figures 7.3 and 7.4 illustrate these payoffs. The payoff to a long put has a slope of −1

for ST < K (i.e., it decreases by $1 for every $1 increase in ST ) and is flat for ST ≥ K .

The payoff of the short put has a slope of +1 for ST < K (i.e., the short’s losses decrease

by $1 for every $1 increase in the price) and are flat for ST ≥ K .
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7.5 Options as Views on Market Direction and Volatility

Each naked option position embodies a unique combination of views on market direction

and market volatility. Market direction refers to the direction of prices (are prices going up

or down?). Market volatility is a more nebulous concept; we define it formally later in the

book. For the time being, it suffices to think of volatility as a measure of uncertainty in price

movements; roughly, more volatility means that larger price swings may occur.

Options and Directional Views
When you buy a call with a strike of (say) K , you pay the premiumwhen the call is purchased

and receive cash inflows later only if the price of the underlying increases above K . Thus,

a long call position is bullish on direction, i.e., it implies a view that prices are going up

(in this case, above K ). Of course, the strategy is not a sensible one if you anticipate price

decreases since you will then lose your premium.

But if you are bullish on price increases, you can also write a put with a strike of K . In

this case, you receive the option premium today, and if prices behave as expected, you get

to keep the premium as your profit. However, you face the risk of cash outflows if the price

of the underlying decreases and the put is exercised. Thus, writing a put too makes sense if

you anticipate an increase in prices (or, at least, anticipate prices remaining flat) but not if

you believe prices are going to decrease.

Similarly, short calls and long puts are both bearish on direction. If you buy a put, you

pay cash today and receive cash inflows later only if the price of the underlying decreases

and the put finishes in-the-money. If you write a call, you receive the option premium today

and keep the premium as long as prices do not decrease. Both strategies are profitable if you

anticipate a price decrease, but neither is appropriate if you believe prices are going up.

These points are summarized in Table 7.4. The table simplifies matters a little by not

considering flat markets as a third alternative. If you anticipate a flat market, writing an

option may be a profitable strategy (you get to keep the premium as your profit), but buying

an option will not be.

Of course, it should be noted thatwhile long calls and short puts are both bullish strategies,

there are important differences in the cash flows they generate. A long call is akin to buying

insurance: cash outflows are of a definite amount and paid up-front, but inflows are of

uncertain size and occur, if at all, at maturity or exercise time. A short put is like selling

insurance: cash inflows are known and definite, but outflows are of uncertain size and occur,

if at all, at the time of option maturity or exercise. A similar comparison can be drawn

between the cash flows from short calls and long puts. The reader can easily fill in the

details.

Options and Volatility
The presence of “optionality” in options leads to a very powerful property: options react to

volatility. That is, option values depend on how much uncertainty one expects in the price

of the underlying over the life of the option.

TABLE 7.4 Naked

Options and Views on

Direction

This table summarizes the implied market view on direction
of the four basic naked option positions.

Bullish on Direction Bearish on Direction

Long call Long put
Short put Short call
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A simple example will help illustrate this point. Suppose we have a call option on a stock

with a strike of K = 100. We compare option payoffs under two possible distributions for

ST . First, suppose that the distribution of ST is given by

ST =

 
110, with probability 1/2

90, with probability 1/2
(7.5)

Then, the call payoffs at time T are

CT =

 
10, with probability 1/2

0, with probability 1/2
(7.6)

Now suppose the distribution (7.5) is modified to one with the same mean but more

spread-out prices (i.e., with greater “volatility”):

ST =

 
120, with probability 1/2

80, with probability 1/2
(7.7)

The option payoffs at time T are then

CT =

 
20, with probability 1/2

0, with probability 1/2
(7.8)

It is clear from comparing (7.6) and (7.8) that the greater volatility in the second dis-

tribution has been beneficial: the payoffs in (7.8) are unambiguously superior to those in

(7.6). A call buyer would clearly be willing to pay more for the option if the uncertainty

anticipated is given by the more volatile distribution (7.7) rather than the distribution (7.5).

That is, higher volatility leads to higher call values.

Intuitively, when volatility increases, prices become more spread out; higher and lower

prices both becomemore likely. For the holder of a call, the higher prices are good news: they

result in larger payoffs when the call is exercised. But there is no corresponding downside

from the lower prices since the call holder can simply elect not to exercise the call. Thus,

the call holder benefits from the increased volatility.

Long put options also benefit from volatility. Continuing the same example, the payoffs

to the holder of a put option with a strike of 100 are given by

PT =

 
0, with probability 1/2

10, with probability 1/2
(7.9)

if the distribution of ST is given by (7.5). Whereas if the distribution of ST has the more

volatile form (7.7), the payoffs to the put holder are

PT =

 
0, with probability 1/2

20, with probability 1/2
(7.10)

Once again, themore volatile distribution translates to a superior payoff profile for the option

holder. A put buyer would be willing to pay more for the put if the uncertainty anticipated

was given by the distribution (7.7) rather than (7.5).

Optionality is, of course, crucial in this link. Without optionality, one cannot avoid the

downside cost of increased volatility. In our example, the holder of a long forward position

will enjoy the larger benefit from the price increase to 120, but will also have a larger loss

from the fall to 80.

Just as increased volatility benefits the holder of an option, it makes the writer of an

option worse off. The larger price swings imply that the option writer loses more in the

event that the option is exercised but gains nothing from price moves in the other direction

since the option will not be exercised. Thus, an option writer prefers low volatility.
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TABLE 7.5 Naked

Options and Views on

Volatility

This table summarizes the view on volatility embodied by
each of the four basic naked option positions.

Bullish on Volatility Bearish on Volatility

Long call Short call
Long put Short put

TABLE 7.6 Naked

Options and Views on

Direction and

Volatility

This table summarizes the view on direction and volatility embodied by each of the four
basic naked option positions.

Bullish on Direction Bearish on Direction

Bullish on Volatility Long Call Long Put
Bearish on Volatility Short Put Short Call

Options as Views on Volatility
These observations show that every naked option position embodies a view on volatility.

A long option position, whether a long call or a long put, is necessarily a bullish view

on volatility. Such a position increases in value when volatility increases and decreases

in value when volatility decreases. Long option positions are consequently referred to as

“long volatility” positions. Similarly, a short option position—whether a short call or a short

put—is bearish on volatility: such a position increases in valuewhen volatility decreases and

vice versa. Short option positions are consequently referred to as short volatility positions.

Table 7.5 summarizes these observations.

Combining the information in Tables 7.4 and 7.5, we can separate the role of each naked

option position from a risk standpoint. Table 7.6 presents this overall picture. It shows that

each naked option position corresponds to a unique combination of views on volatility

and direction. For example, while both long calls and short puts are bullish positions on

direction, only one—the long call—will benefit from an increase in the volatility of the

underlying. The short put loses value when volatility increases. Thus, a bullish view on

both volatility and direction indicates a long call position, while a view that is bullish on

direction but bearish on volatility indicates a short put. Similarly, if we are bearish on both

direction and volatility, a short call position is indicated, but if we are bearish on direction

but bullish on volatility, a long put position is indicated.

Options versus Forwards/Futures/Spot
The options-volatility relationship also highlights a fundamental difference between options

and positions in spot or futures. We can take advantage of views on direction with spot or

futures also; there is nothing unique about options in this context. If we are bullish on

direction, we can use a long position in spot or futures or forwards; all three will make

money if prices increase. If we are bearish on direction, we can take short positions in spot

or futures or forwards; all three will be profitable if prices decline.

However, there is no obvious way to incorporate views on volatility using spot, futures,

or forwards. All three are instruments with linear payoffs. It is the nonlinearity of options

payoffs that allow options to react to volatility. Indeed, options also permit pure volatility

plays where we are neutral on direction but have a view on volatility. Portfolios such as

straddles (described in Chapter 8) are examples of such strategies.
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7.6 Exercises 1. What is the difference between an American option and a European option?

2. Explain the following terms in the context of options: long, short, call, put, American,

European, in-the-money, out-of-the-money, at-the-money, strike, holder, buyer, writer,

seller, expiry, premium, over-the-counter, and exchange-traded.

3. What is a “Bermudan” option?

4. Why is being long a put option somewhat analogous to being in a short stock position?

5. What is the main difference between a forward and an option?

6. What is the difference between over-the-counter (OTC) contracts and exchange-traded

contracts?

7. Make a list of securities that you can think of that contain embedded options. For each

embedded option, state the underlying source of risk.

8. Give an example of an option contract that is both exchange-traded and provided over-

the-counter. Which of these forms is more widely in use? Explain?

9. Explain why an option is like an insurance contract. How is it different from a futures

contract? Can an option, like a future, be used for hedging?

10. What position in naked options would you adopt if you believe that the price of the

stock is going to drop and the volatility of the stock is going to decrease?

11. Why do options usually increase in value with volatility? What essential feature of the

payoff diagram leads to this result?

12. Explain the difference between the payoff and price of an option.Write down the payoff

formula for a call option and for a put option.What is the difference between the “gross”

and “net” payoffs of an option (as widely applied in common usage)? Which concept

do you think is the more useful one for valuing an option? Why?

13. Draw a gross payoff diagram for a short position in a call at strike 100. Also draw the

gross payoff diagram for a long position in a put option at the same strike and maturity

as the call. Overlay these plots on the same axis to get an aggregate payoff diagram for

the portfolio of call and put. What other security do you know of with the same payoff

diagram as this portfolio?

14. Why does a callable bond contain embedded options? Explain what kind of option this

bond has. Who benefits from this option? Based on your answer, is a callable bond

priced higher or lower than a noncallable bond?

15. Explain what options exist in a convertible-callable corporate bond.

16. If you hold a callable bond and the volatility of interest rates increases, what do you

think usually happens to the value of your bond?

17. If you hold a convertible bond and the volatility of equity prices declines, what is the

effect on bond value, assuming nothing else changes?

18. A quanto (quantity) option is one in which the option contains price risk from two

sources. Quantos are discussed in the chapter on exotic options. An example is where

you buy a put option on the Nikkei stock index (which is yen denominated), but the

strike price of the option is stated in dollars. Explain what the different sources of risk

in such an option might be. For each source of risk, state in which direction it must

move for the value of the option to increase.

19. AEuropean investor in theUS equitymarketswants to buy a quanto call on the S&P500

index, where the strike is written in euros. (See the previous question for the definition

of a quanto). Can you explain why the investor wants such an option? Also explain

what risks the investor is hedging by buying a quanto call on the equity index rather

than a plain call on the S&P 500.
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20. If you are manufacturing consumer products that use oil-based chemicals as inputs,

then you are subject to oil price risk. Suppose you order your oil from Saudi Arabia

and usually pay for it in Saudi rials. You are now concerned that the appreciation in the

rial will affect your profitability.

(a) How would you use forward contracts to hedge the risk of your oil purchases?

(b) What type of quanto option would you like to buy to hedge this risk? (See Ques-

tion 18 for the definition of a quanto.)

21. Employee stock options have additional risk over and above standard call options in

that the employee may not be able (or allowed) to cash in the option in the event of

termination of the employee’s job with the firm if the option is not vested. But if the

option is vested, so immediate exercise in the event of termination is possible, should

it be worth as much as the usual American option trading on the firm? Explain.

22. Market timers are traders who vary their allocation between equity and bonds so as to

optimize the performance of their portfolios by trading off one market versus the other.

Rather than physically trade in the two markets, you want to avail yourself of the best

return from the bond or stock markets over the next year using an option. Suggest an

option that will provide you this result. (Feel free to define the option’s terms.) What

factors drive the value of this option?
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Appendix 7A

Options Markets
This appendix provides a brief discussion of options markets worldwide and their charac-

teristics. Like forwards and futures, options may be divided into two broad groups. First,

there are options that are traded on organized exchanges. These are the analogs of futures

contracts, and like futures contracts, come with standardized contract terms (expiration

dates, strike prices, etc.) and margining requirements. Second, there are over-the-counter

(OTC) options. These are the counterparts of forward contracts and are bilateral agreements

that can be customized to the counterparties’ requirements.

Options Markets: Size and Composition

A snapshot picture of worldwide options and derivatives markets as of end-2008 is provided

in Table 7.7. Three features of particular interest are highlighted by this table:

• The exchange-traded and OTC options markets are both large markets, but the OTC

options market with a notional outstanding of $68 trillion is about 80% larger than the

exchange-traded options market with its notional outstanding of $38 trillion.

• Virtually all options are written on one of three categories of underlying instruments:

currencies, equities (including equity indices), and interest rates/interest-rate sensitive

securities like bonds.

– Equity options are of comparable dollar sizes in the twomarkets, accounting for about

11% of the exchange-traded options market and 7% of the OTC options market.

– Currency options account for a negligible fraction of exchange-traded options but are

around 15% of the OTC options market. Put differently, most currency options traded

in this world are OTC.

TABLE 7.7
Derivatives and

Options Markets

Worldwide

This table describes the breakdown of worldwide derivatives and options markets in
terms of the underlying security (currency, interest rate, equities, commodities, other) as
reported in Tables 19-23 of the BIS Quarterly Review, June 2009. Blank entries indicate no
data was provided. The numbers are in billions of US dollars and represent the notional
outstandings worldwide on the respective contracts as of December 2008.

Category Exchange-Traded Over-the-Counter

All currency derivatives 220 49,753
of which: Currency options 125 10,466

All equity-linked derivatives 4,929 6,494
of which: Equity-linked options 4,273 4,862

All interest-rate derivatives 52,711 418,678
of which: Interest-rate options 33,979 51,301

All commodity derivatives — 4,427
of which: Commodity options — 1,561

Other derivatives — 112,610

Total: All derivatives 57,860 591,963
of which: Options 38,377 68,190
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– Interest-rate options take the lion’s share in both markets, amounting to almost 90%

of the exchange-traded options market and about 75% of the OTC options markets.

• Exchange-traded options constitute a substantial chunk (over 65%) of the notional out-

standing on all exchange-traded derivatives. In contrast, OTC options account for only

about 12% of the OTC derivatives markets. The most popular OTC derivatives by far are

interest rate swaps, which account for over half the notional outstanding.

The remainder of this appendix discusses exchange-traded and OTC options markets in

more detail, highlighting some important features and points of differences.

Exchange-Traded Options

Options are traded on several exchanges worldwide. Some of the biggest exchanges trading

options include the Chicago Board Options Exchange (CBOE), the International Securities

Exchange (ISE), CME, and CBoT in the US; Eurex and Liffe in Europe; and Tokyo, Osaka,

and SGX (the Singapore Exchange, formerly Simex) in Asia. Exchange-traded options are

written on a variety of underlying assets including equities, currencies, and futures contracts.

Options on Equities
Exchange-traded options on equities come in three forms. The first is options on individual

stocks. For example, the CBOE offers options on over 1,500 US stocks and American

depository receipts (ADRs), while Liffe offers options on over 100 British equities, and

Eurex offers options on a range of individual European stocks. Options on individual stocks

are almost invariably American in style.

The second is options on equity indices. Options on the S&P 100 index, the S&P 500

index, and several other indices are offered by the CBOE. Options on the FTSE-100 are

traded on Liffe. Eurex has options on the Swiss, Finnish, and German stock market indices.

Options on the Nikkei-225 are traded in Osaka and elsewhere. One of the world’s most

heavily traded derivatives contracts (in terms of number of contracts traded) is the KOSPI-

200 options contract on theKorea StockExchange.Options on indices can be bothAmerican

andEuropean in style. For instance, theCBOE’s S&P500 index options contract is European

while its S&P 100 index options contract is offered in both European and American styles.

Third, option-exposure to equities can also be taken via options on index futures. These

are discussed under “Options on Futures” below.

Options on Currencies
A number of exchanges offer options on foreign currencies. In the US, the CME offers

options on a number of different currencies including the Australian dollar, the Brazilian

real, the British pound, the euro, the Israeli shekel, the Swiss franc, and the Japanese yen.

Options on currencies may be both European and American in style.

Options on Futures
Options on futures have futures contracts as their underlying security and are almost invari-

ably American in style. The holder of a call option on futures has the right to enter into a

long position in the futures contract at the strike price specified in the options contract. If the

right is exercised, the holder of the call receives (a) a long position in the specified futures

contract and (b) a cash settlement (paid into the futures margin account) of the amount by

which the current futures price exceeds the option strike price.

Similarly, the holder of a put has the right to take a short position in the futures contract

at the strike price specified in the options contract. If the right is exercised, the holder of the
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TABLE 7.8 Option

Prices in The Wall

Street Journal

Microsoft (MSFT) Underlying stock price*: 27.25

Call Put
Expiration Strike Last Volume Open Interest Last Volume Open Interest

Apr 5.00 22.30 46 484 — — —
Apr 22.50 4.83 14 13154 — — 35087
Oct 22.50 5.40 160 4348 — — 13500
Apr 25.00 2.35 256 38786 0.05 5 53804
Jul 25.00 2.70 21 20680 0.20 436 9302
Apr 27.50 0.20 3686 154002 0.35 2894 54901
May 27.50 0.50 14870 29471 0.65 7340 21191
Jul 27.50 0.90 954 96304 0.85 140 64638
Oct 27.50 1.43 46 29839 1.05 355 22473
Apr 30.00 0.05 4 122309 2.70 364 743
Jul 30.00 0.20 265 94110 2.70 981 7498
May 42.50 — — — 15.20 602 300
May 45.50 — — — 17.70 602 300

*Underlying stock price represents listed exchange price only. It may not match the composite closing price.

put receives (a) a short position in the specified futures contract and (b) a cash settlement

(paid into the futures margin account) of the amount by which the strike price exceeds the

current futures price.

While any futures contract can have an option contract defined on it, most options on fu-

tures contracts in practice have as the underlying either an interest-rate/bond futures contract

or an equity-index futures contract. The former are categorized and counted as interest-rate

options,while the latter are included in equity-linkedoptions.Almost all interest-rate options

traded on exchanges are in the form of options on interest-rate futures or options on bond

futures.

Exchange-traded options prices are routinely reported in the financial press. Table 7.8

shows the typical style of reporting of options prices. The numbers in the table are taken

from the The Wall Street Journal website and report prices of options on Miscrosoft on

April 7, 2006.

• The first and second columns report the combination of expiration months and strike

prices in which options are available. For example, there were calls and puts available

on Microsoft with a strike of $27.50 and expirations in April, May, July, and October.

• The third column shows the prices of calls for those strikes and expirations, while the

sixth column shows the prices of the corresponding puts. For example, a call expiring in

October with a strike of $27.50 has a cost of $1.43, while the price of the corresponding

put is $1.05. Since each options contract is for the right to buy or sell 100 shares of

Microsoft stock, this means one October call option contract with a strike of $27.50

costs $143 while one October put option contract with a strike of $27.50 costs $105.

• The fourth and seventh columns show the volume of contracts traded on that particular

day. The May $27.50-strike contract has the greatest trading volume for both calls and

puts with 14,870 call contracts and 7,340 put contracts. Observe that the $27.50 strike is

the closest strike to the $27.25 closing share price of Microsoft that day. It is very typical

for option volumes to be highest for the nearest-the-money strike at the short end of the

maturity spectrum.

• Finally, the fifth and eighth columns show the total outstanding volume of contracts in

each maturity-strike category.
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Over-the-Counter Options

Table 7.7 showed that OTC options account for a worldwide notional outstanding that is

roughly 80% larger than the notional outstanding of exchange-traded options. OTC options

too may have equities, equity indices, currencies, or interest-rate sensitive instruments as

their underlyings, but there are some differences.

First, while most exchange-traded options involve “plain vanilla” calls and puts (calls

and puts as we have defined above), in the OTCmarket, there is also a vast range of “exotic”

options. Simply put, an exotic option is any option that is not a vanilla option. Such options

may differ from vanilla options in terms of when they can be exercised and how payoffs are

defined. Some exotics are significantly more complex than vanilla options; others actually

have simpler forms. Exotic options are described and analyzed in Chapters 18 and 19.

Second, while interest-rate-linked options in the exchange-traded context mostly take

on the form of options on interest-rate futures or bond futures, OTC interest-rate options

are mostly written directly on specific interest rates such as Libor. Caps, for example, are

packages of interest-rate options that protect the holder from rises in interest rates beyond

the strike rate specified in the contract; they provide insurance to borrowers against rising

interest rates.Floors similarly protect holders from declines in interest rates below the strike

rate; they provide insurance to investors against falling interest rates. Swaptions are options

to enter into swaps at a fixed rate. Of course, there are also a number of exotic interest-rate

options.

Embedded Options

Any discussion of options markets would be incomplete if it did not also mention the vast

number of financial securities that come with “embedded” options. A typical example is a

callable bond, a bond that gives its issuer the right to buy the bond back from the holder at a

price specified in the contract. Callable bonds are used by corporations and other borrowers

who wish to retain the flexibility to refinance at cheaper rates if interest rates should fall.

USmortgages offer an example of callable bonds at the household, rather than corporate,

level. US home owners have the right to prepay their mortgages at any time without penalty.

This right becomes valuable, and is often exercised, in a time of falling interest rates: home

owners can pay back the original mortgages and take out new ones at the current cheaper

rates. This means borrowers—who are the issuers of the mortgages—effectively hold call

options that give them the right to buy back the loan at any time at par.

A somewhat more complex example is a convertible bond, a bond that gives its holder

the right to convert the bond into a fixed number of shares of stock in the underlying

company. Convertible bonds are very often also callable by the issuer. Thus, each side holds

an option—the buyer a convert option and the issuer a call option—and the exercise of one

option extinguishes the other. In addition, convertibles may also be puttable; that is, under

specified circumstances, the bond holdermay have the right to sell the bond back to the issuer

at a given price. Convertible bonds and other hybrid instruments are discussed in Chapter 21.

Instruments with embedded optionalities have become increasingly common in recent

years. For the most part, they can be analyzed using standard techniques drawn from option

theory. A callable bond, for example, may be viewed as a package of two securities, a straight

bond and a call option on the bond. The buyer of the callable bond is long the straight bond

but is short the call option on the bond; the issuer of the callable bond has the opposite

positions. As such, the properties of the callable bond such as its price may be ascertained

from the properties of the straight bond and the option.



Chapter 8
Options: Payoffs and
Trading Strategies

8.1 Introduction

The last chapter defined the basic terminology of options contracts, provided a brief de-

scription of options as “financial insurance,” and highlighted the centrality of volatility to

the study of options. Building on that foundation, the current chapter describes the role that

options can play in incorporating views on the market into a portfolio.

In a nutshell, the contents of this chapter may be described as illustrating what is special

about options from a risk-management standpoint, i.e., what can be achieved with options

that cannot be (or at least cannot easily be) accomplished without options. Sections 8.2–8.5

look at several standard portfolios (or “trading strategies”) that illustrate how options may

be added or combined into portfolios to reflect specific outlooks on the market. Rounding

off this material, we discuss the case of Barings Bank, the protagonist in one of the leading

financial scandals of the 1990s.

8.2 Trading Strategies I: Covered Calls and Protective Puts

A “trading strategy,” as the term is used in this chapter, refers to a portfolio consisting of

options on a given underlying asset, possibly combined with positions in the asset itself

and perhaps cash (risk-free investment/borrowing). There are a large number of standard

trading strategies that use options. We examine a number of these over this section and the

next two:

1. Covered calls and protective puts.

2. Spreads: bullish, bearish, butterfly, and horizontal.

3. Combinations: straddles, strangles, strips, and straps.

4. Others: collars, box spreads, ratio spreads, and condors.

This section focuses on covered calls and protective put strategies. Section 8.3 looks at

spreads and Section 8.4 looks at combinations. In all cases, a central issue is how options

may be incorporated into a portfolio to reflect specific market views. Put differently, the

material here highlights what one can do with options that one cannot do without options.

We illustrate the use of all the trading strategies discussed in this chapter using a common

example. The example concerns a hypothetical stock (XY Z stock) that is currently trading

at 100. There are one-month put and call options available on this stock with strike prices

171
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TABLE 8.1 XYZ

Options: Illustrative

Example for Options

Trading Strategies

The numbers in this table are used to illustrate the various trading strategies
described in this chapter. The table concerns a hypothetical stock (XY Z
stock) that is assumed to be currently trading at 100. There are one-month
calls and puts available on the stock with strike prices of 95, 100, and 105.
The prices of these options are described in the table.

Strike Call Price Put Price

95 6.29 0.89
100 3.09 2.67
105 1.21 5.77

of 95, 100, and 105. The prices of these options are taken to be as given in Table 8.1. Note

that the price of the call decreases as the strike price increases (the right to buy at 95 is

worth more than the right to buy at 100) while the price of the put increases as the strike

increases (the right to sell at 100 is more valuable than the right to sell for 95).

Covered Calls
A covered call is a portfolio consisting of a long position in the underlying and a short

position in a call option on the underlying. The terminology derives from the observation

that the long underlying position “covers” the writer of the call if the option is exercised.

To determine the payoffs froma covered call portfolio atmaturity, consider two scenarios:

1. ST ≤ K : In this case, the call is worthless. The long position in the underlying is, of

course, worth ST . Therefore, the value of the covered call portfolio is just ST .

2. ST > K : Now the call will be exercised. The short call is worth −(ST − K ). Since the

long position in the underlying is worth ST , the value of the covered call portfolio is

ST − (ST − K ) = K .

More briefly, the value of a covered call portfolio at maturity may be expressed as

min{ST , K } (8.1)

Figure 8.1 graphs these payoffs. These are gross payoffs, i.e., they do not take into account

the cost of the option. To obtain the net payoffs, we must add back the initial option cost C

received for writing the option.

FIGURE 8.1
Covered Call Payoffs

K ST
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C

Gross payoff

Net payoff

Covered call

payoffs
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Why use a covered call portfolio? Suppose you hold the underlying and you expect

the market to be flat, i.e., to remain at its current level. Then your anticipated standstill

return is zero. If you write a call in this market, you receive the option premium, so the

standstill return becomes positive and equal to the option premium. If your view of the

market holds and the market does remain flat, you have “upped” your returns by the amount

of the premium.

Nor does the portfolio do badly for small changes in price in either direction. For small

falls in price, the decline in value of the long underlying position is offset by the option

premium received. For small increases in price, you lose on the short call, but as long as

this loss is covered by the option premium, you are better off.

However, a covered call is explicitly a short volatility position (indeed, its payoff is

essentially similar to that of a short put position). The risk in the position is that volatility

may turn out to be larger than anticipated, i.e., there may be large price swings in either

direction. If prices rise bymore than the amount of the premium, the portfolio isworse off for

incorporating the option. If prices tumble sharply, the option premium may be insufficient

to offset the loss on the long underlying position.

As an example of all of these points, consider XY Z stock from Table 8.1. Suppose you

hold the stock and expect it to be flat at its current price of 100 over the next month. Based

on this expectation, you write a call on XY Z with a strike of 100. From Table 8.1, you

receive an option premium of 3.09. This premium represents your profit if your view proves

correct and prices remain flat. Moreover, as long as prices move by less than 3.09, you are

better off for having written the call. If prices fall, but by less than 3.09, the option premium

makes up for the losses you suffer on the long stock position. If they rise by less than 3.09,

whatever you lose by the call being exercised is made up by the premium.

However, if the price swings turn out to be substantial—that is, your view of low volatility

is proved incorrect—you may lose. If prices rise sharply (say, by 6), then your premium is

insufficient to cover your losses on the call (your net loss would now be 6− 3.09 = 2.91).

Thus, you would have been better off not writing the option. If prices fall sharply (again, say

by 6), the loss on the long stock position will lead to a net fall in the value of your portfolio

(once again, of 2.91); in this case, you would have been better off selling the stock.

Protective Puts
A protective put portfolio (PPP) is a portfolio consisting of a long position in the under-

lying and a long position in a put option on the underlying. Protective puts are the classic

“insurance” use of options.

To determine the payoffs from a PPP at the time of exercise, consider two scenarios:

1. ST < K : In this case, the put is in-the-money and pays (K − ST ). The long underlying

position is worth ST . Therefore, the PPP is worth (K − ST ) + ST = K .

2. ST ≥ K : Now, the put is worthless. The long stock position is worth ST . Therefore, the

PPP is worth ST .

More briefly, the payoffs from a PPP at maturity can be expressed as

max{K , ST } (8.2)

Figure 8.2 graphs these payoffs. As usual, these are gross payoffs. To obtain the net

payoffs, we must subtract the cost P of the option from these payoffs.

As the figure indicates, the protective put in the portfolio ensures a floor value for the

portfolio. Intuitively, we hold the underlying, but we also hold the right to sell the underlying

for K . If the price of the underlying is above K , we keep these upside gains. But if the price
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FIGURE 8.2
Payoffs from a

Protective Put
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of the underlying falls below K , we exercise our rights in the option and receive K . This is

the classical insurance use of options. The level of insurance obtained is the strike price K

of the put since this determines the floor value of the portfolio.

Of course, this insurance does not come for free since there is an up-front fee for the put.

The price of the put will be higher as the strike price is larger. Consider, for instance, the

XY Z example from Table 8.1. If you want to ensure a floor value of 100 for XY Z stock in

one month’s time, you need to buy a put with a strike of 100, which costs 2.67. If you are

willing to accept a lower floor value of 95, the cost of the protection is only 0.89.

8.3 Trading Strategies II: Spreads

A spread is a portfolio consisting of options of the same type (either all calls or all puts).

There are two basic kinds of spreads.

1. Vertical spreads are spreads in which the options have the same expiry date and differ in

their strike prices.

2. Horizontal or calendar spreads are those in which the options have the same strike price

but differ in their expiry dates.

The terminology comes from the way option prices were once reported in the finan-

cial press. The prices were presented in a grid with maturity dates listed horizontally and

strike prices listed vertically. Thus, fixing a maturity and combining options of different

strike prices involved moving vertically along a column on the grid while fixing a strike and

combining different maturities involved moving horizontally across a row of the grid.

Wefirst examine the three basic kinds of vertical spreads in this section: bull spreads, bear

spreads, and butterfly spreads. Then we look at horizontal spreads. Each of these spreads

may be set up using either calls or puts. We discuss both call spreads and put spreads in

each case below.

Bullish Vertical Spreads: The Motivation
Suppose you are bullish on XY Z stock; you expect the price to increase over the next month

from its current level of 100. There are two things you could do to implement this view

using options:

1. You could buy a call with a strike of K = 100.

2. You could write a put with a strike of K = 100.
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Either strategy will make money if prices go up as expected, but each also comes with

the risk of losses. The first requires, from Table 8.1, an up-front cash payment of 3.09 that

is lost if prices go down. The second has the problem of all written option strategies of

substantial losses if prices move in the wrong direction, in this case if the price of XY Z

stock falls sharply below 100.

In each case, you can limit these costs by combining the given option with another option

to set up a strategy called a bullish vertical spread or simply a bull spread. Of course, you

have to give up a part of the upside to achieve this. We examine how this may be done for

call options first and then for put options.

Bullish Vertical Spreads Using Calls
Consider combining your long position in the 100-strike call with a short position in the

105-strike call. This has two effects:

1. It reduces your up-front cost from 3.09 to 3.09 − 1.21 = 1.88. This is the maximum

loss in case your view proves wrong and prices go down.

2. It caps your maximum upside. If prices increase beyond 105, whatever you gain by

holding the 100-strike call, you lose on the 105-strike call you have written.

If you estimate that a price increase above 105 is not very likely, this is a trade-off you will

probably find acceptable.

The portfolio you have created is a bullish vertical spread using calls, or simply just a

call bull spread. In general, in a call bull spread, you buy a call with one strike price K1

and simultaneously sell another call with a higher strike price K2. The lower strike K1 is

typically chosen at or close to the current stock price. This makes the portfolio bullish (you

make money when the stock price goes up from its current level).

Including the K2-strike call in the portfolio reflects a cost-benefit trade-off. On the one

hand, the cost of the portfolio is reduced by the premium received for this call. On the other

hand, the upside of the portfolio is now capped: any increase in the price of the underlying

above K2 means that whatever you gain on the K1-strike call, you lose on the K2-strike call.

Figure 8.3 graphs the payoffs from a call bull spread at maturity. The net payoffs are

obtained from the gross payoffs by subtracting the cost C(K1) − C(K2) of the portfolio.

The payoff structure is intuitive:

• Until a price of K1 is reached, neither call will be exercised, so the gross payoff is zero.

• Between K1 and K2, only the K1-strike call is exercised, so the payoffs from the portfolio

are just ST − K1. At ST = K2, these payoffs are K2 − K1.

FIGURE 8.3
Payoffs from a Bullish

Vertical Spread Using

Calls

K1 K2 ST

0

K2   K1

Call bull

spread

payoff

Net payoff

Gross payoff



176 Part Two Options

• Beyond K2, both calls are exercised. Whatever is gained on the K1-strike call is lost on

the K2-strike call, so payoffs are flat at the level K2 − K1.

Bullish Vertical Spreads Using Puts
Now consider the strategy of writing a 100-strike put to incorporate a bullish view on

XY Z stock. As we saw, the danger with this strategy is that if prices move sharply down,

substantial losses may be incurred on the short put position.

One way to cap this risk is to buy a put with a strike of (say) 95. If you do this, then your

maximum danger is a price fall to 95. Beyond that, whatever you lose on the put you have

written, you make up on the put you have bought. Of course, there is a cost to obtaining this

cap—your initial cash inflow has been reduced from 2.67 to 2.67− 0.89 = 1.78.

The portfolio you have created here is a bullish vertical spread using puts or, simply, a

put bull spread. In general, a put bull spread involves selling a put with a strike price K2

and simultaneously buying another put with a lower strike price K1. The initial cash inflow

is P(K2) − P(K1). The strike price K2 is chosen to be at or near the current stock price,

making the position bullish; the long K1-put offers protection on the downside in case this

view is wrong.

Figure 8.4 graphs the gross payoffs from a put bull spread. The payoffs are obtained

using the same arguments as the call bull spread:

• If ST ≥ K2, neither put is exercised. The gross payoffs are zero.

• If ST lies between K1 and K2, only the K2-strike put is exercised, so the portfolio payoff

is −(K2 − ST ). When ST = K1, the loss is K2 − K1.

• Below a price of K1, both puts are exercised. Additional losses from the K2-strike put are

now canceled out by gains on the K1-strike put, so payoffs are flat at the level−(K2−K1).

To obtain the net payoffs from a put bull spread, we must add back the initial cash flow of

P(K2) − P(K1).

Bearish Vertical Spreads: The Motivation
Bearish vertical spreads are just the bearish-outlook analog of the bullish vertical spreads.

Suppose you are bearish about XY Z stock. Once again, there are two strategies open to you.

FIGURE 8.4
Payoffs from a Bullish
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1. You could write a call with a strike of 100.

2. You could buy a put with a strike of 100.

Both strategies make money if the price decreases from the current level of 100, but each

strategy comes with potential disadvantages. The first has the risk that if prices increase,

the losses from writing a call could be very large, even unlimited. The second requires an

up-front cash payment of 2.67 (from Table 8.1), which is lost entirely if prices go up; this

is a nontrivial concern especially if you believe that the likelihood of prices going down

below some level (say, 95) is low, so you expect only a limited upside.

Once again, in both cases, the solution is to soften these potential negative effects by

combining the given options with another option to create a spread. We examine the call

spread first and then the put spread.

Bearish Vertical Spreads Using Calls
Consider combining your short position in the 100-strike call with a long position in a call

with a higher strike price (say, 105). This reduces your initial cash inflow from 3.09 to

3.09− 1.21 = 1.88, but also limits your maximum loss: if prices rise above 105, whatever

you lose on the 100-strike call you have sold, youmake upon the 105-strike call that you hold.

This is a call bear spread or a bearish vertical spread using calls. In general, it involves

selling a call with some strike K1 (typically at- or near-the-money) and buying a call with a

higher strike K2. The short position in the K1-call implies the position is essentially bearish.

When combined with the long K2-strike call, the initial cash inflow is reduced from C(K1)

toC(K1)−C(K2), but potential losses are capped: any loss on the short K1-strike call from

a price greater than K2 is offset by gains on the long K2-strike call.

Figure 8.5 graphs the payoffs from a call bear spread. The net payoffs are obtained by

adding the initial cash inflow C(K1) − C(K2) to the gross payoffs.

Bearish Vertical Spreads Using Puts
As we have seen, the risk in buying a put to reflect a bearish view on direction is that the

entire premiummay be lost if prices increase. One way to reduce your up-front cost is to sell

a put with a lower strike price, e.g., 95. This reduces your initial cost to 2.67−0.89 = 1.78.

In exchange, you receive no benefit for price falls below 95: whatever you gain on the

100-strike put you hold, you lose on the 95-strike put you have written.

FIGURE 8.5
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FIGURE 8.6
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You have created a put bear spread or a bearish vertical spread using puts. This is a

portfolio with a long position in a put at some strike K2 and a short position in a put with a

lower strike K1. The strike K2 is usually close to the money, which ensures that the position

is essentially bearish. Selling the K1-strike put reduces the set-up cost for the portfolio, but

it also caps the upside benefit; the maximum benefit is reached when the stock price reaches

K1. Any gains on the K2-strike put at lower stock prices are canceled by the losses on the

K1-strike put.

Figure 8.6 graphs the payoffs from a put bear spread.

Butterfly Spreads
A butterfly spread using calls involves taking positions in calls with three strike prices

K1 < K2 < K3. The extreme strike prices K1 and K3 are called the “wings” of the spread.

We first discuss butterfly spreads in the “symmetric” case, i.e., where the three strike prices

are equally spaced so K2 is the mid-point of K1 and K3. This is the case most commonly

associated with butterfly spreads in practice. However, butterfly spreads can be set up for

any three strike prices. We discuss the general case in Appendix 8A. Butterfly spreads too

can be set up using either calls or puts. We discuss call butterfly spreads first.

Butterfly Spreads Using Calls
When the strike prices are equally spaced, a butterfly spread is a portfolio consisting of

(a) one long position each in the K1- and K3-strike calls, and (b) two short positions in the

K2-strike call. The gross payoffs from the symmetric butterfly call spread at T (graphed in

Figure 8.7) can be determined by considering four scenarios for ST :

• For ST < K1, none of the options is in-the-money. The portfolio payoff is zero.

• For ST between K1 and K2, only the K1-strike call is in-the-money. Since we are long

one such call, the portfolio payoff increases by $1 for every $1 increase in ST in this

range.

• For ST between K2 and K3, the K1- and K2-strike calls are both in-the-money. For every

$1 increase in ST in this range, we gain $1 on the K1-call but lose $2 on the two K2-calls,

for a net loss of $1. Since K1, K2, and K3 are equally spaced, the entire gains between

K1 and K2 are given up between K2 and K3, so the gross payoff from the portfolio is

zero when ST = K3.
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FIGURE 8.7
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• For ST > K3, all three options are in the money. For each $1 increase in ST in this range,

we gain $1 each on the K1- and K3-calls but lose $2 on the two short K2-calls, for a net

gain of zero. Thus, the payoff remains flat at zero in this range.

The Cost of a Call Butterfly Spread
The cost of setting up the butterfly spread is

C(K1) + C(K3) − 2C(K2) (8.3)

Is this cost positive, negative, or zero? Arbitrage provides an easy answer. Figure 8.7

shows that the gross time-T payoffs to a symmetric butterfly spread are always non-negative,

and are strictly positive if ST lies between K1 and K3. That is, there is never a cash outflow

at T , but there is a cash inflow whenever ST lies between K1 and K3. To avoid arbitrage, it

must cost something to set up the portfolio:

C(K1) + C(K3) − 2C(K2) > 0 (8.4)

For instance, in the XY Z example, the cost of the butterfly spread is positive: from

Table 8.1, the cost is

6.29+ 1.21− (2× 3.09) = 1.32

Expression (8.4) offers a very powerful restriction on call prices for any three equally-

spaced strike prices. This result is actually a special case of a general result known as

convexity of option prices in the strike price that holds even when strike prices are not

equally spaced. We state the general result in Appendix 8A.

Why Use Butterfly Spreads?
The most common use of the butterfly spread is as a directional/volatility bet. The spread

pays off maximally if ST is at K2. Moreover, it decreases rapidly as ST moves away from

K2 in either direction, that is, it is a short volatility portfolio. Thus, the butterfly spread is

a bet that the price will be around K2 with very little volatility.

As an illustration, consider the XY Z example again. Suppose you anticipate prices being

flat at the current price of 100. If you set up a butterfly spread using the 95-, 100-, and 105-

strike calls, the up-front cost, as we have seen, is 1.32. If the price does in fact remain flat,

the payoff from the option will be 5 for a net profit of 3.68.
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Traders sometimes use rules of thumb for gauging the acceptability of risky strategies.

One sometimes used in the context of butterfly spreads is the “rule of 3” that requires the

maximum payoff of the spread (i.e., the payoff at ST = K2) to be at least three times the

cost of the spread. It should be noted that there are no formal bases for such rules.

Of course, butterfly spreads may also be employed to take advantage of arbitrage op-

portunities involving three options. For example, suppose for K1 = 90, K2 = 100, and

K3 = 110, we observed call prices of C(K1) = 13, C(K2) = 8, and C(K3) = 2. A riskless

profit can be made by setting up a butterfly spread involving the three options. Arbitrage

opportunities like this are not common.

Butterfly Spreads Using Puts
Symmetric butterfly spreads using puts are defined in exactly the same way as butterfly

spreads using calls: We take

• a long position in one put each with strikes K1 and K3; and

• a short position in two puts with strike K2.

The payoffs of the put butterfly spread are identical to those of the call butterfly spread:

That is, Figure 8.7 also represents the gross payoffs from a symmetric put butterfly spread.

This may be checked directly:

• For ST < K1: All three puts are in-the-money. The portfolio’s payoff is

(K1 − ST ) − 2 (K2 − ST ) + (K3 − ST ) = K1 − 2 K2 + K3 = 0

• For ST lying between K1 and K2: The K2- and K3-strike puts are in-the-money, so the

portfolio payoff is

−2 (K2 − ST ) + (K3 − ST ) = ST + K3 − 2 K2

This is identical to the call payoff in this interval since −(K3 − 2K2) = K1.

• For ST lying between K2 and K3: Only the K3-strike put is in-the-money. The portfolio

payoff in this case is K3 − ST . This is identical to the call payoff in this interval since

2K2 − K1 = K3.

• For ST ≥ K3: All the puts are out-of-the-money, so the portfolio payoff is zero.

As a consequence, the cost of a put butterfly spread must also be strictly positive, i.e.,

we must have

P(K1) + P(K3) − 2 P(K2) > 0 (8.5)

Horizontal Spreads Using Calls
Horizontal spreads use options with the same strike K and two different maturities, T1 and

T2, where T1 < T2. In a long horizontal call spread, the investor takes a long position in the

T2-maturity call (the “distant” call) and a short position in the T1-maturity call (the “nearby”

call). A short horizontal call spread is the opposite portfolio: long the nearby call and short

the distant call. Long and short horizontal put spreads are defined analogously with “put”

replacing “call” in the preceding definitions.

Payoff at T1 of a Horizontal Call Spread

Figure 8.8 shows the value of a horizontal call spread at T1, the date of maturity of the

nearby call, for different values of the stock price ST1 on this date. The payoff looks similar

to a butterfly spread—it is highest at the common strike price of the options and tails off in

either direction. As with a butterfly spread, the payoff of a horizontal call spread is always

non-negative.
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Payoffs from a

Horizontal Call Spread

ST1
K

Horizontal

call spread

payoff

A formal derivation of the graph requires knowledge of option pricing that will be

developed only over the next several chapters, but the three broad features of the graph—

why it is increasing up to K , decreasing beyond that, and positive everywhere—are not hard

to understand intuitively.

Consider ST1 < K . The nearby call expires worthless in this case, so the value of the

portfolio is just the value of the distant call, which is positive. Moreover, other things being

equal, the higher is ST1 today, the better the chances of the T2-maturity call eventually

finishing in-the-money. So, the value of the horizontal call spread increases as ST1 increases

in this range.

When ST1 ≥ K , the nearby call comes into the money and will be exercised. Thus, the

value of the spread is now the value of the distant call (denoted, say, C(K ; T2)) minus the

value of the expiring call:

C(K ; T2) − (ST1 − K ) (8.6)

Now, a long-dated call is always worth more than a short-dated call (under almost all

circumstances) for two reasons that we explore in greater detail in the coming chapters.

First, the longer time to maturity gives volatility a greater time to have an impact. Second,

the calls involve paying K to buy the stock. The longer one has to pay this K , the greater

the interest savings. Thus, the difference (8.6) is positive, explaining why the horizontal call

spread has a positive payoff everywhere.

Finally, as the call gets deeper in-the-money at T1, the more likely it is that it will finish

in-the-money, so the less optionality (hence, volatility) matters. Since volatility is one of

the reasons the longer-dated option costs more, the diminishing impact of volatility means

the difference (8.6) in option values also gets smaller, explaining why the portfolio value

declines beyond K .

Why Use Horizontal Call Spreads?

The value of a horizontal call spread is influenced by two factors: time and volatility.

As mentioned above, a shorter-maturity call is worth less than a longer-maturity one. Put

differently, this says that, ceteris paribus, the value of a call will decrease as maturity

approaches. This is called time-decay in a call. The rate of decay is relatively small when

an option has a long time left to maturity (the passage of one day doesn’t matter that much

if we still have three months left). But closer to maturity, time-decay increases rapidly (a

day makes a huge difference if we have only a week to maturity).
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FIGURE 8.9
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In a long horizontal call spread, we own the distant call but are short the nearby call.

Other things being the same, the value of the portfolio will increase over time since the

shorter-dated call will lose value faster than the long-dated one. Thus, the horizontal call

spread is an attempt to profit from time-decay. However, the ceteris paribus qualification is

important here. As the payoff diagram makes clear, the horizontal call spread is also a bet

that the price will be at or in a small neighborhood of K .

The horizontal call spread can also be a play on the stock’s implied volatility. Implied

volatility is defined formally later in the book, but intuitively, it is just the level of volatility

reflected in current option prices. If you have a view that the stock’s implied volatility will

go up but the stock price will not immediately change very much, then buying an at-the-

money horizontal call spread may be appropriate. When implied volatility goes up, the

prices of both the nearby and distant calls will increase. However, because the latter has

greater maturity than the former, it will increase by more (there is more time for volatility

to matter). So the value of your portfolio will go up.

Horizontal Spreads Using Puts
Asnoted above, horizontal put spreads are defined in the sameway as horizontal call spreads.

Figure 8.9 shows the value of a horizontal put spread at time T1. There is one important

difference between puts and calls that is reflected in the graph.American puts, like European

and American calls, increase in value with maturity. That is, a longer-dated American put

must cost more than a short-dated one (if you don’t want the extra time, you can always

exercise early). However, this is not necessarily true for European puts, especially when

they are deep in-the-money. Intuitively, if you have a deep in-the-money put and are sure

to exercise it, you would rather receive the strike price K earlier than later. In a long-dated

European put, you are forced to wait longer for the money, and this hurts you. Thus, when

the puts in the horizontal spread are both deep in-the-money, the value of the spread may

become negative, as happens in the graph.

8.4 Trading Strategies III: Combinations

A combination is used to refer to a portfolio that involves positions in both puts and calls

on a given underlying asset. It has become increasingly common, however, to refer to such

portfolios too as “spreads.” We retain the old-fashioned terminology in this section.
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FIGURE 8.10
Payoffs from a Straddle
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We look at four popular combination strategies: straddles, strangles, strips, and straps.

Straddles and strangles are the most important of these and are among the most important

of all strategies discussed in this chapter. They are quintessential options strategies in that

they incorporate a view on volatility but not on direction as we explain below.

Straddles
A straddle is one of the simplest and most popular of options-based trading strategies. It

is a portfolio consisting of long positions in a call and a put with the same strike price and

maturity. The strike is usually chosen to be at or near the current stock price. Letting K

denote the common strike price, the payoffs from a straddle at maturity are:

• If ST < K : Only the put is in-the-money. The payoff of the straddle is (K − ST ).

• If ST ≥ K : Only the call is in-the-money. The payoff of the straddle is (ST − K ).

These payoffs are graphed in Figure 8.10.

Straddles result in a positive gross payoff at maturity regardless of the direction in which

the market moves. Thus, they are neutral on market direction. Intuitively, the directional

bullishness of the call is canceled by the directional bearishness of the put. However, strad-

dles are clearly very bullish on volatility. The greater the price swings, the better off is the

holder of a straddle.

Volatility is key here. Straddles involve purchasing multiple options, so large movements

in prices are required for them to be profitable. In the XY Z example, for instance, buying

an at-the-money straddle with a strike of 100 costs 3.09+ 2.67 = 5.76. Thus, the price has

to move below 94.24 or above 105.76 from its current level of 100 for the strategy to be

profitable. More generally, option prices reflect the market’s expectation of volatility over

the option’s life. If high volatility is anticipated, the price of the call and put will both rise,

making straddles even more expensive.

Short Straddles

A short straddle is a short position in a straddle. Writing naked straddles (i.e., writing

straddles and then not hedging oneself) is a bet on low volatility and is neutral on direction.

This can be profitable in flat markets but is also quite obviously a very risky strategy since

the potential losses from price swings (in either direction!) can be very large. This point

may seem uncomplicated and obvious. Yet the massive use of naked short straddles lay

behind one of the major financial scandals of the 1990s, the downfall of Barings Bank, that

is described later in this chapter.
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FIGURE 8.11
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Strangles
A strangle is essentially the poor cousin of a straddle. Like the straddle, it aims to be neutral

on direction but bullish on volatility. The difference is that, rather than using the same strike

price for the call and the put, the strangle uses a higher strike price for the call and a lower

one for the put. This makes the strangle cheaper than a straddle, but it also means much

larger price moves are required for the strangle to make money.

As an example, consider the prices for XY Z options from Table 8.1. As we saw, the cost

of a 100-strike straddle is 5.76. One inexpensive alternative is to set up a 95-105 strangle,

i.e., buy a put with a strike of 95 and a call with a strike of 105. From the prices in the table,

the strangle would cost only 1.21+ 0.89 = 2.10. However, for the strangle to turn a profit

after taking into account the cost of the options, the price has to be above 107.10 or below

92.90, a wider range than the corresponding one for the straddle.

The gross payoffs from a strangle are graphed in Figure 8.11. The put and call strikes

are, respectively, K1 and K2 with K1 < K2. The payoff of the strangle is

• equal to the put payoff if ST < K1;

• zero if ST lies between K1 and K2; and

• equal to the call payoff if ST > K2.

The net payoffs from a strangle are obtained by subtracting the cost of the strangle from

these values.

Strips
A strip is a portfolio consisting of long puts and calls with the same strike and maturity but

it has more puts than calls (e.g., two puts for every call). Like a straddle, a strip is a bet on

volatility, but now the bet is asymmetric: by using more puts than calls, it is biased towards

price decreases. Thus, a strip makes sense if one anticipates high volatility but believes that

price decreases are more likely than price increases.

Figure 8.12 graphs the payoffs from a strip assuming a ratio of two puts per call and

with K denoting the common strike price. If ST < K , only the puts are in-the-money, so

the strip’s payoffs are 2 (K − ST ). If ST ≥ K , only the call is in-the-money, so the strip’s

payoff is (ST − K ).
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FIGURE 8.12
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Straps
A strap is the other side of a strip: it is a portfolio consisting of long positions in more

calls than puts. A strap is an asymmetric bet on volatility, one that is biased towards price

increases. Thus, a strap makes sense if one anticipates high volatility but believes that price

increases are more likely than price decreases.

Figure 8.13 graphs the payoffs from a strap assuming a ratio of two calls per put. Letting

K denote the common strike price in the strap, the payoffs from a strap at T are (K − ST )

if ST < K and 2 (ST − K ) if ST ≥ K .

8.5 Trading Strategies IV: Other Strategies

In this section, we discuss four further classes of trading strategies: collars, box spreads,

ratio spreads, and condors. Box spreads and ratio spreads are related to the bull and bear

spreads discussed earlier, while condors have a close resemblance to butterfly spreads.
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FIGURE 8.14
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Collars
A collar is a widely-used options strategy. It uses two strike prices K1 and K2 where

K1 < K2, and involves a long position in a put with strike K1 and a short position in a call

with strike K2. Figure 8.14 describes the payoff from this portfolio.

When a long position in a stock is combined with a collar, the value of the portfolio at

maturity of the options will lie between K1 and K2. (Hence, the word “collar” to describe

the strategy.) This payoff is illustrated in Figure 8.15. To see why the payoff has this form,

note that:

• If ST < K1, we can exercise the put and sell the stock for K1. The portfolio value is thus

K1.

• If K1 < ST < K2, the put and call both finish out-of-the-money. Thus, the value of the

portfolio is just the value of the stock, which is ST .

• If K2 < ST , the call will be exercised, which means we give up the stock and receive K2.

Thus, the portfolio value is K2.

Thus, collars are simply strategies that limit the risk in a long stock position. A collar is

like a protective put in that it protects the holder of the stock from a fall in prices. However,

FIGURE 8.15
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the collar also caps the upside benefit from holding the stock at K2. In exchange, the up-front

cost of the strategy is reduced: while the cost of a protective put would be the price P(K1)

of the K1-strike put, that of the collar is

P(K1) − C(K2)

This cost can be positive or negative depending on the option premia. Consider the XY Z

example of Table 8.1. If we set up a collar with the 95-strike put and the 105-strike call, the

cost of the collar is

0.89− 1.21 = −0.32,

that is, there is an initial cash inflow of 0.32 from the collar.

A cashless collar is one in which the strike prices K1 and K2 are chosen so that the

premia cancel each other out and the collar has a zero net initial cost. Also called zero-

cost collars, cashless collars have become especially popular with corporate executives and

other investors who hold large blocks of shares in a single company and want to limit the

riskiness of their exposures. Paul Allen, billionaire co-founder of Microsoft, is reputed to

have protected a substantial chunk of his Microsoft holdings using cashless collars. Since

the strategy involves capping the upside benefit in exchange for the downside protection,

such strategies are not prohibited for executives under SEC rules and have not (or at least

not yet) been the subject of lawsuits or media attacks.

Box Spreads
Consider a portfolio in the XY Z example of Table 8.1 in which you hold a 95/100 call

bull spread and a 95/100 put bear spread. That is, you are long a 95-strike call and short a

100-strike call as well as long a 100-strike put and short a 95-strike put. This portfolio is

called a box spread.

What is the payoff from this portfolio? The long 95-strike call and short 95-strike put

together create a synthetic forward contract to buy the stock at 95. The short 100-strike call

and the long 100-strike put together create a synthetic forward contract to sell the stock at

100. This means you are buying at 95 and selling at 100 for a flat payoff of 5 at maturity.

Thus, a box spread creates a synthetic zero-coupon bond using options.

In general, a box spread involves a position in four options with two strike prices K1

and K2 with K1 < K2: (a) long the K1-strike call, (b) short the K2-strike call, (c) long the

K2-strike put, and (d) short the K1-strike put. The payoff of the spread at maturity is just

K2 − K1 regardless of ST .

Ratio Spreads
Ratio spreads are like the bull and bear spreads described above except that the number

of calls bought and sold at the different strikes are not equal. A ratio call spread may, for

example, involve buying one call with strike K1 and selling two calls with a higher strike

K2. In this case, the payoff looks as in Figure 8.16. Ratio put spreads are defined similarly.

The cost of a ratio spread may be positive, negative, or zero, depending on the ratio in

which the two options are combined. Consider, for instance, a ratio spread in the example

of Table 8.1 using the 100- and 105-strike calls. If we use two short 105-strike calls for

every long 100-strike call, the cost of the spread is

3.09− (2× 1.21) = 0.67

which is positive. If we use three short 105-strike calls for every long 100-strike call, the

cost is

3.09− (3× 1.21) = −0.54
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FIGURE 8.16
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which is negative. Thus, ratio spreads may involve cash outflows or cash inflows when they

are set up.

As the payoff diagram indicates, the ratio spread is essentially a bet that prices will rise

but not to more than K2. We can also set up bearish ratio spreads, which are bets that

prices will fall to, but not beyond, a specified price. Consider, for instance, a portfolio in

the example of Table 8.1 that is long a 100-strike put and is short two 95-strike puts. This

portfolio has a payoff that is highest when ST = 95 and declines on either side of this price.

Condors
Condors are essentially like butterfly spreads except that the peak payoff occurs over an

interval of prices rather than at a single price. A condor consists of options with four strike

prices K1, K2, K3, and K4. We buy calls at the two extreme strike prices K1 and K4 and

sell calls at the two intermediate strike prices K2 and K3. Put condor spreads are defined

analogously.

The resulting payoff is, as Figure 8.17 shows, akin to a butterfly payoff except that the

payoff is flat between K2 and K3. Thus, condors are bets on the price being in the band

[K2, K3].

FIGURE 8.17
Payoffs from a Condor
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8.6 Which Strategies Are the Most Widely Used?

We have described a large (but not quite exhaustive) list of standard trading strategies using

options. How much of options trading is accounted for by these strategies? A study by

Chaput and Ederington (2003), the first of its type, offers an answer. The authors consider

eurodollar options, which is one of the largest options markets in the world. They find that

spreads and combinations collectively account for over 55% of large trades (those of 100

contracts or more) and are responsible for 75% of the trading volume generated by large

trades.

In terms of total volume, the four most heavily used strategies are (in order) straddles,

ratio spreads, vertical spreads, and strangles. Collectively, these account for two-thirds of

all spread/combination trades. Strategies such as butterflies and collars are lightly traded,

while trading in condors, horizontal spreads, and box spreads is rare. Overall, the authors

conclude that popular trading strategies appear driven more by volatility considerations

than directional ones. This finding backs the point that while there are many ways (spot,

forwards, options) to take advantage of directional views, there is only one (options) to

incorporate views on volatility.

8.7 The Barings Case

On February 27, 1995, Barings, a small but venerable British bank with a rich history, came

to an ignominious end when it filed for receivership. The bank’s capital of around $618

million had been comprehensively eroded by losses well in excess of $1 billion that had

been incurred from trading in derivatives by a single individual, Nick Leeson, operating out

of Barings’ Singapore office. There were several remarkable aspects to this episode that bear

highlighting, none more so than the fact that only the simplest kinds of derivatives—long

futures and short straddles—whose risks are easily understood, were involved. This is a

summary of the Barings saga.1

What Leeson Was Supposed to Be Doing
Leeson’s mandate from Barings was to do arbitrage trades that exploited short-lived dif-

ferences in Nikkei 225 futures prices on the Osaka and Singapore Exchanges (OSE and

SIMEX, respectively; SIMEX is now SGX) by buying the cheaper contract and simultane-

ously selling the more expensive one. These trades (“switching” trades in Barings’ lexicon)

involve very low risk: since the arbitrageur is long Nikkei futures on one exchange and short

the futures on the other, there is no directional exposure. Leeson also put through trades on

client orders but was not otherwise allowed to take on proprietary positions that exposed

Barings to market risk.

What He Was Actually Doing
What Leesonwas actually doing bore little resemblance to hismandate. Evidence uncovered

after the collapse of Barings shows that he engaged in unauthorized trading almost from

the day he began in Singapore in 1992, taking on proprietary positions in both futures and

options. The evidence also shows that he ran up large losses almost from the beginning.

But, incredibly, his supervisors in London believed that he was making money hand over

fist for them and that he had single-handedly accounted for almost 20% of the entire firm’s

1 The presentation below draws especially from the analysis provided by the International Financial

Risk Institute on its website http://riskinstitute.ch/137550.htm.
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TABLE 8.2 The

Reported and Actual

Profits Generated by

Nick Leeson

The table below describes the profits Barings’ London office thought
Leeson had made and the actual losses he was running up.The figures
are in US dollars.

Year Reported Actual

1993 +14 million −33 million
1994 +46 million −296 million
1995 +30 million −1 billion

TABLE 8.3 The

Reported and Actual

Holdings of Nick

Leeson

The table below describes the actual and reported holdings of Nick Leeson at the time
of Barings’ bankruptcy. The figures are in terms of number of SIMEX contracts. Long
positions are indicated by a + and short positions by a − sign.

Contract Reported Actual

Nikkei 225 futures +30,112 +61,039
Japanese government bond futures +15,940 −28,034
Euroyen futures +601 −6,845

Nikkei 225 calls 0 −37,925
Nikkei 225 puts 0 −32,967

profits in 1993 and almost 50% in 1994. Table 8.2 describes the reported and actual profits

from Leeson’s trading activity.

These numbers are astonishing but no less so than the magnitude of the positions he

held. In end-February 1995, against Barings’ capital of a little over $615 million, Leeson’s

notional positions in derivatives amounted to over $33 billion, including over $6.50 billion

in unhedged short options positions on the Nikkei 225 index. Once again, the gap between

his actual and reported holdings is remarkable. Table 8.3 summarizes this information.

How Did He Get Away with It?
The information gaps highlighted in the previous paragraphs suggest that Barings’ opera-

tional controls must have been exceptionally poor. They were. One extraordinary feature of

Barings’ Singapore operations was that Leeson was not only the trader but also the back-

office responsible for settling the trades. This is essentially what enabled him to withhold

important information from London.

The British Board of Banking Supervision, in its postmortem of the Barings affair,

highlights the “cross trade” as the single main vehicle Leeson employed to carry through

the fraud. In a cross trade, a single member on the floor of the exchange is both the buyer

and the seller; it is usually used to match buy and sell orders from two separate clients.

There are some regulations cross trades must follow. For example, SIMEX required the

transaction to be at the current market price; moreover, the member was required to declare

the price at least three times and was allowed to carry out the cross trade only if no other

member took the price.

In Leeson’s cross trades, Barings was the counterparty to itself. The trades were entered

into several accounts including an “error account” numbered 88888. After the cross trades,

Leeson’s staff, acting on his instructions, entered the profits into the legitimate trading

accounts and the losses into account 88888.

Also under Leeson’s instructions, information on account 88888 was never transmitted

to London. Thus, Leeson’s supervisors had no idea of the real size of his positions. As
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one example, in late February 1995, they believed he was short 30,000 Nikkei 225 futures

contracts on SIMEX; in fact, he was long 22,000 contracts.

Options Trading and the End of Barings
Leeson’s mandate did not allow him to trade in options, but he did so anyway. He effectively

sold straddles on the Nikkei 225. As we have seen earlier in this chapter, naked short

straddles are extraordinarily risky positions that lose money for the writer no matter which

direction prices move in. They are bets on flat prices (i.e., low volatility). Through much of

the early months of Leeson’s straddle positions, the Nikkei was quite flat, and he earned a

substantial premium income from the positions.

In November and December of 1994, Leeson ratcheted up his options positions con-

siderably, selling over 34,000 contracts in those two months alone. The strike prices of

his options positions ranged from about 18,500 to 20,000, and the trades would have been

profitable if the Nikkei had remained in a range of about 19,000–20,000. Unfortuantely for

Leeson and Barings, it did not (see Figure 8.18).

On January 17, 1995, the Nikkei was at around 19,350. That day, the Kobe earthquake

struck, market sentiment took a downturn, and the index closed the week at a little below

19,000. Yet, on Friday, January 20, Leeson bought an additional 10,800 Nikkei futures

contracts expiring in March 1995. This may have been an attempt to profit from what he

perceived as market overreaction to the earthquake or may have simply been an attempt to

shore up the market.

The next week proved disastrous for Leeson and Barings. By Monday, January 23, the

Nikkei had lost over 1,000 points and closed below 18,000 (see the downward spike on that

date in Figure 8.18). Huge losses were incurred on both the long futures positions as well as

the written puts. At this point, Leeson could not close out his positions and take his losses

without disclosing the unauthorized trading. Moving into “double-or-nothing” mode, he

increased his long futures positions massively, winding up by February 22 with over 55,000

long March 1995 futures contracts and over 5,600 June 1995 futures contracts.

None of this buying restored confidence in the markets. When the Nikkei continued its

resolute downward march (Figure 8.18), margin calls on the derivatives positions revealed

Barings’ insolvency. The once-proud bank was finally bought by ING, a Dutch bank, for

all of £1.

FIGURE 8.18
Nikkei Index:

January–March 1995
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Who Was to Blame?
Leeson was obviously a central party, and in the press, he (and “derivatives” generally)

were adjudged to be the villains of the piece. More sober analysis carried out by the British

Board of Banking Supervision pointed out that operational risk played a significant role in

the debacle, and, therefore, that Barings management shared a substantial portion of the

blame.

To begin, management ignored a fundamental banking rule in making Leeson also re-

sponsible for settling his own trades. Management were also frequently negligent; they

ignored a number of queries and warnings from third parties that all was not well. Indeed,

they even wired huge amounts of cash to Barings Singapore (that enabled Leeson to meet

his trading losses and margin calls) without asking him for an explanation.

In the final analysis, more than anything else, the Barings episode highlights the impor-

tance of operational controls. Used sensibly and with the proper controls, derivatives can

do considerable good. Used irresponsibly and in a manner that ignores their risks, they have

the potential to create considerable damage.

8.8 Exercises 1. Draw the payoff diagram for the following portfolio of options, all with the same

maturity: (a) long a call at strike 75, (b) long two calls at strike 80, and (c) long three

calls at strike 85. What is the view of the stock price change consistent with this

portfolio?

2. You are interested in creating the following gross payoff profile using an options

portfolio:

Stock price 60 70 80 90 100 110 120 130 140 150
Payoff 10 30 20 10 0 10 30 10 0 −10

What options, at what strikes, would you hold in your portfolio?Assume that the desired

payoffs are zero for any stock price less than 50 or greater than 160.

3. (Difficult) Using the principles of the previous question, create a spreadsheet-based

algorithm to generate an option portfolio for any target gross payoff profile, such as the

one in the previous question. Assume, as in the previous question, that option payoffs

are provided for stock prices taken at regular intervals (e.g., intervals of $10). Create a

table for the given problem on a spreadsheet and then use solver to find the solution.

4. You are managing a separate portfolio dedicated to your retirement income. You do

not wish to take excessive risk, and would prefer to limit the downside. What common

option structure would suffice?

5. What gross payoff profile do you get if you short a covered call position and go long a

protective put position?Would you pay or receive net premiums on this position?What

is the view taken on the movement of the stock price if you hold this position? What

other options strategy does your portfolio remind you of? Assume a common strike for

all options of $100.

6. If you had a view opposite to that taken in the previous question, what portfolio structure

of options would you choose?

7. Microsoft is currently trading at $26. You expect that prices will increase but not rise

above $28 per share. Options on Microsoft with strikes of $22.50, $25.00, $27.50, and

$30.00 are available. What options portfolio would you construct from these options

to incorporate your views?
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8. Suppose your view in the previous question were instead that Microsoft’s shares will fall

but a fall below $22 is unlikely. Now what strategy will you use?

9. Calls are available on IBM at strikes of 95, 100, and 105. Which should cost more, the

95–100 bullish vertical spread, or the 95–100–105 butterfly spread?

10. A bullish call spread is bullish on direction. Is it also bullish on volatility?

11. What is the directional view in a long put butterfly spread?

12. How would your answer to the previous question change if this butterfly spread were

constructed using calls instead?

13. How does a horizontal spread exploit time-decay of options?

14. What is the volatility view implied by a long horizontal call spread? What about a short

horizontal put spread?

15. Assume the current volatility of oil is high. What options portfolio offers you a gain

from the high volatility if you do not have a view on direction?

16. You are planning to trade on the fortunes of a biotech firm that has a drug patent pending

FDA approval. If the patent is approved, the stock price is expected to go up sharply. If

it is not approved, the stock will drop sharply, In your view, it is unlikely to move more

than 20% in either direction. Describe a portfolio combining straddles and strangles that

takes advantage of your view.

17. Firm A is likely to be the target in a takeover attempt by Firm B. The stock price is likely

to rise over the next few weeks as the takeover progresses, but if it fails, the stock price

of A is likely to fall even more than the rise. What option strategy might exploit this

information?

18. The options for Microsoft (stock price $25.84) are trading at the following prices:

Strike Calls Puts

22.50 3.40 0.10
25.00 1.25 0.30
27.50 0.15 1.80

State the trading ranges at maturity in which the net payoff of the following option

positions is positive: (a) 25.00 straddle, (b) 22.50 strip, (c) 27.50 strap, and (d) 22.50–

27.50 strangle.

19. What are collars? What is the investor’s objective when using a collar?

20. Is the price of a collar positive, zero, or negative?

21. Suppose options trade at two strikes: K1 < K2. You notice that whereas C(K2) −

P(K2) = S − PV (K2) (put-call parity) holds for the K2 strike option, it does not hold

for the K1 strike option, specifically C(K1)− P(K1) = S− PV (K1)+ δ, where δ > 0.

Show how you would use a box spread to take advantage of this situation by constructing

a riskless arbitrage strategy. Assume there are no dividends.

22. What is a ratio spread? Construct one to take advantage of the fact that you expect stock

prices S to rise by about $10 from the current price but are not sure of the appreciation

of more than $10.

23. Can the cost of a ratio spread be negative?

24. What is more expensive to buy: (a) a 100–110–120 butterfly spread using calls or (b) a

90–100–110–120 condor? Can you decompose condors in any useful way?
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25. If you are long futures and long a straddle, what is your view on direction? On volatility?

26. Howwould your answer to the previous question change if youwere short futures instead?

27. If you take the view that volatility will drop over the next three months and then increase

thereafter, what options strategy would you like to execute? Would the value of this

portfolio today be positive or negative?

28. Compute the gross payoffs for the following two portfolios in separate tables:

• Calls (strikes in parentheses): C(90) − 2C(100) + C(110).

• Puts (strikes in parentheses): P(90) − 2P(100) + P(110).

What is the relationship between the two portfolios? Can you explain why?

29. Draw the payoff diagrams at maturity for the following two portfolios:

• A: Long a call at strike K and short a put at strike K , both options for the same

maturity.

• B: Long the stock plus a borrowing of the present value of the strike K . The payoff of

this portfolio is the cash flow received at maturity from an unwinding of the positions

in the portfolio.

Compare your two payoff diagrams and explain what you see.
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Appendix 8A

Asymmetric Butterfly Spreads
Suppose we have three strike prices K1 < K2 < K3 that are not necessarily equally-

spaced. To set up a call butterfly spread with these strikes, we combine the calls in the ratio

w : −1 : (1− w), where w is a fraction defined by

w K1 + (1− w) K3 = K2 (8.7)

or, equivalently,

w =
K3 − K2

K3 − K1

(8.8)

In other words, for every short position in the K2-strike call, we use (a) w long positions in

the K1-strike call and (b) 1−w long positions in the K3-strike call. The use of this particular

value for w is dictated by a simple consideration: under this value, the payoffs from the

butterfly spread at T will always be:

• zero, if ST ≤ K1 or ST ≥ K3;

• strictly positive and increasing for ST between K1 and K2; and

• strictly positive and decreasing towards zero for ST between K2 and K3.

That is, the payoffs at T will look just like Figure 8.7, although they need not, of course, be

symmetric. We leave it as an exercise for the reader to draw the time-T payoffs and verify

these statements.

Convexity of Option Prices in K

Since the payoffs of the general butterfly spread are always non-negative (and are strictly

positive for ST between K1 and K3), the cost of the spreadmust be positive, i.e., wemust have

w C(K1) + (1− w) C(K3) > C(K2), where w =
K3 − K2

K3 − K1

(8.9)

Expression (8.9) is called convexity of the call price in the strike price. It is a very powerful

restriction on call prices for any three strike prices. Expression (8.4) is, of course, a special

case of this, corresponding to the weight w = 1/2.

Put Butterfly Spreads

Asymmetric butterfly spreads using puts are defined in exactly the same way as butterfly

spreads using calls. Given any three strike prices K1, K2, and K3, we define w as in (8.8).

A put butterfly spread then involves

• a long position in w puts with strike K1,

• a long position in (1− w) puts with strike K3, and

• a short position in one put with strike K2.

The payoff from a put butterfly spread in the general case too is identical to the payoff from

a call butterfly spread. Thus, the convexity restriction (8.9) holds for puts too:

w P(K1) + (1− w) P(K3) > P(K2), where w =
K3 − K2

K3 − K1

(8.10)



Chapter 9
No-Arbitrage
Restrictions on
Option Prices

9.1 Introduction

We have seen in Chapter 7 that volatility is a major source of option value. This means we

cannot “price” options without first modeling volatility, that is, without a model of how the

underlying asset’s price evolves over time. In Chapters 11–16, we examine how this may be

done. But since any particular model of volatility and price evolution is necessarily limited,

the question arises: is there anything interesting we can say about option prices without

making any assumptions concerning the price behavior of the underlying?

It turns out that yes, there is quite a lot. Over this chapter and the next, we describe a

number of conditions option prices must satisfy independent of how the underlying’s prices

may evolve over time. Such conditions are called “no-arbitrage restrictions” since they rely

only on the minimal assumption that the market does not permit arbitrage.1

This chapter focuses on deriving no-arbitrage restrictions on the prices of individual op-

tions. We examine two main issues: maximum and minimum prices for options (Section 9.4)

and the nature of dependence of option prices on the two key contract parameters, strike

price and maturity (Section 9.6). Along the way, we use one of the results to motivate an

intuitive definition of the insurance value of an option, a concept that we appeal to repeat-

edly in later chapters. Chapter 10 then looks at the implications of no-arbitrage on two key

relationships: the relationship between the prices of otherwise identical calls and puts, and

that between otherwise identical American and European options. The results derived over

these two chapters will play a major role in later chapters in deriving and understanding

properties of options.

9.2 Motivating Examples

To get a flavor of the kind of results we shall derive in this chapter and their usefulness,

consider the following examples.

1 “Only” is an exaggeration. We also make the usual smoothmarket assumptions: no taxes, transactions

costs, restrictions on short sales, execution risk, and so on. Merton (1973) was the first paper to derive

no-arbitrage restrictions on option prices and is the source of most of the results of this chapter.

196
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Example 9.1 A stock is currently trading at $55. A European call with a strike of 50 and maturity of two
months is trading for $3. The stock is expected to pay a dividend of $2 in one month. The
yield curve is flat at 12% for all maturities (in continuously-compounded annualized terms).
Is there an arbitrage?

The call is trading for $3, but its current depth-in-the-money is $5. So if this were an
American option, the answer would be “yes”: buy the call, exercise it immediately, and sell
the stock. But since the call is European, this cannot be done. Indeed, since it cannot be
exercised for two months, the call does not even look particularly underpriced since the
dividend of $2 will be removed from the stock price before maturity. ■

Example 9.2 A stock is currently trading at $45. A European put with a strike of 50 and maturity of two
months is trading for $3. The stock is expected to pay a dividend of $1 in one month. The
yield curve is flat at 12% for all maturities (in continuously-compounded annualized terms).
Is there an arbitrage?

Not obvious. If the option were American, then there is a simple arbitrage opportunity:
purchase the stock and the put, and exercise the put immediately. But since it is European,
this will not work. ■

Example 9.3 The current price of a given stock is $100. A three-month American call option on the stock
with a strike of 95 is trading for a price of $6. The three-month rate of interest is 12%
(expressed in annualized, continuously-compounded terms). No dividends are expected on
the stock over this period. Is there an arbitrage?

Again, not obvious. At least, there doesn’t seem to be any simple opportunity. For ex-
ample, immediate exercise of the call will bring in $(100− 95) = $5, but the call costs $6,
which is greater than the profit from immediate exercise. ■

Example 9.4 A stock is trading at $100. A one-month European put with a strike of 100 costs $3.25, and
a one-month European put with a strike of 110 costs $14. The one-month rate of interest
(in simple terms) is 1%. Is there an arbitrage?

The ordering of put prices in this question appears correct: the right to sell at 110 should
clearly be worth more than the right to sell at 100. But is the difference of 14−3.25 = 10.75
in put prices “too much”? How large can differences be before an arbitrage opportunity
arises? ■

Example 9.5 A stock is trading at $40. There are three-month European calls on the stock with strikes of
35, 40, and 45. The prices of the calls are, respectively, 5.50, 3.85, and 1.50. Is there an
arbitrage?

Again, the ordering of call prices seems correct with the 35-strike call costing the most
and the 45-strike call the least. Is there a deeper relationship that should link the three call
prices? ■

None of these examples has anything “obviously” wrong with it. Yet, the results we derive

in this chapter show that each of them admits an arbitrage opportunity. In Section 9.7, we

revisit these examples, derive the arbitrage opportunity in each of them, and explain how

it may be exploited. But before this can be done, we first have to derive the no-arbitrage

restrictions. We turn to this now.
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9.3 Notation and Other Preliminaries

The properties of option prices will depend on several factors:

• Whether the option is a call or a put.

• Whether the option is American or European.

• The size of the dividend payments (if any) that are expected from the underlying asset

over the life of the option.

The importance of option type (puts vs. calls) and option style (American vs. European) is

evident. Dividends become important because options are typically not “payout-protected”

instruments, i.e., the terms of the option (such as the strike price) are usually not adjusted

when a dividend is paid on the underlying.2 Dividend payments cause a fall in the price of

the underlying asset. This hurts the holder of a call option since the call becomes “less”

in-the-money, but benefits the holder of a put option since the put becomes “more” in-

the-money. The absence of payout protection means that the size of the expected dividend

payment will affect the amount investors are willing to pay for calls and puts: other things

being equal, an increase in the expected dividend size will lower the value of a call and

increase the value of a put.

From a conceptual standpoint, it helps to distinguish between the case where the under-

lying asset is not expected to pay any dividends over the life of the option, and where it is

expected to pay dividends. We refer to the former case as one of a non-dividend-paying or

NDP asset, and the latter as a dividend-paying or DP asset. Note that NDP and DP refer

only to dividends that may occur during the option’s life; any dividends that may occur after

the option’s expiry do not affect the option’s value and so do not concern us here. Finally,

when dealing with DP assets, we assume, as we did in the context of forward pricing, that

the timing and size of the dividend payments are known. This is not entirely an innocuous

assumption, but it is a reasonable one, especially for short-dated options.

Notation
The notation used in this chapter is summarized in Table 9.1. We retain the notation in-

troduced in earlier chapters for the price of the underlying and for the option’s strike and

maturity. Also as earlier,C and P will denote call and put option prices, but now we shall add

subscripts A and E where necessary to denote American and European styles, respectively.

Thus, CA will denote the price of an American call, while PE is the price of a European put.

If a pricing property holds for both American and European styles of an option, we shall

drop the subscripts and simply use C and P .

Two other pieces of notation will come in handy. Let PV (D) denote the present value

(viewed from today) of the dividends receivable over the life of the option. And let PV (K )

denote the present value of an amount K receivable at the maturity time T of the option.

One final observation. Since we can always choose to hold an American option to matu-

rity, such an option can never cost less than its European counterpart, so we must have:

CA ≥ CE and PA ≥ PE (9.1)

2 This is true for normal dividend payments. If dividend payments are extraordinarily high (a threshold

of 10% of the stock price is commonly used), then exchanges often respond by reducing the strike

price by the amount of the dividend. This was done, for example, in the case of the large Microsoft

dividend in late 2004.
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TABLE 9.1
Notation and

Terminology

Notation Meaning

S Current price of underlying
K Strike price of option
T Maturity date of option
ST Time-T price of underlying
C Call option (can be American or European)
P Put option (can be American or European)
C A , C E American and European calls, respectively
PA , PE American and European puts, respectively
P V (D) Present value of dividends receivable over option life
P V (K ) Present value of an amount K receivable at time T

9.4 Maximum and Minimum Prices for Options

We begin with call prices first, and then look at the corresponding results for puts.

Bounds on Call Option Prices
An upper bound on call prices is easy to derive: the price of a call option can never exceed

the current price S of the underlying asset.

C ≤ S (9.2)

The reasoning behind (9.2) is simple: when the asset can be purchased directly today for S,

why pay more than S for the call which provides you only the right to buy the underlying

asset by making a further payment of K ?

Lower bounds are just a little bit trickier. We derive two simple lower bounds first and

then a third one that involves a tad more work.

A call confers a right without an obligation. Therefore, the price of a call cannot be

negative—that is, you cannot be paid to take on a right that you can throw away for free.

This gives us the first lower bound:

C ≥ 0 (9.3)

Note that (9.3) need not hold for derivatives such as forward that involve an obligation rather

than a right. For example, if you hold a long forward contract and prices have dropped sharply

since you entered into the contract, the contract will have negative value for you. This means

you cannot get out of the contract except at a cost.

Our second lower bound is one that holds forAmerican calls. Such a call can be exercised

at any time. If it is exercised immediately, the investor pays K and receives an asset worth

S; thus, the value of immediate exercise is S− K . In the absence of arbitrage, the price CA

of the call must be at least the value of immediate exercise:

CA ≥ S − K (9.4)

If (9.4) did not hold (that is, if CA < S − K ), an investor could make arbitrage profits

by buying the call and exercising it immediately. Note that this argument will not hold for

European calls, which can be exercised only at maturity. Thus, (9.4) may or may not hold

for European calls.

The third lower bound holds both for European and American calls, but it helps to

break up the derivation into a series of steps. We consider first the case of a European call

on an NDP asset; then we bring in dividends; and finally we allow for early exercise. So
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TABLE 9.2
Portfolios A and B:

Costs and Payoffs

Cash Flows at T When

Initial Cost ST < K ST ≥ K

Portfolio A C E 0 ST − K

Portfolio B S − P V (K ) ST − K ST − K

suppose we are given a European call option on an NDP asset. Consider the following two

portfolios:

Portfolio A Long one call with strike K and maturity T

Portfolio B Long one unit of the underlying

Borrowing of PV (K ) for repayment at T

The cost and time-T payoffs of each portfolio are summarized in Table 9.2. (There are

no interim cash flows to worry about since the call cannot be exercised until maturity and

there are no dividends.) The initial cost of Portfolio A is just the current price CE of the

call, while that of Portfolio B is S − PV (K ). The time-T values of both portfolios depend

on ST :

• Portfolio A, the call, expires worthless if ST < K and is worth ST − K if ST ≥ K .

• In Portfolio B, the long underlying position is worth ST while repayment of the borrowing

leads to a cash outflow of K . Thus, the value of Portfolio B at maturity is ST − K .

These payoffs are graphed in Figure 9.1. At maturity, Portfolio A does exactly as well as

Portfolio B when ST ≥ K and does strictly better when ST < K . Portfolio A must therefore

cost at least as much as Portfolio B. That is, we must have

CE ≥ S − PV (K ) (9.5)

Expression (9.5) is the desired third lower bound. In Section 9.5, we give a simple

interpretation of Portfolio B that makes this lower bound seem almost obvious.

How should (9.5) be modified to account for dividend payments and early exercise?

Consider dividends first. If the underlying is a DP asset, then there will be an intermediate

FIGURE 9.1
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FIGURE 9.2
Bounds on Call Prices
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cash inflow in Portfolio B at the time the dividend is paid, but there is no corresponding cash

flow in Portfolio A. To restore the comparability, all we need do is create a corresponding

cash outflow in Portfolio B that cancels out the dividend cash flow. That is, consider the

following modification to Portfolio B:

Portfolio B Long one unit of the underlying

Borrowing of PV (K ) for repayment at T

Borrowing of PV (D) for repayment on the dividend date

The initial cost of Portfolio B changes; it is now S − PV (K ) − PV (D). But there are no

net interim cash flows in this portfolio, and its time-T value remains exactly as in Table 9.2.

Therefore, the same comparison we made earlier between the portfolios is valid: Portfolio A

does as well or strictly better than Portfolio B at maturity. Since neither portfolio has interim

cash flows, Portfolio A must cost at least as much as Portfolio B:

CE ≥ S − PV (K ) − PV (D) (9.6)

Expression (9.6) is the general version of (9.5) when dividends may be nonzero.

This leaves early exercise. But this is easily brought into the mix. Since we must always

have CA ≥ CE , the lower bound (9.6) must also hold for American calls! Thus, we obtain

the third and last lower bound for calls:

C ≥ S − PV (K ) − PV (D) (9.7)

Figure 9.2 illustrates the bounds on call prices when there are no dividends (D = 0). In

this case, the lower bound C ≥ S− PV (K ), which holds for both American and European

options, is “tighter” than the bound CA ≥ S − K , so this last lower bound is ignored in the

figure. Only simple changes are required to the figure when D is positive; the details are

left as an exercise.

Bounds on Call Prices: Summary
To summarize the bounds on call option prices:

1. The current price of the underlying is an upper bound on the price of any call:

CE ≤ S and CA ≤ S (9.8)
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2. For European calls, there are two possible lower bounds:

CE ≥ 0 and CE ≥ S − PV (K ) − PV (D)

We may combine these into the single expressionCE ≥ max{0, S−PV (K )−PV (D)}.

3. For American calls, we have three lower bounds:

CA ≥ 0, CA ≥ S − K , and CA ≥ S − PV (K ) − PV (D)

These may be combined into the single expressionCA ≥ max{0, S−K , S− PV (K )−

PV (D)}.

Bounds on Put Option Prices
Maximum and minimum prices for put options may be derived in a similar way to call

options. Our presentation in this section is correspondingly brief.

The upper bound first. Assuming the price of the underlying cannot become negative,

the maximum payoff from holding a put option is the strike price K (which happens when

the price of the underlying goes to zero). Thus, K is an upper bound on the price of the put:

P ≤ K (9.9)

Expression (9.9) can be strengthened a little for European puts. In this case, even the

maximum profit of K can occur only at time T , so is worth only PV (K ) today. Thus, we

must have PE ≤ PV (K ). But for American puts, (9.9) is the best upper bound we can get

in general.

Two lower bounds for puts are easily derived. First, as options, puts have rights but no

obligations, so their value must always be non-negative:

P ≥ 0 (9.10)

Second, the holder of an American put can always receive the payoff K − S from

immediate exercise. To prevent arbitrage, the put must cost at least this much:

PA ≥ K − S (9.11)

Analogous to the procedure we used for calls, the third lower bound is best derived in

several steps. So consider first the case of a European put on an NDP asset. Consider the

following two portfolios:

Portfolio C Long one put with strike K and maturity T

Portfolio D Short one unit of the underlying

Investment of PV (K ) for maturity at T

Section 9.5 gives a simple interpretation of Portfolio D when discussing this comparison

further. The cost and time-T payoffs of each portfolio are summarized in Table 9.3. (There

are no interim cash flows to worry about since the put cannot be exercised until maturity

and there are no dividends.) The initial cost of Portfolio C is just the current price PE of the

TABLE 9.3
Portfolios C and D:

Costs and Payoffs

Cash Flows at T When

Initial Cost ST < K ST ≥ K

Portfolio C PE K − ST 0

Portfolio D P V (K ) − S K − ST K − ST
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call, while that of Portfolio D is PV (K ) − S. The time-T values of both portfolios depend

on ST :

• Portfolio C, the put, is worth K − ST if ST < K and expires worthless otherwise.

• In Portfolio D, the investment leads to a cash inflow of K while covering the short

underlying position costs ST , so the value of Portfolio D at maturity is K − ST .

So Portfolio C does exactly as well as Portfolio D at maturity when ST < K and does

strictly better when ST ≥ K . Thus, it must cost more, and we have

PE ≥ PV (K ) − S (9.12)

Extending (9.12) to the case of dividend-paying assets is straighforward. If there are

dividends on the underlying, this will lead to cash outflows at dividend times in Portfolio D

since the short position is responsible for dividend payments. To cancel out this cash out-

flow, we must have a corresponding cash inflow. To this end, we modify the definition of

Portfolio D to

Portfolio D Short one unit of the underlying

Investment of PV (K ) for maturity at T

Investment of PV (D) for maturity on the dividend date

The initial cost of Portfolio D changes to PV (K ) + PV (D) − S. Nothing else changes:

there are no net interim cash flows now, and the cash flows at T are exactly as described

in Table 9.3. Thus, Portfolio C continues to dominate this modified Portfolio D, which means

it must cost more:

PE ≥ PV (K ) + PV (D) − S (9.13)

Expression (9.13) is simply the generalization of (9.12) to the case where dividends may be

nonzero.

Finally, since we must always have PA ≥ PE , this lower bound (9.13) must also hold for

American puts, so we finally have the general form of the third lower bound that holds for

both American and European puts:

P ≥ PV (K ) + PV (D) − S (9.14)

Figure 9.3 illustrates the bounds on put prices when there are no dividends (D = 0). For

simplicity, the figure does not present the additional lower bound PA ≥ K − S that holds

FIGURE 9.3
Bounds on Put Prices
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for American options. (Note that this omitted bound is actually a tighter lower bound when

there are no dividends.) Once again, only simple changes are required to the figure when D

is positive, and the details are left as an exercise.

Bounds on Put Prices: Summary
Summarizing the bounds on put option prices:

1. The strike price of the option is an upper bound on the price of a put:

P ≤ K

For European puts, this bound can be improved to PE ≤ PV (K ).

2. For European puts, there are two lower bounds, which can be combined to yield

PE ≥ max{0, PV (K ) + PV (D) − S}

3. For American puts, there are three lower bounds, which can be be combined to yield:

PA ≥ max{0, K − S, PV (K ) + PV (D) − S}

9.5 The Insurance Value of an Option

Holding an option provides an investor with protection against unfavorable price movements.

The value of this protection is called the insurance value of the option. In this section, we

describe a measure of an option’s insurance value motivated by the comparisons of the

previous section.

Consider again the Portfolios A and B from Section 9.4 that were used to derive the

third and last lower bound on call option values. By construction, the only difference in the

portfolios’ cash flows occurs at time T . Moreover:

• If ST ≥ K , then the two portfolios have the same payoff, namely, ST − K .

• If ST < K , then Portfolio A has a payoff of 0, but Portfolio B’s payoff continues to be

given by ST − K , which is now negative. That is, Portfolio A is protected against a fall

in the asset price below K , while Portfolio B is not.

Indeed, what exactly is Portfolio B? By construction, this portfolio has no net cash flows

up to T and has a cash flow of ST − K at time T . These are exactly the cash flows one

would receive from holding a long forward position maturing at T with a delivery price of

K . This means Portfolio B is simply a synthetic long forward with a delivery price of K

and maturity of T ! (See the payoffs in Figure 9.1.)

Compare Portfolios A and B again in this light. Portfolio A, the option, gives us the right

to buy the underlying at K . Portfolio B, the synthetic forward, obligates us to buy at K . The

difference between having a right and having an obligation is precisely what we intuitively

think of as downside protection or “insurance.” Thus, the difference in the costs of the two

portfolios is a measure of the insurance value of the call: writing I V (C) for the insurance

value of the call, we have

I V (C) = C − [S − PV (K ) − PV (D)] (9.15)

In an analogous manner, we can define the insurance value of a put by comparing

Portfolios C and D of Section 9.4. Portfolio C gives us the right to sell the underlying at

K . Portfolio D, on the other hand, is identical to a short forward position with a delivery

price of K and maturity of T : the portfolio has no net cash flows up to T and a cash flow

of K − ST at T . Thus, the difference in the prices of the two portfolios provides us with a
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natural measure of the insurance value of the put:

I V (P) = P − [PV (K ) + PV (D) − S] (9.16)

In the next chapter, we build further on this material to provide a decomposition of option

values that is useful in understanding option risk from an intuitive standpoint and that we

appeal to at several points in this book. The decompositions, as well as the definitions (9.15)–

(9.16) of the options’ insurance values, appear in Figlewski, Silber, and Subrahmanyam

(1992).

Remark
European options, like the synthetic forward, can be exercised only at maturity. However,

American options can also be exercised prior to maturity, so the insurance values (9.15) and

(9.16) of these options include not only the insurance value of the corresponding European

option but also the early-exercise premium, i.e., the extra amount over the European price

one pays for the right to exercise early. (Of course, the right to exercise early is itself a

form of insurance protection.) Thus, the insurance value of an American option will typi-

cally be larger than that of its European counterpart, and the difference will increase as early

exercise becomes more important. In Chapter 10, we discuss conditions that make early

exercise more or less important.

9.6 Option Prices and Contract Parameters

The manner in which option prices depend on the contract parameters—that is, on the

strike price K for a fixed maturity T , or on the maturity T for a fixed strike price K—are

issues of some interest. In this section, we look at the implications of no-arbitrage for these

relationships. We begin with the strike price K .

Call Prices and the Strike Price
Our first result is a simple one: as the strike price rises, call values must fall. That is:

If K1 < K2, then C(K1) ≥ C(K2) (9.17)

where C(K ) is the price of call with strike K . Intuitively this is obvious—the right to

buy at K2 must be worth less than the right to buy at the cheaper price K1—but here’s

a formal proof. Suppose we instead had C(K1) < C(K2). Set up a bull spread: go long

the K1-strike call, short the K2-strike call. The initial cash flow from this spread is then

C(K2)−C(K1) > 0. And, of course, as Figure 8.3 shows, the cash flows from a bull spread

at maturity are never negative, so this is an arbitrage opportunity.

Expression (9.17) tells us only that a call with a lower strike must be more expensive. But

how much more expensive can it be? That is, what is the maximum value of the difference

C(K1) − C(K2)?

To judge the answer, consider European calls first. The maximum additional payoff that

can be realized by using the K1-strike call instead of the K2-strike call is evidently K2−K1.

(Compare the payoffs of calls with strikes K1 and K2 and look at the maximum difference

in the payoffs.) However, this maximum profit can be realized only at date T because the

options cannot be exercised until that point. Therefore:

If K1 < K2, then CE (K1) − CE (K2) ≤ PV (K2 − K1) (9.18)

Now consider American calls. Once again, the maximum additional advantage that can

be realized by using the call with strike K1 instead of the call with strike K2 is (K2 − K1).
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In this case, however, the calls can be exercised at any time. Therefore, this maximum

additional profit may be realizable immediately in some cases, so:

If K1 < K2, then CA(K1) − CA(K2) ≤ K2 − K1 (9.19)

Expressions (9.18) and (9.19) place upper limits on how large the price differences can

be between two calls that differ only in their strike price. Thus, they are in the nature of

“slope” restrictions on call prices. In calculus terms, (9.19) is equivalent to the condition that

the first derivative dC/dK of the call price with respect to the strike satisfy dC/dK ≥ −1.

Our final restriction relates any three calls that differ only in their strike prices. Let any

three strike prices K1 < K2 < K3 be given. Define

w =
K3 − K2

K3 − K1

(9.20)

Consider a portfolio consisting of w long positions in the K1-strike call, (1 − w) long

positions in the K3-strike call, and one short position in the K2-strike call. This is just the

butterfly spread described in Appendix 8A. As we saw there, the payoff of the butterfly

spread is strictly positive or zero, so it must have a positive cost. That is, we must have

wC(K1) + (1− w)C(K3) ≥ C(K2) (9.21)

Expression (9.21) was also described in Appendix 8A (see (8.9)). Mathematically, this is the

condition that the call price be convex in the strike price. Convexity is a curvature restriction

on the call price: it is equivalent to having d2C/dK 2 > 0.

To sum up, there are three restrictions on the relationship between call prices and the

strike price:

1. If K1 < K2, then C(K1) > C(K2).

2. If K1 < K2, then

CE (K1) − CE (K2) ≤ PV (K2 − K1), CA(K1) − CA(K2) ≤ K2 − K1

3. If K1 < K2 < K3, then, defining w = (K3 − K2)/(K3 − K1),

wC(K1) + (1− w)C(K3) ≥ C(K2)

Put Prices and the Strike Price
The corresponding relationships for put options are easily obtained using similar arguments.

First,

If K1 < K2, then P(K1) < P(K2) (9.22)

that is, put prices must be increasing in the strike price. Intuitively, the right to sell at K2

must be worth more than the right to sell at the lower price K1. For a formal proof, suppose

this inequality fails and we have P(K1) > P(K2). Set up a bear spread using puts (sell

the K1-strike put, buy the K2-strike put). This portfolio has an initial cash inflow, and, as

Figure 8.6 shows, it involves non-negative cash inflows at maturity. This is an arbitrage.

Second, the maximum difference between holding the K2-strike put and the K1-strike

put is K2 − K1 (compare the payoff diagrams of the two puts). For European puts, this

payoff can be realized only at maturity, so:

If K1 < K2, then PE (K2) − PE (K1) ≤ PV (K2 − K1) (9.23)

For American puts, however, the difference may be realized at any time, so

If K1 < K2, then PA(K2) − PA(K1) ≤ K2 − K1 (9.24)
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Finally, given any three strike prices K1 < K2 < K3 and defining w by (9.20), we can

always set up a butterfly spread using puts as described in Section 8.9. As shown there,

the payoff from the spread is non-negative at maturity and is strictly positive for ST lying

between K1 and K3, so the initial cost of the butterfly spread must be positive, i.e.,

wP(K1) + (1− w)P(K3) ≥ P(K2) (9.25)

Expression (9.25) was also described in Appendix 8A (see (8.10)).

Call Prices and the Time to Maturity
Consider two call options that differ in their time to maturity but are otherwise identical.

Let T1 and T2 denote the maturity dates of the two options, where T1 < T2. Our aim is to

examine how the values of such options are related.

If the calls in question are American, then the answer is easy to see: since the call with

maturity T2 can always be exercised at the same time as the call with maturity T1, the former

must also cost more. That is:

If T1 < T2, then CA(T1) ≤ CA(T2) (9.26)

If the calls are European, however, the arguments leading to (9.26) do not work since the

call with the longer maturity cannot be exercised at the same time as the call with shorter

maturity. Nonetheless, with some work, we can show that this result holds for European

call options also, provided the underlying asset does not pay a dividend between T1 and

T2. We start by recalling that the price of a European call on an NDP asset satisfies (see

Section 9.4)

CE ≥ S − PV (K )

Now consider two European calls, one with maturity T1 and the other with maturity T2 > T1.

On date T1:

• The call with expiry T1 is worth max{0, ST1
− K }.

• The call with expiry T2 is worth at least max{0, ST1
− PV (K )}, where PV (K ) denotes

the present value at time T1 of an amount K receivable at T2.

Since PV (K ) ≤ K always, it is the case that on date T1, the call with expiry T2 is always

worth at least as much as the call with expiry T1. Therefore, the current price of the call

with maturity T2 must also be larger, i.e., we must have

CE (T1) ≤ CE (T2) if T1 < T2 (9.27)

However, if there is a dividend between T1 and T2, it lowers the value of the T2-maturity

call without affecting the value of the T1-maturity call, so the call with the longer maturity

could cost less. So (9.27) need not hold for European options on dividend-paying stocks.

Put Prices and the Time to Maturity
The same reasoning as for American calls shows that for American puts too we must have

PA(T1) ≤ PA(T2) if T1 < T2 (9.28)

However, (9.28) may fail for European puts even if there are no dividends. Here is a

short indirect proof. We have seen that an upper bound on the value of a European put is

PV (K ), the present value of an amount K receivable at the put’s maturity. For a perpetual

(T = ∞) European put, this upper bound is the present value of an amount K receivable

in the infinitely distant future, which must be zero under any reasonable scenario. Thus, the

price of a perpetual European put must be zero. Now, suppose (9.28) did hold for European
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puts. Then, European put values would increase as maturity increases, so the price of the

perpetual put is an upper bound on the price of any finite-maturity put. But this implies,

absurdly, that the price of any finite-maturity put must also be zero! Thus, (9.28) cannot

hold for European options even if there are no dividends.

This points to a fundamental asymmetry between call and put options. In Section 10.2

in the next chapter, we explain intuitively why European put prices may drop as maturity

increases and when this is likely to happen. Several numerical examples in later chapters

then provide concrete instances of situations where European put prices do, in fact, decrease

as maturity increases. See, for example, the section “A Comment: The Impact of Maturity”

in Chapter 12 or Section 17.5 of Chapter 17.

9.7 Numerical Examples

This section returns to the five examples presented in Section 9.2. We work through each

example to illustrate the exploitation of the no-arbitrage restrictions on option prices derived

in the previous sections.

Example 9.1
Revisited

In Example 9.1, we are given the following data: S = 55, K = 50, T = 1/6, D = 2 in one
month, r = 0.12, and C E = 3. Is there an arbitrage?

Clearly, C E ≤ S and C E ≥ 0, so it remains to be checked that C E ≥ S− P V (K )− P V (D).
We have

P V (K ) = e
−(1/6)×0.12 50 = 49.01 P V (D) = e

−(1/12)×0.12 2 = 1.98

This means S − P V (K ) − P V (D) = 4.01, and the no-arbitrage bound is violated. This
tells us the call is undervalued; that is, in the notation of Section 9.4, Portfolio A costs less
than Portfolio B. To take advantage, we buy Portfolio A and sell Portfolio B. That is:

• Buy the call. Cash outflow = 3.

• Short the stock. Cash inflow = 55.

• Invest P V (D) for one month. Cash outflow = 1.98.

• Invest P V (K ) for two months. Cash outflow = 49.01.

The initial cash flow from this strategy is −3+ 55− 49.01− 1.98 = +1.01. At the end of
one month, we receive $2 from the investment of P V (D) and use this to pay the dividend
due on the shorted stock. Thus, there is no net cash flow at this interim time point. At the
end of two months, there are two possibilities:

• ST < 50. In this case, we let the call lapse, buy the stock for ST and use it to close out
the short position, and receive K = 50 from the two-month investment. Net cash flow:
50− ST > 0.

• ST ≥ 50. Now, we exercise the call, buy the stock for 50, use it to cover the short position,
and receive K = 50 from the investment. Net cash flow: 0.

With all cash flows being zero or positive, we have identified the desired arbitrage. ■

Example 9.2
Revisited

Example 9.2 describes the following data: S = 45, K = 50, T = 1/6, D = 1 in one month,
r = 0.12 for all maturities, and PE = 3. Is there an arbitrage?
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Since PE ≤ K and PE ≥ 0, it only remains to be checked that PE ≥ P V (K )+ P V (D)− S.
An easy computation shows that P V (K ) = 49.01 and P V (D) = 0.99. So P V (K )+ P V (D)−
S = 5.00, and the no-arbitrage bound is violated. This tells us the put is undervalued; that
is, in the notation of Section 9.4, that Portfolio C costs less than Portfolio D when it should
cost more. So, we buy Portfolio C and sell Portfolio D, that is, we

• Buy the put. Cash outflow = 3.

• Buy the stock. Cash outflow = 45.

• Borrow P V (D) for one month. Cash inflow = 0.99.

• Borrow P V (K ) for two months. Cash inflow = 49.01.

The initial cash flow from this strategy is −3 − 45 + 49.01 + 0.99 = +2.00. At the end
of one month, we pay $1 on the borrowing of P V (D) and receive $1 in dividend from the
stock for a net interim cash flow of zero. At the end of twomonths, there are two possibilities:

• ST < 50. In this case, we exercise the put, sell the stock for 50, and repay K = 50 on the
borrowing. Net cash flow: 50− 50 = 0.

• ST ≥ 50. Now, we let the put lapse, sell the stock for ST , and repay K on the borrowing.
Net cash flow: ST − 50 ≥ 0.

With all cash flows being positive or zero, this is an arbitrage opportunity. ■

Example 9.3
Revisited

In notational terms, in Example 9.3, we are given that S = 100, K = 95, T = 1/4, r = 0.12,
and C A = 6. Is there an arbitrage?

Clearly, C A ≤ S. The lower bounds C A ≥ 0 and C A ≥ S− K are also clearly satisfied. Thus,
it remains only to be checked if the third no-arbitrage lower bound holds. Since D = 0, we
must check if C A ≥ S − P V (K ). We have

P V (K ) = e
−(1/4)×0.12 95 ≈ 92.20

Therefore, S − P V (K ) = 7.80, and the third no-arbitrage bound is violated.
This means the call is undervalued. The arbitrage bound says it should be worth at least

7.80, whereas it is trading for only 6. To take advantage of this opportunity, we must (in the
notation of Section 9.4) buy Portfolio A and sell Portfolio B, i.e.,

• Buy the call.

• Short the stock.

• Invest P V (K ).

This results in an initial cash inflow of −6 + 100 − 92.20 = +1.80. At time T , there are
two possibilities:

• ST < 95. In this case, we let the call lapse, buy the stock from the market to cover the
short position, and receive K from our investment. Net cash flow: −ST + 95 > 0.

• ST ≥ 95. Now, we exercise the call and buy the stock for K , use the stock to close out
the short position, and receive K from the investment. Net cash flow: −95+ 95 = 0.

Since the strategy has cash inflows with no net cash outflows, we have derived an arbi-
trage opportunity. ■

Example 9.4
Revisited

In Example 9.4, we are given K 1 = 100 and K 2 = 110. Since the one-month rate of interest
is given to be 1% in simple terms,

P V (K 2 − K 1) =
10

1.01
= 9.90
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On the other hand, we are also given PE (100) = 3.25 and PE (110) = 14, so PE (110) −
PE (100) = 10.75. This means the no-arbitrage condition (9.23) is violated.

To take advantage of the opportunity, we buy the relatively overvalued right-hand side
of (9.23) and sell the relatively undervalued left-hand side. That is, we

• Invest P V (K 2 − K 1) = $9.90 for one month.

• Sell the K 2-strike put for $14.

• Buy the K 1-strike put for $3.25.

This creates an initial cash inflow of $0.85. At maturity, the investment grows to $10. If the
stock price at this time is

• ST < 100, both options are in-the-money. We gain 100 − ST on the put we hold and
lose 110 − ST on the put we have sold for a net loss of 10. Combined with the receipt
from the investment, this results in a net payoff of zero.

• 100 ≤ ST < 110, the option we hold is out-of-the-money, but the one we sold finishes
in-the-money. We lose 110− ST on the latter. Since this is less than the $10 receipt from
the investment, there is a net positive cash inflow.

• ST > 110, both options are out-of-the-money. Thus, the net cash flow is the receipt from
the investment, which is +$10.

Since all cash flows are positive or zero, this is an arbitrage. ■

Example 9.5
Revisited

In Example 9.5, we are given three strike prices—K 1 = 35, K 2 = 40, and K 3 = 45—
with respective call prices C (35) = 5.50, C (40) = 3.85, and C (45) = 1.50. Consider the
convexity restriction (9.21). A simple calculation shows that w = 1/2 and that

1

2
C (35) +

1

2
C (45) < C (40)

So the convexity condition (9.21) is violated. To take advantage of the resulting arbitrage
opportunity, buy the butterfly spread; this creates a cash inflow today and a possible cash
inflow at maturity. ■

9.8 Exercises 1. What is meant by payout protection? Are options payout protected?

2. How does the payment of an unexpected dividend affect (a) call prices and (b) put

prices?

3. As we have seen, options always have non-negative value. Give an example of a deriva-

tive whose value may become negative.

4. What are the upper and lower bounds on call option prices?

5. What are the upper and lower bounds on put option prices?

6. What is meant by the insurance value of an option? Describe how it may be measured.

7. What does the early-exercise premium measure?

8. What is meant by convexity of option prices in the strike price?

9. There are call and put options on a stock with strike 40, 50, and 55. Which of the

following inequalities must hold?

(a) 0.5C(40) + 0.5C(55) > C(50)

(b) (1/3)C(40) + (2/3)C(55) > C(50)
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(c) (2/3)C(40) + (1/3)C(55) > C(50)

(d) 0.5P(40) + 0.5P(55) > P(50)

(e) (1/3)P(40) + (2/3)P(55) > P(50)

(f) (2/3)P(40) + (1/3)P(55) > P(50)

Note: This question uses the general form of convexity in the strike for options:

wC(K1) + (1− w)C(K3) ≥ C(K2)

and

wP(K1) + (1− w)P(K3) ≥ P(K2)

where

w =
K3 − K2

K3 − K1

10. There are call and put options on ABC stock with strikes of 40 and 50. The 40-strike

call is priced at $13, while the 50-strike put is at $12.8. What are the best bounds you

can find for (a) the 40-strike put and (b) the 50-strike call?

11. The following three call option prices are observed in the market, for XYZ stock:

Type Strike Option Price

Call 50 10
Call 60 7
Call 70 2

Are these prices free from arbitrage? How would you determine this? If they are incorrect,

suggest a strategy that you might employ to make sure profits.

12. The current price of a stock is $60. The one-year call option on the stock at a strike of

$60 is trading at $10. If the one-year rate of interest is 10%, is the call price free from

arbitrage, assuming that the stock pays no dividends? What if the stock pays a dividend

of $5 one day before the maturity of the option?

13. The current price of ABC stock is $50. The term structure of interest rates (continuously

compounded) is flat at 10%. What is the six-month forward price of the stock? Denote

this as F . The six-month call price at strike F is equal to $8. The six-month put price at

strike F is equal to $7. Explain why there is arbitrage opportunity given these prices.

14. The prices of the following puts P(K ) at strike K are given to you:

P(40) = 2, P(45) = 6, P(60) = 14

The current stock price is $50. What is inconsistent about these prices? How would you

create arbitrage profits?

15. The price of a three-month at-the-money call option on a stock at a price of $80 is

currently $5. What is the maximum possible continuously compounded interest rate in

the market for three-month maturity that is consistent with the absence of arbitrage?

16. The six-month continuously compounded rate of interest is 4%. The six-month forward

price of stock KLM is 58. The stock pays no dividends. You are given that the price of a

put option P(K ) is $3. What is the maximum possible strike price K that is consistent

with the absence of arbitrage?
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17. (Difficult) Suppose there arefive call optionsC(K ), i.e., {C(80), C(90), C(100), C(110),

C(120)}. The prices of two of these are C(110) = 4, C(120) = 2. Find the best possible

lower bound for the call option C(80).

18. In the previous problem, also find the minimum prices of C(90) and C(100).

19. The following are one-year put option prices: the put at strike 90 is trading at $12, and

the put at strike 80 is trading at $2.50. The rate of interest (continuously compounded)

for one year is 10%. Show how you would construct an arbitrage strategy in this market.

20. The one-year European put option at strike 100 (current stock price = 100) is quoted at

$10. The two-year European put at the same strike is quoted at $4: The term structure

of interest rates is flat at 10% (continuously compounded). Is this an arbitrage?

21. Given the following data, construct an arbitrage strategy: S = 100, K = 95, T = 1/2

year, D = 3 in three months, r = 0.05, and CE = 4.

22. Given the following data, construct an arbitrage strategy: S = 95, K = 100, T = 1/2

year, D = 3 in three months, r = 0.05, and PE = 4.

23. We are given that S = 100, K = 100, T = 1/4, r = 0.06, and CA = 1. Is there an

arbitrage opportunity?

24. Given that there are two put options with strikes at 40 and 50, with prices 3 and 14,

respectively, show the arbitrage opportunity if the option maturity is T and interest rates

are r for this maturity.

25. Given the price of three calls, construct an arbitrage strategy: C(10) = 13, C(15) = 8,

C(20) = 2.

26. A call option on a stock is trading for $1.80. The option matures in two months. The stock

is currently trading for $52 and will pay a dividend of $2 in one month. The risk-free rate

of interest (on investments of all maturities) is 12%. Finally, suppose that the strike price

of the option is $50. Examine whether there is an arbitrage opportunity in this problem.

If so, show how it may be exploited to make a riskless profit.

27. ABC stock is currently trading at 100. There are three-month American options on ABC

stock with strike prices 90, 100, and 110. The risk-free interest rate is 12% per year for

all maturities in continuously compounded terms. Which of the following sets of prices

offers an arbitrage opportunity? How can the opportunity be exploited?

(a) The 90 call is selling for 10 1/4.

(b) The 90 put is at 4, and the 100 put is at 3.

(c) The 100 call is at 12, and the 110 call is at 1.

(d) The 90 call is 13, the 100 call is 8, and the 110 call is 1.



Chapter 10
Early Exercise and
Put-Call Parity

10.1 Introduction

The previous chapter examined no-arbitrage restrictions on individual option prices. Build-

ing on this material, this chapter examines two questions: what does no-arbitrage tell us

about the relationship between

1. the prices of otherwise identical European and American options?

2. the prices of otherwise identical call and put options?

Regarding the first question, any wedge between the prices of American and otherwise

identical European options must be solely on account of the right to exercise early. Thus,

our analysis of this issue focuses on identifying when the right to early exercise may be

valuable and when it is definitely not of value.

Regarding the second question, calls and puts appear, at least at a superficial level

(for instance, judging from their payoff diagrams), to be very different financial instru-

ments. Nonetheless, it is possible to relate their prices using no-arbitrage considerations. For

European calls and puts, this relationship is an exact one, and is called put-call parity. Put-

call parity is one of the most important pricing relationships in all of option pricing theory.

For American options, the relationship is an inexact one; it takes on the form of inequalities,

viz., upper and lower bounds on American put prices in terms of American call prices.

10.2 A Decomposition of Option Prices

We begin this chapter’s analysis by describing a “decomposition” of option values, first

for calls and then for puts. This decomposition makes intuitive our results concerning the

optimality of early exercise, which is discussed next in Section 10.3. We also appeal to

this decomposition at several points in later chapters, notably in Chapter 17 in discussing

the behavior of the various option “greeks.” The idea of such a decomposition appears

in Figlewski, Silber, and Subrahmanyam (1992).

We retain the notation of Chapter 9 (see Table 9.1). As earlier, we refer to the asset

underlying the options as a “stock,” although the same arguments hold for other underlying

assets too.
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A Decomposition of Call Prices
In Chapter 9, we showed that call prices must satisfy

C ≥ S − PV (K ) − PV (D) (10.1)

As we noted in Section 9.5, the right-hand side of (10.1) corresponds to the value of a long

forward position that obligates the holder to buy the underlying for K , while the left-hand

side, of course, gives the holder the right to buy the underlying for K . The difference between

these two values provides a natural measure of the insurance value (IV) of an option:

I V (C) = C − [S − PV (K ) − PV (D)] (10.2)

Equivalently, we may write

C = S − PV (K ) − PV (D) + I V (C) (10.3)

Now, add and subtract K to the right-hand side of this expression, and rearrange the

terms to obtain:

C = (S − K ) + (K − PV (K )) + I V (C) − PV (D) (10.4)

Expression (10.4) motivates a simple decomposition of call prices. The expression breaks

the call value into four parts.

• The first part (S − K ) is called the intrinsic value of the call and measures how deep

in-the-money the call is at present. The intrinsic value can be positive, zero, or negative.

Ceteris paribus, the higher is the intrinsic value (i.e., the deeper we are in-the-money

today), the deeper we are likely to finish in-the-money, so the higher is call value.

• The second term (K − PV (K )) is what we shall call the time value of the call. The

time value of a call is always positive (or at least non-negative). The call gives us the

right to buy the underlying at a price of K at time T . In present value terms, the strike

price we pay is worth only PV (K ) today; the longer is the call’s maturity or the higher

are interest rates, the lower is this present value. The time value of the call measures the

interest savings we obtain from this deferred purchase.

• The third term I V (C) is the insurance value of the call. It measures the value of “op-

tionality” and is always positive. The call gives us the right to buy the underlying at K ,

but we are not obligated to buy at that price. By waiting, it is possible that the price of

the underlying may fall below K , so we are able to buy at a cheaper price. The insurance

value measures the value of this downside protection.

• The last term −PV (D) represents the impact of payouts on the underlying during the

life of the call. Since payouts lower the price of the underlying, they hurt the holders of

calls, so the impact of payouts on calls is always negative.

In words, we may represent this decomposition as

Call Price = Intrinsic Value + Time Value + Insurance Value + Impact of Payouts

Before discussing this decomposition and its use in greater detail, we present the corre-

sponding decomposition of put values.

A Decomposition of Put Prices
In Chapter 9, we showed that put prices must satisfy

P ≥ PV (K ) + PV (D) − S (10.5)
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As we noted in Section 9.5, the right-hand side of (10.5) is the value of a short forward

position that obligates the holder to sell the underlying for K , while the left-hand side is an

option that gives the holder the right to sell the underlying for K . The difference between

the two sides provides a natural measure of the insurance value of the put:

I V (P) = P − [PV (K ) + PV (D) − S] (10.6)

Rewriting (10.6), we obtain

P = PV (K ) + PV (D) − S + I V (P) (10.7)

Adding and subtracting K to the right-hand side, we finally arrive at a decomposition similar

to that of the call:

P = (K − S) − (K − PV (K )) + I V (P) + PV (D) (10.8)

Expression (10.8) breaks the value of a put into four components:

• The intrinsic value of the put K − S.

• The time value of the put −(K − PV (K )).

• The insurance value of the put I V (P).

• The impact of payouts PV (D).

In words, we can express the put decomposition as:

Put Price = Intrinsic Value + Time Value + Insurance Value + Impact of Payouts

Two differences between calls and puts should be highlighted:

1. In a call, we pay the strike price upon exercise, but in a put, we receive the strike price

upon exercise. So while the time value of a call is positive (there are interest savings from

deferred purchase), that of a put is negative (there are interest losses from the deferred

sale).

2. Payouts depress the price of the underlying, thereby hurting calls and benefiting puts.

So the impact of payouts is negative for a call and positive for a put.

Comments on the Decompositions
The intrinsic and time values of an option have simple structures. Aside from the fixed strike

price K , intrinsic value depends on only one variable: the current price S of the stock. An

increase in S increases the intrinsic value of a call and decreases that of a put. Time value is

a function of only two factors: interest rates and the remaining time to maturity. An increase

in interest rates or an increase in the option’s time to maturity increases the time value of a

call since it results in larger interest savings from deferred exercise; conversely, it decreases

(makes more negative) the time value of a put.

Insurance value is more complex; as a measure of the impact of optionality, it is, in

principle, affected by all the parameters that could affect option value. For instance, an

increase in S makes it less likely that a call will finish out-of-the-money. This reduces

the value of optionality and so the call’s insurance value. (This is why an increase of

$1 in S increases the call value by less than the dollar increase in intrinsic value, or the

payment of a dividend affects option values by less than PV (D).) Similarly, the time value

K − PV (K ) overstates the impact of interest rates on an option; the likelihood that the

interest costs/savings may not be realized because the option lapses unexercised is folded

into and reflected in the option’s insurance value.
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But the insurance value is especially affected by volatility and time. In the absence of

volatility, insurance value—the right to do something without the obligation to do it—is

trivial: the option will either be exercised for sure or not be exercised for sure. As volatility

increases, larger price swings become more likely, so the importance of downside protection

increases. This increases the insurance value for both calls and puts. Time also matters; for

a given level of volatility, a greater time to maturity allows for greater price swings and so

makes insurance value more important.

Depth-in-the-Money and the Decomposition
As option depth-in-the-money (or “moneyness”) changes, the components of option value

also change in relative importance. For an option that is deep in-the-money, intrinsic value is

by far the most important component of option value (by definition, such options have large

intrinsic values). Time value is the next most important since there is a high probability of

garnering the interest savings reflected in time value. But insurance value matters relatively

little. Insurance value matters primarily to the extent that optionality is important, and for a

deep in-the-money option, the chances of going out-of-the-money are slight, so optionality

is not very important.

Conversely, for deep out-of-the-money options, insurance value is the most important

component of option value and intrinsic value the least. With negative intrinsic value, the

only reason such options have positive value at all is the hope that volatility will push the

option into-the-money. For options that are at- or near-the-money, time value and insurance

value are both important, though, loosely speaking, insurance value will dominate since it

is the likelihood of volatility pushing the option into-the-money that gives the option value

in the first place.

Using the Decomposition: A Simple Illustration
As an example of how these ideas may be used to obtain an intuitive feel for option risk,

consider how the passage of time affects European option values. Suppose, for simplicity,

that the options are written on a non-dividend-paying stock.

The passage of time reduces the time to maturity of the option. This affects the insurance

value and time value of the option. For calls, a lower time to maturity means a lower

insurance value and a lower time value. Ceteris paribus, this means call values decline as

time passes, i.e., calls exhibit “time-decay.” In the language of Chapter 17, the theta of the

call (its reaction to the passage of time) is negative.

But for puts, the effect is ambiguous: a lower time to maturity reduces insurance value

but increases time value. If the time value effect dominates (as will generally be the case for

deep in-the-money puts), the put value will increase. If the insurance value effect dominates

(as will typically be the case for near-the-money and out-of-the-money puts), put values will

decrease. Thus, while the theta of a European put is generally negative, it can be positive

for deep in-the-money puts.

10.3 The Optimality of Early Exercise

Any difference in the prices of American options and their European counterparts must

come from the right to exercise the option early. We examine when this right is of value and

what factors give it value. We show that under some conditions, the right to early exercise

is of no value; in such cases, the prices of American and European options must coincide.

We examine calls first.
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The Early Exercise of American Calls
When a call is exercised, the holder receives the intrinsic value of the call at that point: the

holder pays K and receives a stock worth S for a net gain of S − K . Thus, the holder of an

American call has three possible courses of action open to him at any point:

• he can exercise the call immediately and receive its intrinsic value S − K ;

• he can sell the call and realize its market price CA; or

• he can do nothing and retain a call worth CA in his portfolio.

The second and third alternatives have the same value at any given point in time, so we

shall not treat them separately. The optimality of early exercise may be judged by comparing

the first alternative to the others. Note that we always have CA ≥ S − K since an American

call can never trade for less than its intrinsic value. Thus, the question more precisely is

whether we have (a) CA > S − K , in which case early exercise is strictly suboptimal, or

(b) CA = S − K , in which case early exercise becomes optimal. We examine this question

in two stages, first when there are no dividends on the underlying (during the option’s life)

and then when dividends may exist.

American Calls on Non-Dividend-Paying Assets
When there are no dividends, the call value is given by

CA = (S − K ) + (K − PV (K )) + I V (C) (10.9)

So, the difference between selling the call and exercising it immediately is

CA − (S − K ) = (K − PV (K )) + I V (C) (10.10)

This difference is strictly positive since each term on the right-hand side is positive. This

means an American call on a non-dividend-paying asset should never be exercised early.

An option holder who wishes to convert the option to cash is strictly better off selling the

call than exercising it.

Intuitively speaking, what drives this result? The call gives you the right to buy the

underlying stock for the fixed amount K at any time over the option’s life. When you

exercise early, you are giving up two things. One is time value, the interest lost because you

could have always bought the stock for the same price K later. (This is the first term on the

right-hand side of (10.10).) The other is insurance value, the possibility that by waiting, the

stock price may fall and you may be able to buy the stock at a cheaper price than K . (This

is the second term on the right-hand side of (10.10).) If there are no dividends on the stock

during the call’s remaining life, you receive no compensating benefits. This means the call

is worth more “alive” than “dead,” and makes early exercise suboptimal.

Note that it is not important for these arguments that the holder of the call wishes to buy

the stock to hold on to it (at least up to the option maturity date). As long as there is some

investor in the market who desires to hold the stock—a necessary condition if the stock

price is to be above zero—such an investor would be willing to pay strictly more for the call

than its intrinsic value because of the time value and insurance value the call provides.

American Calls on Dividend-Paying Assets
When dividends are nonzero, the call value takes the form

CA = (S − K ) + (K − PV (K )) + I V (C) − PV (D) (10.11)

Thus, the difference between the value of the call and the value of immediate exercise is

CA − (S − K ) = (K − PV (K )) + I V (C) − PV (D) (10.12)
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The first two terms on the right-hand side of this expression are positive, but the third

term is negative. Thus, we cannot assert that the call is worth strictly more “alive” than

“dead.” That is, early exercise of a call on a dividend-paying asset could be optimal.

It is easy to see why. Dividends offer a countervailing benefit to the loss of time and

insurance value from early exercise. By exercising prior to the ex-dividend date, the holder

of the option can receive the dividends, but delaying exercise past the ex-dividend date

causes the dividends to be lost. Thus, there is now a trade-off between retaining time and

insurance value—the first two terms on the right-hand side of (10.12)—and receiving the

dividends—the last term on the right-hand side of (10.12). If the former dominates, early

exercise will remain suboptimal; if the latter, it is optimal to exercise immediately.

We can further sharpen this conclusion. The only motive for exercising the call early is

to obtain the dividends. So, if at all it is optimal to exercise early, the investor is best off

by exercising the call just before the stock goes ex-dividend. Such a strategy would result

in the investor’s retaining the time value and insurance value as long as possible while still

obtaining the dividends. This point simplifies the pricing of American calls: the optimality

of early exercise does not have to be checked at every point but only at points just before

the ex-dividend dates.

These observations are useful at more than just an abstract level. In Section 10.4 (“Put-

Call Parity, Insurance Value, and Rules of Thumb for Early Exercise”), we explain how

rules of thumb commonly used in practice to gauge the optimality of early exercise can be

understood precisely in terms of the trade-off described here.

The nature of the trade-off also makes it easy to see the conditions that make early

exercise more likely. For example, early exercise becomes more likely to be optimal if

• dividends are high (this increases the benefits from early exercise).

• volatility is low (this results in a low insurance value, reducing the loss from early

exercise).

• interest rates are low (this results in a low time value, reducing the loss from early

exercise).

For examples that illustrate the optimality of early exercise of American calls in the presence

of dividends, see Chapter 12, particularly Section 12.6 and the Exercises.

The Early Exercise of American Puts
The early-exercise analysis for puts follows similar lines to that for calls, but the results, as

we shall see, are quite different. When a put is exercised, the holder receives the intrinsic

value of the put at that point: the holder gives up a stock worth S and receives K in exchange

for a net gain of K − S. Thus, the holder of an American put has three possible courses of

action open to her at any point:

• she can exercise the put immediately and receive its intrinsic value K − S;

• she can sell the put and realize its market price PA; or

• she can do nothing and retain a put worth PA in her portfolio.

The second and third alternatives have the same value at any given point in time, so we

shall not treat them separately. The optimality of early exercise may be judged by comparing

the first alternative to the others. Note that we always have PA ≥ K−S since an American put

can never trade for less than its intrinsic value. Thus, the question more precisely is whether

we have (a) PA > K − S, in which case early exercise is strictly suboptimal, or (b) PA =

K −S, in which case early exercise becomes optimal. Once again, we proceed in two stages,

first when there are no dividends on the underlying, and then when dividends may exist.
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American Puts on Non-Dividend-Paying Assets
When there are no dividends, the value PA of the put has the decomposition

PA = (K − S) − (K − PV (K )) + I V (P) (10.13)

Exercising the put early gives the holder its intrinsic value K − S. Thus, the difference

between the put value and the value of immediate exercise is

PA − (K − S) = −(K − PV (K )) + I V (P) (10.14)

The second term on the right-hand side, the insurance value of the put, is positive, but the

first term on the right-hand side, the time value of the put, is negative. Thus, the right-hand

side may not be strictly positive, so we cannot rule out the optimality of early exercise for

the put. (Note the contrast with calls here: as we have seen, early exercise can never be

optimal for calls on a non-dividend-paying asset.)

The intuitionbehind this result is itself captured in the right-hand sideof (10.14).Delaying

exercise of the put means receiving the strike price later, so results in a loss of interest that

could otherwise have been earned on the strike price received. This negative time-value

effect is the first term on the right-hand side of (10.14). On the other hand, delaying exercise

results in retaining the insurance value of the put (here, retaining the possibility that the

stock could be sold for a higher price later); this is the second term in (10.14). The trade-off

between these effects determines whether early exercise is optimal or not. Anything that

reduces the insurance value or increases time value makes early exercise more likely to be

optimal. For instance, early exercise is more likely to be optimal if

• volatility is low (this reduces the insurance value lost from early exercise).

• interest rates are high (this increases the time value gained by early exercise).

For examples that illustrate the optimality of early exercise of puts on non-dividend-

paying assets, see Section 12.7 and the exercises in Chapter 12. See also the discussion on

the option theta in Chapter 17.

American Puts on Dividend-Paying Assets
With nonzero dividends, the decomposition of the put price is

PA = (K − S) − (K − PV (K )) + I V (P) + PV (D) (10.15)

The difference between the put value and the value K − S of immediate exercise is

PA − (K − S) = −(K − PV (K )) + I V (P) + PV (D) (10.16)

The first term on the right-hand side is negative, but the second and third terms are

positive. Thus, we cannot assert that the difference must be positive; that is, it may be

optimal to exercise the put early.

The intuitive underpinnings of the result are clear. Delaying exercise of the put means

receiving the strike price later, so there is a negative time-value effect. However, by delaying

exercise, the put holder retains insurance value (the possibility that the stock can be sold

for a higher price later) and obtains the dividends. The trade-off between these costs and

benefits of early exercise determines the optimality of exercise. For example, early exercise

is more likely to be optimal if

• volatility is low (this lowers insurance value, reducing the losses from early exercise).

• interest rates are high (this results in larger time value gains from early exercise).

• dividends are low (cost of early exercise is reduced).
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In the next section, these results on early exercise will be used to identify the pricing

relationship between American calls and otherwise identical American puts.

10.4 Put-Call Parity

We now turn our attention to the relationship between calls and otherwise identical (same

underlying, strike, and maturity) put options. The common strike and maturity of the options

are denoted K and T , respectively. The analysis proceeds in four steps. We look first at Euro-

pean options on non-dividend-paying assets; then at European options on dividend-paying

assets; then at American options on non-dividend-paying assets; and finally at American

options on dividend-paying assets.

European Options on Non-Dividend-Paying Assets
Let a call and put be given. As usual, denote by PV (K ) the present value of an amount K

receivable at T . Consider the following portfolios:

Portfolio A Long one call

Investment of PV (K ) for maturity at T

Portfolio B Long one put

Long one unit of stock

The cost and payoff information from these portfolios is summarized in Table 10.1. The

initial cost of Portfolio A is the cost of the call plus the amount of the investment, which is

CE + PV (K ). That of Portfolio B is the sum of the prices of the put and the stock, which

is PE + S. The time-T values of the two portfolios are determined in the usual way:

• If ST < K :

– The call in Portfolio A is worthless, while the investment is worth K . Total value of

Portfolio A: K .

– The put in Portfolio B is worth K − ST and the stock is worth ST . Total value of

Portfolio B: K .

• If ST ≥ K :

– The call in Portfolio A is worth ST − K and the investment is worth K . Total value

of Portfolio A: ST .

– The put in Portfolio B is worthless, while the stock is worth ST . Total value of Portfolio

B: ST .

Thus, the portfolios have identical values in all circumstances at time T . Moreover,

neither portfolio has interim cash flows since there are no dividends on the stock and the

options cannot be exercised early. Therefore, the initial cost of the two portfolios must also

be the same. That is, we must have

CE + PV (K ) = PE + S (10.17)

Expression (10.17) is called put-call parity. It provides an exact relationship between

the prices of European calls and puts that are otherwise identical. Before exploring the

TABLE 10.1
Portfolios A and B:

Costs and Payoffs

Portfolio Value at T in the Event

Initial Cost ST < K ST ≥ K

Portfolio A CE + P V (K ) 0 + K = K ST − K + K = ST

Portfolio B PE + S K − ST + ST = K 0 + ST = ST
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extension of this relationship to dividends and early exercise, we first take a detour through

some of the uses of this result.

Uses of Put-Call Parity
One of the most well-known results in option pricing, put-call parity is also one of the most

useful. The first and most obvious use of the result is in the valuation problem. Once we

can price European calls on non-dividend-paying assets, we can derive the prices of the

corresponding put options using (10.17).

Second, as an immediate consequence, put-call parity can be used to check for arbi-

trage opportunities resulting from relative mispricing of calls and puts. For example, if

we find CE + PV (K ) > PE + S, then the call is overvalued relative to the put. We can

buy Portfolio B, sell Portfolio A, and make an arbitrage profit. Conversely, if we find

CE + PV (K ) < PE + S, the put is overvalued relative to the call. Arbitrage profits can be

made by selling Portfolio B and buying Portfolio A.

Third, rearranging the put-call parity expression tells us how to create synthetic instru-

ments from tradedones. For example, sinceput-call parity tells us that P = C + PV (K ) − S,

we can create a synthetic long put by buying a call, investing PV (K ), and shorting one unit

of the underlying. Similarly, we can create a

• synthetic long call by buying the put and the stock and borrowing PV (K ).

• synthetic long position in the stock by buying the call, investing PV (K ), and shorting

the put.

• synthetic long forward position by buying the call and shorting the put.

• synthetic long zero-coupon bond with face value K and maturity T by buying the put

and the stock and shorting the call.

Of course, synthetic short positions in each of these instruments can be created simply by

reversing the above portfolios.

Fourth, put-call parity may be used to judge relative sensitivity to parameter changes, i.e.,

the difference in the reactions of calls and puts to changes in parameter values. Rearranging

put-call parity, we have

CE − PE = S − PV (K ) (10.18)

Since (10.18) is an identity, the difference in the changes in call and put values caused

by a parameter change must be the same as the change in the right-hand side of (10.18). So,

for example, suppose S changes by $1. Denote the change this causes in call and put values

by dC and dP , respectively. The change in the left-hand side of (10.18) is then dC − dP ,

so we must have

dC − dP = 1

That is, the change in call value is a dollar more than the change in put value.

A similar procedure can be used to identify the difference in call and put sensitivities

to changes in other parameters such as the maturity T or the interest rate r . In Chapter 17

where we discuss the option greeks, we repeatedly appeal to put-call parity to explain the

responses of calls and puts to changes in key parameter values.

European Options on Dividend-Paying Assets
Modifying the put-call parity arguments to allow for dividends is easy. The only difference

that dividends create is that in Portfolio B, there will be an interim cash flow when the

underlying pays a dividend. There is no corresponding interim cash flow in A. Thus, if we
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modify the definition of Portfolio A to create an additional interim cash flow of D, we can

use the same arguments again.

So consider the following modification in the definition of the portfolios:

Portfolio A Long one call

Investment of PV (K ) for maturity at T

Investment of PV (D) for maturity on the dividend date

Portfolio B Long one put

Long one unit of stock

This changes the initial cost of Portfolio A to CE + PV (K ) + PV (D); the initial cost

of Portfolio B remains the same. The portfolios have the same value at T . By construction,

they also have the same interim cash flows. Therefore, the initial costs of the two portfolios

must be the same, so:

CE + PV (K ) + PV (D) = PE + S (10.19)

Expression (10.19) is the put-call parity relationship between the prices of European

calls and puts on dividend-paying assets.

American Options on Non-Dividend-Paying Assets
When the options concerned are American in style, it does not suffice to compare the

portfolio values at maturity alone since one or both options may be exercised prior to

maturity. Indeed, it becomes impossible to derive a “parity” (i.e., exact) relationship between

the prices of calls and puts. However, an inequality-based relationship can still be derived,

viz., that

CA + PV (K ) ≤ PA + S ≤ CA + K (10.20)

To derive (10.20), consider again the following two portfolios (in the no-dividends set-

ting), and suppose that the options are American in style:

Portfolio A Long one call

Investment of PV (K ) for maturity at T

Portfolio B Long one put

Long one unit of stock

The initial cost of Portfolio A is CA + PV (K ) while that of Portfolio B is PA + S. Now

note the following:

• An American call on a non-dividend-paying asset will never be exercised early (Sec-

tion 10.3), so we must have CA = CE .

• Early exercise could be optimal for puts even on non-dividend-paying assets (Sec-

tion 10.3), so in general we have PA ≥ PE .

Therefore, we have

CA + PV (K ) = CE + PV (K ), and PA + S ≥ PE + S (10.21)

Moreover, from European put-call parity,

CE + PV (K ) = PE + S (10.22)

Putting (10.22) and (10.21) together, we obtain the first inequality in (10.20):

CA + PV (K ) ≤ PA + S (10.23)
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We now derive the second inequality:

PA + S ≤ CA + K (10.24)

Consider the following portfolios:

Portfolio A
 Long one call

Investment of K rolled over at the money-market rate

Portfolio B
 Long one put

Long one unit of stock

The initial cost of Portfolio A is CA + K , while that of Portfolio B is PA + S. Suppose

we buy Portfolio A and sell Portfolio B . Since we hold the call, we can always choose to

not exercise it until T (this is anyway optimal since there are no dividends). However, the

put may be exercised in the interim, so there are two possibilities concerning cash flows

from this strategy:

1. The put is exercised early. In this case, we pay K and receive one unit of the stock. We

use the stock received to close out the short stock position. The net effect: we are left

with the call (and whatever interest we earned on the strike price so far) for a positive

net cash flow.

2. The put is held until maturity. In this case, mimicking the arguments leading to the

payoffs derived in Table 10.1 shows that the net value of our position is just the interest

earned on rolling over K to maturity.

Thus, the strategy outlined leaves us with a positive cash flow at maturity. To avoid

arbitrage, it must have a positive cost, which is precisely the statement that (10.24) holds.

Combining (10.23) and (10.24), we obtain (10.20), the closest we can get to a parity

relationship for American options.

American Options on Dividend-Paying Assets
In the presence of dividends, early exercise of the call may also become optimal, so we

cannot assume that CA = CE as we did in the no-dividends case. So, we adopt a different

tack, one that exploits the motive for early exercise of American calls. Consider a choice

between the following portfolios: (a) an American call with strike K and maturity T , or

(b) a European call with strike K and maturity T , plus an investment of PV (D). We claim

that the second portfolio must cost at least as much as the first, that is, we must have

CA ≤ CE + PV (D) (10.25)

A simple intuition underlies (10.25). As we have seen, the only motive for exercising an

American call early is to receive the dividends on the stock, but early exercise also means

giving up the call’s insurance and time values. In the first portfolio, the investor faces this

trade-off between exercising to capture the dividends and retaining the call to preserve its

insurance and time values. In the second portfolio, the investor gets to receive the dividends

even while retaining the call’s time and insurance value up to maturity. It follows that the

second portfolio must be more valuable.

If we add PV (K ) to both sides of expression (10.25), we obtain

CA + PV (K ) ≤ CE + PV (K ) + PV (D) (10.26)

Now, European put-call parity on dividend-paying stocks tells us that

CE + PV (K ) + PV (D) = PE + S (10.27)
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Combining the information in (10.26) and (10.27), we obtain

CA + PV (K ) ≤ PE + S (10.28)

Further, we must always have PA ≥ PE . Using this on the right-hand side of (10.28), we

finally get

CA + PV (K ) ≤ PA + S (10.29)

Expression (10.29) is the closest we can get to a put-call parity relationship for American

options on dividend-paying assets. This expression is identical to the lower bound derived

for American options on non-dividend-paying assets. In particular, the dividends D do not

enter the expression explicitly because they have been subsumed in the value of the call;

see (10.25).

As we did in the non-dividends case, we can also find an upper bound for the American

put in terms of the call, namely,

PA + S ≤ CA + K + PV (D) (10.30)

The derivation of (10.30) uses similar arguments to the derivation of the no-dividends

upper bound (10.24). The construction of the portfolios to support this inequality should

by now be familiar to the reader. The details are left as an exercise.

Put-Call Parity, Insurance Value, and Rules
of Thumb for Early Exercise
Traders in practice often use rules of thumb for determining early exercise of American

options. A typical rule for American calls, for example, runs along the following lines:

Exercise the call on the day before the stock goes ex-dividend if the dividend on the stock is

greater than the price of an otherwise identical put plus forgone interest on the strike price;

otherwise do not exercise.

The first part of this rule—exercising the day before the stock goes ex-dividend—is easily

justified: as we have seen in Section 10.3, if at all American calls are exercised early, they

should be exercised just before the stock goes ex-dividend. A rationale for the second part

of the rule—exercise if the dividend on the stock is greater than the price of an otherwise

identical put plus forgone interest on the strike price—is obtained by combining put-call

parity and the analysis in Section 10.3.

Recall from Section 10.3 that early exercise is optimal on a call if the value of dividends

received exceeds the time value plus insurance value of the call. The time value of the call

is proxied by the forgone interest on the strike price from early exercise. What about the

insurance value? For the answer, compare expression (10.3) and the statement of European

put-call parity (10.19). The comparison reveals that for European calls, the insurance value

of the call is just the value of the corresponding European put! This is both intuitive and

logical. The insurance value is the difference between the value of the call and the value of

the corresponding forward. This difference is exactly the European put as a glance at their

payoff diagrams reveals (see Figure 10.1). Similarly, the insurance value of a European put

is the value of the corresponding European call.

Now, this identification of insurance value with the corresponding put or call does not hold

exactly for American options since we do not have a parity expression for American options,

but the upper and lower bounds (10.29) and (10.30) suggest it is not a bad approximation

in general. If we accept it as an approximation, then the rule that early exercise is optimal
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whenever dividends exceed insurance value and time value is just the rule of thumb described

above.

Put-Call Parity with a Continuous Dividend Yield
In the analysis above, we have assumed that dividend payments, if they exist, are discrete. As

we have seen earlier in the book, in many cases (such as currencies or stock indices), payouts

on the underlying are more naturally described as continuous yields at a rate q. The put-call

parity expression (10.19) for European options is easily modified to handle this case.

The key step in the modification is to note the following: to end up with one unit of the

underlying at date T , we need to buy only e−qT units of it today. We have seen this earlier

in the book, but we repeat the arguments here:

• Suppose the underlying is a foreign currency paying a continuously-compounded interest

rate of q. Then, one unit of the foreign currency invested at the rate q will grow to eqT

units by maturity. So e−qT units of the foreign currency invested today at the rate q will

provide us with e−qT
× eqT = 1 unit of the foreign currency by date T .

• Suppose the underlying is a stock index with a dividend yield of q. Then, reinvesting all

the dividends received into buying more of the index will cause our holding of the index

to grow at the rate q. Thus, if we start with e−qT units of the index today, we will end up

with one unit at date T .

Let r denote the (domestic) interest rate in continuously-compounded terms, so PV (K ) =

e−rT K . Now consider the following portfolios:

Portfolio A Long one European call

Investment of e−rT K for maturity at T

Portfolio B Long one European put

Long e−qT units of the underlying

The cost of Portfolio A is CE + e−rT K , while that of Portfolio B is PE + e−qT S, where

S is the current price of the underlying (current price of one unit of the foreign currency

or current level of the index). Neither portfolio has any net interim cash flows. By time T ,

Portfolio B has one unit of the underlying. The same arguments used to derive the payoffs

in Table 10.1 show that the two portfolios have identical values at time T . Thus, their initial

costs must be the same:

CE + e−rT K = PE + e−qT S (10.31)

Equation (10.31) is the modified form of put-call parity for European options when the

underlying has a continuous yield at rate q.
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10.5 Exercises 1. A stock is trading at $100. The interest rate for one year is 5% continuously com-

pounded. If a European call option on this stock at a strike of $99 is priced at $8.50,

break down the call option value into

(a) Instrinsic value.

(b) Time value.

(c) Insurance value.

2. In the question above, what is the insurance value of the corresponding put option?

3. Explain why a European call on a stock that pays no dividends is never exercised early.

What would you do instead to eliminate the call option position?

4. Stock ABC pays no dividends. The current price of an American call on the stock at

a strike of 41 is $4. The current stock price is $40. Compute the time value of the

European put option if it is trading at a price of $3.

5. Stock ABC is trading at a price of $50. At a strike price of 55, there is a traded six-month

American put. There are no dividends on the stock, and maturity of the option is a half

year. If the half-year rate of interest is 5%, what must the minimum insurance value of

the put be for the put not to be exercised?

6. Stock XYZ is trading at a price of $105. The American-style call option on XYZ with

maturity one year and strike 100 is traded in the market. The term structure of interest

rates is flat at 1% and there is a dividend payment in six months of $8. What is the

maximum insurance value for the call at which it still makes sense to exercise it?

7. Assume that the true formula for pricing options is unknown, e.g., Black-Scholes is not

applicable. Hence, you are asked to use the following approximation for the insurance

value of a put option:

I V (P) = exp

 
S

K

σ
2

T

 

where S is the current price of the stock, K is the strike price, σ is the volatility of the

stock return, and T is option maturity.

You are given that S = 100, K = 105, and the interest rate r = 1%. Option maturity

is T = 1 year, and there are no dividends.

What is the maximum volatility for which early exercise of the option is induced?

8. If a stock does not pay dividends, what is the relationship between call prices and

interest rates for early exercise of a put to occur?

9. You are given the following data about options: S = 60, K = 60, r = 2%, T = 0.5,

D = 0 (dividends). If the American call is trading at a price of $5, what is the minimum

price of the American put?

10. In the preceding question, refine the lower bound on the American put if there is a

dividend to be received after three months of an amount of $2. Assume that the term

structure is flat and the American call with dividends is worth $6.

11. Company WHY pays no dividends. Its stock price is $30. The three-month European

call at strike 29 is trading at $3. The three-month interest rate is 1%. What is the price

of the European put?

12. Stock ABC is trading at $43 and pays no dividends. If the six-month 50-strike call and

put are equal in price, what is the six-month risk-free interest rate?

13. Stock XYZ is currently priced at $50. It pays no dividends. The one-year maturity

60-strike European call and put are trading at $10 and $12, respectively. What is the

one-year forward price on the stock?
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14. You observe the following European option prices in the OTC market on stock QWY,

which does not pay dividends:

T (years) Call Puts Strike

0.5 7 5 100
1.0 19 12 100

However, the firm you work for does not subscribe to price quote services for the equity

and interest rate markets. All you know is that the term structure of interest rates is flat.

You receive a call from a client wishing to buy a forward on the stock QWY for two

years. What price should you quote for this contract?

15. You are working on an option trading desk in charge of arbitrage trading. The following

data is presented to you on screen, and you immediately see an arbitrage. What is it,

and how much money can you make risk free?

S = 60 T = 0.25 CE = 5

K = 60 D = 0 PE = 3

r = 3%

16. Stock DEF is trading at $100 and is expected to pay a dividend of $3 in three months.

The European call at strike 95 with half-year maturity is priced at $7. If the flat term

structure of interest rates is 5%, find a lower bound on the price of the American put

option.

17. Stock CBA is trading at price $50 and is not expected to pay any dividends. The

following puts are traded at maturity in three months:

P(K = 50) = 3

P(K = 60) = 15

The three-month interest rate is 2%. What is the price of a (50,60) bullish call spread?

18. Stock KLM trades at $100 and pays no dividends. The one-year straddle struck at $102

is trading at a price of $10. The one-year interest rate is 2%. Find the price of the

one-year European call and put.

19. An investor buys a call on ABC stock with a strike price of K and writes a put with

the same strike price and maturity. Assuming the options are European and that there

are no dividends expected during the life of the underlying, how much should such a

portfolio cost?

20. Use put-call parity to show that the cost of a butterfly spread created using European

puts is identical to the cost of a butterfly spread using European calls.

21. A stock is trading at S = 50. There are one-month European calls and puts on the stock

with a strike of 50. The call is trading at a price of CE = 3. Assume that the one-month

rate of interest (annualized) is 2% and that no dividends are expected on the stock over

the next month.

(a) What should be the arbitrage-free price of the put?

(b) Suppose the put is trading at a price of PE = 2.70. Are there any arbitrage oppor-

tunities?

22. A stock is trading at S = 60. There are one-month American calls and puts on the

stock with a strike of 60. The call costs 2.50 while the put costs 1.90. No dividends

are expected on the stock during the options’ lives. If the one-month rate of interest

(annualized) is 3%, show that there is an arbitrage opportunity available and explain

how to take advantage of it.



Chapter 11
Option Pricing:
An Introduction

11.1 Overview

The previous chapters examined option prices from two standpoints: restrictions imposed

by no-arbitrage conditions (e.g., minimum and maximum prices for options) and “relative”

pricing (e.g., how are call and put prices related?). Beginning with this chapter and over the

next several, we move to a more difficult problem: the determination of individual option

prices from information about the underlying.

The aim of this chapter is to build a strong foundation for the material to follow. A

number of important concepts pertaining to option pricing and hedging are introduced and

discussed here. This chapter:

• introduces the binomial model, which is one of the two canonical models of option

pricing (the other being the Black-Scholes model);

• uses a one-period binomial model to illustrate the two general methods of identifying

arbitrage-free option prices, namely replication and risk-neutral pricing;

• discusses dynamic replication strategies at an intuitive level, focusing especially on the

concept of the option delta, its behavior, properties, and uses; and

• illustrates the idea of dynamic replication of options by presenting a case study of the

dynamic hedging strategy known as portfolio insurance, which was immensely popular

in the 1980s.

A good starting point for this material is the contrast between forward pricing and option

pricing. We begin with this.

Option Pricing Compared to Forward Pricing
As with forward, the basic idea behind pricing options is replication: we look to create

identical payoffs to the options using positions in the underlying and investment/borrowing

at the risk-free rate. However, replicating options involves complications that do not arise

with forward.

With forward, there is a commitment to taking part in the trade underlying the contract.

As we have seen, this makes it possible to replicate the outcome at maturity without regard

to how the price of the underlying evolves over time.

With options, exercise occurs only if this is in the holder’s interest. For European options,

this depends on the underlying asset’s price at maturity. For American options, it depends

228
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on the entire pattern of evolution of the asset’s price since exercise may occur at any time.

Thus, it is impossible to identify a “fair” price for options without first positing a model of

how the price of the underlying evolves over time.

But we already knew this! As we observed in Chapter 8, option payoff diagrams show

that volatility—the uncertainty anticipated in the price of the underlying—is a primary

determinant of how much investors expect to make from options. This means one cannot

value options without accounting for and modeling this uncertainty. This is called model

dependence: our estimated option prices and hedging strategies will be only as good as our

model of price evolution.

Over the years, a number of alternative models have been proposed in the option pricing

literature. Two particularly popular ones are the binomial model and the Black-Scholes

model. Both are used widely in practice for pricing options on equities, indices, exchange

rates, and other underlyings. The Black-Scholes model is very well known and, indeed, is

almost synonymous with option pricing, but it is somewhat technical and does not offer

much intuition about option pricing and hedging. It also has some limitations; for example,

it cannot easily handle early exercise.

The binomial model, in contrast, is an ideal starting point for understanding option

pricing. The next section describes this model. Throughout this chapter, we refer to the

underlying security as a “stock,” although it could equally be an index level, exchange rate,

or other price.

11.2 The Binomial Model

Look at the evolution of stock prices described in Figure 11.1. The current stock price is

58. After one period, the price takes on one of two values: it either moves up to 63 or down

to 54. This is an example of a binomial model, more specifically, a one-period binomial

model.

The general binomialmodel extends this to allow for several price changes. Price changes

in the model occur at specified time points t = 0, 1, 2, . . . . The calendar time between two

time points is h years, where h, a parameter of our choosing, can be very small (one day or

less). The main assumption of the model is that given the price St at time t , the price St+1

at time t + 1 takes on one of two possible values:

St+1 =
 
uSt , with probability p

dSt , with probability 1 − p
(11.1)

FIGURE 11.1
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where u > d. The number u, called the “up” move, denotes the gross return on the stock

over period t if the price moves from St to uSt , while d, the “down” move, is the gross

return if the stock price moves from St to dSt . In Figure 11.1, these are given, respectively,

by 63/58 ≈ 1.0862 and 54/58 ≈ 0.9310.

Is This a Bit Too Simple?
At first sight, the binomial model looks too simplistic to be taken seriously as a model

of real-world price changes with price changes occurring only at specified times and only

two (two!) possible prices when a change occurs. But the apparent simplicity of the model

masks a rich and versatile analytical framework.

For example, the Black-Scholes model with its continuous price changes appears much

more sophisticated, complex, and realistic than the binomial. Yet, as we show in Chapter 13,

it is simple to choose the parameter values so that the binomial model resembles the Black-

Scholes model arbitrarily closely. Thus, the binomial may be thought of as just a discrete

version of the Black-Scholes model.

But this is only part of the story. The influential work of Dupire (1994), Derman and Kani

(1994), and Rubinstein (1994) has shown that we can also go well beyond Black-Scholes

with nonstandard binomial models. We elaborate further on this in Chapter 16.

Volatility in the Binomial Model
Intuitively, volatility in the binomial model is related to the ratio u/d: the larger is this ratio,

the wider are the “jaws” of the binomial model and the greater the variability of stock prices.

This is made more formal in Chapter 13. In one common formulation of the binomial model

we describe there, the parameters u and d are defined by

u = eσ
√
h d = e−σ

√
h (11.2)

where σ is the annualized volatility of the stock and h the length in years of one period in

the binomial tree. (The notion of annualized volatility is also made precise in Chapter 13.)

From (11.2), the annualized volatility σ is related to the ratio u/d by

σ =
 

1

2
√
h

 
ln
 u
d

 
(11.3)

Interest Rates
To keep notation simple, we depart in two ways from our usual convention for interest rates.

First, interest rates will not be in annualized terms; rather, we denote by R the rate of interest

applicable to the time period represented by each step of the binomial tree. Second, R will

denote the gross rate of interest (i.e., 1 plus the net rate of interest) expressed in simple

terms. Thus, a dollar invested at the beginning of period t will grow to R dollars by period

t + 1.

A Restriction on the Parameters
For the binomial tree to be meaningful, we must have

d < R < u (11.4)

If R ≥ u, then the risk-free interest rate is higher than the stock return in state d and at least

as high as the stock return in state u. This means the stock is dominated by the risk-free

rate, so arbitrage profits can be created by shorting the stock and investing the proceeds at

the risk-free rate. If R ≤ d, the stock dominates risk-free returns, and the reverse strategy

creates an arbitrage. We assume henceforth that (11.4) holds.
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What This Chapter Does
In practice, binomial models used to price options and other derivatives use at least 100 time

steps (and very often more). In this first chapter on option pricing, we examine valuation

and hedging in a one-period model. The main point of this exercise is to get an intuitive

feel for the option pricing problem and for key concepts such as the option delta. Following

this, Chapter 12 discusses the general multiperiod problem including considerations such

as dividends and early exercise.

In both the current chapter and Chapter 12, the numbers u, d, and p are taken to be

known. In Chapter 13, we discuss how these values are determined.

11.3 Pricing by Replication in a One-Period Binomial Model

We work through a pair of examples that illustrate the mechanics of pricing by replication

in the binomial setting. In both examples, we use the following parameter values:

• The initial stock price is S = 100.

• The price moves up by a factor of u = 1.10 with probability p = 0.75 or down by a

factor of d = 0.90 with probability 1 − p = 0.25.

• The risk-free rate of interest is R = 1.02. That is, a dollar invested at the beginning of

the period grows with certainty to $1.02 at the end of the period.

Given this information, what are the prices of (a) a one-period call option with strike

K = 100 and (b) a one-period put option with strike K = 100?

Pricing the Call
The value of the call today is the present value of the payoffs it provides at maturity, so

the first step is to identify these payoffs at maturity. If the up state occurs, the stock price

is uS = 110 while the call gives us the right to buy the stock for 100; thus, the value of

the stock, denoted Cu , is 10. In the down state, the stock price is only dS = 90, so the call

lapses unexercised; its value Cd is zero. This information is summarized in Figure 11.2.

What is the initial value C of a call with these payoffs? Replication provides the answer.

Consider a portfolio consisting of

•  c units of stock.

• An amount Bc invested at the risk-free rate R.

FIGURE 11.2
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We want to choose  c and Bc so that the portfolio mimics the call. Both  c and Bc may

be positive or negative. If  c > 0, we are buying or taking a long position in the stock; if

 c < 0, we are selling or taking a short position in the stock. Similarly, Bc > 0 means we

are investing at the rate R, while Bc < 0 means we are borrowing at the rate R.

For the portfolio to replicate the call, it must yield exactly the same payoffs as the call

in each state. The call is worth 10 in the state uS. The portfolio value in this state is

110 c + 1.02 Bc

since each unit of the stock is worth 110 in this state, and the risk-free rate on the bor-

rowing/investment is R = 1.02. Similarly, the call is worth zero in the state dS, while the

portfolio value in this state is

90 c + 1.02 Bc

So, for the portfolio to replicate the call, two conditions must be satisfied:

110 c + 1.02 Bc = 10 (11.5)

90 c + 1.02 Bc = 0 (11.6)

This is a simple two-equation/two-unknown system. Subtracting the second equation

from the first, we obtain 20 c = 10, so

 c = 1

2
(11.7)

Substituting  c = 1/2 into the first equation and rearranging gives us 1.02 Bc = −45, so

Bc = −44.12 (11.8)

In words, the following portfolio perfectly replicates the call option: (a) a long position in

1/2 unit of the stock, and (b) borrowing of 44.12. Since S = 100, the initial cost of setting

up this replicating portfolio is

1

2
100 − 44.12 = 5.88 (11.9)

Thus, the price of the call must be C = 5.88! Any other price leads to arbitrage profits. We

illustrate this by considering two scenarios.

Example 11.1 Arbitrage from an Undervalued Call
Suppose, for instance, that C = 5.50. Then the call is undervalued relative to the replicating
portfolio. A riskless profitmay bemade by buying the call and selling the replicating portfolio.
That is, we (a) buy the call, (b) short 1/2 unit of the stock, and (c) invest 44.12 for one period
at the rate R = 1.02.

This leads to an initial cash inflow of +0.38 (this is the difference between the proceeds
of selling the replicating portfolio and the cost of the call). And, of course, there is no cash
outflow at maturity since the replicating portfolio mimics (by construction) the payoffs of
the call. These cash flow details are summarized in Table 11.1. ■

Example 11.2 Arbitrage from an Overvalued Call
Now suppose that C = 6.25. Then the call is overvalued relative to the cost of replicating
it. Arbitrage profits may be made by selling the call and selling the replicating portfolio: we
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TABLE 11.1
Arbitrage from an

Undervalued Call

Initial
Cash Flow at Maturity

Source Cash Flow State u State d

Long call −5.50 +10.00 0
Short 1/2 stock +50.00 −55.00 −45.00
Investment −44.12 +45.00 +45.00

Net +0.38 0 0

TABLE 11.2
Arbitrage from an

Overvalued Call

Initial
Cash Flow at Maturity

Source Cash Flow State u State d

Short call +6.25 −10.00 0
Long 1/2 stock −50.00 +55.00 +45.00
Borrowing +44.12 −45.00 −45.00

Net +0.37 0 0

(a) sell the call, (b) buy 1/2 unit of the stock, and (c) borrow 44.12 for one period at the
rate R = 1.02.

This leads to an initial cash inflow of +0.37 (the difference between the proceeds of
selling the call and the cost of setting up the replicating portfolio). And, of course, there is
no cash outflow at maturity once again since the replicating portfolio mimics the payoffs of
the call. These cash flow details are summarized in Table 11.2. ■

What Happened to the Probability p?

Now for a question that has probably already struck the reader: why did the probability p

play no role in identifying the call’s arbitrage-free price? The mechanical reason is that when

we are replicating the option, we are re-creating its payoffs state by state. The probabilities

of these states do not matter since we are not replicating “on average” (for example, by

weighting each state by its likelihood).

A more subtle point is that information about p is already embedded into the current

stock price and, therefore, into the returns u and d on the stock. The price process represented

by the binomial set-up implicitly assumes a market equilibrium that incorporates investors’

degrees of risk-aversion and other factors. If we change the likelihoods of the two states, the

equilibrium is upset, and the current price of the stock will change to reflect the changed

equilibrium; this will, in turn, change u and d. As an extreme example, consider what would

happen if p = 1, that is, the stock were sure to fetch a price of 110 in one period. It is easy

to see that its current price cannot then be 100; rather, it must be 110/1.02 = 107.85. This

alters u (which is now equal to R) while d becomes irrelevant.

Pricing the Put Option
The arguments are essentially the same as the call. We begin by identifying the payoffs of

the put at maturity. There are two possible prices of the security after one period: uS = 110

and dS = 90. In the state u, the put is valueless: you have the right to sell for 100 a security

that is worth 110. In the state d, the put is worth Pd = 10. This information is summarized

in Figure 11.3.

To replicate the put, consider a portfolio consisting of (a)  p units of stock and (b)

an investment of Bp. Once again,  p and Bp may be positive or negative with negative
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FIGURE 11.3
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investment levels corresponding to borrowing. For the portfolio to replicate the put, it must

produce the same outcome as the put in each state. By the same arguments used for the call,

the portfolio is worth

110 p + 1.02 Bp

in the state u, and

90 p + 1.02 Bp

in the state d. Thus, for the portfolio to replicate the put, we must have

110 p + 1.02 Bp = 0 (11.10)

90 p + 1.02 Bp = 10 (11.11)

Subtracting the second equation from the first, we get 20 p = −10, or

 p = −1

2

Substituting this into the first equation and rearranging, we obtain 1.02 Bp = 55, so

Bp = +53.92

In words, to replicate the put, we set up a portfolio consisting of (a) a short position

in 1/2 unit of the stock and (b) an investment of 53.92. The initial cost of setting up this

portfolio is

−1

2
(100) + 53.92 = 3.92

Thus, the unique arbitrage-free price of the put is P = 3.92. The following two examples

illustrate how any departures from this price result in arbitrage opportunities.

Example 11.3 Arbitrage from an Undervalued Put
Suppose P = 3.75. Then the put is undervalued relative to the cost of replicating it. To
create arbitrage profits, we buy the put and sell the replicating portfolio, i.e., we (a) buy
the put, (b) buy 1/2 unit of the stock, and (c) borrow 53.92 for one period at the rate
R = 1.02.

This leads to an initial cash inflow of+0.17 (the difference between the proceeds of selling
the replicating portfolio and the cost of the put). There are no net cash flows at maturity
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TABLE 11.3
Arbitrage from an

Undervalued Put

Initial
Cash Flow at Maturity

Source Cash Flow State u State d

Long put −3.75 0 +10.00
Long 1/2 stock −50.00 +55.00 +45.00
Borrowing +53.92 −55.00 −55.00

Net +0.17 0 0

TABLE 11.4
Arbitrage from an

Overvalued Put

Initial
Cash Flow at Maturity

Source Cash Flow State u State d

Short put +4.10 0 −10.00
Short 1/2 stock +50.00 −55.00 −45.00
Investment −53.92 +55.00 +55.00

Net +0.18 0 0

since the replicating portfolio mimics the outcome of the put. These cash flow details are
summarized in Table 11.3. ■

Example 11.4 Arbitrage from an Overvalued Put
Now suppose that P = 4.10. Then, the put is overvalued relative to the cost of replicat-
ing it. To make arbitrage profits, we sell the put and buy the replicating portfolio: (a) sell
the put, (b) sell 1/2 unit of the stock, and (c) invest 53.92 for one period at the rate
R = 1.02.

This leads to an initial cash inflow of +0.18 (the difference between the proceeds of
selling the put and the cost of setting up the replicating portfolio), and there is, once again,
no net cash flow at maturity. These cash flow details are summarized in Table 11.4. ■

11.4 Comments

The examples above illustrate the broad mechanics of pricing options by replication. Several

comments are in order here.

1. Pricing Options through a CAPM Approach
Once we assume a price process for the underlying stock, we can derive the payoff process

for any given derivativewritten on that stock. Thus, it appears that an alternativeway to value

derivatives is to look at the cash flows generated by the derivative and discount them at an

appropriate risk-adjusted rate. This is correct, although the process is a bit more complex

than replication. Operationalizing this idea requires us to choose a model (such as the

CAPM) for converting uncertain future cash flows into present values. Then, to implement

the model, we need to identify the appropriate inputs such as the option betas.

The beauty of replication is that it does not rely on the validity of the CAPM or any

such model for determining stock values. Nonetheless, options may indeed be priced in

this manner; indeed, Black and Scholes (1973) provide an alternative derivation of their
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celebrated formula using this approach. In Chapter 15, we describe the derivation of the

Black-Scholes formula using both replication and CAPM.

2. Leverage and Expected Returns from Options
If we look at the payoff distributions of the options in the binomial example, their arbitrage-

free prices seem out of line with—or, at least, odd compared to—these distributions. The

payoffs from the call and put are:

Call Payoffs =
 

10, w.p. 0.75

0, w.p. 0.25
Put Payoffs =

 
0, w.p. 0.75

10, w.p. 0.25

Thus, the call’s expected payoff in the example is 7.50, and the put’s expected payoff is

2.50. Yet the arbitrage-free price of the call is only 5.88, which implies a large positive

expected return of over 27% (compared to the 5% expected return on the stock and the

2% risk-free rate). On the other hand, the price of the put is 3.92, which vastly exceeds its

expected payoff and implies a negative expected return of around −36%. These numbers

appear both inflated and odd—why, for instance, would anyone buy a put with such a huge

negative expected return?—but they are easily understood intuitively.

First, the expected returns are large in absolute value because of leverage. The replicating

portfolio for the call is a levered long position in the call: the portfolio is long 0.50 units

of the stock, which costs 50, but 44.12 of the total cost of 50 is borrowed. Put differently,

the call has a price of just 5.88, or under 6% of the value of the stock, yet its holder gets

full exposure to increases in the price of the stock. Similarly, the put costs 3.92, less than

4% of the value of the stock, but gives the investor full exposure to decreases in the price

of the stock. In a nutshell, calls are levered bets on price increases and puts are levered bets

on price decreases. The expected returns are correspondingly large.

Second, “on average,” stock prices go up; loosely, the stock returns at least as much as

the risk-free asset. Thus, the call, which is a bet on price increases, has a positive expected

return. But the put, which is a bet on a price decrease, loses money on average. In CAPM

terms, the call has a positive beta, the put a negative one.

Of course, all this is only in a cooked-up example with assumed probabilities for the

up and down moves. Do options prices in reality exhibit such characteristics? The answer

is “yes.” A study of empirical options returns by Coval and Shumway (2001) finds that

at-the-money calls on the S&P 500 index have positive expected returns of between 1.8%

and 2% per week while at-the-money puts tend to lose between 7.7% and 9.5% per week.

These returns reflect the options’ betas, which are large and positive for the calls (between

+21 and +55) and large and negative for the puts (between −37 and −27). They also find

similar numbers for options on the S&P 100 index: here, on average, at-the-money calls

gain 0.6% to 0.8% daily, while at-the-money puts lose 1.4% to 1.8% per day.

3. The Importance of Replicability
The importance of “replicability” should be stressed. A number of options in practice are not

capable of being replicated because of limitations on the strategies that may be employed.

Two important examples are employee stock options and real options. In the former case,

employees receiving the options as compensation may neither trade in the option nor short

the underlying stock. Since the validity of the replication-based price depends on being

able to sell an overvalued call or short stock against an undervalued one, the theory is

inapplicable. In the latter case, the underlying is not typically a traded variable.

In such cases, using option-pricing models or formulae (including the Black-Scholes

formula) may be inappropriate and even misleading. There is no easy “out” here. Depending

on the particular situation, prices obtained via the standard techniques may still be useful



Chapter 11 Option Pricing: An Introduction 237

as a benchmark. It may also be possible to modify the model to obtain a more appropriate

price. Rubinstein (1995) discusses the ways in which employee stock options deviate from

standard option-pricing models and suggests potential ways to correct for these.

4. More Complex Models and Dynamic Replication
In the one-period binomial model, the stock price makes just a single move before the option

is at maturity. Thus, replication involved a static strategy where we set up a portfolio at the

beginning of the period and unwind it at the end of the period. In a more realistic setting,

the stock price will move several times before maturity and there will be many more than

just two possible prices at maturity. This means a static strategy will not suffice for option

replication: with only two assets (the stock and risk-free investment) at our disposal, a static

strategy can match option outcomes in two states but not in three or more states.

Rather, replication requires a dynamic strategy that adapts the composition of the repli-

cating portfolio to changing stock prices and other factors so that the portfolio valuematches

the option’s final outcome. For example, if a call moves deep into-the-money and is almost

sure to be exercised eventually, it resembles a portfolio that is long one unit of the stock and

has a borrowing with a face value of K . If the call moves deep out-of-the-money and so

is almost sure to lapse unexercised, its replicating portfolio resembles the “null” portfolio

that contains neither stock nor cash.

Dynamic replication is described in the chapters on binomial option pricing and the

Black-Scholes model later in this book. To set the foundation for this material, the current

chapter provides a detailed, but informal, discussion of replication and the option delta in

Section 11.8. These arguments are illustrated in Section 11.9 with a case study of “portfolio

insurance,” a specific dynamic replication strategy that was widely blamed for exacerbating

the October 1987 stock market crash.

11.5 Riskless Hedge Portfolios

Replication shows that we can combine the underlying stock with an appropriate amount

of borrowing to create a call: we can write

 Units of Stock + Borrowing = Long Call (11.12)

If we rearrange this expression (and use the fact that a negative borrowing is an investment),

we see that we can create a synthetic investment by combining the stock and the call:

 Units of Stock + Short Call = Investment (11.13)

Expression (11.13) suggests an alternative pricing procedure for identifying the call’s

fair value. We first choose  so that the stock and call combine to create a synthetic risk-

free investment. Since a risk-free portfolio must earn only the risk-free rate of return, the

portfolio may be valued. Finally, since the portfolio consists of only the stock and the option,

we can identify the option’s value from knowledge of the portfolio value and the current

stock price.

This method of pricing is called using a “riskless hedge portfolio” since the riskless

portfolio is created by hedging the option risk with the stock. The riskless hedge portfolio

method has been used frequently to derive option prices, including in the seminal Black

and Scholes (1973) and Merton (1973) papers.

Of course, this method is completely equivalent to the replication procedure described

earlier since (11.12) and (11.13) express exactly the same thing. In particular, the value of 
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that will create a riskless hedge portfolio is the same as the value that is used in replication.

And, like replication, maintaining a riskless hedge portfolio is a dynamic task.

In Appendix 11A, we illustrate the riskless hedge portfolio procedure on the same bino-

mial example presented above and derive option values using this procedure.

11.6 Pricing Using Risk-Neutral Probabilities

Pricing via replication is the economically “correct” way of identifying the arbitrage-

free price of an option. However, the actual computations can be quite cumbersome. The

composition of the replicating portfolio depends on the precise characteristics of the option

in question: what kind of option it is, what maturity and strike it has, and so on—and,

of course, this composition alters as stock prices and other features of the environment

change. This procedure can get especially difficult when we look at exotic options with

more complex features than straightforward calls and puts.

So, we arrive at the question: is there an easier way to arrive at option prices? Note that

this question is primarily computational. Replication is already guaranteed to give us the

unique arbitrage-free price. The only issue is whether we can arrive at this same price in a

quicker way.

The answer, happily, is “yes.” There is a method called risk-neutral pricing that is guar-

anteed to result in the same option prices as replication but is computationally very much

simpler. Risk-neutral pricing reduces the pricing problem to one of taking expectations

of discounted option payoffs. The discounting is done at the risk-free rate and the expec-

tations are taken with respect to a particular probability measure called the risk-neutral

probability. Unlike the replicating portfolio, the risk-neutral probability does not depend on

which derivative is being valued; it is a fixed probability that depends only on the model’s

“primitive” assets (e.g., the stock and the risk-free rate in the binomial model). We describe

risk-neutral pricing in this section.

A Brief Historical Note
The intellectual underpinnings of risk-neutral pricing can be traced back to a 1953 paper by

Nobel Laureate Kenneth Arrow, but the first formal development of the ideas, especially in

the context of option pricing, came some twodecades later inCox andRoss (1976). The ideas

were then developed in great depth in a series of papers by Kreps (1982), Harrison and Kreps

(1979), and Harrison and Pliska (1981), where it was also shown that risk-neutral probabil-

ities have important applications that go well beyond just pricing. Subsequently, a number

of authors have clarified and extended these applications. Collectively, the ideas in these

papers have had an impact on the development of derivative-pricing theory as great as—and

perhaps even greater than—the work of Black and Scholes (1973) and Merton (1973).

Outline of Discussion
In this section, we outline the steps involved in risk-neutral pricing and illustrate the method

in the context of a one-period binomial model. We also provide an intuitive explanation of

why the method “works.” The risk-neutral probability has two other important uses. It can

be used to identify whether a model is internally consistent, i.e., whether a model admits

arbitrage opportunities in its very specification. It can also be used to identify whether a

given model is complete, that is, whether all contingent claims in the model are replicable.

These two uses of risk-neutral probabilities are described in Appendix 11C. An intuitive and

relatively non-technical explanation of the properties and uses of risk-neutral probabilities

may be found in Sundaram (1997).
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The Steps Involved in Risk-Neutral Pricing
Risk-neutral pricing in the binomial model involves a very simple three-step procedure:

• Step 1: Compute the “probabilities” q and 1 − q of the states u and d that make the

expected return on the stock equal to the risk-free rate R.

• Step 2: Compute the expected payoff from the option at maturity under the probabilities

q and 1 − q.

• Step 3: Discount these expected payoffs back to the current period using the risk-free

rate R.

The final result will be precisely the arbitrage-free price of the option that is obtained by

replication!

The risk-neutral pricing procedure in any general model is the same as in the binomial

model but with one slight modification possibly needed. In the binomial model, we have

assumed interest rates are constant. Thus, it does not matter if Steps 2 and 3 are reversed; that

is, we can first discount the option’s payoffs at the risk-free rate and then take expectations

under q. In a general multiasset model—and especially if we are considering interest-rate

derivatives—we might want to allow for the risk-free interest rate itself to be stochastic and

to change over time depending on the “state of the world.” In this case, the risk-free discount

factor to be applied to each option payoff will be different since both the path of interest

rates and the option payoff are stochastic and depend on the state. Thus, we discount the

payoffs before taking the expectation under the risk-neutral probability.

Risk-Neutral Pricing: Terminology
The probabilities q and 1 − q are commonly referred to as the model’s risk-neutral proba-

bilities, but they are also called by other names such as pseudo-probabilities, risk-adjusted

probabilities, or martingale probabilities. The term “pseudo-probabilities” is perhaps the

most descriptive of all of these: it emphasizes the fact that these probabilities are syn-

thetic constructs, distinct from the “true” probabilities p and 1 − p. The remaining three

appellations need explanations.

First, “risk-neutral” probabilities. An investor who is neutral to risk cares only about the

expected return on an asset, and not on its other characteristics. Such an investor, therefore,

would be indifferent between the stock and the risk-free rate R only when faced with the

probabilities q and 1−q; at all other probabilities, the investor would strictly prefer the stock

or the risk-free rate. Given this unique association with risk-neutrality, these probabilities

are called risk-neutral probabilities.

Why “risk-adjusted” probabilities? In the usual approach to valuation in finance, to

identify the value of an uncertain cash flow, we calculate its present value (under the true

probabilities) anddiscount this at a risk-adjusted rate.Herewe are discounting at the risk-free

rate, but we are calculating the expectation under the constructed probabilities rather than

the true probabilities. Thus, it is as if we are applying the risk-adjustment to the probabilities

instead of the discount factor.

The reason these probabilities are called “martingale probabilities” is more technical

and is explained in Appendix 11D.

Examples
We illustrate risk-neutral pricing in a one-period binomial model. We continue with the

parameters employed in the earlier examples: S = 100, u = 1.10, d = 0.90, p = 0.75, and

R = 1.02.
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As the first step, we compute the risk-neutral probability. The stock returns u in the up

state and d in the down state, while the riskless rate is a constant R. Thus, the risk-neutral

probabilities q and 1 − q must satisfy

q · u + (1 − q) · d = R (11.14)

or q(u − d) = R − d. This identifies the risk-neutral probability uniquely as

q = R − d

u − d
(11.15)

In the present case, u = 1.10, d = 0.90, and R = 1.02, so we obtain q = 0.60.

Example 11.5 First, consider pricing a call with a strike of K = 100. As we have seen, the call pays 10 in
state u and 0 in state d. Therefore, its expected payoff under q is

(0.60) · 10+ (0.40) · 0 = 6

Discounting this expected payoff at the risk-free rate, we obtain

6

1.02
= 5.88

This is the same as the call price we derived earlier using replication techniques! ■

Example 11.6 Now, consider a put with a strike of 100. The put pays 0 in state u and 10 in state d.
Therefore, its expected payoff under q is

(0.60) · 0+ (0.40) · 10 = 4

Discounting this expected payoff at the risk-free rate, we obtain

4

1.02
= 3.92

Once again, this is the same put price derived using replication. ■

Example 11.7 Consider one final example. Suppose we wish to price a call with a strike of 105.
First, consider pricing this call by replication. The call pays 5 in the state u and nothing

in the state d. If the replicating portfolio holds  c units of stock and has Bc invested at the
risk-free rate, then  c and Bc must satisfy

110 c + 1.02 Bc = 5

90 c + 1.02 Bc = 0

Solving this pair of equations gives us  c = 0.25 and Bc = −22.06. Thus, the initial cost of
the replicating portfolio is

(100× 0.25) − 22.06 = 2.94

This means the arbitrage-free price of the call is also 2.94.
Now consider pricing the same call by risk-neutral probabilities. As we have already

seen, the risk-neutral probabilities of the states u and d are 0.60 and 0.40, respectively. The
expected payoff of the call under these probabilities is

(0.60)(5) + (0.40)(0) = 3
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Discounting this payoff at the risk-free rate gives us the price of the call as

3

1.02
= 2.94

■

These examples show just how much easier it is to compute arbitrage-free prices using

risk-neutral probabilities than replication even in the simple one-period binomial model.

In more complex models, the computational advantage of risk-neutral pricing only gets

enhanced.

Why Does Risk-Neutral Pricing “Work”?
Risk-neutral pricing is one of finance’s “beautifully unexpected” results, unexpected because

there seems no obvious connection between replication and the risk-neutral probabilities.

Why does the procedure work?

An intuitive explanation provided by Cox and Ross (1976) involves the following thought

experiment. Imagine two worlds in which all securities have the same current price and

the same set of possible future prices. The only difference between the two worlds is the

probabilities of these different future prices. Suppose one of these worlds is risk-neutral,

so the probabilities are such that all expected returns are the same. The other world is

our own in which investors are generally risk averse so prices of risky assets carry a risk

premium.

Consider a call option in this setting and suppose that the call can be replicated using the

other securities. Since the composition and cost of the replicating portfolio do not depend on

the probabilities of the different future states (as we noted earlier in this chapter), the option

must have the same price in both worlds. But, as with any security in the risk-neutral world,

the option’s price in the risk-neutral world is just its discounted expected value.

This says precisely that we can identify the value of the option in our original, risk-averse,

world by considering a risk-neutral world with the same set of future prices and seeing how

much the option would cost there. This is exactly what the risk-neutral pricing procedure

does!

A more technical explanation has to do with the relationship between risk-neutral proba-

bilities and the prices of the model’s “Arrow securities” (so-called after Arrow’s description

of them in his 1953 paper; what are sometimes also called “Arrow-Debreu securities”). This

is outlined in Appendix 11B.

Other Uses of the Risk-Neutral Probability
The risk-neutral probability is very useful as a computational tool in pricing derivatives,

but its uses stretch well beyond this. Two of particular importance are in identifying

inconsistently-specified models and ensuring market completeness.

Suppose we have a model with a large number of primitive assets (e.g., many stocks

and/or bonds). How can we be sure that the stochastic processes we specify for each of

these are consistent with no arbitrage, i.e., that it is not possible to form some complex

trading strategy using these different securities that creates riskless profits? Obviously, such

internal consistency is a minimal condition we want satisfied in our model.

One way to ensure this is, of course, to check through all possible trading strategies, but

this is likely to be infeasible in complex models. A simpler solution, however, is available:

a model is internally consistent if and only if it has at least one risk-neutral probability, that

is, there is at least one set of probabilities on the different states of the world under which

all assets in the model have the same expected returns.

A second use of risk-neutral probabilities is equally unexpected and powerful. How

can we know if derivatives in a given model are capable of being replicated? In simple
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models (such as a one-period binomial model), we can verify this by exhausting all possible

derivatives, but in a richer setting, this is impractical. Here’s the answer: all derivatives in

a model are capable of being replicated if and only if the model has a unique risk-neutral

probability.

These two remarkable properties of risk-neutral probabilities—model consistency and

market completeness—are discussed further in Appendix 11C.

11.7 The One-Period Model in General Notation

Consider a one-period binomial model in which the current stock price is S; the price goes

up to uS with probability p and down to dS with probability 1− p; the risk-free rate is R;

and we are looking to price a derivative that has the value Xu in state u and Xd in state d.

What is the initial value of the derivative?

The risk-neutral probability q of the up move in this setting is, as we have seen in (11.15)

above, given by

q = R − d

u − d

Thus, using the risk-neutral pricing approach, the initial price of the claim is

X = 1

R
[qXu + (1 − q)Xd ] = 1

R

  
r − d

u − d

 
Xu +

 
u − R

u − d

 
Xd

 
(11.16)

Of course, we can also derive (11.16) by replication. Suppose the replicating portfolio

consists of  units of the stock and an amount B of investment. The initial cost of the

replicating portfolio is then

 S + B (11.17)

For the portfolio to replicate the derivative’s outcomes,  and B must satisfy

 uS + RB = Xu

 dS + RB = Xd

(11.18)

Subtracing the second equation from the first shows us that

 = Xu − Xd

uS − dS
(11.19)

Substituting this value of  in (11.18) and rearranging, we obtain

B = 1

R

 
uXd − dXu

u − d

 
(11.20)

Finally, substituting these values of and B into (11.17) and doing some algebraic manip-

ulation, we can see that the option price is precisely the expression given in (11.16).

11.8 The Delta of an Option

One of the most important concepts in dealing with options is that of the option delta.

The delta is defined as the number of units of the underlying security that must be held

in a portfolio that replicates (a long position in) the option. In the binomial examples for

instance, the call delta was +0.50 and the put delta was −0.50. The delta is central to the

pricing, hedging, and risk-management of options. Given its importance, it is helpful to have
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an intuitive feel for this concept before examining its role more formally. In this section,

we provide such an informal description of the delta’s properties and its uses.

An observation first. Recall that, as discussed in Section 11.4, replication requires a

dynamic strategy that adapts the composition of the replicating portfolio—in particular,

the option delta—to changing stock prices and other factors. Thus, the delta of an option

represents a “snapshot” view: it is the number of units of the underlying required to replicate

the option at a point in time. As information changes, the delta too will typically change

with it. This point should be kept in mind throughout.

Properties of the Delta
There are three properties call and put deltas must have.

Property 1

The delta of a call is positive and that of a put is negative. That is, replicating a long call

position requires holding a long position in the underlying; replicating a long put position

requires a short position in the underlying.

It is not hard to see why. A call is a bullish instrument; it increases in value when the stock

price increases. Thus, the replicating portfolio must also increase in value when the stock

price increases. This is possible only if the portfolio has a long position in the underlying.

Conversely, a put is a bearish instrument that gains value when the stock price decreases.

The portfolio replicating the put must also then move in the opposite direction to the stock

price, and this mandates a short position in the stock.

Property 2

The delta of a call must lie between 0 and 1, while that of a put must lie between −1 and

0. Intuitively, the maximum benefit to the holder of a call from a $1 increase in the stock

price is $1; typically, the benefit will be lower since the change may be reversed with some

likelihood. So the maximum number of units of the stock that need be held in the replicating

portfolio is 1. Similarly, the maximum gain to the holder of a put from a $1 fall in the stock

price is $1, so the replicating portfolio will need to be short at most one unit of the stock.

Property 3

The delta of an option depends on its depth in-the-money. Options that are deep in-the-

money (i.e., that are very likely to finish in-the-money) have deltas that are close to unity in

absolute value. Those that are deep out-of-the-money (i.e., are very unlikely to eventually

move into-the-money) have deltas close to zero. In general, as an option moves further

into-the-money, the higher is its delta in absolute terms.

To see this, suppose a call is very deep in-the-money, so the call holder is very likely

to exercise the option eventually. Effectively, the call holder is then looking at paying the

strike price at maturity and receiving one unit of the stock. Holding the call is therefore

almost equivalent to holding a portfolio consisting of one unit of the stock and a borrowing

with face value K . (“Almost” because there is some probability that the call might go back

out-of-the-money.) This says precisely that the delta of the call is almost +1. An analogous

argument shows that the delta of a deep in-the-money put is close to −1.

On the other hand, suppose a call is deep out-of-the-money, i.e., there is a very low

likelihood of its being exercised. Then the replicating portfolio for the call is almost the

“null” portfolio, the one that contains neither the stock nor cash. (Once again, only “almost”

because there is some probability that the option might wind up in-the-money at maturity.)

Thus, the delta of the call is now close to zero. The delta of a deep out-of-the-money put is

similarly close to zero.
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FIGURE 11.4
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Figure 11.4 summarizes all three properties in a single picture. The figure was generated

using the Black-Scholes model for European options and assumes a strike price of K = 100.

Note that at any given stock price, the difference in the call and put deltas in the figure is

exactly+1.Wewill explain laterwhy thismust hold forEuropeanoptions; it is a consequence

of—what else?—put-call parity. The figure also shows why option replication must be

dynamic: the replicating portfolio requires us to hold delta units of the underlying asset, but

the delta changes when the price of the underlying stock changes.

Uses of the Delta
The delta is perhaps the single most important number characterizing an option. First and

foremost, it enables us to express option risk in terms of units of the underlying asset. For

example, suppose the delta of a given call is+0.60. This means that the portfolio replicating

the call has a long position in 0.60 units of the underlying. Since the replicating portfolio

mimics the call, it is as if the call embeds 0.60 units of the underlying. That is, the risk in

the option on account of the underlying is akin to the risk in a long position of 0.60 units of

the underlying. This simple observation has several important implications.

1. Hedging Option Positions

First, the delta enables us to hedge option positions using the underlying. Say that we have

written a call whose delta is currently +0.70. Then the risk in the call is the same as the

risk in a long position in 0.70 units of the underlying. Since we are short the call, it is as if

we are short 0.70 units of the underlying. Thus, to hedge the position, we simply buy 0.70

units of the underlying asset. This is called delta hedging. Of course, like replication, delta

hedging too is a dynamic strategy in general: as changes in the price of the underlying cause

option risk to change, we need to rebalance the delta hedge.

2. Aggregating Risk

The delta also enables us to aggregate risk across different options written on the same

underlying security. As a simple example, suppose we have written 100 calls on a given

stock, each with a delta of +0.35, and are long 100 puts on the same stock, each with a
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delta of −0.32. Suppose we also have 100 shares of stock. Then:

• A long position in each of the calls is akin to a long position in 0.35 units of the stock.

We are short 100 of these calls. Thus, it is as if we are short 0.35 × 100 = 35 units of

the stock.

• A long position in each of the puts is akin to being short 0.32 units of the stock. Since

we are long 100 of these puts, it is as if we are short 0.32× 100 = 32 units of the stock.

• We are also long 100 units of the stock.

Thus, in aggregate, the portfolio has a risk equivalent to −35 − 32 + 100 = 33 units of

the underlying. (This aggregate is called the “portfolio delta.”) Of course, we can offset this

risk by delta-hedging at the portfolio level: to do this, we sell 33 units of the underlying

stock.

3. As a Sensitivity Measure

Third, the delta is also a sensitivity measure: it predicts the dollar change in the value of

a call for a given change in the price of the underlying. For example, suppose the delta of

a call is +0.50. Then, holding the call is “like” holding +0.50 units of the stock. Thus, a

change of $1 in the price of the stock will lead to a change of +0.50 in the value of the call.

Of course, the sensitivity measure can be applied at the portfolio level also. If the delta of

a given portfolio is (say) +315, then the portfolio increases in value by $315 for each $1

increase in the share price.

Equivalent Ways of Defining the Delta

These three uses of the delta—in replication, in (delta-)hedging, and as a sensitivity

measure—are equivalent. They are merely different ways of looking at the same concept.

Knowing any of them is the same as knowing all of them. For example, if we know the

sensitivity of the option to changes in S (say, an option changes value by $0.56 for every

$1 change in S), then we know its delta (in this example, it must be +0.56). Thus, we could

have equivalently defined the delta as the number of units of the stock required to hedge

a short option position; or we could have defined it as the change in option value for a $1

increase in the stock price. In the sequel, when we refer to the delta, we will appeal to any

of these definitions.

The Delta as a Probability?

It is often suggested that the (absolute value of the) delta is “like” the probability that the

option will finish in-the-money. Figure 11.4 shows an intuitive basis for this: deep in-the-

money options that are very likely to finish in-the-money have deltas close to 1 (in absolute

value), and deep out-of-the-money options that are unlikely to finish in-the-money have

deltas close to zero. Strictly speaking, this interpretation is inaccurate: despite the apparent

similarity between the two concepts, there is a difference, sometimes stark, between the

likelihood of an option finishing in-the-money and its delta. Nonetheless, there is also

intuitive insight to be gained sometimes from viewing the delta in this way so we shall

occasionally appeal to this interpretation.

An Important Cautionary Note

The delta is clearly valuable from a number of viewpoints, but a cautionary note is relevant

here. The equivalence between holding a call and holding delta units of the underlying is

only “local,” that is, it is valid only for small changes in S. This is because the delta itself

changes as the stock price changes. A substantial change in the stock price will change

call values differently from delta units of the stock. For example, consider the following
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hypothetical information on a call on XYZ stock with a strike of $30:

Current stock price 30 31 32 33 34 35
Call  0.59 0.67 0.72 0.78 0.83 0.86

By how much does the call value change if the stock price jumps from $30 to $35? The

delta at S = 30 is 0.59, suggesting that at a stock price of $30, the call value changes by

$0.59 for every $1 change in S. If we naïvely applied this to a $5 change, we would guess

that the call price would change by 5 × 0.59 = 2.45.

To see why this is wrong, note from the given deltas that a move in the stock price from

30 to 31 changes the call value by around $0.59; a move from 31 to 32 changes the call

value by around $0.67; a move from 32 to 33 by about $0.72; and so on. Thus, a move in

the stock price from 30 to 35 changes the call value by around

0.59 + 0.67 + 0.72 + 0.78 + 0.83 = 3.59

which is substantially larger than the $2.45 change predicted by naı̈ve use of the delta at

S = 30.

The same example also shows that delta-hedging works only for small stock price

changes. Suppose we had written this call and delta-hedged by buying 0.59 units of the

stock. If the price jumps to $35, the value of our short option position decreases by around

$3.59 (as we have just seen) while the value of the 0.59 units of the stock we hold increases

only by $2.45, which does not fully offset the lost value on the call.

Thus,we should exercise somecare in interpreting the delta andworkingwith it.However,

we should not also exaggerate this shortcoming of the delta. In practice, most of the time

and in most markets, prices move only by small increments, and the delta works very well

in providing a hedge on option positions or in predicting sensitivity. It remains the first line

of defense in managing option risk. In Chapter 17, we examine how to augment the delta

with a measure called the option gamma and how to use the delta and gamma together for

gauging the impact on option prices of large price moves as well as for hedging option risk.

11.9 An Application: Portfolio Insurance

Portfolio insurance1 is a dynamic trading strategy that was devised in the late 1970s by two

Berkeley professors, Hayne Leland and Mark Rubinstein. At its core, it involves a simple

idea. If we want to obtain protection against a decline in the value of a portfolio we hold, we

can buy a put option on the portfolio. In the late 1970s, there were few exchange-traded put

options and no exchange-traded index options. Even had the latter existed, they might have

been unsuitable for those managers whose portfolios did not closely resemble the index. A

demand for protection nonetheless existed: with insurance, portfolio managers are protected

against stock market downturns but are able to participate in upswings. Without it, many

pension fund managers had withdrawn from the stock market after the decline of 1973–74

only to miss the rally of 1974–75.

Leland and Rubinstein proposed creating the required put synthetically by dynamic repli-

cation using a model of option pricing. This makes it possible to “customize” the synthetic

option in terms of the maturity, strike price, and composition of the underlying portfolio.

1 There are many sources of information on the history of portfolio insurance and its alleged role in

the stock market crash of 1987. The presentation here draws especially on Leland and Rubinstein

(1988) and McKenzie (2004).
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Now, as we have seen, replicating a put involves taking a short position in the underlying.

Here, since we are creating a put on a portfolio we already hold, we simply have to sell the

appropriate number of units of the underlying portfolio. As the delta of the put changes, we

either sell more of the portfolio or buy back some of it to reflect the changing delta.

Note the dynamics of this strategy. As prices decline, the delta of a put moves towards

−1, so more of the portfolio has to be sold to stay replicated. As prices increase, the delta

moves towards zero, so some of the portfolio has to be bought back. No, this is not a buy-

high/sell-low strategy! Rather, the objective is to move from stocks to cash as prices go

down and to move back into stocks as prices increase.

Implementing this strategy involves repeated trading in the underlying portfolio, and

this may involve substantial transactions costs. The introduction of index futures in the

early 1980s helped alleviate this problem. For those managers whose broadly diversified

portfolios resembled the market index, index futures could be used in place of the spot

asset. Since the futures and index levels move in lockstep under no-arbitrage, this gave rise

to virtually the same hedge as long as arbitrageurs ensured the futures-spot link was not

broken.

By 1987, portfolio insurance was a hugely popular strategy. It is estimated that the total

size of the portfolios managed using portfolio insurance strategies at this time was perhaps

of the order of around $90 billion, with around $50 billion under the management of LOR

Associates and its licensees alone. (LOR Associates was the firm co-founded by Leland and

Rubinstein with John O’Brien, an investment professional.) A large fraction of portfolio

insurance strategies were being implemented using index futures contracts.

In October of that year came the stock market crash. On Friday, October 16, the Dow

Jones index fell by 4.6%, a very large figure for a one-day move. But this was only a small

indication of things to come. On Monday, October 19, the Dow experienced its largest ever

single-day decline of 22.6%, a figure that was almost twice the size of the largest one-day

decline during the 1929 crash.Many stocks, even some of the largest, simply stopped trading

during the day as the NYSE’s specialists were overwhelmed by the volume of sell orders.

The lack of liquidity in the cash market snapped the futures-spot link. While the S&P 500

index fell around 20% that day, the S&P 500 index futures fell around 29%.

The Role of Portfolio Insurance?
A Presidential Task Force chaired by Nicholas Brady, later Secretary of the Treasury under

Presidents Reagan and George H. W. Bush, was appointed to investigate the causes for

the crash. The Task Force noted that a substantial fraction of the trading volume that day

(about 10% of the NYSE volume and about 40% of the S&P 500 index futures volume)

was attributable to portfolio insurance strategies. Since portfolio insurance involves selling

(either spot or futures) in the event of a price decrease, the Task Force concluded that such

strategies had exacerbated the price decline and, if not responsible for the crash, had at least

to share a substantial amount of blame for it.

At an intuitive level, this appears plausible. Following the price decline onFriday,October

16, portfolio insurance strategies had to sell to stay rebalanced (they sold mainly futures

but also some spot). This selling put downward pressure on futures prices (so the argument

goes). The falling futures prices created downward pressure on the spot as well. And, of

course, as prices fell, further selling pressure resulted from these strategies, leading to

further falls.

Yet reflection and subsequent study have cast much doubt on these conclusions. Port-

folio insurance strategies are reactive strategies rather than informed ones—they respond

to a price decline post facto but do not carry any information about anticipated future de-

clines. Thus, investors ought not to read bad news in selling dictated by portfolio insurance
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considerations. Moreover, if market fundamentals had not changed but prices had declined

excessively because of the selling pressures of portfolio insurance strategies, markets ought

to have recovered in short order. They did not. Roll (1988) also pointed out that the crash

of 1987 was an almost worldwide phenomenon with all developed markets’ equity indices

experiencing steep declines on the same day. Yet in most of these other markets, portfolio

insurance strategies were not present or were used in a very small way.

Regardless of their role in the 1987 crash, the popularity of portfolio insurance strategies

has subsequently faded. Poor performance during the crash was not likely a factor. It is

estimated, for example, that over 60% of LOR’s clients obtained the floor value the synthetic

put was supposed to create, and most of the rest were off by only 5–7% from their floors.

Rather, one reason may have been portfolio managers’ reluctance to use a tainted strategy.

But more generally, synthetic options strategies appear to have been replaced by exchange-

traded index options and customized over-the-counter options in hedges.

11.10 Exercises 1. Explain intuitively why the delta of a call will lie between zero and unity. When will it

be close to zero? When will it be close to unity?

2. Give an example of a derivative whose delta is positive for some ranges of the stock

price and negative for others. (Use your imagination here.)

3. A stock is currently trading at 80. You hold a portfolio consisting of the following:

(a) Long 100 units of stock.

(b) Short 100 calls, each with a strike of 90.

(c) Long 100 puts, each with a strike of 70.

Suppose the delta of the 90-strike call is 0.45 while the delta of the 70-strike put is

−0.60. What is the aggregate delta of your portfolio?

4. (Difficult) Compare the replication of an option in a binomial model versus replication

in a trinomial model by answering the following questions:

(a) How many securities do we need to carry out replication in each model?

(b) Is the risk-neutral probability defined in each model unique?

5. In a binomial-tree framework, if the risk-neutral probability on the up branch is given

as p = 0.8956, the risk-free rate per period is 2%, and the down move is the reciprocal

of the up move, then, given a current stock price of $100, what are the two prices a

period from now?

6. In the question above, suppose we have a one-period call option with a strike price of

$100; what is the delta of the call? If the up-shift parameter u is increased to 1.5, then

what is the delta of the call? Is it higher or lower? Why?

7. A stock is currenly trading at 80. There are one-month calls and puts on the stock with

strike prices of 70, 75, 80, 85, and 90. The price and delta of each of these options are

given below:

Strike 70 75 80 85 90

Call price 10.60 6.47 3.39 1.50 0.56
Put price 0.30 1.15 3.05 6.14 10.18

Call  0.92 0.77 0.54 0.31 0.14
Put  −0.08 −0.23 −0.46 −0.69 −0.86
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For each of the following portfolios, identify (i) the current value of the portfolio, and

(ii) the approximate value of the portfolio following a $1 decrease in the stock price.

(a) Long 100 units of stock, short 100 units of the 80-strike call.

(b) Long 1000 units of the 80-strike call and 1174 units of the 80-strike put.

(c) Long 100 units of stock, long 100 units of the 75-strike put, and short 100 units of

the 85-strike call.

(d) Long 100 units of the 70-strike call, long 100 units of the 90-strike call, and short

200 units of the 80-strike call.

(e) Long 100 units of the 85-strike put and short 100 units of the 75-strike put.

8. ABC stock is currently trading at 100. In the next period, the price will either go up by

10% or down by 10%. The risk-free rate of interest over the period is 5%.

(a) Construct a replicating portfolio to value a call option written today with a strike

price of 100. What is the hedge ratio?

(b) Calculate the risk-neutral probabilities in the model. Value the same call option using

the risk-neutral probabilities. Check that you get the same answer as in part (a).

(c) Using the risk-neutral probabilities, find the value of a put option written today,

lasting one period and with an exercise price of 100.

(d) Verify that the same price for the put results from put-call parity.

9. ABC stock is currently at 100. In the next period, the price will either increase by 10%

or decrease by 10%. The risk-free rate of return per period is 2%. Consider a call option

on ABC stock with strike K = 100.

(a) Set up a replicating portfolio to value the call.

(b) Suppose the call is trading for $7. Explain how you would exploit the resulting

arbitrage opportunity.

10. ABC stock is currently at 100. In the next period, the price will either increase by 5% or

decrease by 5%. The risk-free rate of return per period is 3%. Consider a put option on

ABC stock with strike K = 100.

(a) Set up a replicating portfolio to value the put.

(b) Suppose the put is trading for $2. Explain how you would exploit the resulting

arbitrage opportunity.

11. Consider a one-period binomial model with the parameters u = 1.05, d = 0.95, and

r = 1.01. Let the initial stock price be S = 100.

(a) Identify the price and delta of a call with strike K = 100.

(b) Repeat this exercise for K = 96, K = 98, K = 102, and K = 104.

(c) Use put-call parity to identify the value of the corresponding put options and the put

deltas.

12. There are two stocks, A and B, both trading at price $20. Consider a one-period bi-

nomial model in which stock A’s price can go to either of {35, 5}. Stock B’s price can

take one of the following values after one period: {36, 18}. An investment in $1.00

of bonds at the start of the period delivers a risk-free value at the end of the period

of $1.10.

(a) Using replication, find the prices of call options on both stocks A and B if the calls

have a strike of $20.

(b) Which call is worth more, that on stock A or on stock B? Why?

13. In a one-period setting, suppose there are three states of the world at the end of the

period. Suppose there are three securities, stocks A and C, and a risk-free bond B. The
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initial prices of securities A, B, and C are, respectively, 20, 1, and 10. The prices after

one period are as given in the table below:

Security State 1 State 2 State 3

A 50 20 5
B 1.10 1.10 1.10
C 20 30 2

(a) Using replication, find the price of a call option on stock A at a strike price of

K = 15.

(b) Using replication, find the price of a call option on stock B at a strike price of

K = 15.

(c) What are state prices? Compute these for the three states in the model. (State prices

are defined in Appendix 11B.)

(d) Show how you would price the two call options above using state prices.

14. The price of XYZ stock is currently at $100. After one period, the price will move to

one of the following two values: {130, 80}. A $1.00 investment in the risk-free asset will

return $1.05 at the end of the period.

(a) Find the risk-neutral probabilities governing the movement of the stock price.

(b) Find the state prices for each of the states in the following period.

(c) Calculate the price of a $102-strike put directly using the state prices.

15. The price of ABC stock is currently at S = $100. After one period, the price will move to

one of the following two values: {uS, dS}, where {u = 1.2, d = 0.9}. A $1.00 investment

in the risk-free asset will return $1.10 at the end of the period.

(a) Find the risk-neutral probabilities governing the movement of the stock price.

(b) For a strike-100 call, find the delta of the call.

(c) For a strike-100 put, find the delta of the put.

(d) Compute the difference between the call delta and the put delta and explain the

answer you get.

16. In the previous question, if the stock price rises to $110, then

(a) Recompute  c,  p.

(b) Explain why the deltas moved in their respective directions.

(c) Confirm that the difference in the deltas is still equal to +1.

17. The current price of a stock is $50. The one-period rate of interest is 10%. The up-move

parameter for the stock movement over one period is u = 1.5, and the down-move

parameter is d = 0.5.

(a) If the delta of the call at strike K is 0.5, what is the strike of this option?

(b) What is the delta of the put at the same strike?

(c) What is the price of this put?

18. (Difficult) The current price of a stock is $100. After one period, this stock may move to

three possible values: {150, 110, 60}. The value of $1.00 invested in the risk-free asset

compounds to a value of $1.05 in one period. Find the upper and lower bounds of the

call price if its strike is $100.

19. Portfolio insurance: The current price of the stock we are holding is $100. We want to

continue to hold the stock position but modify it so that the portfolio value never drops



Chapter 11 Option Pricing: An Introduction 251

below $90. If the stock may move up to $130 or down to $80 after one period, how do

we modify our holding of $100 so as to make sure that it is at least of $90 value at the

end of the period? The rate of simple interest for the period is 10%.

20. What is a martingale measure? What is the role of the martingale measure in finance?

21. Does the delta of the option in the binomial tree depend on the risk-neutral probabilities?

22. In the binomial model, the up move of the stock is set by parameter u, i.e., the stock goes

from S at the start of the period to uS at the end of the period if it moves up. Likewise, the

down-move parameter for the stock is d. The value of 1 plus the interest rate is specified

as R. What is the no-arbitrage relationship between u, d, R? Explain what happens if

this relationship is violated.

23. You are given the following one-period-ahead binomial outcomes for a stock, trading at

a current price of S (h is the length of one period measured in years): 
S exp(σ

√
h) with prob q

S exp(−σ√h) with prob 1 − q

The continuously compounded interest rate is r . Answer the following questions:

(a) What is a martingale?

(b) If the normalized price of the stock is a martingale, then what is the probability q?

(c) What is the variance of the continuously compounded return on the stock in this

scenario?
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Appendix 11A

Riskless Hedge Portfolios and Option Pricing
The basic ideas underlying pricing by constructing a riskless hedge portfolio are easily

described. Since the option derives its value from the underlying, it “should” be possible

to combine the option and the underlying in such a way as to cancel out uncertainty and

create a riskless portfolio. Such a riskless portfolio must earn only the risk-free rate of

return. Therefore, the present value of the riskless portfolio is simply its value at maturity

discounted at the risk-free rate. Since the portfolio consists of only the option and the

underlying, the price of the option is determined from the present value of the portfolio and

the price of the underlying.

Of course, the first step in this procedure is just delta hedging—the creation of a riskless

position by hedging the risk in the option with the underlying! Thus, just like replication, the

identification of the option delta is also central to this method, and indeed, as we mentioned

above, the two methods are virtually the same.

In particular, suppose we know the composition of the replicating portfolio for a given

call (say, it involves a long position in units of the underlying and borrowing of Bc at the

risk-free rate). We describe how to construct a riskless hedge portfolio from this, i.e., how

to combine appropriate quantities of the stock and the option into a portfolio that makes the

portfolio riskless.

First, note that the replication can be written as:

Long Call =  c · Stock − Bc

Rearranging this expression:

 c · Stock − Long Call = Bc

or, since the negative of a long position is a short position:

 c · Stock + Short Call = Bc

In words, this says that if we combine a short position in the call with c units of the stock,

we effectively create a riskless investment of Bc.

Thus, the riskless hedge portfolio can be computed from the replicating portfolio. Note,

in particular, that the deltas are the same, and the value of the riskless hedge portfolio is

identical to the size of the borrowing Bc in the replicating portfolio.

Similarly, fromknowledgeof the riskless hedgeportfolio,we can construct the replicating

portfolio.

A Numerical Example

An example will illustrate the close relationship between replication and riskless hedge

portfolios. Consider the same parameters as earlier: S = 100, u = 1.10, d = 0.90,

q = 0.75, and R = 1.02. Suppose we wish to price a call with a strike of K = 100.

Wewill construct a riskless hedge portfolio (without referring to the replicating portfolio)

to price this call. It will be seen that the portfolio values coincide with the numbers obtained

earlier from the replication arguments.

The first step in the argument is to identify the composition of the riskless hedge portfolio.

So, let the hedge portfolio consist of a short position in one call option and  c units of the
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underlying. Of course,  c can be positive or negative:  c > 0 indicates a long position in

the underlying while  c < 0 indicates a short position in the underlying.

The key question: for what value of c is this portfolio riskless? There are two possible

values for this portfolio after one period:

1. If uS occurs, the portfolio is worth

uS · c − Cu = 110 · c − 10

2. If dS occurs, the portfolio is worth

dS · c − Cd = 90 · c

For the portfolio to be riskless, these values must be equal:

110 · c − 10 = 90 c

This gives us  c = 0.50, completing the first step of the pricing argument.

The second step is to identify the present value of the riskless portfolio we have con-

structed. If  c = 0.50, the portfolio is always worth 45 after one period regardless of

which state occurs. Therefore, the present value of the portfolio is 45/1.02 = 44.12. This

completes the second step.

Finally, in the third step, we identify the fair price of the option from knowledge of the

portfolio’s present value and the current price of the underlying. To this end, note that the

portfolio consists of 0.50 units of the underlying and a short call option. Therefore, if C

denotes the price of the option, the cost of this portfolio is

 · S − C = 100 · (0.50) − C = 50 − C

Since the cost of the portfolio must equal its present value, we must have 50−C = 44.12,

or

C = 50 − 44.12 = 5.88

This completes step 3.

Any other price for the call leads to arbitrage:

1. If C < 5.88, then the portfolio costs more than its present value, so an arbitrage can be

made by selling the riskless hedge portfolio and borrowing.

2. If C > 5.88, then the portfolio costs less than its present value, so an arbitrage can be

made by buying the riskless hedge portfolio and investing.

Note that the price of 5.88 obtained using a riskless hedge portfolio is the same value as

obtained using replication. Indeed, so are the other quantities. The delta value c is equal to

0.50 under both methods. The present value of the riskless hedge portfolio is 44.12, which

is exactly the value of the borrowing under replication.

Exercise Price a put with K = 100 using a riskless hedge portfolio and verify that the answer is
P = 3.92.
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Appendix 11B

Risk-Neutral Probabilities
and Arrow Security Prices
In Section 11.6 where risk-neutral probabilities were defined, we offered an intuitive ex-

planation of why risk-neutral pricing identifies the correct arbitrage-free price. Here we

describe a more formal mathematical link between risk-neutral probabilities and the prices

of a class of claims called Arrow securities. Arrow securities are named after Economics

Nobel LaureateKennethArrowwhofirst described the use of such securities in a 1953 paper.

Arrow securities are the fundamental building blocks of all contingent claims (claims,

like derivatives, whose payoffs may be contingent on future states of the world). An Arrow

security is defined as a security that pays $1 in a given state and nothing otherwise. For

example, in a one-period binomial model, there are two future states of the world, so there

are two Arrow securities: one associated with state u and one associated with state d. The

price of an Arrow security is called a state price. We denote the state prices in the one-period

binomial model by πu and πd , respectively.

Given a model, any contingent claim in that model can obviously be written as a portfolio

of Arrow securities. For instance, consider a call option in a one-period binomial model

that pays $10 in the state u and nothing in the state d. The call is equivalent to a portfolio

consisting of (i) 10 state-u Arrow securities and (ii) zero state-d Arrow securities. Thus, the

price of any contingent claim is simply the value of the corresponding portfolio of Arrow

securities, so any claim can be priced from knowledge of the state prices.

Now here is the fundamental mathematical connection: it turns out that in any model,

the model’s state prices are equal to the discounted risk-neutral probabilities! This result is

not hard to verify in the binomial model. Consider, for instance, the state-u Arrow security.

A portfolio consisting of a units of the stock and an investment of b at the risk-free rate will

replicate this Arrow security if a and b are chosen to satisfy

a uS + Rb = 1

a dS + Rb = 0

Some simple calculation shows that the solutions to this pair of equations are:

a = 1

uS − dS
b = 1

R

 −d
u − d

 

Thus, the cost of the replicating portfolio is

aS + b = 1

R

 
R − d

u − d

 
(11.21)

But (R− d)/(u− d) is the risk-neutral probability q of the state u in this model, so (11.21)

states precisely that the state price πu is

πu = q

R

An analogous set of calculations shows that the state price d associated with the state d is

πd = 1 − q

R

This relationship between risk-neutral probabilities and state prices explains why risk-

neutral pricing works. When we take a derivative’s expected payoff under the risk-neutral
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measure and discount the result at the risk-free rate, the payoff associated with each state

gets multiplied by the risk-neutral probability of that state and discounted at the rate R,

i.e., the payoff associated with each state is multiplied by the state price! Thus, risk-neutral

pricing is just pricing using state prices. Harrison and Kreps (1979) present a complete

exposition of the relationship between risk-neutral probabilities and state prices.

Appendix 11C

The Risk-Neutral Probability, No-Arbitrage,
and Market Completeness
In some models, the risk-neutral probability is uniquely defined; the binomial model is

an example of this. In general, however, it is possible that a model may admit more than

one risk-neutral probability, or it may admit none at all. In either case, there are important

implications. A risk-neutral probability can fail to exist in a model if and only if the model is

internally inconsistent, i.e., if it admits arbitrage opportunities in its very specification. And

a model admits more than one risk-neutral probability if and only if there are contingent

claims in the model that cannot be replicated. We elaborate on these two points in this

section. The material of this section, as of Appendix 11D, is taken from Sundaram (1997).

Arbitrage and the Nonexistence
of Risk-Neutral Probabilities

Recall the connection between risk-neutral probabilities and state prices mentioned in the

previous section. A risk-neutral probability then fails to exist if and only if it is not possible

to define a set of state prices. Intuitively, the only way no vector of state prices results in an

equilibrium is if the model itself is inconsistently specified, i.e., it admits an arbitrage.

In the binomial model, the connection between the existence of a risk-neutral probability

and the internal consistency of the model is easy to see. The risk-neutral probabilities are

defined here as

q = R − d

u − d
1 − q = u − R

u − d

These are “probabilities” (i.e., lie between 0 and 1) if and only if d < R < u. And, of course,

d < R < u is exactly the condition for the binomial model to be internally consistent (i.e.,

for the bond not to dominate the stock or vice versa).

Here is a simple example of a model that does not admit any risk-neutral probability,

and therefore, permits arbitrage. Consider a binomial model with two risky assets and the

risk-free rate. Let S1 and S2 denote the initial prices of the risky assets, and let their possible

prices after one period be denoted by ui Si and di Si , i = 1, 2. Finally, suppose that the asset

prices are perfectly correlated so that there are only two possible sets of prices after one

period: (R, u1S1, u2S2) and (R, d1S1, d2S2).

For q to be a risk-neutral probability in this setting, the expected return of both risky

assets under q must equal R, i.e., we must have

qu1 + (1 − q)d1 = R
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as well as

qu2 + (1 − q)d2 = R

Therefore, q must satisfy

q = R − d1

u1 − d1

= R − d2

u2 − d2

(11.22)

However, it is obviously possible to choose R, ui , and di so that the fractions in (11.22) are

unequal; no risk-neutral probability can then exist.

We will now show that the model admits an arbitrage opportunity if and only if the two

fractions in (11.22) are unequal. Consider a portfolio that invests $a in the bond, and $b

and $c, respectively, in the two risky assets. The current cost of this portfolio is

a + b + c (11.23)

while its possible values at maturity are 
ar + bu1 + cu2 if (u1, u2) occurs

ar + bd1 + cd2 if (d1, d2) occurs
(11.24)

For this portfolio to generate a free lunch, there must exist a value of (a, b, c) such that

(11.23) is strictly negative and both values in (11.24) are zero. Such a solution exists when,

and only when, the two fractions in (11.22) are unequal. This can be seen by setting the

two quantities in (11.24) to zero, using them to solve for a and b in terms of c, and then

substituting these solutions into (11.23). Thus, the conditions in this model that lead to the

nonexistence of a risk-neutral probability are also identically the conditions that lead to the

existence of an arbitrage opportunity.

Completeness and the Uniqueness
of Risk-Neutral Probabilities

A model is said to be complete if all contingent claims in the model may be replicated using

the primitive assets. A simple test for market completeness is uniqueness of the risk-neutral

probability. Intuitively, multiple risk-neutral probabilities can exist if and only if there are

multiple state-price vectors. This means that at least one Arrow security has many possible

prices consistent with no-arbitrage, and this, in turn, is possible only if the Arrow security

in question is not replicable. Thus, the market must be incomplete.

This equivalence is easy to see in the binomial model. As we have seen, any claim paying

Xu in state u and Xd in state d may be replicated, so the model is complete. And, of course,

the risk-neutral probability in this model is unique.

Here is a simple example of a model that admits more than one risk-neutral probability

and is therefore not complete. Consider a trinomialmodel in which there are three possible

values for the stock price S̃ after one period, viz.,

S̃ =

⎧⎨
⎩
uS, with probability pu
mS, with probability pm
dS, with probability pd

(11.25)

where u > m > d and pi > 0 for i = u, m, d . Suppose also that the bond continues to

return r with certainty. For the vector (qu , qm , qd ) to be a risk-neutral probability in this

model, it must satisfy qi > 0 for i = u, m, d, as well as

quu + qdd + qmm = r and qu + qm + qd = 1 (11.26)
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Expressions (11.26) give us two equations in three unknowns. There are infinitely many

solutions that satisfy both equations as well as qi > 0 for i = u, m, d. Thus, there are

infinitely many risk-neutral probabilities in this model.

To see that the trinomial model is also not complete, observe that a contingent claim

with payoffs (Xu , Xm , Xd ) can be replicated by a portfolio consisting of the stock and

investment at the risk-free rate if and only if there is a solution (a∗, b∗) to the following

system of equations:

a∗uS + b∗R = Xu (11.27)

a∗mS + b∗R = Xm (11.28)

a∗dS + b∗R = Xd (11.29)

From (11.27) and (11.28), any such solution must satisfy

a∗ = Xu − Xm

uS − mS
(11.30)

while from (11.28) and (11.29), we must also have

a∗ = Xm − Xd

mS − dS
(11.31)

It is an elementary matter to choose values of (Xu , Xm , Xd ) such that (11.30) and (11.31)

are inconsistent (for example, let Xu = Xm = 1 and Xd = 0).

Appendix 11D

Equivalent Martingale Measures
Risk-neutral probabilities are frequently referred to as “martingale measures,” or more

elaborately, as “equivalent martingale measures.” This section provides a brief explanation

of this terminology.

The definition of a risk-neutral probability actually involves two conditions:

1. The prices that occur with positive probability under the risk-neutral probability should

be identical to the prices that occur with positive probability in the original model.

2. Under the risk-neutral probability, the expected return on all assets in the model should

be the same.

The first of these conditions is almost obvious, which is why we have focused on only the

second one so far. As we explain below, the first condition is an “equivalence” condition

and the second one a “martingale” condition.

In mathematical terminology, two probability measures are said to be equivalent if the

set of events having positive probability under one is identical to the set having positive

probability under the other. Thus, the first condition is simply the requirement that the

risk-neutral probability be equivalent to the original probability. Although the requirement

of equivalence is often not stated explicitly, it is an important part of the definition of a

risk-neutral probability.

Second, a stochastic process is said to be amartingale if the expected change in the value

of the process is always zero. Suppose, for example, you start with a wealth level of $100

and toss a fair coin repeatedly; each time the coin lands heads, you receive $1 and each time

it lands tails, you lose $1. Then, in each round, you gain $1 with probability 1/2, and lose



258 Part Two Options

$1 with probability 1/2, so the expected change in your wealth level is zero. Your wealth

process in this case follows a martingale.

To see where martingales enter the discussion here, consider a “money-market account”

that involves an initial investment of $1 that is rolled over at the risk-free rate. (In the

binomial mode, this will grow to R after one period, R2 after two periods, and so on. In

general, if interest rates are stochastic, the returns on the money-market account can depend

on the state of the world at that point.) Consider the “discounted” asset prices that arise

when asset prices at each point are divided by the price of the money-market account at that

point.2

Since the money-market account grows at the risk-free rate, this operation simply results

in the growth in all asset prices being discounted at the risk-free rate. By Condition 2 in the

definition of a risk-neutral probability, the expected rate of growth in asset prices under the

risk-neutral probability is equal to the risk-free rate. Therefore, the expected rate of growth

in discounted prices under the risk-neutral probability is zero. This means Condition 2

is just the requirement that discounted asset prices be martingales under the risk-neutral

probability.

2 In other words, the money-market account serves as a “numeraire” asset. The choice of the

money-market account as numeraire asset is customary, but not really necessary. Any asset in the

model could serve as numeraire.



Chapter 12
Binomial Option
Pricing

12.1 Introduction

The last chapter described the mechanics of pricing options in the context of one-period

binomialmodels. Building on that foundation, this chapter examines the pricing of options in

multiperiod binomialmodels.We beginwith the simplest case, namely, two-period binomial

models. Then we show how the arguments are easily extended to n-period binomial models.

Completing this discussion, Chapter 13 describes the implementation of binomial models.

We present the analysis in this chapter in three steps. First, we look at European options

on non-dividend-paying stock (i.e., there are no dividends on the stock during the life of

the option). Then, we look at American options on non-dividend-paying stock. Finally, we

describe the modeling of dividends in the binomial tree and the pricing of both European

and American options in this case.

Because of their inherent simplicity, binomial models offer a transparent platform to see

formally several characteristics of options prices and exercise policies. Dynamic replica-

tion is easily illustrated in this setting. The present chapter illustrates this and many other

characteristics, including that

• It can be optimal to exercise American puts early even on non-dividend-paying stock.

• It can be optimal to exercise American calls early in the presence of dividends, though

early exercise is never optimal without dividends.

• European put options can fall in value as maturity increases owing to the time value/

insurance value trade-off. This can never happen for American options or for European

calls on non-dividend-paying stock.

• In the presence of dividends, an increase in maturity can reduce European call values.

• Dividends hurt call values but benefit put values. Both American and European call

values are hurt, but the former is hurt less because of the ability to exercise the option

before the stock goes ex-dividend.

Several other characteristics are highlighted through the exercises at the end of this chapter.

Notation
We retain the notation introduced in the last chapter:

• S denotes the initial stock price.

• u denotes an up move in the stock price, d a down move.

259
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• p is the (“true”) probability of an up move, (1− p) that of a down move.

• n is the number of steps in the binomial tree.

• R is the (gross) risk-free rate of interest per period.

• K denotes the strike price of the option under consideration.

Review of the One-Period Model
The last chapter described two equivalentmethods for pricing options: pricing by replication

and pricing by using risk-neutral probabilities. It is useful to briefly review the main ideas

in each approach in the context of a one-period binomial model.

(A) Replication and the Option Delta

Replication looks to identify option prices by creating a portfolio of the underlying and

borrowing/investment at the risk-free rate that mimics the option outcome. The option

delta—the number of units of the underlying that must be held in the replicating portfolio—

is a key component of option pricing and risk management; the delta’s properties and uses

were highlighted in the last chapter.

Consider a derivative in the one-period model that has a value of Xu after an up move

and Xd after a down move. To replicate this derivative, we set up a portfolio consisting of

 x units of the underlying and an investment of Bx at the risk-free rate, where

 x =
Xu − Xd

uS − dS
(12.1)

Bx =
1

R

 
uXd − dXu

u − d

 
(12.2)

(A negative x indicates a short position in the underlying and a negative Bx is a borrowing.)

The initial value of the derivative is

X =  x S + Bx

Substituting for  x and Bx from (12.1)–(12.2) and simplifying, we obtain the derivative’s

price as

X =
1

R

  
R − d

u − d

 
Xu +

 
u − R

u − d

 
Xd

 
(12.3)

(B) Risk-Neutral Pricing

In risk-neutral pricing, we identify the fair price of an option by taking expectations of its

payoffs under a particular probability called the risk-neutral probability and discounting

these expectations at the risk-free rate. This “risk-neutral price” of the option is guaranteed

to coincide with its replication-based price for any option that can be priced by replication.

The risk-neutral probability is the probability under which all assets in themodel have the

same expected rate of return. It is a hypothetical construct and should not be confused with

the “true” probabilities in the model; nor does it involve any assumptions about investors’

attitudes to risk.

In the one-period binomial model, the risk-neutral probability q of an up move satisfies

the condition qu + (1− q)d = R. Therefore, q is given by

q =
R − d

u − d
(12.4)
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Now, suppose we have a derivative in this model that pays Xu in the state u and Xd in the

state d. Then, the initial value of the derivative is given by

X =
1

R
[qXu + (1− q) Xd ] (12.5)

This is, of course, the same as (12.3), the price obtained by replication.

12.2 The Two-Period Binomial Tree

To specify a two-period binomial tree, we must specify the up and down moves in each

period. In general, the up and down moves may differ across the two periods and may even

vary depending on whether the price went up in the first period or down. Consider, for the

time being, the simple scenario in which the price in each period moves up or down by

the same factors u and d with the same probabilities. Since the ratio u/d is a measure of

volatility, this says that volatility remains constant over the tree.

After one period, there are two possible prices for the stock, namely uS and dS. In the

second period, each of these two prices can itself go up by u or down by d. Therefore, there

are four possible paths that prices can take over two periods: (i) u followed by u, (ii) u

followed by d, (iii) d followed by u, and (iv) d followed by d.

The path uu results in the stock price u (uS) = u2S, and the path dd results in the

stock price d (dS) = d2S. However, the paths ud and du result in the same terminal price,

namely udS. Thus, even though there are four distinct price paths, there are only three

distinct terminal prices at the end of two periods, namely, u2S, udS, and d2S. Figure 12.1

summarizes this information.

Recombination
The feature that the paths ud and du lead to the same price is known as recombination

of the binomial tree. Recombination reduces the number of distinct terminal prices in the

binomial tree while retaining the complexity of a large number of possible paths that lead

to these prices.

In an n-period binomial tree, there will be 2n possible price paths since the number of

possible paths doubles at each stage. Without recombination, each path could result in a

FIGURE 12.1
The Two-Period

Binomial Tree

uS

dS

u2S

udS

d2S

S
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TABLE 12.1
Terminal Prices in an

n-Period Binomial

Model

Terminal Price Results From

unS n up moves
un−1dS (n− 1) up moves and 1 down move
un−2d2S (n− 2) up moves and 2 down moves

.

.

.
.
.
.

udn−1S 1 up move and (n− 1) down moves
dnS n down moves

different terminal price. With recombination, however, there will be only (n + 1) distinct

terminal prices; these are listed in Table 12.1. Even for small values of n (say, n = 30), the

difference between these numbers is significant.

Binomial models in practice routinely use a hundred or more time steps. This means the

models have considerable richness in describing the pattern of evolution of asset prices (for

example, with 100 time steps, there are roughly 1030 different possible time paths). However,

there are only n+ 1 distinct nodes after n periods, and this eases the computational process

considerably. Recombination is particularly significant for European options; since they can

be exercised only at maturity, all that really matters is the set of possible terminal prices and

their distribution.

A Comment: Allowing u and d to Vary
In Chapter 13, we show that the lognormal price distribution of the Black-Scholes model

may be approximated arbitrarily closely by a binomial tree with constant values for u and d.

Thus, the binomial tree with constant parameters may be regarded as just a discrete version

of the Black-Scholes model. Given the widespread use of the lognormal distribution in

practice, this is a strong point in favor of using constant parameters. From an expositional

standpoint too, the constant-parameter model suffices: however one draws the tree, the

procedure for pricing options within the tree remains the same.

On the other hand, the lognormal distribution is inadequate in some ways in describing

price evolution in many markets, a feature reflected through the model’s inability to simul-

taneously match market prices of options of differing maturities and strikes. This point is

discussed more fully in the chapter on Black-Scholes. Motivated by this, Rubinstein (1994),

Derman and Kani (1994), and Dupire (1994) have shown that it is possible to generalize

the binomial tree to address this problem. The tree under their construction has up and

down values that differ from node to node. These values are chosen endogenously to match

observed option prices. We describe their approach in Chapter 16.

12.3 Pricing Two-Period European Options

We illustrate the pricing process with an example. Consider a two-period binomial tree with

the following parameters:

• S = 100.

• u = 1.10 and d = 0.90.

• R = 1.02

These parameters are held fixed in the examples throughout this chapter. We first look at

pricing a call with strike K = 100 and then a put with the same strike price.

Parenthetically, note that these are the same parameters and strike price used in the

previous chapter to price calls and puts in a one-period binomial tree. Thus, the options we
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FIGURE 12.2
Pricing Example: The

Two-Period Binomial

Tree

110

90

121

99

81

100

FIGURE 12.3
The Call Payoffs

Cu

Cd

21

0

0

C

are pricing here differ from those priced earlier purely on account of maturity: they have

twice the maturity of the options in the last chapter. For later reference, recall that with these

parameters,

• The price of a one-period call is 5.88.

• The price of a one-period put is 3.92.

Figure 12.2 describes the two-period stock price tree for the given parameters. Note that

the risk-neutral probability q of an up move at any node is given by

q =
R − d

u − d
= 0.60

Pricing the Call: General Comments
Let C denote the initial value of the call. After one period, the stock price moves to either

uS = 110 or dS = 90. In either case, the call price will change from its initial value. Denote

the value of the call at the node uS by Cu and that at the node dS by Cd . The payoffs from

the call and these unknown values C , Cu , and Cd are described in Figure 12.3.

To recover the values C , Cu , and Cd , we use a mathematical technique called backwards

induction. Backwards induction is a procedure for solving general multiperiod problems in
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which we begin in the last period of the problem and work backward to the beginning. In

the option-pricing context, we use the last period payoffs to solve for the option values one

period before maturity. Then we use the option values one period before maturity to solve

for option values two periods before maturity. And so on until we reach the beginning of the

tree. The procedure effectively reduces the solving of a multiperiod problem to a family of

one-period problems. Here’s how backwards induction works in our two-period example.

The Payoffs at Maturity
The first step is to identify the call’s payoffs at maturity. This is straightforward. As shown

in Figure 12.2, there are three possible values for the stock price at maturity. From these,

we obtain the call’s possible payoffs at maturity:

Cuu = max{121− 100, 0} = 21

Cud = max{99− 100, 0} = 0

Cdd = max{81− 100, 0} = 0

This information is described in Figure 12.3.

Moving Back One Period
Using the payoffs at maturity, we now identify the option values one period before maturity.

There are two values to be identified: Cu and Cd .

Consider Cu first, i.e., the call value at the node uS = 110. One period from this point,

the option is worth  
21, if the price goes up to u2S = 121

0, if the price goes down to udS = 99

The risk-free interest rate over this period is, of course, R = 1.02.Wewant to know the value

of the option Cu at the beginning of this period. Figure 12.4 summarizes this information.

But this is just a one-period binomial problem! We can solve for the initial price Cu of

the call in this problem using risk-neutral pricing. Since the risk-neutral probability of an

up move is q = 0.60, we have

Cu =
1

1.02
[(0.60) · (21) + (0.40) · 0] = 12.35 (12.6)

In a similar manner, we identify the value Cd of the call at the node dS. In this example,

this is trivial: regardless of whether the stock price moves up to udS = 99 or down to

d2S = 81, the call expires worthless. Thus, we must also have Cd = 0.

FIGURE 12.4
Backwards Induction

at the Node uS
121

99

110

Stock

1.02

1.02

1

Cash

21

0

Cu

Call
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One More Step Back
Having identified all the prices one period from maturity, we move back one more period

and idenitfy the call price C at the initial node S = 100. We have just shown that one period

from the initial node, the call will be worth 
12.35, if the price goes up to uS = 110

0, if the price goes down to dS = 90

Thus, finding the initial valueC of the call is the one-periodproblemdescribed inFigure 12.5.

Invoking the risk-neutral probability, we obtain

C =
1

1.02
[(0.60) · (12.35) + (0.40) · 0] = 7.27 (12.7)

The complete evolution of call prices in this tree is shown in Figure 12.6.

Pricing the Call by Dynamic Replication
Rather than use the risk-neutral probabilities, we could have used replicating portfolios in

the backwards induction argument. We illustrate this here.

Consider the node uS first. At this point, the option holder faces the one-period problem

described in Figure 12.4. From (12.1)–(12.2), the replicating portfolio at this node is

 u =
21− 0

121− 99
= 0.9545 Bu =

1

1.02

−(0.90)(21)

1.10− 0.90
= −92.65 (12.8)

FIGURE 12.5
Backwards Induction:

The Last Step
110

99

100

Stock

1.02

1.02

1

Cash

12.35

0

C

Call

FIGURE 12.6
Evolution of Call
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Since the stock costs 110 at this node, the cost of this replicating portfolio is

(0.9545)(110) − 92.65 = 12.35

So the call is worth 12.35 at this node. This is, of course, the same value obtained above

using risk-neutral pricing.

At the node dS, the option is worthless—it finishes out-of-the-money regardless of

whether the price goes up or down the next period. Thus, the replicating portfolio at this

node is the null portfolio:

 d = 0 Bd = 0 (12.9)

Finally, at the initial node S, the option holder faces the one-period problem described

in Figure 12.5. From (12.1)–(12.2), the replicating portfolio at this node is

 =
12.35− 0

110− 90
= 0.6175 Bu =

1

1.02

−(0.90)(12.35)

1.10− 0.90
= −54.48 (12.10)

Thus, the initial cost of the option is

(0.6175)(100) − 54.48 = 7.27

which is the same value obtained using risk-neutral pricing.

Inwords, the replicating strategyhas the following structure. Initially,we set up aportfolio

consisting of a long position in 0.6175 units of the stock and borrowing of 54.48 for one

period at the risk-free rate. At the end of one period, this portfolio is worth 
12.35, if the price moves to uS = 110

0, if the price moves to dS = 90

If the node uS is reached, we must alter the composition of the replicating portfolio to the

numbers given by (12.8). If the node dS is reached, we alter the composition to (12.9). This

portfolio rebalancing is the dynamic aspect of option replication.

Note that the replication strategy is self-financing. That is, the rebalancing at a node

never requires the injection or withdrawal of funds: the value of the rebalanced portfolio

at a node is always equal to the value of the portfolio entering that node. For example, the

portfolio (12.10) set up at the initial node has a value at the node uS of

(0.6175× 110) − (54.48× 1.02) = 12.35

which is exactly the cost of the rebalanced portfolio (12.8) set up at this node. Replication

strategies are always required to be self-financing in this way. If they are not, the initial cost

of the strategy does not reflect the true cost of synthesizing the derivative since the present

value of future injections and withdrawals of funds also needs to be taken into account.

Pricing the Put Option
The put option may similarly be priced using backwards induction. As the first step, we

identify the value of the put at the terminal nodes:

Puu = max{100− 121, 0} = 0

Pud = max{100− 99, 0} = 1

Pdd = max{100− 81, 0} = 19

(12.11)

Next, we identify the values of the put one period before maturity. Consider the node

uS = 110 first. At this node, the put is worth 
0, if the price moves up to u2S = 121

1, if the price moves down to udS = 99
(12.12)
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FIGURE 12.7
Evolution of Put Prices
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Thus, using risk-neutral pricing, the arbitrage-free price Pu of the put at the node uS is

Pu =
1

1.02
[(0.60)(0) + (0.40)(1)] = 0.39 (12.13)

Next, consider the node dS = 90. Here, the put is worth 
1, if the price moves up to udS = 99

19, if the price moves down to d2S = 81
(12.14)

Thus, the arbitrage-free price Pd of the put at this node is

Pd =
1

1.02
[(0.60)(1) + (0.40)(19)] = 8.04 (12.15)

Finally, consider the initial node S = 100. As we have just seen, if the price goes up to

uS, the put is worth Pu = 0.39; while if the price goes down to dS = 90, the put is worth

Pd = 8.04. Invoking the risk-neutral probability again, the initial price P of the put is

P =
1

r
[(0.60)(0.39) + (0.40)(8.04)] = 3.38 (12.16)

Figure 12.7 summarizes the evolution of put prices in this example.

The Put Deltas
How do the put deltas change over the binomial tree? Consider the node uS = 110 first.

The put values one period hence are given by (12.12). Therefore, using (12.1), the put delta

at this point is

 p
u =

0− 1

121− 99
= −0.0455 (12.17)

Now consider the node dS = 90. Here, the put values one period hence are given by (12.14).

Thus, from (12.1), the put delta at this point is

 
p
d =

1− 18

99− 81
= −1 (12.18)

Finally, consider the initial node S. At this point, the stock price can go up to 110 or down

to 90. The put value is 0.39 if the stock price goes up, and 8.04 if the stock price goes down.
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Therefore, using (12.1), the put delta at this point is

 p =
0.39− 8.04

110− 90
= −0.3825 (12.19)

To summarize: the initial put delta is −0.3825. If the stock price declines and the put

moves into-the-money, the put delta moves to−1. (In this example, at dS, the put is so deep

in-the-money it has no chance of finishing out-of-the-money.) If the stock price increases

and the put moves out-of-the-money, the put delta moves to −0.0455.

A Comment: The Impact of Maturity
With the same parameters as used here but with a maturity of one period, we saw in the

last chapter that the call and put were worth 5.88 and 3.92, respectively. The increase in

maturity to two periods raises the call price to 7.27 but lowers the put value to 3.38. The

impact on the call is easily understood. Increasing the time to maturity increases both the

time value and the insurance value of the call, resulting in a larger call value.

Why does the value of the put decline? As we have seen, increasing maturity in general

has two effects on puts—it increases the put’s insurance value but reduces its time value.

Whether the put value increases or decreases depends onwhich of these factors dominates. In

the current example, once the node dS = 90 is reached, the two-period put is guaranteed to

finish in-the-money. Thus, there is no insurance value left in the put at this node—insurance

value matters only if optionality matters. However, there is negative time value since the

put cannot be exercised for one more period. (Of course, there is some insurance value left

in period 1 at the node uS, but the contribution of this node to the put value is relatively

small.) As a consequence, the time-value effect dominates and the put value declines.

An End-of-Tree Approach to European Option Pricing
The backwards induction procedure is an intuitive one, and it is one we shall need to price

American-style options in binomial trees. For European options, however, there is a more

direct procedure that exploits the fact that these options cannot be exercised until maturity.

Specifically, we (a) find the risk-neutral probability of each terminal node, (b) multiply the

option payoff at each terminal node by its risk-neutral probability, and (c) discount the result

back to the beginning of the tree.

We illustrate this by applying it to our two-period example. In the example, the risk-

neutral probability of an up move at any node is q = 0.60. There are three terminal stock

prices: u2S = 121, udS = 99, and d2S = 81. The risk-neutral probability of u2S is the

risk-neutral probability of two up moves, which is

0.60× 0.60 = 0.36

The node udS can be reached in two ways: by an up move followed by a down move or by

a down move followed by an up move. Each of these has a risk-neutral probability of

0.60× 0.40 = 0.24

Thus, the risk-neutral probability of udS is 2 × 0.24 = 0.48. Finally, the node d2S arises

after two down moves, so its risk-neutral probability is

0.40× 0.40 = 0.16

Table 12.2 summarizes the information on the set of possible terminal stock prices, their

risk-neutral probabilities, and the payoffs of the call and put options at each of these nodes.

The expected payoff of the call under the risk-neutral probabilities is

(21× 0.36) + (0× 0.48) + (0× 0.16) = 7.56
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TABLE 12.2
Terminal Node

Information

Terminal Risk-Neutral Terminal Payoffs

Stock Prices Probability Call Put

121 0.36 21 0
99 0.48 0 1
81 0.16 0 19

Since the payoffs occur at the end of two periods and the risk-free interest rate per period is

1.02, the payoffs should be discounted back using the two-period risk-free rate of (1.02)2.

This results in the initial call price

C =
7.56

(1.02)2
= 7.27

The put may be priced similarly; its initial price P is

P =
(0× 0.36) + (1× 0.48) + (19× 0.16)

(1.02)2
= 3.38

Of course, these are the same prices recovered for the call and put earlier using backwards

induction. This method of identifying the option prices is much quicker, but it cannot,

unfortunately, be used for American-style options since it assumes there is no early exercise.

12.4 European Option Pricing in General n-Period Trees

European option prices in a general n-period tree may be found by either method described

above: we can either use backwards induction or work directly with end-of-tree prices.

The backwards induction procedure in a general n-period tree follows the same steps.

First, we identify all the option payoffs at maturity. Then we solve the one-period problem

repeatedly to identify all the option values one period before maturity. Using these values,

we “fold” the tree back one more step and identify all the option values two periods before

maturity. We repeat this procedure until we reach the initial node. Of course, the process is

easy to implement using a program or even a spreadsheet since it involves calling the same

function (the one-period pricing function) repeatedly; for details, see Chapter 13.

Alternatively, we can use the end-of-tree prices approach. Using this procedure, it is

possible to derive a general representation of European option prices in n-period binomial

trees. The representation is of particular value because it bears considerable similarity to

the Black-Scholes option pricing formula and can be used as a motivation for that formula.

Of course, this resemblance is not accidental since the binomial model with a large number

of periods starts resembling the Black-Scholes model. The representation is conceptually

simple but involves some additional notation; we describe the details in Appendix 12A.

12.5 Pricing American Options: Preliminary Comments

The pricing ofAmerican options in binomial trees involves one extra degree of complication

over the pricingofEuropeanoptions: it is necessary, in the backwards inductionprocedure, to

allow for early exercise of the options. Some comments on the general procedure are useful.

To identify the value of an American-style option, we need to know when the cash

flows are going to occur so that we can discount them back appropriately. This means we

must know the optimal early-exercise policy, i.e., the conditions under which it is optimal

to exercise the option early. Now, it is optimal to exercise at a node only if the value of

immediate exercise exceeds the value of not exercising, i.e., of continuing. But the value
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of continuing depends on the option value at future nodes, which, in turn, depends on the

value of stopping at those nodes or continuing further. Put differently, to identify the optimal

exercise policy at a node, we need to know the optimal exercise policy at all future nodes.

This suggests a simple procedure for valuing the American option. We begin at a set

of nodes where continuation is no longer an option, i.e., at the terminal nodes. The option

values at these nodes can be ascertained unambiguously. Then we go back one period before

maturity. If we exercise early at this stage, the value received is the intrinsic value of the

option at that node. If we wait, we will be at maturity, and we know the option values that

will result then. Comparing the two alternatives tells us (a) whether it is optimal to exercise

early, and (b) the option value at this point.

Having identified all the option values one period before maturity, we now fold the tree

back one more period. At each of the nodes that is two periods before maturity, we compare

the value of exercising immediately to waiting. If we exercise immediately, we get the depth

in-the-money of the option at that node. If we wait, we reach nodes that are one period from

maturity, and we know the option value at each of these nodes. The higher of the two values

again determines (a) whether and at which nodes it is optimal to exercise early and (b) the

option value at each of these nodes.

This procedure is repeated until the initial time point of the tree is reached. The next

section illustrates this using a two-period binomial example.

12.6 American Puts on Non-Dividend-Paying Stocks

Consider the two-period binomial tree used earlier in this chapter: S = 100, u = 1.10,

d = 0.90, and R = 1.02. We look at pricing an American put in this example. The strike

price is taken to be K = 100.

As an aside, recall that in an earlier chapter, we argued that early exercise could be

optimal for an American put option even when there are no dividends. Exercising the put

early results in a gain in time value but a loss in insurance value. The trade-off between

these values determines the optimality of early exercise. We show that in this two-period

example, the trade-off goes in favor of the time-value gain, so early exercise is optimal.

We begin, as the backwards induction procedure requires, at the end of the tree. At the

terminal nodes, the payoffs from the put are the same as identified earlier in (12.11) for the

European put:

Puu = 0

Pud = 1

Pdd = 19

Now we move back one period to the nodes uS = 110 and dS = 90.

At the Node uS = 110

If the option is left unexercised at this node, then after one step, it pays 
0, if the price moves to u2S = 121

1, if the price moves to udS = 99

Since the risk-neutral probability of an up move in this model is q = 0.60, the value of

leaving the option unexercised is

1

1.02
[(0.60)(0) + (0.40)(1)] = 0.392
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The value of immediate exercise is negative: the option gives us the right to sell the stock for

100, but at this node, the stock is worth 110. Comparing these two values easily establishes

that at the node uS:

• The value Pu of the option is 0.392.

• Early exercise is not optimal at uS.

At the Node dS = 90

If the option is left unexercised at dS, it pays: 
1, if the price moves to udS = 99

19, if the price moves to d2S = 81

Thus, the value of leaving the option unexercised is

1

1.02
[(0.60)(1) + (0.40)(19)] = 8.04

The value of immediate exercise at this node is +10 since the put gives us the right to sell

for 100 a stock that is worth only 90. Comparing the two values, it is easy to see that at the

node dS:

• The value Pd of the option is 10.

• Early exercise is optimal at this node.

At the Initial Node S = 100

We now move back a further period to the initial node S. If the option is not exercised

immediately, it has a value after one step of, as we have just shown, 
0.39, if the price moves to uS = 110

10, if the price moves to dS = 90

Thus, the value of the option from not exercising immediately is

1

1.02
[(0.60)(0.39) + (0.40)(10)] = 4.15

The value of immediate exercise at the node S is zero since the option is at-the-money at

this point. Comparing these values, we finally obtain

• The initial value of the put is P = 4.15.

• It is not optimal to exercise the put at the node S.

What Drives Early Exercise?
Why is early exercise optimal at dS in this example? A look at the option’s payoffs provides

the answer. As noted earlier, the put is very deep in-the-money at this node, so deep, in

fact, that it is guaranteed to finish in-the-money at expiry. Under these conditions, there is

no insurance value left in the put; insurance value arises only if optionality—the right to

exercise (or not)—is important. However, there is still negative time value, which may be

captured by exercising the option early.

The Early-Exercise Premium
Recall that the price of the European-style put in this same example was 3.38. TheAmerican

put costs significantly more at 4.15. The early-exercise premium (the excess price of the

American put over the European) is given by 4.15− 3.38 = 0.77, which is over 18% of the

value of the American put! The significant early-exercise premium reflects the American
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put holder’s ability to avoid time-value loss by exercising early, while the European put

holder is unable to do so.

The Impact of Maturity
As we have seen, European put options can fall in value as maturity increases: the one-

period put in this model costs 3.92, but the two-period European put costs 3.38. With

American options, this is impossible since the put holder can always exercise early and

avoid the negative effects of extra time. Thus, American puts will generally increase in

value (or at least not decrease in value) with maturity. The present example illustrates this:

while the one-period put costs 3.92, the two-period American put costs about 6% more

at 4.15.

Finally, some notes about the option delta in this example. A simple calculation shows

that the initial delta of the option (at the node S) is

0.39− 10

110− 90
= −0.48

After an up move in the stock price the delta moves to

0− 1

121− 99
= −0.045

After a down move in the stock price, early exercise is optimal; however, if the holder does

not exercise at this stage, the delta becomes −1.

Pricing American Calls
We argued in an earlier chapter that American calls on non-dividend-paying stock should

never be exercised early. Thus, the price of an American call in this world must be equal

to the European call. We have already seen how to price a European call in this model, so

there is nothing to be added here.

It is a useful exercise for the reader to verify the non-optimality of early exercise for this

example. That is, repeat the same steps we followed for the American put and show that

early exercise is never optimal at any node.

12.7 Cash Dividends in the Binomial Tree

So far, we have ignored the possibility of dividends on the underlying asset during the life

of the option. Now, we discuss how to extend the analysis to incorporate this feature.

In considering dividends on the underlying in the binomial tree, there are two possibilities

to consider. The first is discrete “fixed cash” (or just “cash”) dividends such as dividends on

common stock. The second is a continuous dividend yield such as the yield on currencies

or an index. The two have different implications for modeling. We examine cash dividends

in this section and dividend yields later in this chapter.

The payment of discrete cash dividends causes a discontinuity in the stock price.Dividend

announcements comewith an ex-dividenddate. The stockholder of record on the ex-dividend

date is the one entitled to receive the dividends on the stock although the dividends are

typically paid some time later. Thus, the stock price before the ex-dividend date (the “cum-

dividend stock price”) incorporates the dividend that will be paid on the stock, but this is

not true of the stock price after the ex-dividend date (the “ex-dividend stock price”).
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FIGURE 12.8
The Binomial Tree
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Modifying the Binomial Tree to Incorporate Dividends
We first describe how to modify the binomial tree to incorporate the payment of dividends.

Consider the same two-period model studied above: u = 1.10, d = 0.90, R = 1.02, and

S = 100. Suppose now, however, that a dividend of $5 is paid after one period (i.e., period 1

is the ex-dividend date of the stock).

Then, the cum-dividend price following an up move in the stock price is 110. However,

the ex-dividend price at this node is 110 − 5 = 105. Similarly, the cum-dividend price at

the node dS is 90, but the ex-dividend price at dS is 90− 5 = 85.

Since only the ex-dividend prices are relevant for further evolution of the prices, we have

the following.

• The stock price following two up moves in the price is 105× 1.10 = 115.5.

• The stock price after an up move followed by a down move is 105× 0.90 = 94.5.

• The stock price after a down move followed by an up move is 85× 1.10 = 93.5.

• The stock price following two down moves in the price is 85× 0.90 = 76.5.

The resulting stock price tree is shown in Figure 12.8.

Note that in the presence of dividends, an up move followed by a down move does not

lead to the same price as a down move followed by an up move: the tree fails to recombine.

Recombination is, as we mentioned earlier, a desirable property from a computational

standpoint; its failure makes the pricing more computationally complex. However, this

added computational complexity is the only serious effect of introducing dividends; from

a conceptual standpoint, the pricing of options remains quite simple, as we now see. In the

next section, we see an alternative approach to modeling cash dividends that avoids the

no-recombination problem.

American Calls on Dividend-Paying Stocks
We saw in an earlier chapter that the optimality of early exercise could not be ruled out for

calls on a dividend-paying stock. By exercising early, the holder of the call gives up the time

value of the call and the insurance value of the call but gains the dividends on the underlying

stock. The trade-off between these factors determines the optimality of early exercise; in

particular, early exercise is optimal whenever the dividends are large enough to overwhelm

the loss in insurance and time value.

The two-period tree described above illustrates this point. Consider an American call

option with a strike of 100. We solve for the call value and the early exercise policy by
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backwards induction. At maturity, the payoff of the call is⎧⎪⎪⎨
⎪⎪⎩

15.5, if the stock price is 115.5

0, if the stock price is 94.5

0, if the stock price is 93.5

0, if the stock price is 76.5

(12.20)

Now consider the node uS. There are two parts to this node, the cum-dividend price and

the ex-dividend price. Thus, the option holder faces three choices: (a) exercise when the

stock is still cum-dividend, (b) exercise after it has gone ex-dividend, and (c) do not exercise

at this point. The values of these alternatives are as follows:

• If the stock is exercised when it is cum-dividend, the option holder pays the strike price

of 100 for a stock worth 110; thus, the value of exercising cum-dividend is +10.

• If the stock is exercised after it has gone ex-dividend, the option holder receives a stock

worth 105 for the strike price of 100. Thus, exercising the call ex-dividend is worth +5.

• Finally, if the option is left unexercised, it has a value of 15.5 if the price goes up to 115.5

and a value of 0 if the price goes down to 94.5. Since the risk-neutral probability of an

up move is 0.60, the value of leaving the option unexercised is

1

1.02
[(0.60)(15.5) + (0.40)(0)] = 9.12

A comparison of these three values establishes that it is optimal to exercise the call early

at the node uS when the stock is still cum-dividend (i.e., just before it goes ex-dividend).

Thus, the value of the option at the node uS is +10.

ThenodedS is easier to handle in this example.There are again the same three alternatives

to consider. At the cum-dividend point, the stock price is 90, so exercising early results in

a value of −10. At the ex-dividend point, the stock price is 85, so early exercise leads to a

payoff of −15. If the option is not exercised early at this node, it results in a payoff of zero

one period later. Thus, early exercise is not optimal at dS and the value of the option here

is zero.

Finally, consider the initial node S. Exercising the option at this node leads to a payoff

of zero since the option is at-the-money. If it is left unexercised, it leads to a value in one

period of  
+10, if the stock price goes up

0, if the stock price goes down

Using the risk-neutral probability, the value of leaving the option unexercised is

1

1.02
[(0.60)(10) + (0.40)(0)] = 5.88

Thus, the initial value of the American call option is 5.88.

What is the value of the corresponding European-style call? To identify the answer, we

can use the end-of-tree payoffs in expression (12.20). The end-of-tree risk-neutral proba-

bility of the path

uu is (0.6)(0.6) = 0.36

ud is (0.6)(0.4) = 0.24

du is (0.4)(0.6) = 0.24

dd is (0.4)(0.4) = 0.16

(12.21)
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So the initial value of the European call option works out to

1

(1.02)2
[(0.36)(15.5) + (0.24)(0) + (0.24)(0) + (0.16)(0)] = 5.37

The early-exercise premium is now 5.88− 5.37 = 0.51.

Comments
The example above highlights three valuable points. The first is that dividends may make

early exercise of calls optimal. In this example, this is because the dividends are high enough

to make worthwhile giving up the call’s time value and insurance value. In the exercises at

the end of this chapter, we consider a similar setting but with lower dividends and higher

volatility, and show that early exercise is no longer optimal.

Second, dividends on the stock always reduce option values. Without dividends, the

American andEuropean calls in this example are bothworth 7.27. The presence of dividends

hurts both: the American call falls in value to 5.88, while the European call falls to 5.37.

The American call falls in value because the option holder is forced to choose between

receiving the dividends and retaining the option’s time and insurance value. The European

call falls by even more because early exercise is not an option; the call holder takes the full

brunt of the fall in stock prices on account of the dividend payment.

Third, greater time to maturity may not increase call values if there are interim dividends.

The one-period call was worth 5.88, but the two-period European call is worth only 5.37:

the dividend between the two periods lowers the payoffs to the holder of the longer-dated

option. American calls cannot decline in value even if there are dividends since one can

always exercise early, but they may not increase in value either: in the current example, the

two-period American call is worth exactly the same as a one-period call.

American Puts on Dividend-Paying Stocks
This is carried out exactly as in the case of an American call on a dividend-paying stock

with the obvious changes. The details are left as an exercise to the reader.

1. The price of the American put is 7.15.

2. Early exercise is optimal at the node dS after the stock goes ex-dividend.

3. The price of the corresponding European put is 6.38; thus, the early-exercise premium

is 0.77.

12.8 An Alternative Approach to Cash Dividends

If we assume stock prices follow the Black-Scholes process but that there are cash dividends

at discrete points in time, then the “correct” discrete-time representation of this is the

binomial model described in the last section. Unfortunately, the lack of recombination

of the binomial tree makes this model computationally harder to work with, especially

if multiple dividend payments are involved. It is common in practice to use one of two

alternatives. One is to use a different cash dividends model, described in this section, that

assumes that the net-of-dividends stock price (rather than the cum-dividend stock price)

is lognormal and may be represented by a recombining binomial tree. The other popular

alternative is to represent the dividend as a yield (i.e., as a proportion of the stock price), in

which case the tree is naturally recombining. Dividend yield models are the subject of the

next section.

The first of these alternatives is introduced in Schroder (1988). In Schroder’s approach,

the stock price is viewed as being composed of two components: a riskless part equal to
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the present value of all the dividends that will be received over the option’s lifetime, and a

risky part representing the remainder of the stock price. The risky part is then modeled as a

lognormal process (in this discrete setting, as a binomial tree). Since the risky component

contains no dividend payments, the tree is recombining. We describe pricing options in

this setting first in general notational terms in a binomial setting and then work through a

numerical example.

Dividends and the Stock Price Tree
Let St denote the time-t stock price, Dt the cash dividend paid at time t , and PVt (D) the

present value (viewed from time t and including Dt ) of the dividends that will be received

over the option’s remaining life. Note that, if h denotes the time between binomial periods,

then by definition,

PVt (D) = Dt +
1

R
PVt+h(D) (12.22)

On the maturity date T of the option, PVT (D) is just the dividends DT receivable on that

date.1

Let S net
t = St − PVt (D) denote the net-of-dividends component of the stock price. The

main assumption in this approach is that this net-of-dividends component (the “net stock

price”) evolves according to a binomial process:

S net
t+h =

 
uS net

t , with probability p

dS net
t , with probability 1− p

(12.23)

The definition (12.23) ensures that the net stock price tree will be a recombining one.

Now to obtain the total stock price tree, we simply add back the “escrowed” dividends at

that point, i.e., the present value of the dividends receivable from that date to the option’s

maturity. For example, viewed from time t , the two possible values of the total stock price

at t + h are

S u
t+h = uS net

t + PVt+h(D) and S d
t+h = dS net

t + PVt+h(D) (12.24)

The resulting total stock price tree will also be recombining since we are changing only the

numbers at the various nodes but not the structure of the tree itself. See the example below

for an illustration.

The Risk-Neutral Probability
The risk-neutral likelihood q of an up move in this setting is obtained as

qu + (1− q)d = R ⇐⇒ q =
R − d

u − d
(12.25)

To see that the risk-neutral probability has the form (12.25), note the following. If we buy

the stock at time t and hold it for one period, we receive Dt at time t , so the net expenditure

is only St − Dt . For this net outlay, we receive either S
u
t+h or S

d
t+h in one period. Under q,

the expected return on the investment must be the risk-free rate R, i.e., q must satisfy

qSu
t+h + (1− q)Sd

t+h

St − Dt

= R

or what is the same thing,

qSu
t+h + (1− q)Sd

t+h = R(St − Dt ) (12.26)

1 This notation allows for a dividend payment Dt in each period of the binomial tree, but, of course,

many of these payments may be zero.
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Now, St = S net
t + PVt (D), so, from (12.22),

St − Dt = S net
t +

1

R
PVt+h(D)

This means the right-hand side of (12.26) is

RS net
t + PVt+h(D) (12.27)

Combining (12.23) and (12.24), the left-hand side of (12.26) works out to be

qSu
t+h + (1− q)Sd

t+h = [qu + (1− q)d] S net
t + PVt+h(D) (12.28)

Expressions (12.27) and (12.28) are equal if and only if the risk-neutral probability q is

given by (12.25).

Pricing Options: The General Procedure
Given the stock price tree, options may be priced by backwards induction. Consider a call,

for example. Let Ct denote the value of the call at time t , and let Cu
t+h and Cd

t+h denote its

possible values one period hence. If the option is European, then we have

Ct =
1

R

 
qCu

t+h + (1− q)Cd
t+h

 
(12.29)

while, at maturity T , the call is worth CT = max{ST − K , 0}. Using (12.29), we can use

backwards induction on the stock price tree to identify the initial value of the option.

If the call is American, immediate exercise at t is also possible. We must distinguish

between exercising the call cum-dividend and ex-dividend at this node. If the call is exercised

cum-dividend, the amount received by the call holder is

St − K = S net + PVt (D) − K

If it is exercised ex-dividend, the amount received is

St − Dt − K = S net + PVt (D) − Dt − K

Putting these together, the call value is the maximum of the continuation value and the value

of immediate exercise:

Ct = max

 
St − K , St − Dt − K ,

1

R

 
qCu

t+h + (1− q)Cd
t+h

  
(12.30)

Expression (12.30) can be used to obtain the option price through backwards induction

along the stock price tree. We illustrate these pricing arguments in an example.

Example 12.1 Consider a two-period binomial example. Let the initial price of the stock be S = 100.
Suppose that there is only a single cash dividend over the two periods; assume this dividend
is 5 in period 1. For the remaining parameters, we take R = 1.02, u = 1.05, and d = 0.95.
Suppose that we wish to price two-period American and European calls with a strike of 100
in this setting.

In the notation introduced above, we have D0 = 0, D1 = 5, and D2 = 0. This means
P V0(D) = 5/1.02 = 4.90, P V1(D) = 5, and P V2(D) = 0. The initial net-of-dividends
price is

S net = 100− P V0(D) = 100−
5

1.02
= 95.098

The evolution of the net stock price from this level is determined by u and d as described in
(12.23). The two-period net stock price tree is depicted in Figure 12.9.
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FIGURE 12.9
Evolution of

Net-of-Dividend

Stock Prices

99.85

90.34

104.85

94.86

85.83

95.10

FIGURE 12.10
Evolution of Total

Stock Price

104.85

95.34

104.85

94.86

85.83

100

To obtain the total stock price tree from this, we simply add back P Vt(D) at each date.
The resulting evolution of total stock prices is depicted in Figure 12.10. Note that both the
net-of-dividends tree and the total stock price tree are recombining trees.

Consider first the pricing of an American call on this tree. If the call is held to maturity, it
pays max{ST − K , 0}; thus, the call values at the three terminal nodes are

Cuu = 4.85, Cud = Cdd = 0

Using this and (12.30), we can identify the value of the option at earlier nodes. Consider
the node Sut+h. At this point, the stock price is 104.85, while the dividend on this date is 5.
Therefore, if the option is exercised cum-dividend, the holder receives

max{104.85− 100, 0} = 4.85

Exercising ex-dividend is not profitable since the ex-dividend stock price of 104.85 − 5 =
99.85 is less than the strike price of 100. If the option is not exercised at this node, it is worth
either 4.85 or zero next period, depending on whether the stock registers an up or a down
move. So, using the risk-neutral probabilities, the value of not exercising is

1

1.02
[(0.70)(4.85) + (0.30)(0)] = 2.28
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FIGURE 12.11
Evolution of American

Call Values

4.85

0

4.85

0

0

3.33

FIGURE 12.12
Evolution of European

Call Values

3.33

0

4.85

0

0

2.28

Comparing these three values establishes that the optimal action at this node is to exercise
the call early and that the value of the call is 4.85. Working similarly, the rest of the tree can
be filled up. Figure 12.11 describes the evolution of these prices.

The corresponding prices for the European call are similar but are easier to derive since
there is no early exercise decision at each node. Figure 12.12 describes the evolution of
European call values in this case. Note that there is a substantial early exercise premium of
the American call in this example of 3.33− 2.28 = 1.05. ■

12.9 Dividend Yields in Binomial Trees

The notion of discrete dividends is okay for individual stocks, but payouts for some under-

lying assets, such as currencies and stock indices, are more naturally modeled as yields,

i.e., as proportions of the current asset price. In this section, we describe binomial option

pricing in this case. As we shall see, only minor adjustments to the theory are required.

The first step is describing the evolution of asset prices and the dividend process.We take

cum-dividendprices to evolve on the binomial tree in the usualway as inFigure 12.1.But now

weadd the condition that holding the asset results in a cashflowof [δ× the price of the asset]
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at each node. Thus, the asset pays a cash dividend of δS if the current stock price is S; its price

next period is either uS or dS, at which point it pays a dividend of either δ uS or δ dS, etc.

Chapter 13 describes how we identify the values of δ, u, and d for a stock paying a

continuous dividend yield. For the present, we assume these values are given to us. Note

that the presence of the dividend yield also requires us to modify the condition (11.4) for

consistency of the binomial tree; rather than d < R < u, the condition now becomes

d < R(1− δ) < u (12.31)

Valuing Derivatives in This Model
The impact of the dividend yield on the valuation procedure is a remarkably simple one:

the only change we make is to the risk-neutral probability, which now becomes

q =
R(1− δ) − d

u − d
(12.32)

(If δ = 0, we are back to the usual formula.) To see why the risk-neutral probability takes the

form (12.32), recall that under q, the expected return on the asset has to equal the risk-free

rate. Equivalently, the expected returns on the asset under q discounted at the risk-free rate

should result in the current price. Here, the return on the asset has two components, the

dividend δS received right away and the capital gain (or loss) from the stock pricemovement

received next period. Thus, q should now satisfy

S = δS +
1

R
[q uS + (1− q) dS]

This results precisely in (12.32).

We present two examples below. The first considers a one-period binomial tree and shows

that the value of an option obtained using the risk-neutral probability (12.32) coincides with

the value obtained using replication. The second considers a two-period binomial tree and

solves for American and European call option prices. The presence of the dividend yield in

the example causes early exercise to become optimal for the American option.

Example 12.2 Let S = 100 and suppose the remaining parameters are given by u = 1.05, d = 0.95,
δ = 0.05, and R = 1.01. Consider pricing a one-period call option with a strike of K = 100.
The payoffs from the call after one period are 

5, if the asset price moves to 105
0, if the asset price moves to 95

We first price the call by risk-neutral valuation. From (12.32), the risk-neutral probability
of an up move in the price is given by

q =
R (1− δ) − d

u − d
=

0.0095

0.10
= 0.095

Therefore, the value of the call obtained from risk-neutral valuation is

C =
1

1.01
[(0.095)(5) + (0.905)(0)] = 0.4703 (12.33)

We will show that the same call value results from replication. Consider a portfolio con-
sisting of  units of the stock and B in cash invested or borrowed at the rate R . Since the
dividend on the call returns δS, the net cost of the portfolio is

 (1− δ)S + B = 95 + B (12.34)
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After one period, the portfolio is worth uS+R B if the asset price goes up and dS+R B
if it goes down. Substituting the values for u, d, and δ, replication requires that the following
equations be satisfied:

105 + 1.01 B = 5

95 + 1.01 B = 0

Solving this, we obtain  = 1/2 and B = −47.0297. Substituting these values in (12.34),
the initial cost of the replicating portfolio (and so the price of the call option) is

 
95×

1

2

 
− 47.0297 = 0.4703 (12.35)

This is, of course, the same value obtained using risk-neutral pricing. ■

Example 12.3 Let a binomial tree be given with the following parameters: S = 100, u = 1.10, d = 0.90,
R = 1.02, and δ = 0.05. The cum-dividend stock price tree is the same as in earlier examples
in this chapter (see Figure 12.2) and so is the interest rate. However, because of the dividend
yield, the risk-neutral probability of an up move in any period is

q =
R (1− δ) − d

u − d
=

0.069

0.20
= 0.345 (12.36)

Suppose we wish to price a two-period call with a strike of 100. Consider a European
call first. The payoffs from the call at maturity are exactly as described in Figure 12.3; in
particular, the call has a positive payoff only if the path uu occurs. Since the risk-neutral
probability of two up moves is (0.345)2, the price of the European call is

CE =
1

(1.02)2

 
(0.345)2 × 21

 
= 2.4025 (12.37)

Now suppose the call is American. Its payoffs if left unexercised until maturity are exactly
as described in Figure 12.3. We now apply backwards induction. At the node uS, the stock
price is uS = 110, so early exercise of the call is worth 10. Not exercising early brings a
payoff in the next period of either 21 (if the stock price moves up) or 0 (if it moves down).
So the value of not exercising at uS is

1

1.02
[0.345× 21] = 7.103 (12.38)

Comparing these values, it is clear that early exercise is optimal at uS, so the option value at
this node is 10. The option value at the node dS is evidently zero. Continuing the backwards
induction, the value of the American call at the initial node is

C A =
1

1.02
[(0.345)(10) + (0.655)(0)] = 3.38 (12.39)

As the comparison of (12.37) and (12.39) shows, the dividend yield leads to early exercise
of the American call and to a substantial early-exercise premium. ■
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12.10 Exercises 1. Keeping all other parameters the same, if the dividend rate on the stock increases, which

option depreciates less, the American call or the European call? Why?

2. What condition is required on the movement of stock prices for the binomial tree to be

recombining?

3. Why does the payment of dividends usually render the binomial tree into a nonrecom-

bining one? What type of dividends causes the failure of recombination? What type of

dividends does not?

4. Holding all else constant, if dividends increase, does the difference between American

calls and puts increase or decrease?Why?What about the difference between European

calls and puts?

5. How would you know from examining the risk-neutral probabilities on a binomial tree

if the model is free from arbitrage?

6. Explain briefly in a heuristic manner why option replication on a binomial tree is a

“dynamic” strategy.

7. Explain what is meant by a “self-financing” replicating strategy.

8. Suppose we used a trinomial tree with three replicating securities instead of a binomial

tree with two securities. Would the dynamic replication be “self-financing”?

9. Suppose you have two states of the world and two assets. The prices of both assets in

each of the two states are known. What conditions are needed for a derivative security

that is a function of the two assets to be replicable?

10. (Difficult) In a two-period binomial tree, let the volatility at a given node (this is called

the “local volatility” at that node) be given by

σ = ln(u/d)

where u and d are the up and down moves, respectively, at that node. Given a starting

stock price of $50, suggest one way to draw a two-period recombining stock tree when

the volatility of the first period is σ = 0.20 and in the second period σ is 0.25.

11. You are given the following tree of stock prices. In addition, the rate of interest per

period is constant at 2%. Find the risk-neutral probabilities of the stock movements

from each node on the tree. Are these probabilities the same? If not, explain whether

the tree is a valid one.

60

30

80

50

20

45
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12. On the tree given in the previous problem, price the American call and the American

put. Both options are assumed to be at strike $45.

13. Again, using the same tree as in the previous two questions, what is the delta of the call

and the put at times 0 and 1?

14. The initial stock price is $100. The stock moves up each period by a factor of 1.3

and down by a factor of 0.8. If the simple interest rate per period is 1%, what is the

risk-neutral probability of an up move in the stock price?

Draw the stock price tree for three periods and price a European call option for three

periods at strike $105.

15. The initial stock price is $100. The stock moves up each period by a factor of 1.3 and

down by a factor of 0.8. If the simple interest rate per period is 1%, find the prices

of three-period European and American puts, and state the early exercise premium

amount.

16. When there are no dividends, the early exercise of an American put depends on a trade-

off between insurance value (which comes from volatility) and time value (a function

of interest rates). Thus, for example, for a given level of volatility, early exercise of the

put becomes more likely if interest rates are higher. This question provides a numerical

illustration.

Consider a two-period binomial model with u = 1.10 and d = 0.90. Suppose the initial

stock price is 100, and we are looking to price a two-period American put option with

a strike of K = 95.

(a) First, consider a “low” interest rate of r = 1.02. Show that early exercise of the

American put is never optimal in this case.

(b) Now consider a “high” interest rate of r = 1.05. Show that it now becomes optimal

to exercise the put early in some circumstances.What is the early exercise premium

in this case?

17. Consider a two-period example with S = 100, u = 1.10, d = 0.90, r = 1.02,

and a dividend of $5 after one period. Is early exercise of a call optimal given these

parameters?

18. We repeat the previous question with higher volatility and interest rates and with lower

dividends.Consider a two-period binomial treewith the following parameters: S = 100,

u = 1.20, d = 0.80, and r = 1.10. Suppose also that a dividend of $2 is expected after

one period.

(a) Compute the risk-neutral probability in this world.

(b) Find the tree of prices of an American call option with a strike of 100 expiring in

two periods.

(c) What is the early-exercise premium?

19. The payment of a dividend on the underlying stock increases the value of a put option

since it “lowers” the stock price distribution at maturity. This question provides a

numerical illustration.

Let a two-period binomial tree be given with the following parameters: S = 100,

u = 1.10, d = 0.90, and r = 1.05. Consider a two-period American put option with a

strike of 90. Note that this put is quite deep out-of-the-money at inception.

(a) What is the value of the American put given these parameters?

(b) Now suppose a dividend of $4 is paid at the end of the first period. What is the new

price of the put?
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20. In the absence of dividends, the holder of a European call always benefits from an

increase in maturity since the insurance value and time value of the call both increase.

However, for the holder of a European put in this case, insurance value increases but

time value decreases, so the put value could increase or decrease. In general, for a given

level of volatility, if interest rates are “high,” the time-value effect will outweigh the

insurance-value effect, so European put values will decrease as maturity increases; but

if interest rates are “low,” the insurance-value effect will dominate, so the put value will

increase. This question illustrates these arguments.

Consider a binomial model with parameters S = 100, u = 1.10, and d = 0.90, and a

European put with a strike of K = 100.

(a) First, consider a “high” interest rate environment where r = 1.02 (1 plus the

interest rate). We can see that with these parameter values, a one-period put is

worth 3.92, but a two-period European put is worth only 3.38. The increase in

maturity hurts the put holder because the insurance-value effect is outweighed by

the time-value effect.

(b) Now consider a “low” interest-rate environment where r = 1.00. Show that in this

case, the one-period put is worth less than the two-period put.

21. Consider a binomial tree model with u = 1.05 and d = 0.90. Suppose the per-period

interest rate is r = 1.02. Suppose the initial stock price is 100.

(a) What is the risk-neutral probability?

(b) Calculate the value of an American put option on the stock with a maturity of two

periods and a strike of 95.

(c) Compute the early-exercise premium.

22. The initial stock price is $50. The up move in the stock price is modulated by factor

u = 1.2, and the down move is d = 0.9. One dollar invested at the beginning of a

period returns $1.05 at the end of the period.

Draw a two-period stock price tree for this stock. Then price the European call for two

periods with a strike price of 50.

Find the replicating portfolio at the initial node on the tree. Show that this replicating

portfolio does mimic the price of the call at both subsequent nodes at time 1 on the

option tree.

23. Suppose the initial price of the stock is $100. The binomial process has an upshift

u = 1.5 and a downshift d = 0.6 per period. The interest rate per period is assumed

to be zero. What is the risk-neutral probability that the stock finishes above a price of

$200 after six periods? What is the price of the six-period call at a strike of $200?

24. (Difficult) Using values for u = 1.03 and d = 0.98 and an initial stock price of $50,

compute and plot the final risk-neutral probability distribution of the stock price after

100 periods. The interest rate is zero. What distribution does this remind you of?

25. The price today of stock XYZ is $100. Each period on a stock binomial tree is of length

two months, i.e., 0.1667 of a year. The annualized risk-free rate on a continuously

compounded basis is 5%. The annualized dividend rate on the stock is 2% continuously

compounded. The dividend is paid as a percentage of the stock value at the end of period.

The up move (after adjusting for downward drift from the dividends) in the stock

is driven by the factor u = 1.167618, and the down move (also after the effect of

dividends) is modulated by d = 0.842289.

(a) What is the risk-neutral probability of an up move in the price?

(b) Compute the stock tree for three periods (i.e., for a six-month horizon).
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(c) Based on this stock tree, compute the value of the dividends paid at the end of each

period.

(d) Now compute the present value, as of time zero, of the terminal prices of the stock

tree. Weight each value by its probability of occurring. What is the present value

you get? Does this strike you as strange? Why or why not?

(e) Price the European call option at a strike of 100 for a maturity of six months.

(f) Price theAmerican call option at a strike of 100 for amaturity of sixmonths.Assume

that if you exercise at a given node on the tree, you do not get the dividends for that

period, but only for subsequent periods.

(g) Price the European put. Same terms as the calls.

(h) Price the American put. Same terms as the calls.
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Appendix 12A

A General Representation of European
Option Prices
As mentioned in the text, we can derive a general n-period representation of European

optionprices in the binomialmodel that resembles theBlack-Scholes formula in its structure.

Consider ann-periodbinomialmodelwith up anddownmovesgivenbyu andd, respectively.

Let S denote the initial stock price and r the risk-free rate of interest per time step. Finally,

let K be the strike price of the options.

After n periods, there are n + 1 possible distinct terminal prices as we noted at the

beginning of this chapter (see Table 12.1):

• n up moves, resulting in the price unS.

• (n − 1) up moves and one down move, resulting in the price un−1dS.

• etc.

• n down moves resulting in the price dnS.

Denote by C(m) and P(m) the call and put payoffs at maturity if there have been m up

moves and n − m down moves:

C(m) = max{umdn−mS − K , 0} (12.40)

P(m) = max{K − umdn−mS, 0} (12.41)

What are the risk-neutral probabilities of the various terminal nodes? A standard com-

binatoric exercise shows that the number of different combinations of m up moves and

n − m down moves (i.e., of different ways in which m up moves and n − m down moves

can happen) is

n!

m! (n − m)!

where k! represents “factorial k,” the product of all integers from 1 through k. (By conven-

tion, we take 0! = 1.) Now, the risk-neutral probability of an up move in any period is given

by

q =
R − d

u − d

This means a specific combination ofm up moves and n−m down moves has a risk-neutral

probability of

qm(1− q)n−m

Thus, the total risk-neutral likelihood of m up moves and n − m down moves, which we

denote Q(m), is

Q(m) =
n!

m! (n − m)!
qm(1− q)n−m

Table 12.3 summarizes this notation. The expected payoff of the call at maturity under

the risk-neutral probability is

Q(0)C(0) + · · · + Q(n)C(n) (12.42)
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TABLE 12.3
Terminal Node

Information: General

n-Period Tree

Stock Prices Risk-Neutral Probability Call Payoffs Put Payoffs

unS Q(n) C (n) P (n)
un−1dS Q(n− 1) C (n− 1) P (n− 1)
.
.
.

.

.

.
.
.
.

.

.

.

udn−1S Q(1) C (1) P (1)
dnS Q(0) C (0) P (0)

Discounting this back for n periods using the risk-free rate r , we obtain the initial prices of

the call and the put:

C =
1

Rn
[Q(0)C(0) + · · · + Q(n)C(n)] (12.43)

P =
1

Rn
[Q(0)P(0) + · · · + Q(n)P(n)] (12.44)

These expressions can be rewritten in a form similar to the Black-Scholes formula.

Consider the call first. Since more up moves result in a higher stock price at maturity, there

is a critical number of up moves m∗ such that the call finishes in-the-money if and only if

the number of up moves m satisfies m ≥ m∗. That is:

C(m) =

 
0, if m < m∗

umdn−mS − K , if m ≥ m∗ (12.45)

Therefore, we can rewrite (12.43) as

C =
1

Rn
[Q(m∗)C(m∗) + Q(m∗ + 1)C(m∗ + 1) + · · · + Q(n)C(n)] (12.46)

Substituting for C(m) from (12.45), we have

C =
1

Rn

n 
m=m∗

Q(m) [umdn−mS − K ] (12.47)

Breaking the right-hand side into two terms, we finally obtain

C = S ·

 
1

Rn

n 
m=m∗

[Q(m)umdn−m]

 
−

 
1

Rn
K

n 
m=m∗

[Q(m)]

 
(12.48)

The second term on the right-hand side has a very simple interpretation. The first part of

this term, K/Rn , is simply the present value of K viewed from time 0. The second part

of the term,
 n

m=m∗ Q(m), is, by definition of m∗, the risk-neutral probability that the call

option will finish in-the-money. Thus, the second term measures the anticipated “cost” of

exercising the option: the present value of K times the probability of exercise. Similarly,

the first term measures the anticipated benefit from the option (what one is going to receive

times the likelihood of receiving it). The difference between the two terms must, of course,

be the option value.

As we see later in this book, the Black-Scholes option pricing formula has a very similar

structure to (12.48): the Black-Scholes call price too is of the form

[S × term 1 ]− [PV (K ) × term 2 ]

where “term 2” in the Black-Scholesmodel is again the risk-neutral probability of the option

finishing in-the-money.
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The put price in the binomial model has a similar representation. The put finishes in-the-

money if and only if m < m∗:

P(m) =

 
K − umdn−mS, if m < m∗

0, if m ≥ m∗ (12.49)

So, the initial price of the put may be written as

P =
1

Rn

m∗−1 
m=0

Q(m) [K − umdn−mS] (12.50)

Breaking up the last term into two parts, we obtain

P =
K

Rn

 
m∗−1 
m=0

Q(m)

 
− S ·

 
1

Rn

m∗−1 
m=0

undn−m

 
(12.51)

The first term is the present value of K times the risk-neutral probability that the put finishes

in-the-money; it represents what one expects to get from the put. The second term represents

the value of what one expects to give up in the put (i.e., the value of the stock given up by

exercise). The difference between the terms is the value of the put.

As with the call, the Black-Scholes formula for the price of a European put has a very

similar structure to (12.51); it is of the form

P = [PV (K ) × term 1 ]− [S × term 2 ] (12.52)

with “term 1” being the risk-neutral probability that the put finishes in-the-money.



Chapter 13
Implementing the
Binomial Model

13.1 Introduction

The last two chapters have examined the pricing of options using binomial trees, taking

the parameters of the tree as given. Rounding off this material, this chapter discusses two

key issues: (a) how these parameters are determined, and (b) computer implementation of

binomial trees. In the process, we introduce one of the most useful distributions in option

pricing, the lognormal distribution.

The idea behind identifying the parameters of the binomial model is a simple one. Given a

horizon T , we choose a distribution of prices that “best” represents the possible prices of the

underlying at T . Then we choose the parameters of the binomial tree so that the distribution

of prices on the terminal nodes of the binomial tree resembles the chosen distribution as

closely as possible.

For the time-T distribution, we choose the lognormal distribution. The lognormal dis-

tribution is widely used in practice to represent returns on a variety of underlying assets

such as equities, indices, and currencies. The lognormal is also the distribution underlying

the Black-Scholes model, which we examine in the next chapter. However, there are some

assets (such as bonds) for which the lognormal is not always suitable. Given its widespread

use and importance, we begin with a discussion of this distribution.

13.2 The Lognormal Distribution

In expressing the evolution of prices on an asset, what we are describing is the process of

returns on that asset. The lognormal distribution assumes that the log of these returns has

a normal distribution.

Let S0 denote the current price of the asset and ST denote its price in T years. In simple

terms, the gross return on the asset over this horizon is ST /S0. Let N (m, v) denote the

normal distribution with mean m and variance v (i.e., with standard deviation
√
v). The

lognormal distribution assumes that for any T

ln

 
ST

S0

 
∼ N (μT , σ 2T ) (13.1)
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where μ and σ are the two parameters of the distribution. From (13.1), the expected log-

return and variance of log-returns over the T -year horizon are, respectively, μT and σ 2T :

E

 
ln

 
ST

S0

  
= μT (13.2)

Var

 
ln

 
ST

S0

  
= σ 2T (13.3)

In particular, by taking T = 1 year, we see that μ is the expected annual log-return and σ 2

is the variance of the annual log-returns.

Figure 13.1 provides plots of the lognormal returns for various parameter values. (The

plots are of the lognormal probability density function. Thus, the probability of gross returns

less than or equal to x is the area under the curve to the left of x .) The horizon in the figure is

FIGURE 13.1
The Lognormal
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fixed at one year. As is evident from the plots, the lognormal is a skewed distribution. Unlike

the normal distribution, which can take both positive and negative values, the logarithmic

function ln x is defined only for positive x , so the lognormal distribution is defined over

only the positive part of the axis.

Log-Returns = Continuously-Compounded Returns
Suppose the realized log-return on an asset over a horizon [0, T ] is x :

ln

 
ST

S0

 
= x (13.4)

Then, this implies

ST

S0

= ex (13.5)

(We have used the fact that if ln y = z, then y = ez .) Expression (13.5) says precisely that the

continuously-compounded return on the asset over the period [0, T ] is also x . That is, log-

returns and continuously-compounded returns are two names for exactly the same concept.

The Notion of “Volatility”
The parameter σ has a special name: it is called the asset’s volatility. Thus, the term volatility

refers to the standard deviation of log-returns expressed in annualized terms.

It is common in practice to express volatility in percentage terms, for example, to refer

to a volatility of 35%. A volatility of 35% means that σ = 0.35. In general, while σ

must be positive, there are no natural upper bounds on how large it can be. Individual

stock volatilities in the US are usually of the order of 30%–50%, although much higher

volatilities (70%–100% and even more) may obtain on occasion, particularly on small-cap

or technology/new economy stocks. Stock index and currency volatilities tend to be much

lower, typically 20% or less.

In Appendix 13A, we discuss how to compute the volatility of an asset from information

on past price observations. This is called historical volatility. A related but distinct notion

is that of implied volatility, which we discuss in the chapter on Black-Scholes.

Log-Returns and the Simple Returns ST/S0
What does the lognormal distribution imply for the simple expected returns ST /S0?

Appealing to standard properties of the lognormal distribution, it can be shown that the

mean and variance of simple returns are given by

E

 
ST

S0

 
= eμT+ 1

2
σ 2T (13.6)

Var

 
ST

S0

 
= e2μT+2σ 2T − e2μT+σ 2T (13.7)

For one special case, (13.6) is easily verified. When σ = 0 (there is no volatility), the

lognormal assumption implies that

ln

 
ST

S0

 
= μT (13.8)

so that
ST

S0

= eμT (13.9)

which is precisely (13.6) for this case.
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While they are related, log-returns and simple returns are distinct concepts and should

not be confused with each other. An example will help make this point.

Example 13.1 Suppose the returns on XYZ stock are distributed lognormally with a mean of 10% and a
volatility of 40%. Then, using (13.6), the expected simple return from holding the stock for
a period of one year is

e
(0.10)(1)+ 1

2
(0.16)(1) = 1.197

so the net return is 19.7%, almost twice the expected log-return of 10%. The variance of
simple returns over a one-year holding period is

e
2(0.10)(1)+2(0.16)(1) − e2(0.10)(1)+(0.16)(1) = 0.249

or 24.9%, compared to the variance of log-returns of (0.40)2 = 16%. ■

Here is one other difference. Suppose simple returns were normal, i.e.,

ST

S0

∼ N (mT , s2T )

for some m and s > 0. Then, since the outcomes of a normal distribution can assume any

value between−∞ and+∞, simple returns may be less than 100%, meaning that the time-T

price ST may be negative. This is obviously undesirable since equity prices or exchange rates

cannot turn negative. With a lognormal distribution, this is never a problem: for any real-

ization z of log-returns, ST /S0 is, from (13.1), given by ez , and this must always be positive.

The Assumption of i.i.d. Returns
The term “independently and identically distributed” (abbreviated i.i.d.) refers to a stochastic

process in which

• the probability distribution of outcomes at any time is identical to that at any other time,

and

• outcomes are independent over time, i.e., outcomes at time t do not depend on outcomes

at any point before t .

The assumption (13.1) of lognormal returns also involves an assumption that log-returns

are i.i.d. The log-returns over any period of length T years depend only on T and the

parameters μ and σ of the normal distribution. Thus, the expected log-return over a two-

month period is twice the expected log-return over a one-month period, etc. And, of course,

returns at any point do not depend on past returns.

The assumption of i.i.d. returns makes the model technically easy to handle, but is it

a good assumption from an economic standpoint? That is, are returns in practice (at least

approximately) i.i.d.? Available data suggests perhaps not. In stock markets, sharply negative

returns are often followed by increased volatility, while high returns are often succeeded by

low volatility, a pattern that is sometimes called the “leverage effect.” We discuss this issue

further at the end of the Black-Scholes chapter.

Working with the Lognormal Distribution
The normal distribution is mathematically one of the easiest distributions to work with. It

has a number of powerful properties. For example, every normal distribution is symmetric

about the mean, and in any normal distribution, the mean± 1.96 standard deviations covers

95% of the area. This makes it very easy to construct confidence intervals and such financial

measures as Value-at-Risk.
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Almost all of the properties of the normal are preserved in the lognormal. For example,

to construct confidence intervals for a lognormal distribution, all we need do is construct

confidence intervals using the underlying normal distribution for log-returns and then ex-

ponentiate. The following example illustrates.

Example 13.2 Consider a horizon of three months (T = 1/4), and suppose a stock has lognormal returns
with μ = 0.10 and σ = 0.30. Suppose also that the current price of the stock is S = 100.
What is a 95% confidence interval for the stock price in three months?

Since T = 1/4, we have

μT = 0.10× 0.25 = 0.025, σ 2
T = 0.302 × 0.25 = 0.0225

That is, ln(ST /S) is distributed normally with a mean of 0.025 and a standard deviation
of
√
0.0225 = 0.15. For a normally distributed random variable, 95% of observations lie

within 1.96 standard deviations of the mean. Thus, with probability 0.95, ln(ST /S) will lie
between

[0.025− (1.96)(0.15)] = −0.269 and [0.025+ (1.96)(0.15)] = +0.319

Exponentiating both sides, it is the case that with probability 0.95, ST /S lies between

e
−0.269 = 0.7641 and e

+0.319 = 1.3758

Therefore, with probability 0.95, ST lies between

S × (0.7641) = 76.41 and S × (1.3758) = 137.58

This identifies the 95% confidence interval for ST . ■

The Lognormal as a Model of Bond Returns?
For at least two reasons, the lognormal is inadequate as a model of bond price evolution. First,

in a lognormal distribution, the uncertainty regarding future prices increases as the horizon

increases—the larger is T , the greater is the variance of returns σ 2T . However, absent

default risk, the bond price at maturity—its face value—is known with certainty today;

thus, uncertainty regarding future bond prices must go to zero as maturity approaches.

Even with default risk, the bond price at maturity can vary only between zero and its face

value, so the lognormal is still inappropriate. Second, a lognormal distribution of bond

prices implies a normal distribution of bond yields. This means bond yields and interest

rates can be negative.

The Actual and Risk-Neutral Distributions
Since derivative prices depend only on the risk-neutral distribution of asset prices, we can

use the binomial tree to approximate either the actual distribution of asset prices or the risk-

neutral distribution. If we use the former, μ and σ represent the actual annualized mean

and variance of log-returns on the underlying asset. If we use the risk-neutral distribution,

the asset’s volatility is unaffected but its expected return must equal the risk-free rate. The

expected return is, as we have seen in (13.6) above, given by

E

 
ST

S0

 
= eμT+ 1

2
σ 2T (13.10)
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Let r be the risk-free rate for a horizon of T years expressed in annualized continuously-

compounded terms. Then, $1 invested for T years at the rate r grows to $erT in T years.

So, for the expected return in (13.10) to equal the risk-free rate, we must have

μT + 1

2
σ 2T = rT

or

μ = r − 1

2
σ 2 (13.11)

Thus, if the lognormal is to represent the risk-neutral distribution of asset returns, μ is given

by (13.11).

13.3 Binomial Approximations of the Lognormal

Suppose we are given an asset whose returns follow a lognormal distribution with parameters

μ and σ . Given a horizon of T years, how do we choose binomial parameters so that the

binomial tree approximates the given distribution?

In principle, we have four free binomial-tree parameters we can choose:

• u and d, the up and down move sizes, respectively.

• p, the probability of an up move.

• n, the number of steps in the binomial tree.

Of these parameters, n is usually fixed in advance. Ideally, we would like to choose n as

large as possible, but we would also like computational tractability of the model. The choice

of n reflects a compromise between these conflicting objectives. Typically, n is taken to be

at least 100, although far larger trees are commonly used in practice.

So, suppose n is fixed at some level. Let h = T/n denote the length (in years) of each step

of the binomial tree. This leaves us with three parameters whose values are to be determined:

u, d, and p. Our objective is to choose these parameters so that the distribution of prices after

n steps of the binomial tree resembles a lognormal distribution with parametersμT andσ 2T .

In particular, we want the expected log-return after n steps of the tree to be approximately

μT , and the variance of log-returns to be approximately σ 2T , with the approximations

improving as n increases.

Now, the returns on each step of the binomial tree are identical to the returns on any

other step of the tree. Moreover, returns across different time steps are independent—the

return realized in any step does not affect the likelihood of u or d in any other time step.

Thus:

• The expected return over n steps of the binomial tree is simply n times the expected

return over each step of the tree.

• The variance of returns over n steps of the tree is n times the variance of returns over

each step.

So our first step has to be an understanding of the returns per step of the binomial tree.

Over each step, the asset returns u with probability p and d with probability 1− p. Thus,

the log-returns in each step are

 
ln u, with probability p

ln d, with probability 1− p
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This gives us:

Expected log-return per step = p ln u + (1− p) ln d

Variance of log-returns per step = p(1− p) [ln u − ln d]2

Summing these returns over n steps,

Expected log-return over n steps = n[p ln u + (1− p) ln d]

Variance of log-returns over n steps = np(1− p) [ln u − ln d]2

To match this mean and variance with those of the lognormal, we must choose u, d, and

p so that the following equalities hold at least approximately:

n[p ln u + (1− p) ln d] = μT (13.12)

np(1− p)[ln u − ln d]2 = σ 2T (13.13)

Equivalently, dividing through by n in both equations, we want

p ln u + (1− p) ln d = μh (13.14)

p(1− p)[ln u − ln d]2 = σ 2h (13.15)

Expressions (13.14) and (13.15) give us two equations in three unknowns. Obviously,

there are multiple solutions to these equations. Two of particular interest are highlighted

below.

The Cox-Ross-Rubinstein Solution
The Cox-Ross-Rubinstein (CRR) solution to parametrizing the binomial model is to take

u = eσ
√
h (13.16)

d = 1

u
= e−σ

√
h (13.17)

p = 1

2
+ 1

2

 μ
σ

 √
h (13.18)

A simple calculation shows that under (13.16)–(13.18), we obtain

p ln u + (1− p) ln d = μh (13.19)

so the requirement (13.14) is met exactly. Moreover,

p(1− p) [ln u − ln d]2 = σ 2h − μ2h2 (13.20)

For large values of n, h becomes a small fraction, so terms of the order of h2 become

smaller still. This means the variance requirement (13.15) is approximately met, and the

approximation becomes more accurate the larger is the value of n. Indeed, as n →∞, the

entire binomial distribution with parameters given by the CRR solution (13.16)–(13.18)

converges to a lognormal distribution with mean μT and variance σ 2T .

The CRR solution has some properties worth emphasizing. First, the CRR tree is “cen-

tered” on S. Since ud = 1 in the CRR solution, an up move followed by a down move

always brings us back to the initial price. Second, in the CRR solution, u and d depend only

on a single parameter σ . This is important because the probability p plays no role in pricing

derivatives in a binomial model; only u and d (and the risk-free rate) matter. Thus, the CRR

tree can be implemented and options priced based on knowledge of σ alone.
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The Jarrow-Rudd Solution
The Jarrow-Rudd (JR) solution to parametrizing the binomial model is to take

u = eμh+σ
√
h (13.21)

d = eμh−σ
√
h (13.22)

p = 1

2
(13.23)

It is easy to check that under the JR solution, the requirements (13.14) and (13.15) are

met exactly. And, indeed, once again, as n → ∞, the entire binomial distribution with

parameters given by the JR solution (13.21)–(13.23) converges to a lognormal distribution

with mean μT and variance σ 2T .

A seeming disadvantage of the JR solution is that the parameters u and d depend on

both μ and σ , so the mean expected log-return is also required to implement the tree. One

way around this problem, commonly adopted in using this solution, is to approximate the

risk-neutral distribution of the asset returns rather than the actual distribution. In this case,

as we have seen in (13.11) above, μ depends on only the risk-free rate and σ .

Other Possibilities?
Since we have two equations in three unknowns, many other solutions are, of course,

possible. For example, we could choose the parameters of the tree so that the risk-neutral

probability implied by the parameters is equal to 1/2. Recall that the risk-neutral probability

is given by

q = R − d

u − d
(13.24)

where R is the gross rate of interest per step of the binomial tree. The parameter R may be

readily computed from knowledge of the T -year interest rate. For example, if the T -year

interest rate in continuously compounded terms is r (i.e., an investment of $1 grows to erh

in T years), then R is given by

R = exp{rh} (13.25)

Using the approximation ex ≈ 1+ x (which is a good approximation for small values of

x), it is easily seen that the risk-neutral probabilities under the CRR and JR solutions are,

respectively,

qCRR =
1

2
+ 1

2

r

σ

√
h

and

qJ R =
1

2
+ 1

4
σ
√
h

In each case, these probabilities converge to 1/2 as h → 0. But if we want q to be exactly

equal to 1/2 for a given value of h, then we must have

R − d

u − d
= 1

2

which is the same thing as

u + d = 2R (13.26)

Expression (13.26) gives us a third equation in the unknowns u and d. In conjunction with

(13.14) and (13.15), this gives us a three-equation system in the three unknowns u, d, and
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p. In the solution to this three-equation system, the risk-neutral probability is guaranteed

to be 1/2.

Does It Matter Which Solution We Use?
To an extent, no. As long as all the solutions converge to the lognormal distribution, they also

resemble each other for large values of n. However, the pace and manner of the convergence

can be quite different.

Figure 13.2 illustrates this point. The upper panel of the figure considers a call option

priced on a binomial tree using the CRR approximation of the lognormal. The lower panel

uses the JR approximation. In either case, the lognormal distribution has a volatility of

40%, the maturity of the option is taken to be one year, the risk-free rate is 5% per year in

continuously compounded terms, the initial stock price is 100, and the call is taken to be

at-the-money. In both panels, the horizontal axis is the number of steps used in the binomial

tree, and the vertical axis is the option price obtained from the tree.

FIGURE 13.2
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The option price in both panels converges to the Black-Scholes price, which for the

given parameters, works out to marginally under 18.023. However, as the figure shows, the

manner of convergence is quite different. The CRR solution oscillates between over- and

under-approximations of the limit price with the oscillations gradually dampening as the

number of steps in the binomial tree increases. The over- and under-approximations are

almost symmetric, so their average converges very rapidly to the Black-Scholes price. For

example, with n = 21 and n = 22, the option prices on the tree are 18.199 and 17.847,

which represent significant over- and under-estimates of the Black-Scholes price. However,

the average of the two is 18.023, almost exactly the limit price. The JR convergence pattern

is more complex.

13.4 Computer Implementation of the Binomial Model

Implementing the binomial model involves repeated discounting of expected cash flows of

the option from maturity to the present on a discrete time binomial tree. This process, which

we described in the last chapter, is called “backward recursion” or “backward (or backwards)

induction.” In general notation and in any discrete model (binomial or other), it requires the

following calculation for a European option, repeated from the terminal nodes on the tree,

backward in time, until we reach the present time (time zero).

Ct = E
 
e−rhCt+h

 
(13.27)

where t denotes time, h is the discrete time interval (in years) between periods on the

binomial tree, r is the risk-free interest rate expressed in continuously-compounded and

annualized terms, and E[·] denotes expectations under the risk-neutral probability. We put

the interest rate inside the expectation to allow for the possibility that it may be changing

over time. Specialized to the binomial case, expression (13.27) may be rewritten as

Ct =
1

R
[q Cu

t+h + (1− q) Cd
t+h] (13.28)

Here, q is the risk-neutral probability of an up move, Cu
t+h is the option value at t + h if the

tree branches upward, Cd
t+h is the option value at t + h if the tree branches downward, and

R is the constant per-period gross rate of interest.

Recursion
In mathematics, recursion refers to a function that is defined in terms of itself. More pre-

cisely, in a recursion, the function’s value for some initial state is specified exogenously. The

function then calls itself, defining successive values from previous ones, until a specified

terminal point is reached.

A simple example of a recursion is the factorial function, f (n) = n! = 1× 2× · · · × n.

The initial value, f (1) is specified by f (1) = 1, and successive values are defined by

f (k) = k × f (k − 1) until we reach f (n).

The process of identifying the initial price of an option also involves a recursion. We

begin with its terminal payoffs

CT = g(ST )

where the exact form of g(·) depends on the option in question. For example, if the security

is a call with strike K , then g(ST ) = max{ST − K , 0}; if it is a put with strike K , then

g(ST ) = max{K − ST , 0}; or if it is a long forward with delivery price F , then g(ST ) =
ST − F . Then, we work backwards through the tree using (13.28), which defines the time-t

price of the option in terms of its time-(t + h) prices. The procedure terminates when we

reach the current time t = 0.
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Implementing the Recursion
Implementing this recursion on a computer is not hard. Let the initial stock price be S, the

annualized stock volatility be σ , the option strike price be K , and the number of periods

on the tree be n. Suppose we use the CRR solution to parametrizing the binomial tree. The

entire system of equations is:

h = T

n

u = exp(σ
√
h)

d = exp(−σ
√
h) = 1

u

R = e−rh

q = R − d

u − d

S0 = S

Su
t+h = uSt

Sd
t+h = dSt

CT =
 

max[0, ST − K ] for calls

max[0, K − ST ] for puts

Ct =
1

R
[q Cu

t+h + (1− q) Cd
t+h]

Here is Octave code to implement this recursion:

%Recursive program to price options

function w = crr_rec(s,k,t,v,r,pc,n);

if n==0;

if pc==1; optval=max(0,s-k); end;

if pc==0; optval=max(0,k-s); end;

else

h = t/n;

u = exp(v*sqrt(h));

d = exp(-v*sqrt(h));

R = exp(r*h);

q = (R-d)/(u-d);

optval = (q*crr_rec(s*u,k,t-h,v,r,pc,n-1) + ...

(1-q)*crr_rec(s*d,k,t-h,v,r,pc,n-1))/R;

end;

w = optval;

The tree underlying the option is represented as a recursion on the third- and fourth-last lines

of the program. This line where optval is computed contains, therefore, a recursion over

the option price and embeds another recursion in the underlying stock price as well. Note

carefully how the boundary condition is implemented in this model. Within the recursion

line is yet another (trivial) recursion in time where we count down to maturity. When there

are no remaining periods (n==0), the program ignores the recursion and implements the

terminal payoff conditions in lines 4–5 of the program.
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As an example, we can run the program and do three things: (a) price a call, (b) price

a put, and (c) check whether put-call parity holds so that we can assure ourselves that the

model works. Here is the Octave output:

octave:1> callopt = crr_rec(50,52,0.5,0.3,0.03,1,10)

callopt = 3.7553

octave:2> putopt = crr_rec(50,52,0.5,0.3,0.03,0,10)

putopt = 4.9812

octave:3> callopt - putopt

ans = -1.2258

octave:4> 50 - 52*exp(-0.03*0.5)

ans = -1.2258

We used an initial stock price of $50, strike of $52, maturity of a half year, σ = 0.3,

r = 0.03, and n = 10 (10 periods in the tree). Note that put-call parity holds exactly.

The implementation remains exactly the same if we choose to adopt the JR form of the

binomial model. Only the definitions for u and d in the program would require modification.

The Problem with Recursion
While recursion is easy to implement, it is not the most efficient way to implement the

binomial tree because the recursion does not take advantage of the fact that the CRR tree is

a recombining one. Think for a moment about what happens when we start the recursion.

The initial node calls upon the two succeeding nodes, which in turn call upon two nodes

each, and so on. Hence, after two steps, four nodes are called, even though there are only

three distinct nodes after two periods in the recombining binomial tree. In a recursion, since

the computational effort is proportional to the number of nodes generated in the calculation

(which is 2n for an n-period model), the computational effort can blow up. Also, from

a technical point of view, recursions within a computer are held in memory (informally

speaking) on a recursion stack, and there are sheer physical limitations on the size of the

stack, resulting in further slowdowns.

Motivated by this, we next look at writing a program to implement binomial option

pricing on a tree using a two-dimensional array representation instead of a recursion. But

note that recursion is still quite an efficient approach when working with models that do not

result in recombining trees.

Recombining Tree Models
Recall that a binomial tree is said to be recombining if an up move followed by a down move

leads to the same price as a down move followed by an up move. If u and d are constant and

do not change over the tree, then the binomial tree will always be recombining, as we noted

in Chapter 12 (see Section 12.2). Both the CRR and JR solutions lead to recombining trees.

With a recombining tree, the entire tree can be represented in a two-dimensional

(n + 1) × (n + 1) lattice. We describe how to create the lattice for the evolution of stock

prices, and then overlay on this another lattice for the option values.

A typical cell in the stock price lattice is denoted S( j, t). The index t keeps track of time.

From S( j, t) come two nodes at time t + 1:

S( j, t + 1) = u × S( j, t)

S( j + 1, t + 1) = d × S( j, t)

Thus, for example:

• At the initial node, there is only one possible price, so we have a single price S(1, 1) = S.
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FIGURE 13.3
The Recombining Tree

S (1, 1) S (1, 2)

S (2, 2) S (2, 3)

S (3, 3)

S (1, 3) S (1, 4)

S (2, 4)

S (3, 4)

S (4, 4)

…

…

…

…

…

• After one period, there are two possible prices S(1, 2) = uS(1, 1) and S(2, 2) =
dS(1, 1).

• After two periods, there are three possible prices, S(1, 3), S(2, 3), and S(3, 3), with

S(1, 3) = uS(1, 2) S(2, 3) = dS(1, 2) = uS(2, 2) S(3, 3) = dS(2, 2)

The tree is pictured in Figure 13.3. Note that the tree uses only the upper triangle of the

lattice.

Programming this tree is not difficult. The Octave code for it is shown below. The

equations of motion of the model are exactly as we had in the recursion section except that

in the program, we replace the forward propagation of the recursion system with backward

recursion on the tree.

%CRR BINOMIAL TREE WITH DIVIDENDS

%s: stock price

%k: strike

%t: maturity

%v: volatility

%rf: risk free rate

%div: proportional dividend yield

%pc: call=1, put=0

%ae: american=1, european=0

%n: no of steps in the tree

function crrval = crr_div(s,k,t,v,rf,div,pc,ae,n);

%BASIC SET UP

h = t/n;

u = exp(v*sqrt(h));

d = exp(-v*sqrt(h));

r = exp(rf*h);

y = exp(div*h)-1;

q = (exp((rf-div)*h)-d)/(u-d);
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%PREPARE STOCK TREE

stktree = zeros(n+1,n+1);

divtree = zeros(n+1,n+1);

stktree(1,1) = s;

divtree(1,1) = 0;

for t=2:n+1;

stktree(1,t) = stktree(1,t-1)*u;

divtree(1,t) = stktree(1,t)*y;

for j=2:t;

stktree(j,t) = stktree(j-1,t-1)*d;

divtree(j,t) = stktree(j,t)*y;

end;

end;

%TERMINAL PAYOFFS

optval = zeros(n+1,n+1);

pvdiv = zeros(n+1,n+1);

for j=1:n+1;

if pc==1; optval(j,n+1)=max(0,stktree(j,n+1)-k); end;

if pc==0; optval(j,n+1)=max(0,k-stktree(j,n+1)); end;

pvdiv(j,n+1) = divtree(j,n+1);

end;

%PRICE OPTION BY BACKWARD RECURSION

for t=n:-1:1;

for j=1:t;

pvdiv(j,t) = (1/r)*(q*pvdiv(j,t+1)+(1-q)*pvdiv(j+1,t+1));

optval(j,t) = (1/r)*(q*optval(j,t+1)+(1-q)*optval(j+1,t+1));

if ae==1;

if pc==1;

optval(j,t) = max(optval(j,t),stktree(j,t)+pvdiv(j,t)-k);

else

optval(j,t) = max(optval(j,t),k-stktree(j,t)-pvdiv(j,t));

end;

end;

pvdiv(j,t) = pvdiv(j,t) + divtree(j,t);

end;

end;

crrval = optval(1,1);

The program is compact and easy to decipher. If we use the same parameters as we did

in the recursion example, we get precisely the same values for option prices (as indeed, we

must):

octave:5> callopt = crr_div(50,52,0.5,0.3,0.03,0,1,0,10)

callopt = 3.7553

octave:6> putopt = crr_div(50,52,0.5,0.3,0.03,0,0,0,10)

putopt = 4.9812

octave:7> callopt - putopt

ans = -1.2258

octave:8> 50 - 52*exp(-0.03*0.5)

ans = -1.2258
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American Options
Both schemes described above, recursion and trees, look at European options. To extend the

analysis to American options, we need to add just one additional line to the programs. In the

line below the optval calculation, we need to check whether the value from early exercise

of the option is higher than the continuation value. The following program statement in the

recursion model does the trick (for calls):

optval = max(s-k,optval)

In the binomial tree, we add

optval(j,t) = max(s(j,t)-k,optval(j,t))

Analogous changes for puts are straightforward.

Convergence
It is also easy to use the functions to examine how the model converges. As we increase

n, the price should converge to the Black-Scholes model value. Here is a simple snippet of

program code to see this.

for k=1:3;

fprintf(’%7.0f %8.3f \n’,10^k,crr(50,52,0.5,0.3,0.03,1,10^k));

end;

The code takes n in powers of 10 up to 1,000 periods on the tree and prints out the results

in a formatted way. Note the formatting commands; they may be useful in your working

with Octave. We get

10 3.755

100 3.685

1000 3.690

The Black-Scholes option pricing formula gives the value of the option as $3.690.

13.5 Exercises 1. Suppose the distribution of St is given to be lognormal:

log

 
St

S

 
∼ N

 
μt , σ 2t

 

where μ = 0.10 and σ = 0.20. Given that S = 60, calculate 95% confidence intervals

for the price of St three months from today.

2. Repeat Question 1 with μ = 0.10 and σ = 0.10.

3. Suppose you wish to approximate the distribution of a stock price three months from

now using a binomial tree with 100 steps. Suppose also that the stock price distribution

is given to be lognormal with μ = 0.04 and σ = 0.40. What values would you use for

the parameters of the binomial model?

4. Repeat Question 3 but with μ = 0.20 and σ = 0.20.

5. Suppose the price St of a stock follows a lognormal distribution with μ = 0.07 and

σ = 0.30. What are the expected simple returns on the stock over a three-month

horizon?

6. Assume the S&P 500 index follows a lognormal distribution with a volatility of 25%.

Suppose the expected simple returns on the index over a one-year horizon are 8%. What

is the value μ of the annual expected log-return?
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7. If the continuously compounded return on a stock is normal, then why is the stock price

distribution lognormal?

8. If the continuously compounded return on a stock worth $1 currently for a preset interval

of time is distributed normally as follows: r ∼ N (μ, σ 2) ≡ N (0.1, 0.22), then what are

(a) the expected price of the stock after one interval and (b) the variance of the stock

price?

9. (Technical) Suppose that the continuously compounded returns in each period are normal

but are not always independent from period to period. Will the final stock price after all

periods be lognormal?

10. (Technical) In binomial tree models, as we shrink the time interval on the tree, will the

final return distribution of the stock price always converge to the normal distribution?

11. For a binomial tree with the probability of 0.01 of an outcome of 1 and a probability of

0.99 of an outcome of 0, what are the mean and variance of the payoff? Intuitively, what

do you learn from this analysis?

12. For a binomial tree with equity returns continuously compounded with σ = 0.2 and

interest rates quarterly compounded at annual rate r = 0.03, what is the upshift in stock

price, downshift, and the risk-neutral probability of the upshift if the interval on the tree

is quarterly?

13. Suppose the annualized volatility of a stock is σ = 0.30. The mean return is μ = 0.10.

The risk-free rate is constant for all maturities at 2%. Letting the time interval h increase

in monthly increments (1/12 of a year), how does the risk-neutral probability of an up

move in the stock price change when using the CRR model? Why do we see this pattern?

14. If the standard deviation of daily stock returns is 2%, what is the volatility of annual

stock returns?

15. What is the key assumption that supports converting weekly standard deviation into an

annual standard deviation by multiplying it by
√

52?

16. You are constructing a 100-period binomial tree to represent a 91-day (≈ 0.2493-year)

horizon. The risk-free rate for the given horizon is 4% in annualized continuously com-

pounded terms. The underlying asset has a volatility of 38%. What are the parameters

of the binomial tree if you use the JR solution? What is the risk-neutral probability in

the constructed tree?

17. Rederive the risk-neutral probability in the JR model using general algebra. Is the prob-

ability always exactly 1
2
?

18. This problem will require a spreadsheet or programming effort. The initial stock price is

given to be $100. We wish to price European calls and puts with strike price $100. The

option maturity is T = 1 year, and the risk-free rate of interest is 5% per annum. If the

volatility is σ = 0.40, then price the call and the put using the JR model. Assume you

use a binomial tree comprising n = 30 periods.

19. Using the same parameters as in the problem above and the same JR tree, what are the

prices of American calls and puts?

20. In Problem 18, check that your solution satisfies put-call parity exactly.

21. Rework Problem 18 with exactly the same parameters but use the CRR model instead.

Compare your European put and call prices with those from the JR model. Also price

the options using the Black-Scholes model and compare those prices as well.

22. You are given the following parameter values and are required to price calls using both

the JR model and the CRR model for different values of n, the number of periods on

the tree. The given values are S = 100, K = 100, T = 1, σ = 0.4, and r = 0.05. For
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varying values of n, running from 5 to 100, plot the values of the call option obtained

from the two models. How different are the convergence rates?

23. Repeat the previous question for the CRR model only, but change the strike price to $90,

i.e., the call option is deep in-the-money. What happens to the plot? Then repeat this

with the strike equal to $110, i.e., when the option is out-of-the-money. What happens

to the plot?

24. (Technical) Prepare program code in Visual Basic for Applications (VBA) in Excel

(i.e., macro programming) to price options using a recursive implementation of the

binomial tree. This exercise is meant to give you some experience with recursive pro-

gramming structure.

25. Is it possible to build a recombining tree if the interest rate is not constant, nor stochastic,

but a deterministic function of time, i.e., r (t)?
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Appendix 13A

Estimating Historical Volatility
Under the assumptions of the lognormal distribution, the variance of log-returns over T years

is simply T times the variance over one year. So, one way to estimate volatility (which is the

standard deviation of annual log-returns) is to estimate the standard deviation of daily log-

returns and then multiply this by the appropriate factor to convert it into an annualized form.

So, the first step in the process is to gather information on daily returns. Suppose we are

given the information in Table 13.1. Let E[ ] and E[ 2] denote, respectively, the expectation

of daily log-return and the expectation of (daily log-return)2, and let V [ ] and σ ( ) be the

variance and standard deviation, respectively, of daily log-returns. We compute:

E[ ] = 1

N

N 
i=1

 i

E[ 2] = 1

N

N 
i=1

 2
i

V [ ] = E[ 2]− (E[ ])2

σ [ ] =
 

V [ ]

From σ [ ], we can obtain the annualized volatility σ . If one day denotes a fraction  of

a year, then, by definition we have σ [ ] = σ
√
 , so finally,

σ = σ [ ]× 1√
 

(13.29)

One last question is important before we can take this to the data: what exactly is  ?

The question is a tricky one. If trading took place continuously throughout the year, then

we could gather closing price information for every single day and simply use  = 1/365.

However, in practice, we do have weekends and other holidays during which exchanges

are closed, and we have no closing prices for those days. Moreover, empirical evidence

gathered by Fama (1965), French (1980), and others suggests that markets are less volatile

over holidays than over trading days (so that, for example, the variance of returns from

Friday’s close to Monday’s close is much less than three times the volatility observed from

close to close when there are no intervening holidays).

What is commonly done in practice, therefore, is to measure time in trading days rather

than calendar days and to ignore holidays in the calculation. Thus, the gap from Friday to

Monday is treated as just one day. Since there are typically around 252 trading days in a year,

we estimate daily volatility and multiply this figure by
√

252 to get annualized volatility.

An alternative would be to use weekly rather than daily data and to multiply the estimated

weekly standard deviation by
√

52 to get annualized volatility, but this does not use all of

the available data.

TABLE 13.1 Daily

Closing Prices and

Log-Returns

Day Closing Price Daily Log-Return

0 S0 –
1 S1  1 = ln(S1/S0)
2 S2  2 = ln(S2/S1)
3 S3  3 = ln(S3/S2)
.
.
.

.

.

.
.
.
.

N SN  N = ln(SN/SN−1)
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Example 13.3 Consider the information on closing stock prices of Cisco stock in Figure 13.4. The first seven
columns represent data downloaded from http://finance.yahoo.com. (The full data set
goes back to 1990; only the last two months are shown here.) The last column is the daily
log-returns calculated from the adjusted closing prices (column 7).

Using 60 trading days’ worth of data (roughly three months, so one earnings cycle will
be covered), we can estimate the historical volatility of Cisco’s returns. From (13.29) and
setting  = 1/252, we obtain:

60-Day Historical Volatility = 27.08%

Of course, we can also use longer periods for the estimation. This would be particularly
useful if wewish to check the “representativeness” of the 60-day period. Using other horizons
results in the following numbers:

120-Day Historical Volatility = 30.10%
1-Year Historical Volatility = 27.99%
4-Year Historical Volatility = 28.57%

In light of these numbers, the figure of 27.08% estimated from 60 days of data looks
slightly low from a longer historical perspective but not excessively so. ■

FIGURE 13.4
Estimating Historical

Volatility: Data

Date Open High Low Close Volume Adj Close Log Returns

01/26/07 26.16 26.54 25.76 26.35 64449600 26.35 0.00495
01/25/07 26.93 26.95 26.16 26.22 55317400 26.22 −0.02523
01/24/07 26.23 26.95 26.19 26.89 63817000 26.89 0.03212
01/23/07 26.37 26.72 26.03 26.04 67695900 26.04 −0.01864
01/22/07 26.75 26.8 26.15 26.53 69421400 26.53 −0.00639
01/19/07 26.45 26.85 26.42 26.7 62266800 26.7 0.00941
01/18/07 27.13 27.15 26.27 26.45 80498300 26.45 −0.01984
01/17/07 27.86 28 26.89 26.98 108858000 26.98 −0.03854
01/16/07 28.59 28.59 28 28.04 75551500 28.04 −0.03090
01/12/07 28.54 28.97 28.45 28.92 54588000 28.92 0.00798
01/11/07 28.77 28.99 28.61 28.69 54602200 28.69 0.00035
01/10/07 28.27 28.73 28.21 28.68 50632400 28.68 0.00735
01/09/07 28.72 28.75 28.31 28.47 50488300 28.47 −0.00560
01/08/07 28.54 28.74 28.32 28.63 47936500 28.63 0.00560
01/05/07 28.44 28.57 28.05 28.47 62647800 28.47 0.00035
01/04/07 27.68 28.49 27.54 28.46 73012100 28.46 0.02598
01/03/07 27.46 27.98 27.33 27.73 64226000 27.73 0.01453
12/29/06 27.33 27.63 27.29 27.33 27125900 27.33 −0.00329
12/28/06 27.29 27.58 27.25 27.42 34817800 27.42 0.00439
12/27/06 27.3 27.5 26.83 27.3 25675600 27.3 0.00404
12/26/06 27.04 27.33 26.85 27.19 18185700 27.19 0.00961
12/22/06 27.34 27.42 26.93 26.93 27400500 26.93 −0.01328
12/21/06 27.5 27.6 27.22 27.29 32398900 27.29 −0.00366
12/20/06 27.68 27.7 27.38 27.39 31825400 27.39 −0.00872
12/19/06 27.47 27.76 27.3 27.63 38603100 27.63 0.00072
12/18/06 27.6 27.96 27.43 27.61 46255800 27.61 0.00181
12/15/06 27.43 27.77 27.33 27.56 66987100 27.56 0.00911
12/14/06 27.22 27.44 27.18 27.31 39441600 27.31 0.00220
12/13/06 27.34 27.35 26.93 27.25 43170100 27.25 0.00626
12/12/06 27.12 27.4 26.76 27.08 43065500 27.08 −0.00111
12/11/06 26.9 27.48 26.85 27.11 43035200 27.11 0.00481
12/08/06 26.88 27.15 26.75 26.98 29495600 26.98 0.00371
12/07/06 27.2 27.3 26.88 26.88 31417900 26.88 −0.00778
12/06/06 27.12 27.27 26.95 27.09 34092600 27.09 0.00185
12/05/06 27.4 27.44 27 27.04 43080300 27.04 −0.00774
12/04/06 26.94 27.57 26.86 27.25 68450100 27.25 0.02076
12/01/06 26.95 27.08 26.45 26.69 47014700 26.69 −0.00821
11/30/06 27.02 27.05 26.8 26.91 45935300 26.91 −0.00630
11/29/06 27.05 27.3 26.9 27.08 68137400 27.08 0.00185
11/28/06 25.62 27.13 25.59 27.03 108606500 27.03 0.04657
11/27/06 26.76 26.89 25.73 25.8 63803200 25.8 −0.03952



Chapter 14
The Black-Scholes
Model

14.1 Introduction

Easily the best known model of option pricing, the Black-Scholes model is also one of the

most widely used models in practice. It forms the benchmark model for pricing options

on a variety of underlying assets including equities, equity indices, currencies, and futures.

While not designed as a model of interest rates, a variant of the Black-Scholes model, the

Black model, is nonetheless commonly used in practice to price certain interest-rate options

like caps and floors.

Technically, theBlack-Scholesmodel ismore complex than the binomial or other discrete

models because it is set in continuous time, i.e., prices in themodelmay change continuously

rather than only at discrete points in time. Modeling continuous-time uncertainty requires

the use of much more sophisticated mathematics than we have employed so far. A first

question we should ask ourselves is: why bother? The binomial model is a flexible one

and is transparent and easy to work with. What do we gain from the additional fancy

mathematical footwork?

It turns out that there is a point. The Black-Scholes model provides something almost

unique at the output level: option prices in the model can be expressed in closed-form, i.e.,

as particular explicit functions of the parameters. There are many advantages to having

closed-forms. Most importantly, closed-forms simplify computation of option prices and

option sensitivities and facilitate developing and verifying intuition about option pricing

and hedging behavior.

In the initial segment of this chapter, we focus on options on equities, the context in

which the Black-Scholes model was first developed. In later sections, we examine how the

model may be modified to accommodate options on indices, currencies, and futures.

The Main Assumption: Geometric Brownian Motion
The main assumption of the Black-Scholes model concerns the evolution of the price of the

underlying stock.

Assumption 1. The stock price evolves according to geometric Brownian motion.

What is a “geometric Brownian motion”? A formal definition is given in Chapter 15

(see Section 15.2), but shorn of technical details, it simply requires that two conditions be

satisfied:

1. Returns on the stock over any holding period have a lognormal distribution with mean

μ and constant volatility σ : if S0 denotes the current stock price and ST the price in T
308
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years for some arbitrary T , then

ln

 
ST

S0

 
∼ N (μT , σ 2T )

2. Stock prices must evolve continuously; they cannot jump (the market cannot “gap”).

Is this a good assumption?Froman analytical standpoint, undoubtedly.Aswehave seen in

the last chapter, the lognormal inherits many of the properties of the normal distribution that

make the latter easy to work with. But from an economic standpoint, the evidence is mixed.

Casual observation suggests—and formal analysis confirms—that the volatility of stocks

andmarkets is typically not constant over time.Markets do also “gap,”most often in response

to unexpected good or bad news. More generally, empirical return distributions appear to

deviate in systematic ways from the lognormal assumption. Of course, how important these

deviations are for option prices is ultimately an empirical question. We revisit and discuss

these issues further in Section 14.8 below.

Other Assumptions
The second assumption of the Black-Scholes model concerns interest rates. In keeping with

the continuous-time setting, interest rates are quoted in continuously-compounded terms.

As with the binomial model, the Black-Scholes model assumes that

Assumption 2. The risk-free rate of interest, denoted r , is constant.

The assumption that stock prices must evolve continuously rules out discrete dividend

payments on the stock: such dividends drive awedge between cum-dividend and ex-dividend

stock prices, and so create discontinuous stock prices. For emphasis, we state this as an

explicit assumption:

Assumption 3. There are no dividends on the underlying stock during the life of the option.

The zero-dividend requirement is obviously a very restrictive one; it places a severe

limitation on the stocks to which the model may be applied. Fortunately, it turns out that it

is not too hard to modify the model to handle “predictable” discontinuities such as those

caused by dividends. (Random jumps are another matter.) We describe the extension in

Section 14.6.

Finally, the technical complication of working in continuous time makes it impossible

to solve for option prices in closed-form if early exercise is permitted. Thus, the analysis in

the rest of this chapter applies only to European options. Even though this is a restriction

on the kinds of options that may be priced in closed-form and not a restriction on the model

itself, we state it separately as an assumption to highlight its importance:

Assumption 4. All options are European in style with maturity date T and strike price K .

Besides these, the model makes the usual smoothness assumptions concerning the mar-

ket: no taxes, no transactions costs, no restrictions on short sales, borrowing or lending, etc.

Notation
Table 14.1 summarizes the notation we use. Note that we denote current time by t and the

horizon of the model (i.e., the maturity date of the option) by T . Thus, the time left to

maturity is T − t . The stock price is denoted S with a time subscript; thus, St denotes the

current price and ST the price at maturity. The remaining notation is that defined above. C

and P will denote the prices of the call and put option, respectively.
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TABLE 14.1
Black-Scholes

Notation

Notation Meaning

t Current time
T Maturity date of option
St Current stock price
ST Stock price at T
K Strike price of option
r Riskless interest rate
μ Expected log-return on stock (annualized)
σ Volatility of stock returns (annualized)
C Price of call
P Price of put

Order of Analysis
Through the first part of this chapter, we focus on the theoretical side of the Black-Scholes

setting. We begin with the Black-Scholes formulae under the assumptions listed above.

Then we discuss generalizing the formula to allow for payouts in the form of either discrete

dividends (as on a single stock) or a continuous yield (as on a stock index). Using these

generalizations,we describeBlack-Scholes formulae for pricing options on dividend-paying

stocks, stock indices, currencies, and futures.

The second part of the chapter examines empirical performance of the model. We define

the important notion of implied volatility and describe the implied volatility skew that is

typically observed in most financial markets. As we shall see, the skew should not exist

under the Black-Scholes assumptions, so its presence raises questions about the model’s

empirical fit. We relate the skew to shortcomings in the model’s assumptions and discuss

possible resolutions and extensions.

We conclude the chapter with a discussion of the VIX and derivatives on the VIX.

The VIX is an index of implied volatilities extracted from options on the S&P 500 index.

The VIX has become well known as the US market’s “fear index.” There are futures and

options available on the VIX that enable one to trade market volatility “directly” rather than

indirectly using (for example) straddles on the S&P 500 index. Appendix 14B discusses

two related over-the-counter products, volatility swaps and variance swaps. Volatility and

variance swaps are cash-settled forward contracts on the realized volatility and the realized

variance of returns, respectively.

14.2 Option Pricing in the Black-Scholes Setting

Wecan recover option prices in the Black-Scholesmodel by either replication or risk-neutral

pricing, methods which were outlined in earlier chapters. There are also other, more exotic,

approaches we could adopt. Since the lognormal model is the limit as n goes to infinity

of an n-period binomial model, we could look at the behavior of option prices obtained

from n-period binomial models and see their limiting behavior as n gets large. A fourth

possibility (and one used in the original paper of Black and Scholes (1973) as an alternative

derivation of their formula) is to use a CAPM-based approach.

All of these approaches are mathematically much more sophisticated than option pricing

in the binomial model. The additional work is mainly technical in nature, so there is not

much insight to be gained by it. Therefore, we present the details of the derivations in a

separate chapter (Chapter 15, Sections 15.3–15.5). Here, we focus on the structure of the

formulae and their intuitive content. We begin with a description of the formulae.



Chapter 14 The Black-Scholes Model 311

The Black-Scholes Formulae
The arbitrage-free prices of the call and put in theBlack-Scholesworld are given respectively

by

C = St N (d1) − PV (K ) N (d2) (14.1)

P = PV (K ) N (−d2) − St N (−d1) (14.2)

where

d1 =
1

σ
√
T − t

 
ln

 
St

K

 
+ (r + 1

2
σ 2)(T − t)

 
(14.3)

d2 = d1 − σ
√
T − t (14.4)

PV (K ) = e−r (T−t)K is the present value of K receivable at T (14.5)

and N (·) is the cumulative standard normal distribution, i.e., for any x , N (x) is the proba-

bility under a standard normal distribution of an observation less than or equal to x .

These expressions appear menacing the first time one sees them, but their structure and

composition can be intuitively understood by relating them to the replication and risk-neutral

pricing approaches. The price of an option, in general, is the difference between the present

value of what one expects to receive from exercise of the option and the present value of

what one expects to pay on account of exercise. The price of the call in the Black-Scholes

model has the form

C = {St × [Term involving d1]} − {PV (K ) × [Term involving d2]}

• The first term in braces represents the present value of the stock the call holder expects

to receive upon exercise. In the Black-Scholes model, this component happens to have

an attractive decomposition: the replication approach shows us that N (d1) is the delta

of the call option in the Black-Scholes model, so the entire term is just the value of the

stock currently embedded in the call (the current price of the stock times the call delta).

• The second term in braces represents the present value of what the call holder expects to

pay upon exercise. It too has an attractive decomposition. Exercise of the call results in

a cash outflow of K , which viewed from today has a present value of PV (K ). The risk-

neutral pricing approach tells us that N (d2) is the risk-neutral probability of the option

finishing in-the-money, so the entire term is simply the present value of an outflow of K

at date T times the risk-neutral probability of this outflow.

The difference between these values (what you expect to receive and what you expect to

pay) is the Black-Scholes value of the call. Analogous statements hold for the put.

The material below elaborates on this by relating the Black-Scholes formula first to the

replication approach and then to the risk-neutral pricing approach.

Replication and the Black-Scholes Formula
We have seen in earlier chapters that replicating a call in general involves a long position

in the underlying (of size, say, c) and borrowing at the risk-free rate (an amount, say, Bc).

Since each unit of the stock costs St currently, the replicating portfolio costs St  c − Bc.

Since this must equal the cost of the call, we can write

C = St  c − Bc (14.6)
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The structure of this general representation (14.6) is identical to that of the Black-Scholes

call price (14.1). This is not a coincidence! As the comparison suggests, we do indeed have

 c = N (d1) and Bc = PV (K ) N (d2) (14.7)

In words, N (d1) is the delta of the call, and PV (K ) N (d2) is the amount of borrowing

required in a replicating portfolio.

Analogous statements are true for the put. In general, to replicate a put, we take a short

position in the underlying and invest at the risk-free rate. Denoting the position in the

underlying by  p and the investment by Bp, we may write

P = Bp + St  p (14.8)

Note that  p is a negative number since the stock position is a short one. Comparing this

general representation to the Black-Scholes formula (14.2) suggests that

 p = −N (−d1) and Bp = PV (K ) N (−d2) (14.9)

This is exactly correct. TheBlack-Scholes formula for the put is just the replicating portfolio

(14.9) substituted into the general pricing expression (14.8).

The full implication of these observations is worth restating for emphasis: the Black-

Scholes formula gives us a great deal more than just the option prices—it gives us the

complete replicating portfolios for the call and the put.

Black-Scholes via Risk-Neutral Probabilities
Further insight into the Black-Scholes formula can be obtained by considering the risk-

neutral pricing approach. The payoffs of the call at maturity are

max(ST − K , 0)

To identify the call value, we must take expectation of these payoffs under the risk-neutral

probability measure and discount at the risk-free rate. Let Et denote expectations under the

risk-neutral probability of time-T cash flows. (The subscript t emphasizes dependence of

these expectations on the current stock price St .) Then, the arbitrage-free price of the call

is

C = e−r (T−t) Et [max(ST − K , 0)]

Since the call pays nothing if ST < K , we can write the call price as

C = e−r (T−t) Et
 
(ST − K ) × I{ST≥K }

 
where I{ST≥K } is the indicator function that takes on the value 1 if ST ≥ K and zero otherwise:

I{ST≥K } =
 
1, if ST ≥ K

0, otherwise

For notational simplicity, we write just I for I{ST≥K }. Now, (ST − K ) × I = (ST × I ) −
(K × I ), and the expectation of the difference of two terms is just the difference of the

expectations, so

C = e−r (T−t) Et [ST × I ]− e−r (T−t) Et [K × I ] (14.10)

The second term on the right-hand side can be simplified. Intuitively, if you have to pay out

K whenever ST ≥ K , your expected payout is simply K times the likelihood that ST ≥ K .

So we can write

Et [K × I ] = K Probt (ST ≥ K ) (14.11)

Thus, using e−r (T−t)K = PV (K ), the call price (14.10) may be written as

C = e−r (T−t) Et [ST × I ]− PV (K ) Probt (ST ≥ K ) (14.12)
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From this to the Black-Scholes formula is simply a matter of grinding through the

expectations, which are tedious but not otherwise difficult (see Section 15.3). Specifically,

it can be shown that under the Black-Scholes assumptions,

e−r (T−t)Et [ST × I ] = St N (d1) (14.13)

Probt (ST ≥ K ) = N (d2) (14.14)

Equation (14.13) states that the present value of the stock that will be received from the

call upon exercise is equal to St N (d1). Equation (14.14) states that the probability that the

call finishes in-the-money is N (d2); it follows that the present value of the cash outflow that

is paid upon exercise of the call is equal to PV (K ) N (d2).

Analogous statements hold for the put option. In particular, N (−d2) works out to just

the risk-neutral probability of the put finishing in-the-money.

Warning

It must be emphasized that these are risk-neutral probabilities, not the actual probabilities.

That is, they are the probabilities taking the expected return on the stock to be the risk-free

rate. If the expected return on the stock exceeds the risk-free rate, then the actual probability

of the call finishing in-the-money will be higher than the risk-neutral probability (the stock

price grows faster than under the risk-neutral probability). Similarly, the actual probability

of the put finishing in-the-money will be lower than the risk-neutral probability.

14.3 Remarks on the Formula

The Black-Scholes formulae have two remarkable features that facilitate easy implementa-

tion:

1. Option prices depend on only five variables: S, K , r , T − t , and σ .

2. Of these five variables, two are contract variables (strike and maturity), and two are

market variables (stock price and interest rates). Only one—the volatility σ—is not

directly observable.

In particular, option prices do not depend on the stock’s expected returns, which are noto-

riously difficult to estimate reliably. That the option price does not depend on the stock’s

expected return is one of the unexpected surprises of the Black-Scholes model. Note that

this should not be taken to mean that the expected returns on the option are independent

of the expected returns on the stock; indeed, since the option is in many ways akin to a

leveraged position in the stock (see Section 11.4), its expected returns are affected directly

by the stock’s expected returns.

The Black-Scholes formulae represent arbitrage-free option prices under the model’s

assumptions. Thus, they can be used to take advantage of mispricing. They can also be used

to delta-hedge option positions. For example, suppose we have written a call option whose

current delta, using the Black-Scholes formula, is N (d1). To hedge this position, we take

a long position in N (d1) units of the underlying. Of course, dynamic hedging is required,

i.e., the hedge will have to be adjusted each time the delta of the underlying has changed.

Finally, itmust be stressed again that closed-form expressions of this sort for option prices

are rare. Nonetheless, such closed-form expressions exist in the Black-Scholes framework

only for European-style options. For example, closed-forms do not exist for American put

options. However, as we see later in the book, it is possible to obtain closed-form solutions

in the Black-Scholes setting for certain classes of exotic options, such as compound options,

digital options, and barrier options.
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14.4 Working with the Formulae I: Plotting Option Prices

The best way to gain familiarity with the formal and intuitive content of the Black-Scholes

formula is to work with it. This section describes how to use the Black-Scholes formula

to plot option prices. Such plots are particularly useful to get a feel for how option values

(or the option delta) react to changes in the model’s parameters. The next section discusses

working with the formula algebraically.

The existence of closed-forms makes it a simple matter to plot option prices in the

Black-Scholes model using a spreadsheet. Six easy steps are involved:

1. Input values for St , K , r , T−t , and σ .
2. Compute d1 = [ln(St/K ) + (r + σ 2/2)(T − t)]/[σ

√
T − t].

3. Compute d2 = d1 − σ
√
T − t .

4. Compute N (d1) and N (−d1).
5. Compute N (d2) and N (−d2).
6. Compute option prices.

C = St N (d1) − e−r (T−t)K N (d2)

P = e−r (T−t)K N (−d2) − St N (−d1)
In Excel, cumulative standard normal distribution values may be computed using the

NORMSDIST function. For any x , N (x) is given by NORMSDIST(x). One can also use

the more elaborate NORMDIST function that applies to any normal distribution (not just

the standard normal). In this case, N (x) is given by NORMDIST(x , 0, 1, 1).

Figure 14.1 illustrates a plot of Black-Scholes option prices. Four parameters are held

fixed in the exercise:

• The strike price is K = 100.

• The time-to-maturity is T − t = 6 months.

This figure plots call and put prices as the underlying stock price ranges between

72 and 128. The strike price of the options is 100, the time-to-maturity is six

months, the risk-free interest rate is 5%, and the volatility is 20%.

FIGURE 14.1
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• The annualized volatility of the stock price is 20% (σ = 0.20).

• The risk-free interest rate is 5%.

The figure plots call and put prices as the fifth parameter, the current price of the stock,

varies from 72 to 128. At a price of 72, the call is deep out-of-the-money, while the put is

deep in-the-money. At a price of 128, the call is deep in-the-money, while the put is deep

out-of-the-money.

Observe the nonlinear reaction of option prices to changes in the stock price. This is

evident visually in the curvature of the option prices as S varies. For example, when the

call is deep out-of-the-money, it reacts very little to a dollar change in the stock price—the

call pricing function is almost flat. When the call is deep in-the-money, it reacts almost

one-for-one to a change in the stock price—the slope of the call pricing function is almost

+1. (Of course, this slope of the call pricing function is just the option delta!) In the next

chapter, we will examine the implications of this nonlinearity in greater detail when we look

at the option “greeks.”

14.5 Working with the Formulae II: Algebraic Manipulation

To gain a theoretical understanding of how the Black-Scholes model’s parameters interact

with each other and how they influence option prices and the option delta, it is necessary to

work directly with the formulae. This section and Appendix 14A go through a number of

exercises with this objective in mind. Some of the exercises are simple ones; others (notably

those in Appendix 14A) are a bit more complex. In all cases, the aim is to improve the

reader’s “feel” for manipulating the Black-Scholes formula algebraically.

In principle, this material can be skipped without too much loss of continuity (or at least,

skimming through it should suffice for the sequel).Nonetheless,we strongly encourage read-

ers to take the effort to go through it carefully, since doing so will enhance general intuition

for working with options as well as theoretical understanding of the Black-Scholes formula.

The Functions ln and N(·)
Despite its apparent complexity, the Black-Scholes formula is not hard to work with al-

gebraically since it involves only two main functions: the natural log function ln and the

cumulative normal distribution N (·). (As one might guess, this is a consequence of our

assumption of lognormality of the returns distribution.) To understand the working of the

formulae, it is useful to keep the following properties of these functions in mind.

First, the natural log function ln. The function ln x is defined only for positive values of

x , and increases as x increases. At x = 0, we have ln x = −∞; at x = 1, we have ln x = 0;

and as x goes to +∞, ln x also goes to +∞:

ln 0 = −∞ ln 1 = 0 ln x →∞ as x →∞

Figure 14.2 displays a plot of the natural log function.

Next, N (·). N (x) is the probability under a standard normal distribution of an observation

less than or equal to x . The standard normal distribution is the normal distribution with a

mean of zero and variance of 1. Figure 14.3 displays N (x) with its familiar bell-shaped

curve.

Observations under a normal distribution can range from−∞ to+∞, so N (x) is defined

for all values of x . Since the standard normal is symmetric around its mean of zero, we have

N (0) = 1

2
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FIGURE 14.2
The Natural Log

Function ln x
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The figure below displays the density function of the standard normal

distribution. The density is symmetric around zero. The area under

the curve to the left of a point x , denoted N (x), is the likelihood of

observing an outcome less than or equal to x . The total area under

the curve is 1.
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As x goes to −∞, the probability of an observation smaller than x goes to zero, so N (x)

goes to zero. As x goes to+∞, we are looking at the probability of an observation less than

+∞, so N (x) goes to +1:

N (−∞) = 0 N (+∞) = 1

Here is one final and useful property of N (·). For any x , we have

N (x) + N (−x) = 1 (14.15)

To see this, note that the standard normal is symmetric around its mean zero. Pick any x .

Since x and−x are symmetric around themean, the area to the right of x (which is 1−N (x))

must be the same as the area to the left of −x (which is N (−x)). (See Figure 14.3.) This
means 1− N (x) = N (−x), which is (14.15).
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Put-Call Parity and the Black-Scholes Formulae
Since the Black-Scholes formulae concern European options, the Black-Scholes put price

can be derived from the call price using put-call parity. Put-call parity tells us that

P = C + PV (K ) − St

Substituting for C from the Black-Scholes formula (14.1) and rearranging, we obtain

P = St [N (d1) − 1]+ PV (K ) [1− N (d2)] (14.16)

Using (14.15) in (14.16) gives us

P = −St N (−d1) + PV (K ) N (−d2)
which is precisely the Black-Scholes put price (14.2).

Call Behavior and Depth in-the-Money
Consider a call. Intuitively speaking:

• As St becomes very small relative to K (i.e., “as St → 0”), the call becomes very likely

to lapse unexercised, so its replicating portfolio should go to the null portfolio, the one

that holds neither stock nor cash. In particular, the delta of the call should go to zero.

• As St becomes very large relative to K (“St →∞”), the call is almost sure to be exercised,

so the call holder is looking at paying K and receving one unit of the stock at maturity.

Thus, the replicating portfolio should now resemble a portfolio containing one unit of the

stock and a borrowing of PV (K ). In particular, the delta of the call should approach+1.
Does the Black-Scholes call formula exhibit this behavior? First, consider what happens

as St goes to zero. In this event, the ratio (St/K ) also goes to zero. This means

ln

 
St

K

 
→−∞

From the definition of d1 (see (14.3)), this means d1 also goes to −∞. If d1 goes to −∞,

so must d2. And this finally implies that both N (d1) and N (d2) go to zero. Put into a single

line, we have:

St

K
→ 0 ⇒ ln

 
St

K

 
→−∞ ⇒ d1, d2 →−∞ ⇒ N (d1), N (d2)→ 0

Since N (d1) goes to zero, the call delta goes to zero as required. Since N (d2) also goes to

zero, the replicating portfolio indeed converges to the null portfolio.

Now consider what happens as St →∞. We obtain the following chain of effects:

St

K
→∞ ⇒ ln

 
St

K

 
→∞ ⇒ d1, d2 →∞ ⇒ N (d1), N (d2)→+1

Since N (d1) goes to+1, the delta goes to+1, as required. Since N (d2) also goes to+1, the
amount of borrowing converges to just PV (K ). Thus, the replicating portfolio converges

to a long position of one unit of the stock and borrowing of PV (K ).

Put Behavior and Depth in-the-Money
What is the corresponding behavior of the put?

• As St becomes large relative to K , the put becomes increasingly likely to lapse unex-

ercised, so the replicating portfolio should resemble the null portfolio. In particular, the

put delta should go to zero.
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• As St becomes very small relative to K , the put is almost sure to be exercised, so the

put holder is looking at giving up the stock and receiving K at time T . The replicating

portfolio thus resembles one that has an investment of PV (K ) and a short position in

the stock. In particular, the put delta goes to −1.
From what we have already worked out for the call, we can show that the put too meets

these requirements. As St becomes very large, we have seen that d1 and d2 go to +∞, so

−d1 and −d2 must each go to −∞. This means N (−d1) and N (−d2) both go to zero, so

(a) the delta of the put (which is −N (−d1)) goes to zero, and (b) the replicating portfolio

converges to the null portfolio. Put into a single line of notation:

St

K
→∞ ⇒ −d1, −d2 →−∞ ⇒ −N (−d1)→ 0, N (−d2)→ 0

Similarly, as St goes to zero, d1 and d2 go to −∞, so −d1 and −d2 go to +∞. This

means the delta of the put, −N (−d1), goes towards −1. Moreover, N (−d2) goes to +1,
so the replicating portfolio resembles an investment of PV (K ) and a short position of one

unit in the stock. In notational terms:

St

K
→ 0 ⇒ −d1, −d2 →+∞ ⇒ −N (−d1)→−1, N (−d2)→+1

Thus, the Black-Scholes put formula behaves as intuition suggests.

Option Values as Maturity Approaches
As maturity approaches (T − t → 0), the call value should converge to ST − K if ST > K ,

or to zero if ST < K . We show that the Black-Scholes call formula meets these properties.

The term d1 can be written as

d1 =
1

σ
√
T − t

ln

 
St

K

 
+ 1

σ

 
r + 1

2
σ 2

 √
T − t

The second component on the right-hand side always goes to zero as T − t → 0. What

about the first component? As maturity approaches, St gets closer to ST (remember, there

are no jumps in the price), so ln(St/K ) converges to ln(ST /K ). Since this is divided by√
T − t , the entire term goes to either +∞ or −∞ depending on whether ln(ST /K ) is

positive or negative. Thus:

• If ST > K , then ln(ST /K ) > 0, so d1 →+∞ as T − t → 0.

• If ST < K , then ln(ST /K ) < 0, so d1 →−∞ as T − t → 0.

Now, the difference between d1 and d2 is σ
√
T − t , which goes to zero as maturity

approaches. So d2 has the same limiting values as d1. Finally, note that PV (K ) converges

to K as we approach maturity. Putting these together, we have the following:

• If ST > K , then N (d1), N (d2)→+1. So the call value converges to ST − K .

• If ST < K , then N (d1), N (d2)→ 0. So the call value converges to 0.

When Is the Black-Scholes Call Delta Equal to 1/2?
This is a commonly encountered question: when is an option delta equal to 1/2 (i.e., +1/2
for a call or−1/2 for a put)? The first instinct is to say “when the option is at-the-money,” but

this is easily seen to be incorrect. If a call is at-the-money, we have St = K , so ln(St/K ) = 0.

This means

d1 =
1

σ
√
T − t

 
0+ (r + 1

2
σ 2)(T − t)

 
= 1

σ

 
(r + 1

2
σ 2)

√
T − t

 
so d1 is strictly positive. Since N (0) = 1/2, this means the call delta is N (d1) > 1/2.
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For example, suppose we take S = K = 50, r = 0.05, T−t = 1/4, and σ = 0.25. Then,

N (d1) works out to about 0.565, substantially different from 1/2. Intuitively, the stock price

in the risk-neutral world grows at the risk-free rate, so if the option starts out at-the-money,

there is a greater-than-even chance of its finishing in-the-money.

What if we take the option to be at-the-money-forward, i.e., such that St = PV (K )? This

cancels out the interest-rate effect, so works somewhat better. Since PV (K ) = e−r (T−t)K ,

St = PV (K ) implies

ln

 
St

K

 
= −r (T − t)

so we obtain

d1 =
1

σ
√
T − t

 
−r (T − t) + (r + 1

2
σ 2)(T − t)

 
= 1

2
σ
√
T − t

This is still positive, though smaller than the corresponding value for the at-the-money delta.

For example, with K = 50, r = 0.05, T = 1/4, σ = 0.25, and S = PV (K ) = 49.38, we

obtain N (d1) = 0.525.

So for what values of St (relative to K and the other parameters) is the call delta equal

to 1/2 in the Black-Scholes model? That is, what must d1 be for delta to be equal to 1/2?

The Delta and Other Parameters
Exercises such as the ones above enhance understanding of both general option behavior

as well as the Black-Scholes formula. As further examples of such exercises, the reader is

invited to check that the call delta satisfies the following properties. Appendix 14Adescribes

the intuition for why these properties should hold in general, and shows that they do hold

in the Black-Scholes setting.

1. Volatility. For deep in-the-money call options, the delta decreases as volatility increases.

For deep out-of-the-money call options, the delta increases as volatility increases. Thus,

delta depends on volatility through depth-in-the-money.

2. Time-to-Maturity. For deep in-the-money call options, the delta decreases as time-to-

maturity increases. For deep out-of-the-money call options, the delta increases as time-

to-maturity increases. Thus, delta depends on time-to-maturity also through depth-in-

the-money.

3. Interest Rates. The call delta increases with an increase in the riskless interest rate.

As an aside, these properties indicate that the components of the replicating portfolio

depend in complex and nonlinear ways on the underlying parameters, which is one reason

closed-form expressions for option prices are rare.

14.6 Dividends in the Black-Scholes Model

The assumption that the underlying asset does not pay dividends is evidently very restrictive.

In this section, we see how this condition may be removed. There are two cases to consider.

The first is that of discrete or cash dividends such as dividends paid on individual stocks.

The second is a continuous dividend yield, as is appropriate when the underlying asset is a

broad equity index or a currency. We examine both possibilities here. Mathematically, the

difference between the two is that cash dividends cause discontinuities in the stock price

whereas continuous dividend yields do not.

In either case,we showhow the “non-dividend”Black-Scholes formulae presented earlier

in this chapter (expressions (14.1) and (14.2)) may be amended to incorporate the presence
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of dividends. For expositional simplicity, we refer to the underlying security throughout as

a “stock,” though the continuous dividend yield setting is more naturally applied to an index

or a currency.

Cash Dividends in the Black-Scholes Model
Suppose the underlying stock has a cash dividend (or several cash dividends) over the life

of the option. A dividend is counted as falling within the option’s life if the ex-dividend

date occurs before date T . Let PV (D) denote the present value (viewed from the current

time t) of all the dividends that are expected over the option’s life. Then, the stock price St
at time t can be regarded as being comprised of two components:

1. A riskless “fixed income” component of PV (D).

2. A risky component of St − PV (D).

Since the ex-dividend dates occur before date T , the dividends are removed from the

stock price before T . Only the risky component of the stock price (i.e., the stock price net

of anticipated dividend payouts) survives to date T , so it is the time-T distribution of this

component that determines option payoffs.

These observations suggest that the option may be priced by simply replacing the term

St in the Black-Scholes formula with (St − PV (D))! That is, the Black-Scholes formulae

become

C = (St − PV (D)) N (d̂1) − PV (K ) N (d̂2) (14.17)

P = PV (K ) N (−d̂2) − (St − PV (D)) N (−d̂1) (14.18)

where

d̂1 =
1

σ
√
T − t

 
ln

 
St − PV (D)

K

 
+ (r + 1

2
σ 2)(T − t)

 
(14.19)

d̂2 = d1 − σ
√
T − t (14.20)

More precisely, (14.17)–(14.18) are the option prices if the stock price net of anticipated

dividendpayouts is assumed tomeet theBlack-Scholes conditions, i.e., to followa lognormal

price process with volatility σ and to have no jumps.1 Implicitly, this means the only reason

the stock price process may be discontinuous is on account of dividends.

Note that σ here refers to the volatility of the net-of-dividends stock price, not of the

stock price itself. The two are not quite identical; the stock price, which is larger than the

net-of-dividends price, has a lower volatility. If σS denotes the volatility of the stock price

and σ the volatility of the net-of-dividends price, the two are related approximately by

σ = σS ×
St

St − PV (D)

Figure 14.4 illustrates the impact of dividends on Black-Scholes prices. It considers the

same parameter values as the earlier plot (K = 100, r = 0.05, σ = 0.20, maturity =
1/2 year, and current stock price St ranging from 72 to 128). The figure plots call and put

values under three scenarios: (i) zero dividends (D = 0), (ii) low dividends (D = 2), and

(iii) high dividends (D = 5). The ex-dividend date is assumed to be three months (i.e., the

halfway point of the option life).

1 This is the assumption underlying the Schroder (1988) binomial model, which we discussed in

Section 12.8.
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This figure plots call and put values for the same parameter values as in

Figure 14.1 but with three possible values for dividends: D = 0 (which

corresponds to Figure 14.1), D = 2, and D = 5. The ex-dividend date is

at the halfway point of the option’s life.

FIGURE 14.4
Cash Dividends in the

Black-Scholes Model
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The figure shows that dividends lower call values and raise put values. This is expected.

Dividends lower the price of the underlying. Thus, they push out-of-the-money calls further

out-of-the-money and make in-the-money calls less in-the-money. Similarly, they push puts

“more” into-the-money.

Of course, the effect is not uniform. Among calls, the impact of dividends is maximal

for ones that are deep in-the-money. Such calls have a high likelihood of finishing in the

money and are affected almost one-for-one by the dividend. At-the-money calls are affected
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less, and deep out-of-the-money calls are affected the least: such calls are anyway nearly

worthless, so getting pushed further out of the money cannot have a large dollar impact.

Similarly, deep in-the-money puts benefit almost one-for-one from the dividend payment,

but deep out-of-the-money puts see very little dollar benefit.

Continuous Dividend Yields in the Black-Scholes Model
Some underlying assets such as currencies and stock indices are naturally modeled as

securities with a continuous dividend yield. The zero-dividend option pricing formulae

(14.1) and (14.2) are easily modified to incorporate this case.

Suppose we are given a stock that pays a continuous dividend yield at rate δ, and we

wish to price an option on this stock with strike K and maturity date T . Consider a second,

hypothetical, stock that is equivalent to thefirst in all respects except that it pays nodividends.

Since this stock pays no dividends, its price must grow at a rate δ faster than the first stock.

This means that by time T , the price of the second stock would have grown by an extra

factor of eδ(T−t) .
Now suppose the following conditions hold:

• The time-t price of the first stock is St .

• The time-t price of the second stock is e−δ(T−t)St .

By time T , the faster growth rate of the second stock cancels out this initial price difference,

so the two stocks will have the same price ST . An option maturing at date T will, therefore,

have the same payoff whether it is written on the first or the second stock. That is, the

following two options must have the same price:

1. A European option with strike K and maturity T written on Stock 1 when its date-t price

is St .

2. The same option written on Stock 2 when its date-t price is e−δ(T−t)St .

But the second stock pays no dividends, so we can price options on it using the Black-

Scholes formulae (14.1) and (14.2)! Indeed, the only changewe needmake to those formulae

is to use e−δ(T−t)St for the time-t stock price. This gives us

C∗ = e−δ(T−t)St N (d∗1 ) − e−r (T−t)K N (d∗2 ) (14.21)

P∗ = e−r (T−t)K N (−d∗2 ) − e−δ(T−t)St N (−d∗1 ) (14.22)

where

d∗1 =
1

σ
√
T − t

 
ln

 
e−δ(T−t)St

K

 
+ (r + 1

2
σ 2)(T − t)

 
(14.23)

d∗2 = d∗1 − σ
√
T − t (14.24)

Expressions (14.21)–(14.24) are the Black-Scholes pricing formulae for options written

on a security with a time-t price of St and that pays a continuous dividend yield of δ.

Remark

For any y and z, we have ln(yz) = ln y + ln z. Therefore, we can write

ln

 
e−δ(T−t)St

K

 
= ln

 
St

K

 
+ ln

 
e−δ(T−t)

 = ln

 
St

K

 
− δ(T − t)

Using this, the expression (14.23) for d∗1 can be rewritten as

d∗1 =
1

σ
√
T − t

 
ln

 
St

K

 
+ (r − δ + 1

2
σ 2)(T − t)

 
(14.25)

In the sequel, we use the representation (14.25) for d∗1 .
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This figure plots call and put values for the same parameter values as in

Figure 14.1 butwith three possible values for the annualized dividendyield

on the underlying: δ = 0 (which corresponds to Figure 14.1), δ = 0.025,

and δ = 0.10.

FIGURE 14.5
Dividend Yields in the

Black-Scholes Model
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Figure 14.5 illustrates the impact of a continuous dividend yield on Black-Scholes option

values. It considers the same range of parameter values as in Figure 14.1 but allows for

three possible values for the annualized dividend yield on the underlying: (i) zero (which

corresponds to Figure 14.1), (ii) 2.50%, and (iii) 10%.
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The higher the dividend yield, the lower the growth rate of the stock price. Thus, a higher

dividend yield δ implies lower call prices and higher put prices. As with cash dividends, the

impact is once again maximal for deep in-the-money options and least for deep out-of-the-

money options.

14.7 Options on Indices, Currencies, and Futures

By appealing to the continuous-dividends formulae (14.21)–(14.25), we can obtain closed-

form expressions for pricing options on equity indices, currencies, and futures. Thematerial

below explains.

Options on Indices
Many exchange-traded options exist on stock indices. Both European- and American-style

index options exist. For example, the S&P 500 index options contract in the US is European

in style, while the S&P 100 index options contract is American in style. Like index futures,

index options are also cash settled. If ST is the index level at close of the last trading day, then

• the holder of a call receives max{ST − K , 0}.
• the holder of a put receives max{K − ST , 0}.

As we have seen earlier in the chapter on forward pricing, a stock index can be treated

as an asset paying a continuous dividend yield. Therefore, the formulae (14.21) and (14.22)

can be used to price index options.

That is, suppose that index returns follow a geometric Brownian motion with constant

volatility σ . Suppose also that the index pays a continuous dividend yield at rate δ. If St
denotes the current index level, the prices of European options on the index with maturity

T and strike K are given by

C∗ = e−δ(T−t)St N (d∗1 ) − e−r (T−t)K N (d∗2 ) (14.26)

P∗ = e−r (T−t)K N (−d∗2 ) − e−δ(T−t)St N (−d∗1 ) (14.27)

where

d∗1 =
1

σ
√
T − t

 
ln

 
St

K

 
+ (r − δ + 1

2
σ 2)(T − t)

 
d∗2 = d∗1 − σ

√
T − t

Options on Currencies
Options on foreign currencies are traded on the OTCmarket as well as on exchanges such as

the CME or PHLX. The underlying asset in this contract is the foreign currency in question.

Let r f denote the (continuously-compounded) interest rate on the foreign currency.

Note an important symmetry in currency options: a call option to purchaseBritish pounds

with US dollars at a given exchange rate is a put option to sell US dollars for British pounds

at that same rate. Thus, it is common to refer to both currencies in identifying the option

(e.g., dollar-call/yen-put or euro-call/dollar-put).

The formulae (14.21)–(14.22) can be used to price options on currencies with the foreign

interest rate r f playing the role of the dividend yield δ. For specificity, suppose that the US

dollar is the domestic currency. Suppose further that:

• St denotes the current exchange rate (dollars per unit of foreign currency).
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• The exchange rate follows a geometric Brownian motion with constant volatility σ .

• r and r f denote the risk-free rates in, respectively, dollars and the foreign currency.

Then, the prices of call and put options on the foreign currency with a strike price of K

(i.e., K dollars per unit of the foreign currency) and maturity date of T are given by

C∗ = e−r f (T−t)St N (d∗1 ) − e−r (T−t)K N (d∗2 ) (14.28)

P∗ = e−r (T−t)K N (−d∗2 ) − e−r f (T−t)St N (−d∗1 ) (14.29)

where

d∗1 =
1

σ
√
T − t

 
ln

 
St

K

 
+ (r − r f +

1

2
σ 2)(T − t)

 
d∗2 = d∗1 − σ

√
T − t

Options on Futures
Options on futures are defined somewhat differently from options on spot. A call option on

futures with a strike of K gives the holder the right to take a long position in the futures

contract at a futures price of K . A put option on futures with a strike of K gives the holder

the right to take a short position in the futures contract at a futures price of K .

Clearly, one can take a futures position only at the prevailing futures price. Therefore,

upon exercise of a call, the holder receives a long position in the futures contract with the

difference between the prevailing futures price and the strike price of the contract credited

to the margin account. The exercise of a put is handled similarly.

The key to pricing futures options lies in the relationship between spot and futures prices.

Suppose the current (time-t) spot price of the asset underlying the futures contract is St .

Suppose too that the underlying asset does not pay any dividends. (We will examine the

consequences of dropping this assumption shortly.) Let Tf denote the maturity date of the

futures contract. Then, the arbitrage-free futures price at t is

Ft = er (T f−t)St (14.30)

On date Tf , spot and futures prices coincide:

FTf = STf (14.31)

Equations (14.30) and (14.31) show that the relation between the futures price Ft and

the spot price St is analogous to that between Stock 1 and Stock 2 in the discussion on

continuous dividend yields in Section 14.6: the futures price starts at a higher level at date

t , but the prices coincide by date Tf . Thus, the futures price grows at a rate r slower than

the spot price, so it is “as if” the futures pays a continuous dividend yield of r .

Using this observation, the price of a European option on futures can be found using the

formulae (14.21) and (14.22) with St replaced by the futures price Ft , and with r playing the

role of the continuous dividend yield δ. Specifically, suppose that the futures price follows

a geometric Brownian motion with constant volatility σ . Then, the price of call and put

options on the futures contract with maturity date T (T < Tf ) and strike K are given by

C∗ = e−r (T−t) [Ft N (d∗1 ) − K N (d∗2 )] (14.32)

P∗ = e−r (T−t) [K N (−d∗2 ) − F N (−d∗1 )] (14.33)
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where

d∗1 =
1

σ
√
T − t

 
ln

 
Ft

K

 
+ 1

2
σ 2(T − t)

 
d∗2 = d∗1 − σ

√
T − t

The assumption that the asset underlying the futures pays no dividends is not always

reasonable (e.g., for futures on stock indices). But it turns out this assumption is irrelevant!

The formulae (14.32)–(14.33) remain valid even if the asset has a continuous dividend yield

at rate δ. To see this, note that in this case, the time-t futures price is related to the time-t

spot price St via

Ft = e(r−δ)(T f−t)St (14.34)

On the maturity date Tf of the futures contract, spot and futures prices must still coincide:

FTf = STf (14.35)

Thus, it is “as if” the futures contract pays a continuous dividend yield at the rate r − δ
relative to the underlying spot asset. But the spot asset itself pays dividends at rate δ, so

relative to a non-dividend-paying equivalent, it is as if the futures pays dividends at rate r .

So formulae (14.32)–(14.33) remain valid in this case too.

An alternative way to see this is to consider the behavior of futures prices under the

risk-neutral measure. Futures contracts are marked-to-market every day, so the value of

the contract is reset to zero each day. Let Ft denote the date-t futures price, and let Ft+1
be the futures price on date t + 1. Let h denote the length of time between t and t + 1

(so cash flows occurring at time t + 1 are discounted by e−rh to get time-t present val-

ues). If Et [·] denotes time-t expectations under the risk-neutral measure, then we must

have

Et
 
e−rh(Ft+1 − Ft )

 = 0 (14.36)

The quantity (Ft+1 − Ft ) is just the cash flow that results on date t + 1 from resettlement

of the futures contract. By definition, the discounted expectation (under the risk-neutral

measure) of this cash flow must equal the present value of the futures contract. But this

present value is zero, since the value of the futures contract is reset to zero every day. This

gives us (14.36). Note that this holds regardless of the dividend yield rate on the asset

underlying the futures contract (we have made no assumption about this).

Now, the discount factor e−rh is a known quantity at time t , so can be taken out of the

expectation, which results in e−rh Et [Ft+1 − Ft ] = 0, so Et [Ft+1 − Ft ] = 0. But Ft is also

known at time t and can be taken out of the expectation, which finally yields

Et [Ft+1] = Ft (14.37)

Expression (14.37) states the fundamental result that the futures price follows a martin-

gale under the risk-neutral measure: its expected value tomorrow (under the risk-neutral

measure) is equal to today’s price. Equivalently, this says that the futures price has zero drift

under the risk-neutral measure. (Note again that this is true regardless of the dividend yield

rate on the asset underlying the futures contract.) But, in general, the drift of a security’s

price under the risk-neutral measure is equal to r − δ where r is the risk-free rate (with

respect to which the risk-neutral measure is defined) and δ is the dividend yield on the

security. Thus, a zero drift for the futures price implies an implicit dividend yield at rate r .

And this results in the prices (14.32)–(14.33) for options on the futures contract.
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14.8 Testing the Black-Scholes Model: Implied Volatility

The Black-Scholes formula tells us how to identify option prices given the volatility of the

underlying. However, volatility is unobservable, while we often observe prices of options.

This motivates the reverse question: given an option price, what level of volatility is implied

by the observed price? This level is called the implied volatility. Formally, implied volatility

is the level of volatility that would make observed option prices consistent with the Black-

Scholes formula given values for the other parameters.

For example, suppose we are looking at a call on a non-dividend-paying stock. Let K

and T − t denote the call’s strike and time-to-maturity, and let  C be the observed call price.

Let St be the stock price and r the interest rate. Then, the implied volatility is the level σ

for which

Cbs(S, K , T−t , r, σ ) =  C
where Cbs is the Black-Scholes call option pricing formula.

Implied volatility is always uniquely defined. That is, given an observed call price  C ,
there is at most one value of σ such that the Black-Scholes formula will give rise to the

observed value  C . This is a consequence of the fact that theBlack-Scholes price is increasing
in σ .

In a general sense, implied volatility represents the market-wide average perception of

volatility anticipated over the option’s lifetime. As such, it is a forward looking concept. In

contrast, historical volatility is backward looking; it describes the uncertainty in the stock

price evolution that was experienced in the past.

The Volatility Smile/Skew
Fix an underlying asset. If the Black-Scholes model were an accurate description of the

returns process for that asset, the arbitrage-free price of any option on the asset (i.e., any

strike K and maturity date T ) must be determined by the Black-Scholes formula. This

means implied volatility inferred from any option on the asset should be the same as

implied volatility inferred from any other option—they should all be equal to the “true”

underlying volatility. The requirement that implied volatilities should be constant across

different strikes and maturities offers an indirect test of the Black-Scholes model.

In practice, in virtually every market, the Black-Scholes model fails this test. When

maturity is held constant and implied volatilities are plotted against strikes, two patterns

are commonly witnessed. In equity index markets, implied volatilities for “low” strikes

(corresponding to out-of-the-money puts) tend to be higher than implied volatilities for at-

the-money or in-the-money puts. This is called the volatility skew. In currency markets, the

graph is more symmetric: implied volatilities for out-of-the-money and in-the-money puts

tend to be roughly identical and higher than implied volatilities of at-the-money options,

so we obtain what is called a volatility smile. Implied volatilities on individual equities too

tend to exhibit greater symmetry than implied volatilities on indices.

Figures 14.6 and 14.7 provide examples of implied volatility skews on the S&P 500 index

options and on US dollar/British pound currency options. Each figure is a screenshot taken

from the website www.pmpublishing.com. All the screenshots pertain to data on April 7,

2004. The two panels of Figure 14.6 describe implied volatility skews on the S&P 500

index options expiring in June and September, respectively. The two panels of Figure 14.7

represent implied volatility smiles on the USD/GBP options expiring in May and June,

respectively.
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FIGURE 14.6
Implied Volatility

Skews on S&P 500

Index Options
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FIGURE 14.7
Implied Volatility

Skews on USD/GBP

Currency Options
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The Source of the Volatility Skew
The existence of the skew is evidence that something is wrong with the Black-Scholes

model. The first question to ask, therefore, is: what? Once we identify where the problem

lies, we can think about ways of adjusting the model and its assumptions so that we get a

better match with observations.

Deviations from Normality

The Black-Scholes model assumes log-returns are normally distributed. However, in virtu-

ally every financial market, empirical plots and estimates from historical returns and options

markets suggest this is not an accurate description of reality.

Two deviations from normality are particularly visible. First, the normal distribution

is symmetric around its mean. Empirically estimated return distributions, especially from

equities markets, often exhibit skewness. Second, of fundamental importance, extreme ob-

servations occur far more often than they should under normality. For example, in any

normal distribution, there is only a 5% probability of observing an outcome that is more

than 1.645 standard deviations below themean,whichmeans that on average only 1 outcome

in 20 should fall into this category. Similarly, there is only a 0.50% probability (1 outcome

in 200) of an observation more than 2.58 standard deviations below the mean.

In practice, such extremepricemoves tend to takeplace farmore frequently thanpredicted

by normality. A particularly egregious example was the stock market crash of October 19,

1987, when the S&P 500 index fell by over 20% in a single day while S&P 500 index

futures declined by 29%. Assuming index returns are lognormally distributed and taking

the volatility of the index to be 20% (historically, a good approximation), Rubinstein (1998)

points out that the likelihood of a 29% move in a single day is a microscopic 10−160, an
outcome so improbable that he observes, “it would not be anticipated to occur even if the

stock market were to last for 20 billion years.” Less dramatically, but no less tellingly,

Jackwerth and Rubinstein (1996) point out that on October 13, 1989, the S&P 500 index

experienced a move of −5 standard deviations, a move that should be expected only once

every 14,756 years.

Okay, so if returns are not normal, howdowemeasure deviations fromnormality and how

dowegauge the effects of these deviations on option prices?We address these questions now.

Measuring Deviations from Normality: Skewness and Kurtosis

The degree of asymmetry in a distribution is measured by its skewness. Skewness is related

to the third moment of the distribution. Given a random variable X with mean m and

standard deviation s, its skewness is defined to be

Skewness(X ) = 1

s3
E
 
(X − m)3

 
Extreme observations are referred to as observations in the tail of a distribution. The tail-

fatness of the distribution is measured by its kurtosis, which comes from the distribution’s

fourth moment. Kurtosis is defined as

Kurtosis(X ) = 1

s4
E
 
(X − m)4

 
Normal distributions always have a skewness of zero and a kurtosis of 3 regardless

of their mean and standard deviation. Thus, any nonzero skewness or kurtosis different

from 3 involves a departure from normality. A distribution is said to have “fat tails” or

to exhibit leptokurtosis if its kurtosis exceeds 3; conversely, it is said to have thin tails

or to exhibit platykurtosis if its kurtosis is less than 3. Empirical returns distributions are
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typically fat-tailed or leptokurtic. The “excess kurtosis” in a distribution is the amount by

which its kurtosis exceeds 3. The larger is the excess kurtosis, the more likely are extreme

observations compared to the normal’s predictions.

Skewness, Kurtosis, and the Volatility Skew

To undestand the impact of leptokurtosis on implied volatilities, suppose that you arewriting

an out-of-the-money put option on the S&P 500 index. For specificity, suppose that the

index is currently at 1140 and the put has a strike of 1075. You estimate implied volatility

from at-the-money options. Using this volatility, you then find that under lognormality, the

probability of a 65-point fall in the index level (which is needed for the put to come into

the money) is so unlikely, the Black-Scholes model assigns a near-zero value to this put.

Should you accept this value?

Clearly not. Lognormality understates the likelihood of extrememoves, so the probability

of the put coming into the money is larger than that predicted by the Black-Scholes model.

This means the Black-Scholes model underprices the out-of-the-money put relative to those

at-the-money.Youwould, therefore, charge a higher price than theBlack-Scholesmodel sug-

gests. But thismeans the implied volatility inferred fromyour price for the out-of-the-money

put would be higher than the at-the-money implied volatility, so a volatility skew results!

Thus, volatility skews are a natural and rational consequence of leptokurtosis in the

returns distributions. If, further, returns are negatively skewed and left tails are fatter than

right tails, we expect an asymmetric volatility skew. This is typically the case in equity

index markets. However, if the return distribution is more symmetric and left and right tails

tend to matter more equally, we would expect to see a more symmetric smile, which is the

typical case in currency markets and markets for many individual equities.

Potential Sources of Skewness and Kurtosis

Several potential (and nonexclusive) hypotheses have been advanced to explain the presence

of negative skewness and kurtosis in equity returns distributions, and, thereby, the shape of

the implied volatility skew. We mention two here.

In a hypothesis termed “crash-o-phobia,” Rubinstein (1994) suggests that fears of a

major stock market crash akin to that of October 1987 are taken into account by traders

pricing out-of-the-money puts. The possibility of a crash creates leptokurtosis in the returns

distribution since the crash is, by definition, a tail event. Moreover, since a crash is a left-tail

event, its incorporation in the returns distribution also creates negative skewness. Thus,

crash-o-phobia offers a potential explanation of both the presence and shape of the implied

volatility curve in equity markets.

Empirical investigation has found some support for this hypothesis. Its plausibility is

also enhanced by the observation that in the electricity options market, where the fear is

that of a sudden spike in electricity prices, the implied volatility skew is reversed (i.e., out-

of-the-money calls have higher implied volatilities than at- or in-the-money calls) exactly

as crash-o-phobia would suggest.

An alternative source of negative skewness and leptokurtosis in equity markets is the

relationship between equity returns and equity volatility. Negative returns in equity markets

are often accompanied by increased volatility, while positive returns are accompanied by

lower volatility. This pattern has itself been attributed to a possible “leverage” effect. The

story goes that declining equity prices raise the debt-equity ratio, making equity riskier

and leading to higher equity volatility; while conversely, positive equity returns lower the

debt-equity ratio, making equity less risky and reducing its volatility. Whatever the driver,

this returns-volatility relationship leads both to leptokurtosis and to negative skewness in

returns, and offers another potential explanation of the typical implied volatility skew.
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These hypotheses have been adduced in the context of equity markets, but they have

analogs for other markets too. The fear of sharp exchange-rate moves (perhaps on account

of intervention) creates leptokurtosis analogous to crash-o-phobia. Similarly, randomly

changing volatility can create tail-fatness in exchange-rate or other returns distributions.

Other Explanations for the Skew
It is often suggested that the volatility skew or smile is caused by the effects of demand for

protection. Investors are net long equities, so the demand for cheap protection (out-of-the-

money puts on the equities) raises the demand for these puts relative to those at-the-money,

resulting in the volatility skew. In currency markets, the implied volatility plot is more

symmetric because investors are net long both currencies. Since a put on one currency is a

call on the other, demand for protection on the currencies raises the implied volatility levels

in either direction away from-the-money, resulting in the volatility smile.

These explanations appear plausible, but they are incomplete. They cannot, in isolation,

explain observed skews; rather, they must be combined with some market friction(s). In

a smooth environment such as that assumed by Black-Scholes, replicating an out-of-the-

money option is as easy as replicating an at-the-money option, so merely the fact that there

is a demand for out-of-the-money puts cannot create a volatility skew. In contrast, non-

normality in returns such as excess kurtosis will result in a volatility skew regardless of the

presence of market frictions.

Generalizing or Replacing Black-Scholes
If the Black-Scholes model exhibits systematic departures from the market, why not gener-

alize it or replace it with distributions that allow for skewness and leptokurtosis? There may

even be a “natural” generalization. The Black-Scholes model makes two uncomfortable

assumptions:

1. There are no jumps in the returns process.

2. The volatility of the returns process is constant over time.

Empirical observation suggests there is a strong case for dropping both these assump-

tions. Indeed, the explanations discussed above implicitly indicate this. The “leverage ef-

fect” suggests that constant volatility should be replaced with a model in which volatility

is stochastic and negatively correlated with the returns process. “Crash-o-phobia” assumes

large negative jumps may occur in the returns distribution. If jumps are added to the log-

normal model or if volatility is allowed to be stochastic, the model can be made to exhibit

both fat tails and skewness.

Over the last several years, a vast number ofmodels havebeenproposed as generalizations

or alternatives to Black-Scholes. These models typically involve a substantially greater

degree of complexity than the Black-Scholes model; Chapter 16 reviews several of them.

Despite its empirical shortcomings, however, the Black-Scholes model has continued to

retain immense popularity and remains the benchmark model for pricing options. This may

partly be a recognition that any model is likely to be fallible. But it is also likely a reflection

of a preference for working with simple and elegant models whose shortcomings are readily

understood and, therefore, more easily compensated for.

14.9 The VIX and Its Derivatives

US investors have become accustomed to hearing about the “fear index,” or the VIX, the

market’s proxy for the degree of risk borne in the equity markets. The VIX is the Chicago

BoardOptionExchange’s “near-term”volatility index. It is a forward-looking estimate of the
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FIGURE 14.8
The CBOE Volatility

Index (VIX): Jan

1990–Mar 2009

CBOE Volatility Index (VIX)
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annualized volatility of the S&P500 over the next 30 calendar days. There are VIX futures

(inception May 2004, traded on the CBOE Futures Exchange) as well as exchange-traded

VIX options (inception February 2006, traded on the CBOE). Figure 14.8 shows the evolu-

tion of the VIX since 1990. The mean level of the VIX is around 20% with a standard devi-

ation of about 8%–9%. The time series is characterized by quiet periods interjected by spo-

radic epochsof highvolatilitywhen theVIXspikes to asmuchas three times its normal value.

The VIX is computed on a real-time basis throughout the day. It was introduced and

developed by Whaley (1993). (The notion of a volatility index had also been proposed

earlier in Brenner and Galai (1989); see also Brenner and Galai (1993).) The underlying

index for the VIX is the S&P 500 index (SPX). This was not always the case. When the

VIX was first introduced, the S&P 100 index (OEX) was used as the volume in options was

limited to the top few names in the S&P. Today SPX options volume far surpasses that of

the OEX and the VIX is based on the volatility of the former index. Moreover, SPX options

are European style whereas OEX ones are American, making valuation of the SPX options

easier. In any event, the SPX and OEX indexes are close substitutes, and from 1986 to 2008,

the correlation between the two index returns was 99% (see Whaley, 2008).

Since September 2003, theVIX has been ameasure of SPX 30-day volatility. It is implied

from options of various strikes on the SPX, so incorporates the skew. The VIX uses nearby

and second nearby options with at least 8 days left to expiration and then weights them

to yield a constant, 30-day measure of the expected volatility of the S&P 500 index. The

options used are the ones that are at-the-money (ATM) and OTM, both puts and calls. The

procedure is as follows:

1. For each maturity (next-term and near-term), the ATM forward strike is first identified.

This is done by choosing the strike at which the difference in price between the call and

put options is the least. Denote this strike K0.

2. For puts: All options for ATM/OTM strikes (Ki ≤ K0) are selected for which the bid

price is nonzero. The process stops selecting further strikes when two consecutive zero

bid prices are encountered as one goes more out-of-the-money.

3. For calls: All options for ATM/OTM strikes (Ki ≥ K0) are selected for which the bid

price is nonzero. The process stops selecting further strikes when two consecutive zero

bid prices are encountered.



334 Part Two Options

4. The VIX is then computed using all these selected options. Note that at K0, a put and a

call are used. At the other strikes, either a call or put is used because only OTM options

are considered. Using the optionmid-prices for eachmaturity, we define VIX= σ×100,

where σ 2 is given by

σ 2 = 2

T

 
i

 Ki

K 2
i

eRT Q(Ki ) −
1

T

 
F

K0

− 1

 2
(14.38)

where

• T is the time to expiration.

• F is the forward index level derived from option prices.

• K0 is the highest strike below F .

•  Ki = (Ki+1 − Ki−1)/2 is the interval between strike prices.

• R is the risk-free rate to expiration.

• Q(Ki ) is the mid-point of the bid-ask spread for each option with strike Ki .

The connection between the formula and volatility is not obvious, but it turns out that

this formula describes the expected realized variance of the stock over the horizon [0, T ]

as implied by option prices. A derivation of this result is presented in Appendix 14B in

the context of describing volatility and variance swaps (see the discussion towards the

end of the material on variance swaps).

5. Since this calculation is undertaken for the near-term and next-term maturities, we get

two values, denoted σ 2
1 and σ 2

2 . These are then combined to get the 30-day weighted

average as follows:

V I X = 100×
  

T1σ
2
1

 
NT2 − N30

NT2 − NT1

 
+ T2σ

2
2

 
N30 − NT1

NT2 − NT1

  
× N365

N30

(14.39)

where NT is the number of minutes to time T

As is evident from this description, the VIX is calculated using transparent rules. Further

details and examples are available at the CBOE website.

Volatility indexes have been developed for other broad equity markets. We have the Dow

Jones volatility index (VXD), the NASDAQ 100 volatility index (VXN), the Russell 2000

volatility index (RVX), and the S&P 500 three-month volatility index (VXV). Volatility

indexes are being developed for many European indexes such as the DAX, FTSE 100, and

the CAC 40.

Trading Volatility via the VIX
There are various ways in which volatility may be traded. One is to purchase options and

delta-hedge them, leaving only amplitude risk.A second is to buy a straddle (and delta-hedge

it, if necessary). Finally, there is the trading of pure volatility using the VIX.

Trades may be made on volatility direction by using the futures on VIX (ticker: VX).

The contract size is $1000 times the VIX. The CBOE may list futures for trading up to nine

near-term serial months and five months on the February quarterly cycle for the VIX futures

contract. So it is easy to inject volatility positions into standard portfolios usingVIX futures.

VIX futures may be a good way to enhance returns on a portfolio as well as manage its

risk. What makes adding a position in volatility to an equity portfolio particularly attractive

is that volatility moves are generally negatively correlated with equity returns. Indeed, the

return on VIX futures in 2008 was a massive 81%, even as equity markets suffered sharp



Chapter 14 The Black-Scholes Model 335

declines. The CBOE estimated that a 15% allocation to VIX in a well-diversified portfolio

would have resulted in a −13.08% return in 2008 (or +5.07% four-year average, standard

deviation 1.93%) versus the same portfolio earning −20.99% in 2008 (−3.87% four-year

average, standard deviation 3.03%) without any VIX component.

VIX options (ticker: VRO) may be used to trade the volatility of volatility. However,

options on the VIX are generally quite expensive because the volatility of volatility is very

high, usually much more than the volatility of equity. In 2007, for example, the volatility of

the VIX was 132% whereas that of the SPX was only 16%.

Since July 2008, it has also been possible to trade in binary options on the VIX (ticker:

BVZ). Offered by the CBOE first in the form of binary calls and later as binary puts, these

options are structured so that if the options are in-the-money at expiration, the payoff is $100.

14.10 Exercises 1. Explain why the Black-Scholes model is inappropriate if the stock can gap.

2. Is assuming a constant (nonstochastic) interest rate in the Black-Scholes model a major

deficiency of the model?

3. The Black-Scholes model assumes constant volatility. How serious a shortcoming is

this?

4. Compute the three-month (T = 1/4) forward price F of a stock currently trading at $40

when the risk-free rate for this period is r = 4%. Then, set the strike price K = F and

calculate call and put values from the Black-Scholes model if the volatility is σ = 0.4,

assuming the stock pays no dividends. What can you say about the call and put prices

you just computed?

5. (We repeat the previous question allowing for nonzero dividends). Assume a stock has

a dividend yield of d = 2%. Compute the three-month (T = 1/4) forward price F of a

stock currently trading at $40 when the risk-free rate for this period is r = 4%. Then,

set the strike price K = F and calculate call and put values from the Black-Scholes

model if the volatility is σ = 0.4. What can you say about the call and put prices you

just computed?

6. Plot the price of a Black-Scholes call for a range of volatility from 5% to 40%. Use

the following parameters: S = 30, K = 33, T = 1/3, r = 0.03, and d = 0. Does the

function appear concave or convex?

7. Plot the price of a Black-Scholes call for declining maturity from three years to zero

years. Does the function appear concave or convex? Use the following parameters:

S = 30, K = 33, σ = 0.3, r = 0.03, and d = 0.

8. Plot the price of a Black-Scholes call for a range of interest rates from 1% to 20%. Use

the following parameters: S = 30, K = 33, T = 3, σ = 0.3, and d = 0.

9. On December 1, the S&P 500 index (SPX) is trading at 1396.71. The prices of call

options on the index expiring on March 16 (i.e., in a bit over three months) are as

follows:

Strike K Call Prices

1300 116.80
1350 73.70
1400 41.00
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Assuming the interest rate for that period is 4.88% and the annual dividend rate on

the SPX is 1.5%, compute the implied volatility for each of the SPX options using the

Black-Scholes formula. Are these volatilities the same? Explain.

10. (Repeat for puts) On December 1, the S&P 500 index (SPX) is trading at 1396.71. The

prices of put options on the index expiring on March 16 (i.e., a little over three months)

are as follows:

Strike K Put Prices

1300 11.20
1350 17.30
1400 30.50

Assuming the interest rate for that period is 4.88%, and the annual dividend rate on the

SPX is 1.5%, compute the implied volatility for each of the options using the Black-

Scholes formula. Are these volatilities the same? Explain. Also, are these volatilities the

same as that obtained from the previous question? Should they be? Explain.

11. Show that the delta of an at-the-money European call option in the Black-Scholes model

is at least 1/2. What about the delta of an at-the-money put?

12. What happens to the delta of an at-the-money call as the time-to-maturity declines?What

about a put?

13. Let S = K = 100, σ = 0.25, and T − t = 1 month. Create a spreadsheet to value a call

and a put for the following values of r :

(a) r = 0.08.

(b) r = 0.06.

(c) r = 0.04.

14. Microsoft stock is currently trading at $24.35. Consider call and put options with a strike

of $25.00 expiring in 12 days (= 0.0476 years). Suppose that the volatility of Microsoft

stock is 40% and that the interest rate is 3%. What are the Black-Scholes prices of the

call and the put? What are the option deltas?

15. GE stock is currently trading at $26.15. A call option with a strike of $25.00 and 12

days (= 0.0476 years) to expiry costs $1.56. Assuming an interest rate of 3%, what is the

implied volatility?

16. The S&P 500 index is currently at 1101. A call option with a strike of 1075 and 17 days

(= 0.067 years) to maturity costs 36.20. Assume an interest rate of 3%. For simplicity,

assume also that the dividend yield on the index is zero.

(a) What is the implied volatility?

(b) If implied volatility went up to 20%, what would happen to the call’s value?

(c) If the other parameters remained the same, what would the option value be after one

week (i.e., with 12 trading days or 0.0476 years left to maturity)?

(d) Finally, how would your answer to part (a) change if the dividend yield were taken

to be 2% instead of zero?

17. The spot USD-EUR exchange rate is USD1.24/EUR. Consider a one-month (= 0.083

years) put option on the EUR with a strike of USD1.25/EUR. Assume that the volatility

of the exchange rate is 12%, the one-month interest rate on the USD is 3.1%, and the

one-month interest rate on the EUR is 3.7%, both in continuously-compounded terms.

(a) What is the Black-Scholes price of the put?

(b) If you had written this put on EUR 10 million, what would you do to delta-hedge

your position?
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18. The spot USD-EUR exchange rate is USD1.50/EUR. Consider a six-month (= 0.5 years)

call option on the EUR with a strike of USD1.50/EUR. Suppose the volatility of the

exchange rate is 20%, the six-month interest rate on the USD is 1.5%, and the six-month

interest rate on the EUR is 2.5%, both in continuously-compounded terms.

(a) What is the Black-Scholes price of the call?

(b) If you had written this call on EUR 100 million, what would you do to delta-hedge

your position?

19. The spot USD-EUR exchange rate is USD1.50/EUR. Price a one-month straddle with

an at-the-money-forward (ATMF) strike. The ATMF strike price is defined to be that

value of K which equals the forward exchange rate for that maturity, i.e., for which

Ke−rT = Se−qT . Assume that the volatility of the exchange rate is 20%, the six-month

interest rate on the USD is 1.5%, and the six-month interest rate on the EUR is 2.5%,

both in continuously-compounded terms.

20. An option on a stock is said to be at-the-money-forward (ATMF) if the strike price equals

the forward price on the stock for that maturity. Assume there are no dividends, so the

ATMF strike K satisfies St = PV (K ) = e−r (T−t)K . Show that the value of an ATMF

call in the Black-Scholes world is given by

St [2 N (d̂1) − 1] (14.40)

where d̂1 = [σ
√
T − t]/2.

21. Show that the at-the-money-forward call price (14.40) is approximately equal to

St
1√
2π
σ
√
T − t (14.41)

Remark: Expression (14.41) gives us a quick method for calculating the prices of ATMF

calls. Two interesting points about expression (14.41):

(a) It depends on only three parameters (St ,σ , and T−t) and the constantπ ; in particular,
the cumulative normal distribution function N (·) is not involved.

(b) It shows that the prices of at-the-money-forward calls are approximately linear in σ .

These features make the formula above very easy to use in practice not only to obtain

prices of ATMF options, but also to obtain quick estimates of implied volatility of such

options. The next two questions illustrate these points.

22. Using (14.41), identify the approximate price of an at-the-money-forward call with the

following parameters:

(a) S = 50, T − t = 1 month, and σ = 0.15.

(b) S = 70, T − t = 2 months, and σ = 0.25.

23. Suppose an at-the-money-forward call with one month to maturity is trading at a price

of C = 0.946 when the stock price is St = 54.77.

(a) Using the approximation (14.41), what is the implied volatility on the call?

(b) What if the call were trading at C = 1.576 instead?

24. A stock index is currently at 858. A call option with a strike of 850 and 17 days (= 0.047

years) to maturity costs 23.50. Assume an interest rate of 3%. For simplicity, assume

also that the dividend yield on the index is zero.

(a) What is the implied volatility?

(b) If implied volatility went up to 28%, what would happen to the call’s value?

(c) If all the other parameters remained the same, what would the option value be after

one week (i.e., with 10 days or 0.027 years left to maturity)?
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Appendix 14A

Further Properties of the Black-Scholes Delta
In Section 14.5, we outlined a number of properties satisfied by call deltas. This appendix

provides both the general intuition for these properties and the confirmation that they hold

in the Black-Scholes setting.

Behavior of Option Deltas in σ

In general, how would one expect the delta of a call to change as σ increases? By using the

analogybetween the call delta and its likelihoodoffinishing in-the-money (seeSection 11.8),

we can get some intuition for the anticipated behavior. (The analogy is not quite pristine,

but as we mentioned there, it is very useful from an intuitive standpoint.)

Consider a situation where St is very large relative to K , so the call is deep in-the-money.

With very low volatility, the call is almost sure to finish in-the-money, so the delta will be

close to +1. With high volatility, on the other hand, there is a greater likelihood of being

thrown out-of-the-money (the depth-in-the-money measured in terms of standard deviation

is smaller now). Thus, the delta will be smaller.

Conversely, suppose St is very small relative to K , so the call is deep out-of-the-money.

With low volatility, the chances of moving back into-the-money are low, so the delta of

the call will be close to zero. With higher volatility, there is a greater chance of being

thrown into-the-money (the number of standard deviation moves required of the stock price

is smaller), which raises the option delta.

Taken together, these arguments indicate that the behavior of the delta should depend on

depth in-the-money of the call:

• When St is large relative to K , the delta should decrease as σ increases.

• When St is small relative to K , the delta should increase as σ increases.

The Black-Scholes formula exhibits this behavior. The term d1 in the call price can be

rewritten as

d1 =
1

σ
√
T − t

 
ln

 
St

K

 
+ r (T − t)

 
+ 1

2
σ
√
T − t

For small values of St , the term ln(St/K ) is negative, so an increase in σ raises d1, as

required. If St ≥ K , then ln(St/K ) is positive, so the first term above decreases when σ

increases. The second term always increases with σ . If St is large relative to K , the first

effect dominates, so d1 decreases. All of this may be seen more formally by differentiating

d1 with respect to σ , which results in

− 1

σ 2
√
T − t

 
ln

 
St

K

 
+ r (T − t)

 
+ 1

2

√
T − t

If St is sufficiently smaller than K , the negative term ln(St/K ) outweighs the positive term

r (T − t), so the entire expression above becomes positive. Thus, if the call is sufficiently

deep out-of-the-money, the delta increases as volatility increases. If St is suitably large

relative to K , the last term above, which is positive, is dominated by the earlier expression,

which is negative, so delta decreases as volatility increases.
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Behavior of Option Deltas in T − t

The intuitive behavior of the delta in time-to-maturity is very similar to that in volatility.

For a deep in-the-money call, a short time-to-maturity implies the option is almost sure to

finish in-the-money, so the delta is close to +1. A longer time-to-maturity increases the

odds of the option finishing out-of-the-money, so reduces the delta. Conversely, for a deep

out-of-the-money call, a short time to maturity makes it virtually certain the option finishes

out-of-the-money, so the delta is close to zero. Increasing the time-to-maturity improves the

prospects for finishing in-the-money, raising the delta. Thus, we have:

• When St is large relative to K , the delta should decrease as T − t increases.

• When St is small relative to K , the delta should increase as T − t increases.

Verifying that the Black-Scholes formula meets these conditions is analogous to the

process for σ above. The term d1 can be rewritten as

d1 =
1

σ
√
T − t

 
ln

 
St

K

  
+ 1

σ

 
r + 1

2
σ 2

 √
T − t

The second term always increases when T − t increases. If St ≥ K , the first term decreases

when T − t increases, but if St < K , then ln(St/K ) is negative, so it increases when T − t

increases. Formally, differentiating d1 with respect to T − t , we obtain

− 1

2σ (T − t)3/2

 
ln

 
St

K

  
+ 1

2σ
√
T − t

 
r + 1

2
σ 2

 
This term is positive if St is smaller than K , and is negative if St is sufficiently larger than

K , as required.

Behavior of Option Deltas in r

An increase in interest rates increases the risk-neutral drift of the stock and so makes it

more likely that a call will finish in-the-money and a put will finish out-of-the-money. This

raises call deltas and reduces put deltas in absolute value (i.e., the put delta becomes less

negative). It is not hard to see these effects in the Black-Scholes setting. We have

d1 =
1

σ
√
T − t

 
ln

 
St

K

 
+ (r + 1

2
σ 2)(T − t)

 
so d1 clearly increases as r increases. This means N (d1), the call delta, increases (it becomes

more positive) while −N (−d1), the put delta, also increases (towards zero, i.e., it becomes

less negative).

Appendix 14B

Variance and Volatility Swaps
Variance and volatility swaps are forward contracts on the realized variance and volatility,

respectively, of an underlying security. Introduced in the 1990s in over-the-counter markets,

they offer an alternative to futures on the VIX for trading volatility. We begin our discussion

with variance swaps.
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Variance Swaps

Variance swaps are forwards on the square of realized volatility over a prespecified period

(t , T ). These swaps are handy securities with which to trade pure volatility separately from

directionalmovements in the underlying. One could also trade volatility through positions in

vanilla options, but these trades mix volatility risk with the directional risk of the underlying

equity aswell, and in order to get a pure volatility trade,weneed to hedge away the directional

risk.

The payoff on a variance swap is given by

N × (σ 2
R − K2) (14.42)

where N is the contract notional amount, K2 is the annualized variance strike, and σ
2
R is the

annualized realized variance over the contract period. Likewise, the payoff on a volatility

swap is given by N × (σR − K1) where K1 is the strike volatility. Interestingly, as we will

see, variance swaps are theoretically more tractable than volatility swaps; they also trade in

greater volume in the marketplace.

Neuberger (1990) and Demeterfi, Derman, Kamal, and Zou (1999) demonstrate how

variance swaps might be replicated using forwards and options on the underlying. Briefly

put, the expectation of realized variancemay bewritten as the value of a portfolio of forwards

and vanilla calls and puts (all under the risk-neutral measure). Thus, variance swaps are

priced under a de facto replication/hedging argument. We describe the derivation here. The

derivation is based on a continuous-time setting using stochastic calculus; the basics of

stochastic calculus are described in Chapter 15.

Referring to equation (14.42), we see that a variance swap is a forward contract on

realized variance. No money changes hands between the counterparties at inception, so the

fair value at inception of a variance swap must be zero. This means the following must hold:

E[N × (σ 2
R − K2)] = 0 (14.43)

where the expectation is taken using risk-neutral probabilities. That is, K2 must be chosen

so that

K2 = E(σ 2
R) = E

 
1

τ

 τ

0

σ 2
t dt

 
(14.44)

The pricing of a variance swap requires computing K2.

In the generalized Black-Scholes modeling environment, where geometric Brownian

motion describes the movement of stock prices, the stock price process in the risk-neutral

setting is given by

dSt = r St dt + σt St dzt (14.45)

where r is the risk-free rate and zt is a standard Brownian motion. Using Ito’s lemma (see

Chapter 15), we obtain

d(ln St ) = (r − 1

2
σ 2) dt + σt dzt (14.46)

Taking the difference of the above two equations gives

dSt

St
− d(ln St ) =

1

2
σ 2
t dt (14.47)

Seeing that the right-hand side (RHS) is the variance we want, we may write

E(σ 2
R) =

1

τ
E

  τ

0

σ 2
t dt

 
= 2

τ
E

  τ

0

dSt

St
− ln

Sτ

S0

 
(14.48)
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If we replicate the RHS of equation (14.48), we replicate the variance and, hence, can

get the fair strike K2 = E(σ 2
R). The RHS has two terms:

• The first term is simple. It is the accumulated value of a dynamic position from rebal-

ancing a stock position that is always long $1/St of stock. Its expectation under the

risk-neutral measure is E[
 τ
0
dS/S] = rτ .

• The second term is not so simple. It is a static short position in a contract that pays the log

return at maturity. This may be replicated with available forwards, calls, and puts. The

replicated payoff at maturity is shown by Demeterfi, Derman, Kamal, and Zou (1999) to

be as follows:

− ln
Sτ

S0
= − Sτ − S0

S0
(14.49)

+
 S0

0

1

K 2
max[0, K − Sτ ] dK +

 ∞

S0

1

K 2
max[0, Sτ − K ] dK

The replication involves a forward contract at forward price S0 and a weighted sum of

puts and calls where the weights are inversely proportional to the square of the strike

price of the option.

How does one arrive at equation (14.49)? The mathematical details are beyond the scope

of this book, but we can demonstrate that the log contract may be replicated as stated

with a simple example. The result in equation (14.49) is general enough to apply to any

underlying behavior of the stock price as long as there are no jumps. When the underlying

process is continuous, perfect replication is possible with an infinite set of strikes, but with

jumps, perfect replication is lost because higher moments are introduced, and pricing error

is introduced. However, Carr and Wu (2009) show that this error is very small.

Figure 14.9 shows the payoff function for varying terminal stock price using the left-hand

side (LHS) of equation (14.49) (the solid line) and theRHS of the same equation (the circles)

The plot shows the payoff function for varying terminal stock price using the

LHS of equation (14.49) (the solid line) and the RHS of the same equation

(the circles) for S0 = 100 and various Sτ on the x-axis. The strikes used are

spaced dK = $5 apart so that the approximation to the RHS of the equation is

reasonably sparse yet shows a very high accuracy in replication.
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for S0 = 100 and various ST on the x-axis. The strikes used are spaced dK = $5 apart so

that the approximation to the RHS of the equation is given by

RHS of equation (14.49) = − Sτ − S0

S0

+
S0 
K=5

1

K 2
max[0, K − Sτ ] dK

+
2S0 
K=S0

1

K 2
max[0, Sτ − K ] dK

We see from Figure 14.9 that the two lines almost coincide. They are even more coincident

when the interval between strikesmore closely approximates the integral in equation (14.49),

for example, when dK = $1.

We can use equations (14.48) and (14.49) to write down the fair value of the expected

realized variance with time τ remaining. In practice, instead of centering the break point

between the puts and calls at S0, it is better to center it at the strike price closest to the

ATMF level, which we will denote K0. In this case, the expression in equation (14.48)

above becomes

K2 =
2

τ
E

  τ

0

dSt

St

 
− 2

τ
E

 
ln

 
Sτ

S0

  
= 2

τ
(rτ ) − 2

τ
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+ ln

 
K0
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rτ − ln
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− E

 
Sτ − K0

K0

 
+ P + C

 
= 2
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rτ − ln

 
K0

S0

 
−

 
S0

K0

erτ − 1

 
+ P + C

 
(14.50)

P = erτ
 K0

0

1

K 2
P(K ) dK

C = erτ
 ∞

K0

1

K 2
C(K ) dK

where C(K ) and P(K ) are calls and puts at strike K . We move from the second to the

third line above using equation (14.49). We can see that this approach works even if we

do not assume the Black-Scholes model as long as we use any general form of geometric

Brownian motion.

We are finally in a position to see the connection between the formula for the

break-even expected realized variance in equation (14.50) and the VIX index formula in

equation (14.38). Note that the first term in equation (14.38) corresponds to 2
τ
(P + C)

from equation (14.50). The second term in equation (14.38) is approximately equal to
2
τ

 
rτ − ln

 
K0

S0

 
−

 
S0
K0
erτ − 1

  
from equation (14.50). To see this, note that

2

τ

 
rτ − ln

 
K0

S0

 
−

 
S0

K0

erτ − 1

  
= 2

τ

 
ln

 
S0e

rτ

K0

 
−

 
S0

K0

erτ − 1

  
= 2

τ

 
ln

 
F

K0

 
−

 
F

K0

− 1

  
≈ 1

τ

 
F

K0

− 1

 2
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when the forward price F and the approximate forward price K0 are very close to each

other.

Volatility Swaps

Volatility swaps do not have the same connection to the log contract as variance swaps.

This is because there is no direct replication possible for the realized standard deviation of

returns using forwards, calls, and puts as there is for the variance. Recall that the payoff

per dollar notional on a volatility swap is (σR − K1) whereas that on a variance swap is

(σ 2
R − K2). Since it is possible to replicate the latter and get the fair value of K2 exactly, it

is, of course, tempting to assume that we could express the payoff on a volatility swap as

a function of the payoff on a variance swap and thereby replicate it. However, this is only

possible approximately and results in a bias.

Demeterfi, Derman, Kamal, and Zou (1999) suggest the following approximation.

σR − K1 ≈
1

2K1

(σ 2
R − K 2

1 ) (14.51)

which works well when σR ≈ K1. But even then, we end up with a bias because the LHS

of the equation above is linear in σR whereas the RHS is not, i.e.,

Bias = 1

2K1

(σ 2
R − K 2

1 ) − (σR − K1) =
1

2K1

(σR − K1)
2 (14.52)

This is known as the convexity bias. Therefore, even if we assume that K1 =
√
K2, we end

up with the payoff being replicated in error. These replication difficulties with volatility

swaps have probably resulted in variance swaps becoming the instrument of choice for

trading pure volatility.



Chapter 15
The Mathematics
of Black-Scholes

15.1 Introduction

In this chapter, we offer a more formal mathematical treatment of the Black-Scholes model

and the derivation of the Black-Scholes formula. We begin with a description of Brownian

motion and Ito processes to put the Black-Scholes model into mathematical context. Then

we offer three ways of deriving the Black-Scholes formula: by replication, by risk-neutral

pricing, and using the capital-asset pricing model (CAPM). A fourth way of deriving the

Black-Scholes formula, through the limit of option prices in binomial models, is presented

in Hsia (1983).

15.2 Geometric Brownian Motion Defined

A stochastic process is a sequence of random variables (Xt ) indexed by time. In a discrete-

time stochastic process, observations on the stochastic process are made at discrete points

in time t = 0, 1, 2, . . . . For example, Xt could be the outcome of the t-th roll of a die.

In a continuous-time stochastic process, time is a continuous index, and the process is

observed at every instant t . For example, Xt could be the price of a stock at time t . The path

Xt then traces the random evolution of the price as time moves.

Wiener Processes
The fundamental stochastic process in continuous time is called a standardBrownianmotion

or a Wiener process. A Wiener process, denoted (Wt ), is a stochastic process defined for all

t ≥ 0 and satisfying four properties:

1. The process starts at 0: W0 = 0.

2. The process has independent increments: the change Wt −Ws in the value of the process

between two points in time s and t > s is independent of how the process got to its

time-s value.

3. The increments are normally distributed: given the value of Ws at time s, the difference

Wt − Ws is distributed normally with mean 0 and variance t − s.

4. The process evolves continuously: Wt is a continuous function of t .

If we take s = 0 in Condition 3, then, since W0 = 0, Wt −W0 is just equal to Wt . Hence,

Condition 3 says that we have Wt ∼ N (0, t) for every t .

344
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The “differential” notation dWt is often used as a shorthand for the instantaneous change

in the process Wt at time t . Roughly, we can think of dWt as the change in the value of the

process between t and t +dt for a small dt ; Condition 3 then implies that dWt ∼ N (0, dt).

Introducing Drift and Variance
Since Wt −Ws has a mean of zero, Wiener processes have no “drift” (on average, the change

in the process is zero). We can easily create processes that build on Wiener processes and

have nonzero drift. For instance, given a constant a, define

Yt = at + Wt (15.1)

Then a simple computation using the properties of Wt shows that we have

Yt ∼ N (at , t)

so the value of the Yt process grows at the rate a per unit time. We can also change the

variance of the Yt process per unit time. For b > 0, define

Yt = at + bWt (15.2)

Now we have

Yt ∼ N (at , b2t)

so the Yt process now has a variance of b2 per unit time.

We can also express the process (Yt ) given by (15.2) in differential form. Interpret dYt
as the change in the process between times t and t + dt for some small dt . Then,

dYt = Yt+dt − Yt

= [a(t + dt) + b Wt+dt ] − [at + b Wt ]

= [a(t + dt) − at] + [b Wt+dt − b Wt ]

= a dt + b dWt

The final line is called the “stochastic differential equation” for the process Yt :

dYt = a dt + b dWt (15.3)

In words, the change in the process between t and t + dt is composed of two parts: the

change on account of the mean growth rate of the process (which is a dt) and a random

component (which is b dWt ). The term a is called the “drift” of the Yt process. There is no

one name for the term b, but it is common to call it the “diffusion” component.

Ito Processes and Ito’s Lemma
The process Yt described in (15.3) is a special case of an Ito process. An Ito process

is a function of a Wiener process, but in which, more generally, the drift and diffusion

components may change over time. That is, we write

dYt = at dt + bt dWt (15.4)

Both the drift at and diffusion bt at time t may depend on the value of t as well as on the

past evolution of Yt up to that point. Some technical conditions must be met by these terms

to ensure the stochastic process Yt is properly defined, but these are quite general and need

not concern us here.

A central result in the study of continuous-time stochastic processes is Ito’s lemma.

Roughly speaking, Ito’s lemma says that any function of an Ito process is itself an Ito
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process; it describes how to get from the differential form of a given Ito process to the

differential form for a function of that process.

Proposition 15.1 (Ito’s lemma) Let Yt be an Ito process with the differential form

(15.4). Suppose Xt = f (Yt , t) where f is twice-continuously differentiable in its first argu-

ment and once-continuously differentiable in its second argument. Then, Xt is itself an Ito

process with differential form

dXt = αt dt + βt dWt (15.5)

where αt and βt are given by

αt = at
∂ f

∂y
+ ∂ f

∂t
+ 1

2

∂2 f

∂y2
b2
t (15.6)

βt = ∂ f

∂y
bt (15.7)

Remark

In standard notation, the terms ∂ f/∂y, etc. refer to the partial derivatives of f . As is implicit

in the description above, these derivatives are evaluated at (Yt , t), but to keep notation

simple, we suppress these arguments of the function.

A Heuristic Motivation of Ito’s Lemma
While a formal proof of Ito’s lemma is well beyond the scope of this book, the result itself

may be motivated as follows. In ordinary calculus, suppose we have a function x = f (y, t).

Suppose y and t change by small amounts dy and dt , respectively. Then, the change in x is

given by

dx = ∂ f

∂y
dy + ∂ f

∂t
dt + 1

2

∂2 f

∂y2
(dy)2 + ∂2 f

∂y∂t
dy dt + 1

2

∂2 f

∂t2
(dt)2 + · · · (15.8)

For small dy and dt , terms of the form (dy)2, dy dt , etc., are small compared to the first-order

terms dy and dt so they can be ignored in a first approximation, and we may write

dx = ∂ f

∂y
dy + ∂ f

∂t
dt (15.9)

But when y represents an Ito process Yt , we have dYt = at dt + bt dWt , so

(dYt )
2 = a2

t (dt)2 + 2atbt dt dWt + b2
t (dWt )

2 (15.10)

The first and second terms on the right-hand side of (15.10) can be ignored because they are

second-order terms. However, this is not true of the term (dWt )
2. Recall thatdWt ∼ N (0, dt),

that is, the variance of dWt is dt . Since the variance of dWt is the expectation of (dWt )
2,

this means that (dWt )
2 is itself of order dt—that is, it is a first-order term! Therefore, this

term cannot be ignored, so we must amend (15.9) to

dx = ∂ f

∂y
dy + ∂ f

∂t
dt + 1

2

∂2 f

∂y2
b2
t dt (15.11)

Substituting for dy from (15.4), this is exactly what Ito’s lemma says.
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Example 15.1 Suppose at = 0 and bt = b, where b > 0 is a constant. Then the Ito process Yt is just bWt,
so its differential form is

dYt = bdWt

Consider the process Xt defined by

Xt = Y 2
t

The function f here is f (y, t) = y2, so it has the partial derivatives

∂ f

∂y
= 2y,

∂2 f

∂y2
= 2,

∂ f

∂t
= 0

Therefore, from (15.6)–(15.7), we have

αt = 1

2
2b2 = b2

βt = 2bYt = 2b
 

Xt

So Xt is the Ito process with differential form

dXt = b2 dt + 2b
 

Xt dWt ■

Geometric Brownian Motion
Let μ and σ > 0 be given, and let S0 denote the initial level of a stock price. Define the

evolution of the stock price by the process St where

St = S0 e
μt+σWt (15.12)

The process (15.12) is called a geometric Brownian motion or GBM and is the stock

price process assumed by the Black-Scholes model. As we noted in the text, GBM has two

properties: (i) it implies a lognormal returns distrbution, and (ii) it implies continuous price

movements (no jumps).

The second of these properties follows from the requirement that Wt be continuous (this

is the fourth requirement in the definition of a Wiener process). To see the lognormality

implication, note that

St

S0

= eμt+σWt

so

ln

 
St

S0

 
= μt + σWt

This tells us precisely that

ln

 
St

S0

 
∼ N (μt , σ 2t)

so returns are lognormal with annual expected log-returns of μ and volatility of σ .

What is the stochastic differential form of St? LetYt = μt+σWt , soYt has the differential

form

dYt = μ dt + σ dWt
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The stock price is obtained from Yt by defining

St = S0e
Yt

In the notation of Ito’s lemma, we have f ( y, t) = S0e
y , so the partial derivatives are given

by

∂ f

∂y
= S0e

y ,
∂2 f

∂y2
= S0e

y ,
∂ f

∂t
= 0

Therefore, from (15.6)–(15.7), we have

αt = μ S0e
Yt + 1

2
σ 2 S0e

Yt = (μ+ 1

2
σ 2) St

βt = σ S0e
Yt = σ St

Thus, the stochastic differential representation of the GBM process (15.12) is given by

dSt = (μ+ 1

2
σ 2)St dt + σ St dWt (15.13)

Let α = μ + 1
2
σ 2. Sometimes this stochastic differential equation is expressed in

“proportional-change” form as

dSt

St
= α dt + σ dWt (15.14)

The left-hand side of this expression represents the instantaneous returns on the stock. The

right-hand side expresses these returns as composed of a drift of α and a variance of σ 2.

15.3 The Black-Scholes Formula via Replication

This section derives the Black-Scholes formula using replication arguments. We focus on

the call price. The put price is obtained using analogous arguments.

The Security Prices
Suppose the stock price St follows a geometric Brownian motion as described in Sec-

tion 15.2. In stochastic differential form, we write

dSt = αSt dt + σ St dWt (15.15)

Let r denote the continuously compounded interest rate. Since r is constant, an initial

investment of $1 grows by time t to Bt = ert . The rate of growth of this “money-market

account” is given by

dBt

dt
= r ert = r Bt

Hence, in differential form (but this time as an ordinary differential equation), we write

dBt = r Bt dt (15.16)

The Call
Let a call option with maturity T and strike K be given. Denote by C(St , t) the value of the

call at time t , given a stock price of St at that point. For notational simplicity, we use CS ,

Ct , and CSS to denote, respectively, the partial derivatives with respect to S and t , and the
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second partial with respect to S. We are assuming that the call price is differentiable in this

manner, but this will be justified in the solution.

The Procedure
In a continuous time setting, we cannot use the backwards induction procedure we did in

the binomial model (Section 12.3). Rather, the replicating portfolio and the option price

have to be identified using indirect techniques. So here’s how we proceed.

We assume that a replicating portfolio ( τ , bτ ) exists for the call, where τ and bτ are,

respectively, the number of units of the stock and the bond held at time τ (these quantities

may, of course, depend on all information available at time τ ). Then, using Ito’s lemma

on the call pricing function C in conjunction with the replicating portfolio, we show that

the call price must meet a certain condition. This condition is the famous fundamental

partial differential equation of the Black-Scholes model: it specifies a restriction on the

partial derivatives of C . Solving this partial differential equation enables us to identify

simultaneously the call price functionC (which, of course, turns out to be the Black-Scholes

call formula) as well as the values  τ and bτ .

A parenthetical comment. Recall from the discussion of dynamic replication in Sec-

tion 12.3 that the replication strategy for an option is also required to be self-financing. That

is, all changes to the composition of the portfolio have to be financed using purchases or

sales of other parts of the portfolio. To avoid excessive technical detail, we do not deal with

self-financing here, but it can be shown that the replication strategy we identify does meet

this requirement.

Obtaining the Fundamental Partial Differential Equation
Given the differential form (15.15) for the stock price process St , Ito’s lemma implies

dC =
 
αStCS + Ct + 1

2
CSSσ

2S2
t

 
dt + σ StCS dWt (15.17)

On the other hand, the call value at each point in time is equal to the value of the replicating

portfolio (by definition), so it must also satisfy

C(St , t) =  t St + bt (15.18)

Using dbt = rbt dt and expressing (15.18) in differential form,

dC =  t dSt + dbt = [ tαSt + rbt ] dt + tσ St dWt (15.19)

Compare (15.17) and (15.19). Since both represent the evolution of the call price, they

have to be identical. Therefore, the coefficients of the dt and dWt terms must coincide in

the two equations. Equating the coefficients of the dWt terms gives us

σ StCS =  tσ St ⇐⇒ CS =  t (15.20)

Equating the coefficients of the dt terms gives us

αStCS + Ct + 1

2
CSS σ

2S2
t =  tαSt + rbt (15.21)

Since  t = CS from (15.20), the first term on either side drops out, so we obtain

bt = 1

r

 
Ct + 1

2
CSS σ

2S2
t

 
(15.22)
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Equations (15.20) and (15.22) give us expressions for  t and bt in terms of C and its

partial derivatives. Substituting these expressions into (15.18) results in

C = CSSt + 1

r

 
Ct + 1

2
CSS σ

2S2
t

 
(15.23)

Multiplying through by r and rearranging, we finally obtain

rCSSt + Ct + 1

2
CSSσ

2S2
t − rC = 0 (15.24)

Equation (15.24), which is called the fundamental partial differential equation of the model,

must be satisfied by the call pricing function C(St , t) for any St ≥ 0 and t < T .

Here’s an important point: so far, we have not used the fact that the option is a call,

so any European option (actually any derivative including forwards and even unexercised

American options) in the Black-Scholes model must satisfy this fundamental pde. Where

the features of the call come in is in the boundary conditions. At time T , the call must also

satisfy

C(ST , T ) = max(ST − K , 0) for any ST ≥ 0 (15.25)

Thus, we arrive at our final condition: the call price C(St , t) must be a solution to the

partial differential equation (15.24) subject to the boundary condition (15.25).

The Black-Scholes Solution
There are standard techniques in mathematics for identifying solutions to partial differential

equations, but it may be verified through direct calculation that if we define C(St , t) as in

the Black-Scholes formula (14.1), namely

C(St , t) = St N (d1) − PV (K ) N (d2) (15.26)

with d1 and d2 defined by (14.3) and (14.4), then the conditions (15.24)–(15.25) are satisfied.

In particular, the relevant derivatives turn out to be

CS(St , t) = N (d1) (15.27)

CSS(St , t) = 1

σ St
√
T − t

N  (d1)) (15.28)

Ct (St , t) = St N
 (d1)

 −σ
2
√
T − t

 
− re−r (T−t)K N (d2) (15.29)

For a proof of (15.27)–(15.29), see Appendix 17A. Substituting the expressions (15.26)–

(15.29) in (15.24) shows that the partial differential equation is satisfied.

The Replicating Portfolio
Substituting from (15.27)–(15.29) into the expressions for t and bt in (15.20) and (15.22),

we obtain the following values for  t and bt :

 t = N (d1) (15.30)

bt = −PV (K ) N (d2) (15.31)

Note that we have  t St + bt = C(St , t) as required at all t , so (15.30)–(15.31) is, in fact,

the composition of the replicating portfolio.



Chapter 15 The Mathematics of Black-Scholes 351

15.4 The Black-Scholes Formula via Risk-Neutral Pricing

In Section 14.2, we showed that the risk-neutral pricing method leads to the call price C

given by

C = e−r (T−t) Et [ST × I{ST ≥K }] − PV (K ) Probt (ST ≥ K ) (15.32)

where I{ST ≥K } is the indicator function that takes on the value 1 if ST ≥ K and zero otherwise,

and expectations are taken under the risk-neutral probability. To proceed further, we must

identify the risk-neutral distribution of ST explicitly. This distribution is given by

ln

 
ST

St

 
∼ N

 
(r − 1

2
σ 2)(T − t), σ 2(T − t)

 
(15.33)

Note that the expected return under (15.33) is

E

 
ST

St

 
= e(r− 1

2
σ 2)(T−t)+ 1

2
σ 2(T−t) = er (T−t) (15.34)

as required. (See expression (13.6) for the expected value of a lognormal.) Note, too, that

going from the actual distribution to the risk-neutral one affects only the mean return, not

the volatility σ . For a formal derivation of the risk-neutral distribution, see Duffie (1996)

or the simplified exposition in Sundaram (1997).

Under (15.33), ln ST has a mean of

ln St + (r − 1

2
σ 2)(T − t)

and a variance of σ 2(T − t). To simplify lengthy expressions in the derivation, we define

some new variables:

τ = T − t (15.35)

η = ln St + (r − 1

2
σ 2)(T − t) (15.36)

In this notation, ln ST is normally distributed with a mean of η and a variance of σ 2τ .

Thus, the density function for ST is

1

STσ
√
τ

1√
2π

exp

 
−1

2

 
ln ST − η
σ

√
τ

 2
 

The First Term
Consider the first term e−r (T−t) Et [ST × I{ST ≥K }]. We will show that this equals St N (d1).

Throughout this derivation, we write “ exp ” for the exponential function e to avoid lengthy

superscripts. Writing out the expectation in full, this term is ∞

K

exp{−rτ }ST
1

STσ
√
τ

1√
2π

exp

 
−1

2

 
ln ST − η
σ

√
τ

 2
 
dST (15.37)

The first two ST terms in the integral may be canceled. To simplify the expression further,

we perform a change of variable. Define

z = ln ST − η
σ

√
τ

(15.38)
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Note then that ST = exp{η + zσ
√
τ }. Therefore, we obtain

dST = exp{η + zσ
√
τ } σ√

τ dz (15.39)

Finally, note also that ST ≥ K implies ln ST ≥ ln K , so

z ≥ ln K − η
σ

√
τ

(15.40)

Denote the right-hand side of (15.40) by a. Using (15.38)–(15.40) in the integral (15.37)

and canceling common terms, we get ∞

a

exp{−rτ } 1√
2π

exp{η + zσ
√
τ } exp

 
−1

2
z2

 
dz (15.41)

Now, look at the first two exponential terms in this integral. By substituting for η, we

obtain

exp{−rτ } exp{η + zσ
√
τ } = exp

 −rτ + ln St + rτ − 1
2
σ 2τ + zσ

√
τ
 

= exp
 

ln St − 1
2
σ 2τ + zσ

√
τ
 

= St exp
 − 1

2
σ 2τ + zσ

√
τ
 

Substituting this in (15.41), we obtain

St

 ∞

a

1√
2π

exp

 
−1

2
σ 2τ + zσ

√
τ − 1

2
z2

 
dz (15.42)

which can be rewritten as

St

 ∞

a

1√
2π

exp

 
−1

2
(z − σ√

τ )2

 
dz (15.43)

We do a final change of variable. Define y = z − σ√
τ . Then, dy = dz. Moreover,

z ≥ a ⇐⇒ y ≥ a − σ√
τ

Now

a − σ√
τ = 1

σ
√
τ

[ln K − η − σ 2τ ]

= 1
σ

√
τ

[ln K − ln St − rτ + 1
2
σ 2τ − σ 2τ ]

= 1
σ

√
τ

[ln K − ln St − rτ − 1
2
σ 2τ ]

= −d1

where d1 is exactly the quantity (14.3) used in the Black-Scholes formula. Therefore, the

integral (15.43) can be written as

St

 ∞

−d1

1√
2π

exp

 
−1

2
y2

 
dy (15.44)

The integral is just that of a standard normal density from −d1 to +∞, so is equal to

1 − N (−d1). Since N (x) + N (−x) = 1 for any x (see (14.15)), it is also equal to N (d1).

Thus, we have shown that the first term of (15.32) is equal to St N (d1).

The Second Term
Now consider the second term

PV (K ) Probt (ST ≥ K ) (15.45)
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The probability that ST ≥ K is the same as the probability that ln ST ≥ ln K . Now, ln ST
is normally distributed with mean η and variance σ 2τ , so this probability is given by ∞

ln K

1

σ
√
τ

1√
2π

exp

 
−1

2

 
ln ST − η
σ

√
τ

 2
 

d[ln ST ] (15.46)

Again, we use a change of variable. Define

w = ln ST − η
σ

√
τ

Then, ln ST = wσ
√
τ + η, so d[ln ST ] = σ√

τ dw . Finally, ST ≥ K implies

w ≥ 1
σ

√
τ

[ln K − η]
= 1

σ
√
τ

[ln K − ln St − rτ + 1
2
σ 2τ ]

= −d2

where d2 is the quantity used in the Black-Scholes formula (14.4). Using this change of vari-

able, the integral (15.46) can be rewritten, after canceling common terms and simplifying,

as  ∞

−d2

1√
2π

exp

 
−1

2
w2

 
dw (15.47)

This is just 1 − N (−d2), or equivalently, N (d2). Thus, we have shown that the second term

(15.45) is just PV (K ) N (d2), completing the derivation of the Black-Scholes formula.

15.5 The Black-Scholes Formula via CAPM

In their original paper, Black and Scholes (1973) give two derivations of their celebrated

formula. One is the replication/hedging approach described in Section 15.3 above. The

other is by using the capital-asset pricing model (CAPM). In this section, we describe the

latter derivation.

The capital-asset pricing model is a general method for discounting under uncertainty.

That is, it identifies the appropriate discount rate to apply to an asset so that its present value

may be obtained from knowledge of its terminal value (or value at some horizon T ). This

discount rate is the expected return on the asset.

The CAPM describes the relation between an asset’s expected return and its risk. More

specifically, the expected return on an asset is a linear function of its “beta” (denoted β),

where β is the covariance of the asset return with the market return divided by the variance

of the market return.

Consider a call option with strike K and maturity T . Suppose that the beta of the

underlying stock is denoted βS . Denote, as usual, the call value today by C(St , t), where St
is the current price of the stock and t is the current date. As in Section 15.3, letCS , CSS , and

Ct denote, respectively, the partial derivatives ∂C/∂St , ∂
2C/∂S2

t , and ∂C/∂t . From Ito’s

lemma (Proposition 15.1), we have

dC = CS dSt + 1

2
CSSσ

2S2
t dt + Ct dt (15.48)

Now, the instantaneous return on the option is dC/C , while the instantaneous return on

the stock is dSt/St . From (15.48), therefore, the covariance of the option return dC/C with

the market return is StCS/C times the covariance of the stock return dSt/St with the market
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return. That is, if βC denotes the beta of the call option, then

βC = St
CS

C
βS (15.49)

Let m denote the expected excess return on the market (i.e., the expected return on the

market less the risk-free rate r ). Under the CAPM, the expected return on the stock and the

option are then given by

E

 
dSt

St

 
= [r + βSm] dt (15.50)

E

 
dC

C

 
= [r + βCm] dt (15.51)

Multiplying both sides of (15.51) by C and using (15.49) to express βC in terms of βS , we

obtain

E[dC] = [rC + mStCSβS] dt (15.52)

On the other hand, by taking expectations in (15.48) and using (15.50) for the expected

returns on the stock, we also have

E[dC] = CS [r St + βSmSt ] dt + 1

2
CSSσ

2S2
t dt + Ct dt (15.53)

Equating (15.52) and (15.53), and canceling the common term mStCSβS , we obtain

rC = rCSSt + 1

2
CSSσ

2S2
t + Ct (15.54)

which is exactly the fundamental partial differential equation (15.24) obtained earlier

through the replication argument. Thus, the CAPM-based pricing approach leads to the

same price as the replication approach. Of course, the weakness of this approach to pricing

options is that it depends on the validity of the CAPM; the replication and risk-neutral

pricing methods place no requirement in this regard.

15.6 Exercises 1. If xt = at + bWt where Wt is a Wiener process and W0 = 0, then write down the

equation in differential form.

2. If xt = at + bWt , and y = ex (time subscripts suppressed), what is the differential

process for y?

3. In the previous question, what is the expected value of y at time t?

4. If dr = k(θ − r ) dt + η dz and P(r, t) is a given function, then what is dP?

5. If dx = a dt + b dW and y = ln(x), find dy.

6. Show that, in the Black-Scholes model, stock prices are lognormal.

7. (Requires Numerical Analysis) (a) Write down the probability density function of the

terminal distribution of returns for stocks in the Black-Scholes model. (b) Then write

down the expression for the value of a call option on a stock in integral (expectation)

form under the risk-neutral probability measure. (c) For the following parameter values,

undertake the integration using Octave and price the call option: S = 100, strike

K = 102, volatility σ = 0.3, risk-free rate r = 0.02, and maturity T = 0.5. There are

no dividends.
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8. In the previous question, if μ = 0.20 and σ = 0.40, what is the expected value of the

stock price after two years if the current price is $100? What is the standard deviation

of the stock price value after two years?

9. Given that stock prices follow a risk-neutral geometric Brownian motion, i.e., dS =
r S dt + σ S dz, write down the volatility for a put option’s return. Denote the put as a

function P(S, t).

10. From the solution to the preceding question what can you say about the volatility of a

put option when the stock price increases?

11. Intuitively, by inspection, in relation to the previous questions, what is the formula for

the volatility of a call? Does the volatility of a call increase or decrease as the stock price

increases?

12. Suppose you start with the risk-neutral stochastic differential equation for the stock,

which is

dS = r S dt + σ S dW
Note here that the drift is now the risk-free rate r . Suppose you want to price a derivative

security V (S, t), which is a function of the stock price and time. (a) Write down the

process for dV using Ito’s lemma. (b) Take the expectation E(dV ). (c) Under risk

neutrality, what should this expectation be equal to? (d) Setting E(dV ) to the correct

expected value, re-arrange the equation, and explain your result.

13. Suppose x ∼ N (0, 1). Let a value K be given. Define x+
K by x+

K = x × Ix≥K , where

Ix≥K is, as usual, the indicator function that takes on the value 1 if x ≥ K and is zero

otherwise.

(a) Compute E[x+
K ] symbolically.

(b) What might you imagine is the use of this calculation from an option pricing stand-

point?

14. In this chapter, we developed the following approaches to solving the option pricing

problem:

(a) The PDE approach: In this method, we found that the call option value was the

solution to the following differential equation:

rV = ∂V

∂S
r S + 1

2

∂2V

∂S2
σ 2S2 + ∂V

∂t

subject to V (T ) = max(0, ST − K ).

(b) The risk-neutral approach: In this method, we solved for the option price by taking

the following expectation (under the risk-neutral measure):

V = e−rT E[V (T )].

The answer to both these methods was found to be the same. Is this always true?

15. Suppose the beta of a stock is 1.2, and the stock price is S = 40. Let the volatility be

σ = 0.4, the risk-free rate be r = 0.04, and assume no dividends are paid. What is the

beta of a put option with maturity one year and strike K = 40?

16. Suppose the beta of a stock is 1.2, and the stock price is S = 40. Let the volatility be

σ = 0.4, the risk-free rate be r = 0.04, and assume no dividends are paid. What is the

beta of a call option with maturity one year and strike K = 40?

17. From the previous two questions, can you derive the relationship between the betas of

call, put, and stock?
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18. (Cash-or-Nothing Option) What is the value of an option that pays $100 if the stock

price exceeds a prespecified strike at maturity? Assume that the initial stock price is

$100, maturity is one year, volatility is 50%, and the strike is $110. Assume also that the

risk-free rate of interest is zero.

19. (Corridor Options) What is the price of an option that has a maturity of 60 days and pays

$1 for each day that the stock price lies in the range (50,60)? The current stock price is

S = 55, volatility σ = 0.4, interest rate r = 0.03, and dividends d = 0.

20. (Extension of Previous Question) Consider an option that is the same as the above except

that the option pays off $1 for each day only when the stock is outside the range (50,60).

What is the price of this option?

21. Which is higher, the expected return on a stock or that of a call option on a stock? Assume

the CAPM model governs returns in the real world.



Chapter 16
Options Modeling:
Beyond Black-Scholes

16.1 Introduction

The Black-Scholes model assumes that the price of the underlying asset follows a geometric

Brownian motion, or GBM. This assumption has two implications:

• Log-returns over any horizon are normally distributed with constant volatility σ .

• The stock price evolution is continuous, i.e., there are no market “gaps.”

These conditions are commonly violated in practice: empirical returns typically exhibit

fatter tails than a normal distribution, volatility is not constant over time, and markets

do sometimes gap. The volatility “smile” or “skew” discussed in Section 14.8 arises as a

consequence. The existence of the volatility skew means that if Black-Scholes volatility

is chosen to match the prices of at-the-money options, then away-from-the-money options

will be mispriced by the model, perhaps substantially.

Motivated by this, a number of models have looked to generalize or modify the Black-

Scholesmodel in order to better fit observed option prices. Important classes of thesemodels

include the following.

Jump-Diffusion Models

One of the earliest generalizations of Black-Scholes is Merton (1976). Merton’s approach

assumes that stock returns are composed of two parts: a “normal” part that evolves according

to the GBM process of Black-Scholes and an “extraordinary” part that causes unexpected

jumps in the stock price. The likelihood of jumps and the distribution of the jump size now

enter as additional variables in the option pricing problem. The occurrence of jumps results

in fat tails in the returns distribution (and also in skewness if the distribution of the jump

size is not symmetric); and, of course, jumps are market gaps. We examine jump-diffusions

and their implications in Section 16.2 below.

Stochastic Volatility Models

A second generalization of Black-Scholes is the class of models known as “stochastic

volatility” models. An early and influential paper in the development of these models

is Heston (1993). Volatility in these models is not taken to be a constant but is itself

a random variable that evolves over time. With volatility being random, the correlation

between changes in volatility and returns enters as another important variable. While stock

prices are still continuous in these models (markets do not gap), returns are no longer

357



358 Part Two Options

normally distributed: stochastic volatility results in fat tails, while nonzero correlation

betweenvolatility and returns generates skewness. Stochastic volatilitymodels are discussed

in Section 16.3.

ARCH/GARCH Models

A third class of models, related to the second, are those in which volatility may not be

separately random but may change over time in a manner that may be dependent on the

movement of the stock price. One form of this class of models, known as ARCH (Auto-

Regressive Conditional Heteroskedasticity), was developed by Engle (1982). An extension,

known as Generalized ARCH or GARCH models, was developed by Bollerslev (1986).

ARCH and GARCH models have proved highly influential in economics and finance, and

for his pioneering work, Engle shared the Nobel Prize in 2003. Duan (1995) and others

have developed option pricing theory for these models. GARCH models are the subject of

Section 16.4.

“Non-Normal” Models

Among the other approaches that have been proposed to better fit observed option prices

are those that directly posit non-normal returns distributions (rather than start with a normal

distribution and then modify it). These include the log-stable models of Carr and Wu (2003)

and McCulloch (2003), and the variance-gamma model of Madan, Carr, and Chang (1998).

These are discussed briefly in Section 16.5.

Implied Binomial Trees

Implied binomial trees (or “local volatility models”) were developed by Derman and Kani

(1994), Dupire (1994), and Rubinstein (1994). While they may be viewed as a general form

of stochastic volatility models, in practice they are used more with a financial engineering

bent. The approach takes the entire implied volatility surface—observed implied volatilities

across all strikes and maturities—as an input. In a common version of this approach, a

binomial or trinomial tree is then constructed whose option prices are consistent with the

observed input option prices. In the special case where the input prices are all generated

from the same lognormal process (i.e., where all the implied volatilities are the same), the

“implied binomial tree” will just be a standard binomial tree with constant up and down

moves. The construction of implied binomial trees is the subject of Section 16.6.

The Presentation in This Chapter
This chapter discusses the classes of models described above in greater detail. Our objective

is to give the student a “feel” for these models, what each of them contributes, and how

this contribution is reflected in option prices. Many of these models are technical in nature,

certainly more so than the Black-Scholes model they seek to generalize. So, wherever this

is appropriate, we first use simplified discrete-time formulations to convey the flavor of the

setting before describing the more complex continuous-time model. At various points in

the chapter, we also provide code in the Octave programming language for implementing

the models we present, so that students may generate on their own the tables and figures

used in this chapter or work further with the models to improve their understanding.

16.2 Jump-Diffusion Models

A market gap is a discontinuous price move. That is, you will not be able to draw the stock

price graph on a piece of paper without lifting your pen off the page. The Black-Scholes

model does not admit such discontinuities, but casual observation appears to suggest that
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markets do gap, notably when unexpected good or bad information hits the market. So, in

1976, Robert Merton suggested modifying the Black-Scholes model by adding a “jump”

process to it. A jump process is exactly what the name suggests: it is a process that remains

constant between jumps, and changes (by a possibly random amount) at jump times. Jumps

cause discontinuities in the instantaneous movement of the stock price.

The stock price process in Merton’s framework thus consists of two processes—one

based on a GBM process and the other on a jump process. The two are intended to match,

respectively, the smooth and discontinuous movement of equity prices. Because they are

combinations of Brownian diffusion processes and jump processes, such models are called

“jump-diffusions.” To specify a jump-diffusion, we must specify (a) the GBM process

including its volatility, (b) the likelihood or frequency of jumps, and (c) the distribution of

the jump size when jumps do occur.

This section aims to develop an understanding of the impact of introducing jumps into

our pricing models. We present the formal models that are used along with brief program

code. But first we present a simpler setting by extending the familiar discrete-time binomial

model to include jumps and illustrating the effect this has on option prices. Impatient readers

may proceed straight to the segment on the Poisson distribution with no loss of continuity.

Depicting Jumps in Binomial Models
The notion of a jump in discrete-time models is somewhat slippery because every price

change in a discrete-time model is effectively a jump. After all, in a typical binomial model,

the price jumps from its current level S to one of two possible levels uS or dS next period.

So what exactly do we mean by a “jump” in this setting?

Here’s one way to think about it. The standard binomial model is not “really” a jump

process because it is an approximation of the GBM; that is, as the time interval between

price moves shrinks, the size of the up and down moves too shrink, in such a manner that

the process ultimately starts resembling the continuous GBM process. By a jump, we mean

intuitively a price move that does not vanish in the limit, i.e., that remains a discontinuous

price move even as the time-interval h between price changes shrinks to zero.

Operationally, what this means is that to implement a jump-diffusion model in a discrete-

time setting, we may begin with a binomial model that approximates the GBM component

of prices. Then we tack additional price moves on to this that capture the jump process. We

illustrate this idea with a specific jump process called a “jump-to-default.”

An Illustration: Binomial Trees with Jump-to-Default
Suppose that the stock price evolves according to the usual binomial model, moving from

S to either uS or dS at each point. But suppose, however, there is also a third possibility

at each node—that the stock price can drop to zero. Suppose also that once the stock price

reaches zero, it remains there forever. The dropping of the stock price to zero is meant

to capture the likelihood that there may be a sudden, unexpected default by the company,

making its stock worthless. An early “jump-to-default” model of this sort was studied by

Paul Samuelson (see Merton, 1976); later versions include Davis and Lischka (1999), Das

and Sundaram (2007), and Carr and Linetsky (2006).

Each step of a binomial tree with jump-to-default looks like Figure 16.1. Let λ denote

the (risk-neutral) probability of the jump at each node. The remaining probability (1 − λ)

is apportioned between the nondefault nodes. Let q(1 − λ) and (1 − q)(1 − λ) denote,

respectively, the risk-neutral probabilities of an up and down move. When λ = 0, this is the

standard binomial tree.
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FIGURE 16.1
Binomial Tree with

Jump-to-Default
uS

dS

S

0

A One-Period Example
Consider a simple one-period example in which the single period represents h = 0.50 years.

Suppose the initial stock price is S = 100 and the volatility of the GBM component of the

stock price is σ = 0.40. Then, using the CRR parametrization (Chapter 13), the up and

down moves of the binomial tree are given by

u = exp{σ
√
h} = 1.3269 d = exp{−σ

√
h} = 0.7536

Finally, let the risk-free interest rate in continuously-compounded terms be r = 0.05, so

the per-period gross interest rate on the tree is R = erh = 1.0253.

Under the risk-neutral probabilities, the expected return on the stock must equal R. Since

the stock price is uS with probability q(1 − λ), dS with probability (1 − q)(1 − λ), and

zero with probability λ, this means we must have

R = (1 − λ)qu + (1 − λ)(1 − q)d

For any given value of λ, this expression can be solved to obtain

q = [R/(1 − λ)] − d

u − d
(16.1)

Consider a call option with a strike of K = 100 maturing in one period. The call pays

uS − K = 32.69 in state u but nothing in the other two states. So its initial value is

q(1− λ) × 32.69. The call values that result from different values of λ are described in the

second column of Table 16.1. Observe that call values increase as λ increases. We return to

these numbers in a short while.

A Multiperiod Example
It is a simple matter to extend this example to a multiperiod setting. The upper panel of

Table 16.2 shows the evolution of stock prices over a five-period tree assuming the same

values of u and d as above. The table does not show the third branch from each node that

represents the jump and that drops the stock value to zero, but it is implicit that such a

branch exists at each node.

The lower panel of the table prices, by the usual backwards induction argument, a call

option with a strike of K = 100 and maturing in five periods. The value of λ used in this
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TABLE 16.1
The Effect of

Jump-to-Default in a

One-Period Model

Call Option Values in

Default Probability λ One-Period Model Five-Period Model

0.000 15.11 30.71
0.005 15.32 31.68
0.010 15.53 32.65
0.025 16.16 35.63
0.050 17.21 40.73
0.100 19.30 51.23

TABLE 16.2
Binomial Option

Pricing with

Jump-to-Default

Option prices when the binomial model is enhanced with a probability of λ of a jump to
zero. The upper and lower panels present stock prices and call values, respectively, in a
five-period tree when λ = 0.10. The remaining parameters are described in the text.

Stock Price Evolution: λ = 0.10

Maturity 0.5 1 1.5 2 2.5

411.33
309.99

233.62 233.62
176.07 176.07

132.69 132.69 132.69
100.00 100.00 100.00

75.36 75.36 75.36
56.80 56.80

42.80 42.80
32.26

24.31

Call Option Prices: λ = 0.10

Maturity 0.5 1 1.5 2 2.5

311.33
222.21

156.57 133.62
109.02 88.29

75.09 57.67 32.69
51.23 37.33 19.30

23.97 11.40 0.00
6.73 0.00

0.00 0.00
0.00

0.00

table is λ = 0.10; the remaining risk-neutral probabilities needed for pricing are obtained

using (16.1). As the table shows, the initial price of the call is 51.23. Carrying out similar

computations, the last column of Table 16.1 reports call values for some other values of λ.

The Bias from Ignoring Jumps
Suppose that the true stock price follows a GBM process with jump-to-default. If the stock

has not yet defaulted, an observer who looks at a sufficiently long history of stock prices
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and computes the stock volatility would arrive at the estimate σ = 0.40. Representing this

in a binomial tree with h = 0.50 would result precisely in the values u and d we have used

in the trees above.

Suppose now that this observer ignores the possibility of the default branch, i.e., effec-

tively sets λ = 0. As Table 16.1 shows, the resulting price would then be biased, in some

cases quite severely. In the five-periodmodel, even a 0.5%chance of default (λ = 0.005) cre-

ates a pricing error of over 3%. Moreover, the bias is always in terms of an underestimation

of the correct price; that is, the more likely is default, the more the call is undervalued when

we ignore default.1

Of course, in general, both the impact of jump risk and the direction of the bias introduced

by ignoring it will depend on the stock return distribution under the jump; the example uses

a very special form for this distribution. So, the next step in our analysis is to look at option

pricing when the likelihood of jumps and the jump distribution have more general forms.

To this end, the next segment introduces the Poisson distribution, which will be used to

describe the frequency of jumps. Following that, we describe the essential content of the

Merton (1976) jump-diffusion model.

The Poisson Distribution
The Poisson distribution is frequently used in practice to represent random arrivals, such

as, for example, the number of customers arriving at a bank counter during a specified

time. So, a Poisson-distributed random variable N takes on the values k = 0, 1, 2, . . . . The

distribution is described by a single parameter λ > 0. The probabilities of the outcomes are

defined by

Prob(N = k) = e−λλk

k!

Here, k! refers to “factorial k,” i.e., the product of the first k integers. By convention, 0! = 1.

Thus, for example, the probability that N = 0 is just e−λ, while the probability that N = 3

(say) is [e−λλ3]/6. The single parameter λ of the Poisson distribution is both the mean and

the variance of the distribution:

E(N ) =
∞ 
k=0

[k × Prob(N = k)] = λ (16.2)

Var(N ) = E(N 2) − [E(N )]2 = λ (16.3)

In our context, the Poisson distribution will be used to describe the number of jumps in

the stock price. Intuitively, the continuous portion of the stock price corresponds to “normal”

price changes that occur because of, for instance, demand-supply imbalances or portfolio

rebalancing, while the jumps correspond to price changes that occur because of the arrival

of important new information, perhaps stock- or industry-specific news.

1 It may appear counterintuitive that call values increase when default is more likely, but the reason is

simple. When we keep the current stock price constant but increase the probability of the stock

price going to zero next period, we must compensate by increasing the likelihood of the up move

also. (Otherwise, the current stock price will not be the discounted expected value of future stock

prices.) Expression (16.1) shows precisely how the likelihood of an up move is related to the

jump-to-default probability. This creates an upward skew that pushes up the call price.
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The Jump-Diffusion Returns Specification
Consider a t-year horizon denoted [0, t]. Let S denote the current (time-0) price and St

the price at time t . Let Rt = ln(St/S) be the log-returns over [0, t], and let Zt denote a

normally-distributed random variable with mean αt and variance σ 2t . Under the Black-

Scholes model, we have

Rt = Zt

In a jump-diffusion model, the return Rt is the sum of Zt and the outcomes of each

of a random number of jumps. We want to represent the number of jumps by a Poisson

distribution, but we need to “scale” the distribution with the length of the horizon since

jumps should become more likely over a longer horizon. So we assume that the number

of jumps over the interval [0, t] is determined by a Poisson distribution with parameter λt

where λ > 0. That is, if we let Nt denote the number of jumps in the interval [0, t], then

Prob(Nt = k) = e−λt (λt)k

k!
, k = 0, 1, 2, . . . (16.4)

The jump process is presumed to be independent of the diffusion process driving the con-

tinuous portion of the stock returns. From (16.2), the expected number of jumps over [0, t]

is λt . Taking t = 1 year gives us a simple interpretation of λ: it is the expected number of

jumps per year.

We must also specify how the jump returns are distributed. Following Merton (1976), we

assume that each jump return is normally distributed and that jump outcomes are indepen-

dent of each other. So let (Hk) denote a sequence of independent and identically distributed

random variables, each of which is normal with mean μ and variance γ 2. Then, conditional

on there being k jumps in the interval [0, t], the returns Rt under a jump-diffusion are given

by

Rt =
 

Zt , if k = 0

Zt + H1 + H2 + · · · + Hk , if k ≥ 1
(16.5)

Together with the distribution (16.4) of k, this specifies the jump-diffusion return process.

We first point out some implications of this distribution and then turn to option pricing.

Moment Implications of Jump-Diffusions
If k were fixed and not random, then the return Rt in (16.5), as the sum of normal random

variates, would also be normally distributed. However, since k is random, Rt is no longer

normal. Das and Sundaram (1999) show that the first four moments of Rt are

Mean = (α + λμ)t (16.6)

Variance = [σ 2 + λ(μ2 + γ 2)]t (16.7)

Skewness = 1√
t

 
λ(μ3 + 3μγ 2)

(σ 2 + λ(μ2 + γ 2))3/2

 
(16.8)

Kurtosis = 3 + 1

t

 
λ(μ4 + 6μ2γ 2 + 3γ 4)

(σ 2 + λ(μ2 + γ 2))2

 
(16.9)

Every normal distribution is symmetric and so has a skewness of zero. Expression (16.8)

shows that the skewness of the jump-diffusion is zero if, and only if, the jump component

itself has a mean of zero (i.e., μ = 0). If μ > 0, the jump-diffusion has positively skewed

returns, while if μ < 0, returns are negatively skewed.
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More interesting is the kurtosis. Every normal distribution has a kurtosis of exactly 3.Any

distribution with kurtosis greater than 3 is said to be “leptokurtic” or “fat-tailed”; intuitively,

extreme outcomes are more likely in such a distribution than in a normal distribution. As

(16.9) shows, the kurtosis of the jump-diffusion always exceeds 3, so the jump-diffusion is

fat-tailed.

These observations have important implications for option prices. In Section 14.8, we

noted that one reason for the implied volatility skew is that the empirical returns distributions

exhibit greater kurtosis than the Black-Scholes model and sometimes also exhibit skewness.

By allowing for both skewness and kurtosis in the returns distribution, the jump-diffusion

aims to address these shortcomings. Of course, how well it does so is ultimately an empirical

question.We address this question after taking a look at option pricing formulae under jump-

diffusions.

The Merton (1976) Option Pricing Formula
Suppose the stockprice follows a jump-diffusion as just described.Let S be the current (time-

0) stock price and r be the risk-free rate of interest (expressed, as usual, in continuously-

compounded terms). Consider a European call option maturing in T years and with strike

K . Merton (1976) describes a formula for pricing this option.

To describe Merton’s formula concisely, some additional notation will help. Let g be the

expected proportional change in the stock price caused by a jump. In terms of the notation

introduced above, g = exp{μ+ 1
2
γ 2} − 1.2 Now, define the following variables:

ξ = λ(1 + g)

ν = ln(1 + g)

Next, for k = 0, 1, 2, . . . , let σ 2
k and rk be given by

σ 2
k = σ 2 + 1

T
kγ 2

rk = r − λg + 1

T
kν

Finally, letCBS(S, K , T , η, ρ) denote the Black-Scholes price of a call option with strike

K and T years to maturity when the current stock price is S, the stock volatility is η, and

the riskless interest rate is ρ. Then, Merton shows that the price of the call option under the

jump-diffusion, denoted C JD , is

C JD =
∞ 
k=0

e−ξT (ξT )k

k!
CBS(S, K , T , σk , rk) (16.10)

The price P JD of the corresponding put option can be determined from the call price using

put-call parity.

It should be noted that the derivation of this formula is not quite as straightforward as

the Black-Scholes formula. Merton notes that with a jump-diffusion, it is not possible to

set up a portfolio that continuously replicates the option. Replication aims to use positions

in the stock to mimic changes in the value of the option. If the stock price can register

2 To see why this is the case, suppose that the jump causes a gross proportional change of Y in the

stock price, i.e., the stock price changes from S to SY on account of the jump. Then, the log-return

on account of the jump is just ln(Y ), which under our assumptions is normally distributed with

mean μ and variance γ 2. From the standard properties of the lognormal, it follows that E (Y ) =
exp{μ+ 1

2
γ 2}. The expected proportional change is E (Y ) − 1.
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unexpected jump moves of a random size, then, since the position in the stock responds lin-

early to changes in the stock price but the option responds nonlinearly, replication becomes

impossible.

Merton’s approach is to assume that jump-risk is diversifiable and so is not priced. Under

this assumption, Merton derives a mixed partial differential-difference equation that option

prices must satisfy. The option pricing formula (16.10) is derived from this equation.

The Implied Volatility Skew under Jump-Diffusions
An important motivation behind the development of the jump-diffusion model is the pres-

ence of the implied volatility skew in options markets. So one question of interest is: for

plausible parameter values, what kinds of implied volatility skews is the jump-diffusion

theoretically capable of generating? Are they similar to the shapes observed in practice?

Appendix 16A describes program code in Octave for implementing the Merton jump-

diffusion formula (16.10). Using this, we identify option prices under the jump-diffusion

for the following set of parameters:

Variable Value

Initial stock price S = 100
Option maturity T = 0.50 years
Interest rate r = 0.03
Diffusion volatility σ = 0.30
Jump frequency λ = 0.50
Jump mean μ = −0.10, 0,+0.10
Jump standard deviation γ = 0.50

Since λ = 0.50, jumps take place on average once every two years. When μ = 0, there

is no skewness in the stock’s return distribution (see (16.8)); skewness is positive when

μ = +0.10 and is negative when μ = −0.10. From the option prices, we back out the

implied volatilities at various strike prices. (Recall that implied volatility is defined as that

level of volatility that would make the Black-Scholes formula consistent with a given option

price.) The results are presented in Figure 16.2. The range of strike prices used is symmetric

around the current level of the stock price, ranging from $50 to $150.

The figure shows that away-from-the-money options under jump-diffusions generally

have higher implied volatilities than at-the-money options, i.e., there is an implied volatility

skew. This is on account of the excess kurtosis (“fat tails”) under the jump-diffusion (see

(16.9)). When μ = 0, there is no skewness and the implied volatility skew is symmetric

(i.e., is a “smile”); this is the shape typically observed in currency options markets. When

μ < 0, the negative skewness in the returns distribution skews the implied volatility curve so

that out-of-the-money puts register higher implied volatilities than at-the-money options or

out-of-the-money calls. To an extent, this is similar to the shape found in equity index option

markets, although empirical skews are typically less U-shaped. Similarly, for μ > 0, the

positive skewness means that the implied volatility curve is skewed to the right with higher

implied volatilities for out-of-the-money calls than for at-the-money options or for out-of-

the-money puts. Thus, theoretically speaking, jump-diffusions are capable of generating a

variety of shapes for the implied volatility skew.

The Pricing Bias from Ignoring Jumps
A related question of interest is the pricing bias introduced by ignoring jumps. That is,

consider an observer who assumes the stock follows a geometric Brownian motion when
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FIGURE 16.2
Option Smiles in a
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it really follows the Merton jump-diffusion process. If the observer uses the stock’s price

history to estimate the stock’s volatility (and has available to her a sufficiently long history

of stock prices), she will arrive at the return variance estimate (16.7). That is, the stock’s

volatility ψ will be calculated to be

ψ =  σ 2 + λ(μ2 + γ 2)
 1/2

(16.11)

Soour question is: howdoes theBlack-Scholes price computed using (16.11) as the volatility

compare to the jump-diffusion price given (λ, μ, γ )?

For specificity, we consider the case μ = 0. Figure 16.3 plots jump-diffusion and Black-

Scholes options prices for this case. The remaining parameters are the same as used in Fig-

ure 16.2. The figure shows that the Black-Scholes model overprices at- and near-the-money

options relative to the jump-diffusion but underprices away-from-the-money options.3

Merton (1976) shows that this is a consequence of the curvature properties of the Black-

Scholes option pricing formula combined with the fact that the jump-diffusion price (16.10)

is a probability weighted convex combination of Black-Scholes prices.

Calibration of the Model and Its Empirical Performance
One approach to calibrating any model is to take the prices of traded options and to search

over the model’s parameter values so as to best match the prices of the options. This is the

“implied” parameter approach. In the simple case of the Black-Scholes model, the only

unobserved parameter—the volatility—can be backed out of the price of a single option. In

3 This effect can also be seen using the implied volatility plot in Figure 16.2. For μ = 0, (16.11) implies

a volatility of about 0.46. As can be seen from Figure 16.2, this is greater than the near-the-money

implied volatility, but less than the away-from-the-money implied volatility, of the jump-diffusion.

However, the implied volatility figure does not enable us to compute the dollar pricing error, which

is what Figure 16.3 describes.
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FIGURE 16.3
Comparison of

Jump-Diffusion and

Black-Scholes Prices
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the more complex case of the local volatility model studied later in this chapter, the tree is

“fitted” using the prices of a larger set of chosen options.

In the jump-diffusion model, there are four unobserved parameters that need to be fit: the

volatility of the diffusion (σ ), the jump probability (λ), the mean of the jump (μ), and the

variance of the jump (γ 2). Using a cross-section of option prices, we can identify the “best-

fit” parameter values by, for instance, minimizing the sum of squared deviations between

the model-implied prices and the observed prices. Alternatively, using a time series of stock

and/or option prices and the probability functions that drive the jump-diffusion process, we

may, for example, fit the parameters econometrically using maximum-likelihood methods

or by the method of moments.

Empirically, the evidence in favor of jump-diffusions is mixed. Jorion (1988) and Bates

(1996), among others, have found some support for the model in equity and currency

markets. The ability of the model to generate skewness and excess kurtosis means that it

is typically able to match observed option prices, particularly at short maturities, under

reasonable parametrizations. However, as Das and Sundaram (1999) show, the skewness

and, especially, excess kurtosis dissipate very rapidly as maturity increases (see (16.8) and

(16.9)), so returns become approximately normal as maturity increases (Backus, Foresi, Li,

and Wu (1997)). As a result, the implied volatility smile under a jump-diffusion becomes flat

very rapidly, much faster than observed in practice.4 These results all suggest that the ability

of jump-diffusions to match observed options prices at long maturities (or simultaneously

at different maturities) may be limited.

4 There is even a question about whether the implied volatility smile in practice flattens out at all.

Using an extensive data set of options with maturities out to five years and across several countries,

Foresi and Wu (2005) provide strong evidence that the option smile remains steep even at very long

maturities. See also Carr and Wu (2003).
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16.3 Stochastic Volatility

As with jump-diffusions, the stochastic volatility model makes a single, but important,

modification to the Black-Scholes model. In this case, the Black-Scholes condition that

volatility is constant is dropped. Rather, volatility is allowed to evolve over time according

to a separate stochastic process. The time-varying volatility creates fat tails in the returns

distribution and so addresses one of the principal shortcomings of the Black-Scholes model.

However, price paths are continuous in stochastic volatility models; that is, market gaps are

not admitted.

Specifying a stochastic volatility model means specifying three things: (a) the underlying

stock return process, (b) the stochastic process governing changes in volatility, and (c) the

correlation between changes in volatility and stock returns. The third requirement enables

us to capture such things as the “leverage effect” commonly observed in practice in equity

markets where sharp negative returns are associated with increased volatility.

Many different stochastic volatility models have been proposed in the literature. All of

these are continuous-time models that are technically more complex than Black-Scholes.

So before presenting a description of these models, we work our way through a discrete-

time version that captures the main ideas; in particular, the example explains how prices

under stochastic volatility compare toBlack-Scholes prices and how the correlation between

changes in volatility and returns affects this relationship.

A Binomial-Based Stochastic Volatility Model
In the typical CRR parametrization of the binomial model (Chapter 13), the up and down

moves on the binomial tree are given by u = eσ
√
h and d = e−σ

√
h , respectively, where σ is

the stock’s volatility and h the length of one period in the tree measured in years. So, given

St , the two possible values of St+h are

St+h =
 

Su
t+h = eσ

√
h St

Sd
t+h = e−σ

√
h St

(16.12)

It is easy to modify this specification to allow for volatility to change in a deterministic

manner from period to period. For example, suppose that the volatility between time points

t and t + h is σt . Then, we simply allow the up and down moves to change from period to

period. That is, we define the possible values of St+h by

St+h =
 

Su
t+h = eσt

√
h St

Sd
t+h = e−σt

√
h St

(16.13)

But what about randomly-changing volatility? In this case, we must first specify the

stochastic process for the evolution of volatility over time and then use this to build the tree.

A simple discrete-time process for the evolution of volatility may be developed as follows.

As we explain shortly, this formulation is simply a discrete-time version of the model

of Heston (1993) and captures many of the key characteristics associated with stochastic

volatility models.

Let σt denote the realized period-t volatility, and let κ , θ , and η be positive terms with

0 < κ < 1. We model the evolution of the variance Vt = σ 2
t . Suppose that the time-(t + h)

variance can take on two possible values given by

Vt+h =
 

V u
t+h = Vt + κ(θ − σt )h + η

√
Vth

V d
t+h = Vt + κ(θ − σt )h − η

√
Vth

(16.14)
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This binomial process for the variance should be thought of as a discrete-time approxi-

mation of a continuous-time diffusion process. Expression (16.14) effectively expresses the

difference Vt+h − Vt between the values of variance at times t + h and t as composed of

two terms:

• The term κ(θ − σt )h, called the drift of the process.

• The term η
√
Vth, which represents the randomness in the evolution since it enters with

a positive sign in one case and a negative sign in the other.

Consider the drift κ(θ − σt ). The parameter θ represents the mean long-run variance:

if current variance is less than this level, the drift increases the variance, while if current

variance is greater than this level, the drift pushes it down. That is:

• If Vt < θ , the drift is positive, increasing Vt from its time-t value.

• If Vt > θ , the drift is negative, dragging Vt+h down.

• If Vt = θ , the drift is zero.

In a nutshell, we say that this specification for Vt exhibits “mean-reversion.” The term κ is

the coefficient of mean-reversion: it controls the speed with which variance reverts to its

mean. The higher is κ , the faster is variance pushed towards its mean level θ .

Finally, the parameter η is called the “volatility of volatility.” If η = 0, there is no

randomness in the volatility process since the noise term η
√
Vth disappears. And as η

increases, the difference between the two possible values of Vt+h becomes larger, increasing

the swings in volatility.

As noted, this volatility process is just a discrete-time version of Heston’s (1993)

continuous-time model (see below for the description of Heston’s model). The model has

three key characteristics: a long-term mean level around which volatility evolves, a co-

efficient of mean-reversion, and a volatility-of-volatility term that determines the size of

volatility swings. A similar model in continuous time has also been studied by Stein and

Stein (1991) and others. Nonetheless, this discrete-time model is meant only for illustrative

purposes; for instance, we have not added constraints to prevent variance from becoming

negative, which it could under (16.14), a situation that is easily ruled out in the continuous-

time formulation.

The stock price process meanwhile evolves exactly as in (16.13) but with σt = √
Vt

given by the realized volatility in period t . Since both the stock price and volatility can go

up or down, there is a total of four possible outcomes at time t + h:

(Su
t+h , V

u
t+h), (S

u
t+h , V

d
t+h), (S

d
t+h , V

u
t+h), and (Sd

t+h , V
d
t+h)

Thus,wehave the quadrinomialmodel pictured inFigure 16.4 in eachperiod.Theprobability

of the stock price registering an up move is the sum of the probabilities of the top two nodes.

Similarly, the probability of V moving to V u
t+h is the sum of the probabilities of the first and

third nodes. The correlation between changes in volatility and stock returns is precisely the

quantity ρ in the figure.

Option Prices in the Model
Appendix 16B describes code in Octave for implementing the stochastic model described

above. It is a simple matter to modify the code to incorporate other stochastic processes

for volatility. We use this implementation to obtain option prices under stochastic volatility.

We want to compare these prices to Black-Scholes prices, which, in this discrete setting,

are just prices in a binomial model with constant volatility. The comparison highlights not

just the role of stochastic volatility but also that of the correlation ρ between changes in

volatility and returns.
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FIGURE 16.4
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Table 16.3 presents the prices of a call with strike K = 100 under stochastic volatility

for three values of the correlation (ρ = −0.50, 0, +0.50) and for a range of strike prices.

The table also presents Black-Scholes prices. The following parameter values are used to

generate these numbers:

Variable Value

Initial stock price S = 100
Risk-free interest rate r = 0
Option maturity T = 0.50
Initial volatility V = 0.09
Volatility mean θ = 0.09
Volatility of volatility η = 0.30
Mean reversion rate κ = 0.10

The Black-Scholes/binomial values are computed using the initial level of volatility—

which is also the long-run mean θ—as the fixed level of volatility. That is, we just set

κ = η = 0. The Black-Scholes values do not, of course, depend on ρ, but note that the

stochastic volatility values in Table 16.3 do change with ρ.

Comparison of Stochastic Volatility and
Black-Scholes Option Prices
Before discussing the numbers in Table 16.3, we first talk about how stochastic volatility

should matter. Stochastic volatility creates excess kurtosis (fat tails) in the return distribu-

tion. Moreover, nonzero correlation between returns and volatility induces skewness into

the returns distribution.

• Negative correlation results in negative skewness. Loosely, with negative correlation,

higher volatility levels are associated with more negative stock returns, which means

bigger moves on the downside. And when volatility decreases, there is a greater chance

that stock price changes will be positive but small since volatility has declined to a

smaller value.
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TABLE 16.3
Call Prices under the

Stochastic Volatility

and Black-Scholes

Models

Call option prices from the stochastic volatility and Black-Scholes models based on the
program code in Appendix 16B. The values are computed by pricing the option with trees
of six and seven steps and then averaging the two values. The table below presents call
values for three values of the correlation ρ between volatility changes and stock returns
and for a range of strike prices.

Call Prices under Stochastic Volatility
Strike Black-Scholes
Price Price ρ = −0.5 ρ = 0.0 ρ = +0.5

60 40.005 40.047 40.024 40.008
70 30.306 30.354 30.284 30.214
80 21.554 21.508 21.396 21.280
90 13.740 14.194 14.092 13.989
100 8.874 8.475 8.469 8.475
110 4.332 4.716 4.829 4.939
120 2.739 2.324 2.470 2.605
130 1.146 1.098 1.235 1.367
140 0.507 0.425 0.548 0.671

• Conversely, when correlation ρ is positive, there is positive skewness in the stock return

distribution.

• Finally, with zero correlation, there is no skewness in the returns distribution.

These patterns of skewness and kurtosis are reflected in the numbers in Table 16.3.

• When ρ < 0, negative skewness in returns makes call option prices at lower strikes

relatively higher. That is, option prices at lower strike ranges are higher for ρ = −0.5

than for the other values of ρ. Moreover, the negative skewness implies that the left tail is

fat, so options with low strike prices have higher values under stochastic volatility than

under Black-Scholes. However, option values at high strike prices are lower.

• Conversely, with positive correlation, option values in the stochastic volatility model are

relatively higher at higher strikes for ρ = +0.5 than for the other values of ρ. Moreover,

since the right tail is now the fat one, high strike option prices from the stochastic

volatility model exceed those of the Black-Scholes model, but the lower-strike option

prices are lower.

• When ρ = 0, both tails are fat. This leads to higher prices under stochastic volatility

than under Black-Scholes for away-from-the-money options in either direction.

These results can be expressed succinctly in terms of the implied volatility smiles. Recall

that the smile is generated by computing the implied volatility from the Black-Scholes

model using the prices at various strikes obtained from the stochastic volatility model.

Figure 16.5 presents smoothed implied volatility smile curves using the option prices from

Table 16.3.

When the correlation is negative, the smile is skewed to the left. This is the case com-

monly seen in equity indices; of course, equity index markets do commonly exhibit negative

correlation between volatility and returns. When the correlation is zero, the smile is sym-

metric. This is typical of currency options markets and to a lesser extent for options on

individual stocks. When correlation is positive, the smile is right skewed. Thus, depending

on the degree of skewness and kurtosis, a variety of shapes can be generated for implied

volatility smiles under stochastic volatility.
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FIGURE 16.5
Implied Volatility
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Continuous-Time Stochastic Volatility Models
Several different continuous-time formulations of stochastic volatility have been proposed.

We focus in this segment on perhaps the most popular and best known, the model of Heston

(1993). We also briefly touch upon other formulations. Technically, there are three equations

that go into a stochastic volatility model description, one for the evolution of stock prices,

one for the evolution of volatility, and the final one describing the relation between the

first two.

Let σt denote the instantaneous volatility at time t . The first equation in Heston’s model

is similar to the Black-Scholes expression for the evolution of the price of the underlying

(see Chapter 15) but with σt replacing the constant σ :

dSt = αSt dt + σt St dW
1
t (16.15)

(W 1
t ) is the Brownian motion process driving the stock price process, and α is the drift of

the stock price process. To this stock return process, we append a second stochastic process,

this one for the evolution of volatility. Letting vt = σ 2
t be the instantaneous variance, the

second equation in Heston’s model is

dvt = κ(θ − vt ) dt + η
√
vt dW

2
t (16.16)

where κ , θ , and η are all positive. As in the discrete-time formulation, θ is the long-run mean

of the instantaneous variance, κ the coefficient of mean-reversion, and η the volatility of

volatility. The process (16.16) for vt is guaranteed to remain positive as long as κθ > 1
2
η2.

The third and final equation connects the first two by specifying the correlation between the

Brownian processes W 1
t and W 2

t :

E[dW 1
t dW 2

t ] = ρ dt (16.17)

In equitymarkets, wherewe oftenwitness increased volatility associatedwith sharp negative

returns, we would expect ρ to be negative. In general, though, the model does not require



Chapter 16 Options Modeling: Beyond Black-Scholes 373

any particular sign of ρ. Equations (16.15)–(16.17) complete the description of Heston’s

model.

Kurtosis in stock returns in thismodel is created by randomchanges in volatility. Nonzero

correlation between changes in volatility and returns results in skewness. The behavior of

skewness and kurtosis in this model is described in Das and Sundaram (1999) who give

closed-form solutions for thesemoments. One important property they derive is that kurtosis

is hump-shaped in the horizon: excess kurtosis is close to zero at very low maturities,

rises to a maximum, and tapers away to zero again at long maturities. Intuitively, at low

maturities, changing volatility has not had enough time to create excess kurtosis, while

at long maturities, mean-reversion eliminates excess kurtosis. A higher value of κ causes

volatility to revert to its mean value faster, so kills kurtosis more quickly. Since excess

kurtosis is needed to generate an implied volatility skew, κ also kills the skew unless it is

small in size.

Other models of stochastic volatility proposed in the literature include Hull and White

(1987), Wiggins (1987), Stein and Stein (1991), and Amin and Ng (1992), among several

others. Hull and White (1987) examine a model in which the volatility process (16.16) itself

takes the form of geometric Brownian motion:

dvt = ϕvt dt + ζvt dW
2
t (16.18)

Under this specification, there is no mean reversion, so expected volatility either diverges

to infinity or converges to zero depending on the value of ϕ. Hull and White also assume

that the stock and volatility process are uncorrelated, which implies a symmetric volatility

smile in their model.

Stein and Stein (1991) study a model with mean-reversion as in Heston’s model, but

model the behavior of instantaneous volatility rather than instantaneous variance. Instanta-

neous volatility in their model follows a mean-reverting Gaussian process, i.e., (16.16) is

replaced by

dσt = κ(θ − σt ) dt + α dW 2
t (16.19)

This is called the Ornstein-Uhlenbeck, or O-U, process. Stein and Stein also allow for

arbitrary correlation between the volatility and return processes as in equation (16.17).

Schöbl and Zhu (1999) study a similar model.

Option Pricing under Stochastic Volatility
When volatility and returns are uncorrelated, Hull and White show that option prices in a

stochastic volatility model may be expressed as a function of Black-Scholes prices. Specifi-

cally, let V denote the average variance over the life of the option. V will clearly depend on

the particular path of realized variances, so let h(V ) denote the probability density function

of V . Also, let CBS(V ) be the Black-Scholes call price given V , i.e., for a volatility of
√
V .

Then, if CSV denotes the call price under stochastic volatility, Hull and White show that

CSV =
 ∞

0

CBS(V )h(V )dV

The general case where volatility and returns may be correlated is much harder and was

solved in closed form in Heston’s (1993) paper. Heston’s paper had a significant impact on

option pricing because it opened up an entirely new technical approach to obtaining closed-

form solutions for option models, one that extended the basic setting of the Black-Scholes

formula and allowed for rapid computation of option prices in extended models. The option

formulae retain the basic structure of Black-Scholes; for example, the call pricing formula

is the difference of two components, one of which is the present value of the stock price
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when the option ends up in-the-money (the general counterpart of the term SN (d1) in the

Black-Scholes call-pricing formula), and the other of which is the present value of the strike

price for all in-the-money outcomes (the counterpart of the term Ke−rT N (d2)).

As we saw in Chapter 15, there are two ways we can derive option prices in a continuous-

time setting. One is by using arbitrage arguments to reduce the option pricing problem to

the solution to a partial difference equation (pde). The other is by taking expectations under

the risk-neutral measure. The former approach, in most cases, defies closed-form solutions.

The latter involves solving for the expectation of the call payoff max{ST − K , 0} under the

risk-neutral probability and discounting this back to the present time. That is, denoting by

r the (constant) risk-free interest rate and by f the risk-neutral stock-price density at T

conditional on current information, the call price is

C = e−rT

 ∞

K

(ST − K ) f (ST )dST (16.20)

The key innovation in Heston’s paper was showing that this option price could be solved

for under stochastic volatility by solving two pdes, one each for the analogs of N (d1) and

N (d2). The details behind Heston’s derivation are technically quite complex. We describe

a heuristic motivation of the basic ideas in Appendix 16C.

Calibration and Empirical Performance
of the Stochastic Volatility Model
There are five unknown and unobserved variables in the Heston model: σ0, κ, θ , η, and ρ.

One procedure for identifying these values is to find the parameters that minimize the sum

of squared differences between the fitted implied volatilities and those observed in market

prices. Note that there are also non-negativity constraints on all the parameters except ρ.

Other metrics may also be employed. One is to minimize the sum of absolute deviations

of model and market implied volatilities. Weighted sums may be used. Fitting may also be

based on option prices rather than implied volatilities; then the procedure aims to minimize

the percentage differences in prices. However, this may be unstable because the value of

out-of-the-money options is often too small, resulting in blowing up the difference and

overweighting those options.

Empirically, as with jump-diffusions, the evidence in favor of stochastic volatility models

is mixed. Varying degrees of support of such models have been found in different markets

(e.g., Bates, 1996). Themodel’s ability to generate skewness and excess kurtosis enables it to

better fit observedoptionprices than theBlack-Scholesmodel.However, stochastic volatility

models imply a hump-shaped pattern of excess kurtosis (see Das and Sundaram, 1999).

Intuitively, at low maturities, changing volatility has not had enough time to create excess

kurtosis, while at long maturities, mean-reversion eliminates excess kurtosis. Consequently,

for reasonable parametrizations, stochastic volatility models have only limited impact on

short-dated option prices. And the evidence that the option smile in equitiesmarkets remains

steep even at very long maturities (Foresi and Wu, 2005) suggests that these models may

not do well at matching the data unless other factors (e.g., jumps) are also included in the

models.

16.4 GARCH Models

GARCH (generalized autoregressive conditional heteroskedasticity) models are popular

discrete-time alternatives to stochastic volatility models. Developed as ARCH models by

Engle (1982) and extended to generalizedARCH (orGARCH)models byBollerslev (1986),
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the setting has been found to be very good at depicting stock price processes and return

behavior. Option pricing for GARCH models was developed in the 1990s (see, especially,

Duan, 1995).

Unlike the jump-diffusion and stochastic volatility approaches, each of which required

the addition of a second stochastic process to augment the underlying GBM process of the

Black-Scholes model, the GARCH approach does not necessitate introducing any addi-

tional random variables. GARCH models are also essentially discrete-time models with the

changes in volatility occurring at fixed time points t , t + h, t + 2h, and so on. However, it

is possible to define a different GARCH process for each h such that as h goes to zero, the

GARCH processes converge to a limiting continuous-time diffusion process. For details,

the reader may refer to Nelson (1990) or Duan (1995).

The GARCH Process: A Description
Let the discrete time-points of the process be denoted t , t + 1, t + 2, . . . , where the gap

between any two successive time-points is fixed at h years (for example, h could be one day).

Let Rt = ln(St/St−1) denote the log-return over period t . Conditional on all the information

Ft−1 available up to period (t − 1), let αt denote the expected return: αt = E(Rt Ft−1).

Then, we may write Rt as

Rt = αt +  t (16.21)

where  t = Rt−αt denotes the unexpected portion of the returns. By definition,  t has mean

zero. Let σ 2
t denote the variance of  t conditional on all information available up to (t − 1):

σ 2
t = Var( t Ft−1). The basic and most popular version of the GARCH model, known as

the GARCH (1,1) model, represents the evolution of σ 2
t as a function of the immediate past

values of  and σ :

σ 2
t = β + γ σ 2

t−1 + ζ 2
t−1 (16.22)

Two conditions must be met for (16.22) to be meaningful: (i) β, γ , and ζ are all non-

negative; and (ii) γ + ζ < 1. The first condition is required to ensure that variance does

not become negative, while the second condition ensures volatility does not explode. Given

this condition, the long-run mean level of variance is σ 2 = β/(1 − γ − ζ ).

The specification (16.22) implies that a large return “shock” will result in a persistent

spike in volatility. A large value of  today will, via (16.22), increase volatility tomorrow,

and through that volatility in all subsequent periods. But since γ < 1, this effect on future

volatilities decays geometrically.

Variants and Extensions of GARCH (1,1)
Several variants on the GARCH (1,1) model have been studied in the literature. Here are a

few examples:

ARCH (q)

The earliest version of GARCH was the ARCH model introduced in Engle (1982). In ARCH

models, persistence arises only from the shock terms  t and not from previous values of

variance. The ARCH (q) model is defined by

σ 2
t = β +

q 
i=1

ζi 
2
t−i (16.23)

The effect of a return shock m periods ago (1 ≤ m ≤ q) depends on the parameter ζm . The

higher is this parameter, the more an earlier return shock continues to matter. In general,
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we would expect to have ζ1 ≥ ζ2 ≥ · · · ≥ ζq , so recent shocks to return matter more. In an

ARCH (q) model, shocks to returns that occurred more than q periods ago have no impact

at all on current variance.

GARCH ( p, q)

The ARCH (q) model was generalized to the GARCH ( p, q) model by Bollerslev (1986).

Here, σ 2
t depends not only on lagged values of the  ’s but also on lagged values of variance:

σ 2
t = β +

p 
i=1

γiσ
2
t−i +

q 
i=1

ζi 
2
t−i (16.24)

The GARCH ( p, q) model is an infinite-order ARCH model: a shock to returns today

affects variance tomorrow and through the variance, affects variance the day after, and so

on infinitely. The GARCH (1, 1) model defined earlier is the special case of (16.24) in

which p = q = 1 and is the most popular version of the GARCH ( p, q) model.

GJR GARCH

Glosten, Jagannathan, and Runkle (1993) introduced a variant of GARCH designed to

capture asymmetry. In GARCH (1,1) form, their model is

σ 2
t = β + γ σ 2

t−1 + ζ 2
t−1 + δ It−1 

2
t−1 (16.25)

where It−1 is an indicator variable that takes the value 1 if  t−1 < 0, and is zero otherwise.

The parameter δ > 0 is designed to capture the asymmetric behavior of markets where

volatility rises as markets fall (the “leverage effect”). In the specification (16.25),  t−1 < 0,

which may be thought of as “bad news,” has a greater impact on time-t volatility than “good

news” ( t−1 ≥ 0). The GJR GARCH model offers an excellent example of the flexibility

afforded the modeler by the GARCH setting, in this case, the ability to build in the market’s

asymmetric responses into the volatility process.

Asymmetric GARCH

Asymmetric GARCH or AGARCH was introduced in Engle (1990). In GARCH (1,1) form,

his specification is

σ 2
t = β + γ σ 2

t−1 + ζ ( t−1 − c)2 (16.26)

If c is positive, then negative shocks  t−1 < 0 will have a greater impact on period-t variance

σ 2
t than positive shocks  t−1 ≥ 0. This builds in an asymmetric response along the lines of

the “leverage effect.”

Exponential GARCH

Exponential GARCH or EGARCH was introduced in Nelson (1991). The EGARCH model

has subsequently been adopted and studied in many forms. The EGARCH (1,1) model has

the specification

ln[σ 2
t ] = β + γ ln[σ 2

t−1] + ζ
 t−1√
ht−1

+ ψ

 
| t−1|√
ht−1

−
 

2

π

 
(16.27)

By running the equation in the logarithm of the variance, the system results in a nonlinear

form of the GARCH model.
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GARCH Models and Option Pricing
GARCH models have found favor with modelers for many reasons. They have been found

to describe empirical stock price series very well. The model is parsimonious in the number

of parameters and so does not lead to very complex process formulations. Yet it is a flexible

one; for example, in its asymmetric forms, it provides for both the skewness and kurtosis

distortions that have been documented in empirical returns. Estimation of GARCH models

is made simple in part by the fact that GARCH increments are conditionally normal, making

the transition density functions for the process easy to write down.

Duan (1995) describes option pricing under GARCH processes. A key step lies in identi-

fying the risk-neutral GARCH process. In the case of the Asymmetric GARCH (1,1) model,

the risk-neutral evolution of the stock price over the interval [t , t + 1] may be described as

follows. Let ηt ∼ N (0, 1) be a series of i.i.d. variables, and let vt = σ 2
t denote the variance

over the period [t − 1, t]. Then, the following pair of equations describes the model:

St = St−1 exp

  
r − 1

2
vt

 
+√

vtηt

 
(16.28)

vt = β + γ vt−1 + ζvt ( t−1 − k)2 (16.29)

where r is the risk-free interest rate over the interval and k is a constant. (k = 0 corresponds

to the GARCH (1,1) model.) Note that the variance equation has four parameters: β, γ , ζ ,

and k.

Implementing a GARCH option pricing model comprises two steps: (a) estimating the

parameters of the model, and (b) using the estimated process to compute option values.

Estimation involves calibrating five parameters, i.e., {β, γ , ζ, k, v0}, where v0 is the initial

volatility. Computing option values may be done by Monte Carlo simulation or by building

an approximating lattice model as in Ritchken and Trevor (1999).

Calibration and Simulation of a GARCH Process
If we denote the logarithm of the stock price as xt = ln(St ), then xt is conditionally normally

distributed with

E(xt ) = μt = xt−1 + r − 1

2
vt (16.30)

Var (xt ) = vt = σ 2
t (16.31)

Given this, the conditional probability density of each transition of the process is

f [xt |xt−1] =
1 
2πη2

t

exp[−0.5(xt+1 − μt )
2/η2

t ]

Then, given a series of log stock prices, x0, x1, . . . , xT , we may estimate the parameters

by maximizing the log-likelihood of the time series, i.e.,

max
θ

ln

 
T−1 
t=0

f [xt |xt−1]

 
≡ max

θ

T−1 
t=0

ln f [xt |xt−1]

where θ is the parameter set {β, γ , ζ, k, v0}.
A simpler approach to the calibration problem is as follows. From equation (16.28), we

may write the error term as

ηt = 1√
vt

 
ln(St/St−1) − r + 1

2
vt
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Since this is conditionally normal in distribution, we may write down the log-likelihood

estimator as

max
θ

T−1 
t=0

ln{φ( t+1)}

where φ(.) is the function for the density of the standard normal.

Once the parameters are obtained, equations (16.28) and (16.29) may be used to generate

sample paths for the stock price.Basedon these sample paths, a simulated estimator of option

value is easily computed. This is considered in detail in Chapter 36, where we take up the

topic of simulation and deal with particular examples of GARCH processes.

Barone-Adesi, Engle, and Mancini (2004) propose a method for computing option prices

based on GARCH models in which volatility of the pricing process (i.e., in the risk-neutral

world) is not the same as volatility of the asset returns. Despite the growth in popularity of

GARCH models, Duan, Ritchken, and Sun (2005) argue that such models alone cannot fit

observed option prices well unless the process is also enhanced by jumps.

16.5 Other Approaches

This is a technical section that may be skipped without loss of continuity. Its purpose is to

introduce two further classes of models, log-stable models and variance-gamma models.

The continuous-time models we have looked at thus far all take as their foundation

Brownian motion processes or Poisson processes. Brownian motions and Poisson processes

(as also their combination, jump-diffusion processes) are special cases of a general class of

processes known as Levy processes. A Levy process Lt is a right-continuous process that

1. Begins at zero: L0 = 0.

2. Has stationary increments: for t > s, the distribution of Lt − Ls depends only on t − s.

3. Has independent increments: for t > s, the distribution of Lt − Ls is independent of

how the process got to Ls .

4. Satisfies stochastic continuity: for all s ≥ 0 and a > 0, the probability that |Lt+s−Ls | >
a goes to zero as t → s.

A Levy process has characteristic function

F(φ) = E[eiφLt ] = exp

 
t

 
iαφ − 1

2
σ 2φ2 +

 
R

[eiφx − 1 − iφx1|x |<1] ν(dx)

  

Here, α and σ are real constants, and ν(·) is a measure on R that satisfies 
min{1, x2}ν(dx) < ∞

The triple (α, σ, ν) characterizes a Levy process. Brownian motion is the special case

of a Levy process with α = 0, σ = 1, and ν = 0. Levy processes also admit other forms

outside the jump-diffusion class. Two examples are “stable” processes, which underlie the

log-stablemodels proposed byCarr andWu (2003) and the variance-gammamodel proposed

by Madan, Carr, and Chang (1998).

Log-Stable Models
As noted earlier in this chapter, the excess kurtosis in jump-diffusion models goes to zero

very rapidly as the horizon expands so that returns become nearly normal and the volatility

skew becomes almost flat. This is in contrast to empirical observations that indicate that the

volatility skew remains quite steep even at very long maturities (Carr and Wu (2003), Foresi
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and Wu (2005)). Stochastic volatility processes too have the problem that excess kurtosis

goes to zero as the horizon increases, although the pattern is different from jump-diffusions;

here, the excess kurtosis is hump-shaped, increasing from zero to a maximum and then back

to zero again.

To handle this problem, Carr and Wu (2003) develop a model of option pricing using sta-

ble processes. Since they posit that the logarithm of the stock price follows a stable process,

they call their model “log-stable.” This model has one distinguishing feature that separates

it from the jump-diffusion model—namely that the shape (in particular, tail fatness) of the

terminal distribution of the stock price does not attenuate with horizon.

Stable distributions have the unfortunate property that their moments need not be finite.

Even worse, the expected payoffs (functions of the underlying variable) are also not finite.

Carr and Wu develop their model using a single exceptional case, that of maximally negative

skewness. McCulloch (2003), however, shows that the restrictions of Carr and Wu (2003)

are not necessary. He develops a model with finite payoff expectations that may be applied

for a wide range of parameters.

Variance-Gamma Models
Another approach to better calibration of option smiles that also lies within the Levy process

class is the variance-gamma (or VG) model (cf. Madan, Carr, and Chang, 1998). The VG

process is one where stock price changes occur at random times, and the time interval

between changes is governed by a gamma distribution. This distribution is well suited to

modeling random times. The amplitude of the stock price change is obtained by observing

the increment of a Brownian motion at the random times. Since movements in the stock are

permitted only at these random times, the process is unlike a Brownian motion in that it

is not continuous but is instead very much like a jump process. However, unlike a Poisson

process, where the number of jumps is finite in any time interval, here there may be an

infinite number of jumps.

The VG process may be intuitively thought of as a pure jump process where small jumps

arrive with very high frequency and large jumps occur rarely. In addition to the diffusion

variance (from the underlying observed Brownian motion), the drift of the Brownian motion

and the variance of the gamma process allow calibration of the skewness and kurtosis in

stock returns. The available evidence suggests that this model may be effective in matching

option price smiles even at longer maturities.

16.6 Implied Binomial Trees/Local Volatility Models

Local volatility models are, in one sense, a form of stochastic volatility models with a

general specification for the evolution of volatility in which volatility may be both time-

and state-dependent. In applications, however, such models are used more with a financial

engineering bent: the objective is typically to set up a pricing model whose option prices

match observed option prices simultaneously at all strikes and maturities. More precisely,

we aim to identify the evolution path σ (t , St ) for volatility as a function of future time t

and time-t stock price St such that the model with this form of stochastic volatility results

in option prices that match empirically observed prices for all combinations of strikes K

and maturities T . The term “local volatilities” refers to the quantities σ (t , St ) unearthed in

this procedure.

One implementation of local volatility models involves constructing a binomial tree

whose implied option prices match observed levels. In this context, such models are also—

and perhaps more descriptively—called “implied binomial trees.” We describe the construc-

tion of implied binomial trees in this section.
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To motivate what implied binomial trees are, imagine first that the standard Black-

Scholes model applies and there is no volatility skew (i.e., all options have the same implied

volatility). Suppose we wish to construct a binomial tree to match all option prices. There is

only a single unknown parameter to be identified, viz., the volatility underlying the tree. We

can pick any single option and undertake a simple numerical search and find that value of

volatility that causes the price implied by the tree to match the observed option price. Since

all options have the same implied volatility, the tree will also match the prices of all other

options at any strike and maturity. This is the simplest kind of “implied binomial tree.”

The general procedure aims to do this even when the Black-Scholes model may be

invalid, so a volatility skew may be present at every maturity. We can no longer use just a

single option; the binomial tree must use information from all options since each may have

a different implied volatility. To allow for the best match possible, we must allow the size of

the up and down moves and the probabilities of these moves to vary from period to period

and from node to node within a period. (The sizes of the up and down moves at a node

define precisely the “local volatility” at that node.) It is the construction of such trees that

we examine in this section.

The first exposition of implied binomial trees came in three separate papers published

in the same year: Derman and Kani (1994), Dupire (1994), and Rubinstein (1994). Our

description below essentially follows Derman and Kani.

As an aside, it should be noted that an analytical formula for local volatilities was

described by Dupire (1994) and generalized by Andersen and Brotherton-Ratcliffe (1997).

Suppose there are sufficiently many traded call options that the observed market prices

can be represented as a smooth function C(T , K ) of strike and maturity. Let CT (T , K )

and CK (T , K ) denote the partial derivatives of C with respect to T and K , respectively,

and let CKK (T , K ) denote the second partial derivative with respect to K . Then, the local

volatilities are given by

σ (T , K ) = 2

K 2CKK (T , K )
[CT (T , K ) − (r − q)C + K (r − q)CK (T , K )] (16.32)

Anderson andBrotherton-Ratcliffe describe the implementationof (16.32) using the implicit

finite-difference method. Finite-difference methods are described in Chapter 35.

A Word of Advice
A word of advice to the reader may be appropriate here. The technique of implied binomial

trees is not a difficult one to follow, but it is also not a trivial extension of the standard

binomial tree construction. There is no better way for the reader to understand the fitting

procedure than to work through the approach alongside the text using pencil and paper, i.e.,

one needs to dirty one’s hands with the material to truly “get it.” The original papers on

which this section is based do provide somedetail, but they arewritten for financial engineers

rather than for beginners. Hence, our development is intentionally copious, allowing the

reader to follow each single calculation that goes into the development of the tree. The

example developed here extends over many periods so that a full exposition is provided.

In the final analysis, it is probably true that the best way to learn these models is to write

program code for their implementation. The more adventurous students who decide to go

that route will certainly find the end result greatly satisfying.

Notation and Preliminaries
There are two goals to the tree-building procedure on which we are about to embark:

1. To build a tree that fits the prices of all observed options on a maturity (T ) and strike

(K ) grid.
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FIGURE 16.6
The Stock Price Tree
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2. To ensure the tree is recombining. This ensures that the numerical procedure will run

fast and will calibrate rapidly.

Since the implied binomial tree approach aims to match observed option prices, these

observed prices—or equivalently the entire volatility surface (the plot of implied volatilities

against strikes and maturities)—are taken as an input. By interpolating between the implied

volatilities of different traded strikes and maturities, we can “fill in” the entire surface, so

we may assume in the construction of the tree that we know the price of an option with any

desired strike and maturity. (While we do not describe the filling-in procedure here, we note

that it can be a non-trivial exercise to get a smooth surface from the given data points. Even

single “bad” data points can create problems.) We also assume that put-call parity holds, so

calls and puts with a given strike and maturity have the same implied volatilities.

Stock Prices

Since the size of up and downmovesmay differ fromnode to node,wewill need a convenient

notation to represent stock price evolution on the tree. We use the notation pictured in

Figure 16.6. A typical node is denoted t j , with St j denoting the stock price at node t j . The

first subscript stands for the time period and the second for the node number at that period.

Higher values of j denote higher stock prices. Specifically, note that in a recombining

tree, there are (t + 1) distinct nodes at the end of t periods. These nodes are numbered

St ,1, . . . , St ,t+1 in our scheme with

St ,1 < St ,2 < · · · < St ,t+1

Thus, the initial stock price is S01. After one period, the price can register a “down” move

to S11 or an “up” move to S12. More generally, from any price St j , the price can either move

down to St+1, j or up to St+1, j+1. The implicit up- and down-move sizes at the node t j are just

ut j = St+1, j+1

St j

dt j = St+1, j

St j

In general, these up and downmoves could vary across t and j . To keep unnecessary notation

to a minimum, we will not refer to the quantities ut j and dt j in the remainder of this section,

and rely on the stock price notation alone instead.

Other Tree Notation

The risk-neutral probability of an up move at node t j is denoted qt j , so 1 − qt j is the

probability of a down move. As usual, h will denote the length of one period in the binomial

tree measured in years, and r the interest rate expressed in continuously-compounded terms.
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The per-period interest rate is R = erh . By definition of the risk-neutral probability, we must

have at each t j ,

St j = e−rh
 
qt j St+1, j+1 + (1 − qt j )St+1, j

 
(16.33)

Option Prices

The notation Ct j (T , K ) will be used to denote the node-(t j) price of a call with maturity

date T and strike K . Thus, C01(T , K ) denotes the price of a call at the initial date with

maturity T and strike K . Put prices Pt j (T , K ) are defined similarly.

Initial Parameter Values

Our exposition in this sectionworks through an example. The initial stock price is S01 = 100.

We also take h = 0.25 years (in practice, of course, one would use a finer tree). The interest

rate is r = 0.05, so the per-period gross interest rate is R = erh = 1.0126. Finally, the

initial price of a one-period at-the-money call, C01(h, S01) in the notation defined above, is

taken to be 5. Further option prices will be introduced as we go along.

How We Proceed
The construction of an implied binomial tree proceeds by a form of forward induction.

We first build a one-period tree, then a two-period tree on top of that, then a three-period

tree on top of the two-period tree, and so on. We provide a description of the general

procedure here and then specialize this procedure to building the first three periods of the

tree in the numerical example.

Suppose we have built the (t − 1)-period tree. That is, we know all the nodes up to the

end of time (t − 1) and all the (risk-neutral) probabilities of up and down moves to this

point. In the next step, we have to determine a total of 2t + 1 variables: (a) the (t + 1)

prices that can occur at the end of t periods (i.e., the prices St ,1, . . . , St ,t+1) and (b) the t

probabilities of an “up” move, one at each of the t nodes at the end of the (t − 1)-period

tree. We require a total of 2t + 1 equations to solve for these variables.

Our first step is to eliminate one of these by a “centering” condition analogous to that

used in the CRR binomial model:

• If t is even—that is, if there are an odd number of nodes at the end of t periods—we set

the middle node equal to the initial price S01.

• If t is odd, so there are an even number of prices at the end of t periods, we let St ,m1
and

St ,m2
denote the two middle prices, and impose the condition St ,m1

St ,m2
= (S01)

2.

This centering condition is an engineering imposition, not an economic one, but it has

the benefit of balancing out the tree. It provides us with one of the 2t + 1 conditions we

need. A further set of t conditions is provided by the risk-neutral pricing condition (16.33):

at each of the t nodes at the end of t − 1 periods, we must have

St−1 j = e−rh
 
qt−1, j St , j+1 + (1 − qt−1, j )St , j

 
, j = 1, . . . , t (16.34)

The final t conditions are obtained by considering the prices of t options maturing at

the end of period t . Of course, we may use any t options for this purpose, but we choose a

specific set of t options to make both exposition and computation simple: namely, options

with strikes equal to the t terminal prices at the end of t − 1 periods, St−1,1, . . . , St−1,t . The

reason is just that when viewed from the node St−1, j , the option with strike St−1, j will finish

in-the-money at only one of the two terminal nodes that arise next period, and this makes

computing its price simple. For strike prices that lie at or above the initial stock price, we

use call options, while for strikes that lie below the stock price, we use put options.
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FIGURE 16.7 The Completed Local Volatility Model Tree
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Note that the construction of the t-th period of the binomial tree uses t options maturing

in t periods. This means that the constructed binomial tree can match up to t points on the

volatility skew of t-period options. Thus, for example, if each period in the binomial tree

represents one trading day and we take a month to have 22 trading days, the model can

match the implied volatilities of 22 different one-month options.

This, then, is the general procedure. A detailed example follows. The entire final tree

depicting the results of the computations is presented in Figure 16.7. This diagram will be

referenced repeatedly as we work through the example below.

Calibrating the First Period
The first step in the construction of the tree is to solve for the values at the end of one period

on the tree. There are three variables to be solved for: the prices S11 and S12 at the end of one

period, and the probability q01 of an “up” move in the first period. One condition on these

three objects is given by the risk-neutral pricing condition (16.34); specialized to period 0,

this is

S01e
rh = q01S12 + (1 − q01)S11 (16.35)

Observe that the left-hand side is just the one-period forward price of the stock at the

node 01. (This follows from the usual forward pricing arguments; see Chapter 3.) Writing

F01 for this forward price, (16.35) may equivalently be written as

F01 = q01S12 + (1 − q01)S11 (16.36)

For the second condition, consider a one-period call option with a strike of 100. Suppose

that the initial price of this call is 5. Then the call finishes in-the-money if the stock price

goes up to S12 but not if it goes down to S11, so the risk-neutral call pricing condition is

5 = e−rh [q01(S12 − 5) + (1 − q01) · 0] (16.37)
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For the third condition, we impose the “centering” condition mentioned above:

ln S01 =
1

2
[ln S11 + ln S12] ⇔ S2

01 = S11 · S12 (16.38)

Solving these equations, we obtain

q01 = 0.549197, S12 = 109.2190, S11 = 91.5594

These values appear on the tree in Figure 16.7.

Using State Prices as a Building Block
In order to pursue the development of the tree to further periods, it is notationally much

more convenient to use the notion of “state prices.” Recall that the state price λt j at node

t j is the time-0 price of a security that pays $1 if node t j is reached and nothing otherwise.

Obviously, state prices are just discounted risk-neutral probabilities, i.e., if Qt j denotes the

risk-neutral probability of reaching the node t j , then

λt j = 1

Rt
Qt j = e−r th Qt j

So there is nothing conceptually new being introduced here. However, as we see shortly,

this results in substantial notational savings.

The state price of the initial node is clearly just 1. From the probabilities identified so

far, we can write down the state prices for the nodes at the end of one period:

λ01 = 1.000000

λ12 = 0.542375 = e−0.05h(0.549197)

λ11 = 0.445203 = e−0.05h(1 − 0.549197)

Thus, there are three numbers that characterize a node t j : the stock price St j , the proba-

bility of an up move at that node qt j , and the state price λt j :

Node (t,j): {St j , qt j , λt j }

To avoid legitimate confusion, we stress the following:

• qt j is the probability of an up move from node t j .

• λt j is the time-0 state price of node t j , i.e., it is the risk-neutral probability of reaching

node t j discounted at the risk-free rate back to the initial node.

In this format, the tree so far appears as follows (depicting the available information as

we have at the current stage of development of the tree):

Node (0, 1) : {100, 0.549197, 1.00}
Node (1, 2) : {109.2190, q12, 0.542375}
Node (1, 1) : {91.5594, q11, 0.445203}

The probabilities q11 and q12 are, as yet, undetermined. They will be identified once we

solve for the second period of the tree. We turn to this now.

The Second Period
To complete the tree for the second period, we need to solve for the three stock prices that

are consistent with the prices of two-period options. These three stock prices are S21, S22,

and S23. We also need to determine the likelihoods of up moves from the two first-period

nodes, q12 and q11. This gives us a total of five unknowns.
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We begin by setting the middle node S22 = S01 = 100. This “centers” the tree around the

initial price as in the CRR solution for the simple binomial tree and removes one unknown

from the analysis. To identify the remaining two stock prices, S23 and S21, and the risk-

neutral probabilities q12 and q11, we use options. Specifically, for the upper node, we use a

call option with strike S12, and for the lower node, we use a put option with strike S11. Note

that the call is out-of-the-money at the initial node S01, as is the put. Suppose the initial

prices of these two options are 3 and 1.50, respectively.

We proceed in two stages:

1. We first solve for the upper half of the tree using the call price. This gives the values of

S23 and q12.

2. Next we solve for the lower half of the tree using the put price. This gives the values of

S21 and q11.

(A) Upper Half of Period 2 Tree

Tofind q12 and S23, we need two equations.One is given by the usual forward price condition:

letting F12 = erh S12, we have

F12 = q12S23 + (1 − q12)S22 (16.39)

The second is given by the call-pricing equation. Since the call has a strike of S12, it

finishes in-the-money if the stock price goes up to S23 but out-of-the-money if the price

goes down to S22. Thus, the value of the call at the stock price S12 is given by

e−rhq12(S23 − S12)

Now, a dollar of payoffs at node (1, 2) has a time-0 value of λ12. Thus, the time-0 value of

the call is

C = λ12e
−rhq12(S23 − S12) (16.40)

The call value is given to be 3. Substituting for the other known values and solving

(16.39)–(16.40), we obtain

q12 = 0.541476, S23 = 119.5620

Refer to Figure 16.7 for the upper half of the second-period tree.

(B) Lower Half of Period 2 Tree

In the lower half of the tree, we apply the same arguments using the chosen put instead of

the call. The first equation is again the forward pricing equation:

F11 = q11S22 + (1 − q11)S21

The second is the put pricing equation. The put has a strike of S11, so it finishes in-the-

money if the stock price goes down to S21 and out-of-the-money if the stock price goes up

to S22. So we have:

P = λ11e
−rh(1 − q11)(S11 − S21)

The put value is given to be 1.50. Substituting this and other known values in the two

equations, we can solve for q11 and S21:

q11 = 0.540638, S21 = 84.1325

Refer to the lower half of the tree, which appears in Figure 16.7.
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State Prices after Two Periods

Along with the three stock prices at the end of the second period, given that we have also

solved for the branching probabilities, we can also compute the state prices. These are as

follows:

λ23 = e−rhλ12q12 = 0.290035

λ22 = e−rh[(1 − q12)λ12 + q11λ11] = 0.483306

λ21 = e−rh(1 − q11)λ11 = 0.201969

This completes the development of the tree for the second period.

The Third Period
In the third period on the tree, we are to determine four stock prices (S31, S32, S33, and

S34), and three risk-neutral probabilities (q21, q22, and q23). Since there are now two middle

nodes, the “centering” condition takes the form it did in the first period. We carry out the

tree building scheme in three steps:

1. Solve for the two middle nodes. For this, we will use a call with strike S22, whose initial

(time-0) price is taken to be 8.

2. Solve for the upper half of the tree. For this, we will use a call with strike S23, whose

initial price is taken to be 2.

3. Solve for the lower half of the tree. For this, we will use a put with strike S21, whose

initial price is taken to be 1.

(A) Solving for the Middle Nodes

The two middle nodes are S33 and S32. To solve for these, we will set this up as a solution

of three equations to solve for q22, S33, and S32. These equations are as follows:

• A symmetry equation, centering the two stock prices around the initial stock price, i.e.,

S2
22 = S33 · S32

• The forward pricing equation, i.e.,

F22 = erh S22 = q22S33 + (1 − q22)S32

• One call-pricing equation for the ATM (i.e., S22) strike:

C(3h, S22) = e−rh (S33 − S22) q22 λ22

+ e−rh (S33 − S22) (1 − q23) λ23

+ e−rh (S34 − S22) q23 λ23

This equation may be rewritten as follows:

erh C(3h, S22) = λ22q22(S33 − S22)

+ λ23[q23S34 + (1 − q23)S33 − S22]

= λ22q22(S33 − S22) + λ23[F23 − S22] (16.41)

Note that F23 is just erh S23. Solving for these three equations, we obtain

q22 = 0.573221, S33 = 107.1860, S32 = 93.2962

The middle segment of the third period of the tree may be read from Figure 16.7.
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(B) Solving for the Upper Node

With S33 known, we can recover the remaining upper part of the stock price tree, i.e., S34.

For this, we use the price of a call with strike S23, which, as mentioned, we take to be 2. To

find q23 and S34, we solve the usual two equations, one the forward pricing equation, and

the other the option-pricing equation:

F23 = erh S23 = q23S34 + (1 − q23)S33

C(3h, S23) = q23(S34 − S23) e−rh λ23

Since C(3h, S23) is given to be 2, we can easily solve these equations to obtain

q23 = 0.557351, S34 = 132.0900

(C) Solving for the Lower Node

Using the value of S32, we can recover the remaining lower part of the stock price tree, i.e.,

S31. We begin by using the following put option price as given

P(3h, S21) = C(0.75, 84.1325) = 1

To find q21 and S31, we solve the following two equations (again, the forward price equation

and the option pricing equation):

F21 = erh S21 = q21S32 + (1 − q21)S31

P(3h, S21) = q21(S21 − S31) e−rh λ21

Substituting for the known values and solving, we obtain

q21 = 0.554697, S31 = 75.0942

Finally, we can compute the four state prices, which are:

λ34 = λ23 q23 e−rh = 0.159643

λ33 = [(1 − q23)λ23 + q22 λ22]e
−rh = 0.400388

λ32 = [(1 − q22)λ22 + q21 λ21]e
−rh = 0.314343

λ31 = (1 − q21)λ21 e−rh = 0.088820

Recap of the Local Volatility Approach
The three-period tree is sufficient to demonstrate all the mechanics required for building

the stock price so as to be consistent with the local volatility surface. Repetition of the

same ideas to subsequent periods extends the tree as far out as is required. An extension

of the same tree to four periods is presented in Appendix 16E. The reader may wish to

attempt building the fourth period and then check the results against those in the appendix.

The appendix provides somewhat more general mechanics that may be skipped unless the

reader wishes to undertake a full-blown implementation of the model. It does not provide

any new conceptual developments over what has been covered in this section already.

At each stage of the model, we invoked the necessary at-the-money (ATM) option price

(call or put) as was required. These ATM strikes are determined as we build the tree, i.e.,

as we determine subsequent stock prices. There is no reason for options with exactly these

strikes to be actually traded in the market. Hence, in the tree-building procedure, we need

to interpolate the prices of options from neighboring ones that have traded prices.

To recap,we used the prices of calls and puts of different strikes andmaturities to calibrate

the stock price tree. The options used are presented in Figure 16.8. The options used at each

stage of the calibration are presented at the node where they are used.
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FIGURE 16.8
The Option Prices
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We use calls to calibrate the upper portion of the tree, and puts for the lower portion. We

summarize some of the mechanics one more time:

1. The calibration procedure is a bootstrapping one. We start with the one-period option

and subsequently use for each period longer maturity options. The options used vary

in strike and maturity, i.e., represent discrete points on the local volatility surface. The

usual approach is to determine the upper prices on the stock tree using calls and the

lower prices using puts.

2. In each period, there are either an even or an odd number of stock prices to be determined.

If the number is odd, then the middle stock price is set to the current price of the stock.

Then a series of equations is used to determine the upper stock prices, and, likewise,

a separate system of equations is used for the lower stock prices. The usual system of

equations comprises the following:

• An equation for the forward price of the stock.

• An equation for the ATM call or put price.

• An additional equation if required, usually an imposition of symmetry on the lattice,

which is nothing but another form of interpolation between stock prices. However,

it does provide a necessary additional identification condition for fixing stock prices

on the tree.

3. If the number of stock prices is even, then the two middle prices are determined initially

using a system of equations (three types as described previously). Once these are known,

the upper half of the tree is calibrated separately, and so is the lower half. The procedure

followed is the same.

The approach of fitting implied binomial trees is a practical one since it is based on

relative pricing and the uncovering of the stock price process that is consistent with the

prices of options across a range of strikes and maturities. Once the lattice in stock prices is
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uncovered, it may be examined to infer what type of stochastic process equity prices may

be following or, more simply, to what extent the evolution of the stock price deviates from

the assumptions of the Black-Scholes model, essentially in that returns are not normal or

constant at all points in time.

16.7 Summary

Empirical asset price return distributions tend to depart from normality in important ways.

The presence of non-normality results in the option smile, which is one diagnostic of the

extent to which option prices in the market deviate from prices that would arise in a Black-

Scholes model. Several variants and alternatives to the Black-Scholes model have been

proposed to capture these departures from normality.

In this chapter, we have looked at a selection of these alternatives: jump-diffusion mod-

els, stochastic volatility models, GARCH models, and implied tree models. Each of these

classes of models is motivated by a specific shortcoming of the Black-Scholes approach:

discontinuities in observed price processes (jump-diffusions), non-constant volatility with

persistence in volatility (stochastic volatility and GARCH), and the presence and variations

in the shape of implied volatility smiles (local volatility models).

Each class of models obtains some improvement over Black-Scholes, but none is also a

completely satisfactory resolution of the non-normality problem.This has led to the proposal

of several further, and technically more sophisticated, alternatives such as the variance-

gamma model and the “log-stable” model, as well as models based on stable-Paretian and

inverse-Gaussian processes. The last word on this topic is far from written.

16.8 Exercises 1. What are the shortcomings of the geometric Brownian motion for stock prices that

underlies the Black-Scholes option pricing model? For each deficiency, state what

modification to the model is likely to provide an improvement.

2. (Difficult) In a jump model for returns, what determines the skewness and kurtosis of

the statistical distribution?

3. In a model of stock returns with geometric Brownian motion, where the volatility is

assumed to be stochastic, what determines the type of skewness that emerges? What

determines the kurtosis?

4. (Very Difficult) Suppose you want to model stock returns r as being driven purely by

jumps. The jumps arrive at rate λ = 0.1 per time interval. When they do arise, they

are normally distributed with mean μ = −0.05 and variance γ 2 = 0.502. What is the

variance, skewness, and kurtosis of returns?

5. What is the option smile? Why does it arise from fat-tailed stock return distributions?

6. A skewed implied volatility smile occurs more often than a symmetric smile. Why?

What model feature is needed to generate this skew?

7. Suppose the S&P index options demonstrate a left-skewed smile. You are an options

trader and believe that the smile is steeper than it should be because the market has

overestimated the extent of crash risk. You believe that the market will correct its view

within the next month. What options trading strategy would you adopt?

8. Suppose the index option smile is symmetric, but you expect it to steepen on both sides.

What option strategy would you adopt?
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9. (Requires Writing Code) Using the following parameters, price call options for a range

of seven strike prices with the Merton jump model.

S = 100

K = {70, 80, 90, 100, 110, 120, 130}

T = 0.5 years

rf = 3%

sigma = 0.30

mu = -0.05

gamma = 0.50

lambda = 0.5

Now with the seven option prices (one for each strike price), find out what the implied

volatility is in the Black-Scholes model. You will need to write program code to find the

implied volatility.

Once you have the seven corresponding implied volatilities, plot them against the strike

prices. What shape does your options smile have?

10. (Requires Writing Code) Write a program to simulate monthly returns for two years

from a process where returns r are drawn from a normal distribution with mean 10%

p.a. and standard deviation σt , which follows the risk-neutral process:

σt+1 = σt e
ηx , x ∼ N (0, 1)

The initial stock price is $100 and the initial σ0 = 0.15. Each month the stock price

grows as follows:

St+1 = Ste
r
t , rt ∼ N (0.10, σt )

(a) Price call options for strikes: 90, 100, 110 with η = 0.1. Assume the interest rate is

zero.

(b) Now set η = 0 and reprice the options for these strikes. Compare your results with

those in (a) and comment.

11. (Requires Writing Code) Write a program to implement the Derman-Kani model for n

periods. The inputs are the current stock price and a volatility surface. Your output will

be the Derman-Kani tree of stock prices.

12. For a negatively skewed stock return process, what GARCH model would you use? Why?

13. (a) What happens empirically to the option smile with increasing maturity? (b) How is

the smirk typically different from the smile? (c) Which markets are characterized by

smiles, and which ones display smirks? (d) What is the volatility surface?

14. (Requires Writing Code) Does put-call parity hold in the extended Black-Scholes mod-

els? Explain.

15. (Requires Writing Code) Can GARCH models develop an option smile? Simulate option

prices (puts and calls) for a maturity of a half year and an initial stock price of $50; let

the initial volatility equal 30% per annum. Choose various strike prices and parameter

values for the volatility process such that you are able to generate a left skew of implied

volatility where the implieds are generated from the Black-Scholes model after prices

are generated by the GARCH model.

16. What is the leverage effect? How does it impact option prices? How would you account

for the leverage effect in a stochastic volatility equity option model? In a jump-diffusion

model?

17. (Requires Writing Code) Using Octave, write a short recursive program to implement

the Cox-Ross-Rubinstein model. Run this out six periods. Use the following parameters:

initial stock price of $100, strike price of $101, risk-free rate of 5%, volatility is 25%
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per annum, and maturity of 1/2 year.

(a) Make sure that the program provides reasonably accurate prices by checking your

results against the Black-Scholes formula (the prices will be within the ballpark of

the correct prices even though there are very few periods in the model). Use both

puts and calls in your validation. Report your results.

(b) Extend the program to allow for an extra negative jump in stock returns of 20% per

jump. This jump occurs with probability of 5% (risk neutral). (Now you have three

branches emanating from each node.) For the calls and puts reported in the previous

question, also report the prices from the jump-enhanced model. What can you say

from your comparisons about the effect of jumps?

(c) Now extend the basic program in (a) to incorporate switching volatility. This is a

simple volatility processwhere the volatility can take just one of two values, i.e., 10%

or 40%, with equal risk-neutral probability. Volatility is not correlated with the stock

price movement. With this addition, there will now be four branches emanating from

each node. What can you say from your comparisons about the effect of stochastic

volatility? Start with the initial volatility of 25% and then let it switch between 10%

and 40%.

(d) Run your program from the previous question with volatility at levels 20% and 30%.

Start with initial volatility of 25%. How do prices change in comparison? Explain

why. Note: Make sure that in each question, you set up the risk-neutral probabilities

correctly. You will need to calculate it differently for each of the subparts of this

problem.

18. State at least three reasons why the Black-Scholes model has warranted extension in the

past decades. What is the impact of these extensions on the stock return distribution.

What impact does this have on the prices of calls and puts?

19. In the jump-diffusion model, what parameter needs to be set to develop a sharp nega-

tive smirk (asymmetric skew)? What is your answer to this question in the case of the

stochastic volatility model?

20. The stock price of Microsoft (MSFT) on December 22 is $26.95. The traded option

prices for calls and puts maturing on January 21, February 18, and April 15 (i.e., in one,

two, and four months) are as follows:

Maturity (T ) Strike (K ) Calls Puts

January 21 27 0.45 0.35

February 18 25 2.15 0.15
27.5 0.50 0.95
30 0.05 NA

April 15 19.5 7.80 0.05
22 5.20 0.05
24.5 2.85 0.25
27 1.10 0.95
27.5 0.80 1.25
29.5 0.25 2.61
32 0.09 5.10

Use this information to build a three-period implied binomial tree that fits this set of

options as best as possible. Each period will be for one calendar month.
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Use linear interpolation between option prices as needed. If these prices admit arbitrage,

i.e., there is a violation of no-arbitrage relationships among option prices, assume that

the closer-to-the-money option is more accurate. As required, decide whether to use calls

or puts.

Your tree will have an initial stock price node and three periods thereafter. Since the tree

is recombining, you will have altogether 10 nodes on your tree. At each node, show the

stock price, the state price, and the branching probability.

21. One of the early extensions to the Black-Scholes model was the constant elasticity of

variance (CEV) model for equities. The CEV model assumes the following form of

stochastic process for the stock price:

dS = μS dt + σ Sβ dZ

where the parameters are defined as usual except that 0 < β ≤ 1 is the CEV parameter.

(a) What parameter value for β results in the Black-Scholes model?

(b) As β declines, does the riskiness of the stock increase or decrease?

(c) Explain the linkage of this model to the leverage effect.
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Appendix 16A

Program Code for Jump-Diffusions
In this section, we describe program code in Octave for implementing the Merton jump-

diffusion formula (16.10). The formula involves the infinite sum of Black-Scholes prices.

In the program, the sum is truncated to 20 terms, but this may be modified as desired.

%Program to compute option values in Merton’s 1976 jump-diffusion model

%BASIC INPUTS

%s0 = 100 %Initial stock price

%X = 101 %Strike price

%r = 0.10 %Risk free rate

%sig = 0.25 %Diffusion coefficient

%mu = 0 %Mean jump

%gam = 0.50 %Jump standard deviation

%lambda = 0.1 %Jump arrival frequency per year

%t = 0.25 %Option maturity in years

function u = merton76(s0,X,t,sig,r,lambda,mu,gam)

%INTERMEDIATE VALUES

g = exp(mu + 0.5*gam^2) - 1;

xi = lambda*(1+g);

%COMPUTE OPTION VALUE

optval = 0;

totpoiss = 0;

for k=0:20; %Assuming that k=20 is large enough for interval t

eta = sqrt(sig^2 + k*gam^2/t);

rf = r - lambda*g + k*log(1+g)/t;

c_bs = bs73(s0,X,t,eta,rf,0,1);

optval = optval + c_bs*exp(-xi*t)*(xi*t)^k/prod(1:k);

totpoiss = totpoiss + exp(-xi*t)*(xi*t)^k/prod(1:k);

end;

%printf(’totpoiss = %10.4f \n’,totpoiss);

u = optval;

For the given parameters, the price of the call option is obtained as 6.1366. Note that the

program calls the Black-Scholes model function. The code for this function is:

%Black-Scholes 1973 model

%s: stock price

%x: exercise price

%t: maturity

%v: volatility

%r: risk free interest rate

%q: dividend rate

%pc: flag, call=1, put=0

function u = bs73(s,x,t,v,r,q,pc);

d1 = (log(s/x)+(r-q+v^2/2)*t)/(v*sqrt(t));
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d2 = d1 - v*sqrt(t);

if pc==1;

u = s*exp(-q*t)*normal_cdf(d1) - x*exp(-r*t)*normal_cdf(d2);

else

u = -s*exp(-q*t)*normal_cdf(-d1) + x*exp(-r*t)*normal_cdf(-d2);

end;

Here is the program code using the ideas in the Newton-Raphson algorithm to find

Black-Scholes implied volatilities.

%Program to price a call option using Merton 76 model

% and then use BS 73 to back out the implied vol

function u = jump_ivol(s0,X,t,sig,r,lambda,mu,gam);

jcall = merton76(s0,X,t,sig,r,lambda,mu,gam);

diff = 9999;

ivol = sqrt(sig^2 + lambda*gam^2);

dv = 0.0001;

while diff > 0.00001;

bspr = bs73(s0,X,t,ivol,r,0,1);

bspr1 = bs73(s0,X,t,ivol+dv,r,0,1);

ivol = ivol + (jcall - bspr)/(bspr1 - bspr)*dv;

diff = abs(jcall - bspr);

end;

u = ivol;

Appendix 16B

Program Code for a Stochastic
Volatility Model
In this section, we describe program code in Octave for implementation of the discrete

stochastic volatilitymodel outlined in Section 16.3. The code is in recursive form. Recursion

is not always the most optimized implementation approach but it is often the most parsimo-

nious in terms of the amount of code that needs to be written. Simple modification of the

code can be carried out to incorporate other stochastic forms for the evolution of volatility.

The main element of the program is the generation of four nodes from a starting node.

The recursive program code comprises a function that generates four subsequent nodes as in

Figure 16.4. These nodes are fed into the function, which generates another four nodes for

each node, and so on. Hence, one can rapidly build up a tree. Note, however, that recursion

inherently generates nonrecombining trees, and is thus not always efficient for large trees.

The program code must include a stopping rule, i.e., how many steps or nested calls are to

be undertaken before the program calls a halt. When it reaches this point, it does not call

any more nodes and returns a value based on the nodes where it is.

%Program to compute stochastic volatility based option prices

%Uses a recursive algorithm

%s: stock price

%v: initial volatility

%k: strike price
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%T: maturity

%r: risk free interest rate

%kappa: volatility mean reversion

%theta: long run mean volatility

%sigv: volatility of volatility

%rho: correlation of stock change to volatility change

%h: time step

%n: no of periods on the tree

%FUNCTION SVREC

function u = svrec(s,v,k,T,r,kappa,theta,sigv,rho,h,n);

u = exp(v*sqrt(h));

d = 1/u;

s_u = s*u; s_d = s*d;

v_u = v + kappa*(theta - v)*h + sigv*sqrt(v*h); v_u = abs(v_u);

v_d = v + kappa*(theta - v)*h - sigv*sqrt(v*h); v_d = abs(v_d);

p = (exp(r*h) - d)/(u - d);

p_uu = (1+rho)/2*p;

p_ud = (1-rho)/2*p;

p_du = (1-rho)/2*(1-p);

p_dd = (1+rho)/2*(1-p);

%RECURSIVE SEGMENT

if (n*h >= T);

u = max(0,s-k);

else

u = (p_uu * svrec(s_u,v_u,k,T,r,kappa,theta,sigv,rho,h,n+1) +

p_ud * svrec(s_u,v_d,k,T,r,kappa,theta,sigv,rho,h,n+1) +

p_du * svrec(s_d,v_u,k,T,r,kappa,theta,sigv,rho,h,n+1) +

p_dd * svrec(s_d,v_d,k,T,r,kappa,theta,sigv,rho,h,n+1)) *

exp(-r*h);

end;

The recursive program is parsimonious. Note the last few lines of the program where the

function calls itself four times, once for each of the subsequent nodes.Note also the four lines

of code that generate the probabilities for the branches from a node in the quadrinomial tree.

These probabilities contain the variable ρ (rho), the correlation between the stock return

and the volatility.

The next step is to generate prices from this model. For this, we call the option pricing

function defined above from the following “main” program. This main program (as may be

seen from the code below) uses the following parameters:

Stock price s = 100
Volatility v = 0.3
Risk-free interest rate r = 0
Option maturity T = 0.5
Volatility mean-reversion rate κ = 0.1
Volatility mean θ = 0.3
Volatility of volatility η = σv = 0.3
Correlation of stock and volatility ρ = 0
Time step h = 0.1
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%Program to generate prices for SV model versus Black-Scholes

%Computes the difference between the Black-Scholes and the SV models

clear all;

s = 100;

v = 0.3;

r = 0;

T = 0.5;

kappa = 0.1;

theta = 0.3;

sigv = 0.3;

rho = -0.5;

h = 0.1;

k = [50:10:150]’;

lenk = length(k);

bsval = zeros(lenk,1);

svval = zeros(lenk,1);

for j=1:lenk;

bsval(j) = svrec(s,v,k(j),T,r,0,theta,0,rho,h,0);

svval(j) = svrec(s,v,k(j),T,r,kappa,theta,sigv,rho,h,0);

end;

plot(k,svval-bsval,";SV-BS;");

[k svval bsval]

This program computes option prices under both stochastic volatility and the Black-

Scholes model. Note how the Black-Scholes model values are computed as special cases

of the SV model by setting the mean-reversion parameter κ and the volatility of volatility

parameter η to zero. The program is run for a maturity of half a year (T = 0.5) so each step

in the tree represents h = 0.1 years.

Appendix 16C

Heuristic Comments on Option Pricing
under Stochastic Volatility
To understand option pricing under stochastic volatility heuristically, we will revisit the

concepts studied in the chapter on the mathematics of the Black-Scholes equation. Recall

that theBlack-Scholes formula can be derived as the solution to a partial differential equation

(pde) containing time t and the stock price S as variables. The solution to this pde comes

from applying the boundary condition for the payoff of the option that is being valued.

This pde is also known as the “fundamental pde.” Given the Brownian motion for the stock

price S, defining the option pricing function as F(S, t), we use Ito’s lemma to derive the

process for the evolution of F , i.e., for dF . Then applying the martingale property that

E(dF) = r F dt , we exploit one of the different approaches by which we may arrive at the

fundamental pde.
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Now, to price an optionwithout solving the fundamental pde (which, barring some simple

cases, defeats solution), we might instead wish to compute the expected payoff of the option

and take its present value. For a call option, this calculation is as follows:

F = e−rT

 ∞

0

max(0, ST − K ) f (ST )dST

where f (ST ) is the probability function of the terminal stock price. Of course, for extended

models, we would now need to know the function f (ST ). It turns out that this probability

may also be obtained by solving a pde very similar to the fundamental pde.

Suppose the function F above were not the option price but a probability function. Then

by the principle of conservation of probability, the expected change in a probability function

is zero; therefore, by setting E(dF) = 0, we obtain the pde for the probability of the stock

price at any time. Recognizing this, Heston was able to solve for the probability function

over terminal stock prices even when the stock’s volatility is stochastic. More important,

Heston showed that, rather than solve the pde for the option price itself, it was in fact easier

to solve two pdes, for each of the probability functions, analogous to N (d1) and N (d2) in

the Black-Scholes model.

Therefore, there are two aspects to the insight of Heston’s approach. First, the recognition

that every standard option contract, even when based on a more complex stochastic process

thanBlack-Scholes, can be decomposed into two parts, eachwith a probability function. The

second is the realization that it is often easier to solve the pdes for the probability function

than for the option price itself. (Technically speaking, the ease comes partly because the

boundary condition for the probability function leads to more tractable mathematics than

that for the option.) Heston’s model spawned a spate of solutions to other option pricing

situations, many of which were subsequently recognized as populating the same class of

problems. The precise technical details are certainly beyond the scope of this book. The

interested reader may refer to a generalized presentation of this entire framework in the

paper by Duffie, Pan, and Singleton (2000).

To illustrate how we may derive the probability function quite easily, let’s look at a simple

example. Suppose we are interested in the probability of the variable S’s value after time t

where S is governed by the following stochastic process:

dSt = α dt + σ dWt , S0 = 0

You may recognize this as the familiar arithmetic Brownian motion process. Let’s say the

probability function is denoted F(St ). Applying Ito’s lemma, we write down the differential

process for F , i.e.,

dF = Fs(α dt + σ dWt ) +
1

2
Fssσ

2dt + Ft dt

where the subscripts denote the partial derivative with respect to the variable in the subscript.

If we let time run backward, i.e., replace τ = −t , then we have

dF = Fs(α dt + σ dWt ) +
1

2
Fssσ

2dt − Fτ dt

where τ denotes time to maturity or horizon. As one may imagine, this is useful when

working with option pricing problems. Since F is a probability function, we have E(dF) =
0, and with some minor simplification, this results in the following pde:

0 = αFs +
1

2
σ 2Fss − Fτ (16.42)
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We solve for a special type of probability function, namely the characteristic function of

S. The characteristic function of a random variable S is defined as

F(S, τ ;φ) = E[exp(iφS)] (16.43)

where i = √−1. Here φ is known as the characteristic function (CF) variable. Since the CF

is an expectation, notice that it is implicitly related to the probability governing S. There are

several useful properties of the CF such as the fact that it always exists for random variables

and that we can recover the probability function for S by an inversion of the CF. Hence, our

goal is to solve the pde for the CF and then invert it to get the probability function. Another

useful property of the CF is that we may obtain the moments (mean, variance, etc.) of the

random variable directly from the CF. The k-th moment of S is computed as follows:

E[Sk] = 1

i k

 
∂k F

∂φk

 
φ=0

We are now ready to solve the pde for the CF. First, we will need to define the boundary

condition for the pde. At maturity, the stock price is known for certain; hence, we have

F(S, τ = 0;φ) = exp(iφS)

Second, we guess a solution. With some experience in these problems, guessing becomes

easier! Our guess in this case is

F(S, τ ;φ) = exp[iφS + A(τ )]

We need to solve for the function A(τ ) and once we do, we will have the entire CF. Let’s

take derivatives of the guessed function to obtain:

Fs = iφF

Fss = −φ2F

Fτ = Aτ F

We substitute these values into equation (16.42), and we find that F drops out so that we

obtain:

αiφ − 1

2
σ 2φ2 − Aτ = 0

This is an ordinary differential equation (ode) with a boundary condition A(τ ) = 0, which

follows from the boundary condition for the pde in equation (16.42). This is an easy ode to

solve as simple integration will suffice, and we get the following solution:

A(τ ) = αiφτ − 1

2
σ 2φ2τ

Substituting this back into our guessed solution, we have

F(S, τ ;φ) = exp

 
iφS + αiφτ − 1

2
σ 2φ2τ

 
(16.44)

The inversion formula to get the probability density function is

f (S) = 1

2π

 ∞

−∞
Re[e−iφS]F(S, τ ;φ)dS
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As a cross-check, let’s compute the mean (first moment, k = 1) of the stock price S. We

take the solution in equation (16.44) and differentiate it.

E(S) = 1

i

 
∂F

∂φ

 
φ=0

= 1

i

 
F(i S + αiτ − σ 2φτ )

 
φ=0

= S0 + ατ

Hence, we have seen how deriving the characteristic function allows us to derive the

moments of the stock price as well as obtain the probability density function by inversion

of the characteristic function. It is also possible to invert the characteristic function to get

the cumulative probability. This is precisely what Heston did in his innovative model for

pricing options with stochastic volatility.

Appendix 16D

Program Code for Simulating GARCH
Stock Prices Distributions
The following Octave program code simulates the stock price distribution for the

asymmetric GARCH process of Engle (1990). For a standard GARCH (1,1) process, we

simply set c = 0.

%Program to simulate the nonlinear asymmetric GARCH process

% Assumed that the time interval is daily

% Inputs are on a daily metric (not annualized)

%Simulation is for one year on a daily interval

clear all;

%INPUTS

n = 260; %No of trading days in a year

s0 = 100; %Initial stock price

sigsq0 = 0.25^2/n; %Initial Daily variance

r = 0.10/n; %Daily interest rate

beta0 = 6.5 * 10^(-6); %Constant in variance equation

beta1 = 0.92; %Autoregressive coefficient

beta2 = 0.04; %Coefficient on innovation term

c = 0.5; %Asymmetry parameter (more vol on downside)

m = 50000; %No of simulation paths

%SIMULATION

s = s0*ones(m,1); %Initialize all paths

sigsq = sigsq0*ones(m,1); %Initialize variance

for t = 1:n;

shock = randn(m,1);

sigsq = beta0 + beta1*sigsq + beta2*sigsq.*((shock - c).^2);

s = s.*exp(r - 0.5*sigsq + sqrt(sigsq).*shock);

end;
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%PLOT HISTOGRAM OF STOCK RETURNS

rets = log(s/s0);

hist(rets,100)

%COMPUTE THE MOMENTS OF THE RETURNS

[mean(rets) std(rets) skewness(rets) kurtosis(rets)]

The simulation program has been optimized using vectorization, and, hence, the reader

will find that there is only one loop (over time) and no loop over stock price paths. It should

be easy to see the two lines of code with the return equation that propagates the stock price

and the volatility equation that propagates volatility.

The program runs 50,000 simulation paths. By setting c > 0, we inject negative skewness

into the return distribution, and the fatter tails imply that there will be positive excess

kurtosis. The simulation run resulted in the following moments of the return distribution

(for annual returns).

Mean −0.002273
Standard deviation 0.252241
Skewness −0.254104
Excess kurtosis 0.230780

The skewness is negative, and the excess kurtosis is positive as predicted. If we had

stipulated that c < 0, skewness would be positive.

The same program can also be used to compute the price of a call with a strike price of

X = 101, using one more line of code as follows:

X = 101; exp(-r*n)*mean(max(0,s-X))

We ran this piece of code and obtained a call price of 10.003.

Appendix 16E

Local Volatility Models: The Fourth
Period of the Example
In this appendix, we extend the implied trees (local volatility) model of Section 16.6 to

another period and use this analysis to undertake the exposition in more general form.

Here to shorten the exposition, we introduce a simple notation scheme to depict recom-

bining binomial trees. These trees have one stock price at the root of the tree. At the end of

each period t , there will then be (t + 1) nodes.

Recall also that for implied volatility trees, we depict each node as a 3-tuple of the stock

price (S), the up branch probability (p), and the state price (λ). Hence, a characterization

of the N -period tree in quasi-diagrammatic form is used in this appendix. Stock prices are

highest at the top nodes and lowest at the bottom nodes.

S01, q01, λ01 → . . . →

⎧⎪⎪⎨
⎪⎪⎩

St ,t+1, qt ,t+1, λt ,t+1

:

:

St ,1, qt ,1, λt ,1

→ . . . →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SN ,N+1

:

SN ,k

:

SN ,1
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In the section on implied binomial trees, we completed building the tree out to the end

of three periods. Using the new diagrammatic notation described above, we may depict the

tree at the end of the second and third periods as follows (we also show the unknown stock

prices at the end of the fourth period).

→

⎧⎨
⎩

119.2190, 0.557351, 0.290035

100.0000, 0.573221, 0.483306

84.1325, 0.554697, 0.201969

→

⎧⎪⎪⎨
⎪⎪⎩

132.0900, q34, 0.159643

107.1860, q33, 0.400388

93.2962, q32, 0.314343

75.0942, q31, 0.088820

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S45

S44

S43

S42

S41

We now proceed to solve for the stock prices at the end of the fourth period. There are

now an odd number of stock prices to be determined, and so we can set S43 = S01 = 100.

As before, we now solve separately for the prices on the upper portion of the tree and the

lower portion of the tree.

Stock Prices on the Upper Portion of the Tree
This involves determining stock prices S44 and S45 as well as probabilities q33, q34. Fortu-

nately, this can be done two at a time and does not require finding a solution to all four

values simultaneously.

Let’s start with the call option at a strike price of S33, i.e., C(4h, S33). Suppose the value

of this option is $6. As before, we develop two equations for our solution of probability q33

and stock price S44.

• The forward price equation:

F33 = erh S33 = q33S44 + (1 − q33)S43

• The call pricing equation (the reader may refer to previous use of this equation, which

is the same):

erh C(4h, S33) = λ33 q33[S44 − S33] +
4 

j=4

λ3, j (F3, j − S33)

= λ33 q33[S44 − S33] + λ34(F34 − S33)

From the first equation, we have that

q33 =
F33 − S43

S44 − S43

Next, substituting q33 into the second equation, and rearranging, we get

S44 = S43[e
rh C(4h, S33) −

 4
j=4 λ3, j (F3, j − S33)] − λ33 S33[F33 − S43]

[erh C(4h, S33) −
 4

j=4 λ3, j (F3, j − S33)] − λ33 [F33 − S43]
(16.45)

= S43[e
rh C(4h, S33) − λ34(F34 − S33)] − λ33 S33[F33 − S43]

[erh C(4h, S33) − λ34(F34 − S33)] − λ33 [F33 − S43]

Every term on the right-hand side of the equation above is already known and, hence, we

can retrieve the value of S44. This is then used to solve for q33. Solving, we have

S44 = 115.5150, q33 = 0.550038
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These values for q33, S44 may be used to solve for q34, S45. Again, we have two equations:

F34 = erh S34 = q34 S45 + (1 − q34) S44

C(4h, S34) = e−rh q34[S45 − S34] λ34

Suppose that C(4h, S34) = 1.5. Solving, we have

S45 = 150.1700, q34 = 0.526245

Stock Prices in the Lower Portion of the Tree
This involves determining stock prices S42 and S41 as well as probabilities q32, q31. Again,

this can be done two at a time and does not require finding a solution to all four values

simultaneously.

Let’s start with the put option at a strike price of S32, i.e., P(4h, S32). Suppose the value

of this option is $2. As before, we develop two equations for our solution of probability q32

and stock price S42.

• The forward price equation:

F32 = erh S32 = q32S43 + (1 − q33)S42

• The put pricing equation:

erh C(4h, S32) = λ32 (1 − q32) [S32 − S42] +
1 

j=1

λ3, j (S32 − F3, j )

= λ32 (1 − q32) [S32 − S42] + λ31(S32 − F31)

From the first equation we have that

q32 =
F32 − S42

S43 − S42

or

1 − q32 =
F32 − S43

S42 − S43

Next, substituting (1 − q32) into the second equation and rearranging, we get

S42 = S43[e
rh P(4h, S32) −

 1
j=1 λ3, j (S32 − F3, j )] + λ32 S32[F32 − S43]

[erh P(4h, S32) −
 1

j=1 λ3, j (S32 − F3, j )] + λ32 [F32 − S43]
(16.46)

= S43[e
rh P(4h, S32) − λ31(S32 − F31)] + λ32 S32[F32 − S43]

[erh P(4h, S32) − λ31(S32 − F31)] + λ32 [F32 − S43]

Every term on the right-hand side of the equation above is already known and, hence, we

can retrieve the value of S42. This is then used to solve for q32. Solving, we have

S42 = 90.6473, q32 = 0.408693

These values for q32, S42 may be used to solve for q31, S41. Again, we have two equations:

F31 = erh S31 = q31 S42 + (1 − q31) S41

P(4h, S31) = e−rh q31[S31 − S41] λ31



Chapter 16 Options Modeling: Beyond Black-Scholes 403

Suppose that P(4h, S34) = 1. Solving, we have

S41 = 55.5610, q31 = 0.583640

As before, we proceed on to compute the state prices as of the end of the fourth period:

λ45 = λ34 q34 e−rh = 0.082968

λ44 = [(1 − q34)λ34 + q33 λ33]e
−rh = 0.292185

λ43 = [(1 − q33)λ33 + q32 λ32]e
−rh = 0.304795

λ42 = [(1 − q32)λ32 + q31 λ31]e
−rh = 0.234759

λ41 = (1 − q31)λ31 e−rh = 0.036522

Hence, the tree in the last two periods now looks as follows (in [S, p, λ] space):

→

⎧⎪⎪⎨
⎪⎪⎩

132.0900, 0.526245, 0.159643

107.1860, 0.550038, 0.400388

93.2962, 0.408693, 0.314343

75.0942, 0.583640, 0.088820

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

150.1700, q45, 0.082968

115.5150, q44, 0.292185

100.0000, q43, 0.304795

90.6473, q42, 0.234759

55.5610, q41, 0.036522

The General Solution Form

As noticed, the stock prices on the upper and lower segments of the tree were computed

in closed-form via an iterative procedure. The formulae for the upper and lower sections

were somewhat different, although this is hard to notice in the example. To summarize, we

present the general form of these equations.

Upper Tree Stock Prices
This equation is a generalization of equation (16.45):

St+1,i+1 = St+1,i [e
rh C((t + 1)h, St ,i ) −

 t+1
j=i+1 λt , j (Ft , j − St ,i )] − λt ,i St ,i [Ft ,i − St+1,i ]

[erh C((t + 1)h, St ,i ) −
 t+1

j=i+1 λt , j (Ft , j − St ,i )] − λt ,i [Ft ,i − St+1,i ]

and

qt ,i =
Ft ,i − St+1,i

St+1,i+1 − St+1,i

Lower Tree Stock Prices
This equation is a generalization of equation (16.46):

St+1,i =
St+1,i+1[e

rh C((t + 1)h, Pt ,i ) −
 i−1

j=1 λt , j (St ,i − Ft , j )] + λt ,i St ,i [Ft ,i − St+1,i+1]

[erh P((t + 1)h, St ,i ) −
 i−1

j=1 λt , j (St ,i − Ft , j )] + λt ,i [Ft ,i − St+1,i+1]

and

qt ,i =
Ft ,i − St+1,i

St+1,i+1 − St+1,i



Chapter 17
Sensitivity Analysis:
The Option “Greeks”

17.1 Introduction

Option pricing models value options given information at a point in time. As time passes,

changes in the underlying parameter values—the remaining maturity, the price of the un-

derlying, perhaps volatility and interest rates—will cause option values to change. For a

trader or risk-manager or investor holding a portfolio of options, the question is: by how

much? How sensitive are option prices to different factors? How much will option prices

change for a $1 change in the price of the stock? for a 1% change in volatility? How much

will the portfolio lose or gain from just the passage of time?

Sensitivity analysis provides the answers to these and related questions. It looks at the

four main factors that influence option values: the underlying price S, the time to maturity

T − t of the option, the volatility σ , and the interest rate ρ. Corresponding to these factors,

it defines five sensitivity measures that are collectively known as the option “greeks.” These

are

1. The delta, denoted  .

2. The gamma, denoted  .

3. The theta, denoted  .

4. The vega, denoted V .

5. The rho, denoted ρ.

This chapter describes the option greeks and their interpretation, uses, and properties. A

comment on notation first. While ,  , , and ρ are actually letters in the Greek alphabet,

vega is not—in fact, it is not a letter in any alphabet of which the authors are aware—so there

is no standard notation for it. We use the calligraphic form V to represent it, but readers

should be aware that other authors may use different notation.

17.2 Interpreting the Greeks: A Snapshot View

What does it mean for option sensitivity if the delta of a call is +0.75 or its vega is 12.25?

As we explain below (and elaborate on in the rest of this chapter), the option greeks are

very easy to interpret.

404



Chapter 17 Sensitivity Analysis: The Option “Greeks” 405

The Option Delta
The option delta provides a linear representation of how option prices change in response

to a change in the price of the underlying:

Change in Option Value =  × Change in S (17.1)

Thus, a delta of +0.75 means that a +$1 change in the price of the underlying will change

the option value by +75 cents. A delta of −0.30 means that the option price decreases by

30 cents for every $1 increase in the price of the underlying.

The Option Theta
The option theta provides a similar representation of how option values change in response

to a change in the option’s time to maturity T − t . If time to maturity declines by an amount

dt (measured in years), then

Change in Option Value =  × dt (17.2)

The change dt is typically taken to be one trading day = 1/252 years ≈ 0.004 years. For

example, suppose that a call has a theta of −13.50. Then, all else being equal, the passage

of one trading day will cause a change in option value of

−13.50 × 0.004 = −0.054

That is, the call value will decline by $0.054.

The Option Vega
In the same vein, the option vega describes the option’s price response to changes in the

volatility σ . If volatility changes by an amount dσ , then

Change in Option Value = V × dσ (17.3)

For example, if an option’s vega is V = 9.80 and volatility falls by 1% (so dσ = −0.01),

then the change in the option value is

9.80 × −0.01 = −0.098

That is, the option value falls by 9.8 cents.

The Option Rho
The option rho measures sensitivity to interest rates. If interest rates change by amount dr ,

then

Change in Option Value = ρ × dr (17.4)

For instance, suppose an option’s rho is ρ = 5.40 and interest rates increase by 1%

(dr = +0.01). Then the option value changes by

5.40 × 0.01 = 0.054

that is, it increases by 5.4 cents.
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It’s That Simple?
If you think all of this looks a bit too simple and too neat, you are partly right. The changes in

option value described in equations (17.1)–(17.4) are only approximately correct.1 Option

prices are nonlinear functions of the parameters, while the descriptions (17.1)–(17.4) treat

the option price as if it were linear in the individual parameters. However, these linear

approximations work excellently for “small” changes in the values of the factors, and in

practice, the greeks provide a very useful snapshot summary of option sensitivity.

But for large changes, the simple approximations provided by these formulae do not

always dowell and sometimesmay even do very poorly. This is amatter of particular concern

in evaluating the impact of stock price changes on option values since the underlying price

can change very sharply very abruptly. This is where the option gamma comes in.

The Option Gamma
Perhaps the most complex greek to understand, the gamma performs two roles. First, it

measures the change in the option delta for a given change in the price of the underlying.

That is, we have

Change in  =  × Change in S (17.5)

How sensitive delta is to changes in S is of concern, for example, to a trader who is delta-

hedging an option portfolio. A large value of gamma implies that the delta will change

substantially even for a relatively small change in S, so the portfolio needs to be rebalanced

to keep it delta-hedged. But if gamma is small, then portfolio rebalancing need not be

undertaken as often.

Second, the gamma provides a “curvature correction” to the change in option price

predicted by the delta: we modify (17.1) by writing

Change in Option Price = [ × Change in S] + [
1

2
 × (Change in S)2] (17.6)

Equation (17.6) is always more accurate than (17.1) as a predictor of the change in option

value for a given change in S.2 For small changes in S, the gain in accuracy is minimal

since the change in S enters with a squared term (e.g., if S changes by $0.05, then the term

(Change in S)2 is only 0.0025), so we usually ignore the correction term and use only (17.1).

But for large changes in S, the improved performance is significant as we see later in this

chapter.

Why Do We Need the Greeks?
At this point, a legitimate question has probably entered the reader’s mind: why do we need

these sensitivity measures at all? If we want to find out how much the option price will

respond to a change in (say) the price of the underlying, why not simply compute the new

value using the model and compare it to the old value? This way the computed impact on

option prices will be exact rather than approximate.

We can always do this, but the greeks are still of huge value for risk-management for

several reasons. First, they package a great deal of information regarding option sensitivity

into something that can be absorbed virtually at a glance. When we see an option with a

delta of +0.85, for example, we know that it will react very sharply to changes in the price

1 For readers accustomed to thinking in calculus terms, the option greeks correspond to the first-order

Taylor-series expansions of the option pricing function.

2 Once again, for readers accustomed to thinking in calculus terms, (17.6) is a second-order Taylor-

series expansion in S, which is, of course, always more accurate than a first-order expansion.
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of the underlying, whereas an option with a delta of −0.05 will be almost unresponsive.

Similarly, from knowing the vega of a call, we can estimate how much the call will respond

to changes in volatility even if this estimate is only approximate.

Second, the magnitudes of these changes can be compared and used to offset each other,

i.e., to create portfolios that are hedged against changes in particular factors. For example,

suppose we have two options on the same stock whose vegas are (say) 12.0 and 6.0. Then

the first option is twice as sensitive to changes in volatility as the second one. If a long

position in the first option is combined with two short positions in the second, we will have

created a portfolio that is insensitive to volatility changes, i.e., that is vega-hedged.

Finally, the greeks are easily extended to entire portfolios on a given underlying rather

than just individual instruments. The greek of a portfolio is just the sum of the greeks of

each individual item in the portfolio. This makes it simple to gauge portfolio sensitivity at

a glance and to do hedging and risk-management at the portfolio level.

Outline of This Chapter
The rest of this chapter describes the option greeks in more detail, beginning with the delta,

and then working through the gamma, theta, vega, and rho.

In each case, we first look at the definition of the greek and discuss how it is computed.

Then we examine general properties of the greek such as: is the greek positive or negative

in sign (that is, does an increase in the underlying parameter increase or decrease option

values)? When is it largest in value? Why does it exhibit this sensitivity? How do the

greeks of otherwise identical calls and puts compare? And so on. Lastly, we discuss the

use/interpretation of the greek using numerical examples.

A final section describes how to extend the definitions to cover a portfolio of options on

a given underlying. The end-of-chapter exercises apply the ideas to several standard option

portfolios such as those discussed in Chapter 8.

The Black-Scholes Setting and a Running Example
Whenever we refer to the Black-Scholes setting, we use the notation introduced in the

Black-Scholes chapter: St will denote the current (time-t) price of the underlying, σ its

volatility, K the strike price of the option, T − t the remaining time to maturity, and r the

risk-free rate of interest. N (·) will denote the cumulative standard normal distribution, i.e.,

N (x) is the probability under a standard normal distribution of an observation less than or

equal to x .

Each of the greeks can be represented in closed-form (i.e., using a formula) in the Black-

Scholes setting. We use these formulae in numerical examples throughout this chapter to

illustrate the material. All the examples use the baseline parameters described in Table 17.1.

In each example, one of the parameters is varied from its baseline level to illustrate sensitivity

to that parameter (for example, the volatility is varied to illustrate the vega).

TABLE 17.1 A

Common Example
The numerical examples presented in this chapter are all based on a Black-
Scholes setting with the following baseline parameters.

Parameter Value

Current stock price St 100
Strike price K 100
Time to maturity T − t 0.50
Risk-free rate r 0.05
Volatility σ 0.20
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17.3 The Option Delta

The delta, which measures the sensitivity of option prices to changes in the price of the

underlying, is unquestionably the single most important sensitivity measure for an option.

Intuitively speaking, the delta may be thought of as a ratio:

 = Change in option value per $1 change in S (17.7)

The mathematical definition puts this more formally: delta is the rate of change (i.e., the

slope) of the option price with respect to S:

 C = ∂C

∂S
 P = ∂P

∂S
(17.8)

To obtain the informal definition (17.7) from this, view ∂C and ∂P as the changes in the

option values caused by a small change ∂S in the stock price, and take ∂S = $1.

Computing the Delta
In models such as Black-Scholes where we have a formula for the option price, we can apply

the definition (17.8) directly to get a formula for the option delta. Appendix 17A shows that

in the Black-Scholes model,

 C = N (d1)  P = −N (−d1) (17.9)

where

d1 = 1

σ
√
T − t

 
ln

 
St

K

 
+ (r + 1

2
σ 2)(T − t)

 

In discrete models such as the binomial, we lack formulae for describing option prices.

To calculate the delta, we need to “discretize” (17.8). Let C and P be the option prices

at the initial price S. Consider a nearby price3 S . Rerun the model from the initial price

S , and compute the new option prices C  and P  . The change in the underlying price is

dS = S − S, while the changes in the call and put prices are, respectively,

dC = C  − C and dP = P  − P

The delta is given by the change in option value divided by the change in S:

 C = C  − C

S − S
 P = P  − P

S − S
(17.10)

Properties of the Delta
We identified the main properties of the delta in Chapter 11. We restate the properties briefly

here.

First, calls gain value when the price of the underlying increases but puts lose value in

this case. So the delta of a call is positive and that of a put is negative.

Second, the delta of a call is less than +1 because the call cannot increase by more than

one dollar for a dollar increase in the value of the underlying. Similarly, the delta of a put is

always greater than −1: a dollar decrease in the price of the underlying cannot cause more

3 There is no hard-and-fast definition of “nearby.” For a stock trading at a price of (say) $90, a change

of $1 may be considered small, but not for a stock trading at a price of $9. Common sense should

be the guide here.
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than a dollar increase in the value of the put. Combining the first two properties,

0 ≤  C ≤ 1 − 1 ≤  P ≤ 0

Third, the size of the delta depends on the option’s depth-in-the-money. Deep in-the-

money options are the most responsive to changes in the price of the underlying, while deep

out-of-the-money options are the least responsive. In more detail:

• The delta of a call is close to zero when the call is deep out-of-the-money. It increases

as the price S of the underlying increases, and goes towards +1 as the call moves deep

in-the-money.

• The delta of a put is close to−1when the put is deep in-the-money. It decreases in absolute

value as S increases, and goes towards 0 as the put moves deep out-of-the-money.

Finally, for otherwise identical European calls and puts, we have

 C − P = 1 (17.11)

(The relation (17.11) need not hold for American options.) To obtain this result, differentiate

both sides of the put-call parity expression with respect to S:

C − P = S − PV (K ) − PV (D) (17.12)

More informally, suppose S changes by $1 causing changes in C and P of  C and  P ,

respectively. Then, the total change in the left-hand side of (17.12) is  C − P , while the

change in the right-hand side is $1. These two changes must be equal since put-call parity

must always hold.

Figure 17.1 plots the delta in a Black-Scholes setting using the formulae (17.9). The

baseline values are those given in Table 17.1. The graphs plot call and put deltas as S varies

from 72 to 128. The figure illustrates all the properties of option deltas listed above.

This figure describes the behavior of call and put deltas as the price of the

underlying varies. The details of the calculation are given in the text.

FIGURE 17.1
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Using the Option Delta
The delta as a measure of option sensitivity has a simple interpretation. If the underlying

price changes by a small amount dS, the delta predicts a change in the option price of

 × dS.

dC =  C × dS dP =  P × dS (17.13)

Example 17.1 Suppose that a put is trading at P = 8.45 and that the delta of the put is −0.70. Suppose
the underlying price increases by $0.50. The delta estimates a change in the put price of

(−0.70) × (+0.50) = −0.35

So the new put price should be 8.45− 0.35 = 8.10. ■

Unfortunately . . .
While simple, (17.13) represents only an approximation to the actual change in the option

price. The approximation is extremely good for small changes in the price of the underlying,

but becomes progressively less accurate as the changes in S increase in size. For a large

abrupt change in S, the estimate can fare quite poorly.

To illustrate these points and gain more insight into this problem, a numerical example is

helpful. We use the Black-Scholes model for this purpose. Since we have closed-forms for

both option prices and option deltas in this model, we can calculate the changes predicted

by the delta and compare them to the actual changes resulting from the formula.

Example 17.2 Consider the baseline parameter values given in Table 17.1. For these parameters, applying
the Black-Scholes formula yields

C = 6.889  C = 0.598

Suppose S changes by $1. Then equation (17.13) estimates a change in call value of+0.598,
i.e., the new call price should be

6.889+ 0.598 = 7.487

If we use the Black-Scholes formula to calculate the actual call price at S = 101 (leaving the
other parameters unchanged), we find that it is 7.500. Thus, the estimated new value is off
by only a little over a penny from the actual new value.
However, consider a larger change in S, say +5. Then (17.13) estimates a change in call

value of

(+0.598) × (+5) = +2.990
That is, the estimated new call value is

6.889+ 2.990 = 9.877

However, the actual price at S = 105 according to the Black-Scholes formula is 10.201. The
estimate using the delta is off by 0.32 or almost 10% of the actual change in call value. ■

Table 17.2 considers changes in S in this example ranging from −5 to +5 (i.e., the new

stock prices lie between 95 and 105). The entries in the column “Actual New Call Price”

correspond to the actual call values that result from the Black-Scholes formula at these new
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TABLE 17.2 Using

the Delta to

Approximate Call

Value Changes

This table compares the actual call prices that result from changes in S to the
estimates of new call values obtained using the delta. The original value of S is
100, while Snew denotes the new value. The details of the computations are
explained in the text.

New Stock Price Actual New Call Price Delta Approximation Error

95 4.255 3.900 0.355
96 4.723 4.498 0.225
97 5.222 5.096 0.126
98 5.749 5.693 0.056
99 6.305 6.291 0.014

100 6.889 6.889 –

101 7.500 7.487 0.013
102 8.138 8.084 0.054
103 8.801 8.682 0.119
104 9.489 9.280 0.209
105 10.201 9.877 0.324

values of S. The entries in the column “Delta Approximation” correspond to the values

obtained by using the formula (17.13), i.e.,

Estimated New Call Price = Old Call Price + [ × Change in S]

= 6.889 + [0.598 × (Snew − 100)]
(17.14)

As the table shows, the delta approximation to the actual change is very good for small

changes in S but becomes progressively less accurate as the size of the change in S increases.

The Importance of Curvature
What causes the error to behave in this fashion? In a word, curvature. When we estimate

the change in option price using the formula

Change in call value =  × Change in S

we are implicitly treating the call price as if it is linear in S. A $2 change in S causes twice

the change in the option price that a $1 change causes; a $1 change in S has twice the impact

of a $0.50 change; and so on. However, as we saw in the Black-Scholes chapter, the option

pricing function has curvature: it is emphatically not linear in S.

The consequences are illustrated in Figure 17.2, which is just a graphic representation

of the information in Table 17.2, but over a wider price range. The gray line in the figure

represents the new call values estimated using the delta, i.e., it is a plot of equation (17.14).

This plot is just a straight line with a slope of 0.598.

The black line in the figure represents the actual new option prices in the example

computed using the Black-Scholes formula. The slope of this line at any S is the delta at that

value of S. The slope increases as S changes, indicating the function’s curvature.At S = 100,

the slope is 0.598, so the gray line is tangent to the option pricing function at this point.

When we estimate option price changes using (17.13), we are moving along the gray

line, whereas actual price changes occur along the black line. The two lines lie close to each

other for small changes in S. But as S changes by a large amount, the tangent begins to move

away from the curved option pricing function, and the difference between them becomes
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FIGURE 17.2
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large. Note that because option prices have positive curvature (i.e., they are convex in S),

the delta always underpredicts the amount of the actual change.

The error in the estimate from using the delta clearly depends on the extent of curvature

in the option pricing function at the initial price. A lower curvature means that the black

and gray lines will be closer together and the error will generally be small. How do we

quantify and account for this curvature in measuring option sensitivity? The answer: the

option gamma, to which we now turn.

17.4 The Option Gamma

There are two equivalent ways to think about the option gamma. The first is as a measure

of the change in the option delta for a given change in S. Intuitively,

 = Change in option delta per $1 change in S

More formally, gamma is the slope of delta with respect to S:

 C = ∂ C

∂S
 P = ∂ P

∂S
(17.15)

Now, delta is itself the slope of the option pricing function, so gamma measures the

change in this slope as S changes. The change in a function’s slope is its curvature. This

gives us the second interpretation of gamma: as a measure of the curvature of the option

price in S. In calculus notation, gamma is then the second derivative of the option pricing

function with respect to S:

 C = ∂2C

∂S2
 P = ∂2P

∂S2
(17.16)

Computing the Gamma
In models where we know the option pricing formula, either of the equivalent definitions

(17.15) or (17.16) can be applied directly to the option price to obtain a formula for the option

gamma. In the Black-Scholes setting, Appendix 17A shows that the gamma is given by

 C =  P = 1

σ St
√
T − t

N  (d1) (17.17)
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where, for any x , N  (x) is given by

N  (x) = 1√
2π
e−x2/2 (17.18)

In models such as the binomial where there are no closed-form representations of option

prices, we discretize (17.16). For specificity, consider a call (puts are handled analogously).

Let C(S) denote the call value at the initial price S. Pick a small change in price b and rerun

the model to compute the call values from the initial price S − b and S + b. Denote these

call values by C(S − b) and C(S + b), respectively. Then, the discretized form of (17.16),

which may be used to compute the call gamma at S, is given by

 = C(S + b) + C(S − b) − 2C(S)

b2
(17.19)

Properties of the Gamma
As we have seen, call and put deltas both increase as S increases. This means that the gamma

is positive for both calls and puts:

 C > 0  P > 0 (17.20)

In mathematical terminology, the property (17.20) of positive curvature is called convexity:

option prices are said to be convex in S.

When is gamma large and when is it small? Look at a plot of option prices as S varies.

When an option (either a call or a put) is deep out-of-the-money, the option pricing function

is almost flat. There is very little curvature, implying that the gamma of deep out-of-the-

money options is small.

Similarly,when anoption is deep in-the-money, it responds almost one-for-one to changes

in S. The option pricing function is again almost a straight line with very little curvature.

So the gamma of deep out-of the-money options is also small.

When an option is at- or near-the-money, however, the option pricing function displays

considerable curvature: its slope (which is the option delta) changes rapidly as S changes.

Thus, the gamma is highest in this region.

Summarizing, the gamma of an option is

• least when the option is deep out-of-the-money or deep in-the-money; and is

• highest when the option is near-the-money.

A final property holds only for European options. For otherwise identical European calls

and puts,

 C =  P (17.21)

(Alert readers would have noted in (17.17) that call and put gammas coincide in the Black-

Scholes setting.) This equality is again a consequence of—what else?—put-call parity. As

we have seen, put-call parity implies that for European options,

 C − P = 1

If we differentiate both sides with respect to S, we obtain  C −  P = 0 or  C =  P . More

informally, when S changes by $1, the left-hand side changes by C − P but the right-hand

side does not change (it is a constant and does not depend on S). This gives us C − P = 0.

Figure 17.3 plots the option gamma in a Black-Scholes setting using the formula (17.17).

The baseline values are those from Table 17.1. The graph plots the gamma as S varies from

76 to 124. The figure illustrates the properties described above.
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This figure plots call gammas in a Black-Scholes setting as the price of the

underlying varies. The details of the computations are given in the text.
FIGURE 17.3
The Option Gamma
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Using the Option Gamma
The gamma has many important uses, formal and informal, in risk-management. We exam-

ine several of these in the material that follows.

(A) Gamma as a Curvature Correction
As we saw earlier, the delta underestimates the impact of large price changes on option

values because it ignores curvature. The gamma can be used to correct for curvature.

Consider a change of a in S. When using the delta alone, the estimated change in option

price is

Change in option value =  a

A much more accurate estimate is obtained by augmenting this with the gamma:

Change in option value =  a + 1

2
 a2 (17.22)

For small changes a, the improvement is also small, but for large a, the improvement is

very substantial.

Example 17.3 Consider the Black-Scholes setting of Table 17.1. As we have seen, the call price and delta
with these parameters are

C = 6.889,  = 0.598

Applying the formula (17.17) for the gamma in this model, we obtain

 = 0.0274

Consider a change of a = +5 in the stock price S. We saw in the last section that using
the delta alone leads to a large error of over $0.32 in estimating the change in call value.
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Using the curvature correction (17.22), the new price estimate is

6.889+ (0.598)(5) + 1
2
(0.0274)(25) = 10.219

This is within $0.02 of the actual Black-Scholes price of 10.201. ■

Why Does This Correction Formula “Work”?

Table 17.2 and Figure 17.2 show that (a) the delta systematically underestimates the impact

of changes in S on the option price, and (b) because of curvature in the option price, the

extent of underestimation becomes larger as the change in S increases.

Both issues are addressed by the curvature correction (17.22). First,  is always positive,

as is the term a2 for any change a (positive or negative) in the underlying price. This means
1
2
 a2 > 0, so we are adding a positive term to the delta estimate. This addresses the first

problem. Second, the a2 term adds curvature to the estimate, addressing the second problem.

But, a Warning . . .

Although using the gamma as a curvature correction provides a better estimate of the impact

of a large price change than using the delta alone, it must be stressed that the gamma too

is only an approximation. For very large changes in S, even the estimate provided by the

gamma can be substantially off. For example, consider a sudden change of a = −10 in

the stock price in the setting of Table 17.1. Using the curvature correction (17.22), the new

estimated call value is

6.889 + (0.598)(−10) + (0.0274)(100) = 3.649

However, the actual call value at S = 90 is only about 2.349.

(B) Curvature and Delta-Hedging
Since the gamma of an option is always positive, the holder of an option is said to be “long

gamma,” but thewriter of the option is said to be “short gamma” or to have a negative gamma

position.One of themost important—and for optionwriters,most unpleasant—implications

of gamma comes in the delta-hedging of written option positions. Delta-hedging involves

offsetting the risk in the written option position by using a position in the underlying. The

problem is that options have curvature while stock payoffs do not—the stock reacts by

exactly $1 for every $1 change in its price, so is a zero-gamma instrument.

To see the consequences of this, suppose you are short a call and have delta-hedged

yourself by holding  units of the stock. Suppose the underlying stock price registers an

unanticipated move of a. What is the impact on your portfolio?

The change in value of the  units of stock held is just  a. From (17.22), the change

in option value is approximately

 a + 1

2
 a2

Since you are long delta units of stock and short the call, the change in your portfolio value

is approximately

 a −
 
 a + 1

2
 a2

 
= −1

2
 a2

This is negative regardless of a! This result is worth emphasizing:

A delta-hedged position in which an investor is short the option will lose money from an

unanticipated change in prices regardless of the direction in which the price moves. The loss

is approximately − 1
2
 a2, where a is the change in price.
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This observation explains why rookie option traders are often told to avoid negative gamma

positions. Note that the larger the gamma, the larger is this loss for any given a.

Example 17.4 Consider the Black-Scholes setting of Table 17.1. As we have seen, we then have

C = 6.889  = 0.598  = 0.0274

Suppose we hold a delta-hedged portfolio that is short one call and long 0.598 units of the
stock. What is the impact on the portfolio of a $2 change in the price?
First, consider a $2 increase in the price to S = 102. In this case, the Black-Scholes

option value increases by +1.250 (see Table 17.2). The value of the 0.598 shares held
increases by 0.598× 2 = 1.196. Since we are short the option, the net change in portfolio
value is

1.196− 1.250 = −0.054

which is approximately − 1
2
 a2 (recall that  = 0.0274).

Now consider a $2 decrease in the price to S = 98. In this case, the option value declines
by 1.140 (Table 17.2). The value of the 0.598 shares decreases by 1.196. Therefore, the net
change in portfolio value is

−1.196+ 1.140 = −0.056

Again, this is approximately − 1
2
 a2. ■

Conversely, of course, a delta-hedged position in which we are long the option will make

money regardless of the direction in which the price moves. Figure 17.4 illustrates. The

figure describes the change in the value of a delta-hedged portfolio in which we are long

This figure plots the change in value of a portfolio consisting of a long call

position delta-hedged with the stock when the underlying price registers an

unexpected move.
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Curvature and

Delta-Hedging

0

1

2

88 92 96 100

Stock price

C
h
a
n
g
e
 i
n
 d

e
lt
a
-h

e
d
g
e
d
 p

o
rt

fo
lio

 v
a
lu

e

104 108 112



Chapter 17 Sensitivity Analysis: The Option “Greeks” 417

a call and short  (call) units of the stock.4 The setting and initial parameters are those of

Table 17.1. Any move in the price from its initial level of S = 100 results in a gain in

portfolio value.

(C) Gamma as a View on Jump Risk/Volatility
The behavior of delta-hedged portfolios in response to changes in the price of the underlying

explains why gamma is associated with a view on volatility (particularly, the risk of jumps

in the price). If you are long the option and delta-hedged, you benefit from the curvature

regardless of the direction in which the price moves. And, of course, the higher the gamma,

themore the curvature, and so the greater your benefit from large price swings. Conversely, if

you are short an option and delta-hedged, you lose from price moves in either direction, and

the greater the gamma, the greater the curvature, so the greater your losses fromprice swings.

The associationbetweengammaand jump risk can also beunderstood from the standpoint

of an unhedged option position. Because of curvature, an option provides its holder with an

asymmetric response to price changes. The holder of a call benefits more from a price in-

crease than he loses froma corresponding price decrease; the difference between the changes

is approximately  a2 where a is the change in the underlying price. A put holder similarly

gains more from a price decrease than she loses from a corresponding price increase.

Example 17.5 Consider the Black-Scholes setting of Table 17.1. Table 17.2 shows that a $1 increase in
price to S = 101 causes a gain in the call value of

7.500− 6.889 = 0.611

On the other hand, a $1 decrease in price to S = 101 causes the option value to decrease
by the smaller amount

6.889− 6.305 = 0.584

The difference between these changes is 0.027, which is approximately  a2.
As is easily verified from the table, a similar degree of asymmetry results from any change

±a in S. Figure 17.5 illustrates the asymmetry for a change of ±4. ■

This asymmetric exposure is desirable if you expect large price swings: you will benefit

more on the upside than you lose on the downside. Thus, a positive gamma position is

regarded as a bullish view on jump risk (or, more generally, on volatility), while a negative

gamma position (corresponding to a short option position) is regarded as a bearish view on

jump risk/volatility.

(D) Gamma as a Predictor of Changes in Delta
From its very definition (17.15), gamma can be used to predict changes in delta caused by

changes in S. Writing d C for the change in C caused by a small change dS in the stock

price, a rewriting of (17.15) gives us

d C =  C × dS (17.23)

That is,

Change in  =  × Change in S

Informally, we can think of  as the change in  per $1 change in S.

4 Note that, by put-call parity, the same figure also describes the change in value of a portfolio in

which we are long the put and long  (put) units of the stock.
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This figure illustrates the asymmetric response of call values to price increases

and decreases as a result of curvature.
FIGURE 17.5
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Example 17.6 Take the Black-Scholes setting of Table 17.1. At S = 100, we have  C = 0.598 and  C =
0.0274. Consider changes in S of +4 and −4. Expression (17.23) estimates the values of
delta at S = 96 and S = 104 to be

 (96) = 0.598+ (0.0274)(−4) = 0.489

and

 (104) = 0.598+ (0.0274)(+4) = 0.707

The actual values, computed using the formula for the delta, are  (96) = 0.484 and
 (104) = 0.700. Thus, despite the relatively large changes in S, (17.23) estimates the
change in  quite accurately. ■

(E) Gamma as an Indicator of Hedge Rebalancing
As a measure of the sensitivity of delta to changes in S, the gamma is an indicator of the

frequency with which a delta hedge needs to be rebalanced. If the gamma of an option

is small (close to zero), this means that the delta will not change much for changes in S.

Thus, a delta-hedged position will remain approximately delta-hedged even as S changes.

However, if the gamma is large, then even a small change in S can create a nontrivial change

in the option delta. Thus, a delta-hedged position may become risky following changes in S

and the hedge will have to be rebalanced more frequently to maintain delta-neutrality. Such

positions need to be monitored carefully.

17.5 The Option Theta

Options are finitely-lived instruments, so the time remaining to maturity plays a major role

in determining option values. The option theta measures the impact of the passage of time

on option values. It is often referred to as the time-decay in an option for reasons we will

see shortly.
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Theta is the rate of change of option values with respect to a small move forward in

current time (equivalently, a small reduction in the time to maturity):

 C = ∂C

∂t
 P = ∂P

∂t
(17.24)

Appendix 17A shows that in the Black-Scholes model, applying the definition (17.24)

results in the following expressions for call and put thetas:

 C = − 1

2
√
T − t

σ St N
 (d1) − re−r (T−t)K N (d2) (17.25)

 P = − 1

2
√
T − t

σ St N
 (−d1) + re−r (T−t)K N (−d2) (17.26)

In models where we lack closed-forms, we must discretize (17.24). Let C and P denote

the option values given the current maturity τ = T − t . Consider a small reduction (e.g.,

one day) in the time to maturity. Denote the new maturity by τ  , and the resulting call and

put values by C  and P  , respectively. Then, the option thetas are given by

 C = C − C  

τ − τ   P = P − P  

τ − τ  (17.27)

Sign of the Option Theta
For American options, a longer time to maturity is unambiguously good since a longer-dated

option can always be exercised at the same time as a shorter-dated option (the option holder

can simply choose to throw away the extra time). Thus, American option values increase

with greater time to maturity, or what is the same thing, they decrease in value as time to

maturity falls. This means theta is negative for American options. The decline in option

values as maturity approaches is expressed as saying that the options are subject to time

decay.

This is also true for European call options on non-dividend-paying stock: as time to

maturity declines, the time value and insurance value of the option both fall, so the call

value falls. Figure 17.6 plots Black-Scholes call values for different times to maturity and

illustrates this point.
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FIGURE 17.7
Impact of Time to
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For European put options, however, there is ambiguity. A lower time to maturity reduces

the put’s insurance value since volatility has less time to have an impact, but it increases

the put’s time value since the put holder receives money from the put’s exercise earlier.

Thus, in some cases, put values may increase as time to maturity shrinks, i.e., theta may

become positive. This is particularly likely for deep in-the-money puts since insurance

value is minimal for such puts (the put is almost sure to be exercised), but time value is very

important.

Figure 17.7 illustrates such a situation using the Black-Scholes setting. At low stock

prices in the figure (i.e., when the put is deep in-the-money), the short-dated put is actually

worth more than the longer-dated puts. Thus, theta becomes positive.

Theta and Depth-in-the-Money
How does option theta depend on depth-in-the-money? Figures 17.6 and 17.7 suggest the

answer. Comparing the vertical distances between option prices in these graphs shows that

near-the-money option values are the most affected by changes in maturity, while in- and

out-of-the-money options are less affected. That is, time decay is most for options that are

near-the-money than for options that are away-from-the-money. Figure 17.8 plots thetas of

call and put options in the Black-Scholes setting and confirms this point: the plots both have

U-shapes with maximum time decay near-the-money. The call theta is negative throughout,

while the put theta is positive when the put is deep in-the-money and negative otherwise.

Note that the put theta lies above the call theta and that the difference between the two is a

constant, independent of the current stock price. This must always be the case for European

options. By put-call parity,

C − P = S − e−r (T−t)K

Differentiating both sides with respect to t , we obtain

 C − P = −re−r (T−t)K (17.28)

Decomposing the Option Theta
The passage of time affects option values in two ways: through its impact on the option’s

time value (the interest costs/savings from deferred exercise) and its impact on the option’s
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This figure plots call and put option thetas in a Black-Scholes setting. The

baseline parameters are those of Table 17.1.
FIGURE 17.8
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insurance value (volatility has less time to have an impact).5 Greater insight into the behavior

of the theta can be obtained by decomposing it along these lines.

Consider the Black-Scholes formulae for call and put thetas (17.25) and (17.26). The

second term in each formula represents the net time-value effect (i.e., the change in time

valuemultiplied by the likelihood of eventual exercise). This is negative for a call but positive

for a put. The first term in each case captures the insurance value effect of a reduction in

the time to maturity. This effect is negative for both calls and puts.

Figure 17.9 presents the decomposition of the call theta of Figure 17.8; Figure 17.10 does

the same for the put theta. In both cases, the time-value component becomes more important

with depth-in-the-money. For puts, this component is positive and becomes more positive

as the put is deeper in-the-money. For calls, it is negative and becomes more negative the

deeper in-the-money is the call. This is what one would expect since the anticipated interest

savings/cost from deferred exercise increases with the likelihood of the option’s eventual

exercise.

The insurance value impact, on the other hand, is U-shaped and negative in both figures.

The maximum impact is near-the-money. The impact tails away as the option moves away

from the money in either direction. Again, this is expected. For deep out-of-the-money

options, insurance value is relatively a large part of the option’s value; however, the dollar

value of the option is itself small, so the dollar impact of a change in time to maturity on the

option’s insurance value is also small. For deep in-the-money options, most of the option’s

value comes from intrinsic value. Insurance value is almost irrelevant since the option is very

likely to finish in-the-money. For an option that is near-the-money, however, optionality and

insurance value are very important since the possibility that volatility will push the option

into the money accounts for a substantial portion of the option’s value.

5 The time value component of the theta is closely related to the idea of the option rho. The former

measures the effect of a reduction in the time to maturity for a given interest rate; the latter

measures the impact of a change in interest rates for a given time to maturity. In particular, the

Black-Scholes formulae for the two have similar structures; see below for details. The same

comments apply to the insurance value component of theta and the notion of the option vega.
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This figure decomposes the call theta of Figure 17.8 into its insurance value

and time value components as explained in the text.
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Using the Option Theta
For a given change dt in current time (i.e., for a given reduction dt in the time to matu-

rity), the impact dC and dP on option values may be estimated from the option thetas by

rewriting (17.24):

dC =  C × dt d P =  P × dt (17.29)

It is common in practice to take dt = 1 trading day ≈ 0.004 years and to express theta

in dollar terms as the rate of decay per day. For example, for the baseline parameters of

This figure decomposes the put theta of Figure 17.8 into its insurance value

and time value components as explained in the text.
FIGURE 17.10
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Table 17.1, the theta of a call works out to −8.116. Taking dt to be one trading day, the

decay in call value is roughly

−8.116 × 0.004 = −0.032

That is, the call theta, expressed in dollar terms as the decay per day, is 0.032 or 3.2 cents.

Note the severity of time decay: even with six months left to maturity, the passage of a

single day causes a fall of over 46 basis points in option value.

For the same parameters but with a time to maturity of only one week (≈ 0.0192 years),

the call value drops to 0.714, but its theta rises to −19.246. Thus, the passage of a trading

day will now cost the option about 7.7 cents, or almost 11% of its value.

The Gamma-Theta Trade-Off
The gamma of an option is positive, but the theta is (typically) negative. So if you want to

profit from volatility, you must incur time decay. A short option position has negative time

decay, but it also has negative convexity. This, in a nutshell, is the gamma-theta trade-off:

to have convexity in your favor, you must pay in time.

The gamma-theta trade-off is most important for options that are at- or near-the-money,

since this is where gamma and theta are both highest in absolute terms. Moreover, the

trade-off for ATM options becomes particularly acute as maturity approaches since theta

and gamma both rise.

Figure 17.11 illustrates these points. The upper panel of the figure plots option gammas

at different maturities, while the lower panel plots call thetas. The gamma and theta of

near-the-money options both rise as maturity approaches.

A more formal mathematical connection linking the delta, gamma, and theta is provided

by the fundamental partial differential equation (15.24) that option prices must satisfy. The

terms CS , CSS , and Ct in that equation are simply the delta, gamma, and theta of the option,

respectively. Therefore, the option price must obey

r St  + + 1

2
σ 2S2

t  = r × Current option value (17.30)

The gamma-theta trade-off is easy to see here: other things being equal, if  increases,

then must become more negative for equality to continue holding in (17.30). Expression

(17.30) must also hold for portfolios of options on a given underlying (with “Current

portfolio value” replacing “Current option value”). Section 17.8 discusses how to compute

the greeks of a portfolio.

17.6 The Option Vega

Volatility is a primary determinant of option value. Many option pricing models treat

volatility as constant for computational simplicity. In reality, however, volatility frequently

changes. The option vega, denoted V , measures the effect on option values of a change in

volatility. The vega is defined as:

VC = ∂C

∂σ
VP = ∂P

∂σ
(17.31)

In continuous models such as Black-Scholes where we have formulae for option prices,

we can directly apply (17.31) to get the formulae for option vegas. Appendix 17A shows

that in the Black-Scholes model, the vegas are given by

VC = VP =
√
T − t St N

 (d1) (17.32)
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FIGURE 17.11
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Inmodelswherewe lack closed-forms, wemust discretize (17.31). LetC and P represent

call and put prices at the original volatility σ , and let C  and P  be the option values if

volatility changes to a nearby value σ
 (e.g., σ

 
= σ ± 0.01). Then, the option vegas are

given by

VC =
C − C  

σ − σ
 

VP =
P − P  

σ − σ
 

(17.33)

Properties of the Vega
The option vega measures the dollar impact on the option of a change in volatility. Higher

volatility always increases option values as illustrated in Figure 17.12, so the vega is always

positive for both calls and puts.

How does the option vega depend on depth-in-the-money? That is, which options ex-

perience the greatest dollar change in value when volatility changes? Figure 17.12 sug-

gests an answer: the impact is greatest near-the-money and least away-from-the-money.
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This figure plots call values for a range of strike prices as volatility changes.FIGURE 17.12
The Impact of
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Figure 17.13 confirms this observation. The black line in the figure is a plot of call vegas in

a Black-Scholes setting computed using the formula (17.32).

This behavior of the vega is intuitive. A change in volatility affects the option’s insurance

value. For deep in-the-money options, most of the option value comes from intrinsic value.

Insurance value is not a big component of overall value since optionality is unimportant:

the option is very likely to be exercised. Vega will therefore be small. For options that

are near-the-money, optionality is central; such options derive a substantial part of their

value from the possibility that volatility will push them into-the-money. Thus, they react

very quickly to changes in volatility, i.e., their vegas are large. For options that are deep

The black line in this figure plots call vegas as the stock price varies. The

remaining parameters are as in Table 17.1. The gray line plots the relative

impact of a change in volatility: it is the vega divided by the price of the call.

FIGURE 17.13
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out-of-the-money, insurance value is relatively a large component of overall value, but since

the dollar value of these options is small, we would also expect the dollar impact of a change

in volatility to be small.

On the other hand, relatively speaking, volatility is most important for deep out-of-the-

money options and least important for deep ITM options. So, relative to the dollar outlay

involved in buying the option, out-of-the-money options should react the most to changes

in volatility while in-the-money options should react the least. The gray line in Figure 17.13

plots the relative impact of a change in volatility (i.e., the vega divided by the price of the

call) and bears out this intuition.

A final property of the vega applies solely to European options. For otherwise identical

options, it is the case that

VC = VP (17.34)

Once again, this is a consequence of put-call parity. The parity relationship says that

C − P = S − PV (K )

Since volatility does not enter the right-hand side of this expression, any change in the call

value on account of a change in volatility must be offset by a corresponding change in put

value.

Using the Option Vega
Suppose volatility changes by an amount dσ . Then, given the vegas, the estimated impact

on option values is, from rewriting (17.31),

dC = VC × dσ dP = VP × dσ

Example 17.7 Consider the Black-Scholes setting of Table 17.1. The call price for these parameters is 6.889
and the vega (computed using the formula (17.32)) is 25.36. Consider a change dσ = +0.01
(i.e., volatility increases from its original value of 20% to 21%). Then, the estimated change
in call value is

25.36× +0.01 = 0.2536

That is, the estimated new call value is 6.889+ 0.2536 = 7.143. The actual call value when
σ = 0.21, calculated from the Black-Scholes formula, is 7.162, so the estimate provided by
the vega is off by less than 0.02. ■

17.7 The Option Rho

Options are securitieswith deferred payoffs so their values are affected by the rate of interest.

The option rho measures the sensitivity of option prices to changes in interest rates. The

rho is defined by

ρC = ∂C

∂r
ρP = ∂P

∂r
(17.35)

Appendix 17A applies the definition to the Black-Scholes setting and shows that in the

Black-Scholes model, we have

ρC = e−r (T−t)K N (d2)(T − t) (17.36)

ρP = −e−r (T−t)K N (−d2)(T − t) (17.37)

In models where we do not have closed-forms for the option price, we use a discretized

form of (17.36)–(17.37). LetC and P denote, respectively, call and put prices at the original
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FIGURE 17.14
The Impact of Interest
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interest rate r . Consider a small (e.g., 10 basis points) change in interest rates to r  and let

C  and P  denote the call and put prices at the interest rate r  . Then, we have

ρC = C − C  

r − r  ρP = P − P  

r − r  . (17.38)

Properties of the Rho
The time value of a call is positive: when interest rates rise, the holder of a call benefits since

potential interest savings from deferred exercise increases. However, the time value of a put

is negative: the put holder loses from an increase in interest rates since the present value of

the strike price that will be received upon exercise declines. Figures 17.14 and 17.15 plot

FIGURE 17.15
The Impact of Interest

Rates on Put Values
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This figure plots the rhos of call and put options in a Black-Scholes setting.

The baseline parameters are as in Table 17.1.
FIGURE 17.16
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call and put values at different interest rates to illustrate these points. Thus,

ρC > 0 ρP < 0 (17.39)

How does the rho depend on depth-in-the-money? A change in interest rates primarily

affects the option’s time value. Time value is most important for in-the-money options since

the probability of ultimate exercise is highest here. For calls, this should mean the rho

increases as depth-in-the-money increases. For puts, it should mean that the rho becomes

more negative as the put moves deep into-the-money. Figure 17.16 plots call and put rhos

in the Black-Scholes setting; the figure is as anticipated.

The final property of the option rhos holds only for European options (and is apparent

in Figure 17.16): the difference between the rhos of a call and an otherwise identical put is

a constant:

ρC − ρP = (T − t)e−r (T−t)K (17.40)

This equation follows simply by differentiating both sides of the put-call parity equation

C − P = S − e−r (T−t)K

with respect to r .

Using the Option Rho
Suppose interest rates change by a small amount dr . Given the option rhos, the estimated

impact on option values is given by

dC = ρC × dr d P = ρP × dr

Example 17.8 In the Black-Scholes setting of Table 17.1, the call price is 6.889. Applying the formula
(17.36) shows that the call rho for these parameters is 26.44.
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Consider an increase of 25 basis points in interest rates from 5% to 5.25% (so change in
interest rates = +0.0025). Given the call rho, the estimated change in the call value is

26.44× +0.0025 = +0.0661
Thus, the estimated new call value is 6.889+ 0.0661 = 6.955. This estimate is accurate

to three decimal places: as can be checked using the Black-Scholes formula, the actual new
call price at an interest rate of 5.25% is 6.955. ■

17.8 Portfolio Greeks

The greeks are easily extended from individual options to portfolios consisting of options

and the underlying asset. The greek of a portfolio is simply the sum of the greeks of the

items in the portfolio. The material below elaborates and explains with examples.

To describe the general expressions, we use the following notation. We consider a portfo-

lio of options written on a given underlying. The portfolio is taken to consist of n1 positions

in option 1, n2 positions in option 2, etc., where ni > 0 indicates a long position and ni < 0

indicates a short position. (Each category of option is distinguished by its strike, maturity,

and whether it is a call or a put.) The portfolio may also have a position in the underlying

of size n. Once again, n > 0 implies a long position and n < 0 a short position (of course,

n may also be zero).

The Position Delta
Let 1 denote the delta of option 1, 2 the delta of option 2, etc. The delta of the underlying

is, of course, +1. The aggregate delta of the portfolio (called the position delta) is defined

as

 pos = n + n1 1 + n2 2 + · · · (17.41)

For example, suppose we have a portfolio consisting solely of calls and puts on a given

stock. Assume the portfolio is long 100 calls, each of which has a delta of +0.75, and long

150 puts each with a delta of −0.40. Then, the position delta is

 pos = (100 × 0.75) + (150 × −0.40) = 15

The position delta has exactly the same interpretation as the individual option delta: it

measures the sensitivity of the portfolio value to changes in the price of the underlying.

More informally, it measures the dollar change in portfolio value for a $1 change in the

price of the underlying. So, for instance, in our example, a position delta of 15 says that the

portfolio value changes by $15 for every $1 change in the stock price.

It is not hard to check that this is correct (and why). Consider a $1 increase in the stock

price. Each call in the example has a delta of 0.75. Therefore, each call increases by $0.75

when the stock price increases by $1. So the 100 calls in the portfolio collectively increase

by $75. On the other hand, each put has a delta of −0.40, so each put decreases by $0.40

when the underlying increases by $1. This means the 150 puts collectively decrease by $60.

The net change in the portfolio is precisely an increase of $15.

As a measure of portfolio sensitivity to the stock price, the position delta implies a

directional view for the portfolio. If the position delta is positive, the portfolio is bullish on

direction. If the position delta is negative, the portfolio is bearish on direction. And if the

position delta is zero, the portfolio is neutral on direction. A portfolio with a position delta

of zero is said to be a delta-neutral portfolio.

The position delta can be changed in many ways: by adding calls, by adding puts, or by

taking positions in the underlying. In our example, for instance, the portfolio can be made
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delta neutral by taking a short position in 15 units of the underlying stock; or by taking a

short position in 20 of the calls; or by taking an additional long position in about 38 of the

puts; or, finally, by bringing in other calls and puts on the same underlying stock.

The Position Gamma
Let  1 denote the gamma of option 1,  2 the gamma of option 2, etc. Then, the aggregate

gamma of the portfolio (called the position gamma) is

 pos = n1 1 + n2 2 + · · · (17.42)

Note that positions in the underlying do not affect the position gamma since the underlying

has a gamma of zero (its delta is always equal to +1).

To illustrate, consider the sameportfolio used as an example in the position delta. Suppose

that each of the calls has a gamma of +0.02 and each of the puts has a gamma of +0.03.

Then, the position gamma is

 pos = (0.02 × 100) + (0.03 × 150) = 6.50

The position gamma is the portfolio analog of the individual option gamma: it is an

aggregate measure of portfolio curvature. In particular, it can be used to estimate (a) the

impact of large price movements on aggregate portfolio value, and (b) the impact on the

position delta of a change in the underlying price.

To illustrate the first use, suppose the underlying in the example changes by $5. Then

applying the curvature correction, the change in portfolio value should be around

( pos × 5) + ( 1
2
 pos × 52) = (15 × 5) + ( 1

2
6.50 × 25)

= +156.25

We can check that this is correct by checking the impact of the $5 increase on each

individual option and then aggregating the effects. First note that following a $5 increase

in the stock price, each call in the portfolio will change in value by

(0.75 × 5) + (
1

2
0.02 × 25) = +4.00

so the 100 calls will collectively increase in value by $400. Each put in the portfolio will

change in value by

(−0.40 × 5) + (
1

2
0.03 × 25) = −1.625

so the 150 puts collectively fall in value by 150×1.625 = 243.75. Therefore, the net change

in portfolio value is

400 − 243.75 = +156.25

which is exactly the value identified above.

To illustrate the second use of the option gamma, suppose the stock price in our example

decreases by $1. Then, the estimated change in the position delta is

6.50 × −1 = −6.50,

i.e., the new position delta should be 15 − 6.50 = +8.50. Again, this can be verified by

considering the changes at the individual option level. A decrease of $1 in the stock price
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changes the delta of each call by −0.02, so the new delta of each call is +0.73. It also

changes the delta of each put by −0.03, so the new delta of each put is −0.43. Thus, the

new position delta is

(100 × 0.73) + (150 × −0.43) = 73 − 64.50 = +8.50

which is the value we identified above.

As the portfolio equivalent of individual option gammas, the position gamma inherits

all the uses/interpretations of the individual option gamma. In particular, a portfolio with a

positive position gamma is considered one that is bullish on jump risk/volatility; a position

with a negative position gamma is bearish on jump risk/volatility; and a portfolio with a

zero position gamma (a “gamma-neutral” portfolio) is neutral on jump risk/volatility.

Since only options have curvature, the position gamma can be altered only by adding

options to the portfolio. Adding positions in the underlying will affect the position delta but

not the position gamma. Suppose, for instance, we want to make the portfolio in our example

gamma neutral using only the calls. Since the current gamma is 6.50 and the gamma of

each call is +0.02, we need a short position in

6.50

0.02
= 325

calls to offset the existing gamma and make the portfolio gamma neutral. Note that adding

this short position in 325 callswill also affect the position delta: the newposition delta is now

15 + (−325 × 0.75) = 15 − 243.75 = −228.75

What if we wanted to make the portfolio both delta neutral and gamma neutral? Sim-

ple. We first choose the options we want to use to make the portfolio gamma neutral.

Then, we compute the new position delta after adding these options positions. Finally, we

make the position delta neutral by adding positions in the underlying. Since the underlying

does not affect the position gamma, the portfolio is now both delta neutral and gamma

neutral.

The Position Theta
The position theta measures the time-decay of the portfolio. It is simply the sum of the

thetas of the individual options in the portfolio. Suppose  1 denotes the theta of option 1,

 2 that of option 2, and so on. Then, the position theta is given by

 pos = n1 1 + n2 2 + · · · (17.43)

Positions in the underlying do not affect the position theta since the theta of the underlying

is zero.

For an example, we continue with the portfolio used to illustrate the position delta and

gamma. Suppose that the theta of each call is −12.50 and the theta of each put is −9.40.

Then, the position theta is

 pos = (100 × −12.50) + (150 × −9.40) = −2660

So the passage of each trading day (≈ 0.004 years) will cause a change in the portfolio

value of around

−2660 × 0.004 = −10.64
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That is, the portfolio will lose value at roughly $10.64 over the next trading day. It is

easy to verify that this aggregate effect is correct by looking at the impact on each option

individually and then aggregating them.

The Position Vega
The position vega measures the portfolio’s sensitivity to volatility. Let V1 be the vega of

option 1, V2 the vega of option 2, etc. Then, the position vega is defined by

Vpos = n1V1 + n2V2 + · · · (17.44)

Once again, positions in the underlying have no impact on the position vega since the vega

of the underlying is zero.

To illustrate, we continue with the example. Suppose each call in the portfolio has a vega

of 18.50, and each put in the portfolio has a vega of 21.90. Then, the position vega of the

portfolio is given by

Vpos = (100 × 18.50) + (150 × 21.90) = 5135

We interpret the position vega as the portfolio extension of the individual option vega.

In our example, the vega of 5135 means that a change of 1% in the volatility (dσ = 0.01)

will change the portfolio value by

5135 × 0.01 = 51.35

It is easy to verify that this is correct by considering the effect of the volatility change on

each individual option and then aggregating the effects.

The Position Rho
The position rhomeasures the portfolio’s sensitivity to interest rates. For the general expres-

sion, let ρ1 be the rho of option 1, ρ2 that of option 2, etc. Then the position rho is given by

ρpos = n1ρ1 + n2ρ2 + · · · (17.45)

Suppose, for instance, that in our example, each call has a rho of +28.70 and each put

has a rho of −17.40. Then, the position rho is given by

ρpos = (100 × 28.70) + (150 × −17.40) = +260

Thus, a change of 25 basis points in the interest rate (dr = 0.0025) will change the portfolio

value by

260 × 0.0025 = 0.65

17.9 Exercises 1. What is the sign of the delta of (a) a call and (b) a put?

2. What is the sign of the gamma of (a) calls and (b) puts?

3. What is the sign of the theta for (a) calls and (b) puts?

4. What is the sign of the vega for (a) calls and (b) puts?

5. What is the sign of the rho for (a) calls and (b) puts?

6. You are given two puts on the same stock but with strikes K1 and K2. If their individual

gammas are  1 and  2, what is the gamma of the portfolio consisting of both options?

7. Why is the gamma of an ATM option that is about to expire large in magnitude?

8. If the delta of a European call is 0.6, what is the delta of the European put for the same

strike and maturity?
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9. Can you derive the delta of a European call from the delta of the corresponding European

put with no knowledge of the strike price?

10. Is it possible to determine the strike price of a pair of a call and a put on the same stock

with the same strike if you know the deltas of both the call and the put? Assume the

options are European. [Note: You are not given the option pricing model underlying the

option prices and deltas.]

11. If the gammaof aEuropean call is 0.03,what is the gammaof the correspondingEuropean

put at the same strike and maturity?

12. In the Black-Scholes model, what is higher, the delta of a one-year call or that of a

two-year call on the same stock if the respective strikes are at-the-money forward? Show

the result algebraically and then discuss the intuition.

13. Does your answer to the preceding question change if the call is deep out-of-the-money

(OTM)? What about if it is deep in-the-money (ITM)?

14. In the Black-Scholes model, how does the delta of an ATM call change as volatility

increases?

15. Intuitively speaking, howdoes the delta of a deepOTMcall change as volatility increases?

16. Intuitively speaking, how does the delta of a deep ITM call change as volatility increases?

17. For an at-the-money-forward (ATMF) call in the Black-Scholes model, how does  C

change when interest rates rise?

18. Intuitively speaking, how does the delta of a call option change for constant strike K

when interest rates rise?

19. Intuitively speaking, how does the delta of a put (at fixed strike) change when interest

rates rise?

20. For European options, what is the relationship of the interest-rate sensitivity of the call

delta to that of the put delta?

21. How does the gamma of an OTM option behave as we approach maturity? What about

the gamma of an ITM option? Derive the answers in the context of the Black-Scholes

model and explain the intuition.

22. How does the vega of an OTM option behave as we approach maturity? What about the

vega of an ITM option? Derive the answers in the context of the Black-Scholes model

and explain the intuition.

23. Gamma is often thought of as representing a view on volatility, while vega measures

the dollar impact on option values of a change in volatility. Do they measure the same

thing? Is it possible for gamma to increase and vega to decrease simultaneously?

24. How does the theta of an OTM option behave as we approach maturity? What about the

theta of an ITM option? Derive the answers in the context of the Black-Scholes model

and explain the intuition.

25. Suppose a stock is currently trading at 100. An at-the-money call with a maturity of

three months has the following price and greeks:

C = 5.598

 = 0.565

 = 0.032

 = −12.385

V = 19.685

ρ = 12.71
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(a) If the stock price moves to S = 101, what is the predicted new option price (using

the delta alone)?

(b) If the stock price moves to S = 101, what is the predicted new call delta?

(c) Repeat these questions assuming the stock price moves to 98 instead.

(d) If the stock price registers a large jump increase to 120, what is the new call value

predicted by the delta alone? By the delta and gamma combined?

(e) Go back to the original parameters. If the time to maturity falls by 0.01, what is the

new call value predicted by the theta?

(f) Repeat the last question if the time to maturity falls by 0.05.

(g) Go back to the original parameters. If the volatility increases by 1%, what is the

predicted new value of the call? What if volatility fell by 2%?

(h) Go back to the original parameters. If interest rates should rise by 50 basis points,

what is the new call value predicted by the rho?

26. A stock is currently trading at 55. You hold a portfolio of the following instruments:

• Long 200 shares of stock.

• Long 200 puts with a strike of 50 and maturity of three months.

• Short 200 calls with a strike of 60 and maturity of three months.

You are given the following information:

Instrument Price Delta Gamma Vega Theta Rho

Call with K = 50 6.321 0.823 0.038 7.152 −5.522 9.730
Put with K = 50 0.700 −0.177 0.038 7.152 −3.053 −2.615

Call with K = 55 3.079 0.565 0.057 10.827 −6.812 6.993
Put with K = 55 2.396 −0.435 0.057 10.827 −4.096 −6.586

Call with K = 60 1.210 0.297 0.050 9.515 −5.513 3.779
Put with K = 60 5.465 −0.703 0.050 9.515 −2.551 −11.035

(a) What is the current value of your portfolio?

(b) What is the delta of your portfolio? the gamma? the vega? the theta? the rho?

(c) Suppose you want to make your portfolio gamma neutral. What is the cost of

achieving this using the 55-strike call? What is the theta of your new position?

(d) What is the cost if you used the 55-strike put? What is the theta of the new position?

27. Using the same information as in Question 26, calculate the following quantities:

(a) The delta and gamma of a covered call portfolio with K = 55 (i.e., a portfolio

where you are long the stock and short a call with a strike of 55).

(b) The delta and gamma of a protective put portfolio with K = 50 (long the stock

and long a put with a strike of 50).

(c) The delta and gamma of a bull spread using calls with strikes of 55 and 60 (long a

55-strike call, short a 60-strike call).

(d) The delta and gamma of a butterfly spread using calls with strikes of 50, 55, and

60 (long a 50-strike call, long a 60-strike call, and short two 55-strike calls).

(e) The delta and gamma of a collar with strikes 50 and 60 (long position in the stock,

long a 50-strike put, short a 60-strike call).
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28. You hold a portfolio that is short 2,000 puts, each with a delta of −0.63. What would

you do to delta-hedge the portfolio?

29. A stock has a volatility of 40%. An at-the-money call on the stock has a vega of +21.45.

By how much will the call value change if volatility falls to 39%? Assuming the options

are European, what about the corresponding put?

30. The theta of a put with 23 days left to maturity is −17.50. Other things being equal, by

how much does the value of the put change if a day passes?

31. Youhold two types of calls and two types of puts on agiven stock.Thedeltas andgammas

of the respective types are (+0.40, +0.03), (+0.55, +0.036), (−0.63, +0.028), and

(−0.40, +0.032). You have a long position in 1,000 of the first type of call, a short

position in 500 of the second type of call, a long position in 1,000 of the first type of

put, and a short position in 500 of the second type of put.

(a) What is the aggregate delta of your portfolio? The aggregate gamma?

(b) Suppose you decide to gamma hedge your portfolio using only the first type of call.

What is the resulting delta of the new portfolio? What position in the underlying

is now required to create a delta-neutral gamma-neutral portfolio?

32. You hold a portfolio that is short 800 calls, each with a rho of +21.50, and long 800

puts, each with a rho of −16.70. By how much does your portfolio value change if

interest rates move down by 20 basis points?

33. A stock is currently trading at $22.50. The delta of an at-the-money call on the stock is

+0.56 and the gamma is +0.035. If the stock price were to change to $22.25, by how

much would the call price change (using the delta alone)? What is the approximate new

value of the call delta?
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Appendix 17A

Deriving the Black-Scholes Option Greeks
The Black-Scholes option pricing formulae are:

C = St N (d1) − PV (K ) N (d2)

P = PV (K ) N (−d2) − St N (−d1)
(17.46)

where

PV (K ) = e−r (T−t)K

d1 = 1

σ
√
T − t

 
ln

 
St

K

 
+ (r + 1

2
σ 2)(T − t)

 

d2 = d1 − σ
√
T − t

and N (·) is the cumulative standard normal distribution. For any x , note that the density of

the standard normal distribution is

N  (x) = 1√
2π

e− 1
2
x2

(17.47)

An Important Preliminary Result

We begin with a result to which we will appeal repeatedly in the rest of this appendix.

Namely, we shall show that

St N
 (d1) − PV (K ) N  (d2) = 0 (17.48)

To prove (17.48), we must show that

St
1√
2π

e− 1
2
d2

1 = PV (K )
1√
2π

e− 1
2
d2

2

or, after rearranging terms and simplifying, that

St

PV (K )
= e

1
2

(d2
1
−d2

2
) (17.49)

Take the natural log of both sides of (17.49). Using ln AB = ln A+ ln B, we may write

the natural log of the left-hand side as

ln

 
St

e−r (T−t)K

 
= ln

 
St

K

 
+ ln

 
1

e−r (T−t)

 

= ln

 
St

K

 
+ ln

 
er (T−t) (17.50)
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+ r (T − t)

The natural log of the right-hand side of (17.49) is

ln
 
e

1
2

(d2
1
−d2

2
)
 

= 1

2

 
d2

1 − d2
2

 = 1

2
(d1 − d2)(d1 + d2) (17.51)
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Substituting in the definitions of d1 and d2, the last term of (17.51) expands as

1

2
σ

√
T − t

 
2

σ
√
T − t

 
ln

 
St

K

 
+ (r + 1

2
σ 2)(T − t)

 
− σ

√
T − t

 
(17.52)

which after simplification and elimination of common terms becomes just

ln

 
St

K

 
+ r (T − t) (17.53)

From (17.50) and (17.53), the natural logarithms of the left- and right-hand sides of

(17.49) coincide. Therefore, the key result, expression (17.48), holds. We shall use this to

derive each of the Black-Scholes greeks. Throughout, the partial derivative of a function f

with respect to an argument x is written ∂ f/∂x .

The Black-Scholes Delta

The delta is the partial derivative of the option pricing function with respect to S. Differen-

tiating the call pricing formula with respect to St ,

 C = N (d1) + St N
 (d1)

∂d1

∂St
− PV (K ) N  (d2)

∂d2

∂St
(17.54)

Since d1 − d2 = σ√
T − t , we have

∂d1

∂St
= ∂d2

∂St

Using this in (17.55), we obtain

 C = N (d1) + [St N
 (d1) − PV (K ) N  (d2)]

∂d1

∂St
(17.55)

But, as we have seen in (17.48), St N
 (d1) − PV (K )N  (d2) = 0. This means the delta

reduces to just

 C = N (d1)

as required. The Black-Scholes put delta may be derived from this using put-call parity (see

expression (17.11)).

The Black-Scholes Gamma

The gamma is the derivative of delta with respect to St . Since we have shown that the call

delta is just N (d1), the call gamma is

 C = ∂ C

∂St
= N  (d1)

∂d1

∂St
(17.56)

Direct computation shows that

∂d1

∂St
= 1

σ
√
T − t

1

St

so that

 C = 1

σ St
√
T − t

N  (d1) (17.57)
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as claimed in the text. From put-call parity, the gammas of otherwise identical call and

put European options coincide (see expression (17.21)), so this is also the gamma of the

Black-Scholes put.

The Black-Scholes Theta

The theta is the derivative of the option pricing function with respect to current time t .

Applying this definition to the Black-Scholes call formula,

 C = St N
 (d1)

∂d1

∂t
− PV (K ) N  (d2)

∂d2

∂t
− re−r (T−t)K N (d2) (17.58)

Since d1 = d2 + σ√
T − t , we have

∂d1

∂t
= ∂d2

∂t
− σ

2
√
T − t

Therefore, we may rewrite (17.58) as

 C = [St N
 (d1) − PV (K )N  (d2)]

∂d2

∂t

− 1

2
√
T − t

σ St N
 (d1) − re−r (T−t)K N (d2)

(17.59)

which from (17.48) is just

 C = − 1

2
√
T − t

σ St N
 (d1) − re−r (T−t)K N (d2) (17.60)

From put-call parity, European call and put thetas differ by the constant amount

−re−r (T−t)K (see expression (17.28)). The Black-Scholes put theta may be derived from

(17.60) using this observation.

The Black-Scholes Vega

The vega is the derivative of the option pricing function with respect to σ . Applying this to

the Black-Scholes call pricing formula,

VC = St N
 (d1)

∂d1

∂σ
− PV (K )N  (d2)

∂d2

∂σ
(17.61)

Now, d1 = d2 + σ√
T − t , so

∂d1

∂σ
= ∂d2

∂σ
+

√
T − t

Substituting this into (17.61), we obtain

VC = [St N
 (d1) − PV (K )N  (d2)]

∂d2

∂σ
+ St N

 (d1)
√
T − t (17.62)

From (17.48), this becomes just

VC = St N
 (d1)

√
T − t (17.63)

From put-call parity, European call and put vegas coincide (see expression (17.34)), so

this is also the expression for the Black-Scholes put vega.
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The Black-Scholes Rho

The rho is the derivative of the option pricing function with respect to r . Applying this to

the Black-Scholes call pricing formula,

ρC = St N
 (d1)

∂d1

∂r
− PV (K )N  (d2)

∂d2

∂r
+ (T − t)e−r (T−t)K N (d2) (17.64)

Now, d1 = d2 + σ√
T − t , so

∂d1

∂r
= ∂d2

∂r

Substituting this into (17.64), we obtain

ρC = [St N
 (d1) − PV (K )N  (d2)]

∂d2

∂r
+ (T − t)e−r (T−t)K N (d2) (17.65)

From (17.48), this becomes just

ρC = (T − t)e−r (T−t)K N (d2) (17.66)

From put-call parity, European call and put rhos differ by the constant amount

(T − t)e−r (T−t)K (see expression (17.40)). Using this in (17.66), the Black-Scholes put

rho may be derived.



Chapter 18
Exotic Options I:
Path-Independent
Options

18.1 Introduction

An exotic option is an option whose payoffs or exercise features are different from those of

standard (“plain vanilla”) calls and puts. An immense variety of exotic options trades in the

over-the-counter market. The list includes forward starts, binaries, compounds, lookbacks,

choosers, cliquets, shouts, Asians, Bermudans, barriers, quantos, and many, many others.

“Different” does not always mean more complex. Some exotics, such as lookbacks and

Asians, do involve more complex payoffs than plain vanilla options, but others, such as

binary options, have very simple payoff structures. Nor should the word “exotic” be taken

to imply that these options are rare; to the contrary, some exotics, like barrier options, have

become commonplace in the market.

Exotic options provide richer and more targeted payoff patterns than can be obtained

from vanilla options. For example, an Asian option addresses a specific kind of hedging

need—exposure to the average—more efficiently than vanilla options; a chooser option

is a cheaper version of a volatility instrument like a straddle; a knock-out barrier option

provides greater speculative potential than its vanilla counterpart in taking directional bets;

and so on. This chapter and the next discuss the uses, pricing, and hedging of several types

of exotic options.

Path-Independent and Path-Dependent Exotics
There are two broad categories of exotic options. The first is path-independent exotics.

These are exotic options whose payoff at the time of exercise may depend on the price of the

underlying at that point, but not on how that price was reached, i.e., not on the past behavior

of prices. In this chapter, we examine six classes of path-independent exotics: forward starts,

binaries, compounds, choosers, exchange options, and quantos. We also examine several

variants on the exchange option theme such as rainbow options and options on the maximum

or minimum of several assets.

In the next chapter, we examine the class of exotic options called path-dependent exotics.

In a path-dependent exotic, the payoffs from the option at the time of exercise may depend

not only on the price of the underlying at that time but also on some or all of the entire path

440
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TABLE 18.1
Notation When Using

the Black-Scholes

Setting

Notation Meaning

T Maturity date of option/Time left to maturity
S Current stock price
ST Stock price at T
K Strike price of option
r Riskless interest rate
σ Volatility of stock returns
δ Dividend yield on stock

C (S, K , T ) Price of vanilla European call with maturity T and strike K

P (S, K , T ) Price of vanilla European put with maturity T and strike K

of prices leading to that terminal price. This path could matter in simple ways (e.g., did the

price ever cross a critical level S∗?) or in more complex ways (e.g., what was the average

price observed over the option’s life?). We examine five classes of path-dependent exotics:

cliquets, barriers, Asians, lookbacks, and shouts.

The Framework
Throughout the discussion on exotics, we take the underlying security to be a stock. With

obvious modifications, the same arguments extend to other underlying securities. We use the

Black-Scholes and/or binomial framework to describe the pricing and hedging of exotics.

The Black-Scholes framework is used when there are closed-form solutions available

for describing option prices. For this purpose, we use the notation introduced in Chapter 14

but with one simplification: the current time is normalized to t = 0, so T denotes both the

maturity date and the remaining time to maturity of the option. The notation is summarized

in Table 18.1.

The binomial framework is used when there are no closed-forms available (and some-

times, to illustrate special points, even when they are). When using the binomial framework,

a specific two-period model is employed for illustration. The initial stock price is S = 100;

the up and down moves are u = 1.10 and d = 0.90; and the risk-free rate of interest per

period is R = 1.02. The two-period tree is described in Figure 18.1. For later use, note that

FIGURE 18.1
Stock Price Tree for

Binomial Illustrations
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with these parameters, the risk-neutral probability q of an up move is given by

q = R − d

u − d
= 0.60

Two Common Themes
Two common themes run through this material. The first is to do with pricing. The price

of an exotic option is the fair value of the payoffs it generates. Conceptually, identifying

this value is a straightforward application of risk-neutral valuation: we find the payoffs

of the option and take the discounted expectations of these payoffs under the risk-neutral

probability. Computationally, the process can be quite hard. This is especially the case for

path-dependent exotics such as barriers or Asians.

The second concerns hedging, and more generally, the exotic greeks. As we have seen,

vanilla option greeks exhibit an intuitive and consistent pattern of behavior. Call deltas are

positive and put deltas negative, the gammas of both are always positive and maximal near-

the-money, and so on. With exotics, one or more of these properties may fail. For example,

for certain exotics, vega can be negative, meaning the option value decreases as volatility

increases; or gamma can be negative,meaning the option delta decreases as the optionmoves

into-the-money.None of thismeans that the behavior of exotics is conceptually complicated.

The behavior of each exotic is, as we shall see, intuitive given its payoff structure. But it

does imply that vanilla option behavior should not be extrapolated to exotics.

18.2 Forward Start Options

A forward start option is a particularly simple type of exotic option. It is one that comes to

life at a specified point T ∗ in the future and has a life of τ years (measured from T ∗). The

strike price K of the forward start is not specified at the outset; rather, it is determined at

time T ∗ as K = αST ∗ , where ST ∗ is the stock price at T ∗ and α is a prespecified number. In

the “typical” case, we have α = 1, meaning the forward start option is at-the-money when

it comes to life.

A noteworthy example of a forward start option is a plan offered bySprint to its employees

in November 2000. Following a steep decline in its stock price, many of the stock option

awards Sprint had previously granted to its employees were well out-of-the-money. (At the

time, Sprint’s stock price was around $25 while the average strike price of the affected

options was almost $60.) Sprint offered its employees the opportunity to trade in their

existing options for new options with the same maturity date but whose strike prices would

be set equal to the stock price of Sprint six months and one day from the date of the trade-in.

(The “six-months-and-one-day” rule was to bypass an accounting regulation.) We return to

this plan later in this section.

Are Forward Starts Path-Independent?
At first sight, forward starts appear to be path-dependent: the payoff from the option at its

maturity (i.e., at time T ∗ + τ ) depends on the strike price, which in turn depends on the

stock price ST ∗ that prevails at the intermediate time-point T ∗. But this is an unnecessarily

complex way of looking at it.

At time T ∗, the holder of the forward start receives a vanilla option whose value com-

pletely summarizes the present value (viewed from T ∗) of the payoffs that will be received

at T ∗ + τ . So the effective maturity date of the forward start may be viewed as T ∗ and its

effective payoffs the value of the vanilla option received at this point.
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Looking at it this way makes the forward start path-independent: the value of the option

received at T ∗ depends on stock prices only through ST ∗ . It also makes the pricing problem

quite simple as we shall see shortly. A preliminary result is required first.

Option Prices and “Homogeneity of Degree 1”
The pricing of forward starts is considerably simplified by a strong property of vanilla option

prices called “homogeneity of degree 1 in (S, K ).” This property is almost an obvious one,

certainly one that is very intuitive.

To motivate this property, consider an example. Suppose the stock of a given company is

currently trading at S = 100, and you have options on the stock struck at K = 92. Suppose

the company goes through a 4-for-1 stock split, so the post-split price of the stock is 25.

What change in the option contract would leave its value unchanged?

The instinctive guess is the right answer: the strike price should also be reduced to one-

fouth of its original level (i.e., to 23) and the number of options should be increased fourfold.

Intuitively, when the stock price and strike price are both divided by 4, it takes four new

options to make up each old option. This is exactly the statement that option prices are

homogeneous of degree 1 in (S, K ).

To put this in notational terms, let C(S, K , T ) denote the value of an option (say, a call)

with current stock price S, strike price K , and remaining maturity T . Suppose S and K are

each multiplied by a factorm > 0. Then, as we have seen, the new call valueC(mS, mK , T )

should be just m times the old call value:

C(mS, mK , T ) = m C(S, K , T ) (18.1)

Expression (18.1) is the mathematical statement that option prices are homogeneous of

degree 1 in (S, K ).

Pricing Forward Starts
We describe the pricing of forward start calls here. Puts are handled identically. We assume

the underlying stock pays a continuous dividend yield at the rate δ (which could be zero).

Let CFS(S, T ∗, τ, α) denote the current price of a forward start call, where S is the

current (date 0) stock price and the parameters (T ∗, τ, α) define the forward start. For a

vanilla call with strike K and maturity T , the current call price is denoted C(S, K , T ).

At time T ∗, the holder of the option receives a vanilla option with a strike of αST ∗ and

τ years to maturity. This option is worth C(ST ∗ , αST ∗ , τ ). From the homogeneity property

(18.1),

C(ST ∗ , αST ∗ , τ ) = ST ∗ C(1, α, τ ) (18.2)

Of course, C(1, τ, α) is just the price of a vanilla call with current stock price S = 1, strike

K = α, and maturity τ .

Now, the price CFS(S, T ∗, τ, α) of the forward start is the expectation under the risk-

neutral probability of its time-T ∗ payoffs (18.2) discounted back to the current time at the

risk-free rate r . So if E[·] denotes expectation under the risk-neutral probability, we have:

CFS(S, T ∗, τ, α) = e−rT
∗
E [ST ∗ C(1, α, τ )] (18.3)

Since C(1, α, τ ) is a constant that does not depend on ST ∗ , it can be pulled out of the

expectation, which means we have

CFS(S, T ∗, τ, α) = C(1, α, τ ) e−rT
∗
E [ST ∗ ] (18.4)

The term e−rT
∗
E[ST ∗ ] measures the present value of receiving the (random) payment ST ∗

at time T ∗, i.e., of receiving one unit of the stock at T ∗. This payoff can be replicated by
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buying e−δT
∗
units of the stock today and reinvesting all the dividends in buying more of

the stock. (This will result in a holding of one unit of the stock at time T ∗.) Thus, we have

e−rT
∗
E[ST ∗ ] = e−δT

∗
S (18.5)

Substituting (18.5) into (18.4), we obtain

CFS(S, T ∗, τ, α) = e−δT
∗
S C(1, α, τ ) (18.6)

Applying the homogeneity property again (this time in reverse) to the right-hand side of

(18.6), we finally get:

CFS(S, T ∗, τ, α) = e−δT
∗
C(S, αS, τ ) (18.7)

Expression (18.7) is the general expression for the price of a forward start option when

the underlying has a continuous dividend yield of δ. In words, it says that the value of the

forward start is the value of e−δT
∗
units of a vanilla option with the same characteristics as

the forward start (maturity τ and strike equal to α times the current stock price). Note that:

• If δ > 0, a higher T ∗ lowers the value of the option. Intuitively, the more one has to wait,

the greater the proportion of the current stock price that has been paid out as dividends,

so the lower the value of the option that is received.

• If δ = 0, then T ∗ does not affect the option value! What matters is only the remaining

maturity of the option measured from T ∗.

The Sprint Repricing Scheme
The forward start valuation expression (18.7) can be used to highlight the essential trade-offs

in a Sprint-type repricing scheme. One simplifying assumption is required: that executive

stock options can be treated as vanilla options and valued using risk-neutral procedures.1

Let Ko denote the strike price of the original option, T o its remaining maturity in years, S

the current price of the stock, and C(S, Ko, T o) the value of the original option.

Under Sprint’s scheme, option holders can trade these options for forward starts coming

to life in six months and one day, with α = 1 and a remaining maturity τ that is T o years

minus six months and a day. Ignoring dividends, the forward starts are worth C(S, S, τ ).

The trade-in is worthwhile if

C(S, S, τ ) > C(S, Ko, T o) (18.8)

Expression (18.8) summarizes the essence of the scheme: the original option (the right-hand

side of (18.8)) has a higher strike but also a longer maturity. For the option holder weighing

the trade-in, the question is whether the lower strike price S on the new option compensates

for the reduction in time to maturity. For the stock holder worried about the cost of the

scheme, the extra compensation cost is the difference between the left-hand and right-hand

sides of (18.8).

Hedging Forward Starts
From (18.5), the value of the forward start at any current stock price S is just e−δT

∗
S ×

C(1, α, τ ). This means the forward start has very simple greeks. Its delta is a constant:

 FS = e−δT
∗
C(1, α, τ ) (18.9)

1 This is not an innocuous assumption. Unlike normal options, executive options cannot be freely

traded nor can their holders short the stock of their companies. Rubinstein (1995) discusses the

possible valuation impact of these and other deviations from the assumptions underlying risk-neutral

valuation procedures.
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Since the delta is constant, the gamma is zero. The remaining greeks are just the greeks of

the (1, α, τ )-vanilla call multiplied by e−δT
∗
S.

18.3 Binary Options

The term binary (or digital) option is used to refer to any option with a discontinuous

payoff structure. While several examples of such options exist, by far the most prominent,

and the canonical example of binary options, is the cash-or-nothing option. A cash-or-

nothing option is simply a straight bet on the market: the option holder receives a fixed

amount of cash (say, M) if the stock price finishes above the strike price K at maturity T

of the option, and nothing otherwise. The payoffs at maturity of the cash-or-nothing option

are graphed in the left panel of Figure 18.2. There is a discontinuity in the payoffs at K .

A variant on this theme is the asset-or-nothing option in which the holder of the option

receives one unit of the asset if the option finishes in-the-money (ST ≥ K ) and nothing

otherwise. The payoff from such an option is graphed in the right panel of Figure 18.2.

Once again, there is a discontinuity in the payoffs at K .

A third example of a binary option is a gap option. In a gap option, the holder is long an

asset-or-nothing option and short a cash-or-nothing option. Two special cases of a gap option

are of interest. First, when M = K in the cash-or-nothing option, the gap option reduces

to a vanilla call (see the paragraph leading to (18.11) below). Second, when M and K are

chosen so that the value of the asset-or-nothing option equals that of the cash-or-nothing

option, we obtain what is called a pay later option. In this case, no money exchanges hands

at inception; the only possible cash flows to either party are at maturity.

Our discussion of binary options in this chapter concentrates mainly on cash-or-nothing

options.

Pricing Cash-or-Nothing Options

Let CC-or-N denote the price of a cash-or-nothing option. Since the payoff from the option

is a constant M , the fair price of the option is simply the present value of M times the

risk-neutral likelihood the option finishes in-the-money (i.e., the risk-neutral likelihood that

ST ≥ K ).

As we have seen in Chapter 14, the risk-neutral probability that ST ≥ K in the Black-

Scholes setting is N (d2), where N (·) is the cumulative standard normal distribution and d2
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FIGURE 18.3
Binary Option Values
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Thus, the price of the cash-or-nothing option in the Black-Scholes setting is

CC-or-N = e−rT M N (d2) (18.10)

Figure 18.3 plots binary option values in a Black-Scholes setting. The parameters used

are S = K = 100, M = 25, σ = 0.20, and r = 0.05. Three maturities are used: one week,

one month, and three months. As the option approaches maturity, its value converges to the

discontinuous payoff in Figure 18.2.

A final comment. What we have defined here as a cash-or-nothing option is more com-

monly called a cash-or-nothing call: it pays off only if the strike price finishes above a

specified strike level K . We can also define cash-or-nothing put options. In this case, the

option pays M if ST < K and nothing otherwise. Cash-or-nothing calls and cash-or-nothing

puts are intimately related—if we hold both of them, we are guaranteed a payoff of M re-

gardless of what happens to the stock price. It follows that the value of such a portfolio is

just the present value of M . That is, denoting by CC-or-N and PC-or-N the prices of the

cash-or-nothing call and put, respectively, we have

CC-or-N + PC-or-N = e−rT M

This relationship makes it easy to derive the properties of cash-or-nothing puts from the

properties of cash-or-nothing calls. We focus in the remainder of this section only on cash-

or-nothing calls and continue referring to them as just cash-or-nothing options.

Pricing Asset-or-Nothing Options
What about asset-or-nothing options? A simple observation provides the answer. Suppose

we buy an asset-or-nothing option and sell a cash-or-nothing option with M = K . Then, if

ST ≥ K , we pay K (on the cash-or-nothing option) and receive one unit of the underlying

stock (on the asset-or-nothing option); if ST < K , we receive and pay nothing. These payoffs
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are exactly the same as a vanilla call. So, ifCA-or-N denotes the price of the asset-or-nothing

option and C the price of a vanilla call, we have

CA-or-N − CC-or-N = C (18.11)

Substituting for CC-or-N and C in the Black-Scholes setting, this gives us

CA-or-N = e−δT S N (d1) (18.12)

where d1 is defined by

d1 =
1

σ
√
T

 
ln

 
S

K

 
+

 
r − δ + 1

2
σ 2

 
T

 

Binary Option Greeks
Since (18.11) is an identity, we can calculate the greeks of the asset-or-nothing option

from knowledge of the greeks of vanilla and cash-or-nothing options. (That is, A-or-N =
 Vanilla− C-or-N,  A-or-N =  Vanilla− C-or-N, etc.) So we focus on the greeks of

cash-or-nothing options in the rest of this section.

Hedging Cash-or-Nothing Options: The Delta
When a cash-or-nothing option is deep out-of-the-money, a small change in the stock price

leaves it deep out-of-the-money. The option is almost sure to pay zero in this case and is

not very sensitive to changes in the stock price. That is, its delta is close to zero.

But this is also true if the cash-or-nothing option is deep in-the-money! In this case, the

option’s payoff is fixed at M regardless of how deep in-the-money the option moves. Thus,

small changes in the stock price of a deep in-the-money option have a negligible effect, so

the delta is again close to zero.

Both effects are visible in Figure 18.3—the slope of the option pricing function goes

to zero as the option moves out-of-the-money and as it moves into-the-money. Figure 18.4

plots these slopes. The deltas are bell-shaped, reaching their maximum values at the money

and tailing away to zero as the option moves away from the money in either direction.
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Cash-or-Nothing Options: The Gamma and Other Greeks
Cash-or-nothing options offer an excellent illustration of how different exotic options can

be from vanilla options in terms of their sensitivities. Cash-or-nothing call options resemble

vanilla call options in that they make money if prices go up and have a zero payoff if they

go down. Yet we have already seen that cash-or-nothing deltas differ dramatically from call

deltas. The same is true for the other greeks as well.

The gamma first. Since the delta increases as the option goes from being out-of-the-

money to at-the-money, the gamma is positive in this range. However, since the delta

declines as the option moves from at- to into-the-money, the gamma becomes negative.

Thus, a long binary option position can have either positive or negative gamma depending

on depth in-the-money.

Figure 18.5 plots the option gammas for the same parameter values as the earlier plots.

As the option gets closer to maturity, its payoff more closely resembles the discontinuous

final payoff of Figure 18.2, so the delta rises sharply at-the-money and falls away steeply on

either side. Thus, the gamma blows up at-the-money, being large and positive on one side

and large and negative on the other. As maturity approaches, the gamma at-the-money is

undefined: it goes to +∞ on one side and to −∞ on the other.

The vega next. For a deepout-of-the-money cash-or-nothing option, an increase in volatil-

ity is unambiguously good because it increases the likelihood of the option finishing in the

money. So the vega is positive. However, when the cash-or-nothing option is deep in-the-

money, volatility is a bad thing: it cannot increase payoffs since these are capped at M , but it

can decrease them by pushing the option out-of-the-money. Thus, vega becomes negative,

which can never happen for a long vanilla position. Figure 18.6 plots cash-or-nothing vegas

for the same parameter values as in the earlier graphs.

Third, the theta. For a vanilla call, the theta is always negative. For a cash-or-nothing

option, it can be negative or positive. When the option is out-of-the-money, a lower time to

maturity hurts and theta is negative. But if the option is in-the-money, there is no further

upside benefit possible in a longer maturity, so theta is positive. Figure 18.7 illustrates.
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FIGURE 18.6
Binary Option Vegas at

Different Maturities
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FIGURE 18.7
Binary Option Thetas

at Different Maturities
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Finally, the rho. Vanilla calls always have a positive rho; moreover, the rho increases

with depth-in-the-money. Neither property is true for cash-or-nothing options. In a cash-

or-nothing option, the holder receives cash upon exercise, so higher interest rates lower the

present value of what is received. On the other hand, higher interest rates also result in a

higher risk-neutral drift of the stock price. When the option is out-of-the-money, the second

factor dominates, so the rho is positive. However, as the option goes deep into-the-money,

the first factor becomes more important, and the rho turns negative. Figure 18.8 describes

this behavior.
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FIGURE 18.8
Binary Option Rhos at

Different Maturities
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18.4 Chooser Options

A chooser option (also called an “as-you-like-it” option or a “U-Choose” option) is an

option in which the holder has the right to decide by a specified time whether the option is

to be a put or a call. The strike and maturity of the call and put are specified in the contract.

The choice date, of course, occurs before the maturity dates. In the typical case (called a

“standard chooser”), the call and put have the same strike and maturity; this is the case on

which we focus in this section. In a “complex chooser,” the put and call may have different

strikes and maturities.

Because the chooser can turn out to be a call or a put, a chooser, like a straddle, is

a volatility play. But a standard chooser is cheaper than the corresponding straddle. The

holder of a straddle gets to keep the call and the put right up to maturity. In a chooser, the

holder makes an irrevocable selection on the choice date between the call and the put. There

is always the possibility that this turns out to be the “wrong” choice ex post (for example,

the holder chooses a call, but the call finishes out-of-the-money and the put finishes in-the-

money at maturity), leading to a lower value for the chooser vis-à-vis a straddle.

The closer the choice date and maturity date are, the lower the likelihood of a wrong

choice, so the more closely the chooser resembles a straddle. In the limit, as the choice date

and maturity date coincide, the chooser becomes identical to the straddle.

Indeed, it is possible to relate the price of a chooser precisely to the price of the cor-

responding straddle using put-call parity. We do this prior to discussing the pricing and

hedging of choosers.

The Relationship between Choosers and Straddles
Let K and T denote the common strike price and maturity date of the call and put in a

standard chooser, and let τ be the choice date (τ < T ).
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Suppose Sτ is the stock price on date τ . At this point, the options have a further maturity

of T − τ ; denote their values by C(Sτ , K , T − τ ) and P(Sτ , K , T − τ ), respectively. The

holder of the chooser will obviously choose the more valuable of the two options. So the

value of the chooser at τ is:

max{C(Sτ , K , T − τ ), P(Sτ , K , T − τ )} (18.13)

Now, by put-call parity, the call and put prices on date τ are related by

P(Sτ , K , T − τ ) = C(Sτ , K , T − τ ) + PVτ (K ) − e−δ(T−τ )Sτ (18.14)

where PVτ (K ) = e−r (T−τ )K . Substituting this in (18.13), the time-τ value of the chooser

is

max{C(Sτ , K , T − τ ), C(Sτ , K , T − τ ) + PVτ (K ) − e−δ(T−τ )Sτ } (18.15)

Pulling the common term C(Sτ , τ, K , T ) out of the braces, we obtain

C(Sτ , K , T − τ ) + e−δ(T−τ ) max{0, e−(r−δ)(T−τ )K − Sτ } (18.16)

The second term in (18.16) is simply the payoff from e−δ(T−τ ) put options on the stockwith

strike e−(r−δ)(T−τ )K and maturing at τ . Thus, (18.16) shows that the chooser is equivalent

to a portfolio consisting of

• A call option with strike K and maturity T .

• e−δ(T−τ ) put options with strike e−(r−δ)(T−τ )K and maturity τ .

The corresponding straddle consists of

• A call option with strike K and maturity T .

• A put option with strike K and maturity T .

The difference in value between the straddle and the chooser is just the difference in

price of the respective puts. In particular, when δ = 0, it is as if a chooser consists of the

same call as a straddle but has a put with a lower strike and a shorter maturity.

Pricing Choosers
The decomposition (18.16) of the chooser suggests an easy way to price a standard chooser.

The value V ch of the chooser is simply the sum of the prices of a vanilla call with strike K

and maturity T , and e−δ(T−τ ) vanilla puts with strike e−(r−δ)(T−τ )K and maturity τ :

V ch = C(S, K , T ) + e−δ(T−τ )P(S, e−(r−δ)(T−τ )K , τ ) (18.17)

The required call and put values are easily calculated in a givenmodel. In aBlack-Scholes

setting, we can represent chooser values in closed-form by using the closed-forms for the

call and the put.

Figure 18.9 plots straddle and chooser values for various values of the current stock price

S. At low and high values of S (i.e., when the put or call moves deep into-the-money), the

difference between the two becomes small. It is maximal when the options are near-the-

money.

Hedging Choosers
The greek of the chooser is just the sum of the greeks on (a) a call with strike K and

maturity T , and (b) e−δ(T−τ ) puts with strike e−(r−δ)(T−τ )K and maturity τ . So, for instance,

the chooser delta in a Black-Scholes setting is just

N (d1) − e−δ(T−τ ) N (−d̂1) (18.18)
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FIGURE 18.9
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Figure 18.10 plots the chooser delta as the current stock price S varies. At low stock

prices, the chooser behaves much like a put, so the delta goes towards −1. At high stock

prices, the chooser behaves much like a call and the delta goes towards+1. The other greeks

are derived similarly.

FIGURE 18.10
Straddle and Chooser
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18.5 Compound Options

A compound option is simply an optionwritten on an option, i.e., one inwhich the underlying

asset is itself an option written on another asset. The strike price in a compound option is

the price at which the holder of the option may purchase or sell the underlying option. To

distinguish between the two options’ strike prices, the strike price of the compound option

is sometimes referred to as the “front fee” while that on the underlying option is the “back

fee.”

Since the compound can be a call or a put and the underlying option can be a call or a

put, there are four basic kinds of compound options: (i) a call option on a call option, (ii) a

call option on a put option, (iii) a put option on a call option, and (iv) a put option on a put

option.

Loosely speaking, compound options enable the holder to lock in a price for insurance

while postponing the decision on whether to obtain that insurance. Suppose, for example,

that an investor is debating whether to buy a put option to obtain protection against a

decrease in the price of XYZ stock. Suppose the investor finds current option prices high.

If the investor does not buy the put and the price of XYZ stock does in fact decline, then

the price of the put option will go up even further. That is, the very circumstances in which

insurance becomes more valuable to the investor are the ones in which insurance becomes

even more expensive.

To guard against this eventuality, the investor can buy a compound option, in this case,

a call on the put. By doing so, the investor locks in the price at which the put option may

be purchased if asset prices do decline and the put becomes more expensive. Of course,

there is no free lunch here; in particular, if asset prices do not decline sufficiently to make

exercising the compound option attractive, the amount paid as premium is lost.

Payoffs from Compound Options
Denote the strike and time to maturity of the underlying option by K and T , respectively,

and the strike price and time to maturity of the compound option by k and t , respectively.

Consider a call on a call first. At maturity t , the holder of this option has the right to buy

the underlying vanilla call at a price of k. So given a time-t stock price St , the payoff from

the call on call is

max{C(St , K , T − t) − k, 0}
Here,C(St , K , T − t) is the time-t value of the underlying vanilla call (which now has T − t

years left to maturity). The key variable determining whether each of these options finishes

in- or out-of-the-money is the time-t value of the stock price St . As St increases, the call

value C(St , K , T − t) also increases, so there is a critical value S∗t such that

C(St , K , T − t) < k, if St < S∗t
C(St , K , T − t) > k, if St ≥ S∗t

(18.21)

Thus, the payoff to the holder of the call-on-call compound is 
0, if St < S∗t

C(St , K , T − t) − k, if St ≥ S∗t

Similarly, the payoffs at maturity t from a put on a call is

max{k − C(St , K , T − t), 0} =
 
k − C(St , K , T − t), if St < S∗t

0, if St ≥ S∗t

The upper panels of Figure 18.11 describe the payoffs from these two options.
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FIGURE 18.11
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What about options on puts? The value P(St , K , T−t) of the vanilla put at t is decreasing

in St . Therefore, there is S∗∗t such that the put value exceeds k when and only when St < S∗∗t .

This means the payoffs of a call on a put and a put on a put can be expressed as, respectively,

max{P(St , K , T − t) − k, 0} =
 
P(St , K , T − t) − k, if St < S∗∗t

0, if St ≥ S∗∗t

max{k − P(St , K , T − t), 0} =
 

0, if St < S∗∗t
k − P(St , K , T − t), if St ≥ S∗∗t

The lower panels of Figure 18.11 describe these two payoffs.

Pricing Compound Options: A Binomial Example
Although closed-form expressions exist for compound options in a Black-Scholes setting,

the expressions are complex and not particularly informative. So, before describing these

closed-forms, we begin with a simple binomial example that better explains the mechanics

of the pricing process.

The compound option is taken to be a call on a put. The put is written on the stock

whose price process is described in Figure 18.1. The put is taken to be European and to

have a maturity of two periods and a strike of K = 100. The put price evolves as shown in

Figure 18.12.

Suppose that the compound option (the call on the put) has a strike of k = 4 and a

maturity of one period. That is, at the end of one period, the holder of the compound has

the right to buy the underlying put at a price of 4. At the end of one period, there are two

possibilities:

• The stock price has gone up to 110. In this case, the underlying put is worth only 0.39,

so the call on the put lapses unexercised.
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FIGURE 18.12
Put Price Evolution in

the Binomial Example
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FIGURE 18.13
Call on a Put in the

Binomial Example
0

4.04

Ccp
 ⫽ ?

• The stock price has gone down to 90. Now the underlying put is worth 8.04. It is optimal

to exercise the compound option. This results in a profit of (8.04− 4.00) = 4.04.

This information is summarized in Figure 18.13. The price Ccp of the compound option

(the superscript cp stands for call-on-put) is just the expected value of its payoffs under the

risk-neutral probability discounted at the risk-free rate. Since the risk-neutral probability of

an up move is 0.60, we have

Ccp = 1

R

 
pCcp

u + (1− p)C
cp
d

 = 1.58 (18.22)

Compounds as Installment Options
The example above provides a nice illustration of the flexibility a compound option provides.

The investor can buy the underlying put directly at the initial time point at a price of 3.38. The

compound offers the alternative of buying the same put on an “installment” plan. The

investor makes a smaller initial outlay of 1.58. Then, at the end of one period, the investor

can, if he wishes, make a further payment of 4 and take possession of the put.

Pricing Formulae for Compound Options
Rubinstein (1991a) showed that closed-form solutions can be obtained for the prices of

compound options in a Black-Scholes setting. Consider a call on a call first. As we have
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seen, at maturity t , given a stock price of St , the payoff from this option is

max{C(St , K , T − t) − k, 0}
Thus, letting E[·] denote expectation with respect to the risk-neutral distribution of the

time-t stock price St , the current (time-0) value of the call-on-call is

Ccc = e−r t E [max{C(St , K , T − t) − k, 0}] (18.23)

Defining S∗t as in (18.21), we can also write (18.23) as

Ccc = e−r t E
 
(C(St , K , T − t) − k) × ISt>S∗t

 
(18.24)

where ISt>S∗t is the indicator function that takes on the value 1 if St > S∗t , and is zero

otherwise. Rubinstein (1991a) shows that this expectation is

Ccc = e−δt S N2(x1, y1; ρ) − e−rT K N2(x2, y2; ρ) − e−r t k N (y2) (18.25)

where:

• S is the current price of the stock, δ its dividend yield, and σ its volatility.

• N (z) is, as usual, the cumulative standard normal distribution evaluated at z.

• N2(a, b; ξ ) is the area under a bivariate standard normal distribution covering the region

from −∞ to a and −∞ to b, with ξ denoting the correlation between the variables.

• x1, x2, y1, y2, and ρ are defined as follows:

x1 =
1

σ
√
T

 
ln

 
S

K

 
+

 
r − δ + 1

2
σ 2

 
T

 
(18.26)

x2 = x1 − σ
√
T (18.27)

y1 =
1

σ
√
t

 
ln

 
S

S∗t

 
+

 
r − δ + 1

2
σ 2

 
t

 
(18.28)

y2 = y1 − σ
√
t (18.29)

ρ =
 

t

T
(18.30)

In a similar way, the value of the other three compound options can be expressed in

closed-form. To simplify matters and permit the description of all four compound option

formulae at one go, define the variables η and φ by

η =
 +1, if the underlying option is a call

−1, if the underlying option is a put
(18.31)

φ =
 +1, if the compound is a call

−1, if the compound is a put
(18.32)

Then, the value of the general compound option may be written as

X = H1 − H2 − H3 (18.33)

where x1, x2, y1, y2, and ρ are defined as above, and

H1 = φηe−δT S N2(ηx1, φηy1;φρ) (18.34)

H2 = φηe−rT K N2(ηx2, φηy2;φρ) (18.35)

H3 = φe−r t k N (φηy2) (18.36)
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Allowing φ and η to each roam over its two possible values, we get pricing expressions

for all four basic compound options; (18.25) is then the special case corresponding to

η = φ = +1.

Hedging Compound Options: The Delta
While the instrument underlying a compound option is a vanilla option, the “real” driver

of compound option values is the stock on which the vanilla option is written. Compound

options are thus typically hedged directlywith the underlying stock. The delta of a compound

option measures the sensitivity of the compound’s value to changes in the price of the stock.

While closed-form expressions for the delta are messy to derive, the qualitative behavior

of the delta is not hard to describe. As Figure 18.11 shows:

• The payoffs from calls-on-calls and puts-on-puts increase as the stock price increases,

so both have positive deltas.

• The payoffs from calls-on-puts and puts-on-calls move inversely with the stock price, so

their deltas are negative.

A simple intuition underlies these signs. Consider a call on a call, for example. The

compound call increases in value when its underlying, the vanilla call, increases in value;

and the vanilla call increases in value when its underlying, the stock price, increases.

Thus, an increase in the stock price leads to an increase in the value of the call-on-call,

implying a positive delta. A similar argument can be used to explain the signs of the

other deltas.

Behavior of the Delta and the Compound Gamma
The behavior of the delta as S varies, and therefore of the gamma, exhibits interesting

properties. We illustrate with two cases.

For a call on a call, the delta behaves much like a vanilla call. As the stock price increases,

the underlying call moves “more” into-the-money, so becomes more sensitive to the stock

price. But as the vanilla call price increases, the call-on-call too moves “deeper” into-the-

money, so it becomes more sensitive to the vanilla call price. Combining these statements,

the call-on-call becomes more sensitive to the stock price as the stock price increases,

meaning its delta increases (so the gamma of a call-on-call is always positive). At very high

stock prices, this delta is close to+1 since both options are deep in-the-money and respond

almost one-for-one to their respective underlyings. At very low stock prices, the delta is

close to zero since both options are deep out-of-the-money and almost unresponsive to the

respective underlyings.

But for a put on a put, the delta is bell-shaped, first increasing as S increases, then

decreasing back towards zero. To see why, note that at very low values of S, the underlying

put is deep-in-the-money and so is near its maximum value. This means the compound

put is deep out-of-the-money and so not very responsive to changes in the price of its

underlying put. As a consequence, the delta of the compound is close to zero. As S increases,

the value of the underlying put falls, so the compound put moves more into-the-money

and becomes more responsive to changes in its underlying, decreasing as the value of

the underlying increases. This means the delta of the compound put with respect to S is

positive. But at very high levels of S, the underlying put is deep out-of-the-money and almost

unresponsive to S. Since the value of its underlying is unresponsive to S, the compound

too will be unresponsive to S, so its delta with respect to S again approaches zero. Finally,

from the behavior of the delta, it follows that the gamma of a put-on-put can be positive

or negative.
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18.6 Exchange Options

An exchange option involves two risky assets, for example, two stocks. It gives the holder

the right to exchange one of the assets (say, asset 2) for the other (asset 1) at the option’s

maturity. Obviously, the option will be exercised only if asset 1 is worth more than asset 2

at maturity. Thus, the payoff at maturity to the holder is given by

max
 
0, S

(1)
T − S

(2)
T

 
(18.37)

where S
(1)
t and S

(2)
t denote, respectively, the two assets’ time-t prices. Exchange options

are also referred to as “outperformance options” or as “spread options.”

Pricing Exchange Options
Exchange optionswere first considered inMargrabe (1978)who gave a closed-form formula

for such options in a Black-Scholes setting. Suppose that the asset returns are log-normally

distributed. Let S (1) , S (2) denote the current (time-0) prices of the two assets, σ1, σ2 their

volatilities, and δ1, δ2 their respective dividend yields. Finally, let ρ denote the correlation

of returns. Then the price of the exchange option at time 0 is given by

Vexch = e−δ1T S (1) N (d̃1) − e−δ2T S (2) N (d̃2) (18.38)

where d̃1 and d̃2 are defined by

d̃1 =
1

σ
√
T

 
ln

 
S (1)

S (2)

 
+

 
δ2 − δ1 +

1

2
σ 2

 
T

 
(18.39)

d̃2 = d̃1 − σ
√
T (18.40)

and σ is given by

σ 2 = σ 2
1 + σ 2

2 − 2ρσ1σ2 (18.41)

Some intuition for this pricing expression can be obtained by comparing it to the Black-

Scholes formula for a call. A call is also an exchange option, albeit a particularly simple

one: it gives us the right to exchange the strike price K for asset 1. The strike price may

be viewed as an asset that is always worth K . The yield on holding this asset is the risk-free

return r one can make from investing in it, and, of course, the asset has no volatility since

its “price” is always K . So if we set S (2) = K , δ2 = r , and σ2 = 0 in (18.38), we should

recover the Black-Scholes call price, and it is easy to check that we do. Thus, (18.38) is just

a generalization of the Black-Scholes formula.

Put a bit more formally, note that the payoff from the exchange option at maturity can

be written as

S
(2)
T max

 
S

(1)
T

S
(2)
T

− 1, 0

 
(18.42)

If we use the price of the second asset as a numeraire and express all payoffs and prices

in units of the second asset, then this payoff, normalized by the numeraire, is

max

 
S

(1)
T

S
(2)
T

− 1, 0

 
(18.43)

This is just a standard call option on the normalized asset S
(1)
t /S

(2)
t with a strike price of

1. If S
(1)
t /S

(2)
t follows a geometric Brownian motion with constant volatility σ , then we
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can price this option using the standard Black-Scholes formula. Note that in this process,

the risk-free rate will be the dividend yield δ2 on the numeraire asset while δ1 remains the

dividend rate on the normalized asset S
(1)
t /S

(2)
t . Multiplying this Black-Scholes price by

the time-0 price S (2) of the numeraire asset then provides us with the time-0 price of the

exchange option. The result is exactly the formula (18.38).

One final point is worth noting. As the preceding argument shows, all that is really needed

for the Margrabe exchange option formula to hold is that S
(1)
t /S

(2)
t follow a geometric

Brownian motion with constant volatility σ . This is implied by the assumptions we have

made (viz., that S
(1)
t and S

(2)
t each individually follow geometric Brownian motions with

constant volatilities σ1 and σ2, etc.), but these assumptions are stronger than required.

Hedging Exchange Options
Since an exchange option’s payoffs depend on the prices S (1) and S (2) of two risky assets,

hedging it involves hedging two risks, those of changes in either price. That is, there are

two deltas: the delta  (1) with respect to asset 1 and the delta  (2) with respect to asset 2.

In a Black-Scholes setting, these deltas are

 (1) = e−δ1T N (d̃1) (18.44)

 (2) = −e−δ2T N (d̃2) (18.45)

In words, to hedge a short position in an exchange option, we take a long position in

e−δ1T N (d̃1) units of asset 1 and a short position in e−δ2T N (d̃2) units of asset 2.

Expressions (18.44) and (18.45) actually identify the entire replicating portfolio for an

exchange option. That is, the replication of an exchange option requires holding only  (1)

units of asset 1 and (2) units of asset 2. No holding in cash is required. This should not be

surprising. As we have pointed out above, asset 2 plays the role of the strike price here, so

the position in asset 2 is the analog of the cash holding.

Euler’s Theorem and the Replicating Portfolio
We sketch the arguments here for why the replicating portfolio for an exchange option

consists only of positions in the two assets. Suppose the replicating portfolio consists of

 (1) units of asset 1,  (2) units of asset 2, and B in cash. Then, the value of the option can

be written as

Vexch = [ (1) × S (1)]+ [ (2) × S (2)]+ B (18.46)

Now examine again the exchange option payoff (18.37). If we multiply the price of both

asset 1 and asset 2 by a constant m, the payoff from the exchange option becomes m times

the payoff from the original option:

max
 
0, mS

(1)
T − mS

(2)
T

 = m ×max
 
0, S

(1)
T − S

(2)
T

 
(18.47)

Thismeans that exchangeoptionpayoffs arehomogeneousof degree1 in (S (1) , S (2)).A result

in mathematics known as Euler’s Theorem states that if a function f (y, z) is homogeneous

of degree 1 in (y, z), then the following equality must hold:

f (y, z) =
 
y × ∂ f

∂y
(y, z)

 
+

 
z × ∂ f

∂z
(y, z)

 
(18.48)

Therefore, the price V exch of the exchange option must satisfy

Vexch =
 
S (1) × ∂V

exch

∂S (1)

 
+

 
S (2) × ∂V

exch

∂S (2)

 
(18.49)
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The term ∂V exch/∂S(i) measures the sensitivity of option value to changes in the price of

asset i . This is just the option’s delta with respect to the i-th asset. So we can write (18.49)

in simpler form as

Vexch = [S (1) × (1)]+ [S (2) × (2)] (18.50)

Comparing (18.46) and (18.50) indicates that we must have B = 0 in the replicating

portfolio, while comparing (18.38) and (18.50) suggests that the deltas do have the forms

(18.44) and (18.45).

18.7 Quanto Options

Quanto options are cross-currency options in which the option is written on a security that

trades in one currency but the payoff is translated into a different currency in a prespecified

manner. To motivate these options, consider an example.

Suppose a US-based investor wishes to buy a call option on a French company whose

shares trade in Paris in euros. Then, since the option trades in euros, the investor must bear

currency risk at the end of the transaction: if the call finishes in-the-money, the profit from

the call is realized in euros and must be converted back to US dollars at the then-prevailing

exchange rate. If the investor does not want to bear this exchange-rate risk, she can buy

an option in which the euros are converted back into US dollars at a fixed, prespecified

exchange rate. Such an option is a quanto.

To put this in general notational terms, suppose, for specificity, that the US dollar (USD)

is the local currency. We use a superscript f to denote a quantity in the foreign currency.

Let S f denote the price of a foreign security and K f the strike price of an option on that

security. For specificity, suppose the option is a call. Then, the payoff from the option at

maturity (in units of the foreign currency) is

max
 
0, S

f
T − K f

 
(18.51)

If ζ denotes some arbitrary fixed rate for converting the payoffs from the foreign currency

into USD, the payoff received in USD by the holder of a quanto is

ζ ×max
 
0, S

f
T − K f

 
(18.52)

In general, the fixed rate ζ at which cash flows are converted back into the domestic currency

need not have any relationship to the actual exchange rate.

The NYSE Arca Japan Index Option traded on the erstwhile American Stock Exchange

(now part of NYSE Euronext) is an example of a quanto. The index underlying the contract

is constructed using 210 stocks traded on the Tokyo Stock Exchange. The index value is

computed using the yen prices of the respective stocks. At maturity, the holder of this option

receives $100 times the depth-in-the-money of the option. For example, if the strike price

is 110 and the index closes at 114 on the last trading day, the holder of a call receives

$(100× 4) = $400.

Pricing Quantos
The pricing of quantos is discussed in James (2003). Here is one way to think about how

one might approach the problem of pricing quantos. Suppose Xt denotes the time-t price

of USD 1 in the foreign currency. Then, consider the quantity

XT × ζ max
 
0, S

f
T − K f

 
(18.53)
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This is just the payoff from the quanto converted back into the foreign currency. We can

rewrite this quantity as

ζ max
 
0, XT S

f
T − XT K

f
 

(18.54)

If we define AT = XT S
f
T and BT = XT K

f , we obtain

ζ max{0, AT − BT } (18.55)

This is just ζ units of Margrabe’s exchange option: the option to exchange BT for AT ! So

we can apply the exchange-option pricing formula (18.38) to obtain the fair price of the

quanto. Of course, this fair price will be in the foreign currency; we must convert it into

USD using the current exchange rate.2

If we take XT and S
f
T to have lognormally-distributed returns, so does AT , their product.

We have

ln AT = ln
 
XT S

f
T

 = ln XT + ln S
f
T

so, if ln XT and ln S
f
T are normal, so is ln AT . Thus, technically, the problem can be put into

Margrabe’s exchange-option setting. The resulting price of the quanto option is

Vquanto = [e−δAT A0 N ( A) − e−δBT B0 N ( B)]× ζ (18.56)

where

 A =
1

σ
√
T

 
ln

 
A0

B0

 
+

 
δB − δA +

1

2
σ 2

 
T

 

 B =  A − σ
√
T

σ 2 = σ 2
A + σ 2

B − 2ρ(A, B)σAσB

δA = δ f + r − r f − ρ(S f , X )σS f σX

δB = r

The price (18.56) is in the foreign currency since the payoffs (18.55) are in that currency.

To find the USD price of the quanto, we must divide through by the time-0 exchange rate

X0.

This pricing expression can be simplified. Observe that

At

Bt

= Xt S
f
t

Xt K f
= St

K f

This means also that σ , which is the volatility of A/B, is just σS f , the volatility of the

underlying security. Using these simplifications, we obtain

Vquanto = X0

 
e−δAT S f

0 N ( 1) − e−rT K f N ( 2)
 × ζ (18.57)

2 Note that AT and BT are not themselves prices. AT , for example, is the product of two prices: the

price of USD 1 in the foreign currency multiplied by the price of the underlying security in the

foreign currency.
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where δA is as defined above and

 1 =
1

σS f

√
T

 
ln

 
S

f
0

K

 
+ [r f − δ f + ρ(S f , X )σS f σX +

1

2
σ 2
S f ] T

 

 2 =  1 − σS f

√
T

The price (18.57) is in units of the foreign currency. To obtain the price in USD, simply

divide through by X0 to obtain

USD Vquanto =  
e−δAT S f

0 N ( 1) − e−rT K N ( 2)
 × ζ (18.58)

18.8 Variants on the Exchange Option Theme

There are several exotic options that are variants on the exchange options considered by

Margrabe (1978). These include options paying the maximum or minimum of two assets

(considered by Stulz, 1982) and rainbow options (considered by Rubinstein, 1991c), among

others. We consider several of these variants in this section and present pricing formulae for

them. The usual assumption of lognormally distributed returns is maintained throughout.

Variation 1: Maximum of Two Assets
Consider an option whose time-T payoff is max{S (1)

T , S
(2)
T }. Such an option was considered

by Stulz (1982). The payoff from the option can be re-expressed as

max
 
S

(1)
T , S

(2)
T

 = S
(2)
T +max

 
S

(1)
T − S

(2)
T , 0

 
(18.59)

Thus, the maximum-of-two-assets option is equivalent to holding an exchange option and

receiving the value of asset 2 at time T . The current (time-0) price of the option is just the

sum of the prices of these components. To describe the pricing formula, we use the notation

of Section 18.6.

The first term S
(2)
T in (18.59) has a time-0 present value of e−δ2T S (2) . Intuitively, if we

buy e−δ2T units of asset 2 at time 0 and reinvest all the dividends, our holding of asset 2 will

grow at the rate δ2 so that we have exactly one unit at date T . The second term’s present

value is the expression (18.38) for the price of an exchange option. Combining these terms,

the time-0 price of the maximum-of-two-assets option is

Vmax = e−δ2T S (2) + [e−δ1T S (1) N (d̃1) − e−δ2T S (2) N (d̃2)] (18.60)

Using the relationship N (x) + N (−x) = 1 for any x , this may be rewritten as

Vmax = e−δ1T S (1) N (d̃1) + e−δ2T S (2) N (−d̃2) (18.61)

It is also possible to express (18.61) in a more aesthetically-pleasing “symmetric” form.

Define the term  i, j by

 i, j =
1

σ
√
T

 
ln

 
S(i)

S( j)

 
+

 
δ j − δi +

1

2
σ 2

 
T

 
(18.62)

A simple check shows that d̃1 =  1,2 and −d̃2 =  2,1. So we may write

Vmax = e−δ1T S (1) N ( 1,2) + e−δ2T S (2) N ( 2,1) (18.63)
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Variation 2: Minimum of Two Assets
What if the option paid theminimum of S

(1)
T and S

(2)
T ? (This case is also considered in Stulz,

1982). The payoff from this option can be rewritten in terms of the maximum-of-two-assets

option:

min
 
S

(1)
T , S

(2)
T

 = S
(1)
T + S

(2)
T −max

 
S

(1)
T , S

(2)
T

 
(18.64)

The time-0 present values of the first two terms in (18.64) are e−δ1T S (1) and e−δ2T S (2) ,

respectively, while that of the last is Vmax as given in (18.63). So we have

Vmin = e−δ1T S (1) + e−δ2T S (2) − Vmax (18.65)

Variation 3: Maximum of Two Assets and Cash
A more interesting and complex variation is the maximum of two assets and cash: the option

holder receives the payoff

max
 
S

(1)
T , S

(2)
T , K

 
(18.66)

where K is a fixed amount of money. The current (time-0) price of the option is the present

value of its time-T payoffs:

Vmax-or-cash = PV
 
S

(1)
T

  S (1)
T ≥ S

(2)
T , S

(1)
T ≥ K

 
+ PV

 
S

(2)
T

  S (2)
T > S

(1)
T , S

(2)
T > K

 
+ PV

 
K

  K > S
(1)
T , K > S

(2)
T

 (18.67)

To express this in closed-form, define σ and i, j as in (18.41) and (18.62), respectively.

Let  1,  2, ρ1, and ρ2 be given by

 1 =
1

σ1

√
T

 
ln

 
S (1)

K

 
+

 
r − δ1 +

1

2
σ 2

1

 
T

 
(18.68)

 2 =
1

σ2

√
T

 
ln

 
S (2)

K

 
+

 
r − δ2 +

1

2
σ 2

2

 
T

 
(18.69)

ρ1 =
ρσ2 − σ1

σ
ρ2 =

ρσ1 − σ2

σ
(18.70)

Finally, let N2(x , y; ξ ) denote the area under a standard bivariate normal with correlation

ξ covering the region between−∞ and x , and−∞ and y. Then, the value of the maximum-

or-cash option is

Vmax-or-cash = e−δ1T S (1)[N ( 1,2) − N2(− 1,  1,2; ρ1)]

+ e−δ2T S (2)[N ( 2,1) − N2(− 2,  2,1; ρ2)]

+ e−rT K N2(− 1 + σ1

√
T , − 2 + σ2

√
T ; ρ)

(18.71)

Variation 4: Options on the Maximum or Minimum
Suppose we have an option that gives us the right to purchase either of two assets at T for

a strike of K . The time-T payoff of this option is

max
 
0, max

 
S

(1)
T , S

(2)
T

 − K
 

(18.72)
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This is one version of a rainbow option and was first studied in Rubinstein (1991b). By

adding and subtracting K , the payoff (18.72) can be rewritten as

max
 
S

(1)
T , S

(2)
T , K

 − K (18.73)

Thus, the value of this option, denoted Vmax call, is given by

Vmax call = Vmax-or-cash − e−rT K (18.74)

where Vmax-or-cash is given by (18.71).

While rainbow call options as defined above are the most common types of rainbow

options in practice, we can also find the prices of other rainbow options from this result. The

price of a put on themaximumof two options can be found from the call price (18.74) using a

variant of put-call parity. Let P(max(S
(1)
T , S

(2)
T )) and C(max(S

(1)
T , S

(2)
T )) denote the payoffs

at T from a put and call, respectively, on the maximum of two assets. A straightforward

computation verifies that

P
 
max

 
S

(1)
T , S

(2)
T

  +max
 
S

(1)
T , S

(2)
T

 = C
 
max

 
S

(1)
T , S

(2)
T

  + K (18.75)

Substituting for the value of the call from (18.74) and rearranging,

Vmax put = Vmax call − Vmax (18.76)

where Vmax is given by (18.63).

Finally, calls and puts on the minimum of two prices can also be computed using the

above expressions using the following relationships (the termsC(S (1)), P(S (1)), etc., below

refer to vanilla calls and puts on the underlying asset):
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(18.78)

Variation 5: Maximum of Three Assets
An obvious extension of the earlier case is where the option pays the maximum of three

assets: the option’s payoff at time T is

max
 
S

(1)
T , S

(2)
T , S

(3)
T

 
(18.79)

The current (time-0) value of this option, denoted say V 3−max, is the present value of

its time-T payoffs:

V 3−max = PV
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 (18.80)

This can be expressed in closed-form. Some notation first. Define

σ 2
i, j = σ 2
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j − 2 ρi jσiσ j

 i, j =
1

σi, j
√
T

 
ln

 
S(i)

S( j)

 
+

 
δ j − δi +

1

2
σ 2
i, j

 
T

 

ρi, j,k =
1

σi,kσ j,k

 
σiσ jρi j − σiσkρik − σ jσkρ jk + σ 2

k

 



Chapter 18 Exotic Options I: Path-Independent Options 465

Finally, let N2(x , y, ρ) denote the area under a bivariate standard normal distribution

with correlation ρ covering the region between−∞ and x , and−∞ and y. Then, the value

(18.80) of the option is

V 3−max = S (1)N2( 1,2,  1,3, ρ2,3,1) + S (2)N2( 2,1,  2,3, ρ1,3,2)

+ S(3)N2( 3,1,  3,2, ρ1,2,3)
(18.81)

18.9 Exercises 1. What is the sign of the delta of a call option on a put option? Why? What about a put

on a call?

2. Why does a call on a put cost less than the put?

3. Find theprice of a binary cash-or-nothingput option in abinomial treewith the following

parameters: S = 100, u = 1.10, d = 0.90, R = 1.02, and K = 100. Assume that the

binary pays a flat amount of $10 if ST ≤ 100, and nothing otherwise.

4. Consider a digital call option, i.e., one that pays a dollar if at maturity the stock price

ST is greater than the strike K .

(a) What is the sign of the delta of this option?

(b) When will the delta of this option be the highest?

5. You are given a three-period binomial tree with the following parameters: S = 100,

R = 1.02, u = 1.10, and d = 0.90. Consider a claim whose payoff at maturity is given

by Smax− Smin where Smax and Smin are, respectively, the highest and lowest stock prices

observed during the option’s life (including the initial price of S = 100). What is the

initial price of this claim?

6. Are ordinary American-style options path-independent?

7. Consider a stock with current price S = 50 whose price process can be represented

by a binomial tree with parameters u = 1.221 and d = 0.819. Suppose the per-period

gross interest rate is R = 1.005.

(a) Find the value of a two-period European put option with a strike of K = 50.

(b) Using backwards induction on the tree, find the value of a forward start put option

that comes to life in one period, is European, has a further life of two periods, and

will be at-the-money when it comes to life.

(c) Verify that your answers to parts (a) and (b) coincide.

(d) Suppose the puts had been American. What are the answers to parts (a) and (b)?

Do they still coincide?

8. Consider a stock currently trading at S = 80 whose price evolution can be represented

by a binomial tree with parameters u = 1.226 and d = 0.815. Suppose the per-period

gross rate of interest is R = 1.005.

(a) Price a one-period call option on the tree with a strike of K = 76.

(b) Using backwards induction, find the price of a forward start call option that comes

to life in one period, has a further life of one period, and has a strike equal to 95% of

the stock price when it comes to life. Verify that it is the same as your answer to (a).

(c) Find the initial delta of the forward start.

(d) Now assume that the initial stock price is S = 1. Assuming the same parameters

for the binomial tree, find the price of a one-period call with strike K = 0.95. How

does this price compare to the delta you identified in part (c)? Why?
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9. This question deals with a Sprint-like repricing situation (see Section 18.2 for details of

the Sprint scheme). Assume that the current stock price is S = 24, the volatility of the

stock price is 45%, and the risk-free rate is 4%. Use the Black-Scholes model to answer

the following questions.

(a) Consider an option with a strike price of K = 32 and six years left to maturity.

Ignoring dividends, would you trade it in for a forward start call specified as in

Sprint’s scheme?

(b) What if the option had only one year to maturity?

10. A stock is currently trading at $24. Assume that its volatility is 35% and the term-

structure of interest rates is flat at 6%.

(a) What is the price of a forward start call option with T ∗ = 1 year, τ = 1 year, and

α = 1.10? Note that T ∗ is maturity of the forward start period, and τ is the maturity

of the option once started. Also, α is the strike multiplier, i.e., strike K = α ST ∗ .

(b) What is the delta of this option?

11. Consider the binomial tree of Figure 18.14. Suppose that the per-period interest rate is

R = 1.02.

(a) Show that the price of a call on a put in this model with a strike of k = 4 and a

maturity of one period is 1.58.

(b) Show that the delta of the call on the put in the binomial example is −0.202. (Use

the usual formula for a binomial delta.)

(c) Verify that a position consisting of a short position in the option and a short position

in 0.202 units of the stock is perfectly riskless over the compound option’s one-period

life.
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FIGURE 18.14 Stock Price Tree for Binomial Illustrations

12. Describe a put-call parity relationship for compound options, i.e., one that connects

calls-on-calls to puts-on-calls (or calls-on-puts to puts-on-puts).

13. Consider a stock currently trading at $45. Suppose its price evolution can be represented

by a binomial tree with u = 1.05 and d = 0.95. The riskless rate per period is R = 1.01.

Calculate the following:

(a) The price of a two-period European call option with K = 43.

(b) The price of a one-period call on the two-period call with a strike of K = 2.
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(c) The price of a one-period put on the two-period call with a strike of K = 0.50.

(d) The price of a forward start option beginning in one period with a further life of one

period that will be at-the-money when it starts.

14. Consider a two-period cash-or-nothing binary option in the binomial example of Fig-

ure 18.14with K = 90 and M = 10.Assume that the per-period interest rate is R = 1.02.

(a) Show that the initial value of the option is CC-or-N = 8.07.

(b) What is the value of an asset-or-nothing option in this case?

(c) What is the value of a vanilla option? Verify that the following equation holds.

CA-or-N − K

M
CC-or-N = C

15. Consider a cash-or-nothing option in the binomial tree setting of Figure 18.14 with

K = 90 and M = 10. Let  b denote the initial delta of the option,  b
u the delta follow-

ing an up move in the stock price, and  b
d the delta following a down move. Show that

 b
u <  

b even though the option has moved into-the-money.

16. Let CC-or-N denote a cash-or-nothing option that pays M if ST ≥ K . Let PC-or-N be

a “put” version of this cash-or-nothing option, i.e., it pays M if ST < K and nothing

otherwise. What is the relation between the prices of these two options?

17. Consider two-period European options with a strike of 100 in the binomial model of

Figure 18.14. Assume the per-period interest rate is R = 1.02.

(a) Find the value of a straddle in this model.

(b) Find the value of a chooser where the holder must decide between the call and put

at the end of one period.

(c) Why is the difference in values between the straddle and chooser so small?

(d) What are the deltas of the straddle and the chooser?

18. Price a chooser option using the Black-Scholes formula with the following inputs:

S = 100, K = 100, the maturity at which the option holder has to opt for a call or

a put is τ = 1 year, the final maturity of the option is T = 2 years, risk-free rate

r = 0.10, and dividends δ = 0.03.

19. Using the same input values as in the previous question, compute the value of the

straddle. Compare the price of the straddle with that of the chooser. Which is greater?

Why?

20. You are asked to price a quanto option on the DAX index. The DAX is currently trading

at a value of 5000. Price a one-year maturity ATM option on one unit of the DAX given

that the current exchange rate is $0.8/€. The volatility of the DAX is 50%, and that of

the exchange rate is 20%. The correlation between the DAX return and exchange rate is

+0.25. The US risk-free rate is 1%, and the euro interest rate is 2%. Dividends on the

DAX are 1%.

21. Using the same parameters as in the previous question, price the quanto when the cor-

relation between the DAX stock index and the $/€ exchange rate is −0.25 instead of

+0.25. What happens to the price of the quanto? Explain.

22. Consider an option that pays the holder the amount

max{(ST − K )2, 0} (18.82)

at maturity where ST is the terminal price of the stock and K the option’s strike price.

Such an option is one example of a power option. Consider a binomial tree with initial
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stock price S = 60 and parameters u = 1.20 and d = 0.833. Suppose the per-period

gross rate of interest is r = 1.01. Value a power option of the form (18.82) that has a

maturity of two periods and a strike of K = 70.

23. Another example of a power option is one that pays the amount

max{S2
T − K 2, 0} (18.83)

(a) Show that the payoffs of this option may be written in terms of (18.82) and a vanilla

call with strike K . [Hint: Expand the term (ST − K )2 and rearrange.]

(b) Price the option (18.83) using the same binomial tree as in Question 23.

24. Consider a Black-Scholes setting with volatility σ and dividend yield q. Show that a

closed-form expression for the price of a power option of the form (18.83) is obtained

simply by using the Black-Scholes vanilla call option formula with

(a) A strike of K 2.

(b) A volatility of 2σ .

(c) A dividend yield of 2q − (r + σ 2).

25. This question generalizes Question 24. Consider a power option with payoff

max{S αT − M, 0} (18.84)

If we take α = 2 and M = K 2, this is (18.83). Consider a Black-Scholes setting with

volatility σ and dividend yield q. Show that the closed-form solution for this option’s

price is the vanilla call price with

(a) A strike of M .

(b) A volatility of ασ .

(c) A dividend yield of αq − (α − 1)(r + 1
2
ασ 2).

26. A corridor option is one that pays a fixed sum M if the price at maturity lies between

two specified levels K1 and K2 but nothing otherwise. Consider a two-period binomial

tree with parameters u = 1.10 and d = 0.91. Suppose the initial stock price is S = 100

and r = 1.01.

(a) Find the initial value and the value at all points on the tree of a corridor option

that pays M = 10 if the price lies between K1 = 90 and K2 = 110 (both prices

inclusive), and nothing otherwise.

(b) Find the deltas of the corridor option at all points in the tree. Intuitively, why is the

delta positive in parts of the tree and negative in others?

27. Find a closed-formexpression for the price of a corridor option in aBlack-Scholes setting.

[Hint: Show that a corridor is just a combination of two binary cash-or-nothing options.]

28. Given the following parameters, price a gap call option: S = 100, K = 100, T = 1,

σ = 0.3, r = 0.10, and M = 90. Dividends are δ = 0.02. Remember, K is the strike of

the asset-or-nothing call, and M is the strike of the cash-or-nothing call option.

29. Let the following Black-Scholes parameters be given: S = 100, K = 100, T = 1,

σ = 0.3, r = 0.10, and δ = 0.02. Consider a pay-later option (see Section 18.3 for the

definition of the option). Find the strike M of the cash-or-nothing call. Remember, K is

the strike of the asset-or-nothing call.

30. Consider a Margrabe exchange option. Suppose the initial prices of the two stocks are

S1 = S2 = 100 and σ1 = 0.40. Suppose also that the returns on the stocks are uncorre-

lated. Assume no dividends.
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(a) Using the closed-form expressions for the price of these options, identify the price

of the exchange option when σ2 = 0, σ2 = 0.20, σ2 = 0.40, and σ2 = 0.60.

(b) Is there a trend in the price? Intuitively, why is this the case?

31. What is the value of a one-year option on the maximum of two assets when both assets

are trading at $100 each, their volatilities are 50% and 40%, and the correlation between

their returns is +0.30? Both assets pay no dividends.

32. What is the value of a one-year option on the maximum of two assets when both assets

are trading at $100 each, their volatilities are 50% and 40%, and the correlation between

their returns is−0.30? Both assets pay no dividends. Compare the value against the case

where the correlation is positive +0.3. Explain your result intuitively.

33. What is the value of a one-year option on the minimum of two assets when both assets

are trading at $100 each, their volatilities are 50% and 40%, and the correlation between

their returns is +0.30? Both assets pay no dividends.



Chapter 19
Exotic Options II:
Path-Dependent
Options

19.1 Path-Dependent Exotic Options

Building on the foundations laid in the last chapter, this chapter looks at the class of path-

dependent exotic options. These are options whose payoffs upon exercise depend not only

on the price of the underlying at that point but also on some or all of the entire path of prices

leading to that terminal price.

In general, path dependence makes both the pricing and hedging of exotics more complex.

Pricing becomes computationally more involved because we have to treat each path of prices

separately even if they lead to the same end price. Hedging is complicated by the fact that

the delta measures only the sensitivity of option value to changes in the current price of

the stock (since we can only hedge with stock purchased at the current price), whereas the

option payoffs may depend on past prices as well.

Once again, we use the Black-Scholes setting to describe closed-form solutions where

these are available, and the binomial setting to illustrate the mechanics of pricing when they

are not. Pricing in the binomial framework will be illustrated using the two-period example

of Figure 18.1, which is reproduced here as Figure 19.1 for convenience. We examine five

classes of path-dependent exotics in this chapter: barriers, Asians, lookbacks, cliquets, and

shouts.

19.2 Barrier Options

Barrier options are among the most important of all classes of exotic options. In a nutshell,

they are options that either cease to exist (“knock-out” options) or come to life (“knock-in”

options) when the asset price breaches a prespecified barrier level during the life of the

option.

For example, a knock-out put option with barrier H is a put option that gets knocked out

(i.e., ceases to exist) if the stock price crosses the level H during the option’s life. If the

barrier is not breached at any point during the option’s life, the option payoff is the same as

470
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FIGURE 19.1
Stock Price Tree for

Binomial Illustrations
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that from a vanilla put. Thus, given a strike K and maturity T , its payoff at maturity is 
0, if the stock price crosses H before date T

max{K − ST , 0}, if the stock price does not cross H before date T

As a second example, a knock-in call option with barrier H is a call option that comes

to life only if the asset price crosses the barrier H at some point before the expiry of the

option. If the barrier is never breached, the option expires worthless. The payoff from the

option at maturity T is, therefore, 
0, if the stock price does not cross H before date T

max{ST − K , 0}, if the stock price crosses H before date T

As a general matter of classification, we distinguish between barrier options on whether

they are knock-out or knock-in (“out-versus-in” options), and whether the barrier lies above

or below the initial stock price (“up-versus-down” options). Thus, there are four basic kinds

of barrier options:

• up-and-out options, where the barrier lies above the stock price and the option gets

knocked out if the barrier is breached.

• up-and-in options, where the barrier lies above the stock price and the option gets knocked

in only if the barrier is breached.

• down-and-out options, where the barrier lies below the stock price and the option gets

knocked out if the barrier is breached.

• down-and-in options, where the barrier lies below the stock price and the option gets

knocked in only if the barrier is breached.

Each of these catgories can be further broken down into whether the concerned option is a

call or a put (it could even be a binary or other exotic option).

Barrier options may also involve a rebate paid by the seller to the option holder if the

barrier is breached. Rebates are associated with knock-out options and are effectively a

consolation prize in the event of the knock-out. The rebate may be paid either at the time

of knock-out or at maturity. Of course, the possibility and size of the rebate payment will

be reflected in the original barrier price. Knock-outs trade more often without rebates than

with rebates. We focus on barriers without rebates in the rest of this section.
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Knock-ins, Knock-outs, and Vanillas: The Connection
There is a simple relationship between knock-in and knock-out options that are otherwise

identical (same barrier H , strike K , maturity T ): the sum of their prices must be equal to a

vanilla option with that strike and maturity.

Knock-out(H, K , T ) + Knock-in(H, K , T ) = Vanilla(K , T ) (19.1)

To see why, consider an otherwise identical knock-out and knock-in option. If the barrier

is never breached before maturity, then the knock-out pays off like a vanilla option, but

the knock-in pays nothing. If the barrier is breached at some point before maturity, the

knock-out pays nothing, but the knock-in pays off like a vanilla option. So, in either case,

holding a knock-out and a knock-in together is equivalent to just holding the vanilla option.

Why Barrier Options?
A barrier option is, inter alia, an implicit bet that the barrier will (for a knock-in) or will

not (for a knock-out) be breached during the life of the option. Assuming a zero rebate, the

option pays off the same as a vanilla option under some circumstances but has a zero payoff

under others, so it must cost less than its vanilla counterpart.

As such, barrier options offer a cheaper way of taking a directional bet than vanilla

options. Consider, for example, a currency trader who expects the US dollar (USD) to

rise against the euro (EUR). One way for her to speculate on these beliefs is to buy a

USD call/EUR put. But if she is very confident about direction, she could lower her costs

by buying a knock-out barrier option that ceases to exist if the dollar depreciates more than

a certain amount against the euro.

Alternatively, consider an investor who is bullish about a stock. The investor can buy a

call to bet on this belief. If the investor is further confident that the stock will not appreciate

more than a given amount, he can lower his costs by buying an up-and-out call that gets

knocked out if the stock price appreciates beyond a point.

Pricing Barrier Options: A Binomial Example
While closed-form expressions exist for barrier options in a Black-Scholes setting, it helps

to go through a binomial example to get a feel for the mechanics of the pricing process. So

consider the two-period tree of Figure 19.1. Suppose we want to price an up-and-out put

option in this setting with a strike price of K = 100 and a barrier of H = 105.

As Figure 19.2 shows, the price breaches the barrier in the two-period model only if it

moves up in the first period. In all other circumstances, the barrier is not touched over the

two-period horizon. Path-dependence in the tree is reflected in the fact that a terminal stock

price of udS = 99 results in a zero payoff if the stock price went up and then came down,

but in a payoff of +1 if the price went down first and then up.

In pricing a barrier option on the tree, we have to treat each price path separately and

check whether the barrier is breached or not. If the barrier is not breached, we identify the

payoffs from the option in the usual way. This results in the payoffs shown in Figure 19.3.

Once we have identified the barrier’s payoffs from each path, we can use the risk-neutral

probabilities to price the option. In this particular example, recall that the risk-neutral

probability of an up move is p = 0.60, and the risk-free rate per period is r = 1.02.

Working directly with the end-of-tree payoffs, this means the initial value of the option is

Pknock-out = 1

(1.02)2
[(0.36)(0) + (0.24)(0) + (0.24)(1) + (0.16)(19)]

= 3.15 (19.2)
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FIGURE 19.2
Binomial Stock Price

Tree with Barrier
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FIGURE 19.3
Barrier Option Payoffs

in Binomial Tree
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As expected, this value is smaller than the price of the corresponding vanilla put, which is

3.38.

Barrier Option Pricing Formulae
Reiner and Rubinstein (1991) derive closed-form expressions for barrier options in a Black-

Scholes setting. To describe these formulae, we use the notation described in the last chapter

(see Table 18.1). As above, we denote the barrier by H . Finally, given S and K (and values

for the other parameters), denote the Black-Scholes prices of a vanilla call and put by

CBS(S, K ) and PBS(S, K ).

The expressions for two barrier options—down-and-in calls and down-and-out calls for

the case where the barrier H lies at or below the strike K—have relatively simple forms. We

present them here. The others have more complex forms and are described in Appendix 19A.

Define γ and a by

γ = 2r

σ 2
(19.3)

a =
 
H

S

 γ−1

(19.4)
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FIGURE 19.4
Down Calls when
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Then we have the following pricing expressions (note that they sum to the vanilla call,

as required):

1. Down-and-out call when H ≤ K :

V = CBS(S, K ) − a CBS

 
H 2

S
, K

 
2. Down-and-in call when H ≤ K :

V = a CBS

 
H 2

S
, K

 
Figure 19.4 plots “down” call option prices for the case H < K as the current stock

price S varies. Only values S ≥ H are considered since these would not be “down” options

for S < H . As S increases, the value of a down-and-in option decreases to zero since the

probability of the stock price hitting the barrier declines; but the value of a down-and-out

call increases towards the vanilla call since the likelihood of the option getting knocked out

goes to zero as S increases.

Figure 19.5 similarly plots “up” put options for the case H > K using the formulae

presented in Appendix 19A. Only values S ≤ H are considered since these are “up”

options. As the stock price decreases, the value of the up-and-in put goes to zero since the

likelihood of the option coming to life becomes small, but the value of the up-and-out put

becomes correspondingly large, converging towards the price of the vanilla put.

Barrier Options and Volatility
Barrier options have one peculiarity not shared by vanilla options (or, indeed, by even most

other exotic options). For a vanilla option, an increase in volatility is unambiguously a good

thing. For a knock-out option, an increase in volatility is a mixed blessing. On the one hand, it

increases upside payoffs at maturity if the option is not knocked out. On the other, by making

prices more disperse, it also increases the probability of the option getting knocked out.
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FIGURE 19.5
Up Put Values when

H > K
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TABLE 19.1
Barrier Options and

Volatility

Volatility Black-Scholes Value Knock-Out Value Knock-In Value

0.10 6.81 5.69 1.12
0.20 10.45 5.63 4.82
0.30 14.23 5.50 8.73
0.40 18.02 5.40 12.62
0.50 21.79 5.33 16.46

Thus, an increase in volatility may actually lower the value of a knock-out option, that

is, the option may have negative vega. Put differently, a long knock-out position may be a

short volatility position.

For a numerical example, consider a down-and-out call option with S = K = 100 and

barrier H = 95. Let the maturity be T = 1 year and the interest rate be r = 0.05. Using

the formulae for the prices, we can calculate the reaction of vanilla and knock-out option

values to changes in volatility. Table 19.1 presents option values as volatility changes for

these parameters. Figure 19.6 presents this information in a picture.

On the other hand, knock-in options benefit doubly from increases in volatility. An

increase in volatility increases the likelihood of the option getting knocked in, and, of

course, a higher level of volatility is a good thing once the option is knocked in. The

numbers in Table 19.1 confirm this: proportional to their initial value, knock-in options

gain more from an increase in volatility than do even vanilla options.

Comments on Barrier Option Pricing
The pricing of barrier options is not quite as straightforward as suggested by either the

binomial example or the closed-form solutions for barrier option prices. There are subtle

problems that arise in each case.
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FIGURE 19.6
Barrier Options and

Volatility
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Consider the closed-forms first. The Black-Scholes model presumes continuous price

movements, so the barrier may be breached at any time. In practice, however, intraday price

movements are usually ignored in checking whether the barrier has been breached; rather,

close-of-day (or, perhaps, close-of-week) prices are used. Thus, we should ignore barrier

crossings that occur during the day. Since the model fails to do so, it allows “too many”

breaches of the barrier and so underestimates knock-out option values and overestimates

knock-in option values.

It turns out that there is no quick fix: we cannot get closed-form solutions if observations

on the barrier being breached are taken only discretely. Happily, however, we can obtain

very good approximations. One, proposed by Broadie, Glasserman, and Kou (1997), is to

continue to use the closed-form solutions provided above (and in the appendix) but with

the given barrier H in the pricing formulae replaced with an adjusted barrier  H . If h is the

time-interval between observations, then this adjusted barrier is defined by H = eβ σ
√
h H (19.5)

if the barrier option is an “up” option or by H = e−β σ
√
h H (19.6)

if the barrier option is a “down” option, where β ≈ 0.5826. Intuitively, to compensate for

the excessive frequency of the barrier being breached when observations are continuous,

we want to push the barrier away from the initial stock price; this is what (19.5)–(19.6) do.

Using discrete-time models (such as the binomial) for pricing purposes is also problem-

atic albeit for different reasons. It turns out that in such models, the option price is very

sensitive to the placement of the nodes of the tree around the barrier level. Since the barrier

may not actually pass through any nodes on the binomial tree, the effective barrier (the

“outer barrier” as it is sometimes called) is the set of nodes on the tree that lies immediately

above the barrier (for an up option) or immediately below the barrier (for a down option).

Figure 19.2 is a simple, if somewhat crude, illustration of this point. The effective barrier

in the figure is the node uS = 110. A more detailed illustration is in Figure 19.7.
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FIGURE 19.7
Inner, Outer, and True

Barriers in a Binomial
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In general, the closer is the effective barrier to the true barrier, the more accurate the

estimate of the barrier option price provided by the binomial tree. But this points to a

problem. When we increase the number of time steps in the binomial tree, we change the

positioning of the nodes, so it is possible that the effective barrier may actually move away

from the true barrier. That is, merely increasing the number of time steps does not guarantee

increased accuracy of barrier option prices obtained via the binomial tree. This was first

pointed out in Boyle and Lau (1994).

Boyle and Lau show that the accuracy of option prices from the binomial tree can be

improved substantially by choosing the number of steps n in the tree with care. They use a

Cox-Ross-Rubinstein (CRR) parametrization of the binomial tree (see Chaper 13). In this

case, the up and down moves on the tree are defined by

u = eσ
√
T/n d = e−σ

√
T/n

where T is the horizon of the tree in years and n is the number of steps in the tree. For

specificity, consider a down option. For any given parametrization, there will exist m such

that the barrier lies between the price after m down moves and the price after m + 1 down

moves:

dmS > H > dm+1S

We want to choose the binomial tree so that the barrier is close to, and just above, a layer

of nodes on the tree. This means we must select n to be the largest integer that is smaller
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than the quantity

F(m) = m2σ 2T 
ln

 
S

H

  2
(19.7)

Boyle and Lau show that if n is selected in this way, accuracy improves substantially and

becomes comparable to the accuracy of vanilla option prices derived on the tree.

Several other approaches have also been proposed. One is a simple interpolation tech-

nique. We first identify the tree’s inner and outer barriers. The outer barrier, as defined

earlier, is the set of nodes that lie just beyond the true barrier. The inner barrier is the set of

nodes on the tree that lie just inside the true barrier. We calculate the barrier option price

first assuming the inner barrier is the true barrier and then assuming the outer barrier is the

true barrier. Then we interpolate between these two prices to obtain our approximation of

the option’s price.

In a more sophisticated approach, Figlewski and Gao (1999) describe an adaptive mesh

technique where the density of nodes in the tree is high close to the barrier but the tree

becomes sparse as one moves away from the barrier. Ahn, Figlewski, and Gao (1999)

provide a refinement of this idea that is both computationally very fast and very accurate.

Both of these papers use a trinomial, rather than a binomial, approximation of the continuous

lognormal diffusion.

Comments on Barrier Option Hedging
If a barrier option is deep in-the-money and far away from the barrier, it behaves very much

like a vanilla option, and there is nothing unusual about the behavior of its delta. However,

the delta may get quite complicated close to the barrier.

Consider an up-and-out call, for example. Figure 19.8 plots the value of an up-and-out

call with a strike of 100 and a barrier of 130 for various values of the current stock price.

As the stock price is far from the barrier, the option resembles a vanilla call, but as it

gets close to the barrier, the likelihood of the option getting knocked out increases, so the

option value goes to zero. At the peak of the option price, the delta switches sign from

positive to negative. Close to maturity, this peak becomes very pronounced, and the gamma

FIGURE 19.8
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becomes very large and negative. Writing such options involves considerable delta-hedging

risk.

As a different example, consider the down-and-in call in Figure 19.4. Prior to knock-in,

the option value is a declining function of the stock price: the higher the stock price, the

lower the probability of the option getting knocked in. Thus, the delta is negative. But if the

option gets knocked in, it becomes a vanilla call, so has a positive delta. In this case, the

delta changes sign at the barrier. The hedging problem presented in this case is, however,

less severe than the previous one: the option value is small close to the barrier because even

if the option gets knocked-in, it is out-of-the-money at the time of knock-in.

19.3 Asian Options

Asian options are options in which the payoff to the holder of the option depends on the

average price of the underlying over the life of the contract. The period over which this

average is taken is specified in the contract. It may, for example, be the average daily closing

price over the entire life of the option. Alternatively, it may be the average daily closing

price only over the last month of the option’s life. It may even involve averaging only over

two or three specified time points.

Let S denote this average price. The most common variety of Asian options is average-

price options. In these options, a strike price K is specified in the option contract. At

maturity of the option, the option holder’s payoff is calculated as in a vanilla option but

with S playing the role of ST . That is, the holder of an Asian average-price call receives the

payoff

max{S − K , 0} (19.8)

while the holder of an Asian average-price put receives

max{K − S, 0} (19.9)

There is also a class of less popular Asian options called average-strike options in which

the averaging is applied to the strike price instead. That is, S plays the role of the strike

price in these options, so the holder of an Asian average-strike call receives the payoff

max{ST − S, 0} (19.10)

while the holder of an Asian average-strike put receives

max{S − ST , 0} (19.11)

Since average-price options are far more common, we focus on these in the remainder

of this section. We also drop the qualifier “average price” and refer to these simply as Asian

options.

Why Asian Options I: Exposure to the Average
Perhaps the most important aspect of Asian options is that they address a particular kind

of hedging need: exposure to the average. That is, for investors who anticipate repeated

transactions in a given underlying (a typical example is an exporter who receives foreign

currency on a regular basis), Asian options offer a cost-efficient way of obtaining a cap or

floor on cash flows.

Consider, for example, a company that makes oil purchases on a regular basis (say,

monthly) and wishes to insulate itself against oil price fluctuations. Specifically, suppose
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the company wishes to cap its total cost on the purchases over a given horizon (say, one

year).

There are two ways to achieve this. First, the company can buy a strip of vanilla call

options on oil, one expiring each month, each with the same strike of K . Then, in no month

will the company spend more than K on oil, so overall costs are capped at 12K .

As an alternative, the company can buy the oil spot each month and purchase 12 Asian

call options expiring in a year’s time and with a strike of K . If the average price over the

year is greater than K , the company receives the difference between the average and K on

each option. Thus, the company’s total net expenditure works out to just 12K . If the average

is less than K , the company receives nothing from the options, but, of course, it has spent,

on average, less than K each month. Thus, this method too provides a cap.

Of the two methods, Asians offer the cheaper way of obtaining the desired cap. Intuitively,

Asian calls cost less because the volatility of the average is less than the volatility of the

price itself. Of course, this cheaper protection is not an “arbitrage”! Asian calls cost less

precisely because they offer protection only on average, not on each individual price spike as

would vanilla calls. That is, it is possible that some of the vanilla calls finish in-the-money

and others finish out-of-the-money, but the average price is sufficiently low that all the

Asians finish out-of-the-money. Nonetheless, a company whose objective is only to control

average costs might find it worthwhile to trade off the larger upside of the vanilla options

for the lower cost and easier administration of the Asian calls.

Why Asian Options II: Smoothing the Data
A fundamental aspect of Asian options is that they “smooth” the data. Because prices are

averaged over the life of the option, Asian option payoffs are less sensitive to “spikes” in

the price of the underlying at maturity. This has at least two important consequences.

First, it means that manipulating Asian options’ payoffs by manipulating the price of the

underlying is a lot harder than is the case for vanilla options. This is a feature of interest to

investors operating in thin markets.

Second, Asian options may be of interest to investors whose concern regarding vanilla

options may be that the options may spend most of their lives in-the-money only to plunge

out-of-the-money at maturity. For example, an investor who anticipates that the price of a

stock will be higher in six months will be less concerned about prices spiking down close

to maturity if she buys an Asian option that takes the average price over (say) the last month

in determining the option’s payoff.

On the other hand, Asian options are not as useful as vanilla options in taking directional

bets. When prices rise, the average will climb slower than the price itself, so an Asian call

option is of less value to an investor with bullish market views than is a vanilla call option.

Similarly, an investor with bearish views will find greater payoffs in using a vanilla put than

an Asian put.

Can Asian Options Be Used for Speculation?
For the reasons described in the last paragraph, Asian options are viewed primarily as

instruments for hedging rather than speculation. Nonetheless, it would be wrong to conclude

(as is sometimes done) that Asian options cannot be used for speculation.

A case in point is the episode involving China Aviation Oil (Singapore) Corporation, an

overseas arm of China’s main jet fuel supplier. In December 2004, the company announced

that it had run up trading losses of over $500 million, a substantial chunk of which was

derivatives related. One of the trades (detailed in The Wall Street Journal, December 3,

2004) was with J. Aron, a subsidiary of Goldman Sachs, and involved Asian put options.
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The contract involved jet fuel as the underlying asset and was for 100,000 barrels. Under

the contract, which was entered into on September 1, 2004, CAO Singapore sold Asian calls

to J. Aron with a strike of $37 a barrel. The payoff from the calls was to be calculated by

averaging the spot price during October 2004. Thus, CAO Singapore was betting that the

average spot price in October would be below $37. They were wrong and by a wide margin.

Over October, jet fuel prices averaged $61.25 a barrel, leading to losses for CAO Singapore

of over $2.4 million on this trade alone.

Arithmetic and Geometric Averages
So far, we have been silent on the question of what we mean by the “average.” Suppose we

have price observations S1, . . . , Sn over the life of the option that we are to average. There

are two ways in which we could define this “average” (actually, there are many ways, but

these are two popular ones):

1. The arithmetic average: S̄a = 1

n
(S1 + · · · + Sn).

2. The geometric average: S̄g = (S1 × · · · × Sn)
1/n .

Both arithmetic and geometric averages are used in financial markets, although the use

of arithmetic averages is far more common. One example of the geometric average is the

Value Line Geometric Index published by Value Line. (Value Line has also published an

arithmetic index since 1988.) From the standpoint of pricing Asian options, the geometric

average has a significant technical advantage as we explain shortly. A brief digression first.

Put-Call Parity for Asian Options
A version of put-call parity can be derived for Asian average-price options (whether based

on arithmetic or geometric averaging). Let Cave
t and Pave

t denote, respectively, the time-

t prices of otherwise identical call and put average-price options (whether arithmetic or

geometric). Using the subscript T to denote values at maturity and S to denote the average

price of the underlying at T , we have

Cave
T − Pave

T = S − K

The present value at any earlier time t is the discounted risk-neutral expectation of these

payoffs. Letting E[·] denote the risk-neutral expectation, we obtain

Cave
t − Pave

t = e−r (T−t)E[S]− e−r (T−t)K

For both geometric and arithmetic averaging, expressions for E[S] can be calculated exactly

(see, for example, Chapter 17 and Appendix A13 of James, 2003). So, put prices can be

obtained via call prices and vice versa.

Pricing Asian Options on the Geometric Average
Suppose we are taking observations every h years, and there are N + 1 observations in all:

the initial price S0 = S, the N − 1 interim observations S1, S2, . . . , SN−1 taken at the time

points h, 2h, . . . , (N − 1)h, and the terminal price SN taken at maturity T . The geometric

average is then

Sg = (S0 × S1 × · · · × SN )1/(N+1) (19.12)

Now, note that

ln

 
Sg

S0

 
= ln

  
S0 × S1 × · · · × SN

S0 × S0 × · · · × S0

 1/(N+1)
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so that, by the usual properties of the logarithm,

ln

 
Sg

S0

 
= 1

N + 1

 
ln

 
S0

S0

 
+ ln

 
S1

S0

 
+ · · · + ln

 
SN

S0

  
(19.13)

Under the usual Black-Scholes assumptions, the returns ln(Sn/S0) are normally dis-

tributed for each n ≥ 1. Therefore, so is their sum. This means the geometric-average

return is itself lognormally distributed, so we can use the Black-Scholes formula to price

options on the geometric average! From (19.13), it can be shown that the volatility σg and

dividend yield δg of the geometric average are given by

σg =
σ 2

3

2N + 1

2N + 2
(19.14)

δg =
1

2

 
r + δ + 1

6
σ 2

 
(19.15)

Using (19.14)-(19.15) in the Black-Scholes pricing formula (14.21)–(14.22), we obtain the

prices of Asian options on the geometric-average price.

Pricing Arithmetic-Average Price Options
Unfortunately, the pricing formulae for Asian geometric-average price options are of limited

use. In practice, it is the arithmetic, and not the geometric, average that is used to determine

the payoffs of Asian options. The arithmetic average is much less mathematically tractable

since the arithmetic average of lognormal prices is not itself lognormal. In particular, closed-

form solutions are not available for Asian option prices.

One common solution to this problem is to use numerical techniques such as Monte

Carlo simulation to identify the option price. In addition, several techniques have also been

proposed that look to approximate the option’s price analytically. We describe some of these

below. We focus on call options; put prices can be obtained from call prices using put-call

parity. We use Cg to denote the price of a geometric-average-price call, and Ca for the

arithmetic-average-price call.

Vorst (1992) derives upper and lower bounds for the arithmetic-average-price option in

terms of the geometric-average-price option. The lower bound is simple to derive. Mathe-

matically, one can show that the arithmetic average of a set of positive numbers must always

exceed their geometric-average, so:

S̄a ≥ S̄g

This means the payoff at maturity on a geometric-average-price call will always be less than

that on an otherwise identical arithmetic-average-price call. It follows that the arithmetic-

average option must cost at least as much as the geometric-average option:

Ca ≥ Cg

For the upper bound, Vorst (1992) notes that since S̄a ≥ S̄g , it is the case that

max{0, Sa − K } −max{0, Sg − K } ≤ Sa − Sg

that is, the difference in maturity payoffs is less than the difference between the arithmetic

and geometric averages. It follows by taking present values in the above expression that

Ca − Cg ≤ e−rT E[Sa − Sg] (19.16)

where T denotes the remaining time to maturity and E[·] is the risk-neutral expectation. (As

noted earlier, exact expressions may be derived for E[Sa] and E[Sg].) Expression (19.16)

gives us an upper bound on arithmetic-average-price call options in terms of their geometric
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counterparts. Combining the upper and lower bounds, we may write

Cg ≤ Ca ≤ Cg + e−rT E[Sa − Sg] (19.17)

Vorst (1992) also provides an approximation of the arithmetic-average call’s price in

terms of the geometric-average call. He shows that the price of an arithmetic-average call

with strike K is roughly equal to that of a geometric-average call with strike K−E[Sa−Sg]:

Ca(K ) ≈ Cg(K − E[Sa − Sg]) (19.18)

An alternative approach sometimes used is to assume that the arithmetic-average price

Sa is lognormally distributed. We calculate exact values for the first two moments of the

arithmetic-average price and use these as the parameters of the lognormal distribution.

Turnbull and Wakeman (1991) describe an extension of this approach. In their approxima-

tion, the distribution of Sa is assumed to be approximately, but not exactly, lognormal. They

show how Edgeworth expansions may then be used to approximate the true distribution via

the lognormal. A different approach is proposed in Curran (1994) which involves pricing the

arithmetic-average option through conditioning on the geometric mean. Table 17.1 of James

(2003) presents a comparison of these approximation approaches; the numbers in this table

indicate that the two best approaches are a sophisticated version of the Turnbull-Wakeman

method that makes use of higher moments as well, and the geometric conditioning of

Curran. Both approximate the Monte Carlo results very well, although Curran’s approach

does slightly better overall in almost every case.

Pricing Asian Options: A Binomial Example
A simple binomial example can be used to illustrate several useful points about Asian

options. Consider the two-period binomial tree of Figure 19.1. Suppose we are averaging

over the observations at times 1 and 2 (but not including the initial observation) and we are

looking to price an Asian call option with a strike of K = 100.

The average stock price from each of the four possible paths and the resulting payoff of

the Asian call are shown in Table 19.2. The risk-neutral probabilities are calculated on the

basis of the gross risk-free interest rate per period of 1.02. The initial value of the Asian

call is

CAsian = 1

(1.02)2
[(0.36)(15.5) + (0.24)(4.5)] = 6.40 (19.19)

In contrast, the corresponding vanilla call costs much more at 7.27.

Hedging Asian Options: Comments
The binomial example also provides a nice illustration of the behavior of the Asian delta.

The deltas are easily computed using the standard rules for binomial trees. The delta

• at the initial node S = 100 is 0.55.

TABLE 19.2 Asian

Call Option Payoffs in

the Binomial Tree

Path Average Price Call Payoff Risk-Neutral Probability

uu 115.5 15.5 0.36
ud 104.5 4.5 0.24
du 94.5 0 0.24
dd 85.5 0 0.16
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• at the node uS = 110 is 0.50.

• at the node dS = 90 is zero.

Two interesting points are highlighted by these numbers. First, a vanilla call that is

guaranteed to finish in-the-money has a delta of +1. The Asian call in this example is

guaranteed to finish in-the-money if the node uS = 110 is reached, yet its delta at this point

is only 0.50, which is very far from +1. Second, the delta of a vanilla call increases when

the call moves deeper into-the-money. The Asian call in this example moves deeper into-

the-money when the stock price moves up to uS = 110 from the initial price of S = 100,

but nonetheless, its delta falls from 0.55 to 0.50.

Why is this the case? Both phenomena have a common explanation: the delta measures

only the sensitivity of the option value to changes in the current price of the stock. However,

the option payoff depends on the average price that has been observed since inception. The

more time has passed, the less influence changes in the current price have on the average

price. (For instance, suppose that after 99 observations, the average price works out to 50.

Then, even if the 100th observation is a very high value of 150, the average moves only

from 50 to 51.) This means the delta becomes less sensitive to changes in the underlying as

maturity approaches.

Asian versus Vanilla Puts
Finally, an important point. It is often missed in treatments of Asian options that Asian puts,

unlike Asian calls, can sometimes be worthmore than their vanilla counterparts. Averaging

produces a dampening effect resulting in a lower growth rate and a lower volatility. For

a call, each of these features works to reduce the value of the Asian call compared to its

vanilla counterpart. But for a put, the lower growth rate of the average works to increase

the Asian put’s payoff, while the lower volatility works to reduce it. Depending on which

effect dominates, the Asian put may be worth more or less than its European counterpart.

For an example of a situation in which the Asian put is worth more, consider the binomial

example again. As we have seen, a two-period vanilla European put in this setting with a

strike of 100 has a price of 3.38. Consider a two-period Asian put with K = 100 in which

the price is averaged over nodes 1 and 2. The average prices from the four possible paths,

the consequent Asian put payoffs, and the risk-neutral likelihoods of the different outcomes

are summarized in Table 19.3. The initial price of the Asian put is

1

1.02
[(0.24)(5.5) + (0.16)(14.5)] = 3.57

which exceeds the value of the vanilla put.

Here is a very simple proof that Asian puts are more valuable than their vanilla counter-

parts when volatility is suitably low. The argument is based on the analysis of Ye (2005).

Suppose a security is currently trading at S. First consider the case in which the volatility of

the security’s returns is zero. Let r denote the risk-free rate of interest, so the time-T price

of the security is just ST = erT S0. Now compare two put options, one vanilla, one Asian,

both with strike K and maturity T .

• The vanilla has the payoff max{K − ST , 0}.
TABLE 19.3 Asian

Put Option Payoffs in

the Binomial Tree

Path Average Price Put Payoff Risk-Neutral Probability

uu 115.5 0 0.36
ud 104.5 0 0.24
du 94.5 5.5 0.24
dd 85.5 14.5 0.16
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• The Asian considers the average price S between time 0 and time T (where the average

is computed with respect to some n observations taken at prespecified times) and gives

the holder the payoff max{K − S, 0}.
Since the price of the asset is trending up at the risk-free rate r , the average price S must

be less than the time-T price ST . This implies that the Asian put’s payoff is strictly higher

than the vanilla put’s for K > S, while both have zero payoffs for K ≤ S. Therefore, for

K > S, the Asian put must cost strictly more than the vanilla put.

Now suppose volatility may be nonzero. Let P(σ ) and PA(σ ) denote the values of

the vanilla and Asian puts when volatility is σ . We have just shown that PA(0) > P(0).

Therefore, assuming the underlying equilibrium is continuous inσ (which does not appear to

be a strong assumption), we must also have PA(σ ) > P(σ ) for suitably small σ , completing

the proof.

19.4 Lookback Options

Lookback options are options in which the holder may “look back” at maturity and choose

the most favorable price for determining the payoffs. Obviously, which price is the most

favorable depends on whether we are holding a call or a put. In addition, the payoffs are

defined differently depending on whether we are looking at floating-strike lookback options

or fixed-strike lookback options.

The more common version of lookback options is the floating-strike option (also some-

times called the “lookback strike” option). In this case, the strike price for a lookback call

is set equal to the lowest price Smin that was observed during the life of the option. Thus,

the payoff at time T to the holder of a floating-strike lookback call is

max{ST − Smin, 0} (19.20)

Note that the “max” is really superfluous since ST − Smin cannot be less than zero. Analo-

gously, for the holder of a floating-strike lookback put, the strike is set equal to the highest

price that was observed during the life of the option. This results in a payoff at maturity of

max{Smax − ST , 0} (19.21)

The other kind of lookback options has a fixed strike price and is also called “lookback

price” options (or, sometimes, “lookforward”) options. In this case, the holder of a call

receives at maturity the payoff

max{Smax − K , 0} (19.22)

while the holder of a put receives

max{K − Smin, 0} (19.23)

Why Lookbacks?
Lookback options combine, in a sense, the best features of American and European options.

The holder of an American option can take advantage of favorable prices prior to maturity by

exercising the option early. However, since future prices cannot be forecast perfectly, early

exercise necessarily leaves the door open for regret: an even more favorable price may occur

subsequently. Lookbacks eliminate this ex-post regret. As such, they offer considerably

more protection to the holder than do vanilla options. But by the same token, they are

typically very expensive, perhaps why, despite their obvious appeal, they are not very heavily

traded.
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Pricing and Hedging Lookbacks: A Binomial Example
Closed-form solutions do exist for lookback options in a Black-Scholes setting, but they

involve complex forms that lack an easy intuitive interpretation. It is instructive to first

examine a simple binomial model. The example below illustrates how much more expensive

the lookbacks can be compared to the vanilla options. It also illustrates some aspects of the

lookback delta.

Consider fixed-strike lookbacks with a strike of 100 in the stock price tree of Figure 19.1.

Since lookbacks are path-dependent options, computing their prices involves looking at

each possible path of asset prices and identifying the most favorable price for the option

holder along that path. There are four possible price paths in this tree. The maximum prices

they lead to, and the payoffs of the option at these points, are listed in Table 19.4. Path-

dependence of the lookbacks is implicit in the fact that the nodes ud and du lead to different

payoffs.

Recall that the gross interest rate per time step in this example is 1.02, so the risk-neutral

probability of an up move in each step is 0.60. Applying this to the terminal payoffs, the

initial prices of the fixed-strike lookback call and put are, respectively,

CFiSt = 1

(1.02)2
[(0.36)(21) + (0.24)(10) + (0.24)(0) + (0.16)(0)]

= 9.57

(19.24)

PFiSt = 1

(1.02)2
[(0.36)(0) + (0.24)(1) + (0.24)(10) + (0.16)(19)]

= 5.46

(19.25)

These values are considerably higher than the vanilla European call and put prices of 7.27

and 3.38, respectively.

This binomial tree can also be used to illustrate one other simple, but interesting, point:

that the delta of a lookback will not necessarily increase with the stock price. Using the

usual arguments, it is simple to verify that the delta of the call option

• at the initial node is 0.81.

• at the node uS is 0.50.

• at the node dS is zero.

Note that at the node uS, the call is guaranteed to finish in-the-money yet has a delta

substantially less than+1. Moreover, as the stock price increases from S = 100 touS = 110,

the delta of the lookback call falls from 0.81 to 0.50.

It is not difficult to see why this happens. The delta measures the sensitivity of option

value to changes in the current price of the underlying asset. However, the option payoff

here depends on only the maximum price observed over the life of the option. Thus, the

current price influences option values only insofar as it influences the maximum price.

Along some paths, very high prices may have already been observed, and this reduces the

TABLE 19.4
Lookback Option

Payoffs in the

Binomial Tree

Path Maximum Price Minimum Price Call Payoff Put Payoff

uu 121 100 21 0
ud 110 99 10 1
du 100 90 0 10
dd 100 81 0 19
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option’s sensitivity to the current price. Thus, its delta will not necessarily increase even if

asset prices do so.

Pricing Formulae for Lookbacks
Rather than describe how to identify the option price at time 0 alone, we will describe more

generally how to identify the lookback’s price at any time t during the option’s life. Let St
denote the time-t stock price, and let SH and SL denote the highest and lowest prices that

have been observed thus far in the option’s life, i.e., between times 0 and t . If we are at the

beginning of the option’s life, then SH = SL = S, where S is the time-0 stock price.

Let Smax
t and Smin

t denote the maximum and minimum prices, respectively, observed

between time t and maturity. Viewed from time t , these are random quantities. Define Mt

and mt by

Mt = E
 
max{SH , Smax

t } (19.26)

mt = E
 
min{SL , Smin

t } (19.27)

The expectations are under the risk-neutral distribution of St . We provide closed-form ex-

pressions for Mt andmt further below. But first, we describe pricing formulae for lookbacks

in terms of Mt and mt .

(A) Floating-Strike Lookback Options
Pick any time t and define SH and SL as above. The fair value at time t of a floating-

strike lookback call is the expectation of its time-T payoff under the risk-neutral measure

discounted back to t at the risk-free rate:

CFlStt = e−r (T−t) E
 
ST −min{SL , Smin

t } 
= e−r (T−t) E[ST ]− e−r (T−t) E[min{SL , Smin

t }]
= e−δ(T−t)St − e−r (T−t) mt

(19.28)

Similarly, the time-t price of a floating-strike lookback put is

PFlStt = e−r (T−t) E
 
max{SH , Smax

t } − ST
 

= e−r (T−t) E[max{SH , Smax
t }]− e−r (T−t) E[ST ]

= e−r (T−t)Mt − e−δ(T−t) St

(19.29)

(B) Fixed-Strike Lookback Options
For fixed-strike lookback options, closed-forms can be easily derived if the options are

issued at-the-money (as is commonly the case in practice). In this case, K is just the time-0

price S, so the payoffs of a call are

max{Smax − K , 0} = Smax − S (19.30)

while the payoffs from a put are

max{K − Smin, 0} = S − Smin (19.31)

Viewed from time t and continuing with the notation introduced above, these payoffs are

given respectively by

max{SH , Smax
t } − S (19.32)

S −min{SL , Smin} (19.33)
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Thus, the time-t value of a fixed-strike lookback call and put are, respectively,

C FiSt
t = e−r (T−t) E

 
max{SH , Smax

t } − S
 

= e−r (T−t) E[max{SH , Smax
t }]− e−r (T−t) S

= e−δ(T−t)Mt − e−r (T−t)S

(19.34)

P FiStt = e−r (T−t) E
 
S −min{SL , Smin

t } 
= e−r (T−t) S − e−r (T−t) E[min{SL , Smin

t }]
= e−r (T−t)S − e−r (T−t) mt

(19.35)

(C) Mt and mt
To complete the closed-form descriptions, we give closed-form representations for Mt and

mt . These take the form

Mt = SH

 
N (β1) − σ 2

2(r − δ)
eY N (−β3)

 
+ e(r−δ)(T−t)St

 
1+ σ 2

2(r − δ)

 
N (−β2)

(19.36)
and

mt = SL

 
N (α2) − σ 2

2(r − δ)
eX N (α3)

 
+ e(r−δ)(T−t)St

 
1+ σ 2

2(r − δ)

 
N (−α1)

(19.37)
where

β1 =
1

σ
√
T − t

 
ln

 
SH

St

 
− (r − δ − 1

2
σ 2)(T − t)

 
(19.38)

β2 = β1 − σ
√
T − t (19.39)

β3 =
1

σ
√
T − t

 
ln

 
SH

St

 
+ (r − δ − 1

2
σ 2)(T − t)

 
(19.40)

Y = 1

σ 2

 
2(r − δ − 1

2
σ 2) ln

 
SH

St

  
(19.41)

α1 =
1

σ
√
T − t

 
ln

 
St

SL

 
+ (r − δ + 1

2
σ 2)(T − t)

 
(19.42)

α2 = α1 − σ
√
T − t (19.43)

α3 =
1

σ
√
T − t

 
ln

 
St

SL

 
− (r − δ − 1

2
σ 2)(T − t)

 
(19.44)

X = 1

σ 2

 
2(r − δ − 1

2
σ 2) ln

 
St

SL

  
(19.45)

19.5 Cliquets

Cliquets (also known as “ratchets”) generalize the idea of forward-start options. Let time

0 and time T denote the start date and maturity date of the cliquet. The specification of a

cliquet also involves n intermediate “reset dates” τ1, . . . , τn satisfying

0 < τ1 < · · · < τn < T



Chapter 19 Exotic Options II: Path-Dependent Options 489

For example, the final maturity could be one year from the current time, and the reset dates

could be quarterly. At each reset date, the holder of the cliquet receives the payout from a

call option whose strike is equal to the stock price at the previous reset date. That is, on the

first reset date τ1, the holder of the option receives a payout equal to

max{0, Sτ1
− S} (19.46)

where S, in our usual notation, denotes the price at time 0. On the second reset date τ2, the

holder receives a payout

max{0, Sτ2
− Sτ1

} (19.47)

And so on until the final maturity date of T , when the holder receives the payment

max{0, ST − Sτn } (19.48)

The payouts (19.46)–(19.48) may also be made in a single lump sum at time T . In common

variants, there may also be a cap on the cliquet payoff in any sub-period and/or a cap on

total payoffs from the cliquet and/or a floor payment different from zero.

The payoffs (19.46)–(19.48) show that a cliquet is just a series of forward-starting call

options coming to life at times 0, τ1, . . . , τn , and maturing at times τ1, τ2, . . . , T , respec-

tively. Each forward start in the cliquet is at-the-money when it comes to life. The total

payoff from the cliquet is path-dependent since it depends on the intermediate stock prices

Sτ1
, . . . , Sτn . The path-dependence is even more apparent if the cliquet comes with a cap on

overall payoffs.

Why Cliquets?
Cliquets offer protection against stock price spikes close to maturity. An investor who is

worried that the stock price may exceed a vanilla option’s strike during the option’s life but

crash below it close to maturity may find the intermediate payments locked-in via a cliquet

to be an attractive proposition. More generally, a cliquet is a bet that the underlying will

have at least some periods of positive returns.

One alternative to a cliquet is to buy at-the-money calls at each reset date, but this has

the problem that future volatility is unknown. Using a cliquet eliminates this uncertainty by

implicitly locking in a volatility level. If volatility turns out to be higher than implied in the

cliquet price, the cliquet holder benefits, but of course he loses if it turns out to be lower.

Pricing Cliquets
To price a cliquet, we price each forward start in the cliquet and add them up. LetC(S, K , τ )

denote the price of a vanilla call with strike K and time to maturity τ given the current

stock price of S. As usual, let q denote the dividend yield on the underlying. As we saw in

the last chapter, the price of a forward start that comes to life at τi and matures at τi+1 is just

e−δτi C(S, S, τi+1 − τi )

Thus, the initial price of the cliquet is

Vcliquet = C(S, S, τ1) + e−δτ1C(S, S, τ2 − τ1) + · · · + e−δτnC(S, S, T − τn) (19.49)

Hedging Cliquets
Since a cliquet is just a portfolio of forward starts, hedging the cliquet too is just an issue

of hedging the forward starts in the portfolio. As we saw in the last chapter, the delta of a
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forward start that comes to life at τi and matures at τi+1 is

e−δτi C(1, 1, τi+1 − τi )

The delta of the cliquet is the sum of the deltas of these forward starts.

Reverse Cliquets
A reverse cliquet, like a cliquet, involves n reset dates τ1, . . . , τn . In a typical version, a

coupon rate is specified on the underlying investment. The coupon is payable at maturity.

However, if between two reset dates the underlying stock or index has experienced negative

returns, these negative returns are subtracted from the coupon due at maturity. Thus, a reverse

cliquet is a view that the market price of the underlying will not fall during any subperiod.

For example, suppose a coupon of 10% is specified on a one-year reverse cliquet with

quarterly resets. Suppose that during the four quarters, the observed returns on the underlying

are+4%,−1.4%,−2.1%, and+1.2%. Then, the negative returns in the middle two quarters

are removed from the coupon payment, so the net coupon paid at maturity is 10 − (1.4 +
2.1) = 6.50%.

19.6 Shout Options

A shout option is like a vanilla European option except that the holder is allowed to “shout”

at one point in the option’s life. At maturity, the holder receives the greater of the intrinsic

value at the shout time or at maturity. That is, if the holder of a shout call option shouts at

time t , the payoff received at maturity is

max{0, St − K , ST − K } (19.50)

Similarly, the payoff to the holder of a shout put option who shouts at t is

max{0, K − St , K − ST } (19.51)

Why Shout Options?
A shout option is a combination of an American and a European option. The shout time in

a shout option is analogous to the early exercise time in an American option. The difference

is that in an American option, the option is extinguished upon early exercise and the holder

only receives the intrinsic value at exercise time. In a shout, the final payoff may exceed

the intrinsic value at shout time if the stock price moves favorably. Thus, a shout will be

particularly attractive to investors who may want to take advantage of possible price spikes

prior to maturity without giving up the optionality.

Pricing Shout Options: A Binomial Example
Shout option prices cannot be expressed in closed-form, but they are not difficult to evaluate

on a binomial tree. The usual backwards induction procedure applies. We illustrate using a

shout call with strike K = 100 in the three-period binomial tree of Figure 19.9. This tree

uses the same up and down moves (u = 1.10 and d = 0.90) as in Figure 19.1. Once again,

we assume the risk-free gross rate of interest is 1.02, so the risk-neutral probability of an

up move is 0.60.

The usual backwards induction procedure applies. At the end of the tree, if we have not

shouted up to that point, we simply receive the value of exercise at that point. Thus, we

receive:

• CS
uuu = 33.1 at the node u3S = 133.1.

• CS
uud = 8.9 at the node u2dS = 108.9.
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FIGURE 19.9
A Three-Period

Binomial Example

110

121

133.1

108.9

89.1

100 99

90

81

72.9

• CS
udd = 0 at the node ud2S = 89.1.

• CS
ddd = 0 at the node d3S = 72.9.

Now roll back the tree by one period. At the node u2S = 121, we have the option of

shouting or not shouting. If we shout, we receive at least 21 at maturity or more if the option

finishes deeper in the money. If we do not shout, we receive only the depth in the money at

maturity. Clearly, it is optimal to shout, resulting in a value of the option at this node of

CS
uu =

1

1.02
[0.60×max(33.1, 21) + 0.40×max(8.9, 21)] = 27.71

At the nodes udS = 99 and d2S = 81, there is no point in shouting because the option is

out-of-the-money. Thus, the option value at these nodes is just

CS
ud =

1

1.02
[(0.60)(8.9) + (0.40)(0)] = 5.24

CS
dd =

1

1.02
[(0.60)(0) + (0.40)(0)] = 0

Now we roll the tree one period further back. Consider the node uS = 110. If we shout at

this node, we receive a minimum payoff of 110− 100 = 10. This means we get a payoff of

• max(33.1, 10) = 33.1, if the final price is u3S = 133.1.

• max(8.9, 10) = 10 if the final price is u2dS = 108.9.

• max(0, 10) = 10 if the final price is ud2S = 89.1.

These are the only three terminal prices possible from the node uS; their risk-neutral proba-

bilities (viewed from uS) are, respectively, 0.36, 0.48, and 0.16. Thus, the value of shouting

at uS is

1

(1.02)2
[(0.36)(33.1) + (0.48)(10) + (0.16)(10)] = 17.60
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On the other hand, if we don’t shout at uS, we get a continuation value of Cuu = 27.71 if

the price goes up, and Cud = 5.24 if the price goes down. Thus, the present value of not

shouting is

1

1.02
[(0.60)(27.71) + (0.40)(5.24] = 18.35

Comparing these values, it is clearly not optimal to shout at uS = 110. The value Cu of the

option at this node is 18.35.

At the node dS = 90, the option is out-of-the-money, so shouting is not optimal. This

means the value of the option at this node is

CS
d =

1

1.02
[(0.60)(5.24) + (0.40)(0)] = 3.08

Finally, the option is at-the-money at the node S = 100, so it is again clearly not optimal

to shout. This means the initial value of the option is

CS = 1

1.02
[(0.60)(18.35) + (0.40)(3.08)] = 12.00

By way of comparison, the price of a vanilla (American or European) call option in this

example is only 10.36; the shout call is almost 16% more valuable.

19.7 Exercises 1. What makes an exotic option path-dependent? Think of an example of such an option

that is not covered in this chapter. Explain why you consider it path-dependent.

2. If an option is path-dependent, do we need to use a nonrecombining binomial tree for

pricing it?

3. Are American options path-dependent? Why or why not?

4. Why are Asian options popular? State some uses of Asian options.

5. Is an Asian option cheaper or more expensive than a plain vanilla option? Why? Is this

always true?

6. Explain the difference between an Asian average-price option and an Asian average-

strike option.

7. Distinguish between a lookback price option and a lookback strike option.

8. Consider an initially at-the-money knock-out put option with the knock-out price H set

above the strike K . Will the price of the put be greater, smaller, or equal to that of a

vanilla put? Why?

9. Why does a knock-out call cost less than the corresponding vanilla call?

10. If you want to invest in the upside potential of a stock but are afraid of overpaying for

options that favor your view, suggest two ways in which you may buy a single barrier

option that implements your view more cheaply.

11. You are the holder of an up-and-out put option. Now you want to replace it with a plain

vanilla put at the same strike and maturity. What option should you purchase to achieve

this?

12. Which has greater value, an arithmetic-average-price Asian option or a geometric-

average-price one?

13. What is the sign of the delta of an up-and-out call option? Explain how the delta depends

on the closeness of the current stock price to the barrier.
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14. Suppose you are given a two-period binomial tree with the following parameters:

S = 100, R = 1.01, u = 1.04, and d = 0.96. Consider a two-period Asian call

option where the averaging is done over all three prices observed, i.e., the initial price,

the price after one period, and the price after two periods.

(a) Suppose the option is an average-price option with a strike of 100. What is its initial

price?

(b) Suppose the option is an average-strike option. What is its initial price?

15. Consider a two-period binomial tree with the following parameters: S = 100, u = 1.10,

d = 0.90, and R = 1.03. Find the prices of:

(a) A knock-out call option with a strike of 95 and a barrier of 90.

(b) A knock-in call option with a strike of 95 and a barrier of 90.

(c) A vanilla call option with a strike of 95.

16. Suppose you are given a two-period binomial tree with the following parameters: S =
100, R = 1.01, u = 1.05, and d = 0.95. Consider an option with a strike of K = 95

whose payoff at maturity is

XT =
 

(ST − K )2, if ST ≥ K

0, if ST < K

What is the initial price of this option?

17. There have been many instances where companies have “backdated” their employee

option grants to especially favorable dates, namely dates when the stock price was low

so as to set low strikes on their issued call options relative to current prices. What exotic

option does this practice resemble? Are there any differences between this exotic option

and the backdated option grant?

18. How does a fixed-strike lookback option’s value change when the lookback period

increases?

19. A floating-strike lookback option has two periods in it: (i) the maturity of the option

itself, i.e., T , and (ii) the lookback period τ ≤ T . How does the value of the option

change when

(a) Maturity T increases, keeping τ fixed?

(b) Holding T fixed, the lookback period τ increases (but does not exceed T )?

(c) Maturity T decreases, but τ increases (but does not exceed T )?

(d) Maturity T decreases, and τ increases (but does not exceed T )?

20. Employee stock options are often reset in their strike when the stock price of the

company has declined over a period of time. Why do you think companies reset their

employee option strikes? What path-dependent option have you learned about that most

closely resembles this practice?

21. Using a three-period binomial tree, value a down-and-out call option. The parameters

you are given are the following: the initial stock price is $100, the strike price is $105,

the barrier is $90, the risk-free rate per-period is 5%, the option maturity is three years,

and the volatility of the stock is 40%. Use the CRR method to construct the binomial

tree.

22. In the above question, what would we do to the model to make it default to a vanilla

call option? Would the vanilla call be worth more or less than the barrier option?

23. (Requires Writing Code) The same barrier option pricing problem in the last two ques-

tions may be solved using the recursive programming approach developed in Chapter 13.
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Reprogram the pricing model using such an approach. Check that the barrier option

price is the same. Use the same parameter values.

24. A reverse cliquet with quarterly resets pays an annual coupon of 15% less the return

during any quarter in which the return is negative. The index is at 1000 at the beginning

of the year and takes values of 900, 1000, 1100, and 1050 at the end of each of the

succeeding quarters. What is the final payoff of this option for each of the end-of-quarter

values of the index?

25. What has higher value for options of strike K that are at-the-money at inception:

(a) A cliquet option with maturity T = 1 year and a single reset at T = 1/2 year?

(b) A one-shout shout option with maturity T = 1 year?

26. (Requires Writing Code) (a) Write a program to price a down-and-in barrier call option

with the following parameters: S = 50, strike K = 50, an annual risk-free rate r = 3%,

volatility σ = 0.3, and barrier H = 45. Use a CRR pricing tree with a time step of one

year for each period. The maturity of the option is six years.

(b) Modify the program to price the down-and-in put.

(c) Does European put-call parity hold for barrier options? Why?

27. (a) Price a ten-year down-and-in barrier call option with the following parameters:

S = 100, strike K = 102, annual risk-free rate r = 2%, volatility σ = 0.4, and

barrier H = 90. Use a time step of one year on the CRR tree for this problem.

(b) Price the down-and-out barrier call with the same parameters.

(c) Price the vanilla call with the same parameters.

(d) Verify that the sum of the prices you obtain in parts (a) and (b) equals the price you

obtain in part (c).

28. Consider a shout option with strike K. One way to price the option is as follows. If at

some point in time prior to maturity you shout when the stock price is S > K , then you

capture the profits S−K (to be paid at maturity) and the original shout call option held

is replaced with a new vanilla call option with a strike of S for the remaining maturity.

(a) Explain how you would use a binomial tree to price this option.

(b) Will the tree be recombining?

(c) Is the option path-dependent?

29. Price a ten-year Asian option with an initial stock price of $50, strike $50, annual risk-

free rate r = 10%, and volatility σ = 0.35. Price the call and the put, and see whether

put-call parity holds. Use a pricing tree with a time step of one year per period.

30. (Requires Writing Code) For the same parameters as in the previous question, price a

lookback price call and put.

31. (Requires Writing Code) Implement the formula in the chapter appendix for up-and-out

calls, and value the option for the following parameters: S = 102, K = 100, r = 5%

p.a., barrier H = 130, and maturity T = 0.25. Annualized volatility is σ = 40%.

Program a tree model to do the same and report the value. Compare the tree model to

the closed-form answer.

32. In the preceding question, what is the effect of increasing the maturity of the up-and-out

call? Keep the parameters the same but vary the maturity to take the following values

(in years): 0.1, 0.2, 0.3, 0.5, and 1.0.

33. Consider a more complex form of barrier option, the double barrier knock-out call.

For this option, using any method of your choosing, price the option for the following

parameters: S = 100, K = 100, lower barrier 80, upper barrier 120, maturity 0.25



Chapter 19 Exotic Options II: Path-Dependent Options 495

years, risk-free rate of 6% p.a., zero dividends, and volatility of 35%. Answer the

following questions:

(a) What is the price of this option?

(b) What is the price at S = 95 and at S = 105?

(c) What is the price at a volatility of 50%? What does this tell you about the sign of

the vega?

(d) What is the delta of the option at stock prices 95, 100, and 105?

34. Using the formulae in the chapter appendix, price the up-and-in put option with the

following parameters: S = 100, K = 100, barrier H = 110, rebate of 50, maturity of

one year, annual risk-free interest rate of 3%, and stock volatility of 40%. There are no

dividends.

(a) What is the price of the option?

(b) What is the option price if the stock rises to 105?

(c) What is the option price if the stock rises to 109?

(d) What can you say about the sign of the delta and the gamma?

35. The current stock price is $100. Price a half-year average strike Asian call option if the

stock volatility is 30%, and the annual risk-free rate is 10%. Use a tree model with six

monthly steps. Compare the price you arrive at with the price of an otherwise identical

average price Asian call at a strike of $100. State intuitively why the prices are different.

36. Using the same parameters as in Question 35, calculate the prices of Asian puts of both

types, average price and average strike. Compare the prices. Explain why one is higher

than the other.

37. Repeat Question 35 but for a stock price of $90, leaving all other parameters unchanged.

Value the average-price and average-strike options and compare their prices.

38. The current stock price is $100. Price a half-year floating strike lookback call option if

the stock volatility is 30%, and the annual risk-free rate is 10%. Use a tree model with

six monthly steps. Also price the lookback put.
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Appendix 19A

Barrier Option Pricing Formulae
Recall the basic notation: S is the current (time-0) stock price, K is the strike and T the

maturity of the option, r is the risk-free interest rate, σ is the volatility of the stock, and H

the barrier. The Black-Scholes prices of a vanilla call and put are denoted by CBS(S, K )

and PBS(S, K ), respectively. The quantities γ and a are defined by

γ = 2r

σ 2
(19.52)

a =
 
H

S

 γ−1

(19.53)

Now define b and d1, d2, . . . , d8 by the following:

b =
 
H

S

 γ+1

(19.54)
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σ
√
T
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S

K
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2
σ 2) T

 
(19.55)
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σ
√
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S

K
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2
σ 2) T

 
(19.56)
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σ
√
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S
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2
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(19.57)
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σ
√
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2
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(19.58)
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σ
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S
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2
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(19.59)
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σ
√
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S
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2
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(19.60)

d7 =
1

σ
√
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SK

H 2
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2
σ 2) T

 
(19.61)

d8 =
1

σ
√
T

 
ln

 
SK

H 2

 
− (r + 1

2
σ 2) T

 
(19.62)

The prices for a down-and-out call and a down-and-in call when H ≤ K were given in

the text in the section on barrier options. Here are the pricing expressions for the remaining

barrier options:

1. Up-and-out call:

S [N (d1) − N (d3) − bN (d6) + bN (d8)]

−PV (K ) [N (d2) − N (d4) − aN (d5) + aN (d7)]
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2. Up-and-in-call:

S [N (d3) + bN (d6) − bN (d8)]− PV (K ) [N (d4) + aN (d5) − aN (d7)]

3. Down-and-out call, K > H :

S [N (d1) − bN (−d8)]− PV (K ) [N (d2) − aN (−d7)]

4. Down-and-out call, K < H :

S [N (d3) − bN (−d6)]− PV (K ) [N (d4) − aN (−d5)]

5. Down-and-in call, K > H :

S bN (−d8) − PV (K ) aN (−d7)

6. Down-and-in call, K < H :

S [N (d1) − N (d3) + bN (−d6)]− PV (K ) [N (d2) − N (d4) + aN (−d5)]

7. Down-and-out put:

PV (K ) [N (d4) − N (d2) − aN (d7) + aN (d5)]

−S [N (d3) − N (d1) − bN (d8) + bN (d6)]

8. Down-and-in put:

PV (K ) [1− N (d4) + aN (d7) − aN (d5)]− S [1− N (d3) + bN (d8) − bN (d6)]

9. Up-and-in put, H > K :

PV (K ) aN (d7) − S bN (d8)

10. Up-and-in put, H < K :

PV (K ) [N (−d3) − aN (d6)]− S [N (−d4) − bN (d5)]

11. Up-and-out put, H > K :

PV (K ) [N (−d2) − aN (d7)]− S [N (−d1) − bN (d8)]

12. Up-and-out put, H < K :

PV (K ) [N (−d2) − N (−d3) + aN (d6)]− S [N (−d1) − N (−d4) + bN (d5)]



Chapter 20
Value-at-Risk

20.1 Introduction

All portfolio management is about risk and return. “Return” is an unambiguous and self-

explanatory concept, but “risk” is a harder concept to pin down. In equity markets, we can

think of risk in terms of volatility or betas or factor loadings; in fixed-income markets, we

have the notions of volatility, duration, and convexity; while in the context of options, there

are the delta, gamma, theta, and other greeks.

In the 1990s, a new tool emerged for measuring portfolio risk called Value-at-Risk or

VaR, which was explicitly geared towards gauging the adequacy of capital held to meet

losses on risky portfolios. The first prominent mention of VaR occurs in a 1993 report

of the Group of Thirty titled “Derivatives: Practices and Principles,” which recommended

the use of VaR and stress-testing to evaluate the riskiness of portfolios. But perhaps the

most important factor in encouraging the use of VaR was the introduction of J.P. Morgan’s

RiskMetrics system in 1994. VaR is today the single most popular measure of portfolio risk

for gauging capital adequacy.

This chapter examines VaR and related ideas. We begin in Section 20.2 with an analysis

of VaR, discussing its definition and uses, the different methods for computing VaR, and

the advantages and disadvantages of each method. Then, building on this foundation, Sec-

tion 20.3 develops the idea of risk budgeting. A final section on “coherent” risk measures

is more abstract: it describes a set of conditions that have been proposed as necessary for a

“good” risk measure to satisfy.

VaR and risk budgeting are topics that have received several book-length treatments in

recent years. Our exposition in this chapter is, of course, briefer. Readers wishing to delve

more into the areas of portfolio risk-management are directed to the many available books

in this area such as Pearson (2002) on which we have based especially our discussion of

risk budgeting.

20.2 Value-at-Risk

The concept of VaR is best motivated with an example. Say we have a portfolio that is

currently worth $100 and that will be worth $100+ X in one year, where X ∼ N (5, 102),

i.e., X is distributed normally with a mean of 5 and a standard deviation of 10. Suppose that

we are interested in estimating the riskiness of this portfolio in terms of “tail outcomes,”

that is, in terms of how much we could lose on the portfolio and with what probability.

One way to gauge this risk is to ask a question such as: what is the probability p that the

one-year return on the portfolio will be less than some dollar amount m? For example, we

498
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may want to know the probability that the returns over the year will be less than −10, i.e.,
that the portfolio will lose at least 10% of its current value of 100.

This is not hard to do. We need to identify the probability of an observation x ≤ −10
from a return distribution that is normal with mean 5 and standard deviation 10. Consulting

a normal distribution table (or using the function NORMDIST in Excel) we see that the

answer is 6.68%.

Value-at-Risk poses this problem the other way around. Rather than fix a dollar amount

m and ask what is the probability p of falling below that, it fixes a probability p and asks:

what is the amount m such that the likelihood of an outcome worse than m is no more than

p? This number m is called the (1 − p) VaR because with probability at least 1 − p, the

outcome will be better than m. For instance, if p is taken to be 1% (a typical value), m is

called the 99% VaR.

In our example, the 99%VaR is the numberm such that the probability of an observation

x ≤ m from an N (5, 102) distribution is 0.01. To identify this number, recall that in any

normal distribution, if we take a distance 2.33 standard deviations from the mean, then

there is about 1% of mass remaining in each tail. Since our attention is on the left tail of the

portfolio, we compute the quantity

mean− (2.33× standard deviation) (20.1)

This is the required number m. For the numbers in the example, the 99% VaR works out to

m = 5− (2.33× 10) = −18.30
Thus, there is a 1% probability that the returns on the portfolio will be worse than −18.30.
Equivalently, there is a 99% probability that the portfolio value at the end of one year will

be at least 100− 18.30 = 81.70.

As this example indicates, there are three components to VaR: a probability p, a dollar

amountm, and a horizon h overwhich theVaR is computed. In reportingVaR, the probability

p is typically taken to be 0.01 or 0.05 (1% or 5%). The horizon varies depending on the

reporting purpose. Portfolio managers often use VaR based on a horizon of one day. Banks’

capital requirements are calculated using a horizon of one year.

A Note on VaR Signs
Since the left tail of portfolio returns will usually involve losses, the VaR as we have defined

it above will typically be a negative number. In practice, it is common to drop the negative

sign when reporting VaR. Implicitly, this means we are interpreting VaR as losses on the

portfolio. (Thus, for instance, the 99% VaR in the numerical example above would be

reported as 18.30 rather than −18.30.)
We will follow this convention in this chapter. A higher VaR then means a more risky

portfolio. A negative VaR in this convention means that returns on the portfolio will be

positive with the given confidence level. For example, a 95% VaR of−3 million means that
the probability that the portfolio will make a return of less than +3 million is 0.05.

VaR as a Risk Measure: Some Comments
One of the most important aspects of VaR as a risk measure is that VaR provides a summary

picture of capital adequacy. That is, it quantifies, in a probabilistic manner, how safe the

firm is from events leading to bankruptcy. For example, suppose a firm has equity capital

of $10 million and a 95% one-year VaR of $12 million. This implies that there is at least

a 5% chance of the firm losing more money over the coming year than it holds in equity

capital. If the firm wishes to reduce the probability of ruin, there are essentially only two
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options. It can elect to hold more capital (say, increase the capital to $15 million), or it can

lower the tail risk in its portfolio by altering the portfolio’s composition.

By capturing a portfolio’s downside risk with a single number, VaR also facilitates

comparison across portfolios. For example, suppose we have two $10 million portfolios.

Suppose that the first portfolio will be worth $10 + X1 million at the end of one year,

while the second portfolio will be worth $10+ X2 million. By comparing the VaRs of these

portfolios at a given confidence level (say, 99%), we can identify which has greater tail risk.

For example, suppose X1 and X2 are both normally distributed with X1 ∼ N (1, 12)

and X2 ∼ N (0.8, 0.72). The first portfolio has a higher expected return than the second

portfolio but also a higher standard deviation, so it is not immediately apparent which has

the lower tail risk. Using (20.1), the one-year 99% VaR of the first portfolio (in millions of

$) is 1.33 since

1− (2.33× 1) = −1.33
Similarly, that of the second portfolio is 0.83:

0.80− (2.33× 0.7) = −0.83
Thus, under 99% VaR, the second portfolio involves less tail risk than the first.

Third, as an aggregate forward-looking measure, VaR facilitates decomposition of risk

into sources such as asset class, manager, or risk factor. Such decompositions may be

used to reallocate assets, set limits, or monitor asset allocations/portfolio managers. This

collective process is called risk budgeting and is the subject of Section 20.3 below.

Fourth, VaR simply involves identifying the point in the tail of the returns distribution

beyond which a given mass of the distribution lies. It involves no distributional assumptions

concerning returns and can be used on both continuous and discrete returns distributions.

The “historical simulation” method of calculating VaR described below makes use of this

agnosticism concerning the actual returns distribution.

The simplicity of VaR combined with these features has led to its widespread use as a

measure of portfolio risk. Nonetheless, VaR is not a summary measure of everything that

we associate with “portfolio risk.” We highlight now some features of VaR to emphasize

what it does not do.

Limitations of VaR
First, as is evident from the definition,VaR is solely ameasure of downside risk, i.e., of losses

that could happen in the left tail of the returns distribution. It does not pay any attention to

the shape of the return distribution outside this tail and should not be treated as a general

measure of portfolio risk. For a simple example that illustrates this point, consider the two

possible outcome distributions given in Table 20.1. The 99% VaR for both distributions

is 0: in either case, there is a probability of 0.99 of an outcome of zero or better. Yet the

distributions are obviously very different.

Not only does VaR not pay attention to what happens outside the left tail of the distri-

bution, but also it does not even say much about how returns behave in the left tail. Two

TABLE 20.1
Distribution 1 Distribution 2

Outcome Probability Probability

−10 0.01 0.01
0 0.90 0.09

+10 0.09 0.90
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TABLE 20.2
Distribution 1 Distribution 2

Outcome Probability Probability

−50 0.025 0.000
−10 0.035 0.060
+10 0.940 0.940

distributions could have very different left tails yet have similar VaRs at a given confi-

dence level. For instance, consider the two returns distributions in Table 20.2. In each case,

the 95% VaR is seen to be −10, so the 95% VaR would rank the distributions on par in

terms of tail risk. However, it is evident that the first distribution has more tail risk than

the second.

A third, and important, shortcoming of VaR is highlighted later in this chapter. An

example in Section 20.4 shows that VaR might fail to respect the benefits of diversification,

i.e., a portfolio’s VaR could go up even while it becomes more diversified and (intuitively

speaking) less risky. This is obviously undesirable in a risk measure. All of these points

indicate that VaR should be interpreted and used with care.

Methods of Calculating VaR
There are many ways to calculate the VaR of a portfolio. Each approach has advantages

and disadvantages; no one way is best. It is important to note too that different methods can

provide different VaR. Three popular ways of computing VaR in practice are:

• The delta-normal method.

• Historical simulation.

• Monte Carlo simulation.

Each method is based to some extent on parameters derived from historical data. We

describe each below.

Estimating VaR I: The Delta-Normal Method
In the delta-normal approach, asset returns are assumed to be normally distributed. Thus,

there are two main inputs into the model: the vector of expected returns on each asset and

the variance-covariance matrix of these returns. Using these inputs, we compute the mean

and variance of the portfolio’s returns. Using the assumption of normality, the portfolio’s

VaR is now easily computed.

In notational terms, suppose there are n assets in the portfolio, indexed by i = 1, . . . , n.

Let:

• wi denote the dollar investment in asset i.

• μi be the expected return on asset i.

• σi j be the covariance of returns between assets i and j . When i = j , this is the covariance

of asset i’s returns with itself, which is just the variance σ 2i of asset i’s returns.

To avoid legitimate confusion, we stress two points about this notation. First, the invest-

ments w = (w1, . . . , wn) are stated in dollar terms, not as proportions of portfolio value

invested in the different assets. Thus, the sum of the wi ’s gives us the total dollar amount

invested in the portfolio. Second, the returns on the individual assets (i.e., the terms μi and

σ 2i ) are, as usual, in terms of returns per dollar invested in these assets. The total dollar



502 Part Two Options

return on the portfolio will depend on the number of dollars invested in each asset. We use

the following notation here and in the rest of this chapter:

• The expected dollar return on the portfolio is denoted μP (w). Where w is understood,

we simplify notation by writing just μP . This expected return is given by

μP =
n 
i=1
μiwi (20.2)

• The variance of dollar returns on the portfolio is denoted σ 2P (w), or, where w is under-

stood, as just σ 2P . This variance is given by

σ 2P =
n 

i, j=1
wiw jσi j (20.3)

Since all asset returns are normally distributed (by assumption) and since the sum of normal

distributions is normal, the portfolio (dollar) returns are themselves normal with mean μP

and variance σ 2P .

Suppose that we wish to calculate the 99%VaR of the portfolio. This is the quantity−m,
where m is defined by

m = μP − (2.33× σP )
If we wish to calculate the 95% VaR instead, we replace the number 2.33 in the equation

above with 1.645. The following example illustrates the procedure.

Example 20.1 Calculating the Delta-Normal VaR
Suppose we have two assets whose returns are jointly normally distributed with expected
returns and variance-covariance matrix given by the following: 

μ1

μ2

 
=
 

0.20
0.12

 
,

 
σ 2

1 σ12

σ21 σ 2
2

 
=
 

0.04 0.02
0.02 0.03

 

Suppose we have a portfolio with an investment of w1 = 5 in the first asset and w2 = 5
in the second asset. Using (20.2) and (20.3), the expected return and variance of returns
on the portfolio are seen to be

μP = 1.60 σ 2
P = 2.75

So portfolio returns are normally distributed with a mean of 1.60 and a variance of 2.75
(i.e., a standard deviation of approximately 1.658). Suppose now that we wish to compute
the 95% VaR. We have

μP − (1.645 × σP ) = 1.60 − (1.645 × 1.658) = −1.128

Thus, the 95% VaR is 1.128 or 11.28% of the portfolio’s initial value. That is, there is a 95%
chance that returns on the portfolio will be no worse than −11.28%. It is left to the reader
as an exercise to verify that the 99% VaR in this example is 2.264 or 22.64% of the initial
portfolio value. Note that if we are using the VaR to gauge capital adequacy, the 99% VaR
requires a little over double the capital of the 95% VaR. ■

Pros and Cons of the Delta-Normal Approach

There are some obvious advantages to the delta-normal approach. It is easy to under-

stand and communicate, and requires nothing more than knowledge of the normal dis-

tribution and basic linear algebra. It is not computationally intensive, and, in particular,
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does not require any simulation. Also, it can easily build in dependence on recent data

and trends.

Weighing against these are two principal disadvantages. First, where options are present

in the portfolio, the delta-normal approach uses the options’ deltas to convert the option

exposures into equivalent units of the underlyings. (This is where the “delta” in the name

of the approach comes from.) The problem is that this approach assumes linear exposure

to underlying prices, which, as we have seen in the chapter on option greeks, is not a

good assumption. In particular, if the portfolio has a positive gamma, VaR based on lin-

earity will overstate possible losses on the portfolio; with a negative gamma, losses are

underestimated.

The second shortcoming of the delta-normal approach comes from the “normal” part.

Returns in practice are often non-normal, even conditionally, and the non-normality often

takes the form of fatter tails than that of a normal distribution. This means that assuming

a normal distribution most often results in an understatement of risk, which is a serious

concern for a risk measure that focuses on the tail.

Estimating VaR II: Historical Simulation
The second approach to computing VaR, historical simulation, uses actual historic data to

evaluate risk. The implicit presumption is that the future will mirror the past distribution of

returns. So we take the current portfolio and subject it to the actual returns on the assets in

the portfolio over a chosen period in the past.

For example, suppose we are interested in the one-day VaR of a given portfolio, and we

wish to estimate this quantity via historical simulation using data from the preceding 1000

days. We look at the dollar returns the portfolio would have had on each of those 1000 days

and rank the outcomes from worst to best. If we want the 95% VaR, we then pick the 50th

worst outcome (5% of the one-day returns actually observed over the past 1000 days are at

or below this level while 95% are better). Similarly, if we want the 99% VaR, we pick the

10th worst of the 1000 outcomes, and so on.

Advantages and Disadvantages of Historical Simulation

There are two main advantages to historical simulation as a means of estimating VaR. First,

the approach is very easy to understand and explain since it involves no technical details. It

is similar to backtesting—we just go back in time and run our portfolio through history and

see what it tells us about the return distribution. Second, non-normality and nonlinearity are

not issues. Since we use actual historical data, we automatically capture the true empirical

distribution.

Balancing this are some disadvantages. Historical simulation is a “lazy” method; it does

not force the risk manager to think critically about the future. The implicit assumption

that the future will mirror the past may be inaccurate (even wildly so—think, for instance,

of the Thai baht circa 1997). Relying on the past may be an especially poor idea when

volatility is unstable. A sudden spike in volatility will cause a small change in a lengthy

historical time series as it affects only the newest observations. This will result in historical

VaR understating actual risk. Conversely, a sharp drop in volatility means that the historical

simulation approach will overstate risk.

Historical simulation is also a very data-intensive approach. For each asset in our port-

folio, we need to maintain a time series of returns. However, with modern computing

resources, this is becoming less of a problem every day. Nonetheless, observe that most of

the data contributes very little to the analysis: since we are interested only in the bottom

few observations that form the data’s left tail, the structure of the remainder of the distribu-

tion matters little. In contrast, a statistical approach assuming an underlying distribution of



504 Part Two Options

returns links the tails of the distribution to the central observations. When the parameters

of the distribution change affecting the central observations, so do the tails.

Estimating VaR III: Monte Carlo Simulation
This is the third approach to computing VaR and a commonly used one in practice. It is

similar to historical simulation in that the portfolio is revalued repeatedly under various

scenarios for returns. The difference is that the scenarios are not based on historical data

but on Monte Carlo simulation using an assumed joint distribution for the returns.

The advantages of this approach are that it handles non-normality well and that there is

great freedom in choosing the form of the joint distribution. It is also far easier to include

options in the analysis since nonlinearity is not an issue. The main disadvantage is that it is

computationally very expensive.

An Assessment of VaR
VaR is now very widely used and has formed the basis for many new and improved risk

measures. It has several plus points including the following:

• It is intuitive and captures well a commonplace notion of “extreme” risk. Loosely speak-

ing, it corresponds to the safety-first criterion as a portfolio objective.

• By focusing on the tails of return distributions, it serves as a good measure of capital

adequacy. As such, it is of particular value to financial-market regulators and has become

the linchpin of system-wide risk management.

• Since VaR reduces all portfolios to a single number, it facilitates comparisons across

portfolios and across markets and enables aggregation across business units.

• VaR is a one-sided measure (it looks only at the left tail of the return distribution) and

so avoids the symmetry in measures such as standard deviation.

But VaR is by no means a perfect measure. Many of the problems with it are related

to implementation. For instance, normality of returns distributions and payoff-linearity

are often assumed. These assumptions become questionable as portfolios become more

complex and utilize nonlinear securities such as options. Implementation in this method (or

with Monte Carlo simulation) also requires knowledge of the correlation in returns between

the different assets in the portfolio, something that is hard to measure accurately. On a

similar note, volatility is well known to be nonconstant over time, yet most VaR systems

as used in practice assume it to be constant over the computing horizon; this becomes

problematic in gauging portfolio risk over long horizons such as one year. Likewise, most

VaR systems ignore jump risk so that tail assessments may be off substantially. Stress-

testing of portfolios—calculating portfolio values under an assumed extreme scenario for

prices—is often used to tackle this issue.

These shortcomings of VaR focus on statistical issues. However, as noted earlier, VaR

also has an important conceptual shortcoming. In Section 20.4, we show that diversifying

a portfolio might result in an increase in its VaR rather than a decrease.

In the final analysis, it is likely that almost any risk measure will suffer from some

shortcomings. Overall, VaR seems to apply well across most portfolios and is almost surely

worth the attention it receives, especially in the regulatory realm. The important thing to

keep in mind is that VaR is only an indicative risk measure and not a comprehensive or

foolproof one; that is, a high VaR is likely a sign of trouble, but a low VaR should not, in

itself, be interpreted as a sign that all is well.
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20.3 Risk Decomposition

The total return on a portfolio is just the sum of the returns on the individual assets in the

portfolio (see (20.2)). Thus, it is a simple matter to decompose a portfolio’s returns and

identify what portion of return comes from each component of the portfolio. In notational

terms, if we have wi invested in each asset i = 1, . . . , n, and the expected returns on asset

i are given by μi , then the portfolio’s returns are just

μP =
n 
i=1
μiwi

So the fraction of total portfolio returns contributed by the position in asset i is just

μiwi

μP

Risk decomposition attempts similarly to decompose the total risk in a portfolio and

identify the contribution of each individual position in the portfolio to the total portfolio

risk. Risk decomposition is of interest for a number of reasons. It provides an understanding

of which components of the portfolio account for much of the portfolio’s risk, a question of

concern for risk managers. Second, when incrementally adding positions to the portfolio,

we gain an understanding of the marginal risk contributions of the new components, which

facilitates computing the amount of additional capital that will be required for regulatory

purposes. Third, in a setting where several business units contribute to the overall risk of the

portfolio (for example, in the case of many trading desks in a large dealing room), knowing

the risk of each unit also enables an assessment of the risk-adjusted return of each trading unit

and so for an appropriate provision of ex ante incentives and ex post rewards for each unit.

Why Is Risk Decomposition a Challenge?
Risk decomposition is a nontrivial task because risk, unlike return, is not additive: the total

risk of a portfolio is, in general, not the sum of the individual risks of each position in the

portfolio. We illustrate this statement here for a two-asset setting with normally distributed

returns.

So suppose we have a portfolio with w1 invested in asset 1 and w2 in asset 2. Suppose

too that the returns on the assets are jointly normal with expected returns (μ1, μ2) and

variance-covariance matrix

 =
 
σ 21 σ12
σ12 σ 22

 

The expected (dollar) return on the portfolio, μP , and the variance of dollar returns, σ
2
P ,

are given by

μP = w1μ1 + w2μ2 (20.4)

σ 2P = w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2σ12 (20.5)

Suppose that our measure of risk is 99% VaR. Then, the portfolio’s risk is given by−m,
where

m = μP − (2.33× σP ) (20.6)

Now, the w1 invested in asset 1 generates normally distributed returns with a mean of w1μ1
and a variance or w2

1σ
2
1 , so the risk (i.e., the 99% VaR) of the investment in asset 1 is given
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by −m1, where

m1 = w1μ1 − (2.33× w1σ1) (20.7)

Similarly, the risk of the position in asset 2 is −m2, where

m2 = w2μ2 − (2.33× w2σ2) (20.8)

From the definitions of μP and σP , it is apparent that the total portfolio risk (20.6) is

not, in general, equal to the sum of the individual risks (20.7)–(20.8). Specifically, while

the portfolio’s mean return is the sum of the individual mean returns, the portfolio standard

deviation is not just the sum of the individual standard deviations except in one trivial

case: where σ12 = σ1 × σ2, i.e., where the assets are perfectly correlated. Thus, one cannot
decompose portfolioVaR into the sumof theVaRsof the individual positions in the portfolio.

What about an “Incremental” Approach?
One way of getting around the additivity problem is to try an incremental risk approach.

That is, first compute the risk of the position w1 in asset 1 alone and use this as the con-

tribution of asset 1 to portfolio risk. Then compute the risk of the portfolio (w1, w2), and

take the change in risk as the marginal contribution of asset 2. Next, compute the risk of the

portfolio (w1, w2, w3) and take the new net increase in risk to be the marginal contribution

of asset 3, etc.

This approach has the virtue that—by construction!—the risk of the portfolio is equal to

the sum of the risks contributed by each position. But it suffers from a rather obvious and

severe flaw: the order in which assets are introduced affects their risk-contributions. For ex-

ample, since the ordering of assets is arbitrary, we could have started with asset 3 first, then

considered assets 1 and 3, then assets 1, 2, and 3, and so on. But this will provide us with dif-

ferent marginal contributions compared to the previous ordering. Here is a simple example.

Example 20.2 Consider again the two-asset setting used in Example 20.1. The returns are jointly normal
with expected return vector and variance-covariance matrix given by 

μ1

μ2

 
=
 

0.20
0.12

 
,

 
σ 2

1 σ12

σ21 σ 2
2

 
=
 

0.04 0.02
0.02 0.03

 

The portfolio has an investment of 5 in each asset: w1 = 5 and w2 = 5. As we have seen,
the expected return and variance of returns on the portfolio are then

μP = 1.60 σ 2
P = 2.75

Returns from the $5 investment in asset 1 are normally distributed with expected return and
variance given by

μ1(w1) = 1.00 σ 2
1 (w1) = 1.00

Similarly, returns from the $5 investment in asset 2 are normally distributed with expected
return and variance given by

μ2(w2) = 0.60 σ 2
2 (w2) = 0.75

Suppose that our measure of risk is 99% VaR. The total portfolio risk is then, as we have
seen, 2.264. Using the incremental approach, we obtain the following risk-contributions:

• If we begin with asset 1 first, the risk-contribution of asset 1 is −m1, where

m1 = 1 − (2.33 × 1) = −1.33
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Thus, asset 1 contributes a fraction 1.33/2.26 = 59% of total risk, while asset 2 con-
tributes the remaining 41%.

• If we begin with asset 2 first, then the risk-contribution of asset 2 is −m2, where

m2 = 0.60 − (2.33 ×
√

0.75) = −1.418

Thus, asset 2 now contributes a fraction 1.418/2.264 or over 62% of the total risk, while
asset 1 contributes only the balance 38%. ■

As these widely-differing numbers show, the incremental approach fails to identify risk-

contributions uniquely.

The Key Properties: Linear Homogeneity and Euler’s Theorem
A superior way to identify the risk contribution of each position is provided by a mathemati-

cal property called linear homogeneity (or homogeneity of degree 1). Linear homogeneity is

a property we have seen earlier in the book in the context of option prices. It was used in the

pricing of forward start options earlier in this book (see Chapter 18). To recall the definition,

a function f (x1, . . . xk) is said to be linearly homogeneous in the variables (x1, . . . , xk) if

for any m > 0, we have

f (mx1, . . . , mxk) = m × f (x1, . . . , xk)

A result known as Euler’s Theorem describes a powerful mathematical property of lin-

early homogeneous functions. Euler’s Theorem was also described in Chapter 18 (see

the segment “Euler’s Theorem and the Replicating Portfolio”). Writing x for the vector

(x1, . . . , xk), Euler’s Theorem states that if f (x) is linearly homogeneous in x , then

f (x) =
 
x1 ×

∂ f (x)

∂x1

 
+ · · · +

 
xn ×

∂ f (x)

∂xn

 
(20.9)

where, as usual, the term ∂ f (x)/∂xi refers to the partial derivative of the function f (x) with

respect to xi .

Linear Homogeneity and Risk Measures
The VaR of a portfolio is linearly homogeneous in the portfolio weight vector w =
(w1, . . . , wn). That is, if we scale up the investment in each asset by a factor of m (i.e., to

the vector m · w = (mw1, . . . , mwn)), the VaR of the scaled portfolio is just m times the

VaR of the original portfolio:

VaR(m · w) = m × VaR(w) (20.10)

Property (20.10) is an intuitive one: if I double all my positions in my portfolio, then the

dollar value in the 1% left tail of the distribution should also double.

VaR is not the only risk measure to possess the property of linear homogeneity. The

standard deviation has this property too:

σP (m · w) = m × σP (w) (20.11)

Again, this is easy to see. When we scale up all our positions by a factor of m, the portfolio

variance increases by a factor of m2, so the standard deviation increases by a factor of m.

Other left-tail-based risk measures, such as expected shortfall, also satisfy linear homo-

geneity. Indeed, linear homogeneity is listed by Artzner, Delbaen, Eber, and Heath (1999)

as one of the four desirable conditions any risk measure should satisfy (see Section 20.4).



508 Part Two Options

Decomposing Risk
Applying Euler’s Theorem to the VaR of the portfolio w = (w1, . . . , wn), we obtain

VaR(w) =
 
w1 ×

∂VaR(w)

∂w1

 
+ · · · +

 
wn ×

∂VaR(w)

∂wn

 
(20.12)

The left-hand side of (20.12) is the total risk in the portfoliow . The right-hand side breaks

down this total risk into n terms, one corresponding to each component of the portfolio.

The i-th component of this breakdown is

wi ×
∂VaR(w)

∂wi

(20.13)

This quantity has a natural interpretation as the risk-contribution of the i-th asset: itmeasures

the impact on overall risk of proportional changes in the allocationwi . For example, suppose

wi changes by a small proportion ξi (i.e., from wi to wi (1 + ξi )); then, from (20.12), the

change in total portfolio risk is approximately 
∂VaR(w)

∂wi

wi

 
× ξi

Observe that if (20.13) is the risk-contribution of asset i , then, because of the identity

(20.12), the sum of the risk-contributions equals the total risk in the portfolio. Thus, we have

achieved the desired breakdown of total portfolio risk into risk attributable to individual

components. The percentage risk-contribution of asset i is

% Risk-Contribution of i = 1

VaR(w)

 
∂VaR(w)

∂wi

wi

 

Note too that the risk-contribution of asset i depends (through the term VaR(w)) on all the

other assets in the portfolio and the covariance of asset i with these terms. This dependence

can be made explicit in the delta-normal method, as we explain below.

Finally, observe that this method of computing the risk-contribution can be applied to any

measure that satisfies linear homogeneity; there is nothing special about VaR in this regard.

In particular, it can be applied to the portfolio standard deviation if that is our measure of

portfolio risk or to the left-tail measure known as expected shortfall.

Example 20.3 Calculating Risk-Contributions
Consider, once again, the two-asset setting used in Example 20.1. We have w1 = w2 = 5.
Returns are jointly normal with the expected return vector and the variance-covariance
matrix given by  

μ1

μ2

 
=
 

0.20
0.12

  
σ 2

1 σ12

σ21 σ 2
2

 
=
 

0.04 0.02
0.02 0.03

 

As we have seen earlier, the 99% VaR of this portfolio is 2.264. What is the contribution
of each asset to this total portfolio risk? To answer this question, note that the portfolio value
is normally distributed with a mean of μP (w) and a standard deviation of σP (w), where

μP (w) = μ1w1 + μ2w2

σP (w) =
 
σ 2

1w
2
1 + σ 2

2w
2
2 + 2σ12w1w2

 1/2

By definition, the 99% VaR is given by

VaR(w) = − [μP (w) − 2.33 × σP (w)]



Chapter 20 Value-at-Risk 509

Differentiating μP and σP with respect to w1 and w2, we obtain:

∂μP (w)

∂w1

= μ1

∂μP (w)

∂w2

= μ2

∂σP (w)

∂w1

= 1

σP (w)

 
w1σ

2
1 + w2σ12

 

∂σP (w)

∂w2

= 1

σP (w)

 
w1σ12 + w2σ

2
2

 
Now, by definition of the VaR, we have

∂VaR(w)

∂wi

= −
 
∂μP (w)

∂wi

− 2.33
∂σP (w)

∂wi

 

Expanding this, we obtain the final expressions for the risk-contributions:

w1

∂VaR(w)

∂w1

= w1 ×
 
−μ1 + 2.33 × 1

σP (w)

 
w1σ

2
1 + w2σ12

  

w2

∂VaR(w)

∂w2

= w2 ×
 
−μ2 + 2.33 × 1

σP (w)

 
w1σ12 + w2σ

2
2

  

Substituting for the various parameter values, these risk-contributions are seen to be 1.1076
and 1.1563, respectively. In percentage terms, the first asset contributes

1.1076

2.264
= 49%

of the portfolio risk. The second asset contributes the remaining 51%. ■

Risk-Contributions in the Delta-Normal Method
In the delta-normal method, the VaR has the form

VaR(w) = − (μP (w) − k σP (w)) (20.14)

for some k that depends on the significance level of the VaR. (For example, if we are

computing 99% VaR, then k = 2.33.) The terms μP and σP are, of course, given by (20.2)

and (20.3), respectively.

Taking the relevant partial derivatives in (20.14), a little algebra shows that the risk-

contribution of the i-th position works out to

wi

∂VaR(w)

∂wi

= wi

 
−μi + k × 1√

σ (w)

n 
j=1

w jσi j

 
(20.15)

Expression (20.15) highlights a central point: the risk-contribution of a position depends

on its covariance with the rest of the portfolio. In particular:

• The higher (more positive) this covariance, the higher the risk-contribution. This is

intuitive. To the extent that an incremental position does not correlate strongly with the

other components of the portfolio, we do not bump up overall risk substantially.

• If the covariance is negative, then the risk-contribution is reduced and can even become

negative (i.e., the position serves as a hedge).
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Computing Risk-Contribution in Other Methods
The risk-contribution denominated inVaRmay be computed for the othermethods similarly,

not just for the delta-normal approach. The only complication is that the partial derivative

∂VaR/∂wi cannot be computed explicitly since we do not have a formula for VaR under

historical simulation or the Monte Carlo method. But it is easy to compute this quantity

numerically so the risk decomposition is always feasible. This is because the linear ho-

mogeneity property of the VaR function does not depend on the method used to compute

VaR.

Uses of the Risk Decomposition
The riskdecompositionwehave just describedhas uses in identifying (a) the risk-minimizing

trades or “best hedges”; (b) the “implied views” in a portfolio; and (c) “optimal” portfolio

allocations. We elaborate on each of these below. Our description below is based on Pearson

(2002); for a more detailed development of the ideas, we refer the reader to this book.

(A) Risk Decomposition and Hedging

Suppose we are interested in reducing the overall risk of a given portfolio (say, because it

exceeds some target level). If we decide to do this using some asset (say, asset i), how large

is the trade size required to achieve this? Risk decomposition helps address this question.

Let the initial dollar allocations be w = (w1, . . . , wn). Pick any i . Suppose we change

the investment in asset i from wi to wi (1 +  i ) where  i could be positive or negative.

From the risk decomposition (20.12), portfolio risk changes by approximately 
∂VaR(w)

∂wi

wi

 
× i (20.16)

If we want the change in portfolio risk to be a given amount, then, using (20.16), we can

identify for each i the size i of the trade in i that would be required to achieve the desired

reduction. For example, if we wish to reduce portfolio risk by an amount A, the proportional

change  i that is required is

 i = A

  
∂VaR(w)

∂wi

wi

 

This observation carries the benefit that we can nowmanage the risk of the portfolio at an

individual asset level by using individual risk decompositions to determine how much we

need to tweak the holdings of each asset. That is, risk decomposition facilitates managing

aggregate risk at an individual level.

Example 20.4 We continue with the two-asset example introduced in Example 20.1. In this setting, the
total VaR is 2.264, and, as we showed above, the risk-contributions of assets 1 and 2 are,
respectively, 1.1076 and 1.1563. Suppose we want to reduce the total VaR to 2.0. If this
change is to be effected by changing the investment in asset 1, the size of the required trade
in asset 1 is

 1 = 2.0 − 0.2639

1.1076
= −0.2382
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which is a reduction of 23.8% in the position. Likewise, if the reduction is to be made in
asset 2, we have

 2 = 2.0 − 0.2639

1.1563
= −0.2282

implying a reduction of 22.8% in the position. ■

(B) Risk Decomposition and Portfolio Optimization

A second use of the risk decompositions is in optimizing portfolio holdings. Intuitively

speaking, we want the return of each asset to be commensurate to its risk-contribution. If

an asset contributes more return than risk, we want to increase its holding in the portfolio.

If it contributes more risk than return, we want to reduce our holding of the asset. More

formally, the mathematical expression of this optimality requirement is that for all distinct

assets i and j , the following condition should hold:

μiwi

Risk-contribution of i
= μ jw j

Risk-contribution of j

If the left-hand side is greater than the right-hand side, then we could reallocate a small

amount from j to i and improve portfolio performance; if the left-hand side is smaller,

then moving resources from i to j improves matters. Knowing how to measure portfolio

risk-contributions enables us to optimize in this fashion.

(C) Risk Decomposition and “Implied Views”

In an “optimal” portfolio, the contribution of a position to returns is proportional to its

contribution to risk. Therefore, given a particular portfolio at a point in time, one can ask:

under what vector of expected returns is this portfolio optimal? These expected returns

are known as the portfolio’s implied views. The implied views can be used to judge the

reasonableness of a portfolio’s allocations. For example, if we find that for a given allocation

to be optimal, a particular asset’s expected returns have to be 43%, andwe think this expected

return is unreasonable, then the given allocation is not optimal.

20.4 Coherent Risk Measures

To judge the acceptability or “goodness” of any given risk measure, it helps to have a set of

criteria to which we can appeal. Artzner et al. (1999) (henceforth ADEH) propose such a

set of criteria. They call “coherent” a risk measure that meets their conditions. This section

discusses their criteria and, particularly, their finding that VaR is not a coherent riskmeasure.

At the outset, it should be stressed that a fundamental motivation behind theADEHpaper

is the estimation of capital adequacy. Thus, their focus is explicitly on “left-tail” measures

such as VaR.

LetR denote a generic risk measure. Given a portfolio w , we denote the risk of w under

the measureR byR(w). ADEH propose four conditions thatR should meet:

Linear Homogeneity If all positions are scaled by a factor of m, then the risk measure

should also scale by m:R(m·w) = mR(w) for any m > 0. Intuitively, if a capital level

of K is required for the portfolio w , then a level of mK is required for the portfolio

mw since tail risk has changed by the factor m. As we have noted, VaR satisfies this

condition.

Montonicity Any portfolio that “dominates” another should result in a lower risk

measure. A portfolio is said to dominate another if it does at least as well or strictly
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better than the second portfolio in all states of the world. This requirement is intuitive:

if w dominates w̃ , then—by definition—w has lower left-tail risk than w̃ . It is also easy

to see that VaR meets this condition.1

Subadditivity Diversification should reduce risk, and our risk measure should reflect

this. That is, the risk of a combination of portfolios should be less than the sum of

risks of the individual portfolios. In mathematical terms, if P1 and P2 are any two

portfolios, then subadditivity is the condition that the risk measure satisfy

R(P1+ P2) ≤ R(P1) +R(P2)
The failure of this condition may lead a risk manager to reject diversification when,

in fact, he should be encouraged to do just that. Such failure also has consequences

for regulators and others who rely on left-tail measures for gauging capital adequacy.

Futures exchanges, for example, set margin requirements based on tail-event

considerations. If the risk measure they use for this purpose violates subadditivity,

they would require lower margins from a customer who opened two positions under

different accounts than from one who opened the positions under the same account.

Remarkably, VaR does not satisfy the subadditivity property. This is a sufficiently

important failing that we illustrate it separately with two examples below.

Translation Invariance If we add a risk-free asset to the portfolio with an expected

return of r , the risk of the portfolio should come down by the extent of this risk-free

addition. It is apparent that VaR meets this condition.

ADEH provide a number of examples in their paper on the failure of commonly-used

risk measures to satisfy these conditions. We present below two examples taken from their

paper that highlight the shortcomings of VaR. The first example shows that VaR may fail

subadditivity. The second shows that VaR may fail to recognize concentration of risk in the

tails. In the example, VaR awards a lower risk to a portfolio with highly concentrated tail

risk than to one with more diversified risk.

Example 20.5 VaR and the Failure of Subadditivity
Consider a portfolio consisting solely of binary cash-or-nothing options on a stock, with
payoff M > 0 if the options finish in-the-money. There are two kinds of options:

1. Type-U options: The options pay M if ST > K u, and nothing otherwise. The initial price
of these options is Pu.

2. Type-D options: The options pay M if ST < K d, and nothing otherwise. The initial price
of these options is Pd.

The strikes K u and K d are chosen so that Prob(ST > K u) = Prob(ST < K d) = 0.008. The
riskless rate is taken to be zero. Note that we must have K d < K u; and, of course, we must
also have Pu, Pd < M. We further assume that M > Pu+ Pd. Given the miniscule probabilities
of the options finishing in-the-money, this is reasonable.

The risk measure in this example is 99% VaR with a horizon of T where T is the maturity
date of the options. Consider three portfolios:

1 Not all risk measures satisfy monotonicity. Even a simple risk measure like the portfolio standard

deviation violates it. For an example, suppose that there are four equiprobable states of the world.

The first portfolio, Portfolio P1, has payoffs in these four states given by the vector {1, 2, 4, 5}. The

second portfolio, Portfolio P2, has the payoff vector {1, 2, 3, 4}. It is apparent that P1 dominates P2

and should not be ranked by any reasonable risk measure as worse than P2. But if we compare the

two portfolios’ standard deviations, we obtain σ (P 1) = 1.83, and σ (P 2) = 1.29.
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• Portfolio A Short one Type-U option, investment of Pu at the riskless rate for maturity
at T .

• Portfolio B Short one Type-D option, investment of Pd at the riskless rate for maturity
at T .

• Portfolio C Short one Type-U option and one Type-D option; investment of Pu + Pd at
the riskless rate for maturity at T .

Each portfolio has a value of zero today. At T , the first portfolio is worth Pu if ST ≤ K u,
and −M + Pu if ST > K u, so its payoff distribution is

 
Pu − M, with probability 0.008

Pu, with probability 0.992

It follows that the 99% VaR of Portfolio A is −Pu. Note that the VaR is negative since with
probability at least 0.99, the portfolio is not expected to lose money. Similarly, the 99% VaR
of Portfolio B is −Pd. If capital adequacy were based on 99% VaR, neither portfolio would
be deemed to require any extra capital.

Portfolio C, on the other hand, has the following payoffs at T :

 
Pu + Pd − M, if ST < K d

Pu + Pd, if ST ∈ [K d, K u]
Pu + Pd − M, if ST > K u

Thus, its payoff distribution is

 
Pu + Pd − M, with probability 0.016

Pu + Pd, with probability 0.984

Since Portfolio C loses money with a total likelihood of 1.6% (0.8% on either option), the
99% VaR of Portfolio C is M − Pu − Pd, so it is positive. It follows that the 99% VaR risk
measure will rank Portfolio C as having more risk than the sum of the risks of Portfolios A
and B. This says precisely that VaR fails the subadditivity condition. ■

Example 20.6 VaR and Concentrated Tail Risks
This example is also based on the ADEH paper and is attributed by them to Claudio Albanese.
Suppose that there are 100 different corporate bonds. Each bond costs 100 today and will
provide a payoff of 102 on a common maturity date if there is no default and nothing
otherwise. The likelihood of default on each bond is 0.01, and default is independent across
bonds. The risk-free rate of interest is zero. The risk measure is 95% VaR with a horizon equal
to that of the bonds’ maturity.

Consider, first, the following highly concentrated portfolio. You borrow 1 million at the
risk-free rate and invest the entire sum in the bonds of a single company (say Company 1).
The payoff received at maturity is

20, 000, if there is no default
−1, 000, 000, otherwise

Since the probability of default is 0.01, the 95% VaR of the portfolio is negative and equal
to −20, 000.
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Now consider the alternative of investing 10,000 in each of the 100 bonds. The payoff
at maturity will depend on how many bonds default. The likelihood of k defaults (k =
0, 1, 2, . . . , 100), denoted πk, can be found using the usual binomial formula:

πk = 100!

k!(100 − k)!
(0.01)k(0.99)100−k (20.17)

The payoffs received at maturity in the event of k defaults are

(10, 200 × (100 − k)) − 1, 000, 000 (20.18)

It is easily checked from (20.17) that the probability of two or fewer defaults is about 0.92
while the probability of three or fewer defaults is about 0.98. Thus, the 5% VaR of this
portfolio corresponds to the payoffs received from exactly two defaults. From (20.18), the
5% VaR is 400.

Thus, VaR indicates that diversifying by putting an equal amount into each of the 100
bonds is worse than (and requires more capital than) putting all our money into the bonds
of a single company, a patently absurd conclusion. ■

To the extent that one accepts the axiomof subadditivity as a desirable one, these examples

are obviously damaging to the notion of VaR as a risk measure. Mitigating this are two

factors. First, if returns are jointly normally distributed, then the resulting VaRmeasure will

always satisfy subadditivity. This means if we use the delta-normal method to compute VaR

(as is commonly done in practice), the possible failure of subadditivity is not a concern.

Second, even its most ardent advocates do not viewVaR as a “stand-alone” riskmeasure that

summarizes everything relevant about tail risk. Complementing VaRwith other measures of

tail risk can greatly improve our understanding of overall portfolio risk. Two such measures

of tail risk are worst-case scenario analysis and expected shortfall.

Worst-Case Scenario Analysis and Expected Shortfall
VaR has the disadvantage that it has nothing to say about what could happen in the tail of

the distribution. For example, knowing the 99% VaR does not tell us what could happen in

the 1% tail, i.e., how big might losses be in that region. The potential magnitude of tail loss

is obviously important. Worst-case scenario (WCS) analysis and expected shortfall (ES)

have been proposed as complements to VaR for this purpose.

WCS, proposed by Boudoukh, Richardson, and Whitelaw (1995), explores the proper-

ties of the tail of the VaR distribution. Effectively, it asks: how bad can things get in the

tail? More precisely, it examines the distribution of the loss over the worst trading period

over a given horizon. (For example, the worst day in a horizon of 250 trading days. Ob-

serve that a “worst” period always exists over any horizon.) In notational terms, if we let

r1, r2, . . . , rN denote the returns on the portfolio over N trading periods, then WCS looks

at the distribution of min{r1, . . . , rN }. Boudoukh et al. compare VaR and WCS numeri-

cally and conclude that the expected loss during the worst period is much larger than the

corresponding VaR.

We can also look at the tail with a different focus and ask how bad things can become in

the tail on average. That is, conditional on losses exceeding theVaR limit, what is the average

loss? This measure is called expected shortfall. ES is known to be a coherent measure of

risk, one factor that has led to its popularity. For a description of the properties of ES, see,

e.g., Acerbi, Nordio, and Sirtori (2001) or Acerbi and Tasche (2002).
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20.5 Exercises 1. What is Value-at-Risk (VaR)? What is the minimal information you need to compute

VaR? What are its advantages and its limitations?

2. What are the three different approaches to computing VaR? State some advantages and

disadvantages of each method. State two attributes of these three methods that you think

are the most important, and then assess which of them satisfies your attributes best.

3. How is Value-at-Risk (VaR) different as a measure of risk than the variance of return?

4. What, if any, is the relationship of variance and VaR?

5. Which moments of the return distribution are measures of risk? State some of them, and

explain what the nature of the risk measure is, and what insight one might be aiming for

with your chosen measure of risk.

6. If the mean, variance, and skewness remain the same, but the kurtosis of returns on a

portfolio increases, will the VaR increase or decrease, keeping all else the same?

7. If the mean and variance remain the same but the skewness of returns on a portfolio

becomes more negative than before, what do you think will happen to the VaR of the

portfolio?

8. Compare VaR and kurtosis as risk measures for a portfolio.

9. What is the relationship of the trading horizon used for calculating VaR and the level of

VaR? What do you think is an optimal horizon for VaR calculations?

10. Is it feasible to compute the risk contribution of individual assets to the total risk of

a portfolio under the VaR measure if the distribution of returns is not normal and the

delta-normal approach is not available?

11. VaR has been criticized for not being a “coherent” risk measure. Why is this?

12. Suppose the average profit of FOF Inc. is $1 million per week. The standard deviation of

profits per week is $1 million as well. Calculate the 1% and 10% VaR for FOF. Assume

profits are normally distributed.

13. In the preceding problem, suppose the distribution of returns is not normal but Student’s

t with 5 degrees of freedom. What is the 1% VaR under the new assumption? What

happens to the VaR when the t distribution has 20 degrees of freedom instead? Explain

the difference in results.

14. Consider a portfolio that has equal amounts of $10 invested in two assets. Suppose

returns on the two assets are jointly normally distributed. The annual expected returns

and variance of returns on the first asset are given by

μ1 = 0.10 σ 21 = 0.04

and those on the second asset are given by

μ2 = 0.05 σ 22 = 0.03

Consider three cases:

(a) The correlation between the returns is ρ = 0.

(b) The correlation between the returns is ρ = +0.50.
(c) The correlation between the returns is ρ = −0.50.
For each case, identify the 1% Value-at-Risk of the portfolio. Explain the pattern of

dependence of VaR on the correlation.

15. Consider the same parameters as in the previous problem, but consider now only the

case ρ = −0.50. The total portfolio risk in this case is given by the VaR amount you
have computed above. What are the risk contributions of the two assets?
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16. You are given a portfolio of three assets with mean vector and covariance matrix of

returns as follows: ⎡
⎣0.100.15

0.05

⎤
⎦

⎡
⎣0.08 0.05 0.05

0.05 0.06 0.05

0.05 0.05 0.07

⎤
⎦

Compute the 5% VaR for a portfolio that is invested in $1 in each asset using the delta-

normal method.

17. Repeat the previous exercise using Monte Carlo simulation and compare your solution

to the analytical value from the delta-normal method.

18. Repeat the previous Monte Carlo problem assuming instead that the random numbers

are drawn from a Student’s t distribution with 5 degrees of freedom. Compare the VaR

values with that from the normal distribution.

19. You are managing a portfolio that tracks the S&P 500 index. You consider two ways in

which you might calculate the VaR:

(a) Using the delta-normal approach by calibrating the mean and variance of the port-

folio to the historical data.

(b) Using historical simulation based on the same data.

Which one would you expect to provide a riskier picture of the portfolio?

20. You are given a portfolio of three assets whose returns are jointly normally distributed

with the following mean vector and covariance matrix:⎡
⎣0.200.10

0.15

⎤
⎦

⎡
⎣0.08 0.02 0.02

0.02 0.06 0.03

0.02 0.03 0.07

⎤
⎦

(a) Compute the 5% VaR for the portfolio if we invest $1 in the first asset, $2 in the

second asset, and $3 in the third asset.

(b) How much does each asset’s holding contribute to the overall VaR risk?

21. Examine the following plots of bivariate return distributions closely. Pay special attention

to the values on the axes. Both plots are joint distributions of returns of stocks. The first

⫺2 ⫺1 0 1 2

1.5

1

⫺0.5

⫺1

⫺1.5

⫺2

⫺2.5

⫺3

0.5

0
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1

0.8

0.6

0.4

0.2

0

⫺0.2

⫺0.4

⫺0.6

⫺0.8

⫺0.5 0 0.5 1  

plot is from a Student’s t distribution and the second one from a normal distribution. Both

have the same means and covariance matrices. Explain which joint return distribution

is likely to be riskier in terms of VaR. Why are they different in risk even though the

means, variances, and covariances are the same?

22. You are given a portfolio of two assets whose returns are jointly normally distributed

with the following mean vector and covariance matrix:

 
0.20

0.10

  
0.08 0.04

0.04 0.06

 

(a) Compute the 5% VaR of the portfolio if $1 is invested in the first asset and $1 is

invested in the second.

(b) Compute the risk-contribution of each asset to the VaR.

(c) Is the current portfolio weighting optimal? If not, suggest a better one.

23. (Requires Writing Code) You are given a portfolio of two assets with mean vector and

covariance matrix of returns over the VaR horizon as follows:

 
0.20

0.10

  
0.08 0.04

0.04 0.06

 

(a) The joint distribution of the securities is assumed to be Student’s t with 5 degrees

of freedom. Compute the 5% VaR of the portfolio if $100 is invested in the first

asset and $200 is invested in the second. Assume that the returns are continuously

compounded. Use Monte Carlo simulation for this question. Present your Octave

program code with solutions.

(b) Redo part (a) using a Student’s t distribution with 20 degrees of freedom. Comment

on how your results compare to the first part.

24. (Difficult) The following asset-pricing factor returns are downloaded from the Fama-

French database: the excess market return, the SMB portfolio return, the HML portfolio
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return, and the risk-free return. From the downloaded data, which is for the period

1963–2003, we get the following mean and covariance matrix:

Mean Returns

Rm - Rf SMB HML Rf

0.0204244 0.0065800 0.0197292 0.0231443

Covariance Matrix of Returns

0.805756 -0.120621 -0.245771 -0.000218

-0.120621 0.242035 -0.012267 -0.000135

-0.245771 -0.012267 0.212526 0.000086

-0.000218 -0.000135 0.000086 0.000109

Now answer the following questions:

(a) Given the following utility function, compute the optimal portfolio weights:

U = Mean Portfolio Return− γ · Variance of Portfolio Return
where γ = 3. What is γ ?

(b) For the given portfolio weights, compute the 1% VaR of the optimal portfolio.

(c) Compute the risk decomposition of the portfolio, and allocate the risk across the

four asset classes. Which asset class contributes the most risk?

(d) Now choose some random weights different from the optimal ones you just com-

puted. Recompute the VaR. Is the risk measure higher or lower? Why?

(e) If you had to double the proportions of just one of the assets, which one would you

choose? Why?

25. This question talks about adjustments you may need to make in the computation of VaR.

(a) In a historical simulation algorithm for VaR, suppose the portfolio’s historical mean

return is anticipated to be understated by 2%. What adjustment would you make

in the simulation for determining the VaR in a new simulation run? Explain this in

detail with the specific steps you would use.

(b) In addition, suppose that the portfolio variance in the future is anticipated to be

1.5 times what it was in the past. Again, explain the specific modification to the

simulation algorithm required to accommodate this feature.



Chapter 21
Convertible Bonds

21.1 Introduction

A convertible bond is a corporate bond with an embedded option that allows its holder to

convert the bond into equity at a fixed price. Convertibles possess characteristics of both

equity and corporate debt, but they are more than just a package of these securities. Their

complexity comes from the interplay of their equity and debt components and the fact

that convertibles very often have other optionalities embedded in them such as callability

by the issuer. Their values depend on multiple risk factors including equity risk of the

issuing company, interest-rate risk, and credit risk of the issuing company. In this chapter,

we examine the main features of convertible bonds, looking especially at the factors that

affect the prices of these bonds and how these factors could matter.

Convertibles are attractive to both investor and issuer for a variety of reasons. By provid-

ing bondholders with a conversion option, convertibles offer protection from risk-shifting

actions by management that benefit equity holders at the expense of bondholders. (Green

(1984) develops a theoretical model that highlights the features of convertible bonds that

make them preferable to conventional bonds.) For fixed-income investors, convertibles offer

the opportunity to participate in the equity upside of the company. For equity investors, the

bond floor limits their downside risk compared to an investment in straight equity.

Convertible bonds vary widely in their characteristics, sufficiently so that there is really

no such thing as a “typical” convertible. We begin with some terminology and then list the

main features of convertible bonds.

21.2 Convertible Bond Terminology

A convertible bond is a fixed-income obligation of a company that gives the bondholder the

right to convert the bond into a fixed number of shares. This fixed number of shares is called

the conversion ratio. For example, a conversion ratio of 2.5 means that each convertible

bond may be exchanged for 2.5 shares of equity. The conversion price is the face value of

the bond divided by the conversion ratio:

Conversion Price =
Face Value

Conversion Ratio

The conversion price is that price of equity at which the bondholder would be indifferent

between converting to equity or receiving the bond’s face value.

Unlike warrants, no money changes hands at conversion time. When the bonds are

exchanged for equity, investors forfeit future interest payments and redemption of principal

on the bond. Typically, the conversion right may be exercised at any time (i.e., it is an

519
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American-style option). At maturity, if the security has not been converted into equity, it

will be redeemed by the issuer like a straight bond.

Parity and Premium
The market value of the shares in a convertible bond (henceforth, CB) is called parity:

Parity = Conversion Ratio×Market Price/Share

The premium for a convertible bond is the excess of the market price of the CB over parity:

Premium = Price of CB− Parity

Thus, the premium is the value of the bond over and above its immediate conversion

value. At issue, the premium reflects the anticipated net value of the various embedded

options within the convertible bond.

There are two equivalent ways to think about convertible bonds, either as a package

of a fixed number of shares, or on a per-share basis. The latter is more intuitive, but the

CB market uses the former. Of course, we may translate from one to the other using the

conversion ratio. Prices in the CB market are quoted in “points,” i.e., as percentages of

nominal value.

Example 21.1 Consider the following information about a convertible bond:

• Face value: $5,000.

• Issue price: $5,200.

• Conversion ratio: 500.

• Current share price: $9.50.

Table 21.1 summarizes the three ways of looking at this information. Given a conversion
ratio of 500, the conversion price is equal to the face value of the bond divided by the con-
version ratio, i.e., $10. Parity is the conversion ratio times the current market price of equity,
which equals $4,750. Since the bond is trading at $5,200, the premium is $450. ■

21.3 Main Features of Convertible Bonds

There are some features that are common across convertible bonds (such as callability)

and some dimensions along which convertibles exhibit considerable variability (such as the

coupon structure or other embedded optionalities). This section lists the main features of

covertible bonds.

TABLE 21.1
Convertible Bond

Terminology

Cash Value Value/Share Market Quote

Conversion ratio 500
Face value $5,000 $10.00 100.00
Conversion price $5,000 10.00 100.00
CB price $5,200 $10.40 104.00
Parity $4,750 9.50 95.00
Premium $450 $0.90 9.00
Premium % 9.47% 9.47% 9.47%
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Callability and Call Protection
Convertible bonds are, almost invariably, callable by the issuer, that is, the issuer has the right

to buy the bond back from the holder at a prespecified price, typically par. Thus, both the

issuer and the holder of the convertible hold options, and the exercise of one option affects

the life of the other. The exercise of the convert option by the bondholder extinguishes the

call held by the issuer. If the call is exercised by the issuer, then the convert option is not

extinguished immediately, but its life is shortened sharply: the bondholder may convert the

bond to equity within a fixed period of time from the date of the call (e.g., 30 days), failing

which the bond is surrendered to the issuer for the call consideration. The call feature is

commonly invoked by issuers to force conversion.

To maintain a balance between the issuer’s rights and those of the investor, some protec-

tion against callability is commonly provided to the investor. This protection takes on one

or both of two forms:

• “Hard” Protection The bond cannot be called for a specified length of time (typically,

two to four years from the issue date).

• Provisional (“Soft”) Protection The share pricemust be trading at aminimum specified

premium to the conversion price (often 30%–50%) when it is called.

Maturity and Coupon Structure
Convertibles range in maturity from 3 to 30 years, and some convertibles even comewith no

maturity date (see the segment below on “Convertible Preferreds”). The coupon structure

in convertibles too varies widely. In traditional “cash-pay” convertibles, the coupon is set

so that the bond initially trades at par; thus, the coupon equals the yield-to-maturity (ytm)

on the instrument. In “original issue discount” or OID convertibles, the coupon is lower

than the ytm, and the convertible trades below par at inception; part of the return to the

investor is received in the form of capital appreciation as the bond accretes to par at maturity.

Zero-coupon or “deep-discount” convertibles pay no coupon at all; the entire return is from

capital appreciation.

When coupons are paid, the coupon may be fixed, or it may be a variable coupon with

reset clauses; in the latter case, the coupon can be floating, based on an interest-rate index, or

set to vary for different periods in the life of the bond. Multicurrency convertibles also exist

with the principal and interest in different currencies; sometimes the investor is allowed to

choose the currency in which to receive the coupon.

Convertible Preferreds
Convertible securities are most often coupon-paying bonds as we have described above,

but convertibles may also be dividend-paying preferred stock that may be converted to

common stock at the fixed conversion ratio specified in the contract. Convertible preferred

stock typically has no maturity date. An important exception is the class of “mandatory

convertibles.” A mandatory convertible is convertible preferred stock with a fixed maturity

date (typically three years from the date of issue) on which the preferred stock manda-

torily converts to common stock. Mandatory convertibles are usually not callable. In a

mandatory convertible, the number of units of common stock received per unit of preferred

share is typically variable and depends on the value of the underlying common stock at

maturity.

Puttability and Other Features
Convertible bonds may also be puttable: that is, the investor may have the right to put the

bond back to the company at specified points in time. The put option is used to make the
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convertible more attractive to the investor and so to lower the coupon paid on the bond. Puts

are particularly common in zero-coupon convertibles where the put optionmay be exercised

at specified intervals (e.g., every five years) at the accreted value of the bond.

More exotic features may also be present in convertibles. For example, in “reset convert-

ibles” (a.k.a. “death-spiral convertibles”), the conversion ratio depends on the behavior of

the stock price: an initial conversion ratio is specified, but the conversion ratio is increased

if the stock price drops below specified trigger levels. The objective is to offer some protec-

tion to convertible bond investors against a loss in value following a sharp drop in the stock

price. Reset convertibles were issued in large numbers by Japanese banks in the 1990s.

The Attractions of Convertibles
Convertibles combine features of both debt and equity. As such, they have many attractive

features for issuers. The presence of the convert option means that the coupon on CBs will

be lower than that on straight debt. Moreover if the bond is eventually converted to equity,

then this future injection of equity will have come at a premium to the current equity price.1

Management may also use the convertible bond issue for signaling purposes. In particular,

the convert feature acts as a guarantee that management will not pursue actions that benefit

equity holders at the cost of bondholders since CB investors can always convert and cash

in on gains in equity value resulting from such “risk-shifting.”

Convertibles also offer several advantages to the investor. For equity investors, they have

the attraction of a lower risk profile: unlike equity, CBs offer greater downside protection. For

fixed-income investors, they offer a degree of upside participation if equity prices should

increase. Of course, these advantages come at a price; there is no “best of both worlds”

argument. For equity investors, owing equity via a convertible provides a bond floor but

the convertible also involves a premium over the parity value of equity. For fixed-income

investors, the potential upside advantage is paid for in the form of a lower coupon on the

convertible than could be obtained on a straight bond.

21.4 Breakeven Analysis

Breakeven analysis is a simple approach to analyzing the convertible premium. It focuses

on the extra income that the investor receives over a specified horizon from owning the

convertible instead of an equivalent amount of equity. The implicit assumption in this

analysis is that the CB will be converted into equity with certainty at the end of the horizon.

The calculations for breakeven analysis then focus on figuring the time to “breakeven,”

which determines the fair premium.

Plain vanilla convertibles usually yield more than the dividend yield on the underlying

shares, so the extra income from owning the convertible instead of equity is positive. The

breakeven is the measure of time required to recover the conversion premium through the

higher income received from the convertible. We compare two quantities:

• The cash premium an investor pays to own stock indirectly via a convertible.

• The additional annual income the convertible provides versus an investment of an equiv-

alent amount directly in the equity.

1 To be sure, these post-hoc justifications do not imply the superiority of convertibles over straight

debt or equity. For example, if equity prices do not ever rise to the point where conversion becomes

optimal, then it is true that the convertible works out, ex-post, to be cheaper than straight debt, but

issuing straight equity would have been cheaper still.
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The breakeven period (measured in years) is the premium divided by the annual income

advantage. This breakeven is compared to the number of years the convertible is guaranteed

to remain in existence. It is common to use the first call date for this purpose. From the

investor’s point of view, a shorter breakeven is better.

If the breakeven is within the noncall period, this is viewed as a case where investors

are “guaranteed” to recover the conversion premium through the income advantage alone.

Any further income is considered “free.” If the breakeven lies beyond the noncall period,

then the interpretation is that recovery of the conversion premium is not guaranteed, so the

premium is viewed as excessive.

Example 21.2 Suppose that we are given the following information about a convertible bond and its issuer’s
equity.

• Face value: $5,000.00.

• Issue price: $5,000.00.

• Parity: $4,500.00.

• Coupon: 3% (semiannual).

• Dividend yield: 1%.

• Premium: $500.00 = 10 points.

The annual income from the convertible is 0.03×5,000 = 150. Given the dividend yield of
1%, the annual income from investing $5,000 in equity instead works out to 0.01×5,000 =
50. Thus, the extra annual income from the convertible is $100. Therefore,

Breakeven =
Cash Premium

Excess Annual Income
=

500

100
= 5 years

■

Breakeven analysis offers a useful first glance at the fair value of a CB. However, it has

some obvious and serious shortcomings. It ignores the time value of money in its calcu-

lations. It fails to take into account the different risk characteristics of different securities.

For instance, it ignores the optionality in the convertible and so gives no value either to the

bond floor present in the convertible or to such factors as equity volatility and the equity

upside. To obtain more insight about the risk characteristics of convertibles, one must use

a more sophisticated approach. We discuss this next.

21.5 Pricing Convertibles: A First Pass

A convertible is often likened to a package of two securities: a straight bond and a war-

rant. There are obvious similarities, and indeed there is considerable intuitive insight to be

gained from thinking of convertibles as possessing a “bond” component and a “warrant” or

“optionality” component. But there are also important differences. In a bond-cum-warrant

package, exercise of the warrant requires payment of the strike price but leaves the bond

undisturbed. In a convertible, there is no cash payment when conversion occurs, but the

bond is given up. CBs also have callability features, and the exercise of the call feature on

the bond shortens the life of the convert option.

In general, there is a large list of features we need to take into account in identifying the

fair price of a convertible bond. These include:

• Equity Characteristics The current level of the stock price and its volatility are obvious

important determinants of the CB price. So, too, is the dividend yield anticipated on the

equity: ceteris paribus, a higher dividend yield results in a lower growth rate of the stock

price which affects the convertible option.
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• Interest Rates Changes in interest rates affect both the bond component of the CB

as well as the optionality component. The former works through changing the present

values of the coupons and principal payments that remain. The latter effect is similar to

the effect of interest-rate changes on equity call option values.

• The Issuer’s Credit Risk The issuer’s credit risk affects both the bond and optionality

components of the CB. Default results in lost coupons on the bond and a recovery be-

low the face value due at maturity. Since the likelihood of default also affects equity

characteristics, the warrant component of the CB is also affected.

• The Convertible Structure This includes such factors as the size of coupons, the pres-

ence of other optionalities in the convertible such as callability by the issuer, puttability

by the holder, etc.

All this means that the pricing of convertibles by no-arbitrage methods must involve

more complex models than the pricing of equity options. But if, as a first approximation, we

ignore interest-rate and credit-risk considerations, then the pricing of convertibles becomes

considerably simplified.Wemay then thinkof the convertible as a straight bond-cum-warrant

package, but one in which the strike price on the warrant at any time is the value of the

bond at that point. Exploiting this idea, we can price convertibles using binomial models.

We examine this approach in the remainder of this section. The next section discusses

introducing credit risk into the modeling process.

Even with equity risk alone, there is a wide range of factors that affect CB prices.

Rather than build a model that simultaneously incorporates all of these factors, we adopt

a “building-blocks” approach. We begin with a look at the valuation of convertibles in

a simple one-period binomial model. The ideas developed here are easily generalized to

many-period binomial models in the obvious way. Then, we discuss in turn adding coupons,

dividends, and call and put features to the model.2 The analysis is done on a per-share basis.

Valuation in a One-Period Binomial Model
Let S = 100 denote the current price of the equity underlying the CB. Suppose that after

one period, the stock will return either +10% or−10%. Thus, the two possible prices after

one period are uS = 110 and d S = 90. Let the one-period interest rate be 2%. Consider

valuing in this framework a one-period convertible bond with a face value of E = 100.

After one period, the bond is at maturity. If the state uS = 110 has been reached, it is

optimal to convert the bond to equity. Thus, the value C Bu of the convertible in this state

is 110. If the state d S = 90 is reached, it is optimal to receive the par value of 100. Thus,

C Bd = 100. This information is summarized in Figure 21.1.

We can use replication arguments to price the convertible bond. Consider a portfolio of

 units of the stock and B of cash invested/borrowed at the 2% rate. This portfolio will

perfectly mimic the CB after one period if

110 + 1.02 B = 110

90 + 1.02 B = 100

Solving, we get:

 = 0.50 B = 53.92

2 The pricing of convertibles in binomial trees has been undertaken by many authors. For example,

Carayannopoulos and Kalimipalli (2003) and Das and Sundaram (2007) develop versions that also

incorporate default and interest-rate risk. Our building-blocks exposition in this section adopts the

simpler didactic approach of Connolly (1998).
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FIGURE 21.1
One-Period Pricing

Model

CBu ⫽ 110

CBd ⫽ 100

CB ⫽ ?

rB ⫽ 1.02

rB ⫽ 1.02

B ⫽ 1

uS ⫽ 110

Stock

Cash

CB

dS ⫽ 90

S ⫽ 100

In words, the following portfolio perfectly mimics the behavior of the CB: a long position

in 0.50 units of the stock and investment of 53.92. Since the portfolio perfectly replicates

the CB, the fair price of the CB must be equal to the cost of the portfolio:

C B =  S + B = 103.92

Thus, the arbitrage-free price of the convertible may be determined from knowledge of the

characteristics of the issuer’s equity.

Generalizing to Many Periods
This pricing argument may be generalized in the obvious way to many period binomial

models along the lines described in Chapters 12 and 13 for equity options. We do not repeat

the details here. Constructing a CRR binomial tree as described in Chapter 13 and carrying

out the pricing procedure for several different values of the initial stock price results in a

graph of convertible bond prices as described in Figure 21.2.

The shape of the CB price curve in the figure accords well with intuition. The value of

the CB increases as the stock price increases. At very high levels of the stock price, the

CB is almost sure to be converted to equity, so increases almost one-for-one with the stock

price. At very low levels of the stock price, there is almost no chance of conversion, so the

CB is very much like debt. The price of the CB thus converges to the price of a straight

bond with the CB’s coupon and maturity structure.

The bond floor forms one lower bound for the price of the CB. The other lower bound

is the value of the equity in the CB, i.e., parity. The CB can always be converted to equity

but the holder of the CB, unlike the owner of straight equity, is protected by the bond floor

if stock prices were to decrease sharply. As a consequence, the CB must always be worth
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FIGURE 21.2
Convertibles, Parity,

and the Bond Floor
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at least parity. Typically, the premium over these floor values is strictly positive as in the

figure. Finally, note the curvature of the CB when it is “at-the-money.” This mimics the

feature observed in the case of equity call options. Of course, this is not surprising since

the warrant component of the CB is akin to a call option on equity, but it does mean that

CBs, like options, have gamma risk.

To be sure, Figure 21.2 is a little simplistic. Among other things, the figure takes the bond

floor to be constant regardless of the level of stock prices. But very low stock prices may

indicate the company is in distress and close to default, so the bond values will correspond-

ingly fall. The next section discusses how to extend the model to incorporate credit risk. But

first we discuss some simpler, but equally important, extensions such as adding coupons

and dividends and including such features as callability of the CB in the pricing analysis.

Adding Coupons
Coupons are an important motivation for fixed-income investors, and convertibles are no

different in this regard. Indeed, techniques such as breakeven analysis reflect the centrality

of coupons in the convertible structure. Adding coupons to the pricing model is simple if

we are using a lattice framework such as the binomial. Conditional on the CB not having

been converted so far, in each period in the tree where a coupon occurs, we add the coupon

to the value of the CB at that point. For example, if the amount due at maturity is the face

value F plus the final coupon c, and the CB has not been converted so far, then at the last

node, the value of the CB is

max{F + c, S}

where S is the equity price at this point. Figure 21.3, adapted from Connolly (1998), illus-

trates the pricing procedure (compare the top and bottom panels).

Holding all else constant, the ultimate impact of adding coupons is that the CB value

goes up. The increase can be quite substantial even with small coupons. (Compare the

upper and lower panels in Figure 21.3, for example.) When does the CB benefit the most?

The coupons operate through the bond component of the convertible. When stock prices
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FIGURE 21.3 Coupons in the Binomial Tree

No. of Periods 10

Equity Volatility 0.15

Annual Interest Rate 0.04

Interest Rate per Period 0.0202

Maturity of CB 5.00

Face Value of CB 100.00

Initial Stock Price 95.00 274.39

Coupon (paid annually) 0.00 246.77 274.39

221.94 246.77 221.94

199.60 221.94 199.60 221.94

u (up move) 1.1119

179.52 199.60 179.52 199.60 179.52

d (down move) 0.8994

161.45 179.52 161.45 179.52 161.45 179.52

Risk-Neutral Prob of u 0.5686

145.20 161.52 145.20 161.45 145.20 161.45 145.20

Risk-Neutral Prob of d 0.4314

130.59 145.56 130.59 145.36 130.59 145.20 130.59 145.20

117.45 131.64 117.45 131.35 117.45 130.97 117.45 130.59 117.45

105.63 119.72 105.63 119.46 105.63 119.03 105.63 118.34 105.63 117.45

Stock Price 95.00 109.68 95.00 109.61 95.00 109.38 95.00 108.88 95.00 107.74 95.00

CB Value 101.37 85.44 101.60 85.44 101.76 85.44 101.78 85.44 101.50 85.44 100.00

95.16 76.84 95.80 76.84 96.47 76.84 97.20 76.84 98.02 76.84

91.13 69.11 92.43 69.11 93.99 69.11 96.08 69.11 100.00

89.24 62.15 91.42 62.15 94.18 62.15 98.02 62.15

89.21 55.90 92.31 55.90 96.08 55.90 100.00

90.48 50.27 94.18 50.27 98.02 50.27

92.31 45.21 96.08 45.21 100.00

94.18 40.66 98.02 40.66

96.08 36.57 100.00

98.02 32.89

100.00

Period 1 2 3 4 5 6 7 8 9 10

Input Parameters

Binomial Tree Parameters

CB Pricing without Coupons

No. of Periods 10

Equity Volatility 0.15

Annual Interest Rate 0.04

Interest Rate per Period 0.0202

Maturity of CB 5.00

Face Value of CB 100.00

Initial Stock Price 95.00 274.39

Coupon (paid annually) 4.00 246.77 274.39

221.94 246.77 221.94

199.60 225.94 199.60 221.94

u (up move) 1.1119

179.52 203.53 179.52 199.60 179.52

d (down move) 0.8994

161.45 187.36 161.45 183.52 161.45 179.52

Risk-Neutral Prob of u 0.5686

145.20 169.26 145.20 165.37 145.20 161.45 145.20

Risk-Neutral Prob of d 0.4314

130.59 157.30 130.59 153.34 130.59 149.20 130.59 145.20

117.45 143.40 117.45 139.45 117.45 135.19 117.45 130.59 117.45

105.63 135.57 105.63 131.79 105.63 127.68 105.63 123.06 105.63 117.45

Stock Price 95.00 125.59 95.00 122.14 95.00 118.42 95.00 114.30 95.00 109.44 95.00

CB Value 117.32 85.44 118.31 85.44 115.14 85.44 111.76 85.44 108.10 85.44 104.00

111.93 76.84 109.35 76.84 106.75 76.84 104.19 76.84 101.94 76.84

108.75 69.11 106.84 69.11 105.14 69.11 103.92 69.11 104.00

103.60 62.15 102.51 62.15 101.86 62.15 101.94 62.15

104.18 55.90 103.85 55.90 103.92 55.90 104.00

101.79 50.27 101.86 50.27 101.94 50.27

103.85 45.21 103.92 45.21 104.00

101.86 40.66 101.94 40.66

103.92 36.57 104.00

101.94 32.89

104.00

Coupon Coupon Coupon Coupon Coupon

Period 1 2 3 4 5 6 7 8 9 10

Input Parameters

Binomial Tree Parameters

CB Pricing with Coupons
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FIGURE 21.4
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are low and the convertible is deep out-of-the-money (OTM), the bond component is the

main determinant of convertible values, and this is when coupons have the most effect.

As the convertible moves more into-the-money, the bond component becomes steadily less

important, and the effect of coupons declines. Figure 21.4 illustrates these points. Note that

even at very high stock prices, the effect does not go to zero because there is still some

residual bond component until the CB is actually converted to equity.

Adding Dividends
Dividends may be added to the binomial tree using the approaches discussed in Chapter 12.

One effect of dividends on valuation is that they increase the possibility of early exercise. It

is well known that a call option on a non-dividend-paying stock should never be exercised

early. Intuitively, without dividends, early exercise has no benefits but has costs since one

is giving up the optionality and time-value components. A similar argument applies to

convertibles also.

But with large dividends, the countervailing effect of dividends can outweigh the loss

in insurance and time values, and early exercise can become optimal. It should be noted,

however, that exercising to capture the dividends means giving up the coupons on the

bond. Since dividends may be small relative to the coupons, this may not be an important

consideration.

How do dividends affect the value of the CB? Dividends affect the warrant component

of the convertible. The payment of dividends lowers the price of the stock, and, in the long

run, lowers the rate of growth of the stock price. This reduces the value of CBs. In-the-

money CBs suffer the most and out-of-the-money CBs the least from dividends. Figure 21.5

illustrates. The figure shows that as dividends increase, holding all else constant, the value

of the CB falls for all levels of the stock price.

The Call Feature
As we have noted, CBs are almost invariably callable by the issuer, typically at par, but

the CB holder also has some protection from callability in the form of hard protection



Chapter 21 Convertible Bonds 529

FIGURE 21.5
CB and Dividends
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that forbids calling the bond during an initial period and/or soft protection in the form of

requiring the stock price to be at a minimum premium to the conversion price.

Call considerations are easily incorporated in the lattice. First, we use the call-protection

restrictions to identify the set of nodes where it is permissible to call the CB. Then, at each

node where the calling is feasible, the bond is called if its value exceeds the call price. The

payoff received by the CB holder at the node is then the maximum of the call price and

parity at that node.

Callability reduces the potential life of the instrument. CBs trade at a premium to the

market price of the share because of the warrant component. If there is a possibility that the

CB could be called and this optionality extinguished, the premium will fall. So, callability

reduces the value of the CB.

Which CBs suffer the most from callability? The effect of callability is minimal when

the share price is very high or very low. In the former case, the intrinsic value of the option

determines its value; optionality has little value since there is not much probability of the

option moving out-of-the-money. In the latter case, optionality again has little value since

the CB is trading near its bond floor. Therefore, the effect of callability is maximal when

the CB is at- or near-the-money.

The Put Feature
Convertibles often come with put features. The put option may be exercised at specified

times at specified prices. Put considerations are simple to incorporate in the pricing lattice.

At each node where the CB may be put, putting is optimal for the CB holder if the value of

the CB is less than the put consideration.

The put option is particularly valuable when rising interest rates have pushed down

bond prices. In general, the presence of the put will raise CB values because the investor

can recover the put value even when the price of the CB drops. Out-of-the-money (OTM)

convertibles will benefit the most, and in-the-money (ITM) the least from the presence of

the put option.
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21.6 Incorporating Credit Risk

The analysis in the previous section skirted both interest-rate risk and credit risk. In this

section, we discuss how credit risk may be included in the analysis. We present the material

in three parts. First we illustrate the incorporation of credit risk in a simple one-period

binomial example. Then we discuss generalizations of this model that combine equity,

interest-rate, and credit risks into a single valuation setting. Finally, we examine a simple

and easy-to-implement “practitioner” approach to incorporating credit risk in tree-based

CB valuation models.

Example 21.3 Consider again the one-period binomial model of Section 21.5. In this setting, the initial
equity price is S = 100. The equity price after one period either goes up by 10% (which
happens with a risk-neutral probability of 0.60) or down by 10% (which has a risk-neutral
probability of 0.40). The CB matures after one period and has a face value of 100. The
risk-free rate of interest is 2% per period.

To introduce default considerations, consider a slight modification of this setting. Suppose
there is a (risk-neutral) probability of 0.01 of default occurring in which case the equity price
drops to zero. (We can also allow nonzero recovery for equity in the event of default.)
Suppose also that conditional on no-default, the relative risk-neutral likelihoods of up and
down moves remain unchanged. Then, the following equity price process results:

Equity price after one period =

 
uS, with probability 0.594
dS, with probability 0.396
0, with probability 0.010

Note that this is not a trinomial model of equity price evolution since the third branch leads
to an “absorbing” state: once default occurs, no further moves in equity prices result. This
is a simple example of a “jump-to-default” model in which default is represented by a jump
to an absorbing state. The class of “reduced-form models” of credit risk, described later in
the book, utilizes a general form of such a process.

Returning to our example, if default does not occur, the holder of the CB will convert to
equity if the stock price moves up to 110, and will opt to receive the face value and forgo
conversion if the stock price drops to 90. Suppose that in the event of default, CB holders
recover 40% of the face value, which is a typical recovery amount on senior unsecured
corporate claims in the US. This means the payoffs from the CB after one period are:

Convertible values after one period =

 
110, with probability 0.594
100, with probability 0.396
40, with probability 0.010

A simple computation shows that the initial value of the CB is

1

1.02
[(0.594)(110) + (0.396)(100) + (0.01)(40)] = 103.27

This value is lower by 0.65 (or by about 0.63%) than the 103.92 value of the CB when
default was not considered. ■

Generalizations of this simple model, both in discrete- and continuous-time settings,

have been the focus of a number of papers. The next segment discusses some of these.

Generalizations of the Jump-to-Default Binomial Model
Models combining equity processes with jump-to-default (and, in many cases, also interest-

rate risk) have been developed in a number of papers. Samuelson (1972, 1973) are early
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examples. Later papers includeDavis andLischka (1999), Carayannopoulos andKalimipalli

(2003), Carr and Linetsky (2006), and Das and Sundaram (2007). The Samuelson papers

look at the pricing of call options on defaultable equity, while Carr and Linetsky study the

pricing of equity and credit derivatives in a single consistent setting. The remaining papers

have as their objective the development of a framework for the pricing and hedging of hybrid

securities such as convertibles that depend on multiple sources of risk.

We describe below the structure of the Das and Sundaram model. The model combines

a constant elasticity of variance (CEV) process for equity and a Heath-Jarrow-Morton

(HJM) process for interest rates with an “endogenous” jump-to-default specification in

which default intensities may depend on equity and interest-rate values as well as other

information. The other papers are variants of this setting:

• The off-default equity process in Samuelson, Davis and Lischka, and Carayannopoulos

and Kalimipalli is geometric Brownian motion (GBM), a special case of the CEVmodel.

Carr and Linetsky use the CEV model.

• Interest rates are nonstochastic in Samuelson, Caryannopoulos andKalimipalli, and Carr

and Linetsky. Davis and Lischka use the Vasicek (1977) model’s Ornstein-Uhlenbeck

process.

• The default intensity process in Samuelson is constant. The remaining papers all use an

endogenous default intensity approach but with some differences. For example, Davis

and Lischka take the intensity to be perfectly correlated with the equity process.

Finally, while Das and Sundaram develop and work with a discretized version of the under-

lying continuous-time model, the other papers work in the continuous-time setting directly.

The Das and Sundaram (2007) Model
The Das and Sundaram model has the following characteristics:

Equity Process

Until default occurs, equity prices in the model follow a constant elasticity of variance, or

CEV, process. (After default, equity prices are absorbed at zero.) In continuous time, the

evolution of the CEV process is described by

d St = μS dt + σ Sγ dWt (21.1)

where 0 < γ ≤ 1. In the special case of γ = 1, the CEV process is just the lognormal

process of Black-Scholes. The CEV process has the attractive feature that for γ < 1, it

implies a negative relationship between equity prices and equity volatility; this relationship,

which is called the “leverage effect,” has been documented empirically and is a common

feature of equitymarkets. (The leverage effect is not present in geometric Brownianmotion.)

A further attractive feature of the CEV specification is that for γ < 1, the process can also

be absorbed at zero; this means that the Das-Sundarammodel admits both “drift-to-default”

and jump-to-default.

Interest-Rate Process

Interest rates in the Das-Sundaram model are stochastic and follow a one-factor Heath-

Jarrow-Morton process. The Heath-Jarrow-Morton framework is described in Chapter 30.

Any other interest-rate process could be used in its stead, although the flexibility of the HJM

process makes it a natural choice.
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Default Process

In general, one could take default to be a third stochastic process in themodel, but thismakes

themodel quite complex in implementation. Das and Sundaram instead use an “endogenous

default” approach. They take the instantaneous probability of jump-to-default λt at each

node on the tree to be a function of the available information at that point, including stock

prices St and interest rates rt at that node. More precisely, λt = 1− exp{−ξt h}, where h is

the length of one period in the binomial tree (in years), and

ξt = exp{a0 + a1 t + a2 rt}S
−a3
t

Assuming a3 > 0, the jump-to-default likelihood under this specification is inversely

related to the level of stock prices (and so, is positively related to equity volatility). In

particular, as is easily checked, the likelihood of default goes to 1 as St → 0, and to zero as

St →∞.

Nelson and Ramaswamy (1990) show how to discretize the CEV process on a recombin-

ing binomial tree. Das and Sundaram expand on their approach and create a recombining

lattice that incorporates the CEV process and the interest-rate process with arbitrary corre-

lation between the two processes. This lattice is then calibrated to information from equity,

interest-rate, and credit default swap markets. In Appendix 21B, we describe Octave code

for a simplified version of their model in which (a) interest rates are constant, (b) the

stock price follows a geometric Brownian motion, and (c) the jump-to-default probability

is constant at each node.

Das and Sundaram show that the effect of increasing credit risk on convertible bonds

can be quite subtle. An increase in credit risk affects both the bond and warrant components

of a convertible, and in the case of callable-convertible bonds (convertibles which are

also callable), it also affects the call component. The ultimate impact on convertible value

depends on the net effect over the three components. For instance, Das and Sundaram show

that, depending on the situation, an increase in default risk may narrow or widen the price

difference between callable-convertibles and noncallable, non-convertible bonds.

A Practitioner Approach Using Blended Discount Rates
Straight bonds issued by a company trade at a spread to the risk-free rate. The spread is

meant to compensate investors for the credit risk present in the bond. The higher the de-

fault risk of the company, the higher, ceteris paribus, is the size of the spread. A simple

practitioner approach to incorporating credit risk into CB valuation models, but without

explicitly modeling the default event as part of the tree, uses the credit spread on straight

bonds in the valuation process. We discuss the approach below after first motivating its

theoretical basis.

Fix a tree of equity price evolution (without default considerations) and the corresponding

risk-neutral probabilities. Let s denote the size of the credit spread on a company’s straight

bonds. By definition, this means that the current market price of the straight bond results

when the bond’s promised cash flows are discounted back at the risk-free rate plus s. Now

consider pricing this bond using risk-neutral pricing on the tree. Since the tree does not

include default, the bond returns its promised face value at maturity with probability one.

And since standard risk-neutral pricing discounts promised cash flows at the risk-free rate,

the resulting “price” of the bond will be that of a default-risk-free bond with zero spread.

That is, standard risk-neutral pricing methods employed on a tree that does not incorporate

default will overvalue defaultable bonds.

One way to handle this problem is to incorporate default into the tree as we did in the

binomial model with jump-to-default. An alternative way is to discount the promised cash
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flows in the tree not at the risk-free rate but at the risk-free rate plus the spread s. This way,

we are guaranteed that the value of the straight bond obtained from the tree will be its market

price. A framework developed by Duffie and Singleton (1999a) formalizes and validates

a general version of this approach. The precise details of the Duffie-Singleton theory are

presented in Chapter 33, but, roughly speaking, the authors show that risk-neutral pricing

arguments can be applied to defaultable claims also provided the claim’s promised payoffs

are discounted at a rate that depends on the credit-risk characteristics of that claim. A

security that is free from default is simply discounted at the risk-free rate, while one that

is subject to default is discounted at a rate that takes into account the likelihood of default

and the loss-given-default.

An informal practitioner approach to valuing convertible bonds (that predates Duffie and

Singleton) bases itself on a similar line of reasoning. Here is the argument.When a CB is far

out-of-the-money, it resembles a straight bond issued by the company, so its value at such

nodes on the tree should be obtained by discounting its future cash flows at the risk-free

rate plus s. On the other hand, as a CB moves deep into-the-money and resembles straight

equity, its value on the tree should be obtained by discounting at the risk-free rate. Now, in

general, a CB is part bond and part equity, so it appears that the “correct” rate of discount

to employ at each point in the tree should be a blend of the risk-free rate and the risk-free

rate plus the spread, where the blend depends on how much like a bond or equity the CB

looks at that node. This approach is described in Bardhan, Berger, Derman, Dosembet, and

Kani (1994).

Central to the implementation of this idea is the choice of weights to use in the blend of

discount factors. The CB delta is commonly used for this purpose, that is, the discount rate

used at a node is

 · r + (1− ) · (r + s) (21.2)

where r denotes the risk-free rate. When the CB is deep in-the-money, its  is close to 1,

so the discount rate is close to the risk-free rate as required. When the CB is deep out-of-

the-money, its  is close to zero, so the discount rate is close to the risk-free rate plus s,

again as required. Such simple blended-discount factor models are easy to implement in a

tree structure. In Appendix 21A, we provide an implementation in Octave of a callable-

convertible pricing program with credit spreads.

Unfortunately, while easy to implement, the theoretical foundations of the blended dis-

count approach (e.g., of the form (21.2)) are unsound. Under the Duffie-Singleton theory,

the correct rate of discount to employ at a node depends on the credit risk characteristics

of the CB viewed from that node. It will rarely be the case that this discount rate will be a

simple blend (weighted by the CB delta or some other similar characteristic) of the risk-free

rate and the risk-free rate plus the spread on straight bonds. And the use of the wrong

discount factor results in prices that are not arbitrage-free.

As an illustration, it is instructive to compare the prices for convertibles that result from

this blended discount rates model for otherwise identical parameters. In Appendix 21A,

we describe the output from the blended discount rates model for a specific choice of

parameters. The output obtained is:

cb_credit(100,0.3,0.03,6,100,0.03,5,20)

ans = 106.71

Using a recovery rate of 50% and otherwise the same parameters, we obtain the following

output value in the simplified Das-Sundaram model (see Appendix 21B):

cb_dassundaram(100,0.3,0.03,6,100,0.03,5,0.5,20)

ans = 102.25
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which is a substantially different price. Two other aspects of the blended discount factor are

worth noting:

1. Themodel does not explicitly specify the recovery rates on default since it works through

the spreads directly.

2. The blended discount rate assumes that the credit spread is fixed at all levels of the

stock price in these models. Of course, the total discount rate reflects default risk levels

through the moneyness of the warrant component of the convertible, but it is likely that

the spread itself is increasing when the stock price falls.

Apopular andwidely-used variant of the blendeddiscount factor approachwas developed

by Tsiveriotis and Fernandes (1998). They regard the convertible as composed of two

securities, a “warrant component” entitled to the equity on conversion and a “cash-only

component” entitled to the bond-based cash flows (coupons, subject to the call feature in

the event of an issuer call). Since both components are dependent on the value of equity,

the model is solved using the same fundamental partial differential equation (pde) approach

underlying the Black-Scholes model, as explained in Chapter 15. There are now two linked

pdes, one for each of the components of the convertible bond. Three sets of boundary

conditions apply: (a) for the values of both components at maturity, (b) for the values of

both components when the stock price becomes very high (“goes to infinity”), and (c) for

the values of both components when the stock price goes to zero. The pde for the cash-

only component uses a discount rate that equals the risk-free rate r plus the credit spread s,

and the equity component uses the risk-free rate r . Therefore, by splitting the pricing pde

of the convertible bond into two component pdes with different discount rates, an implicit

blended rate is implemented.

The attractive feature of theTsiveriotis andFernandes (1998)model, compared to blended

discount models such as (21.2), is that the blend is determined by the boundary conditions

to both the component pdes. Themodel may be implemented on binomial or trinomial trees,

or by direct numerical solution of the pdes. The model assumes constant interest rates and

credit spreads; some later versions have sought to relax these restrictions. We note here

that making interest rates stochastic in convertible bond pricing models is easier in the

alternative class of jump-to-default models such as those by Davis and Lischka (1999) and

Das and Sundaram (2007).

21.7 Convertible Greeks

The convertible greeks are sensivity measures that seek to quantify the impact of a change

in a relevant parameter on CB values. There are five basic convertible greeks:

• The delta, denoted  , which measures sensitivity of CB prices to changes in the price

of the issuer’s equity.

• The gamma, denoted,  , which measures the sensitivity of the delta to changes in the

underlying equity price.

• The theta, denoted  , which measures the impact of the passage of time on CB values.

• The vega, denoted V , which measures the sensitivity of CB values to changes in the

volatility of the issuer’s equity.

• The rho, denoted ρ, which measures the sensitivity of CB values to changes in interest

rates.
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Some of these greeks (like the vega) are similar in behavior to the greeks of equity call

options since they work primarily through the warrant component of the CB. Others, like the

theta, exhibit very different behavior since the underlying parameter affects both the bond

and warrant components. In addition to these, other greeks can also be defined with respect

to the many other parameters that affect CB values such as the volatility of interest rates

and credit-risk-related measures. Two of these—the CB omicron and the CB upsilon—are

at the end of this section.

The Convertible Delta
The (equity) delta of a CB measures the sensitivity of CB values to changes in the price of

the underlying equity. In calculus terms, the CB delta is the slope of the CB price function

in Figure 21.2:

 =
∂C B

∂S

More informally, the CB delta may be thought of as the change in CB values per $1 change

in S. That is, if the stock price changes by an amount d S (i.e., it changes from S to S+d S),

then the estimated change in CB values, based on the delta, is

 · d S (21.3)

Put differently, a position that is long the CB and short delta units of the underlying

equity is “neutral” to equity risk. Of course, such delta hedging is only approximate. CB

values have curvature as shown in Figure 21.2, and, as we saw in Chapter 17, this means

that even after delta-hedging with the stock, the position has residual gamma risk. Such

gamma risk is largest near-the-money since curvature is maximal in this area.

In terms of its properties, the CB delta is similar to the behavior of equity call option

deltas as described in Chapters 11 and 17. It is positive, lies between 0 and 1, and increases

as the equity price increases. Figure 21.6 illustrates.

For exotic convertibles, the behavior of the delta could be much more complex than

this. In the case of reset convertibles, for example, as the stock price falls and reaches a

trigger point, the conversion ratio increases. The initial part of the stock price decline will
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be accompanied by a falling delta, but as the stock price approaches the trigger point, the

likelihood of the increased conversion ratio kicking in will result in the delta increasing.

Thus, the gamma of reset convertibles will have both positive and negative segments.

The Convertible Gamma
The CB gamma measures the change in the CB delta for a given change in S. In calculus

terms, gamma is the derivative of delta with respect to S:

 =
∂ 

∂S

More informally, gamma may be thought of as a ratio:

 = Change in CB Delta per $1 change in S

Since delta itselfmeasures the slope of theCBpricing function, gammameasures the change

in the slope, i.e., it measures the curvature of the CB pricing function:

 =
∂2CB

∂S2

As Figure 21.6 shows, the delta of a CB increases as S increases. Therefore, the gamma

of a CB is positive. In mathematical terms, CB prices are convex in S. As with equity calls,

the gamma is least when the CB is deep OTM or deep ITM (there is little curvature in the

CB pricing function in either case) and is highest for balanced CBs. Figure 21.7 illustrates.

The CB gamma can be used both as a curvature correction and to estimate the impact

on delta of a change in S. If the equity price changes by S, a better estimate than (21.3) of

the change in CB values is:

 · d S +
1

2
 (d S)2

The change d S also causes a change in the CB delta of roughly

 · d S
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For example, suppose that the price of a CB is 101.50, its delta is 0.55, and its gamma is

0.06. Then a change of d S = −0.80 in the stock price causes a change of roughly

(0.55)(−0.80) +
1

2
(0.06)(−0.80)2 = −0.44+ 0.0192 ≈ −0.42

in the CB price, and a change of roughly

(0.06)(−0.80) = −0.048

in the CB delta. That is, the new CB price is approximately 101.08, and the new CB delta

is approximately 0.502.

The Convertible Theta
Most CBs are finitely lived. Thus, the remaining time to maturity plays a major role in

determining CB values. The CB theta measures the impact of the passage of time on CB

values. In calculus terms, the theta is the derivative of the CB value with respect to the

current time t :

 =
∂C B

∂t

More informally, theta may be thought of as a ratio:

 = Change in CB Value for a one-day reduction in time to maturity

Time affects the CB value in two ways. On the one hand, the warrant component—which

is akin to a call—loses value as the maturity date draws closer. On the other hand, the bond

component may accrete in value as the maturity date nears (think, for example, of a zero-

coupon structure), so the bond component may have a positive theta. Whether the overall

theta is positive or negative depends on which of these effects dominates. When the CB

is out-of-the-money, the bond component dominates, so the theta may be positive. When

the CB is in-the-money, the warrant component dominates, and the theta will be negative.

Figure 21.8 graphs the behavior of the CB theta.

Note the contrast with equity call option thetas here. Unlike the CB theta, the call theta is

always negative; it is maximally negative near-the-money and tails away in either direction

away-from-the-money.
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The Convertible Vega
Equity volatility is a primary determinant of the CB value, operating mainly through the

warrant component of the CB. The CB vega measures the effect of a change in equity

volatility on CB prices.

We denote the vega of a CB by V . In calculus terms, the vega is defined by:

V =
∂C B

∂σ

More informally, vega may be thought of as a ratio:

V = Change in CB Value for a 1% change in volatility

(The 1% change in the above definition is an absolute change, i.e., a change in volatility

from (say) 23% to 24%. It is not a relative 1% change in volatility from 23% to 23.23%.)

The vega of a CB is generally positive. An increase in equity volatility increases the

value of the warrant component of the CB, and this increases CB value. Figure 21.9 plots

CB prices for three values of volatility: 10%, 15%, and 20%. Intuitively, higher volatility

means both higher and lower equity prices. The higher equity prices are good news for the

CB holder, but the lower prices are not correspondingly bad news because of the bond floor.

As the figure also illustrates, deep in-the-money (ITM) and out-of-the-money (OTM)

convertibles are not as affected by volatility increases as “balanced” convertibles, i.e.,

those that are at- or near-the-money. For deep ITM convertibles, exercise is almost sure, so

optionality is unimportant and the effect of volatility is minimal. Deep OTM convertibles

are like the bond floor; there is a low probability of finishing in-the-money, and while the

increased volatility may improve these prospects, in dollar terms the effect remains small.

It is for balanced convertibles that optionality and volatility are most important.

Thus, the depth in-the-money is a determinant of the CB vega. The vega is small for

deep ITM and deep OTM convertibles and maximal for balanced convertibles. Figure 21.10

illustrates.
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FIGURE 21.10
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Finally, a caveat. Increased equity volatility may be associated with or arise on account

of increased credit risk of the issuing company. In this case, the increased volatility is not

necessarily beneficial. The increased credit risk lowers the bond floor of the CB and so could

lower CB values. Thus, the effects of increased volatility could be much more complex than

captured in Figure 21.9.

The Convertible Rho
CB values are affected by interest rates in two ways: through the bond component and

through the warrant component. The CB rho measures the sensitivity of CB prices to

changes in interest rates. In calculus terms, the rho is defined by

ρ =
∂C B

∂r

More informally, rho may be thought of as a ratio:

ρ = 100× Change in CB Value for a 100 bps increase in r

Interest rates affect both the bond and warrant components of the convertible. The bond

component always reacts negatively to interest rates, declining as interest rates increase. The

warrant component reacts like equity call options, increasing with interest rates; intuitively,

the present value of the bond being given up on exercise is lower as interest rates increase.

Thus, the net effect on the convertible depends on which of these effects is larger. In general,

the bond component will dominate the warrant component (for the bond, interest rates are

a first-order and primary determinant of values), so the overall effect of an interest-rate

increase on the CB is likely to be negative. That is, the rho of a CB is generally negative.

Which CBs (in terms of moneyness) are likely to be most affected? The bond component

is most important for deep OTM convertibles, so this is where the effect is likely to be

maximal.As the convertiblemoves towards becoming balanced and then deep ITM, the bond

component plays an increasingly smaller role and the warrant component an increasingly

larger one. Thus, the overall effect on CB prices should become smaller.

Figure 21.11 illustrates the effect of changing interest rates on CB values. As the intuitive

argument suggests, convertibles drop in value when interest rates increase, and the effect is

most for deep OTM convertibles.
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FIGURE 21.11
CB and Interest Rates
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Expressing all of this in terms of the rho, the rho of a CB is generally negative. It is most

negative for deep OTM CBs, less negative for balanced CBs, and least negative for ITM

CBs. This behavior of the rho is illustrated in Figure 21.12.

Finally, it must once again be noted that the effect of interest rates can bemore subtle than

described here. For one thing, we have ignored any possible correlation between interest-rate

changes and changes in the underlying firm value or equity prices. It may also be the case
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that an increase in interest rates affects the present value of the firm’s debt and so affects its

default likelihood. While Figure 21.11 is indicative, it should not be taken as definitive.

Credit-Risk-Related CB Greeks
The handling of credit risk raises the issue of sensitivity of the convertible bond to various

default risk inputs. Twomeasures of default risk are the credit spread s and the recovery rate

φ. Sensitivities with respect to these are denoted omicron (o) and upsilon (υ), respectively,

in the convertible markets.

The CB Omicron

The CB o measures the sensitivity of CB prices to changes in credit spreads. In calculus

terms, the omicron is defined by

o =
∂C B

∂s

More informally, omicron may be thought of as a ratio:

o = 100× Change in CB Value for a 1% Increase in Spreads

The bond component of a CB typically dominates the option component insofar as the

effect of spreads is concerned. The bond component falls in value as spreads increase.

Therefore, CB values will typically fall in value as spreads increase, i.e., o < 0. The CBs

that are most affected are OTM CBs, which are most like the bond floor. Balanced CBs are

less affected, and ITM CBs are least sensitive to changes in credit spreads.

There is another way to understand why ITM CBs have low omicron. Spreads are a

function of default probabilities λ and recovery rates φ. Logically, if the stock price is high

(i.e., the CB is ITM), then the corresponding default probability must be low and spreads

will be low as well. Given that there is low default risk, the sensitivity of the CB to spreads

will be low.

Quantitatively, the omicron of a CB has the same interpretation as the other greeks. If

the omicron of a CB is o and spreads change by an amount  , the omicron-based estimate

of the change in CB value is o ·  . For example, suppose we are given that the current price

of a CB is 102.25 and that the omicron of the CB is −15. If spreads increase by 100 basis

points ( = +0.01), then the estimated change in CB value is (−15)(0.01) = −0.15. Thus,

the predicted new CB price is 102.25− 0.15 = 102.10.

CB Upsilon

The CB upsilon (υ) measures the sensitivity of CB prices to changes in recovery rates (φ).

In calculus terms, the upsilon is defined by

υ =
∂CB

∂φ

The upsilon is very low unless the convertible is distressed, in which case it becomes

very relevant. Small changes in anticipated recovery rates can change the value of the CB

substantially. After the convertible has defaulted, the upsilon approaches unity, i.e., υ → 1.

The reader can see very easily also that υ > 0; as expected recovery rates rise, so

will the price of the CB. This is a direct effect when the convertible is distressed, but it

also operates indirectly through the equity price when the convertible is far from default.

Finally, it is easily seen that as the stock price increases and default is remote, υ becomes

very small.
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21.8 Convertible Arbitrage

Convertible arbitrage is a strategy which aims to unlock “cheap” volatility in a convert-

ible bond. The starting point of most convertible arbitrage strategies is the identification

of convertibles in which the convert option is considered undervalued by the convertible

arbitrageur. The arbitrageur then buys the convertible bond and goes short  units of the

underlying stock.

There are three key characteristics to the convertible arbitrageur’s position. First, the

short equity position provides immunity to the convertible against small price moves in the

underlying equity (similar to a delta-hedged call option position). Second, there is “gamma

capture”: since the convertible has positive gamma, going long the convertible and delta-

hedging with equity leaves the arbitrageur with net positive curvature with all the attendant

advantages of such a position. Finally, since the coupon on the convertible will typically

comfortably exceed the dividends due on the short equity position, the overall position

involves positive “carry,” i.e., it generates net cash inflows to the holder.

It should be noted that strategies of this form eliminate only the directional equity risk in

a convertible bond. Since convertibles are affected by a host of other factors, there remain

many other risks in the position which must be monitored and managed. Interest-rate risk

is one. An increase in interest rates will lower the value of the convertible (through the

bond component) while having a smaller effect on the equity position. Thus, the position is

vulnerable to a sharp upward move in interest rates. Call risk is another. Most convertibles

are also callable by the issuer and the exercise of the call provision extinguishes the convert

option whose putative underpricing motivated the strategy in the first place. Credit risk is

a third. The vast majority of convertibles in the US are sub-investment-grade issues or are

unrated. If there is a sudden credit event (e.g., a jump-to-default), the convertible will lose

value. Of course, equity prices will also crash in this situation, so, depending on the hedge

ratio employed, this may be partially, or even fully, made up on the short equity position.

In recent years, it has become popular to use credit-default swaps to hedge out credit risk

that remains uncovered by the equity position. Then, there is liquidity risk; for instance,

equity market liquidity is essential to delta-hedge the convertible. Finally, there is model

risk. Convertibles are complex instruments with values affected by many factors. To the

extent that the models may be unreliable or may not be able to take all relevant factors into

account, perceived arbitrages may not exist or incorrect hedge ratios may be employed.

Less conventionally, convertible arbitrage also takes on the opposite form to the strategy

described above: that is, convertible arbitrageurs short convertibles they find overvalued and

delta-hedge the position by going long the underlying equity. Called a “reverse hedge,” this

is a negative carry strategy since the cash outflows required on the shorted convertible will

typically exceed the dividends received on the long equity position. It is also a short gamma

position, though the short bond component of the convertible positionmitigates this to some

extent. (As we explain in Chapter 32 in discussing “structural” credit-risk models, an in-

crease in the volatility of a firm’s assets hurts bondholders and benefits equity holders. Thus,

a short position in a firm’s bonds is a long position in the firm’s asset volatility.) Reverse

hedges are usually short-term positions employed by hedge funds and other market partic-

ipants when temporary demand or volatility factors make convertibles appear overpriced.

21.9 Summary

Convertible bonds are among the most important of all hybrid instruments. They combine

features of debt and equity, and are attractive to both issuers and investors for a variety of

reasons. From a pricing standpoint, they are very complex to model because they depend
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on all possible factors that could affect equity and debt values: equity risk (equity volatility,

dividends), interest-rate risk (changes in the risk-free interest rate, interest-rate volatility,

coupon rates), and credit risk (risk of default, recovery in the event of default), in addition

to liquidity risk and other market factors.

This chapter has undertaken an introduction to the modeling of convertibles. The pre-

sentation was intentionally gentle: while we have discussed how to incorporate features of

equity risk and credit risk in the valuation exercise, the inclusion of interest-rate risk was

not discussed in any level of detail. For a more comprehensive treatment of the modeling

process and a deeper understanding of the effect of various factors on convertible values,

we refer the reader to the technical papers in this area, many of which have been cited earlier

in this chapter.

21.10 Exercises 1. Define and quantify the following terms related to convertible bonds: (a) conversion

ratio, (b) callability, (c) fair premium, (d) parity, (e) breakeven, and (f) dilution.

2. You are given the following input information:

Face value of the CB $100

Issue price of the CB $120

Equity price $ 10

Conversion ratio 11

(a) What is the parity value per bond?

(b) What is the premium over parity per bond?

(c) Express the same results on a per-share basis.

3. In the previous question, you computed the value of parity and premium over parity.

Suppose the coupon rate on the convertible was 5% and the dividend yield on the equity

is 1%. What is the extra income from the convertible relative to equity? What is the

breakeven for the convertible?

4. What are the different types of embedded options within a convertible bond? Explain

whether they benefit the investor or the issuer.

5. What incentive issue has been commonly resolved by the issuance of a convertible

bond by the management of a firm?

6. The face value of a convertible bond is $100, and the issue price is $150, with a

conversion ratio of 5. The market price of the equity shares is $25. Compute the (a)

conversion price, (b) parity, and (c) premium of the bond.

7. XYZ Co. has issued convertibles with face value $100, and the issue price is $100. The

market price per share is $20 and the conversion ratio is 4. The bond pays a coupon of

5%, and the dividend rate on equity is 1%. What is the premium on the bond? What is

the breakeven period to recover the premium?

8. Assume the current stock price is $100. Next period it can take a value of either 120

or 80. If the return on $1 invested today for one period is 3%, then how much will a

zero-coupon convertible bond be worth today if the conversion ratio is 1?

9. (Convertible Arbitrage) Assume the current stock price is $100. Next period it can take

a value of either 130 or 90. If the return on $1 invested today for one period is 5%, then

how much will a 6% coupon convertible bond be worth today if the conversion ratio

is 1? Can you construct an arbitrage in this situation that delivers risk-free profit if the

CB is trading at $105?
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10. Assume the current stock price is $100. Next period it can take a value of either 1.2 or

0.8 times the stock price. If the return on $1 invested today for one period is 2%, then

how much will a zero-coupon convertible bond (face value $1000) be worth today if the

conversion ratio is 10? What are the parity value and premium on this bond? Compute

the (a) price, (b) parity, and (c) premium for the bond at the following levels of the stock

price: 80, 90, 100, 110, and 120.

11. Using a semiannual CRR binomial tree, price a convertible bond with a face value of

$100, conversion ratio of 1, and a coupon rate of 10%. The maturity of the bond is three

years. Assume that the stock volatility is 25%. The risk-free rate of interest is 4%. All

calculations may be based on continuous compounding.

12. In the preceding question, assume that the convertible bond is also callable at a price of

$110 (cum-coupon). Rework the price of the convertible bond. Explain your answer.

13. Using the program you wrote for the callable-convertible bond, modify it to compute

the delta of the bond for a range of stock prices from 80 to 120. Let the coupon rate be

10%, the risk free rate be 4%, and the volatility 25%. The call strike is $100. Explain

your results.

14. (Advanced Question; Goes beyond Text) Think of five trading strategies that you may

wish to implement using convertible bonds. For each of these ideas, what risks would

you need to eliminate from the bonds in order to implement your trading views?

15. The current equity price of firmXYZ is $10. The equity trades at a volatility of 20%. The

firm issues a five-year convertible bond at a face value of $100 and a coupon of 6%. This

bond may be converted into eight shares of equity at any time in the next five years. The

risk-free interest rate in the market is 3%. The bond may also be called after two years

at a call price of $105. Build a 20-period model to value this convertible bond, assuming

that the equity price follows a binomial process. Make sure you account correctly for

call and conversion features. Given the price, what is the premium on the bond? Also

calculate the breakeven.

16. A convertible bond is sensitive to both stock price movements and interest-rate changes.

Which of the following scenarios is likely to result in the greatest price increase of a

convertible?

(a) Stock price rises; interest rates fall.

(b) Stock price rises; interest rates rise.

(c) Stock price falls; interest rates fall.

(d) Stock price falls; interest rates rise.

If you think your answer must be qualified, add the necessary qualifications.

17. Which of the following scenarios is most likely to result in the greatest increase in the

price of a convertible bond?

(a) Stock volatility increases; interest-rate volatility increases.

(b) Stock volatility increases; interest-rate volatility declines.

(c) Stock volatility declines; interest-rate volatility increases.

(d) Stock volatility declines; interest-rate volatility declines.

18. What is the expected impact of an increase in maturity on convertible bond values,

holding all other conditions the same?
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Appendix 21A

Octave Code for the Blended Discount
Rate Valuation Tree
This appendix presents the Octave code for the blended discount rate “practitioner model”

described in Section 21.6.

%Function to build a CRR tree and price a callable convertible bond.

%Specialized to handle credit spreads

%Specify the call strike cum-coupon

%Note that rf below is also the drift of the stock.

function cbval = cb_credit(s0,sig,rf,cpnpa,callstr,spread,T,n);

h = T/n;

u = exp(sig*sqrt(h)); d = 1/u; R = exp(rf*h);

q = (R-d)/(u-d);

stktree = zeros(n+1,n+1);

stktree(1,1) = s0;

for i=2:n+1;

stktree(1,i) = stktree(1,i-1)*u;

for j=2:i;

stktree(j,i) = stktree(j-1,i-1)*d;

end;

end;

cb = zeros(n+1,n+1);

cbdelta = zeros(n,n);

for j=1:n+1;

cb(j,n+1) = max(stktree(j,n+1),100+cpnpa*h);

end;

for i=[n:-1:2];

for j=1:i;

cbdelta(j,i) = (cb(j,i+1) - cb(j+1,i+1))/ ...

(stktree(j,i+1) - stktree(j+1,i+1));

discrate = cbdelta(j,i)*rf + (1-cbdelta(j,i))*(rf+spread);

R = exp(discrate*h);

cb(j,i) = (q*cb(j,i+1) + (1-q)*cb(j+1,i+1))/R+cpnpa*h;

if cb(j,i)>callstr;

cb(j,i) = max(callstr,stktree(j,i));

else;

cb(j,i) = max(cb(j,i),stktree(j,i));

end;

end;

end;

i=1; j=1;

cbdelta(j,i) = (cb(j,i+1) - cb(j+1,i+1))/(stktree(j,i+1) - stktree(j+1,i+1));



546 Part Two Options

discrate = cbdelta(j,i)*rf + (1-cbdelta(j,i))*(rf+spread);

R = exp(discrate*h);

cb(j,i) = (q*cb(j,i+1) + (1-q)*cb(j+1,i+1))/R;

cbval = cb(1,1);

For a simple example of using this function, we price a five-year 6% convertible bond,

where the initial stock price is $100, the equity volatility is 30% per annum, risk-free rate

of interest is 3%, the credit spread on the bond is 3%, the call strike is $100. We assume

the CB has a five-year maturity and we set the number of periods in the tree to be 20. The

program run is as follows:

cb_credit(100,0.3,0.03,6,100,0.03,5,20)

ans = 106.71

Appendix 21B

Octave Code for the Simplified
Das-Sundaram Model
This appendix describes Octave code for implementation of the simplified Das-Sundaram

model described in Section 21.6. The off-default stock price is taken to follow a geometric

Brownian motion, and recovery is specified according to the recovery of market value

(RMV)—see Chapter 33—convention.

%Function to build a CRR tree and price a callable convertible bond.

%This is the Das-Sundaram model

%Specify the call strike cum-coupon

%Note that rf below is the drift of the stock.

function cbval = cb_dassundaram(s0,sig,rf,cpnpa,callstr,spread,phi,T,n);

h = T/n;

lambda = spread/(1-phi);

u = exp(sig*sqrt(h)); d = 1/u; R = exp(rf*h);

q = (R/(1-lambda*h)-d)/(u-d);

stktree = zeros(n+1,n+1);

stktree(1,1) = s0;

for i=2:n+1;

stktree(1,i) = stktree(1,i-1)*u;

for j=2:i;

stktree(j,i) = stktree(j-1,i-1)*d;

end;

end;

cb = zeros(n+1,n+1);

cbdelta = zeros(n,n);

for j=1:n+1;

cb(j,n+1) = max(stktree(j,n+1),100+cpnpa*h);

end;



Chapter 21 Convertible Bonds 547

for i=[n:-1:2];

for j=1:i;

cbdelta(j,i) = (cb(j,i+1) - cb(j+1,i+1))/ ...

(stktree(j,i+1) - stktree(j+1,i+1));

cb(j,i) = (q*cb(j,i+1) + (1-q)*cb(j+1,i+1))/R+cpnpa*h;

if cb(j,i)>callstr;

cb(j,i) = max(callstr,stktree(j,i));

else;

cb(j,i) = max(cb(j,i),stktree(j,i));

end;

cb(j,i) = cb(j,i)*(1-lambda*h*(1-phi)); %Accounts for default

end;

end;

i=1; j=1;

cbdelta(j,i) = (cb(j,i+1) - cb(j+1,i+1))/(stktree(j,i+1) - stktree(j+1,i+1));

cb(j,i) = (q*cb(j,i+1) + (1-q)*cb(j+1,i+1))/R;

cbval = cb(1,1);
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Real Options

22.1 Introduction

The term “real option” is used to connote the value of optionality embedded within an

investment project. Real options are distinguished from “financial options,” which are op-

tions present or embedded in financial instruments and which have concerned us so far in

the book. Real options arise on account of choices that need to be made at specified times

during the life of an investment project and that affect the nature of cash flows from the

project. The availability of these choices confers additional value on the project and needs

to be taken explicitly into account in valuing the project.

Real options arise naturally in almost all investment settings. Here is a simple example.

Suppose a firm is planning to invest in developing a new technology, the superwidget, and

plans to be the pioneer in the field. The entrepreneur has done all the required homework

and has a detailed business plan with the costs and production details of the project. Un-

fortunately, the value of the technology is uncertain and will be determined only later by

market forces. The entrepreneur makes an estimate of the mean price per superwidget after

two years, the time when the product is anticipated to roll out. He is also able to make a

good guess at the distribution of possible prices as well as the future evolution of this price.

These prices represent the major source of risk in the project: if they end up at the lower end

of the range, then the firm will fail to be profitable. By running various plausible scenarios,

the entrepreneur calculates the probability of each scenario as well as the profitability under

each one.

In a “standard” discounted cash-flow (DCF) valuation setting, the entrepreneur would

choose an appropriate risk-adjusted discount rate for the cash flows of the project. This is

often a tricky exercise requiring considerable subjective judgment. Then, using the prob-

ability and profitability scenarios to determine the expected cash flow, the entrepreneur

determines a present value of the project.

The real options approach views the valuation problem from a different angle. It involves

the explicit consideration of project choices thatmay influence the scenarios thatmay evolve.

In so doing, it transforms the valuation exercise from an essentially static one to one that is

dynamic.

For instance, here is a basic question the entrepreneur will have to confront: should the

superwidget project get under way right now, or is there some value in waiting to learn

more information about the final selling price of the product? If by waiting six months,

the entrepreneur would get a clearer picture of the value of the new technology, then the

option of “waiting to invest” (one of the most common forms of real options) has value that

must be taken into account. Of course, procrastination may be risky too since it may result

in the entrepreneur getting “scooped” by a rival, and this possibility too needs to be taken

548
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into account. Other real options facing the entrepreneur may include the option to abandon

(that of shutting down the project if it proves non-viable down the road) and the option to

expand (that of increasing project scale should it be profitable) amongmany others. As these

examples suggest, real options valuation is project valuation enhanced by a consideration

of the value of path-dependent choices that need to be handled in an optimal manner.

To be sure, much of this is easier said than done. The option valuation models we have

considered so far in the book have assumed that the underlying drivers of option value

are traded in a liquid market, thereby allowing for valuation by replication. For financial

options, particularly in developed financial markets, such an assumption is fine. But in

investment projects, it is often invalid. The absence of a properly observable underlying

value process is often the biggest difference between real and financial options. It makes

the calibration of project uncertainty and/or the identification of risk-neutral probabilities

hard. Later in this chapter, we discuss a possible approach to working through these issues.

But for the moment, these are caveats that must be kept in mind when going through the

analysis.1

Types of Real Options
There are many kinds of real options. Categories of particular interest include the following:

Waiting to Invest Often as important as finding a good investment is the timing of

the investment decision. The option to wait before investing reduces timing risk since

more information usually becomes available as one waits. However, it may also

create new risks—the investment cost might increase, and new competition may

materialize. The trade-off of these risks determines the value of this real option.

Abandonment In a sense, this is the converse of the waiting-to-invest option. Having

invested and then discovered that the market is weaker than anticipated, the owner of

the project has the option to abandon the project to prevent further capital losses.

Taking this into account increases the ex ante value of the project.

Switching After commencement of the project, there may be opportunities to switch

to other technologies should they become value-enhancing. To the extent possible, such

scenarios for future cost-reduction should be included in the prior assessment of the

project or else the value will be understated.

Expansion of Scale Project structures are often flexible enough to allow a scale

expansion at an intermediate stage. A project may have a high up-front fixed cost and

permit a smaller investment later to scale up its size with no delay. If the expansion

enhances the future profitability of the project, it is a real option that should be

included in ex ante value. An esoteric example of this type of option is a right to movie

sequels. By paying a premium up front, the producer of the first movie is able to expand

scale to a second movie if the series catches on with motion picture audiences.

Maturity Adjustments The structure of some projects is such that they may be

completed over flexible time frames. It may be possible to complete the project faster

than scheduled if production time scales with input. (This may not always be possible,

of course. Think of wine making.) For instance, it is possible to shorten the time taken

to build a bridge if more resources are added to the project, and it may sometimes be

advantageous to do so. If the project funding is, say, on a floating-rate basis, it is better

1 Of course, the DCF problem faces analogous problems in generating the required input information

(realistic possible scenarios with their probabilities) or identifying the the correct discount rate to be

used.
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to scale up the project if there is a sharp drop in interest rates. Likewise, it may be

advantageous to scale down when rates shoot up, although this would depend on the

costs of project delay as well.

Stop/Restart Investment projects may be affected by market cycles, being profitable

in some periods but not in others. If the project can be shut down in the low-

performance epochs, then there is a real option of material value embedded in it. A

typical example of this class of options arises in mining; mining companies often

shut down mines during periods in which output prices are low.

This list is indicative but not even close to exhaustive. Since real options pertain to project

choices that must be made over time, there are effectively as many types of real options

as there are types of path dependencies. Each real option concerns an ex post choice (one

made after the project has been accepted) but one whose consequences need to be taken into

account ex ante (in the evaluation of the project and the decision on whether to accept it).

22.2 Preliminary Analysis and Examples

Real options analysis aims to value correctly the current business of a firm taking into

account the value of its investment and project optionalities, both current and future. In a

sense, a real option comprises a call option on a business opportunity that may be invested

in at a given future date. In this section, we present a series of examples, some simple, some

more elaborate, of various types of real options.

A Setting with Stochastic Cash Flows
Oil companies confront real options in almost all their activities. In the simplest case, they

pay for exploration, and after the exploration period, they extract oil for refining, resulting

in revenues.

Here is a simplified model. An oil company is considering exploring and developing an

oil field. For the moment, assume there is no quantity uncertainty, so the up-front fixed cost

of exploration/development can be expressed in per-barrel terms, say, K1 per barrel. This

initial phase takes time; a period of time T must elapse after beginning exploration before

the company can start refining and selling oil. The risk the company faces is that the price

per barrel P of the oil that will prevail at time T is uncertain, and the cost of refining oil

per barrel, say K2, is fixed. If the price of oil turns out to be low, losses result.

The firm faces the decision as to whether to explore for oil at all. In a simple “expected

value” approach to this problem, we would compare the expected price E(P) to the total

cost K1 + K2 and choose to explore only if E(P) > K1 + K2. The real options framework

takes a more sophisticated approach. We note first that the oil company need only choose

to proceed with refining if the price of oil is higher than that of the unit cost of refining, i.e.,

P > K2. Hence, the decision to refine is akin to holding a call option on the price of oil with

a strike price of K2 and a maturity of T . We denote the value of this call by C(P, K2, T ).

Given C , the decision on whether to proceed with exploration is easily resolved: the

company should proceed with exploration only if the real option value is greater than the

cost of exploration, i.e., if C(P, K2, T ) > K1.

Example 22.1 Suppose the price of oil is currently $40 per barrel, and that oil price volatility (annualized)
is 30%. If the exploration cost is K 1 = $5 per barrel and the refining cost is K 2 = $30 per
barrel, should the firm proceed with exploiting the oil well? Assume that the exploration
period lasts one year, the risk-free rate is 3%, and the convenience yield for oil is 1%.
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We can solve this problem using the Black-Scholes model where the dividend yields
in the model are replaced with the convenience yield. The strike price is $30. Plugging
these values in gives us the price of a call option on the price of oil with a maturity of
one year:

C (P , K 2, T , σ, r f , q) = 11.29

Since this is larger than K 1 = 5, it is worth carrying out the exploitation of the oil well. ■

A Potential Problem: Quantity Risk
What happens in this setting if the amount of oil discovered after exploration is uncertain?

For specificity, suppose that in the numerical example there are two (ex ante equiprob-

able) quantity outcomes, either 1 million or 2 million barrels of oil. Suppose too that

the total fixed cost of exploration is $15 million. Should the company now proceed with

exploration?

We have already determined that the net benefit per barrel of oil after refining costs is

the value of the call option, which is $11.29. This means that if the field contains 2 million

barrels of oil, the venture is profitable:

Expected Profit = 2,000,000 × $11.29 − 15,000,000 = $7,580,000

However, if the field contains only 1 million barrels of oil, then a loss results:

Expected Profit = 1,000,000 × $11.29 − 15,000,000 = −$3,710,000

From an ex ante standpoint, it appears that the right decision would be to apply the

probabilities of each outcome to these profits and to explore the field only if the average

profit is positive. (In the current example, this average is indeed positive at $1,935,000.)

However, these equal probabilities are the real-world probabilities of the quantity outcomes,

not risk-neutral ones. The “correct” valuation requires us to use risk-neutral probabilities.

As we have seen in earlier examples in this book (for instance, Section 11.3), the risk-

neutral probability of the good outcome may be much smaller than the outcome’s actual

probability.

But where do we get the correct risk-neutral probabilities? In the first example, where

there was only price risk and where the parameters of this price risk could be gauged

since the underlying asset (refined oil) was traded, the model’s parameters, its risk-neutral

probabilities, and the option price could all be determined in accordance with the Black-

Scholes model. But now, with quantity risk, the underlying uncertainty is not traded, so there

is no direct source of risk-neutral probabilities. This example highlights an important issue

that arises in the analysis of real options, namely that replication-based option pricing may

be infeasible because the underlying source of uncertainty is not traded. In a later section,

we will consider a possible solution to this problem.

A “Waiting-to-Invest” Setting
Optonium is a (fictitious) metal with a price process that evolves according to a binomial

process. The time-0 price per gram of optonium is denoted p0. In each period t ≥ 1, the

price is realized according to the binomial distribution

pt+1 =

 
u pt , with probability q

d pt , with probability 1 − q
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where q is the risk-neutral probability of an “up” move in the price. The risk-free (gross)

rate of interest per period is R = qu + (1 − q)d.

An investor holds the rights to operate an optoniummine. The mine will produce 1 gram

of optonium in the period it is opened, and production thereafter decays by a factor δ < 1.

That is, the mine produces δ grams in the next period, δ2 grams the period after that, and so

on. The investor’s option gives her the right to open the mine over any of the next n periods

by investing an amount M at that point; if the right is not exercised over the n periods,

it lapses. There are no costs to extracting optonium, so if the mine is opened in period t ,

the investor receives cash flows from the optonium sales of pt , δpt+1, δ
2 pt+2, . . . into the

indefinite future. How much are the rights worth to the investor?

In a typical DCF approach to this problem, we would look at the expected cash flows

from opening the mine today and operating it forever. Note that these expected cash flows

would have to be calculated under the actual probabilities, not the risk-neutral probabilities

described above. Then we would identify an appropriate cost of capital for the project and

use this to discount the expected cash flows.

The real options approach takes additional contingencies into account. For example,

since the investor has the right to operate the mine beginning not just now but any time

over the next n periods, the real options approach looks to value the mine by identifying the

optimal point for opening it over the n periods. This means there are two related questions

of interest: (a) when should the investor optimally exercise her right? and (b) what is the

consequent value of the rights she holds?

The first step to answering these questions is to identify the present value of the cash

inflows the investor receives by exercising the option in any period t given the price pt at

that point. (We are interested in these cash flows only for t ≤ n, but a general expression

is just as easy to define.) This present value may be identified by taking expectations of all

future cash flows under the risk-neutral measure and discounting them back to the present.

The discount factor per period is denoted β = 1/R. In Appendix 22A, we show that this

present value is just

V ( pt ) =
pt

1 − δ
(22.1)

Expression (22.1) is intuitive; we can actually arrive at it without the formal calculations of

Appendix 22A Under the risk-neutral measure, the price grows at the risk-free rate, so the

discounted expected value of the future price is always the current price. Since production

decays at the rate δ, the expected sequence of cash flows from opening the mine in period

t is just ( pt , δpt , δ
2 pt , . . .), which sums precisely to pt/(1 − δ).

The remainder of the problem is easy to solve since it is akin to an American option

problem with the “strike price” being the initial investment M required to open the mine.

The optimal starting time is obtained by backwards induction as explained in Chapter 12

(see Section 12.5). We begin at the “end” of the tree, i.e., in the last period in which the

mine may be opened. Let pn denote the period-n price. Then, the value of the option to

undertake the project given pn , denoted J
∗( pn), is

J ∗
n ( pn) = max{V ( pn) − M, 0}

Conditional on the project not having been undertaken so far, the investor’s optimal action

is to undertake the project at those values of pn for which J ∗
n ( pn) > 0.

Now we fold the tree back one period. Given a value pn−1 for the price in period n − 1,

the value of the investor’s option from pn−1 on, denoted J ∗
n−1( pn−1), is

J ∗
n−1( pn−1) = max{V ( pn−1) − M, β[q · J ∗

n (upn−1) + (1 − q) · J ∗
n (dpn−1)]}
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In words, the investor has the option of starting the project right away at the node pn−1, in

which case she receives the net value V ( pn−1) − M , or of waiting for one more period, in

which the continuation value depends on which of the two possible states results from pn−1.

Conditional on the project not having been undertaken so far, the investor’s optimal action

is to begin the project right away in period n − 1 if J ∗
n−1( pn−1) = V ( pn−1) − M .

Continuing in a similar vein, we can identify the optimal action for the investor to

undertake at each point as well as the initial value J ∗
0 ( p0) of the original option.

Example 22.2 Consider a specific parametrization of the above setting in which p0 = 1, u = 1/d = 1.30,
q = 1/2, and δ = 10/11. The risk-free rate implied by these parameter values is R = 1.0346
(so β = 0.9665). Suppose M = 10 and n = 1, that is, the mine can be opened right away
or in period 1 at a cost of 10.

From (22.1), the present value of all cash flows from period 0 on is V0 = 11, so if the
mine is opened in period 0, the net value received by the investor is 11 − 10 = 1. If the
investor waits one period, the present value of all future cash flows from period 1 onwards
moves to either V1 = 14.30 (which happens if the period 1 price is up0) or to V1 = 8.4615
(if the period 1 price is dp0).

Conditional on not starting the project in period 0, it is optimal to start the project in
period 1 if and only if the “high” price occurs in period 1, in which case the net value of the
project is 14.30 − 10 = 4.30. Therefore, the time-0 present value of not starting the project
in period 0 is

(0.9665)[(1/2)(4.30) + (1/2)(0)] = 2.078

Thus, the optimal action for the investor is to wait one period and then to begin the
project if and only if the high state occurs. The value of the option held by the investor
is 2.078. ■

Further Readings on the Waiting-to-Invest Option

This notion of waiting to invest was developed in several papers by various authors and still

forms the essential motivation for a real options approach to investment choice. Interested

readersmay reference the books and papers byKester (1984), Brennan and Schwartz (1985),

McDonald andSiegel (1986),Majd andPindyck (1987),Majd andPindyck (1989), Paddock,

Siegel, and Smith (1988), Dixit (1989), Pindyck (1991, 1993), Trigeorgis (1993a, 1993b),

Capozza and Li (1994), and Chance and Peterson (2002).

“Open and Shut” Options
In this final example of real options, we modify the waiting-to-invest setting by adding an

operating cost.

Example 22.3 Consider the setting of Example 22.2, but with several modifications. First, suppose that the
cost of operating the mine per period is c = 1.10. Second, assume that once the mine is
opened, it can be shut and re-opened without any cost.

Third, assume there is no decay in production, so δ = 1. This means the mine produces
1 gram of optonium each period that it is open. Finally, suppose that the investor has the
right to operate the mine over the next 10 periods; during each of these periods, the investor
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can choose whether to keep the mine open (and produce 1 gram of optonium) or shut.
After the 10 periods, the right lapses. The remainder of the example (the price process,
interest rates, etc.) is unchanged.

We are interested in the answer to two questions. First, if the investor behaves optimally,
what is the value of the mine? Second, what is the value of the mine if we ignore the option
the investor holds to open and shut the mine, i.e., if we assume that the mine must remain
open for the full 10 periods?

The second question is easy to answer. Given the initial price of p0 = 1, the present value
of the cash inflows from keeping the mine open for 10 periods is just 10p0 = 10. To see this,
recall that the price grows at the risk-free rate in the risk-neutral world, so the discounted
expected value of future prices is always the current price. Since we have production of
1 gram per period for 10 periods, the present value of the total revenue received is just
10 times the current price. The present value of the costs incurred on the other hand is the
present value of an outflow of 1.10 in each period for 10 periods. Netting these out, we see
that the value of the mine if it is kept open for 10 periods is about 0.834.

What about the value if we do not ignore the option to shut the mine during unprofitable
periods and re-open it when desired? In each period, the mine owner effectively has a call
option with a strike price of c = 1.10. If the price of optonium that period is greater than
c, it is worthwhile opening the mine that period, or else it is best to shut the mine. This is
a simple valuation problem. Solving for the values of these options on the binomial tree,
we find a total value for the mine of 2.686. Thus, including the values of the optionalities
increases the value of the mine more than threefold. ■

22.3 A Real Options “Case Study”

In this section, we present a case study of a fictitious company and analyze it in several

steps. The case involves more than one real option (the option to wait and the option to

abandon) in the same setting. Perhaps most important, the case also illustrates how risk-

neutral probabilities (or “state prices”) may be determined for real options by considering

a set of securities that spans the uncertainty in the fundamental driver of the project. This

spanning idea is revisited in the next section of this chapter where we go through a more

technical description of the general procedure that is involved.

Case Study
Greasy Oil Company (GOC) has been awarded a government license to exploit an oil well

that supports an annual production of 3075 barrels of oil and has a total productive life of

two years, after which all the oil will be sluiced out. Licenses granted must be used within

one year. For simplicity, we assume time is discrete with periods of one year length. This

means there are two scenarios that are open to GOC:

1. Drill right away, i.e., at time t = 0, and sell the output over the first two years.

2. Wait one year and start drilling at time t = 1, and sell the output over the next two years,

i.e., years 2 and 3.

We assume further that the output in a year is sold at the end of the year at the prices

known at the beginning of the year. The current price of oil is $17 per barrel.We also assume

that the new oil price realized at the end of the first year remains the same for the next two

years. These are all simplifications to aid the exposition; the ideas are easily extended to

handle more complex settings.

The choice between drilling right away or waiting for a year depends on the expected

price of oil in one year. If the price is expected to increase, GOC may wish to wait a year,
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especially if the price appreciation outweighs the time-value loss of receiving revenues a

year later. GOC’s chief economist Oyl Slyck has provided a quad of possible oil prices a

year ahead. Slyck, who is unfortunately given to punning, calls this her “four”-cast:

Scenario Oil Price ($) Probability

1 14 0.1658
2 13.08 0.1530
3 20 0.2904
4 25 0.3908

Current 17

The probabilities provided are the actual, not risk-neutral, ones. Note that there is a

greater chance of the price of oil rising than falling. If GOC were to start drilling right

away, then the first year’s oil production would have to be sold at the current price of $17

per barrel. On the one hand, this means relinquishing gains from a possible rise in the price

of oil after one year; but prices may also be lower at year’s end, and waiting a year means

passing up on locking in revenues for the first year at the current price.

Therefore, GOC’s management begins to consider the broader business environment.

Slyck gives them additional forecasts relating to her scenarios. Corresponding to the oil

prices, she has computed the likely value of the traded stock market index for each of the

four oil price scenarios. She has also forecast the corresponding risk-free interest rates (the

current interest rate is 6%; all interest rates in this study are in annualized terms with annual

compounding). These are presented in the following table:

End of Year-1 Scenarios

Variable 1 2 3 4

Stock index (S) 1500 1170.40 900 500
Oil price (X ) 14 13.08 20 25
Interest rate (r ) 0.08 0.06 0.04 0.03

The table shows that the oil price is negatively correlated to the stock market index and

the interest-rate level. Given the probabilities of the four scenarios from the previous table,

there appears to be a greater than even chance of a recession driven by high oil prices, where

interest rates are low and the stock index does poorly.

The following additional information is also provided about GOC, the project, and the

market environment.

Current value of stock index 960

Fixed cost of drilling oil per year $50,000
(paid at the start of the year)

One-year risk-free interest rate 6.00%

Price of two-year Treasury discount bond $0.8966
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Analysis of the Case: The Steps
Our analysis of GOC’s decision problem proceeds in several steps. In the first step, we

show how to compute the risk-neutral probabilities of the four scenarios using the given

information. Then using these risk-neutral probabilities, we compute the value of the project

if it is begun right away. We arrive at a project value of $2,046.23.

There are two optionalities ignored in this first step. One is the option to wait, i.e., to

begin the project in a year’s time (at t = 1). The second is to abandon the project a year after

it is begun if the environment is unprofitable (because oil prices have fallen). In Step 2, we

consider the first of these options. We show that including this option in the analysis causes

a sharp increase in the project value to $5,546.35.

In Step 3, we assume the project is begun at t = 0 but include the option to abandon the

project costlessly after a year if the climate is unsuitable. We show that this option too has

a huge impact on project value: the project value is now $7,820.79.

Finally, in Step 4, we look at starting the project at t = 1, but allowing for abandoning it

after a year. To show how such considerations are easily incorporated into the analysis, we

further assume in this case that there is a cost of abandonment. The project value is sharply

higher than when the project is begun at this point but there is no abandonment allowed:

the project value is now $7,136.26.

Comparing all these numbers, we see that the optimal course of action is for GOC to

begin the project right away but to abandon it after a year under the right circumstances.

Project Value if Commenced at t = 0

To identify the risk-neutral value of the project if it is commenced at t = 0 (but without

including any optionalities), the first step is to identify the risk-neutral probabilities of

the four scenarios. To accomplish this, we use four securities that span the state space at the

end of year 1. The four securities that will be used are the stock market index, oil, and

the one- and two-year riskless discount bonds. The current price of the stock index is 960,

oil is at $17 a barrel, and the one-year interest rate is 6%. Therefore, the current price of

the one-year riskless bond (assuming a face value of $1) is 1/(1.06) = 0.9434. The price

of the two-year discount bond as given before is $0.8966. We write the price of the four

securities at time t = 0 as a vector:

P(t = 0) =

⎡
⎢⎢⎣
S(0)

X (0)

B1(0)

B2(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

960

17

0.9434

0.8966

⎤
⎥⎥⎦

Next, we write down the scenario space of prices of these securities at time t = 1:

P(t = 1) =

⎡
⎢⎢⎣
S(1)

X (1)

B1(1)

B2(1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1500 1170.4 900 500

14 13.08 20 25

1 1 1 1

0.9259 0.9434 0.9615 0.9709

⎤
⎥⎥⎦

Each row comprises the prices of each security across the four scenarios. Now, let the

risk-neutral probability vector be Q,

Q =

⎡
⎢⎢⎣
q1
q2
q3
q4

⎤
⎥⎥⎦
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where qi denotes the risk-neutral probability of scenario i . Note that we must have q1 +

q2 + q3 + q4 = 1.

Under the risk-neutral probability, the expected value of an asset’s price discounted at

the risk-free rate must equal the current price. That is, we must have

P(t = 0) =
1

1 + r
P(t = 1)Q

Since P(t = 0), P(t = 1), and r are known, we can use this to solve for Q. We obtain

Q = P(t = 1)−1P(t = 0)[1 + r ]

=

⎡
⎢⎢⎣

1500 1170.4 900 500

14 13.08 20 25

1 1 1 1

0.9259 0.9434 0.9615 0.9709

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

960

17

0.9434

0.8966

⎤
⎥⎥⎦ (1 + 0.06)

=

⎡
⎢⎢⎣
0.25

0.25

0.25

0.25

⎤
⎥⎥⎦

We can now use these risk-neutral probabilities to value the future cash flows of the

company if the project is begun at t = 0.2 Note that all discounting must now be done at

the risk-free rate.

In the first year of the project, there is a cash outflow at the beginning of the year of

$50,000 and a cash inflow at the end of the year from the sale of 3,075 barrels of oil at $17

per barrel. The present value of this year’s cash flows is

NPV of first year =
3075 × 17

1 + 0.06
− 50,000 = −683.96

In the second year, the cost incurred is again $50,000, and the revenue received at the

end of year 2 depends on the four possible prices of oil in that period. Therefore, the four

possible present values at time t = 0 are:

Scenario 1: NPV =

 
14 × 3075

1 + 0.0.08
− 50,000

 
/(1 + 0.06)

Scenario 2: NPV =

 
13.08 × 3075

1 + 0.06
− 50,000

 
/(1 + 0.06)

Scenario 3: NPV =

 
20 × 3075

1 + 0.04
− 50,000

 
/(1 + 0.06)

Scenario 4: NPV =

 
25 × 3075

1 + 0.03
− 50,000

 
/(1 + 0.06)

Weighting these four outcomes by the risk-neutral probabilities Q, we obtain the expected

net present value of the cash flows from the project’s second year of operation. This equals

an amount of $2,730.19.

Summing up the project’s two years of operations results in a net total present value of

$2,046.23.

2 Note that the risk-neutral probabilities lie between 0 and 1, and sum to 1 as required. If our solution

for Q had resulted in elements that were either less than 0 or greater than 1, it would have meant

the presence of an arbitrage in the prices of the four securities used to span the state space of the

project.
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Project Value if Commenced at t = 1
We now assess the time-0 value of the project if the project is begun after waiting for one

year, i.e., at time t = 1.We do this to examine whether the trade-off between risky oil prices

and possibly higher revenues from price increases makes it more lucrative on the whole to

wait and begin drilling for oil after one year. Note that since oil revenues are received only

at the end of the year, the cash inflows in this case are received at the end of years 2 and 3.

Our case study has assumed that the price outcomes at the end of the first year will hold

for two years. Therefore, we need be concerned only with the state space at the end of the

first year. This is already known and has been defined as the matrix P(t = 1).

The project may be valued by considering the four possible cash-flow scenarios at the

end of one year based on which expected present value may be computed using risk-neutral

probabilities and discounting at the risk-free rate of interest. The following table summarizes

the cash flows.

Cash Flow Present Values at t = 1

Scenario t = 1 t = 2 t = 3 Total

1 −50000 −6435.19 36908.44 −19526.75
2 −50000 −9225.47 35796.55 −23428.92
3 −50000 11057.69 56860.21 17917.90
4 −50000 26092.23 72462.06 48554.29

The t = 1 entry corresponds to the fixed cost of operating the project in the first year.

This is paid at the beginning of the year.

The t = 2 entry is the present value (as of t = 1) of the cash inflow received from the

sale of the first period’s output at the end of the first year as well as the cash outflow of

$50,000 at the beginning of the second year required to keep the project operational for the

second year. For example, in the first scenario, this is

−50000 + 3075(14)

1 + 0.08
= −6,435.19

The t = 3 cash flows correspond to the present value (as of t = 1) of the cash inflows

received from the second year of oil sales in the project. In scenario 1, for example, the

present value at t = 1 of the cash flow from the second year of oil sales is

3075(14)

(1 + 0.08)2
= 36,908.44

The last column of the table sums these present values in each scenario.

The present value of the project as of t = 0 is simply the expectation of these four

present values under the risk-neutral probabilities, discounted back to time 0. Carrying

out this operation provides a final present value of $5,546.35. This is greater than the

expected present value of the project begun at t = 0, i.e., $2,046.23. Thus, we see that it is

advantageous to begin the project after one year to take advantage of the greater than even

probability of increases in the price of oil.

Beginning at t = 0 and Allowing for Abandonment
As mentioned earlier, there is a second option available to the company: that of aban-

doning operations in the second year of the project should continuing the project become
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unprofitable. In this segment, we look at the value of the project if it is begun at t = 0

and the abandonment option is available. In the next segment, we complete the analysis by

looking at the case where the project is begun at t = 1 and there is an abandonment option.

Here, we assume that the project may be abandoned costlessly. Adding a cost to abandon

the project is an easy extension, and we do this in the next segment.

If the project is begun at time t = 0, the analysis of the first year of the project is the

same as earlier and has present value of −$683.96 as before.

In the second year, abandonment becomes the optimal action when oil prices have

dropped at time t = 1. In scenarios 1 and 2, oil prices are $14 and $13.08, respectively.

At these prices, operating the oil field does not result in revenues that cover the fixed costs

of $50,000: as is easily checked, the present values (as of t = 1) of the cash inflows from

the four scenarios are, respectively, 39,861.11, 37,944.34, 59,134.62, and 74,635.92. Note

that in scenarios 3 and 4, the oil price is sufficiently high to make continued production

worthwhile.

The expected average present value at t = 0 is obtained by weighting these values from

optimal continuation with the risk-neutral probabilities and discounting back to period 0:

1

1 + 0.06
× 0.25 × (0 + 0 + 9134.62 + 24635.92) = 7,964.75

Adding this value to that of the first period results in a net present value overall of $7,280.79.

This may be compared to starting the project at t = 0 and not allowing for abandonment,

which amounts to an expected project value of only $2,046.22. Thus, the abandonment

option has substantial value.

Beginning at t = 1 and Allowing for Abandonment
Finally, we will look at the case where the project may be abandoned after starting at time

t = 1. Just to illustrate how costs of abandonment may be incorporated into the analysis,

we add an extra wrinkle to the problem here. We assume that the government penalizes

licensees who abandon the project after only one year of production by fining them $7,500;

to keep the earlier numbers in the analysis unchanged, assume that this fine is levied only

if the company exploits both options (the option to wait and the option to abandon), so it

applies only to the present setting and not the earlier ones.

The first step in the analysis is to determine whether to continue with the project at time

t = 2, the starting point for the second year of operation. Viewed at time t = 2, the present

value in each scenario (indexed by k) may be computed as follows:

NPVk(t = 2) = max

 
−7500,

3075 × Xk

1 + rk
− 50,000

 

(Here, in obvious notation, Xk is the price of oil in scenario k, and rk is the risk-free rate in

that scenario.) In words, if the present value of continuing is lower than −7,500, the project

is abandoned and the fine of $7,500 is paid. Based on this, the present values as of t = 2 in

each of the four scenarios is:

Net Present Value at t = 2

Scenario No Abandonment With Abandonment

1 −10,138.89 −7,500.00
2 −12,055.66 −7,500.00
3 9,134.62 9,134.62
4 24,635.92 24,635.92
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With these values in hand for the second year of project operation (or non-operation),

we compute the present value of the first year of operation. The net present value at time

t = 1 of the first year of project operation is equal to (for each scenario k):

3075 × Xk

1 + rk
− 50,000

To this quantity, we must add the present value as of t = 1 of the second period con-

tinuation cash flows. The sum total of these two values at time t = 1 in each of the four

scenarios is summarized below:

Scenario Net Present Value at t = 1

1 −17, 083.33
2 −19, 131.13
3 17, 917.90
4 48, 554.29

Finally, these four values are weighted by the risk-neutral probabilities and discounted

back to time t = 0, resulting in a time-0 present value of $7,136.26. This may be compared

to the net present value of starting at time t = 0 with the option to abandon with an overall

NPV of $7,280.79. The burden of the cancellation penalty has shifted the decision against

waiting to invest.

22.4 Creating the State Space

In this section, we will look at two interesting extensions of the state-space approach.

Both features are useful for developing the state space itself. So far in this chapter, we have

assumed that the state space is exogenously given. However, it is possible to use quantitative

techniques to develop the state space using the mathematics of linear algebra. This will help

in reducing the element of individual judgment required.

Before we develop these ideas, it is useful to note that the generation of scenarios is

an important aspect of either method, be it the DCF or state-space approach. Therefore,

the ideas presented in this section are useful even when the DCF model is used. After all,

cash-flow forecasts are required in any valuation exercise.

The material in this section is technically more advanced than in earlier sections and

may be skipped without any loss of continuity.

Generating a Parsimonious State Space
It is possible by using simple tools in linear algebra to create a very parsimonious state space

of outcomes for evaluating any security that is a function of assets within the state space. If

we have N securities, then our method generates a state space with N + 1 scenarios. This

is as parsimonious as one would like. Recall that, when we were using the binomial tree

to price stock options, the state space comprised just two scenarios because the stock was

permitted to take on only one of two values at a time. Hence, we were able to complete the

state space by adding to it the risk-free bond, thereby resulting in two securities (stock and

bond) that spanned the two scenarios in the model.

To demonstrate the state-space generation procedure, let us take a simple example.

Assume that we have four random variables (i.e., assets), all of which have mean zero.

(Assuming that the mean values are zero is without loss of generality since after we generate
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scenarios, we may add back the means of each variable.) Let us also assume that the

covariance matrix for these random variables is the following:⎡
⎢⎢⎣
2 1 2 1

1 3 1 1

2 1 4 2

1 1 2 5

⎤
⎥⎥⎦

Using a tool called the Gram-Schmidt decomposition from linear algebra, we can convert

this 4 × 4 covariance matrix into a scenario space comprising five scenarios, each with

values of the four random variables. The scenarios are of equal probability, i.e., in this case,

the probability equals 0.2 each.

This procedure literally “decomposes” the summary covariation information in the co-

variance matrix into a set of actual scenarios. The main component of the decomposition

procedure consists of a QR-decomposition, which is a matrix decomposition of the form

A = QR, where R is an upper triangular matrix and Q is an orthogonal matrix, i.e.,

Q  Q = I , I being the identity matrix. The Amatrix we use below is essentially an enhanced

identity matrix (see the program code that follows). The R matrix from this procedure is

combined with the Cholesky decomposition of the covariance matrix to obtain the state

space. This may be illustrated with some simple Octave program code:

%Input the covariance matrix

covmat = [2 1 2 1;

1 3 1 1;

2 1 4 2;

1 1 2 5];

%Get dimension and also create a reverse index for later use

n = length(covmat);

idx = [n:-1:1]’;

%Identity matrix

uMat = eye(n)

%Extended identity matrix

vMat = [uMat, -1*ones(n,1)]

%QR Decomposition

[q, r, p] = qr(vMat)

%Create (0,1) variable state space

x = -1 * sqrt(n+1) * r;

x(1,:) = x(1,:)/(-sqrt(n+1));

x = x(idx,:)

%Cholesky decomposition of covariance matrix

coeffmat = chol(covmat)

%Combine (0,1) state space with decomposed covariances

%to obtain the final scenario space (s)

s = coeffmat’ * x
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We ran this program, and it generated the following matrix of scenarios. To interpret this

matrix, note that each row comprises one random variable; each column is for a scenario.

Thus, there are N = 4 rows and N + 1 = 5 columns.

s =

⎡
⎢⎢⎢⎣

0 0 0 −2.23607 2.23607

0 0 2.88675 −2.56141 −0.32534

0 2.73861 −0.91287 −3.14894 1.32320

3.94968 0.38189 −0.86651 −2.85057 −0.61450

⎤
⎥⎥⎥⎦

Recall that each scenario occurs with equal probability. Let us check whether this procedure

has correctly generated an acceptable state space. We first check that each random variable

is mean zero. This may be done by hand, but the following code confirms that averaging

the values in each row of the scenario space results in an outcome of zero.

check_mean = mean(s’)

Next, we check that we can recover the covariance matrix. Since the variables are mean zero

and each scenario is equiprobable, the covariance matrix is given by E(s s  ) = (s s  )/(N +

1). The code snippet is as follows:

check_cov = (s*s’)/(n+1)

The reader should check that this provides exactly the 4 × 4 covariance matrix we started

out with above.

Finally, it is natural to ask where the covariance matrix comes from (in this example, it

was exogenously provided). Since the state space is generated using traded securities, the

random variables we use are all observable, and historical time-series data on these variables

will be available. The covariance matrix may be computed from this data. However, this

assumes that the data from the past is a good indication of the future. If this is unpalatable,

forward-looking covariance matrices may be generated using some procedure (for example,

there are vendors in the equity space who provide such forecasts).

At a broader level, this approach to generating scenarios connotes a shift in modeling

practice, going from judgmental forecasts of cash-flow scenarios to statistically-generated

ones.

Cash-Flow Generation Using a Factor Approach
In the previous subsection, it was assumed that the securities (random variables) that defined

the scenario space were already known. How do we come up with a set of securities to span

the state space?

Essentially, the choice of state variables is driven by applying one’s judgment and se-

lecting a set of variables that are related to the business environment in which the project

resides. As we saw earlier in our case study of Greasy Oil Company (GOC), which involved

oil extraction, we use the traded price of oil as one of the state variables. In addition, we use

the stockmarket index, which is correlated with almost any business undertaking. The other

state variables are the prices of bonds, again a natural choice, since they are intricately tied

to the time value of money, an essential element in any evaluation of cash flows over time.

Howmany state variables should be used? Again, this is a judgment call. Usually, a small

well-chosen set of variables, that are intuitively related to the factors in the economy driving

the project cash flows, will suffice. More generally, we aim to choose a set of factors that

explains a large portion of the variation in a firm’s cash flows.

Once specific state variables have been chosen, we may conduct statistical analyses to

determine the efficacy of this choice. One can develop a cash-flow forecasting model based

on the chosen state variables. This is also required when cash flows are forecast for DCF
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valuations. For instance, in the case of GOC, we might specify cash flows as a function of

three of the state variables in the model, i.e., the stock index S, the price of oil X , and the

risk-free interest rate r f . We can write this as a cash-flow function C(S, X, r f ). Then, it

remains to specify this function using a model and to estimate it using data. If time-series

data is available on cash flows and the state variables, then the function could be fit using

econometric techniques, which might range from simple linear or nonlinear regressions

to vastly more complex systems of equations. The goodness-of-fit of the model may be

assessed, thereby validating (or negating) the judgment calls made in choosing the number

and type of state variables.

The fitting approach notwithstanding, we would end up with a parametrized cash-flow

function, which would directly identify cash flows in each of the scenarios of our valuation

model. Thus, in our numerical example above, we have five scenarios, and the cash-flow

function would be applied across the four random variable values in each scenario to arrive

at a cash-flow value for each scenario.

Notice how the state-space approach automatically provides a basis for generating cash-

flow forecasts in each scenario. Calibration of the system directly leads to a forecast because

the state-variables-based scenarios are provided using the Gram-Schmidt decomposition

technique described earlier. Contrast this with the DCF approach in which an economic

model is required but is not always forced to conform to market prices of traded securities,

nor does it provide a basis for scenario generation.

22.5 Applications of Real Options

Wewrap up this chapter with a survey of settings in which real options analysis is applicable

and valuable.

Real options may come in the form of tax opportunities for multinational corporations

(MNCs). MNCs can switch revenues, production, and product lines across regions depend-

ing on variations in tax regimes, moving revenues to low-tax regimes from high-tax regimes.

For example, MNCs move production when tax breaks are given for various forms of joint

ventures. For a detailed analysis of the real options embedded in tax regimes, seeMuralidhar

(1992).

A second example of real options comes from the movie business. When the rights to

the movie are purchased, there is no guarantee that the movie will be ultimately produced.

The rights provide a real option to eventually invest in the movie, but there is a chance too

that the project will be abandoned.

Similarly, the development of a movie sequel is a valuable right and is a real option in

which a choice to expand scale may be exercised. The trade-off lies in deciding to make the

original movie and its sequels all at the same time (as in the case of The Lord of the Rings)

or to develop them serially and play a waiting game (as with The Godfather). The former

approach results in the cheaper development of all the movies, whereas the latter approach

prevents over-investment in case the results of the first film release turn out to be weaker

than anticipated.

Real options analysis is also widely used in the drug industry. Investment in pharmaceu-

tical development is vast, and a better assessment of real options makes it feasible for these

firms to allocate their research funds in the most effective manner. Merck was among the

first firms to apply real options analysis to their project choices. Many firms followed suit,

and such analyses are now routine in this industry.

Earnings management is also a form of real option. Firms do have and often exercise

their ability to undertake window dressing, so as to smooth earnings tomanage share values.

See the paper by DeGeorge, Patel, and Zeckhauser (1999).
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As in oil exploration, the exploitation of natural resources is a common setting in which

real options emerge. An interesting and unusual setting is highlighted in the case of the

Peruvian coppermineAntamina, the subject of a study byMoel andTufano (1997). The right

to develop the copper mine was offered by the Peruvian government as part of the country’s

privatization program. The mine had a valuable real options component in the form of the

right to develop the mine after completing exploration, and this right was analyzed using

Monte Carlo methods. The novel aspect of the transaction was the type of bid requested

by the Peruvian government, requiring bidders to state both the exercise price they would

set and the premium they would pay for the real option. This structure gives rise to various

incentive issues, affecting the amount that firmsoffer, their preferences between the premium

and exercise price, the identity of the bidders, the likelihood of ultimate development and

possible ex post renegotiation of the contract.

Finally, an important generator of real options is regulation. Classic examples come

from the electricity and telecommunications industries. The uncertainties of any industry

in the midst of deregulation change the evaluation of projects dramatically as the number

and complexity of project options increase, perhaps sharply. The need for a flexible and

easy-to-implement real options framework becomes paramount.

22.6 Summary

It is important to carefully evaluate optionality within a project-choice setting. In the exam-

ples developed in this chapter, we have shown how ignoring real options leads to subopti-

mal project choices. There are many real-world instances in which the methods of analysis

developed in this chapter are applicable.

The real options approach has some advantages over the discounted cash-flow (DCF)

technique. The cost of capital is not required for discounting cash flows; only the risk-free

rate is used. It values projects relative to the prices of the securities spanning the project’s

uncertainty and so provides an arbitrage-free approach to project valuation.Most important,

it becomes possible to take into account several optionalities at once (even interacting

optionalities) in the valuation exercise; such optionalities are routinely ignored in the DCF

approach leading to (perhaps considerable) mis-valuation. Perhaps the biggest disadvantage

of the real options approach is the need to identify the risk-neutral probabilities accurately

or, equivalently, to identify a set of traded securities that spans the project’s uncertainty.

This is always nontrivial and sometimes infeasible. Computationally too, the method often

proves quite demanding.

Early courses in finance emphasize the time value of money and how to use it to value

projects. It is apposite then to conclude this chapter with the words of Stephen Ross, who

described real options as being about the “money value of time.”

22.7 Exercises 1. Why does traditional NPV analysis break down in the presence of real options within

an investment opportunity?

2. State three different forms of real options and discuss possible real-world cases inwhich

such options are likely to be manifest.

3. You have the option to invest in a project at any time in the future. If the riskiness of

the project increases, does it increase or decrease the average waiting time to making

the investment?
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4. The option to wait to invest in a risky project is a valuable one. The risk of waiting to

invest is a possible loss in market share to other early movers into the market. Howwould

you use the option pricing framework to model the possible loss of market share? What

parameter in the option model gives you the ability to represent loss of market share?

5. What does the option ofwaiting to invest do to the following features of the project versus

making a project choice based on NPV alone? (a) riskiness of the project, (b) effective

hurdle rate for the project, and (c) probability that the project will be undertaken.

6. Shining Metal Inc. has invested in a gold mine. The company needs to decide whether

to drill for gold at the beginning of the year or wait until next year. Gold drilled this year

will be sold at end-of-year market prices. The mine generates 15,000 ounces of gold per

year. The current price of gold is $400 per ounce, and the volatility of gold returns is

40% per year. The risk-free rate of interest is 2%. The variable cost of extracting and

marketing gold is $300 per ounce. The fixed costs of operating the mine are $2,000,000

a year. Assume no convenience yields and decide whether it is worth drilling for gold

this year or it is better to shut the mine down and wait for one year.

7. In a gold mine, the price of gold is a major determinant of the value of the project.

(a) When the price of gold drops, what real option in the mine may be exercised?

(b) When the price of gold rises, what real option in the mine may be exercised?

(c) If the volatility of gold increases and all else remains the same, is it more or less

likely for a closed gold mine to reopen?

(d) If the volatility of gold increases and all else remains the same, is it more or less

likely for an open gold mine to close?

(e) Given that gold production has both fixed and variable costs, which of these is more

important in assessing real option value? What are the option analogs to these two

types of costs?

8. In real options analysis, what discount rate should be used in the model for valuing the

option?

9. You invest in an oil exploration project with a public company. What are the two main

risks you face? How do you hedge these risks?

10. Based on real options analysis, would you expect to see more or less oil exploration as

oil price volatility increases?

11. The current price of silver is $7 per ounce. You are a maker of silver jewelry and wish

to obtain a guaranteed supply of silver at the end of the year at a maximum price of $8

per ounce. If the volatility of silver is 20%, how much would you be willing to pay for

the guarantee? The risk-free interest rate is 3%.

12. You are the purchasing manager of a major health provider. A certain generic drug is

selling at a price of $10 per unit. To ensure that costs for this drug do not exceed $12

per unit the following year, you arrange a guaranteed maximum price with the supplier

for a commitment fee of $0.15 per unit. The growth rate of the drug price is normally

distributed at 30% with a standard deviation of 10%. The risk-free rate of interest is 1%.

Is the commitment fee priced appropriately to offer your firm a reasonably priced hedge

against escalating health care costs?

13. How does the option of waiting to invest impact project values? When is it worth the

wait? What is the implicit effect of the option of waiting to invest on the project’s hurdle

rate?

14. How is the option of waiting to invest different from the option to abandon the project?

What exotic options are these optionalities analogous to?



566 Part Two Options

15. Contrast the state-space approach to valuing real options with the traditional discounted

cash-flow approach. Highlight three advantages of the state-space approach over the

DCF one. What are the possible disadvantages?

16. A project generates annual cash flows Ct , received at the end of the year. The cash flow

is based on market conditions and changes from year to year as follows:

Ct+1 = 2 + 0.8Ct + 20 t+1

where  ∼ N (0, 1) is drawn randomly from a normal distribution with zero mean and

unit variance. This cash-flow-generating process continues year after year even if the

plant is closed. You have to decide when to keep the plant open.

The first year’s cash flow is 10. The project is such that one can start and stop it in any

year. Find a rule of the following form: find triggers a, b within which the project will

operate. The limit a is such that if the project is not in progress, it will start when the

cash-flow level crosses above a. The level b is the stop limit, i.e., if the project is in

progress, it is worthwhile to stop it when the cash-flow level drops below b. The goal is

to find a rule that maximizes the average cash flow over time. [Hint: Think of a way to

solve this problem using Monte Carlo simulation.]

17. In this problem, you will download market data and generate a state space for valuation

purposes. Please carry out the following set of steps:

(a) Download five years of monthly stock price data from the web. You may use a

convenient source such as Yahoo! Finance. Do this for 10 stocks.

(b) Convert the stock price data into returns.

(c) Compute the mean stock returns for each stock and the covariance matrix of returns

for all the stocks.

(d) Use the covariance matrix and mean returns to generate the state space of stock

returns using the Gram-Schmidt decomposition technique.

(e) Price an option that pays off $1 million when the stock return exceeds 10% on more

than five stocks.

(f) Into which business decision might this option pricing problem provide you an

insight?

18. You have current wealth of $100. You are offered a venture in which you may with equal

probability double yourmoney or halve it. If your utility is the square root of your wealth,

would you take this venture?

19. You have developed a new material called gossamer, which has demand characteristics

closely related to the markets for gold and silver. The prices of these commodities at the

end of the year are forecast to be as follows:

Material Low Demand Prices High Demand Prices

Gold 300 400
Silver 4 8
Gossamer 50 80

The input raw materials to make gossamer cost $65. Do you think this is a project you

would be interested in pursuing?
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20. (Difficult) A project once a year generates cash flows Ct received at the end of the year.

The cash flow is equal to 100y, where y is an index of business conditions. Each year’s

cash flow is related to that of the previous year based on the following scheme:

yt+1 =

⎧⎪⎨
⎪⎩

yt x with prob 1/3

yt with prob 1/3

yt/x with prob 1/3

The first year’s cash flow is 100, and let x = 1.4. The project is such that one can start

and stop it any year. However, starting the project requires a commitment to operate the

project for at least three years. Stopping the project prevents restarting the project for

three years. Find a rule of the following form: find a range (a, b) within which the project

will continue. The upper limit a is such that if the project is not in progress, it will start

when the cash-flow level crosses a. The level b is the stop limit, i.e., if the project is in

progress, it is useful to stop it when the cash-flow level drops below b. [Hint: Think of

a way to solve this problem using Monte Carlo simulation.]
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Appendix 22A

Derivation of Cash-Flow Value in the
“Waiting-to-Invest” Example
We use the notation introduced in the “Waiting-to-Invest” setting of Section 22.2. The

objective is to derive equation (22.1).

Suppose the period t price observed is pt and the mine is opened at this point. The

distribution of future prices from this point on depends only on pt , so the present value of

the cash inflows received from opening the mine in period t depends only on pt . Denote this

present value by V ( pt ). Let E( pt+τ |pt ) denote the expected price (under the risk-neutral

measure) at time t + τ given the time-t price pt . The expected cash flow from optonium

sales in period t + τ is δτ E( pt+τ |pt ). Therefore,

V ( pt ) =

∞ 
τ=0

βτ δτ E( pt+τ |pt ) (22.2)

We can express V ( pt ) in a more useful form that links the present values of future cash

flows from times t and t + 1:

V ( pt ) = pt + δ [qδV (upt ) + (1 − q)δV (dpt )] (22.3)

Equation (22.3) has a simple interpretation. The value of cash flows from time t onward

is the period-t cash flow pt plus the discounted value of all future cash flows from period

t +1 on. Now in period t +1, the “state of the world” can be either upt or dpt . In the former

case, the present value of continuation cash inflows is δV (upt ) (since a decay of delta has

occurred since period t in the mine’s production). In the latter case, it is δV (dpt ). Taking

expectations over these continuation values under q, we obtain (22.3).

We can use (22.3) to solve for an explicit form for the function V (·). One way to do this is

to guess a form for V (·) and identify the relevant parameters. Suppose we try V ( pt ) = kpt
for some fixed k. We substitute this form for V ( pt ) in (22.3) and see if we can solve for

k. (If we cannot, the posited form of V (·) is wrong.) In the present case, the substitution

results in

kpt = pt + β [qδ kupt + (1 − q)δ kdpt ]

Canceling the common term pt , this expression may be solved for k:

k = [1 − βδ(qu + (1 − q)d)]−1 (22.4)

Since β(qu + (1 − d)d) = 1, we obtain the simpler expression k = (1 − δ)−1. This finally

gives us

V ( pt ) =
pt

1 − δ

which is exactly equation (22.1).
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Chapter 23
Interest Rate Swaps
and Floating-Rate
Products

23.1 Introduction

A swap is a periodic exchange of cash flows under specified rules. In an interest rate swap,

the exchanged cash flows are determined by the level of interest rates. With over $300

trillion in notional outstanding worldwide in 2007,1 interest rate swaps are among the most

important classes of derivatives. This chapter examines a variety of interest rate swaps,

beginning with “plain vanilla” fixed-for-floating swaps. Non-interest rate swaps, such as

equity swaps, commodity swaps, currency swaps, and credit swaps, are examined in later

chapters.

Interest rate swaps are intimately related to forward-rate agreements or FRAs, which

we examined in Chapter 6. Two other classes of instruments that are closely related to

FRAs and interest rate swaps are caps and floors. The defining feature of caps and floors is

optionality. Caps are akin to a portfolio of call options on the interest rate, while floors are

like a portfolio of puts. A portfolio that is long a cap and short a floor is just an interest rate

swap (or, equivalently, just a portfolio of FRAs). FRAs, interest rate swaps, and caps and

floors, as also their exchange-traded cousin, eurodollar futures, constitute by far the most

important classes of floating-rate derivative products.

We begin this chapter with a brief review of floating-rate bond mathematics.

23.2 Floating-Rate Notes

Floating-rate notes or FRNs are coupon bonds in which the coupon paid by the bonds

depends on a pre-specified interest rate or index. The most popular floating-rate notes are

those indexed to Libor.

As an illustration, take a five-yearmaturity, semiannual pay $1 FRN indexed to six-month

Libor. That is, the underlying instrument is a five-year FRN with semiannual coupons and

a face value of $1, whose coupon is equal to the six-month Libor rate at the previous reset

date. At time 0 (the issuance date of the FRN), the first coupon, due in six months, is fixed

1 BIS report available at http://www.bis.org/publ/rpfxf07t.htm.
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depending on the six-month Libor rate at time 0. Suppose this Libor rate is 6%. Then, on

the first coupon date, a coupon of

(0.06) × d1

360

will be paid, where d1 denotes the actual number of days in the first six-month period.

Simultaneously, the six-month Libor rate observed on the first payment date is then used to

determine the size of the second coupon payment (due in twelve months from issuance of

the bond). If this rate is (say) 6.25%, then the coupon received at the end of twelve months is

(0.0625) × d2

360

where d2 denotes the actual number of days in the second six-month period. And so on until

maturity when the principal is also repaid.

Note that only the first coupon is known at the time of issuance, The remaining cash

flows that may arise from the FRN are not known until the relevant reset dates. Nonetheless,

the FRN is easy to value as we explain next.

Valuation of FRNs: A No-Arbitrage Approach
Suppose we have an FRN with a face value of $1 and N remaining payment dates t1, t2, . . .,

tN . Let t denote the current date and let t0 denote the last reset date, i.e., the date on which

the coupon due at t1 was determined. Let  0 denote the Libor rate fixing at t0 and d0 the

actual number of days between t0 and t1. Then, the coupon due at t1 is

 0
d0

360

Now, the value of the FRN at time t is the sum of two quantities: (a) the present value

of this coupon due at t1, and (b) the present value of all future cash flows (coupons and

principal) due beyond t1 from the FRN.Of these, the quantity (a) is easily identified since the

cash flow due at t1 is known at time t . If B(t , t1) is the time-t present value of $1 receivable

at time t1, then the present value of the first coupon is
2

B(t , t1) ×  0
d0

360

However, future cash flows beyond t1 are not known at time t , so how do we ascertain

the quantity (b)? The answer is simplicity itself as the following proposition shows:

Proposition 23.1 On any reset date, the value of the FRN (which is the present value

of all future cash flows due from the FRN) is equal to par.

Proof Consider date t1 (the argument is the same for any reset date). Suppose the value of

the FRN at time t1 exceeds par, i.e., V > 1. Then, the following strategy generates arbitrage

profits:

• Short the FRN and invest $1 at Libor. Net cash inflow: V − 1.

2 Recall from Chapter 6 that the discount factors B are determined from the Libor rates  . For

example, B (t, t1) is given by

B (t, t1) =
 

1+  (t, t1)
d(t, t1)

360

 −1

where  (t, t1) is the Libor rate observed at t for maturity t1 and d(t, t1) is the actual number of days

between t and t1.
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• At each payment date t2, . . . , tN−1, use the interest obtained from the Libor investment

to pay the coupon due on the FRN. Roll the $1 investment forward at Libor for one more

period. Net cash flow: 0.

• At date tN , receive $1 + interest on the Libor investment and use this to retire the FRN.

Net cash flow: zero.

Conversely, if the value of the FRN at t1 is V < 1, then reversing the above strategy

provides an arbitrage. ■

Summing up, the FRN is equivalent to receiving a cash flow at time t1 of $1+ the coupon

due at t1. Thus, the time-t present value of the FRN is

B(t , t1) ×
 
1+  0

d0

360

 
(23.1)

Expression (23.1) is also called the “short form” approach to FRN valuation since the

present values of all cash flows from date t2 onwards are subsumed in the par value of $1 at

time t1 that is used in the valuation expression.

Valuation of FRNs: The “Forward Method”
An alternative method that is sometimes used to value FRNs is called the forward method.

The forward method “fills in” amounts for the unknown future cash flows from the FRN by

using the relevant forward interest rates. For example, suppose that the forward interest rate

at time t for borrowing or investment over the period (tk−1, tk) is 5%. Then, in the forward
method, we calculate the interest received at time tk as if the realized Libor rate on the reset

date tk−1 were in fact 5%. Having projected cash flows at all payment dates in this fashion,
we take the present value of the cash-flow stream to obtain the value of the FRN.

Although the forward method sounds different from the no-arbitrage result—and also

sounds less satisfactory because it appears to make specific assumptions about uncertain

future cash flows—it is easy to show that the two methods are in fact mathematically

equivalent, so the forward method is actually a no-arbitrage approach to valuation.

Note that in both approaches, the coupon at payment date t1 is known. Thus, to show

the equivalence between the approaches, we need to show that the time-t present values of

the cash-flow stream from and including date t2 on are equal. As we have seen above, this

present value in the no-arbitrage approach is B(t , t1): the present value viewed from t1 of

all future cash flows is par or $1, and B(t , t1) is the time-t present value of $1 receivable at

t1. We show that the same value results under the forward method also.

The first step is to identify precisely the projected coupon amounts on each payment

date. Consider any coupon date tk ≥ t2. Let B(t , tk) represent the time-t present value of

$1 due at tk . As we showed in Chapter 6 (see the arguments leading to equation (6.13)),

the forward rate at time t for an investment or borrowing between tk−1 and tk , expressed in
terms of the discount factors B, is

f (t , tk−1, tk) =
B(t , tk−1) − B(t , tk)

B(t , tk)
× 360

dk
(23.2)

where dk is the actual number of days between tk−1 and tk . Using the forward rate, the

projected coupon received at time tk in the forward method is

f (t , tk−1, tk) ×
dk

360
= B(t , tk−1) − B(t , tk)

B(t , tk)
(23.3)

The time-t present value of this coupon flow is just B(t , tk) times the right-hand side of

(23.3), which is

B(t , tk−1) − B(t , tk) (23.4)
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Summing (23.4) over k (from k = 2 to k = N ), the present value of all the coupon cash

flows from date t2 on works out to

B(t , t1) − B(t , t2) + B(t , t2) − B(t , t3) + · · · + B(t , tN−1) − B(t , tN )

which simplifies to

B(t , t1) − B(t , tN )

In addition, on the final payment date, the principal of $1 is also received; this has a time-t

present value of B(t , tN ). Adding this to the present value of the coupon cash flows, the

present value of all cash flows from t2 on works out to just B(t , t1), which is exactly what

we were looking to show.

Example 23.1 Suppose that we are given the following information. An FRN has four remaining payment
dates: in t1 = 100 days, t2 = 283 days, t3 = 465 days, and t4 = 649 days, respectively.
The coupon rate for the first payment date is 5.25%, and the number of days between the
last reset date and the first coupon date is 182 days. The Libor rates viewed from today for
maturities of 100 days, 283 days, 465 days, and 649 days are, respectively, 5.15%, 5.21%,
5.36%, and 5.84%. The FRN has a face value of $1. What is its value using the short-form
method? Using the forward method?

Short-Form Method

The size of the first coupon due on the FRN is

Coupon at t1 = (0.0525) × 182

360
= 0.0265

In addition, the present value (viewed from t1) of all future coupons due on the FRN is
just par, which is $1. Thus, the FRN is equivalent to receiving a cash flow of 1+ 0.0265 on
date t1. To “present value” this quantity, we must identify the discount factor B (t, t1).

The Libor rate viewed from today for maturity on date t1 is 5.15%. Thus, the discount
factor for cash flows due in 100 days is

B (t, t1) =
 

1+ (0.0515)
100

360

 −1

= 0.9859

It follows that the current value of the FRN is

(0.9859)(1+ 0.0265) = 1.01201

Forward Method

We begin by identifying the discount factors B (t, tk) and thence the forward rates f (t, tk−1, tk)
using (23.2). We have

B (t, t2) =
 

1+ (0.0521)
283

360

 −1

= 0.9607

B (t, t3) =
 

1+ (0.0536)
465

360

 −1

= 0.9352

B (t, t4) =
 

1+ (0.0584)
649

360

 −1

= 0.9047
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From (23.2), the forward rates for the coupon periods ending at times t2, t3, and t4 are:

f (t, t1, t2) = B (t, t1) − B (t, t2)

B (t, t2)
× 360

183
= 0.0517

f (t, t2, t3) = B (t, t2) − B (t, t3)

B (t, t3)
× 360

182
= 0.0537

f (t, t3, t4) = B (t, t3) − B (t, t4)

B (t, t4)
× 360

184
= 0.0660

Using these forward rates, the projected coupons at times t2, t3, and t4 are, respectively:

Coupon at t2 = 0.0517× 183

360
= 0.0263

Coupon at t3 = 0.0537× 182

360
= 0.0272

Coupon at t4 = 0.0660× 184

360
= 0.0337

Thus, the present value of the coupon inflows from the FRN is

4 
k=1

[B (t, tk) × Coupon at tk] = 0.1073

In addition, the principal of $1 is received on the final payment date t4. This principal
has a present value of B (t, t4)×1 = 0.9047. Adding this to the present value of the coupon
inflows gives us a total value for the FRN of 0.1073 + 0.9047 = 1.0120. Except for the
minor rounding-induced difference, this is exactly the same value obtained by the short-
form method. ■

23.3 Interest Rate Swaps

Interest rate swaps are bilateral agreements between two counterparties to exchange interest

payments in a common currency calculated using specified rules on a given notional prin-

cipal. The principal itself is not exchanged in the swap (hence “notional” principal). The

currency in which both payments are made is the same in an interest rate swap. Swaps in

which the two legs make interest payments in different currencies are called cross-currency

swaps (or simply currency swaps) and are the subject of a later chapter.

Themost common kind of interest rate swap is the “plain vanilla” fixed-for-floating swap.

Here, one counterparty makes payments computed under a fixed interest rate specified in

the contract in exchange for receiving floating payments according to some specified index

(typically Libor). For example, a corporation may enter into a five-year pay-fixed receive-

floating swap with semiannual payments on a notional principal of $100,000,000, in which

the corporation agrees to

• make six-monthly interest payments at a fixed rate of (say) 7% computed on the

$100,000,000 principal, and

• receive six-month Libor on the same notional principal every six months until maturity.

In practice, two separate interest payments are not made; rather, only the net interest amount

is exchanged.

Importantly, the payment frequency of the two sides need not be the same. It is common

to have the floating-side payment frequency correspond to money-market practices and the
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fixed-side payments correspond to corporate bond market practice. In the US, the floating

payments are made quarterly and linked to three-month Libor, while the fixed payments

are made semiannually. In the euro-zone, floating payments are semiannual and linked to

six-month Euribor, while fixed payments are made annually.

There are a number of common variations on the basic fixed-for-floating swap. These

include:

• Above/below market rate swaps, also known as off-market swaps, in which the fixed rate

in the swap differs from that of the standard market swap.

• Zero-coupon swaps, in which one side of the swap makes no payments until maturity of

the swap, but the other side makes periodic payments.

• Swaps with changing fixed rates, in which the fixed rate on the swap varies according to

a specified schedule.

• Spread-to-Libor swaps, where the floating payments consist of Libor plus or minus a

fixed spread.

• Forward-starting swaps, in which the swap is entered into today, but the swap itself

commences only at some specified date in the future.

• Amortizing/accreting/roller-coaster swaps, in which the notional principal amount is not

fixed but varies over time in a prespecified manner (decreasing in an amortizing swap

and increasing in an accreting swap; in a roller-coaster swap, as the name suggests, the

principal amount can move both up and down).

We examine these variants after first studying the vanilla fixed-for-floating swap. We

begin by highlighting some of the uses of swaps in risk-management. Following this, we

work through the cash flows from a fixed-for-floating swap and discuss the valuation and

pricing of fixed-for-floating swaps. Then, we discuss pricing and other aspects of more

exotic swaps including all the variants listed above.

23.4 Uses of Swaps

One reason that the swaps market has reached its immense size is that more and more

applications of swaps are discovered (invented may be a better word) each year. We list and

discuss some of the many uses of swaps in this section.

Comparative Advantage
The notion of comparative advantage in economics is over two centuries old and goes back

to the work of David Ricardo on the rationale underlying international trade. Comparative

advantage is the idea that even if one party can do everything more efficiently than another,

it may still pay each of the parties to specialize in the respective areas in which they are

relativelymore efficient (or less inefficient) and then to trade. As a simple analogy, a doctor

may be better at managing her records and running her office than her office manager, but

she nonetheless finds it worthwhile to employ the office manager because it enables her to

concentrate on medicine in which her advantage over the office manager is far greater.

In the context of financial markets, comparative advantage arises in the difference be-

tween borrowing rates in fixed- and floating-rate markets. While higher-rated borrowers can

borrow at a cheaper rate in both markets, it often turns out that the difference in borrowing

rates between high- and low-rated borrowers is higher in the fixed-rate market than in the

floating-rate market. This enables a Pareto-improving (“everyone benefits”) situation via a

swap. The following simple numerical example illustrates the point.
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Example 23.2 Consider two corporations, A and B. A, a high-quality borrower, wishes to raise $50 million
in five-year floating-rate funding. The company can borrow fixed-rate at 5% and floating-
rate at Libor − 0.50%. B, a lower-rated company, wishes to raise $50 million in five-year
fixed-rate funding. B finds it can borrow fixed at 7% and floating at Libor + 0.50%. The
borrowing rate information is represented in the following table (L represents Libor):

Type of Borrowing Company A Company B

Fixed 5% 7%
Floating L − 0.50% L + 0.50%

Absent the availability of swaps, A would borrow floating and pay Libor − 0.50%, while
B would borrow fixed and pay 7%. Note, however, that A has a comparative advantage in
the fixed-rate markets: although it can borrow cheaper in both markets, it can borrow 2%
cheaper in fixed-rate markets and only 1% cheaper in floating-rate markets. So comparative
advantage would suggest that A should borrow fixed and B floating. The use of a swap then
completes the Pareto-improvement. Here are the details:

• Company A borrows funds from the fixed-rate markets at 5%.

• Company B raises money in the floating-rate markets at L + 1
2
%.

• The two parties enter into a swap in which A pays B a floating rate of L (i.e., Libor flat)
while B pays A a fixed rate of 7%−y basis points.

What are the net funding costs that result? Company A pays 5% fixed on its borrowing,
receives 7%−y basis points from B, and pays L to B. The net outflow for A is

L − 2%+ y basis points

As long as y < 1.50%, A finds this method of obtaining floating-rate funding preferable
to borrowing directly from floating-rate markets. What about B? The net cash outflow to B
from the proposed strategy is

7.50%− y basis points

As long as y > 0.50%, this is a preferable way for B to obtain fixed-rate funding than
borrowing directly in fixed-rate markets.

A range of values is possible for y that satisfies these inequalities. For example, consider
the halfway point, y = 1.0%. In this case,

• A borrows fixed at 5%, pays B the floating payment of L , and receives from B the fixed
payment of 6%. The net cost to A is a floating-rate payment of L −1%, which is 50 basis
points cheaper than accessing floating-rate funding directly in the market.

• B borrows floating at L +0.50%, pays A a fixed-rate of 6%, and receives from A a floating
rate of L . The net cost to B is a fixed rate of 6.50%, which is a 50-basis point saving over
accessing funds directly in the fixed-rate market.

The total funding cost savings (50 basis points + 50 basis points = 1%) is exactly the
“gains from trade.” That is, by having each participant borrow in the market in which they
have a comparative advantage, the total borrowing costs are 5% + (L +0.50%) = L +5.50%,
which is 1% less than if A borrowed floating (at L − 0.50%) and B fixed (at 7%). It is this
1% savings that is allocated to the participants via the swap.

Of course, many other solutions could have been chosen as well; these would assign the
1% gain differently. As two examples:

• If we choose y = 0.50%, then A ends up with a net funding cost of L − 1.50% while B’s
funding cost is 7%, so all the gains from trade go to A.

• Conversely, if we choose y = 1.50%, A’s net funding cost works out to L − 0.50% and
B’s to 6%, so B now gets all gains from trade. ■
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Analyzing Funding Costs with Swaps
Swaps are useful devices for comparing different types of financing. Firms are often faced

with a choice between fixed-rate and floating-rate forms of finance. From a purely funding

cost standpoint, it is not clear how one should make this comparison. For instance, how do

you compare a 10-year loan at a fixed rate of 10% versus a 10-year floating-rate note at

1-year Libor+ 0.75% when the current 1-year Libor rate is 5%? That the Libor alternative

is cheaper now does not mean it will be so in the future too. If interest rates escalate sharply,

then the FRN may end up being more expensive than the fixed-rate loan.

The swap market, it turns out, provides us with exactly the right vehicle to make this

comparison. Suppose, for example, that the company faced with these funding choices finds

that the current fixed rate versus one-year Libor being offered to it in the swap market is

9.125%. It is easy to show that the floating-rate note then dominates the fixed-rate borrowing.

Consider the following:

• Raise money in the floating-rate market at L + 0.75%.

• Enter into a pay-fixed, receive-floating swap in which the company pays 9.125% and

receives one-year Libor.

The net result is a fixed-cost borrowing at 9.875%, or 0.125% cheaper than directly

borrowing in the fixed-rate market at 10%.

Risk/Maturity Management
Swaps can be used to manage the risk of both individual positions and balance sheets. For

example, consider a bank that has fixed-rate assets and floating-rate liabilities. The bank is

vulnerable to an increase in interest rates. One solution is to enter into a swap where the

bank pays fixed and receives floating. Both sides of the balance sheet are now based on

floating rates. This is depicted in Figure 23.1.

Speculation and Other Uses
Swaps can also be used to speculate without any prior underlying exposure. An investor

who has the view that rates will increase can enter into a pay-fixed/receive-floating swap.

If the investor’s view holds and rates increase, the floating-rate receipts will be higher in

the future, and the swap can be unwound profitably (its marked-to-market value will be

positive). Similarly, an investor whose view is that interest rates are going to decrease can

enter into a pay-floating/receive-fixed swap.

FIGURE 23.1
Managing Balance

Sheet Risk
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Swap Counterparty

Fixed

Floating

Fixed Floating
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Swaps also offer financial-planning flexibility. For example, a company that is currently

raisingmoney and wishes to raise fixed-rate funding but has the view that rates will go down

in the future can raise floating-rate financing now and swap into fixed when rates decrease.

23.5 Swap Payoffs

This section discusses the cash flows generated by vanilla fixed-for-floating swaps.3 The

mechanics are similar to that of FRAs, but there are some minor differences. In an FRA,

the cash flows from both legs are computed using the money-market day-count convention,

In a swap, the cash flows on the floating side use the money-market day-count convention

while those on the fixed side use what is called the swap-market convention.

Consider a swap entered into on date t0 with notional principal A. For simplicity, we

assume that the two legs of the swap have the same payment frequency and occur on

the payment dates t1, t2, . . . , tN . (Handling different frequencies is conceptually trivial but

notationally cumbersome since it would require us to distinguish between payment dates

for the floating and fixed sides.) We look at the payoffs to a long swap position, i.e., the side

that pays fixed and receives floating. We denote the fixed rate in the swap by k and take the

floating payments to be Libor flat.

Floating Payments

For each reset date tn , let  n denote the Libor rate observed at tn for the period (tn , tn+1),
n = 0, 1, . . . , N − 1. The rate  n is used to calculate floating payments due at tn+1. Note
that  0 is known at the time of entering into the swap, but  1, . . . ,  N−1 are observed only
on dates t1, . . . , tN−1, respectively.

In calculating the floating payments due on the swap, the money-market day-count

convention is commonly used. In general, letmn denote the day-count fraction applicable to

the period (tn , tn+1) in the relevant convention. For example, in the Actual/360 convention
(which is what we use in the numerical examples below), the fraction mn is given by

mn =
dn

360

where dn is the actual number of days between tn and tn+1.

Fixed Payments

For calculating the fixed payments, the swap-market convention is used. Let sn denote the

day-count fraction applicable to the period (tn , tn+1) in this convention. For example, if the
swap-market convention is 30/360 (as in US dollar and euro swaps), then sn is given by

sn =
30

360
× Number of months between tn and tn+1

Cash Flows on the First Payment Date
Since  0 is known at the time of entering into the swap, the first set of payments in a swap

is known at the outset. On date t1, the floating payment due is computed using  0 as

Floating payment1 = ( 0 × m0) × A

The fixed payment is computed using the contract swap-rate k:

Fixed payment1 = (k × s0) × A

3 Our presentation of swap payoffs and pricing (Sections 23.5 and 23.6) follows closely the class notes

on this material developed by Marti Subrahmanyam at New York University.
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Thus, the net payment received by the long swap position is

( 0m0 − ks0) × A

Cash Flows on Subsequent Payment Dates
These are calculated exactly in the same manner as on the first payment date. If  n is the

realized Libor rate on date tn , then the floating payment due at tn+1 is

Floating paymentn+1 = ( n × mn) × A

The fixed payment due at tn+1 is computed using the rate k:

Fixed paymentn+1 = (k × sn) × A

Thus, the net payment received by the long swap position is

( nmn − ksn) × A

Differing Payment Frequencies
In the presentation above, it was assumed that the payment frequencies of the fixed and

floating sides are the same, but this is trivial to drop. On the dates that fixed payments are

due, the payments are calculated exactly as above with the day-count fraction using the

period between the fixed-payment dates. Similarly, on the dates floating payments are due,

the payments are calculated exactly as above with the day-count fraction referring to the

period between floating-payment dates.

Example 23.3 Consider a three-year swap with parameters as in Table 23.1. Note that “Year 1” refers to the
year in which the swap is initiated. Note too that the example assumes a common payment
frequency for the fixed and floating sides.

Payoffs on the First Payment Date
We compute the cash flows to the holder of the long swap (pay fixed/receive floating).
Suppose the six-month Libor rate on the inception date of the swap is 6.50%. Then this rate
is used to determine the floating payments on the first payment date, December 11 of Year 1,
written 11-Dec-Year 1. Note that there are 183 days between June 11 and December 11.
So the floating payment due on 11-Dec-Year 1 is:

(100,000,000) ×
 

0.065× 183

360

 
= 3,304,167

The fixed payment is, of course, determined using the swap rate k and the 30/360 day-
count convention. The fixed payment due on 11-Dec-Year 1:

(100,000,000) ×
 

0.060× 180

360

 
= 3,000,000

TABLE 23.1 Swap

Payoffs Example: The

Input Data

Principal amount $100,000,000
Spot date June 11, Year 1
Term 3 years
Interest-rate index 6-month Libor
Reset interval 6 months
Swap rate (k) 6%
Initial Libor rate 6.50%
Payment frequency (fixed) 6 months
Payment frequency (floating) 6 months
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Therefore, net receipts of the long position on 11-Dec-Year 1:

3,304,167− 3,000,000 = 304,167

Payoffs on the Second Payment Date
The floating payment on the second payment date (June 11 of Year 2, written 11-Jun-Year 2)
depends on the six-month Libor rate observed on 11-Dec-Year 1. Suppose, for example, this
rate is 7.00%. Assuming 182 days between 11-Dec-Year 1 and 11-Jun-Year 2 (i.e., assuming
Year 2 is not a leap year), the floating payment due on 11-Jun-Year 2 is determined as:

(100,000,000) ×
 

0.07× 182

360

 
= 3,538,889

The fixed payment due on 11-Jun-Year 2 is simpler to compute:

(100,000,000) ×
 

0.060× 180

360

 
= 3,000,000

Therefore, the net receipts of the long position on 11-Jun-Year 2:

3,538,889− 3,000,000 = 538,889

Figure 23.2 describes the payoffs from the swap on the second payment date for a range
of possible values of the Libor rate on the reset date 11-Dec-Year 1. The payoff is linear in
the Libor rate observed on the reset date. Note that when the floating rate equals the swap
rate, the payoff is slightly positive since the two legs use different day-count conventions.

Payoffs on Subsequent Payment Dates
Payoffs on subsequent dates are computed in exactly the same manner based on the Libor
rates observed on the relevant reset dates. Table 23.2 fills in hypothetical values for these
Libor rates and describes the payoffs that result from the swap. ■

FIGURE 23.2
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TABLE 23.2 Swap Payoffs Example: Hypothetical Outcomes

Days from Libor at Swap Fixed Floating
Date Last Reset Last Reset Rate Cash Flow Receipt Net

11-Dec-Year 1 183 6.50% 6.00% −3,000,000 3,304,167 304,167
11-Jun-Year 2 182 7.00% 6.00% −3,000,000 3,538,889 538,889
11-Dec-Year 2 183 6.50% 6.00% −3,000,000 3,304,167 304,167
11-Jun-Year 3 182 6.25% 6.00% −3,000,000 3,159,722 159,722
11-Dec-Year 3 183 5.75% 6.00% −3,000,000 2,922,917 −77,083
11-Jun-Year 4 183 5.25% 6.00% −3,000,000 2,668,750 −331,250

23.6 Valuing and Pricing Swaps

Let a fixed-for-floating swap with swap rate k and specified payment dates be given. From

an analytical standpoint, the swap may be decomposed into a portfolio of a fixed-rate bond

and a floating-rate note with specific maturity and coupon characteristics. If the payment

frequencies of the fixed and floating sides are the same, it may also be decomposed into a

portfolio of FRAs. Either approach makes the valuation of existing swaps or the pricing of

new swaps simple. We discuss each approach in turn.

The Principal Method: Swaps as a Portfolio of Bonds
Consider an investor who is (a) short a fixed-rate bond with coupon k, and (b) long a

floating-rate note indexed to Libor. Suppose the bond and note have the same maturities,

have face values equal to the notional principal of the swap, and have respective coupon

dates that coincide with the fixed and floating payment dates on the swap. What are the cash

flows to the investor from this portfolio?

• On the respective coupon dates, the investor makes fixed-rate payments at the rate k on

the short position in the fixed-rate bond and receives floating-rate Libor payments from

the long position in the floating-rate note.

• At maturity, there is a final exchange of interest payments, but the principal amounts

cancel each other out, so there is no net cash flow on account of the principals.

This sequence of cash flows is exactly what the investor would receive from a long swap

(pay-fixed/receive-floating) position. Thus, ignoring credit risk issues, a pay-fixed/receive-

floating interest rate swap is equivalent to this portfolio. The mark-to-market value of the

swap at any point in time (henceforth, just the value of the swap) is just the difference in

values of the floating-rate note and the fixed-rate bond. Since each of these objects is easy

to value off the yield curve, valuation of swaps becomes easy.

Viewing a swap as a portfolio of bonds also makes it easy to see how to “price” a new

swap, i.e., how to identify the swap rate k such that the swap has zero value to both parties.

The floating-rate note is worth par when it is issued, so for the portfolio to be worth zero

at inception, the fixed-rate bond must also be worth par at issuance. This means the swap

rate k is that coupon rate that would make the fixed-rate bond trade at par. That is, the swap

rate is simply the coupon rate on a par coupon bond with the same maturity as the swap and

the same payment dates as the fixed side in the swap.

To put this in notational terms, suppose t0 is the initial date of the swap and t1, . . . , tN
are the payment dates for the fixed side. Let k denote the swap rate, and, as earlier, let (a) sn
denote the day-count fraction under the swap-market convention for the period (tn , tn+1),
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and (b) B(t , tn) denote the time-t present value of $1 receivable at time tn . The value at

inception of a fixed-rate bond with principal $1, coupon k, maturity tN , and coupon dates

t1, . . . , tN is

[ks0B(t0, t1) + ks1B(t0, t2) + · · · + ksN−1B(t0, tN )]+ B(t0, tN )

At inception of the swap, this must be worth par, so we have

1 = k × [s0B(t0, t1) + s1B(t0, t2) + · · · + sN−1B(t0, tN )]+ B(t0, tN )

The swap rate is, therefore,

k∗ = 1− B(t0, tN )

s0B(t0, t1) + s1B(t0, t2) + · · · + sN−1B(t0, tN )

In particular, if, as in theUS, the swapmarket uses the 30/360 convention and fixed payments

aremade semiannually, then the payment dates are separated by sixmonths each, so sn = 1/2

for all n, and the swap rate is

k∗ = 1− B(t0, tN )
1
2
[B(t0, t1) + B(t0, t2) + · · · + B(t0, tN )]

(23.5)

If, as in euro swap contracts, the swap market uses the 30/360 convention and fixed

payments are made annually, then the payment dates are one year apart, and sn = 1 for all n.

The swap rate in this case works out to

k∗ = 1− B(t0, tN )

B(t0, t1) + B(t0, t2) + · · · + B(t0, tN )
(23.6)

A final comment is important. In establishing the equivalence between the swap and the

portfolio,we have ignored credit risk issues. This caveatmust be kept inmind since the credit

risk profiles of the swap and the portfolio are not the same. In the portfolio, the principal

amounts are themselves subject to credit risk. If there is default on the long floating-rate

note held by the investor, the investor still has to make the fixed-rate payments on the short

bond. In the swap, since the principal amount is purely notional, the credit risk exposure is

much smaller.

The Swap Spread and the Swap Curve
The swap spread at a given maturity refers to the difference between the swap rate for that

maturity and the yield on a government bond of the same maturity. The swap curve refers

to a plot of swap spreads against maturities.

Swap rates are generally higher than Treasury yields with corresponding maturities, so

the swap curve typically lies above the Treasury curve. The size of the swap spread is

affected by several factors, including supply and demand considerations and liquidity, but

the predominant factor that it reflects is the creditworthiness of the major banks that provide

swaps and participate in this market.

The swap curve and the level of swap spreads are key indicators of the conditions in

fixed-income markets. Today, it is the swap curve, and not the Treasury curve, that is the

benchmark for pricing corporate bonds, mortgages, and other private sector obligations.

The Forward Method: Swaps as a Portfolio of FRAs
The second approach to valuing swaps is to treat them as a collection of forward-rate

agreements. If the fixed and floating sides of the swap have the same payment dates, then

eachpayment date is exactly like anFRA.For example, ifwe consider afive-year, semiannual
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swap with floating payments based on Libor and a fixed rate of 10%, the swap is equivalent

to a portfolio consisting of 10 FRAs, each with an FRA rate of 10%, and maturing at six-

month intervals. The only difference between an FRA and the payments in a swap is that the

former is settled in discounted formwhile the latter are not, but this is unimportant and does

not affect the valuation. Note too that unlike the principal method, credit-risk considerations

are less important here since FRAs too do not involve an exchange of principals.

Here is one other subtle difference that needs to be taken into account in the valuation and

pricing mechanics. In an FRA, cash flows from both legs are computed using the money-

market day-count convention. In a swap, the fixed leg uses the swap-market convention.

Thus, if k denotes the swap rate, the swap corresponds to a portfolio of FRAs with fixed

rate  k, where  k and k are related by
 k = k

 s
S

  
M

m

 
Example 23.4 Valuing an Existing Swap

On August 13 of Year 1 (written 13-Aug-Year 1), a bank has a swap contract on its books
with the characteristics listed in Table 23.3. What is the current value of the swap?

The first step in the valuation exercise is to obtain the discount factors to be used for cash
flows occurring on the payment dates. Suppose the discount factors are as follows:

Payment Date Days from Present Discount Factor

11-Dec-Year 1 120 0.984009
11-Jun-Year 2 302 0.957735
11-Dec-Year 2 485 0.929581
11-Jun-Year 3 667 0.900683
11-Dec-Year 3 850 0.871945

With these discount factors in hand, we value the swap in the principal method. In this
approach, the swap is viewed as a portfolio consisting of a short position in a fixed-rate bond
and a long position in a floating-rate note designed to mimic the cash flows of the swap.
The calculations are summarized in Table 23.4.

First consider valuing the floating-rate note. The note has a face value of 100,000,000,
is indexed to six-month Libor, and the Libor at the last reset date was 6.50%. The next
coupon is due on 11-Dec-Year 1, and there are 183 days between the last reset date and
11-Dec-Year 1. Thus, the coupon due on 11-Dec-Year 1 is

0.065× 183

360
× 100,000,000 = 3,304,167

TABLE 23.3 Swap

Valuation Example:

Input Data

Fixed payment dates 11-Dec-Year 1, 11-Jun-Year 2, 11-Dec-Year 2,
11-Jun-Year 3, and 11-Dec-Year 3

Floating payment dates Same as fixed payment dates
Swap rate 6%
Floating rate 6-month Libor
Libor at last reset 6.50%
Notional principal $100,000,000
Pay Fixed
Receive Floating
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TABLE 23.4 Example: Valuing the Swap by the Principal Method

Payment Discount Floating PV(Floating Fixed PV(Fixed
Date Factor Cash Flow Cash Flow) Cash Flow Cash Flow)

11-Dec-Year 1 0.984009 103,304,167 101,652,230 3,000,000 2,952,027
11-Jun-Year 2 0.957735 3,000,000 2,873,205
11-Dec-Year 2 0.929581 3,000,000 2,788,743
11-Jun-Year 3 0.900683 3,000,000 2,702,049
11-Dec-Year 3 0.871945 103,000,000 89,810,335

Totals 101,652,230 101,126,359

On the coupon date, the floating-rate note resets to par, so the floating-rate note is equiva-
lent to receiving par + interest on 11-Dec-Year 1, i.e., to receiving 103,304,167. Since the
discount factor applicable to 11-Dec-Year 1 is 0.984009, the present value of the floating-
rate note, as of August 13, is

0.984009× 103,304,167 = 101,652,230

Now consider the fixed-rate bond. The bond carries a coupon equal to the swap rate of
6%, has a face value of 100,000,000, makes coupon payments on the payment dates of the
swap, and has the same maturity as the swap. Given the 30/360 day-count convention, this
means the bond pays a coupon of

0.06× 180

360
× 100,000,000 = 3,000,000

every six months. In addition, the principal of 100,000,000 is repaid at maturity, i.e., on
11-Dec-Year 3. Since we know the discount factors applicable to each of these payment
dates, the present values of each of these cash flows is easily computed. Adding them up
gives us a value of 101,126,359 for the fixed-rate bond (see Table 23.4).

The value of the long (i.e., pay-fixed/receive-floating) swap is the value of the floating-rate
note minus the value of the fixed-rate bond, which is

101,652,230− 101,126,369 = 525,861 ■

Example 23.5 Pricing a New Swap
Suppose we wish to price a new swap, say a three-year swap commencing on 18-June-Year 1,
and with semiannual payment dates for both the fixed and floating sides. The payment dates
are 18-Dec-Year 1, 18-Jun-Year 2, 18-Dec-Year 2, 18-Jun-Year 3, 18-Dec-Year 3, and 18-Jun-
Year 4.4

The swap rate is then determined by (23.5). Thus, we first need to identify the discount
factors associated with cash flows occurring on the payment dates of the swap. Suppose

4 In reality, some of the payment dates may fall on weekends or holidays in which case we have to

use the convention specified in the contract to determine the payment dates. Commonly-used

conventions are the next-business-day convention in which the payment date simply becomes the

next business day; and the modified-next-business-day convention in which the payment date

becomes the next business day unless the next business day happens to be in a different calendar

month, in which case it becomes the preceding business day.
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these discount factors are given by the numbers in the following table:

Date Discount Factor

18-Dec-Year 1 0.975369
18-Jun-Year 2 0.948236
18-Dec-Year 2 0.920011
18-Jun-Year 3 0.890677
18-Dec-Year 3 0.861854
18-Jun-Year 4 0.832676

Once we have the discount factors, we can obtain the swap rate from (23.5):

Three-year swap rate = 0.0616429 ■

23.7 Extending the Pricing Arguments

The pricing and valuation methodology is easily extended to many nonstandard swaps. We

look at several examples in this section, all of which require only minor modifications of the

procedure described in the previous section. The classes of swaps we look at here include:

• Swaps at above/below market rates (“off-market swaps”).

• Zero-coupon swaps.

• Swaps with changing fixed rates (e.g., step-up or step-down swaps).

• Swaps whose floating rates are at a spread to Libor.

• Forward-starting swaps.

• Amortizing/accreting/roller-coaster swaps.

Off-Market Swaps
In an off-market rate swap, the fixed rate on the swap is set above or below the market swap

rate for that maturity. By definition, therefore, the initial value of the swap is different from

zero. The valuation of the swap is carried out in the same way. We decompose the swap

into a floating-rate note and a fixed-rate bond. The present values of each of these legs is

identified in the usual way. Since the initial value is different from zero, there will be an

up-front payment equal to the positive or negative NPV of the swap.

Table 23.5 illustrates the pricingmechanics in an example. The example uses a three-year

swap with the same payment dates and discount factors as used in Example 23.5. Recall that

the market swap rate with these parameters is 0.0616 = 6.16%. The example in Table 23.5

considers a fixed rate of 6%. With semiannual coupons and the 30/360 convention, this

means the fixed side makes a payment of 3,000,000 on each payment date.

Since the fixed rate is less than the market swap rate of 6.16%, the value of the long

swap (pay fixed/receive floating) is positive. As Table 23.5 shows, the value of the swap is

445,931.

Zero-Coupon Swaps
Zero-coupon swaps are, as the name suggests, swaps in which the fixed side resembles a

zero-coupon bond. That is, the fixed-side makes no payments until maturity and a single

lump-sum payment at maturity. The price is stated in terms of the single maturity payment

(i.e., as a simple percentage of the notional principal).
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TABLE 23.5 Example: Valuing Off-Market Swaps

Payment Discount Floating Fixed PV(Floating PV(Fixed
Date Factor Cash Flow Cash Flow Cash Flow) Cash Flow)

18-Jun-Year 1 1.000000 100,000,000 100,000,000
18-Dec-Year 1 0.975369 3,000,000 2,926,107
18-Jun-Year 2 0.948236 3,000,000 2,844,708
18-Dec-Year 2 0.920011 3,000,000 2,760,033
18-Jun-Year 3 0.890677 3,000,000 2,672,031
18-Dec-Year 3 0.861854 3,000,000 2,585,562
18-Jun-Year 4 0.832676 103,000,000 85,765,628

Totals 100,000,000 99,554,069
Value of long swap 445,931

The valuation and pricing of these swaps is simple. We decompose the swap into a

floating-rate note and a bond with a single coupon at maturity, each with a face value

equal to the swap’s notional. The single-coupon bond has only a single cash flow, so is

straightforward to value. The initial fair price of the swap is that size of the single coupon

(as a percentage of the swap’s notional principal) which would make the bond trade at par.

Table 23.6 illustrates the pricingmechanics. It takes the same payment dates and discount

factors as in Example 23.5.With these parameters, the fair price of a three-year zero-coupon

swap turns out to be 20.095%.

Changing Fixed Rates
Here, the fixed rate changes during the life of the swap in accordance with a specified

schedule. This causes no complications for pricing. We decompose the swap into a floating-

rate note and a bond with coupons equal to the changing fixed rates. (We continue calling

this the “fixed-rate bond.”) Since the rate changes are pre-specified, the fixed-rate bond has

known cash flows, so its present value is easily calculated. The initial value of the swap

(which need not be zero) is the difference between the values of the fixed-rate bond and the

floating-rate note, or what is the same thing, between the value of the fixed-rate bond and par.

Table 23.7 illustrates the valuation exercise assuming the same payment dates and dis-

count factors as in Example 23.5, and assuming a changing fixed-rate pattern as specified

in the table. The initial value of the pay-fixed/receive-floating swap is 524,373.

TABLE 23.6 Example: Pricing a Zero-Coupon Swap

Payment Discount Floating Fixed PV(Floating PV(Fixed
Date Factor Cash Flow Cash Flow Cash Flow) Cash Flow)

18-Jun-Year 1 1.000000 100,000,000 100,000,000
18-Dec-Year 1 0.975369
18-Jun-Year 2 0.948236
18-Dec-Year 2 0.920011
18-Jun-Year 3 0.890677
18-Dec-Year 3 0.861854
18-Jun-Year 4 0.832676 120,094,731 100,000,000

Totals 100,000,000 100,000,000
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TABLE 23.7 Example: Valuing a Swap with Changing Fixed Rates

Payment Discount Fixed Floating Fixed PV(Floating PV(Fixed
Date Factor Rate Cash Flow Cash Flow Cash Flow) Cash Flow)

18-Jun-Year 1 1.000000 100,000,000 100,000,000
18-Dec-Year 1 0.975369 5.00% 2,500,000 2,438,423
18-Jun-Year 2 0.948236 5.50% 2,750,000 2,607,649
18-Dec-Year 2 0.920011 6.00% 3,000,000 2,760,033
18-Jun-Year 3 0.890677 6.50% 3,250,000 2,894,700
18-Dec-Year 3 0.861854 6.50% 3,250,000 2,801,026
18-Jun-Year 4 0.832676 6.50% 103,250,000 85,973,797

Totals 100,000,000 99,475,627
Value of long swap 525,373

Spread to Libor
In many swaps, the floating-rate payer pays Libor plus or minus a fixed spread rather than

Libor flat. The spread may reflect the credit-riskiness of the floating-rate counterparty, but

if not, or if we set aside credit-risk issues (perhaps because they are handled by collateral-

posting), then pricing of such swaps is easily handled in this case by extending the earlier

arguments. We decompose the swap into a fixed-rate bond and a floating-rate note, where

the floating-rate note pays Libor plus the fixed spread. The fixed side is valued as usual. To

value the floating side, we use the observation that receiving Libor + x basis points (bps) is

the same thing as receiving Libor flat and receiving x bps fixed. We calculate the value of

the floating leg by calculating separately the values of a floating-rate note paying Libor flat

(which is par) and a coupon stream of x bps. To price the swap, we identify the fixed rate

that makes the swap value zero.

Table 23.8 illustrates the pricing of a swap with a spread to Libor. The same payment

dates and discount factors are used as in the earlier examples. It is assumed that the floating

side pays Libor+ 30 bps. The fixed rate required to make the initial value of this swap zero

is 6.4673%.

Forward-Starting Swaps
These swaps are similar to a standard swap except that the swap begins only at a specified

date in the future. Thus, it is identical to a plain vanilla swap except that payment dates

TABLE 23.8 Example: Pricing a Spread-to-Libor Swap

Payment Discount Fixed Floating Spread PV(Fixed PV(Floating
Date Factor Cash Flow Cash Flow Cash Flow Cash Flow) Cash Flow)

18-Jun-Year 1 1.000000 100,000,000 100,000,000
18-Dec-Year 1 0.975369 3,233,655 152,500 3,154,007 148,744
18-Jun-Year 2 0.948236 3,233,655 149,589 3,066,268 141,846
18-Dec-Year 2 0.920011 3,233,655 152,500 2,974,998 140,302
18-Jun-Year 3 0.890677 3,233,655 149,589 2,880,142 133,236
18-Dec-Year 3 0.861854 3,233,655 152,500 2,786,939 131,433
18-Jun-Year 4 0.832676 103,233,655 152,500 85,960,187 126,983

Totals 100,822,543 100,822,543
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TABLE 23.9 Example: Pricing a Forward-Starting Swap

Payment Discount Floating Fixed PV(Floating PV(Fixed
Date Factor Cash Flow Cash Flow Cash Flow) Cash Flow)

18-Dec-Year 1 0.975369 100,000,000 97,536,900
18-Jun-Year 2 0.948236 3,193,907 3,028,578
18-Dec-Year 2 0.920011 3,193,907 2,938,430
18-Jun-Year 3 0.890677 3,193,907 2,844,740
18-Dec-Year 3 0.861854 3,193,907 2,752,682
18-Jun-Year 4 0.832676 3,193,907 2,659,490
18-Dec-Year 4 0.807344 103,193,907 83,312,982

Totals 97,536,900 97,536,900

are different. Forward-starting swaps can be decomposed into the difference of two vanilla

swaps. For example, a three-year pay-fixed/receive-floating swap starting after one year is

the same as the following portfolio of two plain vanilla swaps with the same fixed rate:

• A pay-fixed/receive-floating four-year swap.

• A receive-fixed/pay-floating one-year swap.

Table 23.9 illustrates the pricing of forward-starting swaps. The same payment dates and

discount factors are used as in the previous examples except that the swap starts only after

six months, so an extra payment date is added at the end. The fixed rate that makes this

swap have zero initial value today is 6.3878%.

Amortizing/Accreting/Roller-Coaster Swaps
In these swaps, the notional principal amount changes during the life of the swap in a

prespecified manner. Common versions of these include:

1. Amortizing Swaps The principal decreases over time in a specified manner.

2. Accreting Swaps The principal increases over time in a specified manner.

3. Roller-Coaster Swaps The principal changes over time in a specifiedmanner, increas-

ing in some periods and decreasing in others.

Swaps with varying principal of this sort are required to better hedge loans whose principal

outstanding may vary over time. Consider, for example, an amortizing loan on the books

of a corporation. If the company is using a swap to change the nature of interest-rate risk

on this loan, the notional principal in the swap must vary in a similar way to the loan, so an

amortizing swap is required. More generally, the swap may be used to hedge an entire book

of loans with principal repayments due at different times.

23.8 Case Study: The Procter & Gamble–Bankers
Trust “5/30” Swap

The 1990s was a decade that abounded in derivatives scandals and blowups (Barings,

Metallgesellschaft, Sumitomo, Orange County, Federal Paper Board, Gibson Greetings,

LTCM, . . . ). In this section, we describe one of the most notorious of these cases, an exotic

interest rate swap purchased by the consumer-products giant Procter &Gamble (P&G) from



590 Part Three Swaps

FIGURE 23.3
The Bankers

Trust–Procter &

Gamble Swap

Bankers Trust

30-day CP-75 bps

Procter & Gamble

5.30% fixed

First Payment Date

Remaining Payment Dates

Bankers Trust

30-day CP ⫹ S

Procter & Gamble

5.30% fixed

Bankers Trust (BT) in late 1993.5 The swap involved a relatively small notional principal

of $200 million. Nonetheless, such extraordinary leverage was built into the swap payoffs

that by the time it was unwound just a few months later, P&G had lost over $100 million

on the transaction, and the matter wound up in court.

The “5/30” Swap: Payoffs
On November 2, 1993, P&G entered into a receive-fixed/pay-floating five-year interest

rate swap with BT. The swap had a notional principal of $200 million with semiannual

payments on both legs. The payoff structure of the swap is summarized in Figure 23.3.

The fixed payment was specified as 5.30%. The floating side was specified in a manner

analogous to the spread-to-Libor swaps that we looked at in Section 23.7 but with some

unusual twists. For one thing, the benchmark floating rate used was not Libor but the daily

average 30-day commercial paper (CP) rate. More interesting is the way the spread over this

floating rate was defined. This spread was fixed at −75 basis points for the first payment
date, and at

S = −75 basis points +max{0, ξ} (23.7)

for the nine remaining payment dates thereafter, where ξ was a value that would be deter-

mined on the first payment date of the swap, May 4, 1994. The formula determining ξ was

specified as

ξ = 1

100

  
98.5

5.78
× CMT5%

 
− P30

 
(23.8)

where

• CMT5% was the yield (expressed as a percentage) on a five-year constant maturity

Treasury (CMT) note, as reported by the Federal Reserve on May 4, 1994.

• P30 was the price on the same day of a specific 30-year Treasury bond, namely, the 6.25%

Treasury bond that would be maturing in August 2023.

It was this dependence on the 5-year and 30-year Treasury rates that gave the swap

its “5/30” moniker. Note that ξ depends on the 5-year Treasury’s yield and the 30-year

Treasury’s price.

5 Our description and analysis of the P&G–BT swap draws substantially on Smith (1994).
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Analyzing the Swap Payoff
The payoff from this swap looks somewhat complex at first blush, but a closer look reveals

a structure that is not hard to understand. The floating rate P&G is required to pay on the

swap is

30-day CP rate − 75 basis points +max{0, ξ}
The last of these terms resembles an option’s payoff. As ξ increases and this option finishes

in-the-money, P&G’s floating-rate payment increases. Thus, P&G is effectively short this

option to BT.

What exactly is this option? The value of ξ depends on the difference between (a multiple

of) the 5-year CMT yield and the price of the 30-year Treasury bond. So the option can be

interpreted as an exchange or “Margrabe” option (see Chapter 18) in which the holder has

the option to give up (pay) the 30-year bond price in exchange for receiving a multiple of

the 5-year CMT yield. Alternatively, the optionality can be described in terms of a call or

a put, albeit with a stochastic strike:

• As a call option on a multiple of the 5-year CMT yield with a strike price equal to the

30-year bond price.

• As a put option on the 30-year bond price with a strike price equal to a multiple of the

5-year CMT yield.

Of course, all these ways of describing the option are equivalent. A formal valuation of the

option max{0, ξ} is not difficult to carry out using a term-structure model (see Part 4 of
the book for descriptions of several term-structure models). But with even less effort, it is

possible to gain a good idea of what risks it is that P&G is taking on and what movements

in the term-structure could hurt or help P&G.

To begin, we note the following. At inception of the swap, the 5-year CMT yield was

5.02%, and the 30-year bond price was 102.57811. Plugging these into the definition of ξ ,

we get ξ = −0.1703. This means max{0, ξ} = 0, so the option was out-of-the-money at

inception.

What could cause it to move into-the-money? This is easy. An increase in either the

5-year CMT yield or the yield of the 30-year bond (which would lower its price) both

increases the value of ξ , so pushes the option towards the money. An increase in both yields

simultaneously has a sharp effect on ξ . So P&G is primarily exposed to upward shifts in

interest rates, and especially to upward shifts in the entire yield curve.

To gauge the quantitative effects of such an increase, consider the following exercise. At

inception of the swap, the 5-year CMTyieldwas, asmentioned, 5.02%,while the price of the

30-year bond implied a yield of 6.06%. What would happen if both yields were to increase

by roughly 100 basis points, to 6% and 7%, respectively, at maturity? From Table 23.10,

the resulting value of ξ would be 0.1155, or 11.55%. That is, P&G would now be making

TABLE 23.10 The

P&G–BT Swap: The

Values of ξ

This table describes the values of ξ for different values of the 5-year CMT yield and
the 30-year bond yield. Source: Smith (1994).

30-Year Treasury Yields

5-Year Yields 6.00% 6.50% 7.00% 7.25%

5.00% −0.1821 −0.1152 −0.0549 −0.0270
5.50% −0.0969 −0.0300 +0.0303 +0.0582
6.00% −0.0117 +0.0552 +0.1155 +0.1434
6.50% +0.0735 +0.1404 +0.2007 +0.2286
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a floating payment of

30-day CP− 0.0075+ 0.1155 = 30-day CP+ 10.80%

Since P&G is receiving only 5.30% fixed on the swap’s other leg, such a movement in yields

would evidently be disastrous for P&G (but correspondingly very profitable for BT).

Table 23.10 also shows the spreads that would result for some other values of the 5-year

CMT and 30-year bond yields. The numbers in the table show that there is some protection

for P&G against the yield curve steepening (specifically, against the 30-year rate alone

increasing while the 5-year rate remains stationary); in this case, ξ increases but remains

negative even with a 1% move in the 30-year yield. There is also some protection against

the yield curve inverting (specifically, the 5-year yield increasing while the 30-year yield

stays constant). But an increase in both rates hurts P&G.

The table also shows that the realizations of ξ are more sensitive to changes in the 5-year

CMT yield than to changes in the 30-year bond’s yield. Smith (1994) derives an expression

that makes this point succinctly; he shows that changes in the value of ξ from its value at

inception are approximately equal to

[0.170415× (CMT5)]+ [0.136442× (YLD30)]

where (CMT5) and (YLD30) are the changes in the 5-year CMT yield and 30-year bond

yield (both expressed as percentages), respectively, from their initial values. This means that

a 1% change in the 5-year CMT yield changes ξ by over 0.17 or 17% while a 1% change in

the yield of the 30-year bond changes ξ by the smaller, but still impressive, amount of over

0.13, or 13%. A simultaneous change of 1% in the two yields increases ξ by over 0.30 or

an astonishing 30%.

The asymmetric impact of interest rates in the payoffs is to be emphasized. Once we have

ξ < 0, the option max{0, ξ} is out-of-the-money and any further decreases in interest rates
that lower ξ further have no impact on the swap’s payoffs. So P&G faces enormous risk

from interest-rate increases without a corresponding benefit from interest-rate decreases.

None of this is hard to see—indeed, most of the work that is required is the tedious but

straightforward job of converting 30-year bond yields into prices, so that all the arguments

can be expressed in terms of yields rather than prices. Yet, oddly, one of the complaints

made by P&G in the lawsuit that it brought against BT was that BT had not adequately

explained the complexity of the swap to P&G.

The Outcome
In January 1994, the terms of the swap were altered in two ways. First, the date for fixing the

spread was changed from May 4 to May 19. This change greatly increased the uncertainty

concerning the final interest rates because of a Federal Open Market Committee meeting

scheduled for May 17, 1994, at which important monetary policy decisions could poten-

tially be made. The increased volatility in interest rates on this account combined with the

increased maturity greatly increased the value of the option that BT held and that P&G was

short. As compensation, the floating-rate payment was reduced by 13 basis points to

30-day CP rate− 88 basis points+max{0, ξ}
At this point, interest rates were only slightly higher than they had been in November,

and the option was still well out-of-the-money. If interest rates had remained unchanged

from this point on, P&Gwould have found itself locked into an extremely favorable swap in

which it would have received a fixed rate of 5.30% in exchange for paying the daily average

30-day CP rate less 88 basis points.
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Unfortunately for P&G, they did not. In February 1994, the Federal Reserve tightened

monetary policy, causing a sharp upward movement in the interest rates. By mid-February,

both the 5-year and 30-year yields had increased by about 60 basis points each. When

interest rates continued climbing in March, P&G decided to lock in a value for the spread

rather than take the risk of even higher interest rates. The lock in was done in phases and

by the time it was complete, the value of ξ agreed to was 15%; that is, P&G would pay

30-day CP rate − 88 basis points + 15% = 30-day CP rate + 14.12%

in exchange for receiving 5.30% fixed. Present-valuing the cash-flow streams based on the

then-prevailing interest rates, Smith (1994) reports that the swap had a negative value to

P&G of over $106 million, or an amazing 53% of the swap principal of $200 million.

As it happens, waiting until May would have made the situation much worse. Interest

rates continued to climb, and by May 19 (the fixing date for the spread), the 5-year rate was

around 6.60% and the 30-year yield was at around 7.40%, each around 80–100 basis points

higher than in March. This would have resulted in P&G having to make a floating-rate

payment of the 30-day CP rate plus around 27%!

The Inevitable Lawsuit
P&G had also entered into a second swap with BT, this one a leveraged swap referencing the

Deutsche mark rate. The “DM swap,” as it came to be known, also turned into a huge loss

for P&G. The loss suffered on the two swaps combined amounted to almost $200 million.

In late 1994, P&G sued BT alleging that BT had misled it with respect to the risk

involved in the transaction. BT countered that it was just a counterparty to P&G and was

not acting in a fiduciary role. But by this time, two other clients of BT, Gibson Greetings

and Air Products and Chemicals, who too had suffered losses of several million dollars in

derivatives transactions with BT, had also filed suit. The lawsuits alleged that BT had taken

advantage of their relative lack of financial experience, particularly with respect to complex

derivative transactions. BT found itself in the hot seat in terms of public perception when

tapes were released to the media in which BT employees were recorded discussing the lack

of financial sophistication of their clients.

P&G and BT ultimately reached an out-of-court settlement in 1996, with P&G reporting

a net gain of $78 million in this context in its quarterly reports. BT also settled its suit with

Air Products and Chemicals, and paid a fine to the SEC for misleading Gibson Greetings.

By the time the dust settled, BT, a leader in derivatives innovation and risk-management in

the 1990s, had suffered a near-irreparable loss of reputation. A short while later, following

considerable losses in 1998 after the Russian default crisis, it was taken over by Deutsche

Bank.

23.9 Case Study: A Long-Term Capital Management
“Convergence Trade”

Long-Term Capital Management (LTCM) was a hedge fund founded in 1994 by John

Merriwether, former head of fixed-income trading at Salomon Brothers.6 It rapidly became

the most glamorous and well-known institution of its kind. Among its other founding

6 The general material of this section draws on many sources including David Shirreff’s “Lessons from

the Collapse of Hedge Fund, Long-Term Capital Management,” available at

http://riskinstitute.ch/146480.htm. The description of the convergence trade is taken from

the London Business School class notes of Viral Acharya, and was attributed by him to Tim Johnson.
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partners were star Wall Street traders, luminaries from academia (including the soon-to-be

Nobel laureates Robert Merton and Myron Scholes), and senior government officials (such

as David Mullins, former vice-chairman of the US Federal Reserve). The fund placed a

hefty minimum investment threshold for investors of $10 million. It also charged a 2-and-

25 fee structure (2% of the assets under management, 25% of profits), much steeper than

the 1-and-20 structure prevalent at that time. Despite all this, the fund raised a then-record

initial investment of $1.25 billion.

Leveraging its star power and contacts, the fund obtained trading and margin terms from

Wall Street banks that were far more favorable than those available to typical hedge funds.

Its first full years in operation, 1995 and 1996, brought eye-popping returns to investors of

43% and 41%, respectively, far outperforming market indices such as the S&P 500. But

1997 was a quieter year: the fund returned a respectable 17% but was substantially beaten

by the 31% return on the S&P 500.

Finding fewer investment opportunities in its traditional areas of operations, the fund

started moving increasingly into newer areas like risk-arbitrage and emerging markets but

also returned $2.7 billion to investors. It entered 1998 with about $4.8 billion under man-

agement.

Relative Value and Convergence Trades
The bread-and-butter of LTCM’s trading strategies were relative value and convergence

trades, trades in which the prices of two securities or assets were viewed as out of kilter

relative to each other and in which the price difference was therefore expected to narrow

or even to converge to zero. By buying one security and selling the other, profits could be

racked up when (or, more accurately, if) the relative prices moved as predicted.

One simple example of a relative value trade involves on-the-run versus off-the-run

Treasuries. Newly-issued US Treasury securities (those “on-the-run”) tend to have higher

prices (so lower yields) than older (“off-the-run”) ones; the lower prices of the off-the-run

securities compensate their holders for their lower liquidity. Not all off-the-run securities

are identical; those that were more recently on-the-run tend to be more liquid, so to have

lower yields, than those more distantly on-the-run although the differences are dwarfed by

those between on-the-run and off-the-run securities.

To take a hypothetical example, suppose that the difference in yields (the “spread”) be-

tween the on-the-run 30-year Treasury bond and the previously on-the-run bond is typically

15 basis points (0.15%) and that between the previously on-the-run bond and its prede-

cessor is typically 5 basis points (0.05%). This means that while the current difference

between the on-the-run bond and its predecessor is 15 basis points, we can expect this

difference to narrow to 5 basis points when the current on-the-run bond goes off-the-run.

So by going short the on-the-run security and long the previously on-the-run security, we

expect to make 10 basis points regardless of the direction of interest rates—provided our

anticipations concerning the spreads work out.

LTCMusedmany such relative value/convergence trades, often betting on convergence or

a narrowing of spreads between liquid Treasury or other G-10 government securities on the

one hand and other, more illiquid, and sometimes more complex, instruments on the other.

Leverage
While it may be profitable, the profits from such relative value/convergence trades are very

small (possibly as low as just a few basis points), so a significant degree of leverage is

required to generate decent returns. LTCM’s leverage levels were simply enormous. At the

time of the fund’s collapse in late 1998, it had assets on its books of over $125 billion
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supported by its capital of only $4.8 billion, a leverage ratio exceeding 25:1. In addition,

the fund had over $1 trillion in notional principal in off-balance-sheet instruments, mainly

swaps with various counterparties. (This figure should not be taken too literally. LTCM fre-

quently offset existing swaps by entering into new swapswith new counterparties rather than

unwinding the existing swap. Since the swaps were covered by ISDA netting agreements,

LTCM’s actual exposure was likely much smaller than the notional $1 trillion figure.)

The Summer of 1998
In July 1998, Salomon Brothers closed its bond arbitrage unit and began unwinding its

positions. LTCM apparently had many positions similar to those of Salomon because when

Salomon began selling its positions, LTCM took a substantial hit. In all, the fund dropped

almost 10% that month. But this was nothing compared to the storm that was about to hit.

On August 17, Russia declared a moratorium on payments on its rouble debt and its

dollar-denominated local debt. Panic hit the world’s financial markets, and investments fled

to the safety of G-10 government securities. Spreads between these and non-sovereign or

emerging market instruments widened sharply, and spreads between even on-the-run and

off-the-run Treasuries widened.

LTCMhad huge positions in several exotic convergence trades around theworld, many of

which had bet on the relevant spreads narrowing. These trades registeredmassive losses. The

year-to-date losses on amarked-to-market basis exceeded $2.5 billion (or a stunning 52% of

the capital of $4.8 billion at the beginning of the year), with losses of $2.1 billion in August

alone. At this point, these were still only paper losses, not realized ones; nonetheless, LTCM

estimated that it needed fresh capital of $1.5 billion to stay afloat through themarket turmoil.

But the fund had lost the confidence of investors by now. It found it impossible to raise the

required capital, and bymid-September, Bear Stearns, its clearing agent, demanded an extra

collateral of $500 million to continue clearing LTCM’s trades. Attempts to sell the portfolio

to a single buyer went nowhere; the few offers that came, including a $250 million offer

from Warren Buffet’s Berkshire Hathaway, were rejected by the fund’s partners. In the end,

a massive bailout was orchestrated by the New York Federal Reserve that involved 14 large

international banks. The banks contributed a combined sum of $3.625 billion in exchange

for a 90% stake in the fund. The fund survived for another several months, even reporting

a return after fees and expenses of 10% in 1999, before finally being liquidated in 2000.

An LTCM Convergence Trade
One of the convergence trades implemented by LTCM, and one that lost it over a billion

dollars, had the following four components:

1. Receive fixed on five-year forward fixed-for-floating British pound (GBP) swaps.

2. Short gilts (bonds issued by the UK government, the UK analog of US Treasuries).

3. Pay fixed on five-year forward fixed-for-floating Deutsche mark (DEM) swaps.7

4. Long bunds (the German analog of gilts).

The positions were calibrated to reflect, in totality, a specific market view concerning the

behavior of the difference between UK and German swap spreads, specifically, that this

difference would narrow.

7 The German currency at the time of this transaction was still the DEM. The German (DEM) floating

rate was the Frankfurt Interbank Offered Rate or Fibor.
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To understand this implied view, consider first the vanilla fixed-for-floating GBP swap.

Since LTCM is receiving fixed and paying floating on this swap, it gains if GBP swap rates

generally decrease. Thus, this leg is profitable if

• gilt yields decrease even while the spread between GBP swap rates and gilts remains the

same; or

• the spread betweenGBP swap rates and gilts declines evenwhile gilt yields stay the same.

(Of course, the position also makes money in some other cases, e.g., if both gilt yields

and GBP swap spreads decline.) On the other hand, the second component of the portfolio

involves a short position in gilts, so loses money if gilt yields go down. The two positions

were calibrated so that the effect of a movement in gilt yields alone was offsetting. Thus,

the combined position is effectively one in GBP swap spreads: it is profitable if spreads

narrow and loses money if spreads widen.

By the same argument, the third and fourth legs of the portfolio reflect in combination

a position in DEM swap spreads. In this case, because the portfolio involves paying fixed

on the swap and a long position in bunds, it is analogous to holding a position that makes

money when German (DEM) swap spreads widen and loses money when they narrow.

Combining all four positions now, the overall portfolio involves a view not separately on

UK swap spreads or German swap spreads, but on the difference between the two. As long

as UK swap spreads fell relative to German swap spreads, the position would be profitable.

The bet was really one of convergence. At the time, quoted UK swap spreads were wider

than German swap spreads. LTCM was speculating that this difference would narrow. In

part, this was a bet that the UKwould also join the euro zone, so GBP-Libor andDEM-Fibor

would both become the same rate, what is now called the Euribor rate.

Unfortunately for LTCM, things went horribly wrong. Following the Russian default,

the gap between GBP-Libor and DEM-Fibor widened even further. LTCM lost consider-

able money on a marked-to-market basis. Closing out of similar positions by other banks

widened the difference between the spreads even further and led to counterparties demand-

ing extra collateral. In all, as mentioned above, LTCM lost around a billion dollars on this

strategy.

23.10 Credit Risk and Credit Exposure

As with all derivatives, two major sources of risks in swaps come from changes in the value

of the underlying driving variable (in this case, interest rates; this is “market risk”) and from

counterparty default (“credit risk”).

Interest-rate changes affect the fixed and floating sides of the swap differentially. Since

the fixed leg involves fixed future cash flows, a change in interest rates has a greater effect

on it than on the floating leg, where only the next payment is fixed. Interest-rate risk can

also take on other forms. For example, in certain classes of swaps such as basis swaps, each

leg of the swap is indexed to a floating rate. In this case, the swap holder also faces the risk

of changes in the basis.

The other potential source of risk is credit risk. Credit risk in swaps differs from that in

bonds. In interest rate swaps, the principal is “notional” in that it is used to calculate interest

payments, but the principal amount is itself never exchanged. So, unlike bonds, there is

no principal risk in a swap. Moreover, if the current value of a swap is negative, there is no

loss from the swap being terminated on account of counterparty default (in fact, there is a

gain), so there is no credit risk concern. It is only when the value of the swap is positive that

credit risk exists.



Chapter 23 Interest Rate Swaps and Floating-Rate Products 597

The level of credit risk in a swap is affected by many factors. Counterparty creditwor-

thiness at the time of entering into the swap and changes in creditworthiness over the life

of the swap are of obvious importance. So too are deal size, maturity, and other terms of

the contract. For example, mismatches in payment dates have credit-risk implications. If the

floating side pays quarterly and the fixed side semiannually, the floating payer is exposed to

default from the fixed payment for longer periods of time.

Market risk changes can also have a credit-risk impact. A sharp change in interest rates

can lead to a severe worsening of the position of the counterparty in a swap leading to

increased credit risk. Finally, netting agreements in place matter for credit risk. Most swap

agreements between counterparties are undertaken within the ambit of a broader master

agreement that provides for netting losses in case there are many swap contracts between

the same parties. Hence, the losses in one contractmay offset the gains on another,mitigating

the possible loss from failure of a counterparty.

The credit exposure in a swap is a measure of the maximum potential loss from the swap.

Credit exposure is divided into two parts: current exposure and future exposure. Current

exposure is the loss that would occur were the counterparty to default immediately, so is the

maximum of the current mark-to-market value of the swap and zero. (There is no current

exposure if the mark-to-market value of the swap is negative.) Future exposure measures

the potential losses that could occur over the remaining life of the swap. To compute this

exposure, we first choose a model of interest-rate movements and identify, with a given

confidence level (say, 95%), the maximum extent to which rates could move against the

counterparty. We calculate the amount the counterparty would owe at those levels. This is

the future exposure.

Credit exposure changes over the life of a swap. In general, credit exposure has an

inverted U-shape, increasing from zero as time moves on and then decreasing towards zero

again. The exposure at the beginning of the swap is zero since the swap itself has zero value

at that time. As the swap approaches maturity, the credit exposure again goes to zero since

the number of remaining cash flows at risk falls.

23.11 Hedging Swaps

The main source of risk in swaps is changes in interest rates. An increase in interest rates

raises the value of the swap to fixed-rate payers and lowers it for the floating-rate payer;

vice versa if interest rates decrease.

Interest-rate exposure could be hedged by using an offsetting position in another swap

with identical dates, etc. However, this may not be feasible for non-standard swaps or at

the level of a portfolio of swaps. Therefore, other means of managing interest-rate risk in

swaps are usually called for. There are several alternatives:

• Hedge using a different swap.

• Hedge using bonds.

• Hedge using futures and FRAs.

The ideas behind these hedges are simple. We match the interest-rate sensitivity of

the swap with other instruments that are inversely sensitive in the same magnitude to

the risk from the swap. The three choices above are very popular routes to a hedging

strategy.

Of course, there will always be some residual basis risk. (Recall that basis risk arises

when the hedge used does not perfectly track the underlying risk). However, using portfolios
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of these instruments usually helps in keeping basis risk to a minimum. The absolute amount

of basis risk depends on two important aspects of the risk in question:

• The correlation of the hedge with swap cash flows.

• The size of the hedged position.

Setting up the hedge begins with the ascertainment of the delta of the swap position.

Note that this is not the same delta as computed for equity options. Here delta measures

sensitivity with respect to interest-rate risk and is defined as the change in the value of the

swap for a 1 bps increase in interest rates.

• If the delta is positive, swap value increases when interest rates increase.

• If the delta is negative, swap value decreases when interest rates decrease.

The delta is positive when the swap is viewed from the viewpoint of the payer of the

fixed leg in the swap. When rates rise, the fixed payer does not pay out more but instead

receives higher interest on the floating leg. Hence, the value of the swap for the fixed payer

rises when interest rates increase, implying that delta is positive.

Wemay extend the concept of delta to that of a delta vector. This is defined as the change

in value of a portfolio of swaps for an independent 1 bps increase in each interest rate (of

all maturities). This notion takes heed of the fact that the swap is sensitive to changes in the

entire term structure of interest rates, not a single rate. To operationalize the computation

of the delta vector, we split the portfolio into “buckets” of different maturities. The idea

is to create an equivalent portfolio that has the same delta vector as the one being hedged.

The cash flows of the original swap (or book of swaps) are assigned to these buckets. Each

bucket is then treated as a stand-alone security with a single cash flow at the maturity of the

bucket. The delta of each bucket may then be computed with respect to the interest rate for

only the maturity of that bucket, as we now explain.

Allocating Cash Flows to Buckets
Bucketing of cash flows involves collapsing the given cash flows onto a finite set of points

in time. We begin by choosing the time points that act as the “buckets” to which all swap

cash flows will be allocated. For example, if we have a book of swaps going out to 10 years,

we may use 40 evenly-spaced buckets to represent the horizon, so there is one bucket per

quarter. Our objective is to allocate all cash flows from the given swaps to the chosen time

buckets in some reasonable way. Intuitively, we want the bucketed portfolio to look “like”

the original portfolio. There is no formal definition of what it means for one portfolio to

look like another, but here are two plausible criteria:

1. Value Preservation The present value of the cash flows should not change.

2. Risk Preservation The riskiness of the cash flows should not change.

To illustrate, suppose we wish to allocate a given cash flow c that occurs at a given time

t to the buckets. Identify the two time points t1 and t2 in the bucket that “bracket” t , i.e.,

which are the nearest points in the bucket such that

t1 < t < t2

Denote the allocation to t1 and t2 by c1 and c2, respectively. The first criterion says that c1
and c2 should satisfy

PV (c1) + PV (c2) = PV (c)
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FIGURE 23.4
Allocation of a Single
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For example, suppose the interest rates in continuously-compounded terms for times t1, t ,

and t2 are, respectively, r1, r , and r2. Then, we obtain

e−r1t1c1 + e−r2t2c2 = e−r t c

This gives us one equation in two unknowns. For a second equation, we use the second

criterion. For this, we need to define “risk.” We take the risk of a cash flow to be measured

by its PVBP, i.e., by the change in the present value of the cash flow for a one basis point

change in interest rates. This gives us the second equation as

PV BP(c1) + PV BP(c2) = PV BP(c)

In the case of continuously-compounded interest rates, this works out to

e−r1t1 t1c1 + e−r2t2 t2c2 = e−r t ct

Solving the two equations, we get the desired break-up of the cash flow c. In this way, all

the cash flows of the swap book may be allocated to the different buckets.

See Figure 23.4 for a diagrammatic description of the procedure. We note that doing

an allocation like this for each individual swap will not save us any computation since it

involves calculating the present value of each cash flow anyway. However, if we take all

the swaps in the trading book and aggregate cash flows on each date before allocating the

cash flows to the surrounding pair of dates, then a substantive speedup of the procedure is

obtained.

23.12 Caps, Floors, and Swaptions

The products we have discussed so far in the chapter have not contained optionality features.

We examine in this segment some of the most popular classes of interest-rate options: caps,

floors, and swaptions. We begin with caps and floors. Swaptions—options on swaps—are

discussed further down in this section.

A cap is a portfolio of options, each called a caplet. The caplets have maturity dates

t1, . . . , tn that are equally spaced (e.g., quarterly or semiannually). All caplets share the same

strike X , which is referred to as the strike of the cap. Let  k denote the Libor rate observed at

tk for the period (tk , tk+1). Then, the payoff from the k-th caplet (i.e., the one with maturity



600 Part Three Swaps

date tk) is given by

A ×max{0,  kδk − Xδk} = A × δk max{0,  k − X} (23.9)

where δk is the day-count fraction applicable to the period (tk , tk+1) and A is the notional

principal amount in the contract. This payoff is received at time tk+1. As the payoff (23.9)
makes clear, each caplet is like a call option on the Libor rate, so the cap is just a portfolio

of calls on the Libor rate.

Example 23.6 Cap Payoffs
Consider a five-year maturity cap with a strike rate of X = 8% on a principal amount of
$10 million. Suppose the cap has a semiannual basis, meaning that the dates t1, t2, . . . are
set six months apart. On each maturity date tk, the six-month Libor rate  k at that point is
compared to the 8% strike rate, and, on date tk+1, the holder of the cap receives the payoff

10,000,000× δk max{0,  k − 0.08}
Suppose, for instance, that the observed rate is  k = 9.25% and that the day-count fraction
is 183/360. Then, on date tk+1, the holder of the cap receives the payoff

10,000,000× 183

360
×max{0, 0.0925− 0.08} = 63,541.67 ■

Two points bear emphasizing. First, note that the payoff that is determined at each reset

date tk is paid out only on date tk+1. Second, conventionally, there is no exchange of cash
flows on the first reset date in a cap. In principle, any exchange of payments on the first

reset date t1 would be based on the prevailing Libor rates at the time the cap is purchased

and so would be fully known at the outset. This is analogous to the situation in swaps

where the payments in the first exchange are known at the time of entering into the swap.

However, unlike in swaps, the practice in the caps/floors markets is not to exchange these

first payments. Thus, for example, in a five-year cap with a semiannual basis, there are nine

exchanges of cash flows in all (in months 12, 18, 24, . . . 54, and 60, corresponding to the

Libor rates observed in months 6, 12, 18, . . . , 48, and 54).

Floors
The complement of a cap is called a floor. Floors correspond to put options on the interest

rate. A floor, like a cap, is a portfolio of options with the same strike X , and expiring at

successive equally-spaced maturity dates t1, . . . , tn . If the Libor rate on date tk is  k , then

on date tk+1, the holder of the floor receives the payoff

A × δk max{0, X −  k} (23.10)

where A and δk have been defined above.

Uses of Caps and Floors
One important purpose of a cap is in hedging, in particular, to enable floating-rate borrowers

to lock-in a ceiling rate they have to pay on their borrowing. For example, a floating-rate

borrower who wishes to hedge against the risk of interest rates exceeding 9% can buy a

9%-strike cap. If interest rates remain below 9%, the caps expire worthless, but the borrower

achieves the objective of keeping interest payments below 9%. If interest rates exceed 9%

on anymaturity date, the appropriate caplet compensates the holder for the amount bywhich

Libor exceeds 9%, so the net payment made by the borrower is exactly 9%. Shortly, we

present an example that illustrates this use of caps in controlling financing costs. Just as a

cap provides a ceiling on interest rates, a floor provides a lower bound that is particularly

useful for floating-rate investors.
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Of course, caps and floors can also be used for speculative purposes. For instance,

speculators wishing to bet on increasing interest rates can buy caps. Often, in both hedging

and speculation, the purchase of a cap is done in tandemwith selling floors so as to subsidize

the cost of the caps. A contract of this sort (the simultaneous purchase of a cap and sale of

a floor) is called a “collar.” The opposite contract is a short collar and can be undertaken if

a bet on dropping interest rates is being made. In a collar, the cap strike rate is higher than

the floor strike rate. It is always possible to set the strike rates on the cap and floor in such

a way that the premium paid on the cap is exactly offset by the premium received on the

floor. This is known as a “zero-cost collar.”

Controlling Financing Costs with Caps and Floors
As with swaps, caps and floors may be used to compare different financing options. The use

of caps and floors in conjunction with floating-rate borrowing often allows firms to raise

cheaper financing. The following pair of examples illustrate. The first example looks at caps

alone and the second includes caps and floors.

Example 23.7 Consider a hypothetical company that wishes to raise two-year financing. In discussions with
their bankers, the company is presented with two alternatives. One is to obtain a semiannual
pay two-year loan at a fixed interest rate of 9%. The alternative is to issue a floating-rate note
(FRN) at six-month Libor plus 10 basis points. Suppose that the current rate for six-month
Libor is 8%. A two-year 8%-strike cap (semiannual basis) is trading at a premium of $1.55 for
every $100 notional. What should the company do?

To address this question, we compute the financing cost of the floating-rate route and
compare it with the fixed-rate cost of 9%. At time 0, the company can raise $100 through
issuance of the FRN and simultaneously purchase the two-year semiannual basis cap for
$1.55, resulting in a net cash inflow at time 0 of $98.45. Note that the first interest pay-
ment, due at the end of six months, is already determined by the current level of six-month
Libor.

The financing cost varies with the six-month Libor rate, so consider first the worst-case
cash flows in this case. If the rate drops and remains below 8%, the caplets expire worthless,
but the financing cost remains below the desired 8% level. If the rate rises and exceeds 8%,
then the FRN coupons are higher but this is offset by the cap. So, at worst, the rate paid
is 8% plus the 10 basis points spread on the floating-rate borrowing. Therefore, assuming
for simplicity that the six-month day-count fraction is 0.50, the maximum cash outflow for
coupon payments is $4.05 (half of 8.10%) in months 12, 18, and 24 per $100 of notional
principal. For the first payment in six months, the rate is already fixed at Libor + 10 bps,
i.e., at 8.10%, meaning a cash outflow of $4.05 in month 6. Finally, at maturity, there is the
final payment of principal of $100 as well. These cash flows are summarized in the following
table:

Month Worst-Case Cash Flow

0 98.45
6 −4.05

12 −4.05
18 −4.05
24 −104.05

Internal rate of return 0.08964

The “all-in cost” of the strategy is the internal rate of return (IRR) on these cash flows, i.e.,
the discount rate such that the NPV of the cash flows is zero. For the given cash flows, the
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IRR works out to 8.964%. This is the worst-case cost of the combined FRN-plus-cap strategy.
Even this worst case is superior to the 9% cost of fixed-rate financing, so the company is
evidently better off going in for floating-rate borrowing combined with the interest-rate
caps than fixed-rate borrowing. ■

Example 23.8 We extend Example 23.7 by introducing floors. Suppose that a two-year floor (semiannual
basis) is trading at a premium of $0.40. The company might wish to sell this floor to subsidize
the cost of the cap they bought. Of course, the cost of selling the floor is that the company
no longer benefits if interest rates drop below 6%, so this strategy makes sense especially if
the company believes that interest rates are unlikely to drop below 6% over the next two
years.

Once again, we begin by identifying the all-in cost of the worst-case scenario. In this
case, the time-0 cash flows are equal to $98.85, i.e., the issue of the FRN at $100 less the
cost of the cap ($1.55) plus the inflow from the sale of the floor ($0.40). The cash flows after
time 0 remain the same as in the previous table. (Introducing the floor doesn’t affect the
worst-case interest payments.) For the modified inflow and other cash flows, the internal
rate of return works out to 8.739% as shown in the following table.

Month Worst-Case Cash Flow Best-Case Cash Flow

0 98.85 98.85
6 −4.05 −4.05

12 −4.05 −3.05
18 −4.05 −3.05
24 −104.05 −103.05

IRR 0.08739 0.07255

What about the best-case cash flows? Without a position in the floor, the best-case scenario
is that the six-month Libor rate drops to zero for the payments due in months 12, 18,
and 24. (Note that the first payment due in six months is not affected since that rate is
already determined.) In this case, the cash outflow in months 12, 18, and 24 would just be
the 10 basis points spread. As a consequence, the all-in cost would work out to a measly
0.68%.

But with the floor also present, the best-case scenario in months 12, 18, and 24 is that
the floor payment is made in each period. Since the floor strike is 6%, this means an interest
rate of 6.10% including the 10 basis points spread, or a cash outflow of $3.05 per $100 of
principal. These best-case cash flows are also shown in the table above. The best-case all-in
cost works out to 7.255%. The use of the collar means that the final realized all-in cost will
lie in the band between 7.255% and 8.964%.

The choice the company ultimately makes will depend on the directional views held. If
the company were of the opinion that the six-month Libor rate could fall below 6% with a
high probability, it would be better off going in for the cap alone. Conversely, if the view
is that rates are unlikely to fall below 6%, use of the floor to subsidize the purchase of the
cap is a good idea. In either case, comparison of the fixed-rate financing route with its
synthetic counterpart, manufactured using an FRN and caps/floors, is a comparison of a
point with a range. Such analyses are routine and result in close linkages between the fixed-
and floating-rate markets. ■

Put-Call Parity Revisited
Since caps are akin to calls on the interest rates and floors to puts, a version of put-call

parity can be derived in this market. The parity relationship links caps and floors to swaps.
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Consider a cap and floor with identical notional principals, bases and payment dates, and a

strike of X . Suppose we are long the cap and short the floor. Then, on each caplet/floorlet

maturity date tk , there are two possibilities:

• If the relevant Libor rate  k exceeds X , the caplet is in-the-money and has a payoff of

( k − X )δk on date tk+1. The floorlet lapses unexercised.

• If  k < X , then the floorlet is in-the-money, and the cash flow to the short position is

−(X −  k)δk = ( k − X )δk . The caplet lapses unexercised.

Thus, in either case, the cash flow from the portfolio is ( k−X )δk and this payoff is received
at date tk+1.

Now, consider a vanilla fixed-for-floating swap with fixed rate X and reset dates identical

to the maturity dates of the caplets but with two modifications. First, suppose that the swap

has no exchange of payments on the first reset date t1. Second, assume that both legs of the

swap use the same day-count convention, so δk is the day-count fraction that applies to both

legs of the swap for payments at tk+1. The date-tk+1 cash flows (for k ≥ 1) from receiving

floating and paying fixed on this swap are

( kδk − Xδk) = ( k − X )δk

These cash flows are identical to the cash flows from the long cap-short floor portfolio. It

follows that the value of this swap (denoted Swap[Receive L , Pay X ]) is identical to the

value of the portfolio:

Swap[Receive L , Pay X ] = Cap(X ) − Floor(X ) (23.11)

Expression (23.11) is the promised put-call parity relationship.

We can express this in slightly different form. For this, recall that a long swap position

is identical to being long a floating-rate note and short a fixed-rate bond:

Swap[Receive L , Pay X ] = FRN[L]− Fixed-Rate Bond[X ] (23.12)

(Note that such a decomposition of the swap can be derived even after incorporating the

modifications to the swap mentioned above, although, of course, the fixed- and floating-rate

bond structures have to be modified slightly for this purpose. In particular, we require that

neither bond has a coupon on date t1, and they use the same day-count convention.) Using

this in (23.11), we obtain

Cap(X ) − Floor(X ) = FRN[L]− Fixed-Rate Bond[X ] (23.13)

The fixed-rate bond here plays the role of the present value of the strike price, while the

floating-rate note plays the role of the price of the underlying. Expressed thus, the relation-

ship has a form that is similar to the put-call parity relationship for equity options.

Swaptions
Recall that a forward-starting swap is an interest rate swap with given fixed rates but where

the swap begins only at a specified point in the future. In a forward-starting swap, both parties

are obligated to enter into the underlying swap. A swaption (or “swap option”) introduces

optionality into this process. In a receiver swaption, the long position in the option has the

right, but not the obligation, to enter into a swap in which she receives the fixed cash flows

and pays floating. In a payer swaption, the long position has the right to pay the fixed cash

flows and receive floating.

For example, the underlying swap may be a three-year fixed-for-floating swap with

semiannual resets beginning in one year’s time and with a fixed rate of 8%. The first
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exchange of cash flows in this swap will take place 6 months after the swap begins, i.e., in

18 months. The cash flows due from the fixed side are computed using the fixed rate of 8%.

The holder of a receiver swaption on this swap can decide in one year whether to enter into

the swap. The exercise decision will depend on the swap rate prevailing in one year for a

three-year swap with semiannual resets. If the swap rate at that time is less than 8%, then it

is obviously in the holder’s interest to exercise the option, while if it is greater than 8%, it

is better to let the option lapse unexercised.

Swaptions are closely related to caps and floors. A cap is a portfolio of call options on

the interest rate, while a payer swaption is effectively an option on the portfolio of forward

exchanges represented by the long swap. That is, in a cap, one can compare each Libor rate

to the strike on the reset date and decide on the exercise decision caplet by caplet. In a payer

swaption, once it has been exercised, the investor is committed to paying fixed and receiving

floating on each reset date. Hence, the capmust beworth at least asmuch as a payer swaption

with fixed rate equal to the strike rate in the cap. Similarly, a floor must be worth at least as

much as a receiver swaption with fixed rate equal to the strike rate in the floor.

23.13 The Black Model for Pricing Caps, Floors, and Swaptions

Black (1976) developed a model for the pricing of options on futures. It is common market

practice to use the Black model (often referred to in this context as the “market model”)

in pricing caps, floors, and swaptions. We elaborate on this approach here. Since caps and

floors involve options on interest rates while the Black formula concerns options on futures,

it is necessary to first draw a link between the two. We proceed in several steps beginning

with Black’s option pricing formula.

The Black (1976) Formula
The Black option pricing formula was originally developed for options on futures contracts

when interest rates are constant (or, more generally, deterministic). With constant or deter-

ministic interest rates, futures and forward prices coincide (as we noted in Chapter 3), which

means Black’s formula also applies to options on forward contracts. Indeed, even more is

true. It turns out that Black’s formula remains valid for pricing options on forwards even if

interest rates are stochastic. Our use of the Black formula here is in the context of pricing

options on forwards (with possibly stochastic interest rates), so we present it in that form.

Let St denote the time-t price of some asset, and let F(t , T
∗) denote the time-t forward

price on the asset for a contract maturing at T ∗. Let B(t , T ∗) denote the time-t price of a
zero-coupon bond that pays $1 at T ∗. Consider call and put options on the forward contract
with a maturity of T ≤ T ∗ and a strike of K .

Options on forwards are defined in exactly the same way as options on futures. That is,

a call option on a forward gives the holder the right, on the maturity date T of the call, to

enter into a long position in the forward contract with a delivery price equal to the call’s

strike K . A put option gives the right to enter into a short position in the forward contract

with a delivery price of K . To gauge the payoffs from such options, consider the call for

specificity. On date T , exercise of the call gives the holder a long position in a forward

contract with a delivery price of K . Offsetting this with a short position in the forward at

the prevailing market price of F(T , T ∗), the holder realizes the cash flow [F(T , T ∗) − K ]

on date T ∗, or, equivalently, the amount {B(T , T ∗)× [F(T , T ∗)− K ]} on date T . Thus, the
call will be exercised if and only if F(T , T ∗) ≥ K , and its effective payoff may be taken

to be

max{0, B(T , T ∗) [F(T , T ∗) − K ]}
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on date T . Similarly, the payoff from the put is the amount

max{0, B(T , T ∗) [K − F(T , T ∗)]}
on date T .

Now suppose that the forward price evolves according to a geometric Brownian motion

process:

dF(t , T ∗) = μF(t , T ∗) dt + σ F(t , T ∗) dWt

where σ is a constant. Black’s formula then gives the time-t prices of call and put options

on the forward contract as:

C(t ; T , K ) = B(t , T ∗)
 
F(t , T ∗) N (dF1 ) − K N (dF2 )

 
P(t ; T , K ) = B(t , T ∗)

 
K N (−dF2 ) − F(t , T ∗) N (−dF1 )

 
where

dF1 = 1

σ
√
T − t

 
ln

 
F(t , T ∗)

K

 
+ 1

2
σ 2(T − t)

 
dF2 = dF1 − σ

√
T − t

Expressing Cap/Floor Payoffs as Options on Forwards
To be able to exploit the Black formula, we must express caplet and floorlet payoffs as

payoffs on a specific forward contract on some asset. In the forms they are written (see

(23.9) and (23.10)), caplet and floorlet payoffs are options on the Libor rate, but the interest

rate is not itself a traded variable.

As a first step in re-expressing cap and floor payoffs, we show that the component  kδk in

caplet and floorlet payoffs ((23.9) and (23.10), respectively) can be generated using traded

assets, specifically, using zero-coupon bonds maturing on the reset dates. Consider the

following strategy:

• Go long a tk-maturity zero-coupon bondwith a face value of $1, and short a tk+1-maturity
zero-coupon bond with a face value of $1. At time tk , invest $1 at Libor for maturity

at tk+1.

There is no net cash flow from this strategy at time tk because the $1 received from the

zero-coupon bond is reinvested at Libor for maturity at tk+1. If  k denotes the realized Libor
rate at tk , then at tk+1, we receive the amount 1+  kδk from the investment and owe $1 on

the short tk+1-maturity zero for a net cash flow of

(1+  kδk) − 1 =  kδk

We have shown, as desired, that there is a portfolio that generates the quantity  kδk as its

payoff at time tk+1.
Let St denote the time-t value of this “replicating” portfolio. We have

St =
 
B(t , tk) − B(t , tk+1), if t < tk
B(t , tk+1) ×  kδk , if tk ≤ t ≤ tk+1

(23.14)

To see (23.14), note that until time tk , the value of the portfolio is simply the difference in

the values of the two zero-coupon bonds underlying the portfolio. At time tk , the Libor rate

determining payoffs gets fixed, so the value of the portfolio is simply the present value of

the certainty payoff receivable at time tk+1.
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Now, consider a forward contract on St maturing at time tk+1. What is the time-t forward

price Ft?The “asset” representedby St is a non-dividend-paying asset, so from the arguments

in Chapter 3, its forward price obeys the rule

PV (Forward price) = Spot price

This means we have

B(t , tk+1)Ft = St

so, from (23.14),

Ft =
 
[B(t.tk)/B(t , tk+1)]− 1, if t < tk
 kδk , if tk ≤ t ≤ tk+1

(23.15)

Note that Ftk =  kδk . Define a call option on the forward contract Ft expiring at time tk
with strike Xδk . The payoff from exercising this contract at time tk is

B(tk , tk+1) × (Ftk − Xδk) = B(tk , tk+1) × δk( k − X )

which means the option’s payoff at time tk can be written as

B(tk , tk+1) × δk max{0,  k − X} (23.16)

From (23.9), this is exactly the time-tk present value of the payoff received from the

caplet expiring at tk . (Note that the payoff in (23.9) is received at tk+1. Bringing it back

to tk results precisely in (23.16).) Thus, we have shown that the caplet’s payoff can be

represented as a call option on the forward contract whose price process is represented by

(23.15). Considering a put option on the forward contract with a strike of δk X establishes

the analogous result for the corresponding floorlet.

We are now in a position to exploit the Black formula to represent caplet prices. To do

so, we have to assume that the forward prices Ft are lognormally distributed with constant

volatility. One final result will make the interpretation of this assumption easier.

The Forward Contract as Forward Libor Rates
Let f (t , tk , tk+1) represent the forward Libor rate at time t (t ≤ tk) for an investment or

borrowing over the period (tk , tk+1). We will show that in the absence of arbitrage, we must

have

δk f (t , tk , tk+1) =
B(t , tk)

B(t , tk+1)
− 1 (23.17)

To see (23.17), consider the following two alternative strategies:

• Strategy 1 Buy a zero-coupon bond maturing on date tk+1 with a face value of $1.

• Strategy 2 Buy a zero-coupon bond maturing on date tk with a face value of (1 +
δk f (t , tk , tk+1))−1. Simultaneously, enter into a commitment to invest the proceeds from
tk to tk+1 at the forward rate f (t , tk , tk+1).

Both strategies ensure winding up with a certain dollar at time tk+1; therefore they must
have the same cost. The cost of the first strategy is B(t , tk+1), while that of the second
strategy is

1

1+ f (t , tk , tk+1)δk
B(t , tk)

Equating these costs results in (23.17).
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Expression (23.17) means that for t ≤ tk , the forward price Ft in (23.15) is just the

forward Libor rate f (t , tk , tk+1) times the day-count fraction δk . In particular, this means
that if the volatility of Ft is constant, so is the volatility of the forward Libor rate. Thus, the

assumption that Ft is lognormally distributed with constant volatility is equivalent to the

assumption that forward Libor rates are lognormally distributed with constant volatility.

Cap and Floor Prices Using Black’s Model
Combining all of the above, we have the following: suppose that for t ≤ tk , the forward

Libor rate f (t , tk , tk+1) is lognormally distributed with constant volatility σ . Then:

1. The time-t price of a caplet maturing at tk and paying max{0,  kδk − Xδk} at time tk+1 is
B(t , tk+1) × [ f (t , tk , tk+1)δk N (d1) − Xδk N (d2)] (23.18)

where d1 and d2 are defined by

d1 =
1√
tk − t

 
ln

 
f (t , tk , tk+1)

X

 
+ 1

2
σ 2(tk − t)

 
d2 = d1 − σ

√
tk − t

and tk − t is the time between t and tk measured in years.

2. The time-t price of a floorlet maturing at tk and paying max{0, Xδk− kδk} at time tk+1 is
B(t , tk+1) × [Xδk N (−d2) − f (t , tk , tk+1)δk N (−d1)] (23.19)

where d1 and d2 are as defined in the caplet pricing formula.

The price of a cap is just the sum of the prices of all the caplets in the cap, and the price

of a floor is the sum of all the floorlets in the floor. So expressions (23.18) and (23.19) may

be used to identify cap and floor prices under the assumption that forward Libor rates of

various maturities are each lognormally distributed with a constant volatility.

The Black Model for Swaptions
Upon exercise of a payer swaption, the holder receives a long position (pay fixed, receive

floating) in a swap with a fixed rate X as specified in the swaption contract. Let T denote

the maturity date of the swaption, t0 denote the initial date of the swap (with t0 ≥ T ), and

t1, . . . , tn the remaining reset or payment dates on the swap. We take the notional principal

of the swap to be $1.

Viewed from any date t ≤ T , the cash flows from the floating leg of the swap can be

replicated at a cost of

B(t , t0) − B(t , tn)

i.e., by buying a t0-maturity zero with face value $1 and selling a tn-maturity zero with face

value $1. To see this, note that if we re-invest the $1 received at t0 at the Libor rate up to t1,

then re-invest $1 at t1 at the Libor rate up to t2 and so on, we will re-create the floating-rate

Libor cash flows in each period t1, . . . , tn . At the final time point tn , we also receive the

principal amount of $1, but this is canceled out by the short position in the tn-maturity zero.

Identifying the present values of the fixed cash flows, given the fixed rate of X , is easier.

This is just

n 
k=1

B(t , tk)Xδk

where δk denotes the day-count fraction applicable to the fixed side for the period (tk−1, tk).
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Putting these together, the value of the pay-fixed/receive-floating swap, viewed from

time t , is

S (1)
t − S (2)

t

where

S (1)
t = B(t , t0) − B(t , tn) and S (2)

t =
n 

k=1
B(t , tk)Xδk

The payoff of the payer swaption at maturity is, therefore,

max{0, S (1)
T − S

(2)
T }

This is just an exchange option as described by Margrabe (1978) (see Chapter 18). As

noted in Section 18.6, the Margrabe formula can be used to price these options provided

that S
(1)
t /S

(2)
t follows a geometric Brownian motion with constant volatility σ . But this last

requirement is the same as the requirement that the forward swap rate (i.e., the arbitrage-free

rate for the swap as seen from time t) follow a geometric Brownian motion with constant

volatility. To see this, note that the forward swap rate at t is that value X
f
t , which is such

that the value of the swap viewed from time t is zero, i.e., such that

B(t , t0) − B(t , tn) =
n 

k=1
B(t , tk)X

f
t δk

This identifies the forward swap rate as

X f
t =

B(t , t0) − B(t , tn) n

k=1 B(t , tk)δk
(23.20)

Now, from the definitions of S
(1)
t and S

(2)
t , we have

S
(1)
t

S
(2)
t

= B(t , t0) − B(t , tn)

X
 n

k=1 B(t , tk)δk

so, substituting for B(t , t0) − B(t , tn) from (23.20), we obtain

S
(1)
t

S
(2)
t

= X
f
t

 n

k=1 B(t , tk)δk
X
 n

k=1 B(t , tk)δk
= X

f
t

X

Thus, the assumption that S
(1)
t /S

(2)
t follows a geometric Brownian motion with constant

volatility is equivalent to the assumption that the forward swap rate X
f
t follows a geometric

Brownian motion with constant volatility.

Putting all this together, we have the following: if the forward swap rate follows a

geometric Brownian motion with constant volatility σ , then the date-t value of a payer

swaption is

S (1)
t N (d1) − S (2)

t N (d2)

where

d1 =
1

σ
√
T − t

 
ln

 
S
(1)
t

S
(2)
t

 
+ 1

2
σ 2(T − t)

 

d2 = d1 − σ
√
T − t
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By similar argument, the time-t value of a receiver swaption is given by

S (2)
t N (−d2) − S (1)

t N (−d1)

23.14 Summary

This chapter has looked at some of the most important classes of floating-rate interest

derivatives including interest rate swaps, caps, floors, and swaptions. Swaps are akin to

forward-rate agreements with multiple exchanges, but they can also be viewed as an ex-

change of fixed- andfloating-rate bonds. The latter point of view is particularly advantageous

from an analytical standpoint, as we have seen in this chapter. Caps, floors, and swaptions,

all closely related to interest rate swaps, bring optionality into the process. Caps and floors

are akin to swaps in which on a leg-by-leg basis the holder has the option of participating

in the exchange of cash flows required by that leg. Swaptions are options on a swap with

fixed terms that begins some time in the future.

We have also examined in this chapter the pricing of caps, floors, and swaptions using the

Black and Margrabe models. (These are sometimes called the “market models” for pricing

these instruments, but they are perhapsmore accurately, described asmarket practice.) These

models are incomplete in the sense that they specify the behavior of specific individual

rates separately without discussing how the yield curve as a whole evolves over time. In

later chapters on term-structure modeling, we examine this broader question and introduce

several different term-structure models.

23.15 Exercises 1. Explain why a swap is a collection of forward rate agreements (FRAs).

2. Show that a swap in which one receives fixed and pays floating is equivalent to a

portfolio of caps and floors. Present the specific relationship.

3. What is the relationship of a swap to fixed- and floating-rate bonds?

4. What is the duration of a floating-rate note (FRN)?

5. You hold a Libor FRN with a coupon rate that is capped at 10%. Explain whether the

price is increasing or decreasing as a function of Libor.

6. A swaption is an option on a swap. A cap is a portfolio of options on FRAs. Given that

swaps are portfolios of FRAs, what has greater value, (a) a swaption or (b) a cap?

7. What is the impact on the value of a swap if, ceteris paribus, the volatility of interest

rates rises?

8. The six-month Libor rate is given to be 3% and the twelve-month rate to be 4%. The

6× 12 FRA is trading at 4.2%. Show how you would construct a sure arbitrage to take

advantage of these market rates. Assume the first six-month period is 181 days and

the second is 184 days. The interest-rate convention is Actual/360.

9. Consider a long position in a 6 × 12 FRA contract at a fixed rate of 4.2% Compute

the payoff to this contract for a range of interest rates from 1% to 10%. Is the slope of

this payoff function positive or negative? Explain. Assume the first half of the year is

181 days and the second half is 184 days. The interest-rate convention is Actual/360.

10. For the previous question, compute the payoffs for two conventions: (a) in discounted

form (atmaturity of the FRA) and (b) in arrears (settlement atmaturity of the underlying

borrowing). Are both lines linear or nonlinear? Explain the differences between the

two payoffs. The interest-rate convention is Actual/360.
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11. The 6 × 12 FRA is trading at a fixed rate of 4%. The 12 × 18 FRA is at 5%, and the

18 × 24 FRA is at 6%. What should you quote on the 12 × 24 FRA? Express your

answer in rate per annum, given that the consecutive six-month periods are of 182, 183,

181, and 184 days, respectively. The interest-rate convention is Actual/360.

12. Rework the previous question with continuous compounding, treating every six-month

period as half a year. Can you provide a simplified algebraic expression for all problems

of this type? Is it harder to do this with continuous compounding? Explain why or

why not.

13. You are able to borrow on a floating basis at a rate of Libor + 100 bps for two years.

In addition, you can contract on a 6 × 12 FRA in which you can exchange Libor for

a fixed rate of 3%. Similarly, you can contract on a 12 × 18 FRA at 3.5% and the

18 × 24 FRA at 4%. Assume the money market convention of Actual/360. The first

four semiannual periods contain 181, 184, 182, and 183 days, respectively. The current

six-month Libor rate is 2%. Given no credit arbitrage in the market, what should be the

fair value of your borrowing at a fixed rate for two years? Assume interest payments

are made in equal amounts for each half year.

14. You have an FRA to borrow at 5% that has six months to run until maturity and

is for the period (6,12) containing 183 days. The current forward rate for the period

(6,12) is 5.2%.What is the mark-to-market value of the FRA?What is the PVBP of this

contract? Explain the sign of the PVBP. Assume the standard Actual/360moneymarket

convention.

15. What is the price of a five-year floating-rate note that has coupons at the rate of Libor+
100 bps when the current yield curve is flat at 6%? Assume that the conventions in the

market are 30/360 for coupons and discounting instead of the usual Actual/360.

16. Two firms X and Y are able to borrow funds as follows:

A: Fixed-rate funding at 4% and floating rate at Libor − 1%.

B: Fixed-rate funding at 5% and floating rate at Libor + 1%.

Show how these two firms can both obtain cheaper financing using a swap. What swap

would you suggest to the two firms if you were an unbiased advisor?

17. Firm A can borrow fixed rate at 10%. It can also borrow floating at Libor + 1%. The

market swap rate at the bid is Libor versus 8.9% and is Libor versus 9.1% at the ask

(i.e., the firm can enter into a swap by paying fixed at 9.1% or receiving at 8.9%). Find

the cheapest form of financing for the firm if it wishes to be in floating-rate debt.

18. The student loan association raises floating-rate financing and makes loans of maturity

5–10 years at fixed rates. Can you describe the nature of the risks on the balance sheet?

What financial contract should the association undertake to mitigate these risks?

19. You are given the following data on Libor yields at six monthly intervals.

Maturity Dates Annualized Yields (%)

19-May-04
19-Nov-04 1.06
19-May-05 1.23
19-Nov-05 1.44
19-May-06 2.06
19-Nov-06 2.66
19-May-07 3.10
19-Nov-07 3.20
19-May-08 3.49
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The current date is 19-May-04. All swaps in this question have a four-year maturity

and a notional principal of 100,000. Assume the fixed-rate side of the swap is on a

30/360 basis, and the floating side is on an Actual/360 basis. The zero-coupon yields

above may be converted into discount factors using the following formula:

d = 1

1+ (z × D/360)

where z is the zero-coupon rate and D is the number of days to the payment from

inception.

(a) Find the price of a fixed-for-floating interest-rate swap that pays Libor on the

floating leg.

(b) Find the price of a fixed-for-floating interest-rate swap that pays Libor + 25 bps on

the floating leg. The notional principal is 100,000.

(c) Find the price of a zero-coupon swap against floating Libor.

(d) If the fixed rate on the swap is 3%, what is the spread over Libor on the floating leg

to make this a fair swap?

20. You are given the following table for the next eight half-year periods.

Period Days in Period Libor

1 182 3.00
2 183 3.25
3 182 3.75
4 183 4.00
5 182 4.24
6 183 4.50
7 182 5.00
8 183 5.50

The zero-coupon rates are converted into discount factors with the following for-

mula:

d = 1

1+ (z × D/360)

where z is the zero-coupon rate and D is the number of days to the payment from

inception. Find the fixed rate at which a four-year swap with half-year payments should

be quoted if the swap is fair. The fixed side also uses the Actual/360 convention.

21. Who bears more credit risk in a five-year fixed-for-floating interest rate swap when the

yield curve is upward sloping, the fixed rate payer or receiver? Assume that both parties

have the same credit quality.

22. Howwould you hedge a portfolio of swaps using zero-coupon swaps? Explain the logic

you would follow to set up the appropriate set of swaps.

23. There is a cash flow of $125 at time 1.68 years to be allocated to two time points: 1.5

years and 2 years. The zero-coupon rates for these two points are 3% and 4%, and

compounding is continuous. Find the allocation that preserves value and risk.

24. Major investor Iwan Itall has a portfolio of 100 million USD two-year semiannual

floating-rate notes, based on six-month Libor. This is a standard floating-rate note with

coupons being set every six months. He wants to ensure that he receives a minimum

Libor yield of 6.00% in the future. The current market quotes (one-time premiums



612 Part Three Swaps

defined in basis points of the face value of the option) for caps and floors on six-month

Libor as are follows:

Caps (bps) Floors (bps)
Strike 2 Year 2 Year

4.00% 7
4.50% 12
5.00% 133 24
5.50% 91 48
6.00% 55 60
6.50% 40
7.00% 20

[Note: For simplicity, assume that option premiums are amortized straight line over

time.] For example the two-year cap at 6.50% costs 40 basis points up front, i.e., 20

basis points per annum.

(a) What option should Iwan Itall purchase to ensure that his gross yield (before the

cost of the option) does not drop below 6.00% per annum? Depict his gross payoffs

per coupon payment (before options costs) and net payoffs (after options costs)

on suitable diagrams. Label the diagrams correctly. Make use of the simplifying

assumption in the note above.

(b) If you think the options cost of the strategy in (a) above is too high, what would

you advise Iwan to do to subsidize the cost? Iwan has told you that he is willing to

bear the risk that Libor will not cross 7.00%. Once again, provide the appropriate

payoff diagrams.

(c) Can you help Iwan devise a zero-cost options strategy such that he can meet his

objective of a minimum gross per annum yield of 6.00%?

(d) From the information provided, what is the approximate two-year fixed rate of

interest?

25. An inverse floater is a security that is an FRN where the coupon rate varies inversely to

the indexed rate. An example of an inverse floater is as follows. Consider a three-year

semiannual pay FRN where the coupon rate equals:

Coupon Rate (c) = 12%−  
where  is the six-monthLibor rate. The further condition on this note is that if  > 12%,

then c = 0%. Using various parity relationships, reduce and express this inverse floater

as the simplest possible combination of “basic” securities, such as straight bonds, caps,

floors, etc.



Chapter 24
Equity Swaps

24.1 Introduction

Equity swaps are products that facilitate the creation or transfer of equity risk. In its generic

form, an equity swap is a bilateral financial contract in which

• one counterparty pays returns on a specified equity index applied to a given principal

amount, and

• the other pays a given interest rate applied to the same principal amount.

An example would be a swap of six-month returns on the S&P 500 for six-month Libor.

That is, every six months, one counterparty pays the other the returns on the S&P 500 index

applied to a given principal amount while the other pays six-month Libor applied to the

same principal amount. The principal itself is never exchanged (hence, the term “notional”

principal).

The generic swap described above exchanges equity risk for interest-rate risk. For ex-

ample, a bond-portfolio manager who receives equity returns in exchange for interest-rate

payments is effectively converting his interest-rate exposure to equity exposure. An equity-

portfolio manager who does the opposite transaction is exchanging equity exposure for

interest-rate exposure.

There are several variations on the basic theme. For example, the interest-rate leg may

involve a fixed rate rather than a floating rate. The principal in the swap may vary in

size depending on the returns on the index (i.e., the swap may have a “variable notional

principal”). The two streams of payments may be made in different currencies (“cross-

currency equity swap”), as for example when a US-based investor is swapping US dollar

Libor payments for returns on a foreign index. The accompanying currency risk may be

hedged in the swap or left unhedged.

Other variants include “two index” or “relative performance” equity swaps in which the

returns on one equity index (or basket of equities) are swapped for the returns on another

equity index (or basket of equities); “outperformance swaps,” where the equity leg may

involve the maximum of two or more indices or baskets of equities; and “rainbow swaps,”

in which the equity leg involves a blended index.

Simple to define, equity swaps are a useful and analytically interesting class of prod-

ucts. Uses of equity swaps are described in Section 24.2 below. The payoffs from various

categories of equity swaps are discussed in Section 24.3. Section 24.4 then examines the

pricing and valuation of a large class of equity swaps.1

1 The literature on equity swaps is somewhat sparse. Chance (2003), Marshall and Yuyuenyonwatana

(2000), and the Cooper and Lybrand (1992) self-study guide are some useful references. The

material in this chapter draws on these sources among others.
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A good place to begin our analysis is by contrasting equity swaps with their better-known

cousins, interest rate swaps.

Equity Swaps and Interest Rate Swaps
Recall that a generic (“plain vanilla, fixed-for-floating”) interest rate swap is a bilateral

contract in which one counterparty pays a fixed rate of interest applied to a given notional

principal, and the other pays a floating rate of interest (e.g., Libor) applied to the same

principal. There are some strong connections between equity swaps and interest rate swaps.

The most important one concerns pricing. Consider

• An equity swap involving a swap of equity returns for a fixed rate of interest.

• A plain vanilla interest rate swap involving a swap of a floating rate for a fixed rate of

interest.

At inception, the fixed rate in either swap is chosen so that the swap has zero value. Later

in this chapter, we show that in the absence of arbitrage, these fixed rates must be the same.

Furthermore, this common fixed rate is determined entirely by the discount function and

does not depend on such features as equity volatility.

This result may appear a little surprising, at least at first glance, since equity swaps and

interest rate swaps have some differences. For example, the net payment in an equity swap

is not known until the end of the payment period since equity returns over the period are

known only at that point. In an interest rate swap, the interest rates (e.g., Libor) that apply

to a particular period are determined at the beginning of the period, although payments take

place at the end of the period. In addition, equity returns can be negative, meaning that

one party may be making both payments in an equity swap. Nonetheless, the result is an

intuitive one, as we explain in Section 24.4.

24.2 Uses of Equity Swaps

The essential purpose of an equity swap is to create (or transfer) equity exposure syntheti-

cally, i.e., without actually owing (or transferring) the equities. In this context, equity swaps

offer several advantages. They

• offer a low-cost way to obtain this exposure.

• can be structured in a tax-advantageous manner.

• may enable getting around regulatory restrictions on investments.

• simplify rebalancing and, more generally, portfolio management.

• offer a useful vehicle for obtaining exposure to foreign equity or foreign equity indices

(particularly, emerging markets); this exposure can be structured without currency risk

if this is desired.

The material below provides specific settings illustrating these uses.

Index Tracking

Equity swaps provide synthetic multiyear exposure to a (possibly customized) equity index.

Obtaining the same exposure via the cash market would necessitate replicating the index

perfectly with the cash equities, and rebalancing the portfolio when index composition

changes. In an equity swap, we obtain the total returns on the index—without slippage—in

exchange for making money-market-linked payments.

Cross-Country Investing

Consider a domestic (e.g., US) fundmanager diversifying into foreign (e.g., British) equities

who wishes to track an index in that foreign country (say, the FTSE-100 or some customized
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index). One way to do this is to carry out actual cash purchases of the relevant basket of

British stocks. Among other disadvantages (administrative, legal, etc.) of this method is the

dividend withholding tax levied by many countries on dividends paid to foreign investors:

a 15% tax on a 2% dividend yield has the immediate effect of reducing returns by 30 basis

points. Equity swaps offer an efficient alternative. The US manager can enter into an equity

swap in which she pays (for example) S&P 500 returns and receives returns on the FTSE-

100. The currency risk in the swap can also be hedged within the swap itself using a hedged

cross-currency equity swap as described in Section 24.3 below.

Emerging Market Equity Investments

A problem confronting investors who wish to invest in emerging markets equities is that of

illiquidity. Illiquidity makes it difficult to get in and out of positions nimbly and becomes

a particular problem during market crises when flexibility is important. Equity swaps offer

several advantages here. The fund manager can get into and out of the market quickly

and obtain exposure to the market and basket of securities desired with fewer liquidity

constraints. Credit exposure is limited to the swap counterparty, and this may be superior to

buying local equities guaranteed by local brokerages. And finally, as mentioned earlier, the

equity swap can be structured so as to limit the exposure to changes in the exchange rates

by having all cash flows denominated in USD.

Regulatory Considerations

Equity swaps can also help investors overcome regulatory restrictions in some cases. The

website http://www.finpipe.com/equityswaps.htm describes a particularly interest-

ing case in this regard, that of the Canadian Registered Retirement Savings Plan (RRSP).

RRSPparticipants are not allowed to investmore than20%of their accounts in non-Canadian

assets. This is an unwelcome restriction from the standpoint of diversification, especially

during periods in which Canadian markets are outperformed by foreign (e.g., US) markets,

as was the case in the 1990s.

Equity swaps enabled an end-run around this regulation. Mutual funds that used equity

swaps purchased from Canadian banks were deemed to be invested in Canadian investment

products and so were RRSP-eligible. The equity swaps paid the funds the total return on

US equities, thus delivering US equity returns to participants in the RRSP who invested in

these funds.

Diversification without Stock Sales

Corporate executives are often heavily invested in their own stock. An executive whose

share price has appreciated considerably may wish to lock-in at least a part of the gains, but

to do so requires selling shares, which entails its own costs including capital gains taxes as

well as a loss of voting rights. The transaction would, moreover, have to be reported to the

shareholders, and this may trigger a negative reaction in share price.

Equity swaps provided a solution to many executives in this position in the 1990s. The

executive enters into an equity swap in which he pays the total returns on his own stock to

his counterparty, in exchange receiving a money-market-linked payment such as Libor or

the returns from a broad market index such as the S&P 500.

One example of such a transaction is described in Bolster, Chance, and Rich (1996). It

involved the CEO, Lorne Weil, of a manufacturer of computerized wagering equipment,

Autotote Inc. In 1994, Mr. Weil’s holding of Autotote shares had climbed in value to almost

$23 million, more than seven times their value of two years earlier. These were paper

gains; converting them to realized gains would have required selling at least a part of the

shareholding, resulting in a large tax bill. So Mr. Weil entered into a five-year equity swap
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with Banker’s Trust (BT) in which he agreed to pay BT the total return on 500,000 shares

(worth about $13.4 million at the time of the transaction) in exchange for receiving Libor

minus 2.125% on an alternative investment of $13.4 million.

BT advertised the strategy widely. A full-page advertisement in Barron’s in July 1994

asked “Too much money in just one stock?” “Get rid of the risk, not the stock,” it went on,

adding that investors could “diversify your risk—without selling the stock. Without owing

capital-gains taxes. And without sacrificing your voting rights.”

In retrospect, this publicity may not have been a good idea. Regulatory authorities argued

successfully that the equity swaps were economically equivalent to a sale and should be

taxed as such. The Taxpayer Relief Act of 1997 included rules requiring recognition of gains

when the transactions were functionally equivalent to a sale. Agreeing with this position, the

SEC required that transactions functionally equivalent to a sale be reported to shareholders.

Two major advantages of equity swaps over outright sales were erased.

Equity-Linked Deposits

Marshall and Yuyuenyonwatana (2000) offer another use of equity swaps, this one in equity-

linked deposits. Equity-linked bank deposits became popular in the US in the 1990s. In these

contracts, banks offer accounts that guarantee principal and a fraction of the return on the

S&P 500 index. The bank then uses off-balance-sheet derivatives—a combination of equity

swaps and options (to guarantee the floor)—to generate these returns on its asset side.

Equity-linked deposits are then issued against these returns.

24.3 Payoffs from Equity Swaps

In this section,we illustrate the payoffs from equity swaps.Understanding the payoff streams

is important to clarifying both the motivation for the use of and the risk in the swap. We

consider four broad types of equity swaps here:

• Equity for Libor with a fixed notional principal.

• Equity for Libor with a variable notional principal.

• Cross-currency equity swaps with unhedged currency risk.

• Cross-currency equity swaps with hedged currency risk.

In all cases, we consider a three-year swap with six-monthly exchanges of cash flows.

The floating rate is taken to be six-month Libor. The spot date of the swap is taken to be

June 11 of some calendar year that we call “Year 1”; we write this date as 11-Jun-Year 1. The

first exchange of payments takes place on December 11, Year 1 (written 11-Dec-Year 1),

and the sixth and last one on 11-Jun-Year 4. The hypothetical Libor realizations applying to

these six dates are assumed to be as in Table 24.1. The initial notional principal is taken to be

$100 million throughout, and the payments in each case are computed from the standpoint

of an investor who is paying USD Libor in exchange for receiving the equity returns.

(A) Equity for Libor with a Fixed Notional Principal
Consider the first payment date, 11-Dec-Year 1. The floating payment due on this date

is calculated according to the Libor rate that prevailed on 11-Jun-Year 1, which we have

taken to be 6.50%. The floating payments are computed using the money market convention

(Actual/360). Assuming 183 days between the dates, the floating payment due is

0.065 ×

 
183

360

 
× 100,000,000 = 3,304,167
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TABLE 24.1
Assumed Libor Rates

on Reset Dates

Date Six-Month Libor

11-Jun-Year 1 6.50%
11-Dec-Year 1 7.00%
11-Jun-Year 2 6.50 %
11-Dec-Year 2 6.25%
11-Jun-Year 3 5.75%
11-Dec-Year 3 5.25%

The equity receipts due on 11-Dec-Year 1 depend on the returns on the equity index between

11-Jun-Year 1 and 11-Dec-Year 1. Suppose this return is 8.74%. Then, the receipts on the

equity leg are

(0.0874) × 100,000,000 = 8,740,000

Note that there is no day-count adjustment in computing payments on the equity leg. Thus,

the net receipt on 11-Dec-Year 1 is

8,740,000 − 3,304,167 = 5,435,833

The second payment date is 11-Jun-Year 2. The floating payment on this date depends on

the six-month Libor rate on 11-Dec-Year 1, which has been taken to be 7.00%. Assuming

183 days in this six-month period, the floating payment due is

(0.07) ×

 
183

360

 
× 100,000,000 = 3,558,333

Now suppose that the equity returns between 11-Dec-Year 1 and 11-Jun-Year 2 are 6.74%.

Then, the receipts from the equity leg are:

(0.0674) × 100,000,000 = 6,740,000

The net receipt on 11-Jun-Year 2 is, therefore, 6,740,000 − 3,558,333 = 3,181,667.

Proceeding in this way, we can identify all the payoffs. Assuming hypothetical values

for the equity returns, Table 24.2 describes the payoffs that result.

TABLE 24.2 Equity Swaps Payoffs with a Fixed Notional Principal

Three-Year Equity Swap: Receive Equity Returns, Pay Libor
Floating Rate: Six-Month Libor, Notional Principal = $100,000,000

Days from Libor at Equity Equity Floating Net
Time Last Reset Last Reset Returns Receipts Payments Receipts

11-Dec-Year 1 183 6.50% 8.74% 8,740,000 3,304,167 5,435,833
11-Jun-Year 2 183 7.00% 6.74% 6,740,000 3,558,333 3,181,667
11-Dec-Year 2 183 6.50% −5.23% −5,230,000 3,304,167 −8,534,167
11-Jun-Year 3 182 6.25% −7.84% −7,840,000 3,159,722 −10,999,722
11-Dec-Year 3 183 5.75% 1.80% 1,800,000 2,922,917 −1,122,917
11-Jun-Year 4 182 5.25% 13.40% 13,400,000 2,668,750 10,731,250

Totals 17,610,000 18,918,056 −1,308,056
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(B) Equity for Libor with a Variable Notional Principal
We first explain the concept of a “variable” notional principal. In an equity swap with

a variable notional principal, the principal amount that applies to each payment period

beyond the first is the notional principal at the last reset date multiplied by 1 plus the returns

on the equity index since that date. For example, say that the initial notional principal is

$100,000,000. Also assume that by the first payment date, the total returns on the index are

5.33%. Then the notional principal amount for the second payment period is reset to

100,000,000 × (1 + 0.0533) = 105,330,000

Suppose that between the first and second payment dates, the index falls by 3.23%. Then,

the notional principal that will apply to the third payment date is

105,330,000 × (1 − 0.0323) = 101,927,841

And so on . . .

Why a “Variable” Notional Principal?

It is often argued that equity swaps with variable notional principals better synthesize a

long-term equity investment than those with a fixed notional principal. To see the argument,

consider a simple example. We invest $100 in an equity index. Suppose the index goes up

by 5% during the first payment period and by 10% during the second payment period. Then,

the value of our initial investment is

100 × 1.05 × 1.10 = 115.50

This means we have a capital gain of $15.50. Suppose we aim to obtain these returns

synthetically using an equity swap on this index. First, consider a fixed notional principal

of $100. In this case, the receipts from the equity leg would be 100 × 0.05 = 5 in the first

payment period and 100×1.10 = 10 in the second payment period for a total return of only

$(5 + 10) = $15

against the $15.50 of the cash investment in the index. Suppose, however, our equity swap

had a variable notional principal. In this case, the notional principal for the second payment

would be 100 × 1.05 = 105, so the second-period payment is 105 × 0.1 = 10.50 for a total

return of

$(5 + 10.50) = 15.50

This argument is less persuasive than it appears. With the cash investment, the total

returns are $15.50 only if the $5 returns of the first period are reinvested for the second

period. With a fixed notional principal, this can be exactly re-created simply by investing

the $5 receipts on the first payment date into the index, generating an additional $0.50 in

returns on the second payment date. As in the cash investment case, this now results in

no cash flows on the first payment date and a single realization of gains of $15.50 on the

second payment date. Thus, the fixed-principal equity swap mimics the cash investment

perfectly.

On the other hand, the variable notional principal “overreplicates” the cash investment.

It provides a return of $5 on the first payment date and $10.50 on the second payment date.

Since the receipts of the first payment date can be reinvested (whether in the index or in

some other investment), the “forward value” of the cash flows on the second payment date

is greater than $15.50.
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Cash Flows with a Variable Notional Principal

Consider the same pattern of Libor rates and equity returns as assumed in Table 24.2. The

mechanics of computing the cash flows with a variable notional principal are exactly the

same as with a fixed notional principal except that we must take care to change the notional

principal amount from one payment date to the next. For example, if the equity returns in

the first period are 8.74% as we assumed in the case of the fixed notional principal, then the

principal amount applicable to the second payment date is

100,000,000 × 1.0874 = 108,740,000

Now, equity returns are assumed to be 6.74% during the second payment period, so the

receipts on the equity leg on the second payment date are

0.0674 × 108,740,000 = 7.329,076

Similarly, the Libor rate on the first reset date has been assumed to be 7.00%, so the payment

due on the floating leg is

0.07 ×

 
182

360

 
× 108,740,000 = 3,869,332

Finally, the notional principal applicable to the third payment date is now reset to

108,740,000 × 1.0674 = 116,069,076

Table 24.3 illustrates the entire pattern of cash flows from the swap assuming a variable

notional principal.

(C) Unhedged Cross-Currency Equity Swaps
In a cross-currency equity swap, the investor receives the returns on a foreign index in

exchange for interest-rate payments (which we continue to assume is Libor). This leaves

the investor vulnerable to currency risk.

To understand why, consider a US-based investor who enters into an equity swap to

receive the returns on the ASX 200, an Australian equity index. As above, let the principal

amount in US dollars (USD) be 100,000,000. This amount has to first be converted to

TABLE 24.3 Equity Swaps Payoffs with a Variable Notional Principal

Three-Year Equity Swap: Receive Equity Returns, Pay Libor
Floating Rate: Six-Month Libor, Initial Notional Principal = $100,000,000

Days from Libor at Equity Equity Floating Net Reset
Time Last Reset Last Reset Returns Receipts Payments Receipts Principal

11-Dec-Year 1 183 6.50% 8.74% 8,740,000 3,304,167 5,435,833 108,740,000
11-Jun-Year 2 182 7.00% 6.74% 7,329,076 3,869,332 3,459,744 116,069,076
11-Dec-Year 2 183 6.50% −5.23% −6,070,413 3,835,116 −9,905,528 109,998,663
11-Jun-Year 3 182 6.25% −7.84% −8,623,895 3,475,652 −12,099,547 101,374,768
11-Dec-Year 3 183 5.75% 1.80% 1,824,746 2,963,100 −1,138,354 103,199,514
11-Jun-Year 4 182 5.25% 13.40% 13,828,735 2,739,087 11,089,648 117,028,249

Totals 17,028,249 20,186,453 −3,158,205
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Australian dollars (AUD) to get the size of the investment in the ASX 200. Suppose that

at inception of the swap (i.e., on 11-Jun-Year 1), the exchange rate is USD 1 = AUD 1.50.

(Again, this number and all the other numbers used in this illustrative exercise are fictitious.)

Then the initial notional principal is AUD 150,000,000. This is the size of the investment

in the ASX 200.

Now suppose that by the first payment date (11-Dec-Year 1), the returns on the ASX 200

are 8.91%. The value of the original investment is then

AUD 150,000,000 × 1.0891 = AUD 163,365,000

for a gain of AUD 13,365,000. This amount must be converted back to USD at the exchange

rate prevailing on 11-Dec-Year 1. Since this exchange rate will differ from the original rate

when the swap commenced, the amount the investor receives is subject to fluctuations in

the exchange rate.

Suppose, for example, that the exchange rate on 11-Dec-Year 1 is USD 1 = AUD 1.52.

Then, in USD, the investor’s receipts translate to

USD

 
13,365,000 ×

1

1.52

 
= USD 7,476,974

Thus, the investor receives USD 7,476,974 from the equity leg of the swap. The payments

due from the investor are calculated from the Libor rate using the usual money-market

rules. Since this rate was 6.50%, the amount due on the principal of $100 million is easily

calculated. If the relevant day count is 183 days, the payment due from the investor is

USD 100,000,000 ×

 
183

360

 
× 0.065 = USD 3,304,167

The difference between the two legs represents the investor’s net receipts. Thus, on the first

payment date, the investor receives

USD (7,476,974 − 3,304,167) = USD 4,172,807

If a variable notional principal is used, the principal amounts for the next set of payment dates

are adjusted using the ASX 200 returns: the new principal amounts are AUD 163,365,000 =

USD 107,476,974.

Table 24.4 provides a list of possible payments from an unhedged currency swap building

on this example and using hypothetical Libor rates and ASX 200 returns.

(D) Hedged Cross-Currency Equity Swaps
Hedged cross-currency equity swaps function exactly like unhedged swaps except that the

initial contract specifies a fixed exchange rate at which all cash flows may be converted

back into the investor’s currency, and which will also be used to convert notional prin-

cipals. Thus, the investor is fully hedged against all exchange-rate changes. Table 24.5

revisits the earlier example but assuming the swap is hedged with a given exchange rate

of AUD 1.52/USD.
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24.4 Valuation and Pricing of Equity Swaps

In this section, we consider the pricing and valuation of several classes of equity swaps. A

no-arbitrage-based approach to the pricing of equity swaps is presented in Chance and Rich

(1995). At first glance, it appears that these prices may depend on the behavior of equity

returns and equity volatility. This is indeed the case for variable notional equity swaps, but,

as we will see, fixed notional equity swaps are a lot easier to handle: such swaps may be

priced without knowledge of or assumptions regarding equity return behavior. As a matter

of terminology, “valuation” refers to identifying the present value of an existing swap, while

“pricing” refers to the problem of finding the swap rate in a new swap (i.e., the fixed rate

that would make a swap have zero value).

The initial principal A in the equity swap is normalized to $1 for simplicity. The remaining

notation we employ is the following. The current date is t , and the remaining payment

dates are T1, . . . , TN . When we are looking to price a new swap, we take t to be the

inception date and denote it by T0. Equity returns over the period [Tk−1, Tk] are denoted

zk , k = 1, . . . , N , and the Libor rate applicable to the period [Tk−1, Tk] is denoted rk .

(Note that rk is observed and may be locked-in at Tk−1.) Let dk denote the Libor day-count

fraction (e.g., Actual/360) for the period [Tk−1, Tk]; thus, the amount of interest per $1

of principal invested over this period is rkdk . B(s, τ ) will denote the time-s value of $1

receivable on date τ . Finally, Sτ and Vτ will denote, respectively, the time-τ value of the

underlying equity portfolio and the time-τ value of the swap. This notation is summarized

in Table 24.6.

Note that no restriction has been placed on the nature of the equity portfolio involved

in the swap. It could be an individual equity, a basket of equities, or a standardized or

customized equity index. The results described below are valid for all these cases.

Finally, an assumption regarding dividends. As always, our pricing arguments are based

on replication, in this case replicating the equity swap cash flows with investments in the

equity portfolio and cash. Now, returns in the equity swap are computed and paid only at

the payment dates T1, . . . , TN ; thus, any dividends paid between Tk and Tk+1 are treated

as if they are received only at Tk+1. To avoid timing mismatches, we pretend the same

condition holds for the underlying equity portfolio too; alternatively, we may assume that

Sτ be interpreted as a traded total return index on the equity portfolio. Either condition is

trivially satisfied if there are no dividends on the underlying equity during the life of the

swap.

TABLE 24.6
Notation Used in This

Chapter

Notation Meaning

A Initital principal (normalized to $1)
T0 First index date
T1, . . . , TN Remaining payment dates
t Current date
zk Equity returns over [Tk−1, Tk]
rk Libor rate for [Tk−1, Tk] (observed at Tk−1)
dk Libor day-count fraction for [Tk−1, Tk]
B (s, τ ) Time-s present value of $1 receivable at time τ

Sτ Value of equity portfolio on date τ

Vτ Value of swap on date τ
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(A) Pricing a Fixed Notional Swap, Equity for Libor
Valuing any equity swap involves present-valuing its cash flows. Consider an investor who

receives equity returns and pays Libor plus a spread in an equity swap. Denote the spread

over Libor by s. Then, the net payment the investor receives on each payment date Tk ,

k = 1, . . . , N , is given by zk − (rk + s)dk , or, equivalently, by

[1 + zk] − [1 + (rk + s)dk]

To price the swap, we must find the value of s for which this swap has zero value at

time T0, i.e., the value of s for which the time-T0 present value of the equity returns stream

equals the time-T0 present value of the floating-interest payments. We show that this value

of s is just s = 0! That is, an exchange of equity returns for Libor flat has zero net present

value at inception.

The formal proof of this result is not difficult (see below), but the economic intuition is

even more straightforward. In economic equilibrium, investors must be indifferent between

different assets in risk-return terms; if not, investors will buy assets with superior risk-

adjusted returns and short assets with inferior risk-adjusted returns. Thus, in risk-adjusted

terms, an investment in Libor or an investment in an individual equity or an investment in

an equity index must all be the same. This means a swap of Libor flat for equity returns is

a fair one; so, for that matter, is a swap of returns on one equity for returns on another, or

returns on an individual equity for returns on an equity index.

For the proof, consider Table 24.7. The second column of the table presents the gross

equity cash flows at the payment time points T1, . . . , TN . The third column does likewise

for the interest payments assuming s = 0. We will show that the time-T0 present values of

these gross cash flows are the same for each time point Tk .

So consider time T1. The equity cash flow 1 + z1 at time T1 can be generated by a $1

investment at time T0 in the equity portfolio; this means the time-T0 present value of this

cash flow is just $1. Similarly, the Libor cash flow 1 + r1d1 at time T1 can also be generated

by an investment of $1 at time T0 at the Libor rate r1; so its time-T0 present value is also

$1. The information on present values is in the last two columns of Table 24.7.

Now consider the cash flows at T2. The equity cash flow 1 + z2 can be generated by an

investment of $1 in the equity portfolio at time T1; the time-T0 present value of this required

investment is B(T0, T1). Similarly, the interest cash flow of 1 + r2d2 can be generated by

an investment of $1 at time T1 at the Libor rate r2, so it too has a time-T0 present value of

B(T0, T1).

Proceeding in a similar vein, the equity cash flow 1 + zk at time Tk can be generated

by an investment of $1 in the equity portfolio at time Tk−1, which has a time-T0 present

value of B(T0, Tk−1). And the interest cash flow of 1 + rkdk at Tk can be generated by an

investment of $1 at the Libor rate rk at time Tk−1, which too has a time-T0 present value of

B(T0, Tk−1).

TABLE 24.7 Payoffs from a Fixed Notional Swap, Equity Returns for Libor

Note: PV Refers to Present Value as of Time T0

Time Equity Return Interest Payment PV(Equity Return) PV(Interest Payment)

T1 1 + z1 1 + r1d1 1 1
T2 1 + z2 1 + r2d2 B (T0, T1) B (T0, T1)
T3 1 + z3 1 + r3d3 B (T0, T2) B (T0, T2)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

TN 1 + zN 1 + rNdN B (T0, TN−1) B (T0, TN−1)
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Since each set of equity and interest cash flows has the same time-T0 present value, it

follows that the present value of the entire equity cash-flow stream is equal to the interest

cash-flow stream. We have shown that the “price” of the equity-for-floating-interest swap

is just Libor flat.

These arguments may be summarized concisely by simply observing that if we are, say,

paying equity and receiving Libor in an equity swap, we can replicate these payoffs by

periodically borrowing at Libor and investing in the cash equity or equity index.

(B) Valuing a Fixed Notional Swap, Equity for Libor
Suppose an investor has entered into a swap of equity returns for Libor. What is the value

of the swap on a given date t when the remaining payment dates are T1, . . . , TN?

Take any date Tk for k ≥ 2. The equity returns of 1 + zk at this time may be replicated

by a $1 investment in the equity portfolio at time Tk−1, and this has a time-t present value

of B(t , Tk−1). And the Libor returns of 1 + rkdk may be replicated by a $1 investment at

Libor at time Tk−1, which too has a time-t present value of B(t , Tk−1). Thus, viewed from

date t , all the cash flows at dates T2 and beyond have a zero net present value.

So the value of the swap depends only on the present value of the net cash flows receivable

at time T1, i.e., letting PVt denote the present value as of time t , it is

PVt (1 + z1) − PVt (1 + r1d1)

Now, the interest rate r1 is known and locked-in at date T0, so the cash flow 1 + r1d1 is a

certainty cash flow receivable at time T1. Its time-t present value is just B(t , T1)(1 + r1d1).

With the equity returns, we must use a different argument since the realized returns will

not be known until time T1. Recall that 1 + z1 is simply the gross return received from an

investment of $1 in the equity portfolio at time T0, i.e., from purchasing 1/ST0
units of the

portfolio at time T0. The time-t cost of these 1/ST0
units is St × (1/ST0

) = St/ST0
. So the

time-t present value of the equity return 1 + z1 is St/ST0
.

Putting these together, the time-t value of the equity swap is

Vt =
St

ST0

− B(t , T1)(1 + r1d1) (24.1)

Note that when t = T0, this value is zero as required since St = ST0
and, by definition,

B(T0, T1) = 1/(1 + r1d1).

(C) Pricing a Fixed Notional Swap, Equity for Fixed Interest Rate
Suppose we have an equity swap of equity returns for a fixed interest rate r . What is the

value of r for which the swap has zero value at time T0?

Let dk continue to denote the day-count fraction applicable to the period [Tk−1, Tk] for the

fixed rate r . (Despite our use of common notation, it is important to note that this fraction

may be different from the floating-rate day-count fraction if the fixed- and floating-rate

markets use different conventions. For example, the fixed-interest-rate payments may use a

30/360 convention while the floating-rate markets may use an Actual/360 convention.) The

gross equity returns and interest payments are given by the second and third columns of

Table 24.8.

The time-T0 present value of the equity returns stream is exactly the same as in Table 24.7.

For example, to replicate the returns of 1+ zk at time Tk , we need an investment of $1 in the

equity portfolio at time Tk−1, and this investment has a time-T0 present value of B(T0, Tk−1).

The interest-rate stream is different from Table 24.7, but since it involves only certainty

cash flows, it is easy to present value. On each payment date Tk , the gross interest payment

is 1 + rdk . This certainty cash flow has a time-T0 value of B(T0, Tk)(1 + rdk).
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TABLE 24.8 Payoffs from a Fixed Notional Swap, Equity Returns for Fixed Rate

Note: PV Refers to Present Value as of Time T0

Time Equity Return Interest Payment PV(Equity Return) PV(Interest Payment)

T1 1 + z1 1 + r d1 1 B (T0, T1)(1 + r d1)
T2 1 + z2 1 + r d2 B (T0, T1) B (T0, T2)(1 + r d2)
T3 1 + z3 1 + r d3 B (T0, T2) B (T0, T3)(1 + r d3)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

TN 1 + zN 1 + r dN B (T0, TN−1) B (T0, TN)(1 + r dN)

Putting these together, the time-T0 value of the swap for any given fixed rate r is

[1 + B(T0, T1) + · · · + B(T0, TN−1)]

−[B(T0, T1)(1 + rd1) + · · · + B(T0, TN )(1 + rdN )]
(24.2)

which, after some simplification, works out to

1 − B(T0, TN ) − r [d1B(T0, T1) + d2B(T0, T2) + · · · + dN B(T0, TN )] (24.3)

The fixed rate r must be chosen so that the value of the swap at time T0 is zero. This means

the fixed r must be

r =
1 − B(T0, TN )

d1B(T0, T1) + d2B(T0, T2) + · · · + dN B(T0, TN )
(24.4)

There are two points of interest regarding this swap price (24.4):

• The swap rate depends only on the term-structure of interest rates and not on any prop-

erties of equity returns. In particular, equity returns and volatility play no role.

• The swap rate is exactly the same as the swap rate in a fixed-for-floating plain vanilla

swap (assuming the same day-count conventions for the fixed sides of the two swaps).

Both points are simple consequences of the fact that there are two ways in which we may

swap equity returns into fixed rates. One is through an equity swap. The other is by first

swapping equity returns for Libor flat (which, as we have seen, is a fair swap) and then by

swapping Libor for a fixed rate through a vanilla interest rate swap. To prevent arbitrage,

these fixed rates must be the same.

(D) Valuing a Fixed Notional Swap, Equity for Fixed Interest Rate
Suppose an investor has entered into a swap of equity returns for a fixed rate r . What is the

value of the swap on a given date t when the remaining payment dates are T1, . . . , TN?

The arguments employed in thepricing segment show that the interest payments cash-flow

stream has the same time-t present value as identified in Table 24.8 except that (i) t replaces

T0 and (ii) the day-count fraction d1 is replaced by d1(t), the day-count fraction applicable

to the period [t , T1]. That is, the time-t value of this stream is

B(t , T1)(1 + rd1(t)) + B(t , T2)(1 + rd2) + · · · + B(t , TN )(1 + rdN ) (24.5)

On the equity side, all the cash flows at date T2 and beyond have the same present

values as identified in the fourth column of Table 24.8 except once again that t replaces

T0. For example, the equity return 1 + z2 may be generated by an investment of $1 in the

equity portfolio at time T1, and this investment has a time-t present value of B(t , T1). This

leaves just one term in the equity returns stream to be identified: the time-t present value
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of the first equity return 1 + z1. This present value, as we saw in the course of valuing the

equity-for-Libor swap, is St/ST0
. So summing up, the time-t value of the equity stream is

St

ST0

+ B(t , T1) + · · · + B(t , TN−1) (24.6)

The time-t value of the swap Vt is the difference between (24.6) and (24.5). Canceling

common terms and simplifying, this value is

Vt =
St

ST0

− B(t , TN ) − r [d1(t)B(t , T1) + d2B(t , T2) + · · · + dN B(t , TN )] (24.7)

When t = T0 (so d1(t) = d1), this is just expression (24.3).

(E) Other Fixed Notional Swaps
Other fixed notional swaps can be priced and valued along the same lines. Here are two

examples.

Same Currency Two-Equity Swaps

Consider an equity-for-equity (rather than equity-for-interest-rate) swap. Suppose the equi-

ties are denominated in the same currency. For instance, the swap could involve an exchange

of S&P 500 returns for Nasdaq 100 returns or a swap of IBM for General Electric. Let S1
τ and

S2
τ denote, respectively, the time-τ values of the two equity portfolios; assume the investor

is receiving the returns on the first portfolio and paying the returns on the second.

The pricing and valuation of such two-equity swaps require only simple modifications

of the arguments used in Parts (A) and (B) above in pricing and valuing equity-for-Libor

swaps. A simple modification of the arguments in Part (A) shows that a straight swap of one

equity portfolio for the other is a fair swap, so there is nothing to “price” here. A second

simple modification, this time of the arguments in Part (B), shows that the value of the swap

at time t (lying between T0 and T1, say) is given by

Vt =
S1
t

S1
T0

−
S2
t

S2
T0

(24.8)

Cross-Currency Two-Equity Swaps

What if the two-equity swap also involved currency risk, say, the investor pays S&P 500

returns and receives FTSE 100 returns? Let Eτ be the exchange rate (units of domestic

currency per unit of foreign currency) at time τ . Let Sdτ and S f
τ denote, respectively, the

values of the domestic and foreign indices.

The investor’s receipts from the equity swap are calculated as follows. At time T0, if the

notional principal amount is converted into the foreign currency and invested in the foreign

equity portfolio, the number of units of this portfolio purchased would be 1/[ET0
S
f
T0

]. By

time T1, this investment is worth S
f
T0
/[ET0

S
f
T0

]. Converting this back into the domestic

currency, we obtain [ET1
S
f
T1

]/[ET0
S
f
T0

]. The investor also pays the return on the domestic

index, which is SdT1
/SdT0

. So the investor’s net payoff from the equity swap at time T1 is

S
f
T1
ET1

S
f
T0
ET0

−
SdT1

SdT0

(24.9)

The payoffs at each payment point Tk take on the same form, with Tk and Tk−1 replacing T1

and T0, respectively, in (24.9).

It is not hard to modify the arguments of Part (A) to show that this straight exchange

of the domestic returns for the foreign returns is a fair one, that is, the replication costs of
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the two streams of cash flows are identical. For example, to reproduce the first term of the

cash flow (24.9) requires an investment of one unit of the domestic currency at time T0,

which is the same investment required to reproduce the second term of (24.9). A similar

modification of the arguments in Part (B) also shows that the time-t value of this swap (for

t lying between T0 and T1, say) is

S
f
t Et

S
f
T0
ET0

−
Sdt

SdT0

(24.10)

Identical arguments may be used to price and value the unhedged cross-currency swaps

described in Part (C) of Section 24.3. Indeed, the only change required in expressions (24.9)–

(24.10) is replacing the second terms (the domestic equity returns) with the appropriate

floating-rate interest payment.

(F) Equity Swaps with Variable Notionals
In some cases, variable notional swaps may be handled in a similar fashion to fixed notional

equity swaps with minor modifications to take care of the periodic resetting of the principal

amount. Consider, for example, the equity-for-Libor swap of Part (A). With a variable

notional principal, the principal amount applicable to the payoffs at time Tk , denoted Ak ,

depends on the equity return realizations up to the time-point Tk−1 and is given by

Ak =

k−1 
i=1

(1 + zi )

(The term
 

stands for “product.”) Thus, the net cash flow received by the investor at time

Tk is

Ak(1 + zk) − Ak(1 + rkdk) (24.11)

To replicate the first term in this payoff, invest $1 in the equity portfolio at time T0 and

roll it over at each payment time-point T1, . . . , Tk−1. To replicate the second term in this

payoff, invest $1 in the equity portfolio at time T0 and roll it over at each point up to and

including Tk−2. At time Tk−1, move the entire principal amount into an investment at the

prevailing Libor rate rk . Since the time-T0 present values of these cash flows are the same,

a swap of equity for Libor remains a fair one even with a variable notional principal.

The replication argument, however, becomes much harder in a swap of equity-for-fixed

interest rate. The arguments of Part (C) do not extend easily to this case. On the first payment

date T1, the payoffs are identical to those from a fixed notional swap and are given by

(1 + z1) − (1 + rd1)

(Here, d1 is the day-count fraction applicable to the fixed-interest-rate payment r , which

may differ from the day-count fraction for floating-rate payments.) The present value of this

cash flow may be identified in the usual way described in Part (C) above. Thus far, there are

no problems. However, this is not true of the cash flows that occur from T2 to TN . Consider

the period T2 net cash flow. This is based on a principal of 1 + z1, so amounts to

(1 + z1) [(1 + z2) − (1 + rd2)] = (1 + z1)(1 + z2) − (1 + z1)(1 + rd2)

The first term on the right-hand side can be replicated by investing $1 in the equity

portfolio at T0 and rolling it over at T1. However, there is no obvious way to replicate the

second term. If we invest $1 in the equity portfolio at time T0, we will have 1 + z1 at time

T1, but there is no way to guarantee that this can be invested at a fixed rate r at that point.

Nor is there a way to replicate this payment by locking-in the interest rate at time T0 (using,
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for example, a forward-rate agreement): in this case, the problem is we can guarantee the

locked-in interest rate but we do not know the principal amount 1+ z1 to which this interest

rate is to be applied until time T1. Thus, simple replication-based pricing breaks down here.

It is possible to still develop a pricing and valuation theory for variable notional equity

swaps, butwe have tomake assumptions regardingmovements in equity prices. For example,

we could use a binomial tree approach. Simplified models are possible if we assume that

the correlations between two equity indexes (in a two-equity swap) or between interest rates

and equity (in an equity versus interest rate swap) are zero. For details, we refer the reader

to Chance and Rich (1995).

24.5 Summary

Equity swaps are akin to basis swaps in that each leg is tied to a floating return. The difference

is that at least one leg in an equity swap is tied to the price of an equity or to an equity index.

The “generic” equity swap involves an exchange of equity returns for a floating interest rate

such as Libor. There are also several variants on this theme such as a swap of equity returns

for a fixed interest rate, the swap of one equity return for another, and swaps involving

foreign equities. The notional principal in an equity swap may be “fixed” or “variable”; in

the latter case, the principal is periodically reset to reflect realized equity returns.

Equity swaps enable the creation and transfer of synthetic equity exposure, i.e., without

owning or transferring the cash equity or equity index. As such, they enable the conversion

of interest-rate risk into equity risk (or vice versa) or of one form of equity risk into another.

Cross-currency equity swaps further enable equity exposure to be assumed or transferred

across countries. The resulting efficiency gains comprise a major reason for the growing

popularity of these products.

From a pricing standpoint, variable notional equity swaps are somewhat tricky, but fixed

notional equity swaps are easily handled using principles similar to that employed in the

pricing and valuation of interest rate swaps.

24.6 Exercises 1. Describe the standard features of an equity swap contract. What are the differences

between an equity swap and an interest rate swap?

2. If you were a fund manager with special expertise in the mortgage markets but were

advertising yourself as an equity index fund, explain how you might be able to generate

extra returns (alpha) for the fund from your expertise in mortgage trading.

3. A market timer switches between stock and cash (i.e., Libor) depending on which

market is expected to perform better. If you are a market-timing investment manager,

explain how you would use equity swaps to time the market.

4. Why are cash flows from equity swaps more volatile than from interest rate swaps?

5. What is the interest-rate sensitivity of an equity-for-Libor swap?

6. How would you synthesize an equity swap using bonds and futures?

7. State one example of a case when you would want to implement

(a) A fixed interest rate versus equity swap.

(b) A floating interest rate versus equity swap.

8. Explainwhy, in a floating interest rate versus equity swapwith a fixed notional principal,

all cash flows on the equity side of the swap after the next settlement date have no risk.
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9. Suggest two different ways in which equity swaps are useful to traders and hedgers.

10. A plain vanilla equity swap comprises the exchange of equity return for the return

stipulated by Libor. What particular types of risk are borne by the parties to the contract?

11. On a $100,000 notional equity swap contract, your firm is the receiver of equity return

and the payer of Libor interest. The swap is settled every half year. At the end of the

current six-month interval, the equity had appreciated over the past half year by 7.6%,

and the six-month Libor rate was set at 5.3% at the beginning of the period. What is your

net payment under this swap? The half-year period in question has 181 days.

12. If you anticipate that the equity market will beat the bond market for the next five years,

what swap would you find attractive to contract upon?

13. Assuming that you anticipate that the equity markets will outperform the bond markets

in the period three years from today for another three years, what swap is appropriate?

14. You wish to implement a life cycle investment plan in your retirement portfolio using a

special equity swap. Currently, your portfolio comprises 100% equities. Your financial

advisor has suggested that over time you slowly move your money into less risky instru-

ments, so that over the life cycle you balance off risk versus income adequately. What

type of equity swap structure would you find appropriate in this case?

15. Suppose you wish to maintain a portfolio that is exactly 80% in equities and 20% in cash

at the end of each quarter. What equity swap structure will enable you to do this?

16. You currently own a portfolio that is invested in broad equities and is worth $120,000.

You wish to diversify some of the equity risk going forward and maintain a portfolio

that is only 70% equity and 30% cash (Libor) for the next three years. Hence, you add a

variable notional equity swap to the portfolio such that the portfolio is rebalanced every

half year. The following table gives the annualized returns on equity and the Libor rates

for the next three years. Prepare a table showing the value of the portfolio, the notional

principal of the swap, and the payments made or received under the swap contract.

Assume, for simplicity, that all payments including Libor are made on a 30/360 basis.

The net portfolio each period is computed after taking the asset value into account as

well as the net payments on the swap.

Time (years) Equity Return Six-Month Libor

0 4.00 4.00
0.5 3.50 5.00
1.0 3.00 6.00
1.5 2.50 7.00
2.0 3.50 6.00
2.5 4.00 5.00
3.0 3.75 5.50

The equity return at time t stands for the rate of appreciation over the past six months

ending at time t . The Libor rate at time t stands for the Libor rate at time t and, hence,

applies to the next half year.

17. You are the asset manager for an international fund. Suppose you enter into an unhedged

currency swap in which you receive the return on the Euronext 100 index and pay the

Libor rate. The swap is on a half yearly basis for three years and is unhedged, i.e.,

payments will reflect current exchange rates. The following is the experience of the
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Libor rates as well as the returns on the Euronext 100 index. (These are not the returns

from real data.)

Date Libor Euronext 100 (index value) $ per Euro

11-Nov-2002 1.47 300 1.0132
11-May-2003 1.22 350 1.1502
11-Nov-2003 1.23 400 1.1494
11-May-2004 1.58 450 1.1857
11-Nov-2004 2.62 600 1.2897
11-May-2005 3.53 650 1.2874
11-Nov-2005 4.03 700 1.2095

Assume that the convention on the interest rates is Actual/360 and the swap has a variable

notional principal. Prepare a table showing the payments and receipts on this swap. The

notional principal at inception is $100,000.

18. Repeat the previous question but allow for the payments to be made on a hedged currency

basis. The fixed currency rate is stipulated to be 1.20 $/euro. (Note that this is different

from the initial exchange rate.) Prepare the table of receipts and payments under this

swap.

19. Consider a five-year semiannual pay fixed notional equity swap in which you receive

Libor and pay the equity index return. The current period is of 182 days, and the swap

has run exactly 91 days into the period. The six-month Libor rate on the previous reset

was 7% and the equity index was at 1050. The current value of the equity index is 1060.

Three-month Libor is currently trading at 6%. What is the value of the swap per dollar?

(Use an Actual/360 convention for calculating interest payments.)

20. Consider a five-year semiannual pay fixed notional equity swap from which you receive

a fixed interest rate of 6% and pay the equity index return. The number of days in the first

semiannual period is 182. The current time t is precisely halfway between the inception

date and the first payment date. The equity index was at 1000 at inception. The current

value of the equity index is 1080. Three-month Libor is currently trading at 6%. What is

the value of the swap per dollar if the yield curve is flat? (Use the Actual/360 convention

for interest payments.)

21. The current yield curve is flat at 6% p.a. The equity index is at 1123. We are quoting on

a new equity swap. What should the fixed interest rate on a fixed notional equity swap

be to make it a fair swap at inception?

22. Consider a cross-currency equity swap in which the returns on the S&P 100 (in dollars)

are received and exchanged for a payment of returns on the Euronext 100 (in euros). The

swap is on a half-yearly basis, and we are at some point in time between inception and

the first payment date on the swap. At inception, the S&P 500 was trading at 1000 and

the Euronext 100 at 720. Today the S&P 500 is at 1100 and the Euronext 100 at 800. At

inception, the spot exchange rate was 1.25 $/euro and now it is 1.20 $/euro. What is the

current value of this swap?



Chapter 25
Currency and
Commodity Swaps

25.1 Introduction

Building on the analysis of interest rate swaps and equity swaps in the last two chapters,

this chapter examines two further categories of swaps, currency swaps and commodity

swaps. Other classes of swaps of importance include those that enable the transfer of credit

risk between counterparties (such as total return swaps and credit default swaps); these are

described later in the book in the context of a broader presentation of credit derivatives (see

Chapter 31).

Currency swaps and commodity swaps share some similarities but also have important

points of differences. Currency swaps are a natural extension of interest rate swaps and

are often undertaken for financing reasons. Commodity swaps, like equity swaps, are often

undertaken for reasons of risk-management and hedging. The pricing methodologies too

exhibit differences. Currency swaps, like interest rate swaps, may be viewed as the exchange

of two bonds and priced accordingly. Commodity swaps are often priced off the relevant

forward or futures curve.

We examine currency swaps first. Since all swaps may be represented as a collection

of forwards, we open with a review and description of forward contracts in currency mar-

kets. We then describe how currency swaps may be used to compare financing alternatives

available to corporate treasurers. The analysis in this segment provides a technical link of

interest between currency and interest-rate markets beyond that normally embedded in the

standard interest-rate parity theories.

Thenwemove on to commodity swaps.We begin once again with a review of commodity

forwards, emphasizing the role of the convenience yield in commodity forward pricing and

the differing characteristics of commodity storage. We look at the use of commodity swaps

and the pricing of such swaps off the commodity forward/futures curve.

25.2 Currency Swaps

Currency swaps are a natural extension of interest rate swaps. While interest rate swaps

involve an exchange of interest payments in the same currency, currency swaps involve

an exchange of interest payments in different currencies. These interest payments may be

fixed-fixed (i.e., at fixed rates in both currencies), fixed-floating (fixed rate in one currency,

floating in the other), or floating-floating (floating rates in both currencies). Most currency

631
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swaps are of the fixed-floating form in which a fixed payment in the foreign currency is

exchanged for a floating payment in the domestic currency.

A critical difference between interest rate swaps and commodity swaps is the role of the

principal. In interest rate swaps, the principal is a notional one that is not actually exchanged.

In a currency swap, there is an exchange of principals in the two currencies at inception and

again at maturity of the swap contract. Since changes in exchange rates affect the relative

values of the principal amounts, this injects an additional source of market risk into the

swap. The impact of exchange rate movements in many cases may even swamp the risk of

varying interest rates.

Currency swaps originated in an environment of exchange controls in the 1970s. When

corporate borrowing in foreign currencies was restricted, currency swaps made access to

foreign funding sources achievable. Their role has changed over the years as exchange

controls have vanished in many countries and diminished in others. By providing greater

liquidity at long maturities than foreign exchange forwards, currency swaps have become a

key instrument of cross-border financing arbitrage.We examine the nature andmechanics of

these financing transactions in this chapter. As a first step to examining the role of currency

swaps in cross-border financing options, we look at currency forward contracts.

Spot and Forward Foreign Exchange
Foreign exchange (or “FX”) contracts are agreements to exchange one currency for another

at a specified date at a specified exchange rate. If the contract is for immediate delivery, it

is a “spot FX” contract; if for delivery at a date in the future, it is a “forward FX” contract.

Spot and forward FX contracts are traded in over-the-counter (OTC) markets where rates

are set by active trading between major international banks.

The quoting convention in FX markets is important. When quoting the price of a stock

or commodity, it is customary to give a price per unit of the underlying (e.g., euros per

share of stock, dollars per barrel of oil, or cents per bushel of wheat). Similarly, in quoting

an exchange rate, it is usual to provide it in terms of x units of one currency per unit of

the other currency. The latter currency is referred to for obvious reasons as the “stock”

or “commodity” currency since it plays the role of the underlying. The former is called

the “medium of exchange” or the “unit of account.” Thus, for example, in a quote of

JPY 135/USD (JPY = Japanese yen, USD = US dollar), USD is the stock or commodity

currency and JPY the medium of exchange.

FX Forward Pricing
As we have seen in Chapter 3, the forward FX rate can be determined using replication

arguments from knowledge of three things: the spot FX rate, the rate of interest in the

domestic currency, and the rate of interest in the foreign currency. We briefly review the

pricing formula here and present the same arbitrage arguments in slightly different form.

Consider JPY-USD forward rates for specificity. In the discussion that follows, the current

time is taken to be time 0 and the maturity date of the forward contract to be time T ; note

that the time to maturity is also T years. Let FT denote the forward price in JPY of USD 1.

Let the T -year USD interest rate be rd , and the T -year JPY interest rate be ry , both in

continuously-compounded terms. Let S denote the spot JPY/USD rate. Then, the forward

price FT is given by

FT = S ×
eryT

erd T
= Se(ry−rd )T (25.1)

Note that the medium of exchange currency’s interest rate enters the formula in the nu-

merator and the commodity currency’s interest rate enters the denominator. How does (25.1)
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obtain? We have offered one derivation based on replication in Chapter 3. Here is another.

A US-based investor has two alternative investment routes to investing $1 for T years.

• She can invest it at the domestic interest rate rd . In this case, she will receive USD erd T

at maturity.

• Alternatively, she can convert her dollar into yen today, invest the yen at the yen interest

rate for T years, and enter into a forward contract today for reconverting the yen received

in T years back into USD. If she does this, she receives JPY S today, which grows to

JPY SeryT by time T . Converting this back to USD at the forward rate FT , she receives

USD SeryT × (1/FT ) at time T .

To preclude arbitrage, these amounts must be the same. That is, we must have

erd T = SeryT ×
1

FT

which is precisely (25.1).

Example 25.1 Suppose S = 135, r y = 0.01, and rd = 0.03. Assume interest rates are in continuously-
compounded terms. Then, the one-year forward rate is

F 1 = 135× e(0.01−0.03)
= 132.3268 ■

While the spot FX rate in our example is JPY 135/USD, the arbitrage-free forward rate

is only JPY 132.3268/USD. Why is it lower? Intuitively, because the lower yield on the yen

must be made up by a capital gain on currency conversion. That is, since yen interest rates

are lower than dollar interest rates, the forward conversion rate must be attractive enough

to make up for the lower interest rate. For more dollars to be received when converting yen,

the JPY/USD rate must be lower. We summarize this formally:

Rule

The currency with higher interest rates trades at a discount in forward markets, while the

currency with lower interest rates trades at a premium.

Question

Suppose interest rates are instead quoted in simple terms with annualized compounding

(i.e., USD 1 grows to USD (1+ rd )
T in T years). Show that (25.1) then takes the form

FT = S ×
(1+ ry)

T

(1+ rd )T

What is FT if T = 1, S = 135, ry = 0.01, and rd = 0.03?

Bid and Offer Rates
FX rates, both spot and forward, are quoted in two-way markets, i.e., banks quote both

bid and offer prices. Bid prices reflect the price at which the bank is willing to buy the

commodity currency, and offer prices are those at which the bank will sell the commodity

currency. Offer prices are also called “ask” prices.

The difference in bid and offer/ask prices is called the “bid-offer” or “bid-ask” spread.

Ceteris paribus, FX dealers stand to gain fromwidening bid-ask spreads since theymake the

difference between the bid and ask prices on every round-trip trade. However, competition

in the foreign currency markets is severe, so bid-ask spreads in practice are minuscule.
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As mentioned, banks make two-way quotes in the FX market, i.e., they always post bid

and ask prices. A customer approaching a bank for a quote is not required to reveal whether

he is buying or selling, which is one reason for the bid-ask spread. Banks may skew the

spreads if they wish to take one side more than the other. Consider the following quotes

from the JPY/USD market, for example (the prices refer to bid/ask):

Median price = 134.350 / 134.370

Minimum price = 134.060 / 134.110

Maximum price = 134.990 / 135.070

The median price indicates a tight bid-ask spread of just 0.02 yen per dollar. However,

there is almost a 1 yen difference between themaximum andminimum quotes in the market.

Banks that wish to sell dollars for yen will skew their bid-ask quotes downwards (as in the

“minimum price” above). This makes it attractive for customers to sell yen to them (you

can get a dollar for just 134.06 yen) but not to buy yen from them (you receive only 134.11

yen per dollar, which is less than the median ask price). Likewise, banks wishing to buy

dollars and sell yen will skew their quotes upwards (as in the “maximum price” above).

How should a bank skew its quotes if it does not wish to trade?

Forward Points
Forward FX rates are usually expressed as “points.” Points are the difference between the

spot and forward FX rates. For example, if S = 135 and F(T ) = 132.3786, then the point

difference equals 2.6214. Markets may quote points rather than forward FX rates. That is,

the spot FX rate is quoted as JPY 135/USD, but the forward is quoted in terms of the point

differential from the spot FX rate.

Table 25.1 provides an example of a forward FX rate table. The forward FX mid rates

in the table were obtained by using a spot FX mid rate of 135 JPY/USD and then using an

interest differential of 2% between the USD and JPY markets (USD 3% and JPY 1%) to

arrive at the forward rates. Reasonable bid-offer spreads were then added around these mid

rates.

Forward rates are declining in the table because US interest rates are higher. This is all

one needs to ascertain when deciding whether to add or subtract forward points to the spot

rate to obtain the forward rate. If the stock currency has the higher interest rate, then the

forward points should be subtracted from the spot exchange rate to arrive at the forward

exchange rate. Conversely, if the stock currency has the lower interest rate, then forward

points should be added to the spot exchange rate to arrive at the forward exchange rates.

Hedging Cross-Currency Borrowing
With this introductory material behind us, we now turn to the central issue of interest: the

use of forward FX and currency swap markets to access the cheapest source of financing.

TABLE 25.1
Forward FX and Points

Table

Maturity FX Rates Points

(Years) Bid Offer Bid Offer

0 134.9595 135.0405
1 132.2871 133.3268 2.6724 2.7137
2 129.6407 129.7065 5.3188 5.3340
3 127.0582 127.1382 7.9013 7.9023
4 124.5315 124.6206 10.4280 10.4199
5 122.0574 123.1530 12.9021 12.8875
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It is often advantageous for a company to borrow in a currency other than that in which

it maintains its books. For example, a US company might find that Japanese investors are

willing to lend to it on favorable terms.1 In this case, the company may prefer to borrow

in yen and then remove the currency risk by hedging forward. Taken in conjunction with

forward FX markets, this may provide the company with a superior funding opportunity to

borrowing in the domestic market. Consider the following example.

Example 25.2 A company wishes to borrow dollars for five years. It can borrow in dollars for five years in
the fixed-rate US dollar markets at a rate of 4.90%. It can also borrow in yen for five years
in the fixed-rate yen market at 2.50%. Can the company reduce its cost of borrowing by
borrowing in yen?

Borrowing in yen has associated currency risk that may more than offest the benefit of
the lower yen interest rate. For example, if the yen appreciates substantially after the loan is
taken, every interest payment will cost more in dollars since more dollars will be needed to
buy yen to pay off the loan interest. This makes the yen cost of borrowing non-comparable
with the dollar cost. One way to restore comparability is for the company to lock-in the
dollar cost of the loan using forward FX markets.

Suppose that the spot and forward FX rates faced by the company are those in Table 25.1.
Then the company can book five forward FX contracts, one for each of the cash outflows
associated with the loan. The complete strategy and resulting cash flows are the following:

• Borrow JPY for five years at 2.50%. Assuming an equivalent amount of USD 100 borrowed,
this results in a JPY bond with the cash flows shown in Table 25.2.

• Since the borrowed yen have to be converted to dollars at time 0, we have used the spot
offer rate to identify the amount to be borrowed. The initial borrowing at time 0 is signed
positive since it is an inflow of yen 13,504.05. At the end of years 1 through 4, the cash
flows are signed negative since they are interest payments, so constitute outflows. Each
of these is for 2.50% of 13,504.05, or an amount of JPY 337.60. The final cash flow at
the end of year 5 is for interest plus the repayment of principal.

• Convert the JPY cash flows into USD by entering into a series of FX forward contracts.
The initial JPY 13,504.05 received is converted into USD at the spot rate. The remaining
cash flows are hedged by buying JPY and selling USD and, hence, are converted at the
bid rates in Table 25.1. Applying these rates, we obtain dollar cash outflows shown in
Table 25.3.

TABLE 25.2 JPY

Cash Flows in the

Example

Maturity 0 1 2 3 4 5
JPY 13,504.05 –337.60 –337.60 –337.60 –337.60 –13,841.65

TABLE 25.3 USD

Cash Flows in the

Example

Maturity 0 1 2 3 4 5
USD 100 −2.55 −2.60 −2.66 −2.71 −113.40

1 Japanese interest rates have been very low for more than two decades. Hence, borrowing in yen is

often attractive if currency risk can be managed. The example in this section is a fictitious example

of the canonical trade undertaken by US firms in hedged yen borrowing. The interested reader may

refer to several well-known real cases exemplifying this transaction. See, for example, “Currency

Swaps” (HBS case 286-073); “The Walt Disney Company’s Yen Financing” (HBS case 287-058);

“IBM Japan” (HBS case 286-074); HBS is the Harvard Business School. The last named looks at some

innovative forms of financing, including so-called “sushi” bonds and dual-currency bonds. These are

not taken up here but may be evaluated using the concepts in this chapter.
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The initial yen loan has thus been transformed into a dollar loan. The cost of this bor-
rowing is the internal rate of return (IRR) of these dollar cash flows, i.e., the discount rate at
which these combined cash flows have a present value of zero. This IRR works out to 4.59%.
This is a significant reduction of 31 basis points from the 4.90% fixed cost of borrowing
directly in USD. ■

As this example shows, a “synthetic” home currency borrowing can be created by com-

bining FX forward transactions with foreign currency borrowing. If the synthetic borrowing

costs less than straight borrowing in the home currency, financing savings result. In this

example, the combination of the yen loan and FX forwards creates a synthetic dollar loan

that saves the company 0.31% per year in financing costs.

Why might such exploitable differences exist? Do they indicate an inefficiency in the in-

ternational credit markets? This form of “credit arbitrage” may arise because the concerned

US company (or “name”) is treated more favorably in the Japanese credit markets than in

the US domestic market. In the absence of sufficient high-quality credits in Japan, investors

there may wish to consider bonds issued by high-quality US companies. This allows such

US firms to get away with lower coupon rates on their bonds. Not all US firms have access to

this arbitrage. Favorable financing terms are usually available to firms that have substantial

brand name recognition.

The next segment examines how currency swapsmay be used in place of the FX forwards

to manufacture synthetic home currency financing from foreign currency borrowing.

Using Currency Swaps
A currency swap is really nothing more than a collection of forward FX contracts, so the

mechanism of converting foreign borrowing into a home currency loan using currency

swaps is not conceptually very different from the example above. However, currency swap

markets are often more liquid than forward currency markets, so an improvement of the

credit-arbitrage may be achieved by processing it in currency swap markets.

Currency swapmarkets are also two-waymarkets, i.e., they post both bid and offer prices.

The usual quoting convention in these markets is to quote a fixed rate in the foreign currency

against floating home currency (e.g., fixed-rate yen versus USD Libor). At each settlement

date, the parties to the contract then exchange the fixed payment in a foreign currency for a

payment based on a floating rate in the home currency. Less frequently, both sides of the cur-

rency swapmay be floating. In such a case, the currency swap is called a basis currency swap.

The least common versions of currency swaps are those that involve an exchange of a

fixed rate in the foreign currency for a fixed rate in the domestic currency; but, of course, such

“fixed-fixed” swapsmay be constructed simply by combining a fixed-floating currency swap

with a vanilla floating-fixed interest rate swap in the domestic currency. Our next example

uses precisely such a construction.

Example 25.3 We continue with Example 25.2. Suppose now that the company also has open to it the
option of using the JPY/USD currency swap market. The quotes in this market for a five-year
swap (fixed yen versus one-year USD Libor) are 2.90–3.00%. That is, if the company wishes
to receive fixed yen against paying floating dollar, it receives 2.90% fixed on the yen against
paying dollar Libor, and if it wishes to pay fixed yen and receive floating dollar, then it pays
3.00% fixed on the yen and receives dollar Libor.

Using the currency swap enables converting a yen fixed-rate borrowing into a floating-
rate dollar Libor loan in the obvious manner: the company borrows yen fixed and then
enters into a receive fixed yen–pay floating-dollar currency swap. To further convert this into
a fixed-rate dollar borrowing, an interest rate swap must be used to convert the floating
USD Libor into a fixed payment. So suppose further that the quote for a five-year interest
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TABLE 25.4
Currency Swaps

Example: The Cash

Flows

Maturity 1 2 3 4 5

JPY cash flows 54 54 54 54 54
USD cash flows −0.4082 −0.4164 −0.4248 −0.4334 −0.4422

rate swap (fixed versus floating one-year USD Libor) is 4.80–4.88%. That is, the company
can enter into a pay fixed–receive floating swap in which it pays a fixed rate of 4.88% or
into a receive fixed–pay floating swap in which it receives a fixed rate of 4.80%.

Here then is the complete strategy.

• Issue a bond in yen and raise fixed-rate yen financing at 2.50% as before.

• Use a currency swap to convert the fixed-rate yen loan into a floating-rate dollar loan
using the currency swap described above. On the swap, the company receives 2.90%
fixed yen and pays dollar Libor.

• Use a vanilla interest rate swap to convert the floating-rate dollar loan into a fixed-rate
one. In the interest rate swap, the company pays 4.88% fixed and receives dollar Libor.

The combination of the two swaps creates a fixed-fixed currency swap. In yen, the com-
pany pays 2.50% on its borrowing but receives 2.90% from the currency swap for a net
inflow of 0.40% of the borrowed amount of JPY 13,504.05. In dollars, the company pays
4.88%. Thus, its net fixed cost is USD 4.88% − JPY 0.40%. Of course, this is already cheaper
than the 4.90% fixed cost of straight US dollar borrowing, but to enable comparison with
the strategy that locks-in a fixed rate using FX forwards, we must convert this net cost into
purely dollar terms. For this, we need to convert the yen return of 0.40% into dollar terms.
We note that the yen difference we receive is 0.4% of JPY 13,504.05, which is JPY 54.

Since we receive an excess of JPY 54 each year, we may convert it into USD by selling
it forward. This is the same as buying USD, and so the FX rate we would face is the offer
rate (see Table 25.1). Converting these JPY cash flows into USD cash flows, we obtain the
numbers in Table 25.4.

The amount of JPY 54 is received every year. Using the forward FX rates, we convert
this amount for each year into dollars, i.e., we hedge these JPY receipts forward. By adding
USD 100 in principal as initial and final principal to the cash flows in USD so as to mimic
a bond, we compute the internal rate of return for the cash flows. The IRR equals 0.42%.
Hence, the equivalent USD is 42 basis points.

Combining this with the 4.88% fixed cost in dollars, the net fixed cost of borrowing in
dollars using the currency swap markets is equal to 4.88%−0.42% = 4.46%. This is cheaper
than the 4.59% fixed rate using FX forwards, and, of course, significantly cheaper than the
4.90% fixed cost of borrowing outright in the USD market. ■

An obvious question arises: why are the currency swap markets better than using FX

forwards? Because of liquidity: bid-ask spreads in the currency swap markets are narrower

than those in the FX forward markets at long maturities since they are more liquid than

long-dated FX contracts.

To summarize, currency swapsmay be used to convert a fixed-rate borrowing in a foreign

currency into a floating-rate borrowing in the domestic currency. A plain vanilla interest rate

swap can then be used to convert the floating-rate home currency borrowing into a fixed-rate

home currency borrowing. The higher liquidity of currency swaps than FX forwards in gen-

eral makes them attractive as arbitrage instruments in the cross-currency financing market.

Currency Swaps versus Forward FX: Is There an Arbitrage?
The presence of cheaper synthetic borrowing (achieved by borrowing in JPY and swapping

into USD) allows the company to access a credit arbitrage. Therefore, forward currency-

hedged borrowing is cheaper than direct USD fixed-rate borrowing. However, there is also a
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TABLE 25.5 Arbitraging CCY Swaps vs. FX Forwards: Case 1

Maturity Receive USD Pay JPY Conversion Rate USD Net USD PV Net USD

0 100.0000 13504.0500 135.0405 100.0000 0.0000 0.0000
1 4.8000 −405.1215 132.2871 −3.0624 1.7376 1.6862
2 4.8000 −405.1215 129.6407 −3.1250 1.6750 1.5775
3 4.8000 −405.1215 127.0582 −3.1885 1.6115 1.4728
4 4.8000 −405.1215 124.5315 −3.2532 1.5468 1.3719
5 104.8000 −13909.1715 122.0574 −113.9560 −9.1560 −7.8806

NPV −1.7722

difference in the all-in-cost of borrowing when hedging using FX forwards versus currency

swaps. This raises the following question: is it possible to construct an arbitrage between

the forward FX markets and the currency swap markets?

In our setting, if there is an arbitrage opportunity, then we should be able to construct a

portfolio comprising the currency swap and FX forwards with positive NPV. We construct

a portfolio as follows:

• Enter into a currency swap with principal amounts of USD 100 and JPY 13,504.05. We

will receive on the USD leg of the swap and pay on the JPY leg. Such a swap is not really

available directly, but we may construct it as follows: (i) enter into a currency swap to

pay 3% in JPY and receive USD Libor and (ii) enter into an interest rate swap in which

we receive 4.80% in USD and pay USD Libor. The net of these is a currency swap for

which we pay JPY 3.0% and receive USD 4.80%.

• Hedge out, using currency forwards, all JPYpayments. Thiswill result inUSDpayments.

• Finally, net off these USD payments against the USD leg of the original currency swap.

This results in a stream of pure USD payments. If the NPV of this stream is positive, then

we have captured some value from the relative mispricing of the currency swap and the

forward FX markets, which has not been wiped out by losses from trading against the

bid-ask spreads in the various currency and swap markets.

We show the results of this analysis in Table 25.5. The second and third columns of the

table contain the cash flows of the currency swap. The fourth column simply restates the

conversion rates we derived earlier. The fifth column contains the USD equivalent of the

JPY leg of the swap, i.e., the JPY cash flows FX-hedged into USD, conversion undertaken

at the appropriate bid rate as required. The sixth column shows the difference between the

USD side of the currency swap and the JPY leg converted into USD. Finally, the seventh

column contains the present values of the USD differences, assuming as before a USD

interest rate of 3%.We see that the NPV is USD−1.7722. Hence, the trade is not favorable.

However, this is only one of the trades that may be undertaken. What if we instead went

the other way, i.e., we set up a currency swap for which we pay USD and receive JPY?

Reversing trades from the previous example, we have the following steps:

• Enter into a currency swap with principal amounts of USD 100 and JPY 13,495.65 in

which we pay fixed on the USD leg of the swap and receive fixed on the JPY leg. We

construct such a swap in the usual way: (i) enter into a currency swap to receive 2.90%

in JPY and pay USD Libor, and (ii) enter into an interest rate swap for which we pay

4.88% in USD and receive USD Libor. The net of these is a currency swap for which we

receive JPY 2.9% and pay USD 4.88%.

• Hedge out, using currency forwards, all JPY receipts. This will result in USD receipts.



Chapter 25 Currency and Commodity Swaps 639

TABLE 25.6 Arbitraging CCY Swaps vs. FX Forwards: Case 2

Maturity Pay USD Receive JPY Conversion Rate USD Net USD PV Net USD

0 100 13495.95 134.9595 100.0000 0.0000 0.0000
1 −4.88 391.38255 132.3268 2.9577 −1.9223 −1.8655
2 −4.88 391.38255 129.7065 3.0174 −1.8626 −1.7541
3 −4.88 391.38255 127.1382 3.0784 −1.8016 −1.6465
4 −4.88 391.38255 124.6206 3.1406 −1.7394 −1.5427
5 −104.88 13887.33255 123.1530 112.7649 7.8849 6.7866

NPV −0.0222

• Finally, net off these USD receipts against the USD leg of the original currency swap.

This results in a stream of pure USD payments.

We show the results of this analysis in Table 25.6.

Once again, we see that the NPV is negative, i.e., USD −0.0222. Therefore, the dis-

crepancy between the currency swap and forward FX markets is not arbitrageable. Bid-ask

spreads eat away any possible gains.

Pricing of Currency Swaps
How are the rates on the fixed leg of a currency swap determined? The short answer is: these

rates must be chosen so that the net present value of the cash flows from the swap is equal

to zero at the inception of the swap. Identifying this fixed rate is not hard. The procedure

is essentially identical to that followed by interest rate swaps, with simple modifications to

account for the feature that the cash flows occur in different currencies.

We begin by noting that the currency swap is, in effect, an exchange of bonds in two

currencies, a fixed-rate bond in one currency for a floating-rate bond in the other. Each bond

may be valued separately in its own currency using the relevant forward rates to discount

future cash flows. (Actually, only the fixed-rate bond needs to be valued. The price of the

floating-rate bond at inception is, by definition, par.) Then the fixed-rate bond is converted

into the other currency at the current spot exchange rate. We identify the fixed rate so that,

after conversion, this bond is worth par too. This is the swap rate.

25.3 Commodity Swaps

Acommodity swap, like a vanilla interest rate swap, involves the exchangeof afixedpayment

for a floating one. The floating payment in a typical commodity swap is linked to the price of

a commodity (e.g., the spot price of a barrel of oil), while the fixed payment is a given dollar

amount (e.g., $40). Of course, only the net payment—the difference between the floating

and fixed payments—is exchanged in practice. A less common version of commodity swaps

involves a floating-for-floating exchange in which one floating leg is tied to the price of a

commodity and the other to an interest rate (e.g., Libor). Other variants on the basic theme

are described at the end of this section.

Commodity swaps based on oil prices are the most common in practice, but swaps based

on many other commodities are also feasible. The floating side of the commodity swap

contract is usually indexed to the spot or futures price of a commodity. The fixed side

is determined at inception in a manner that makes the swap a fair one. We discuss the

determination of the fixed side later in this section.

Commodity swaps provide natural hedges against price changes for consumers and

producers. For a consumer who periodically purchases the commodity at its spot price,
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being the fixed payer in a commodity swap enables locking-in a price for the commodity:

the consumer continues to buy the commodity at the spot price but also receives from the

swap the difference between the spot price and the fixed payment in the swap, leading to

a net cash outflow of just the fixed payment. Similarly, for a producer of the commodity,

being the floating payer in the swap provides a hedge against spot price changes.

This section examines the pricing of commodity swaps off the futures or forward price

curve. We begin with a review of forward pricing for commodities.

Commodity Forward Pricing: A Review
In Chapter 3, we described the cost-of-carry method of identifying forward prices. As we

showed there, the forward price of an asset depends in general on the costs of holding or

“carrying” that asset from now to the maturity date of the forward contract. These holding

costs may be positive (e.g., storage, insurance) or negative (e.g., dividends received from

holding the asset). If Mτ denotes the present value of the net holding costs (holding costs

minus holding benefits) up to time τ , then the forward price Fτ for maturity τ is given by

Fτ = erτ τ (S + Mτ ) (25.2)

Here, S denotes, as usual, the current (time-0) price of the asset, and rτ is the rate of

interest applicable to a horizon of length τ expressed in continuously-compounded terms.

Expression (25.2) takes holding costs and benefits to be expressed in dollar terms. In many

cases, these are better expressed in yield terms. For instance, the dividend benefit from

holding an index is naturally expressed in terms of the dividend yield on the index. If we

let qτ denote the dividend yield from holding the underlying (expressed in continuously-

compounded terms) over the horizon [0, τ ], the forward price takes the form

Fτ = e(rτ−qτ )τ S (25.3)

As we discussed in Chapter 4, expressions (25.2) and (25.3) generally work very well

for financial assets. As a consequence, the forward price for these assets depends only

on observable quantities (spot price, holdings costs/benefits, interest rates) and may be

identified ex ante from knowledge of these quantities. There is no more information in

forward prices than is already embedded in these observable inputs into the formula.

For commodities, the story is somewhat different. The dividend qτ here takes the form of

a “convenience yield” that is unobservable. As noted in Chapter 4, an important difference

between physical commodities and financial assets is that the former are used in production

and are consumed in the process. Producers and others hold inventories of commodities

because this gives them the flexibility to alter production schedules or as insurance against

a shortage of supply in the spot market. The convenience yield measures the value of the

option to consume the commodity out of storage. The convenience yield depends on a

variety of factors, notably anticipated demand-supply imbalances. If the current supply of a

commodity is large relative to its consumption demand, the convenience yield will generally

be low. But the convenience yield may change, even drastically, with news and events in the

marketplace.

The forward/futures prices observed for commodities reflect the market consensus con-

cerning the unobserved convenience yields; the implied qτ maybe backed out fromobserved

forward/futures prices using (25.3). Since Fτ and qτ cannot be identified ex ante but only

through trading, the process is referred to as one of “price discovery.”

Of course, regardless of whether holdings costs and benefits are observable, the pricing

expressions (25.2) and (25.3) are valid only for assets that can be stored. For non-storable

underlyings such as electricity, the cost-of-carry model simply does not apply since the
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asset cannot be “carried” to maturity. In such cases, the forward price is simply a reflection

of anticipated future spot prices, perhaps plus or minus a risk premium.

Valuing and Pricing Commodity Swaps
Since the convenience yields are unobservable, we cannot price commodity swaps from

“first principles” (i.e., from just spot price and interest-rate information) the way we could

for interest rate or equity swaps. However, if futures or forward prices are available, then we

can infer the convenience yields from these and use them in the pricing process. Equivalently,

wemay just directly price the commodity swap in terms of the forward prices, as we describe

here.

The intuition behind the pricing process is simple. The swap is simply a collection of

forwards, one for each payment date in the contract. Hence, the risk in the swap can be

eliminated by taking offsetting positions in a series of forward contracts. The resulting

portfolio has riskless cash flows, so it may be valued from knowledge of the term-structure

of interest rates. The swap rate is the fixed price in the swap that makes the value of this

portfolio zero.

We first describe this in terms of notation, and then work through an example. Let:

• P denote the fixed payment in the swap.

• T1, . . . , TN be the remaining payment dates in the swap. As usual, the current date is

date 0.

• S be the current price of the commodity, and S1, . . . , SN be the (currently unknown) spot

prices on the payment dates.

• F1, . . . , FN be the forward prices today for delivery of one unit of the commodity on

dates T1, . . . , TN , respectively.

• B1, . . . , BN denote the discount factors for identifying the present value of certainty cash

flows on dates T1, . . . , TN , respectively. (That is, the present value today of $1 receivable

on date Tk is Bk .)

Suppose an investor has a pay fixed–receive floating position in the commodity swap.

On each payment date Tk , she receives a cash flow of

Sk − P (25.4)

Viewed from date 0, these cash flows are risky since the future spot prices Sk are currently

unknown. But suppose that on date 0, the investor also enters into a series of short forward

contracts with delivery dates T1, . . . , TN . On date Tk , she delivers a unit of the asset worth

Sk and receives the delivery price Fk . So, the net cash flow from the forward contract on

date Tk is

Fk − Sk (25.5)

Adding (25.4) and (25.5), the cash flow on date Tk from the combined portfolio of the

commodity swap and the series of forward contracts is

Fk − P (25.6)

For each k, this is a certainty cash flowwhose time-0 present value may be identified simply

by discounting it by the factor Bk . Adding up these present values over k, the time-0 present

value of the combined portfolio is just

N 

k=1

Bk(Fk − P) =

N 

k=1

Bk Fk − P

N 

k=1

Bk (25.7)



642 Part Three Swaps

TABLE 25.7
Commodity Swap

Pricing: Input

Information

Maturity (years) Spot Interest Rate Forward Price

1 0.0100 44.66
2 0.0125 44.78
3 0.0200 43.67
4 0.0300 43.24
5 0.0350 41.75

At time 0, each forward contract has zero present value by definition. So equation (25.7)

is the time-0 value of the commodity swap. Pricing the swap is an easy matter now. At

inception of the swap, its value must be zero. So the fair price P of the swap must be

P =

 N

k=1 Bk Fk N

k=1 Bk
(25.8)

Equation (25.8) is the promised expression that identifies the fair price of the swap in terms

of the forward prices and risk-free interest rates.

Example 25.4 Suppose we are given the information in Table 25.7 on current spot interest rates and
forward prices for delivery of oil for the next five years. The interest rates are in continuously-
compounded terms, and the forward prices are dollars per barrel of oil. What is the swap
rate on a five-year oil swap with payment dates T = 1, 2, 3, 4, 5?

As a first step, we identify the discount factors B1, . . . , B5. Since the interest rates are in
continuously-compounded terms, we have

B1 = e−0.01×1
= 0.9900

B2 = e−0.0125×2
= 0.9753

B3 = e−0.02×3
= 0.9418

B4 = e−0.03×4
= 0.8869

B5 = e−0.035×5
= 0.8395

Thus, we have

5 

k=1

Bk F k = 202.4146

5 

k=1

Bk = 4.6335

Substituting these in (25.8), the swap rate in the five-year oil swap (i.e., the fixed price
in the swap) is

P =
202.4146

4.6335
= 43.6850

■

Further Comments on Commodity Swaps
Commodity prices tend to be very volatile, much more so than equity prices, interest rates,

or exchange rates. Volatilities of around 100% and even higher are not unknown. This

is an important factor in creating hedging demand, in particular, for commodity swaps.
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Commodity markets also exhibit several distinct features compared to the markets for

financial securities. Some of these relate to the cost of hedging, institutional differences,

high levels of illiquidity in some commodities, and seasonality in production. Credit risk

too tends to be a factor of importance.

Our description above has focused on fixed-for-floating commodity swaps in which the

floating side is indexed to the spot price of a commodity. A variant on this design is one in

which the floating side is the average spot price witnessed over some specified reference

period. Typically, the reference period is the period between payment dates and the arithmetic

average of daily prices over this period is used. Such swaps are called Asian commodity

swaps.

There are other variants too on the basic theme. These include:

• Fixed-for-floating swaps in which the floating side is linked to an index of commodity

prices (for example, the Goldman Sachs Commodity Index or a property index) rather

than the price of a single commodity.

• Floating-for-floating commodity swaps in which one leg is indexed to a commodity price

and the other to an interest rate such as Libor. In principle, such swaps ought to be of

interest for producers of the commodity as a simultaneous hedge against the commodity

price risk and their interest-rate liabilities.

• Floating-for-floating commodity swaps in which the two legs are linked to closely related

products (for example, Light Sweet crude oil and West Texas Intermediate crude oil).

Such swaps are called commodity basis swaps and have much in common with the

interest-rate basis swaps.

• Floating-for-floating commodity swaps in which the two legs relate to different sides of

the production process (for example, one leg is tied to a particular crude oil price and

the other to a particular refined oil price). These are called commodity spread swaps.

The pricing of many of these contracts is complicated by the unobservability of con-

venience yields and further by the possibility that the convenience yields, spot prices, and

interest rates may all be correlated. Where replication is not feasible, risk-premia need to

be incorporated into the pricing process. For a discussion of the pricing of commodity

contracts, see Casassus and Collin-Dufresne (2005).

25.4 Summary

Foreign exchange (FX) trading volume outstrips that of any other market. Most FX trading

occurs in OTC markets. The same is true for currency swaps.

A currency swap is effectively the exchange of bonds, one in each currency. Equivalently,

it may be viewed as a portfolio of forward FX contracts. Currency swaps are perhaps the

most useful of instruments in cross-border financing. They permit companies to access

financing in other markets and enable the choice of fixed versus floating funding as desired.

Cross-currency financing risk may be managed with currency swaps, which are superior on

account of their greater liquidity to hedging with a portfolio of forwards.

Commodity swaps too may be viewed as a portfolio of forward contracts and valued

accordingly. However, commodity forward valuation is generally more complex than for

financial assets because of the presence of an unobserved convenience yield or because the

commodity is not storable. Commodity swaps, however, may be priced relative to forward

or futures prices if such prices are available.
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25.5 Exercises 1. What is covered interest-rate parity?

2. If the US dollar is trading at a discount to the yen in the forward currency markets,

what can you say about the relationship of the dollar and yen interest rates?

3. If the yen/dollar exchange rate is 130 and the dollar/euro rate is 1.20, what is the

yen/euro exchange rate?

4. As a currency trader, what would you do to your quoted foreign exchange rates in the

$/€ market if you wanted to sell down your position in euros? Assume that the current

bid-ask in $/€ is 1.20–1.25.

5. In the previous question, what do you do to the bid-ask spread to induce more trading

volume in your $/€ currency book?

6. If the spot $/€ rate is 1.20 and the interest rates are r$ = 0.03 and r€ = 0.05 for T = 1

year (in continuously compounded terms), then what are the forward points for one

year?

7. What is more appropriate to use to hedge a borrowing in euros for two years: a currency

forward or a currency swap?

8. What type of commodity swap is ideal for a hedge fund that invests heavily in com-

modities if it wishes to diversify into the equities market?

9. The gas-electricity swap is one that receives the return on electricity prices and pays

the return on natural gas prices. What business entity does this swap mimic?

10. Explain how you would construct multiple maturity forward contracts in oil if all you

could trade were oil-equity swaps (i.e., a swap in which you exchange the return on oil

prices for the equity index return) and stock market futures.

11. The spot exchange rate between the euro and the dollar is $1.2/€. If the dollar interest

rate is 2% for two years, the euro rate is 3% for the same maturity, and both rates are

annually compounded, what is the two-year forward FX rate?

12. In the previous question, if rates are continuously compounded and the forward ex-

change rate is $1.10/€, then what is the interest differential between the two currencies?

13. The bid-offer spot exchange rate is $1.31/€–$1.34/€. The one-year dollar interest rates

are (bid-offer) 3.1–3.2% (simple interest basis). The one-year euro interest rates are

(bid-offer) 3.9–4.0%. Find the bid-ask bounds on the forward FX rate.

14. The following table presents the zero-coupon term structures for the dollar and the

euro.

Maturity (years) r$(%) r€(%)

1 1.0 2.1
2 1.4 2.3
3 1.7 2.9
4 1.8 3.5
5 2.0 4.0

The spot exchange rate is $1.20-1.30/€. Compounding is annual.

(a) Plot the forward exchange rate bid and ask curves.

(b) Present a table showing the bid and ask points. Are the bid points higher than the

ask? Explain.

(c) If the fixed cost of five-year financing is 2.5% in dollars and 3.5% in euros, how

should you borrow cheapest if you want to hold your liabilities in dollars?
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15. In the preceding problem, suppose you can also access floating-rate financing as follows:

• Dollar financing at: one-year $-Libor + 50bps.

• Euro financing at: one-year €-Libor + 100 bps.

Also traded in the market are the following two swaps:

• Interest rate swap: fixed $2.0-2.2% vs. floating one-year $-Libor.

• Currency swap: fixed €3.0-3.2% vs. floating one-year $-Libor.

Now find the cheapest form of dollar financing.

16. Using the forward FX curve from the preceding problem, convert an annual five-year

stream of 75 basis points received in dollars into a similar stream received in euros.

You need to express your answer in a number of euro basis points.

17. Given the forward FX curve from the previous example, and the USD interest-rate

swap rates, what is the fixed rate on a fair pay-fixed € versus receive-floating one-year

$-Libor swap? The swap has a five-year maturity, i.e., five annual payments.

18. Download the term structure for the euro from a website of your choice. [For example,

see http://epp.eurostat.cec.eu.int/.] Also download the yield curve for the

dollar from any source. Again try:

http://www.ustreas.gov/offices/domestic-financeurodollarebt-management/

Convert both curves into annual maturity plots by interpolation. Then, using the current

spot $/€ FX rate, determine the forward FX curve. Which currency is at a discount? Is

this always true for all maturities?

19. How do you replicate a currency swap by trading foreign exchange options?

20. The following is a table of noncallable US government bond prices and cash flows (in

US dollars, i.e., $). Assume that the current date is January 1, 2005.

Cash Flows
Bond Price July 1, 2005 January 1, 2006 July 1, 2006

U1 97.50 100.00
U2 100.50 3.00 103.00
U3 101.00 3.20 3.20 103.20

The following table depicts noncallableGerman government bond prices and cash flows

(in euros).

Cash Flows
Bond Price July 1, 2005 January 1, 2006 July 1, 2006

G1 96.00 100.00
G2 99.50 5.00 105.00
G3 100.20 6.00 6.00 106.00

The spot exchange (FX) rate today is $1.5/€. Find the forward FX rates for the next

three half-year maturities.

21. ABC Inc., a US incorporated firm with business in the US and Germany, needs to

fund an expansion of its business and wishes to raise funding immediately. It can raise

18-month debt in theUSmarket at par by paying a coupon of 8%per annum (semiannual
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pay on a 30/360 basis) at a cost of 1% in underwriting fees and commissions on the

issued amount. If the company borrows in the German market, a par issue with 2%

underwriting costs requires a coupon of 14% per annum (semiannual pay on a 30/360

basis). Using the FX rates from the previous problem, answer the following question:

if the spot FX rate is 1.5 $/€, in which market should the company borrow?

22. The following table presents the spot rates from the risk-free interest-rate market. The

spot price of gold is $425 per ounce. If the storage cost of gold is 0.15% per year and

the convenience yields are flat at 1% per year, complete the table below for forward

prices of gold and commodity swap rates.

Maturity (t) Spot Rate (rt) Forward Price Swap Rate

1 0.030
2 0.035
3 0.040
4 0.043
5 0.045

23. Explain with examples the circumstances under which forward-looking market in-

formation may be present in commodity forward/futures markets. When is there no

information in the forward price?
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Chapter 26
The Term Structure
of Interest Rates:
Concepts

26.1 Introduction

The “term structure of interest rates” or the “yield curve” refers to the way interest rates

depend on maturities. This chapter and the next develop the basic analytics required to model

the yield curve. In this chapter, we introduce and discuss fundamental concepts such as the

discount function, zero-coupon rates, spot rates, and forward rates. In the next chapter, we

discuss implementation, i.e., how the yield curve may be constructed from bond price data.

Our focus in this segment of the book is on bonds that are free of the risk of default

(i.e., sovereign obligations). Subsequent chapters in the book look at instruments that are

also subject to default or credit risk (e.g., corporate bonds) and examine the modeling and

estimation of this risk.

So what is the “yield curve” and why is it a useful concept? It is instructive to begin with

a discussion of what it is not.

26.2 The Yield-to-Maturity

It is not uncommon to plot the yield-to-maturity (or “gross redemption yield”) against

maturity for a set of bonds and call this a yield curve. Such a plot is conceptually misleading.

It is also of limited value from a pricing standpoint.

The yield-to-maturity (ytm) is the internal rate of return on a bond. That is, it is that

number y such that when all the cash flows from the bond are discounted at the rate y and

added up, we obtain the current price of the bond. In expressing the ytm, we must first choose

a compounding frequency. (Of course, any frequency may be chosen.) Readers unfamiliar

with the notion of different compounding frequencies should first read Appendix 3A which

also describes how to convert interest rate quotes under one frequency to interest rate quotes

under another.

Consider a bond with a cash flow of ci in ti years, i = 1, . . . , n. If the ytm is expressed

with annual compounding, it is the value of y that satisfies

P =

n 
i=1

ci

(1 + y)ti
(26.1)

649
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More generally, if we use a convention in which we compound k times a year, the ytm is

that value of y that satisfies

P =

n 
i=1

ci

(1 + y/k)kti
(26.2)

Semiannual compounding (k = 2) is the convention used in the US Treasury markets and

some other sovereign markets. (A compounding convention is also commonly referred to

as a “basis.” Thus, for example, a semiannual compounding convention is also called a

semiannual basis.) In this case, (26.2) becomes

P =

n 
i=1

ci

(1 + y/2)2ti
(26.3)

Another popular convention is that of continuous compounding (k = ∞). For technical

reasons, continuous compounding is particularly useful in modeling the yield curve. Taking

the limit as k → ∞ in (26.2), the ytm under continuous compounding is the value of y that

satisfies

P =

n 
i=1

ci e
−y ti (26.4)

The compounding frequency under which ytm is expressed is very important. For ex-

ample, consider a bond with cash flows of $5 in six months and $105 in one year. Suppose

the current price of the bond is $101. If we express the bond’s ytm under semiannual

compounding, its ytm is the value of y that satisfies

101 =
5

1 + y/2
+

105

(1 + y/2)2

which is roughly 8.93%. However, if we express the bond’s ytm under continuous com-

pounding, its ytm is the value of y that satisfies

101 = 5 e−y/2 + 105 e−y

which is about 8.74%. Thus, in translating financial data on ytm’s into bond prices, it is

important to know the compounding frequency under which the ytm’s have been computed.

Problems with the YTM
The ytm has important conceptual shortcomings. One is the implicit assumption in the

definition of the ytm that all coupons received from the bond are reinvested at the ytm

until maturity of the bond, which is unrealistic. A more important one, as the following

example shows, is that the ytm is of limited use from a pricing standpoint. The example

considers bonds with a face value of 100 paying semiannual coupons and uses a semiannual

compounding convention (the convention described in (26.3) above).

Example 26.1 Consider a bond with a 5% coupon maturing in six months. This bond will result in a single
cash flow of (100+5/2) = 102.5 in six months. Suppose the ytm on the bond is 5%. What
is its price? This is an easy question. The bond’s coupons are the same as its ytm. Thus, if
the coupons are discounted at the ytm, the result must be par. Formally, from the price-ytm
relationship,

P =
102.5

1 + y/2
=

102.5

1.025
= 100
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Now suppose there is a second bond of maturity one year and a coupon of 6%. This
bond has two cash flows, $3 at the half-year point and $103 at the one-year point. Suppose
this bond too trades at par. What is its ytm? Again, this is an easy question. Since the bond
is trading at par, its ytm must equal its coupon rate, i.e., y = 0.06. Formally, we have:

100 =
3

1 + y/2
+

103

(1 + y/2)2

solving which we obtain y = 0.06.
Here is a trickier question. Given this information, what is the price of a third bond

with maturity also equal to one year but with a coupon of 8%? Intuition might suggest
discounting the cash flows from this third bond at the ytm of 6% of the other one-year
bond. This leads to a price of

P =
4

1.03
+

104

(1.03)2
= 101.9135

We will show that this price is incorrect in a fundamental sense—it is arbitrageable.
Specifically, we show that the third bond’s cash flows can be perfectly replicated by a port-
folio consisting of the other two bonds and that the cost of this replicating portfolio is not
101.9135.

Consider a portfolio consisting of x1 units of the half-year maturity bond and x2 units of
the one-year maturity bond. Since both bonds are trading at par, the price of this portfolio
is

100 x1 + 100 x2

For the portfolio to perfectly replicate the 8% coupon bond, it must generate a cash flow
of 4 after six months and 104 after one year. This means we must have

102.5 x1 + 3 x2 = 4
103 x2 = 104

Solving these simultaneous equations gives us

x1 = 0.009471939 x2 = 1.009708738

Thus, the cost of the replicating portfolio is

100 x1 + 100 x2 = 101.9181

which is different from the price obtained by using the ytm of the 6% bond. The replication-
based price is, of course, the correct price for the bond. ■

A pricing error results even if the third bond in this example is “close” to the one-year

6% coupon bond (i.e., has similar but not identical characteristics). For example, suppose

the third bond has a one-year maturity and a 6.1% coupon. Discounting its cash flows at

the ytm of 6% results in a “price” of 100.0957, while the correct replication-based price is

100.0959. The error is smaller the more similar are the two bonds, but it will not usually be

zero. Thus, knowing the ytm of one bond does not allow us to price another bond.

26.3 The Term Structure of Interest Rates

If the ytm has pricing limitations, what does one do in order to value large portfolios of

bonds? It turns out that there is a simple solution to this problem. Actually, there are three

simple solutions:

• The first is to use the discount function. The discount function measures, for each t , the

present value of $1 receivable in t years.



652 Part Four Interest Rate Modeling

• The second is to use the spot rate or zero-coupon rate. The spot rate specifies for each t

the ytm on a zero-coupon bond with face value $1 and maturity in t years.1

• The last is to use the forward rate. The forward rate provides, for each pair of dates t1
and t2 in the future, the rate that can be locked in today for an investment or borrowing

over the period [t1, t2].

A plot of spot rates against maturities is referred to variously as the spot(-rate) curve,

the zero-coupon yield curve, or simply the yield curve. The phrase forward(-rate) curve is

similarly used to denote a plot of forward rates against maturities.

The discount function, spot curve, and forward curve are equivalent concepts. That is,

each discount function corresponds to a unique zero-coupon rate curve and a unique forward-

rate curve, etc. Given this equivalence, we use the phrase “term structure of interest rates”

to refer interchangeably to any of them, although the phrase is commonly used to mean the

spot curve. The next three sections examine each of these concepts in turn.

26.4 Discount Functions

The discount function specifies, for each t , the present value of $1 receivable in t years. It

is, therefore, a price: it specifies the price of a zero-coupon bond with maturity in t years

and face value of $1. Let d(t) denote the discount function. Note that since the discount

function is the present value of a unit cash flow, it must satisfy 0 ≤ d(t) ≤ 1.

Once the discount function is known, any bond may be priced using it. Suppose a bond

pays a series of cash flows ci in ti years, i = 1, . . . , n. This bond is equivalent to (i.e., can

be perfectly replicated by) a portfolio of zero-coupon bonds in which we hold ci units of

the zero-coupon bond maturing at time ti , i = 1, . . . , n. Thus, the current price of the bond

must be

P =

n 
i=1

cid(ti ). (26.5)

Of course, we may price entire portfolios of bonds using the same argument—there is no

reason why the cash flows ci in (26.5) must come from a single bond.

From where do we obtain the discount function? In principle, the discount function may

be recovered from the prices of traded bonds using a procedure known as bootstrapping.

Bootstrapping and its limitations (as well as alternatives to bootstrapping) are discussed in

detail in the next chapter. Here, we provide a simple illustration of the technique using the

two bonds introduced in Example 26.1.

Example 26.2 Consider the two bonds of Example 26.1, each of which is trading at par: (a) a half-year
bond with a ytm of 5% and (b) a one-year bond with a ytm of 6%. Coupon payments are
taken to be semiannual. We shall use this data to derive the half-year and one-year discount
functions. These will be denoted d(0.5) and d(1), respectively.

From (26.5) and since the bonds are each trading at par, we have the following two
expressions (P (t) denotes the price of the t-maturity bond):

P (0.5) = 102.5 d(0.5) = 100

P (1) = 3 d(0.5) + 103 d(1) = 100

1 A zero-coupon bond, or simply a “zero,” is, as the name suggests, a bond that pays no coupons and

repays the principal amount at maturity. Such a bond will usually trade at a discount to the face

value due at maturity, so is also called a “pure discount bond.”
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These equations are easily solved for d(0.5) and d(1):

d(0.5) = 0.97561 d(1) = 0.942458

We can use these values to price any bond that has cash flows at t = 0.5 and t = 1. For
example, the price of a one-year 8% coupon bond is

4 d(0.5) + 104 d(1) = 101.9181

which is exactly the price we obtained by replication in Section 26.2. ■

26.5 Zero-Coupon Rates

The zero-coupon rate or spot rate is an alternative way of representing the same information

as the discount function. The zero-coupon rate associated with a maturity t is the ytm of a

zero-coupon bond with maturity t years from the present. We shall write zcr for zero-coupon

rate, with zcrs denoting the plural.

Unlike the discount function, the zcr is a yield and not a price, so it depends on the

compounding convention we use. Suppose we use the convention that rates are compounded

k times a year. Denote the zcr for a given maturity t by r (k)(t). By definition, the price d(t)

of the t-maturity zero is related to its ytm r (k)(t) via

d(t) =
1

(1 + (r (k)(t)/k))kt
(26.6)

From (26.6), r (k)(t) may be written in terms of d(t) as

r (k)(t) = k × ([d(t)]−1/kt − 1) (26.7)

Thus, for example, under annual compounding (k = 1), we have

r (1)(t) = [d(t)]−1/t − 1 (26.8)

while under semiannual compounding (k = 2),

r (2)(t) = [d(t)]−1/2t − 1 (26.9)

In the limit, as k = ∞, we get the continuous-compounding representation of the zcr

r (∞)(t) = −
1

t
ln[d(t)] (26.10)

Two points are important here. First, fixing a compounding convention, expressions

(26.6)–(26.10) show that there is a one-to-one relationship between the discount function

and spot rates: each discount function corresponds to a unique spot rate and vice versa.

Second, it is also immediate from these expressions that a rate under one convention can

always be converted to the rate under another. If we are given the zcr r (k)(t) corresponding

to a compounding frequency of k times a year and wish to express this in terms of a

compounding frequency of  times a year, we can first convert the zcr r (k)(t) into a discount

function value d(t) using (26.6) and then identify the zcr r ( )(t) using (26.7). This means

we can choose whatever compounding convention is most convenient for our purposes. For

example, in modeling interest rates, it turns out that the most useful convention is continuous

compounding since this is technically the most advantageous.

The curve {r (k)(t) | t ≥ 0} is called the spot curve, zero-coupon yield curve, or simply

the yield curve. In practice, the yield curve is typically upward sloping, i.e., zcrs increase
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as maturity increases. This is referred to as a normal yield curve. Sometimes, however,

short-term yields exceed long-term yields, and the yield curve is downward sloping. This

is referred to as an inverted yield curve.

Pricing Bonds Using the Yield Curve
Knowledge of the yield curve enables us to identify the present value of any payoff x

occurring at any given time t in the future. In turn, this means any bond or portfolio of

bonds may be valued using the yield curve.

For example, suppose we have a portfolio of bonds with cash flows of ci at times ti ,

i = 1, . . . , n. This portfolio is equivalent to a portfolio consisting of ci zero-coupon bonds

with face value 1 and maturity ti , i = 1, . . . , n. Using the yield curve, we can value each

of these zero-coupon bonds, and, hence, the entire portfolio.

Example 26.3 Consider the same information as provided in Example 26.2. There are two bonds each
trading at par, one with a maturity of six months and a coupon of 5% and the other with a
maturity of one year and a coupon of 6%. As we saw in Section 26.4, the discount function
derived from this information is

d(0.5) = 0.97561 d(1) = 0.942458

We can use these discount rates to identify the zcrs by appealing to (26.6)–(26.10). For
instance, suppose we use a semiannual compounding convention. Then, the zcrs are

r (2)(0.5) = 2[d(0.5)−1 − 1] = 0.05

r (2)(1) = 2[d(1)−1/2 − 1] = 0.060151

Let us use these zcrs to value a one-year bond with a coupon of 8%. The bond has two cash
flows: a cash flow of 4 after six months and a cash flow of 104 after one year. Given the zcrs,
the present values of these cash flows are

4

1 + r (2)(0.5)/2
=

4

1.025
= 3.9024

and

104

(1 + r (2)(1)/2)2
=

104

(1.030075)2
= 98.0157

Adding these values, we obtain 101.9181, which is exactly the bond value obtained by
replication or using the discount functions. ■

Intuitively, if we think of the individual cash flows of any bond as atoms, then the bond

itself comprising all its coupons may be thought of as a molecule. One may always price

any bond (i.e., molecule) by splitting it into its elements or atoms and then using zcrs to

price each atom separately. Since the price of a bond must equal the sum of prices of its

cash flows, we can price the atoms and aggregate their values to price the bond.

26.6 Forward Rates

Consider a period (t1, t2) beginning t1 years in the future and ending t2 years in the future

where t2 > t1. The forward rate for the period (t1, t2) refers to the rate we can lock in today

for borrowing or lending over this time period.
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Since the forward rate is an interest rate, we must associate a compounding frequency

with it. Assume that forward rates are quoted in continuously compounded terms (we deal

with other compounding conventions a bit further down) and denote the forward rate for

the period (t1, t2) by f (t1, t2). Then, for each $1 borrowed or invested at time t1, the amount

to be returned at time t2 is

e f (t1,t2) (t2−t1) (26.11)

The forward rate is intimately related to the discount function and the spot rate. To see

the connection, consider the following strategy (all bonds have a face value of $1):

1. Buy a zero-coupon bond with maturity t1.

2. Sell d(t1)/d(t2) units of a zero-coupon bond with maturity t2.

Buying the t1-maturity bond involves a cash outflow of d(t1), while selling d(t1)/d(t2)

units of the t2-maturity bond results in a cash inflow of

d(t1)

d(t2)
× d(t2) = d(t1)

Thus, there is no net initial cash flow. At time t1, there is a cash inflow of $1, while at time

t2, there is a net cash outflow of

d(t1)

d(t2)
(26.12)

These cash flows imply that the strategy is akin to a borrowing of $1 at time t1 for a repayment

of (26.12) at time t2. That is, the strategy is simply a synthetic forward borrowing over the

period (t1, t2).

Now, suppose the forward rate is such that (26.11) is greater than (26.12). Then the actual

forward rate is greater than the synthetic forward rate implied by (26.12). Thus, there are

arbitrage profits to be made by borrowing forward synthetically and lending it out at the

forward rate f (t1, t2). This will result in no net cash flows up to time t2 and a cash inflow

at time t2 of the difference between (26.11) and (26.12).

Similarly, the forward rate cannot be such that (26.11) is less than (26.12) or reversing

the strategies of the previous paragraph will lead to an arbitrage. Thus, we must have (26.11)

equal to (26.12), i.e.,

e f (t1,t2) (t2−t1) =
d(t1)

d(t2)
(26.13)

or, what is the same thing,

f (t1, t2) =
1

t2 − t1
ln

 
d(t1)

d(t2)

 
=

ln d(t1) − ln d(t2)

t2 − t1
(26.14)

Equation (26.14) describes the relationship between forward rates and discount functions.

This relationship can also be expressed in terms of forward rates and zcrs. From (26.10),

the discount function d(t) is related to the (continuously-compounded) zcr r (t) via

ln d(t) = −t r (t)

Thus, we can rewrite (26.14) in terms of forward and spot rates as

f (t1, t2) =
t2r (t2) − t1r (t1)

t2 − t1
(26.15)

where r (t) is the continuously-compounded zcr for maturity t .
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Expressions (26.13)–(26.14) show the unique correspondence between discount func-

tions, spot rates, and forward rates. Thus, the three concepts—discount functions, spot rates,

and forward rates—are perfectly equivalent ways of describing the term structure of interest

rates.

One final concept is important. The instantaneous forward rate f (t) refers to the forward

rate f (t , t + h) for a very small time period h. Formally, we write

f (t) = lim
h↓0

f (t , t + h) (26.16)

For future reference, note that by taking limits in (26.14), the instantaneous forward rate is

related to the discount function via

f (t) = −
1

d(t)
d  (t) (26.17)

The curve { f (t) | t ≥ 0} is called the forward curve.

Other Compounding Conventions
Of course, we may also express forward rates with other compounding frequencies and

derive expressions analogous to (26.13)–(26.14). Suppose forward rates are quoted with a

compounding frequency of k times a year. Then for every $1 borrowed at t1, the amount to

be returned at t2 is  
1 +

f (k)(t1, t2)

k

 k(t2−t1)

(26.18)

Since this must be equal to (26.12), we have 
1 +

f (k)(t1, t2)

k

 k(t2−t1)

=
d(t1)

d(t2)
(26.19)

Equivalently, we may write

f (t1, t2) =

  
d(t1)

d(t2)

 1/[k(t2−t1)]

− 1

 
× k (26.20)

Expressions (26.19)–(26.20) describe the correspondence between discount functions

and forward rates for general compounding frequencies.

26.7 Yield-to-Maturity, Zero-Coupon Rates, and Forward Rates

There are three different curves we have defined: ytm (which may be regarded as the raw

market data), zero-coupon rates or zcrs, and forward rates. The earlier analysis has examined

the mathematical relationship between these concepts. Here, we present a simple geometric

relationship between them.

Consider first the relationship between the ytm and zcr curves. Suppose the zcr is in-

creasing in maturity. How will the ytm curve behave?

Intuitively speaking, the ytm represents an “average” yield for a bond taking into account

its cash flows across different maturities, while the zcrs are yields for specific maturities.

Thus, the ytm is like an average of the zcrs (albeit a somewhat complex weighted average). If

the zcr curve is increasing, longer maturities have higher yields. So as maturity increases, the

weighted-average yield for the bond will also increase, so the ytm curve will also increase

with maturity. Of course, this weighted average will increase slower than the zcrs themselves
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because it is averaging out lower and higher zcrs. This means the ytm curve will lie below

the zcr curve.

Similarly, if the zcr curve is decreasing with maturity, the ytm curve will also decrease

with maturity. However, because it is averaging out the higher yields of the short maturities

and the lower yields of the long maturities, it will decrease more slowly than the zcr curve.

To summarize:

1. If the zcr curve is increasing, the ytm curve will also be increasing and will lie below

the zcr curve.

2. If the zcr curve is decreasing, the ytm curve will also be decreasing and will lie above

the zcr curve.

A similar relationship can be derived between the zcr and forward curves. Intuitively

speaking, viewed from the present, investors must be indifferent between two strategies:

• Investing for t2 years.

• Investing for t1 years and rolling the proceeds forward at the forward rate f (t1, t2) that

can be locked-in now.

If the zcr curve is increasing in maturity, the forward curve must lie above the zcr curve

because the forward rate f (t1, t2) has to “make up” for the lower spot rate received over the

first t1 years. Similarly, if the zcr curve is decreasing in maturity, then the forward curve

must lie below the zcr curve.

This relationship is also easy to see formally. From (26.15) and (26.16), the forward

curve and zcr curve have a simple mathematical relationship:

f (t) = r (t) + t r  (t) (26.21)

If r (t) is increasing, then r  (t) > 0. Thus, we must have f (t) > r (t). Similarly, if r (t) is

decreasing with maturity, then we must have r  (t) < 0, so f (t) < r (t), and the forward

curve lies below the zcr curve. To summarize:

1. If the zcr curve is increasing, the forward curve must lie above the zcr curve.

2. If the zcr curve is decreasing, the forward curve must lie below the zcr curve.

In practice, one of the most common “issues” that arises with empirical forward curves

is that they appear excessively jagged or wavy. Intuitively, this happens because forward

rates have sometimes to increase or decrease very substantially to maintain the indifference

between the alternatives of a single long-term investment versus a shorter-term investment

that is rolled over at the forward rate. This has led to the development of various “smoothing”

techniques, an issue we will discuss in detail in the next chapter.

26.8 Constructing the Yield-to-Maturity Curve:
An Empirical Illustration

To illustrate the concepts introduced in this chapter and to highlight the geometric rela-

tionship described in the previous section, this section describes the construction of ytm

curves from data on Treasury yields taken from The Wall Street Journal. The construction

of zero-coupon yield curves from similar data is the subject of the next chapter.

The data describes the prices and yields-to-maturity (ytms) for Treasury notes and bonds

as of the close of August 27, 2003. The full data is provided in the table in Appendix 26A.

In the table, there are three types of instruments. First, there are notes (Type n), which
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run out to a maximum maturity of 10 years. Second, there are inflation-indexed issues

(Type i). The remaining issues are Treasury bonds, with a maximum maturity of 30

years. The second-to-last column of the table provides the approximate time to maturity

in months.

In order to obtain a visual feel for the data, the ytms for the notes alone are plotted against

maturity in Figure 26.1. The ytms for bonds alone are plotted in Figure 26.2.

FIGURE 26.1

Ask Yields for

Treasury Notes,

August 27, 2003

0 20 40 60 80 100 120

Plot of Treasury note yields

Maturity in months

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
s
k
 y

ie
ld

s

FIGURE 26.2

Ask Yields for

Treasury Bonds,

August 27, 2003

0 50 100 150 200 250 300 350

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Maturity in months

A
s
k
 y

ie
ld

s

Treasury bond yields



Chapter 26 The Term Structure of Interest Rates: Concepts 659

FIGURE 26.3
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As we can see, the plot for Treasury notes returns a smooth graph of the ytm curve.

However, the same cannot be said for the plot of Treasury bond ytm’s against maturity.

These appear to come from two distinct sets of bonds, some with higher ytm’s than the rest.

In particular, the medium maturity bonds appear to be trading at lower ytms. In order to

obtain one smooth ytm curve, we splice the notes curve up to a maturity of 120 months

onto the bonds curve for maturities greater than 120 months. This results in a single curve

that is very smooth. The plot of this combined ytm curve is provided in Figure 26.3.

Next we try to fit a function that best describes this ytm curve. With t denoted in months,

the functional form we choose for this purpose is

ytm(t) = β0 + β1 exp

 
−

t

θ

 
+ β2

 
t

θ

 
exp

 
−

t

θ

 

This particular functional form is motivated by the Nelson and Siegel (1987) function

described in detail in the next chapter. The Nelson-Siegel formulation and especially its

extension, the Nelson-Siegel-Svensson formulation (see Svensson, 1994), are commonly

used in practice by central banks to model the forward curve. An important reason for this,

as we note subsequently, is that the specification is very flexible and can accommodate a

variety of shapes for the curve despite using only a limited set of parameters.

In the current case, there are four parameters (β0, β1, β2, and θ ) to be estimated in fitting

this curve to the given ytm data. The values of the parameters that provide the best fit to the

data are:

β0 = 5.481692

β1 = −4.87414

β2 = −1.10606

θ = 55.4536



660 Part Four Interest Rate Modeling

With these parameter values, the function provides an almost perfect fit to the data. The plot

in Figure 26.3 depicts the function overlaid on the quoted ytm’s from the market.

If we assume that the functional fit represents the ytms on par bonds, we can also

obtain the zero-coupon curve and forward curve implied by this data by using an exten-

sion of the manner described in the example in Section 26.4. The results are summarized

in Table 26.1.

TABLE 26.1 Par Bond Yields, Coupons, and Prices

Yield to Zero-Coupon Zero-Coupon Forward
Years Period Coupon Maturity Price Price Rate Rate

0.5 1 1.0000 1.0000 100 99.5025 1.0000 1.0000
1.0 2 1.3632 1.3632 100 98.6494 1.3644 1.7296
1.5 3 1.6991 1.6991 100 97.4885 1.7030 2.3817
2.0 4 2.0093 2.0093 100 96.0647 2.0175 2.9642
2.5 5 2.2958 2.2958 100 94.4199 2.3100 3.4840
3.0 6 2.5600 2.5600 100 92.5926 2.5819 3.9470
3.5 7 2.8035 2.8035 100 90.6177 2.8348 4.3586
4.0 8 3.0278 3.0278 100 88.5269 3.0699 4.7236
4.5 9 3.2342 3.2342 100 86.3482 3.2886 5.0463
5.0 10 3.4241 3.4241 100 84.1066 3.4918 5.3304
5.5 11 3.5987 3.5987 100 81.8238 3.6808 5.5797
6.0 12 3.7592 3.7592 100 79.5189 3.8563 5.7971
6.5 13 3.9065 3.9065 100 77.2082 4.0193 5.9858
7.0 14 4.0417 4.0417 100 74.9055 4.1706 6.1483
7.5 15 4.1658 4.1658 100 72.6226 4.3111 6.2870
8.0 16 4.2795 4.2795 100 70.3692 4.4413 6.4043
8.5 17 4.3838 4.3838 100 68.1535 4.5619 6.5023
9.0 18 4.4793 4.4793 100 65.9818 4.6737 6.5827
9.5 19 4.5668 4.5668 100 63.8593 4.7771 6.6474
10.0 20 4.6469 4.6469 100 61.7899 4.8727 6.6980
10.5 21 4.7201 4.7201 100 59.7766 4.9611 6.7360
11.0 22 4.7872 4.7872 100 57.8215 5.0426 6.7628
11.5 23 4.8485 4.8485 100 55.9257 5.1178 6.7795
12.0 24 4.9045 4.9045 100 54.0901 5.1871 6.7875
12.5 25 4.9557 4.9557 100 52.3146 5.2509 6.7876
13.0 26 5.0024 5.0024 100 50.5991 5.3095 6.7810
13.5 27 5.0451 5.0451 100 48.9427 5.3634 6.7684
14.0 28 5.0841 5.0841 100 47.3447 5.4128 6.7507
14.5 29 5.1197 5.1197 100 45.8037 5.4580 6.7287
15.0 30 5.1522 5.1522 100 44.3183 5.4994 6.7030
15.5 31 5.1818 5.1818 100 42.8872 5.5372 6.6742
16.0 32 5.2088 5.2088 100 41.5085 5.5716 6.6429
16.5 33 5.2334 5.2334 100 40.1806 5.6030 6.6095
17.0 34 5.2558 5.2558 100 38.9018 5.6315 6.5745
17.5 35 5.2763 5.2763 100 37.6703 5.6574 6.5384
18.0 36 5.2949 5.2949 100 36.4843 5.6808 6.5014
18.5 37 5.3119 5.3119 100 35.3421 5.7019 6.4638
19.0 38 5.3273 5.3273 100 34.2419 5.7209 6.4260
19.5 39 5.3414 5.3414 100 33.1820 5.7380 6.3882
20.0 40 5.3542 5.3542 100 32.1608 5.7533 6.3505
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FIGURE 26.4
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Figure 26.4 plots the derived zero-coupon rates (the curve denoted ZCR in the figure),

forward rates (the curve denoted FWR), and ytms (the curve denoted YTM) as functions of

maturity. The plot illustrates the geometric relationship highlighted in the previous section.

In particular, the zero-coupon curve is increasing with maturity and lies above the ytm

curve (as we said it should when both curves are increasing). The forward curve similarly

lies above the zero-coupon curve (also as we noted it should when the latter increases with

maturity).

26.9 Summary

The starting point for any analysis of interest-rate derivatives is the yield curve. In contrast

to equity derivatives where the driving variable of value is the stock price, an interest-rate

option may be affected by the co-movement of several yields at different maturities. For

example, the value of a bond option is sensitive to the many cash flows of the bond, all of

which are affected by different maturity rates. Modeling the co-movement of these rates is

the goal of the succeeding chapters.

As we will see, interest-rate derivative models come in many flavors. Some of them

take as input the yield curve, but some popular models require the forward rate curve as

input. In this chapter, we defined the various ways of representing this information and

the relationships between them. In the next chapter, we develop techniques for obtaining

“good” curves of all types from available market quotes. Obtaining “smooth” curves is a

prerequisite to modeling options, and we explore several techniques that achieve this goal.

Quite apart from the options analysis of interest-rate-dependent derivatives, the derived

market curves also allow easy computation of price sensitivity for bonds.
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26.10 Exercises 1. What is the yield-to-maturity (ytm)?

2. What is the zero-coupon rate?

3. Explain the difference between the spot (zero-coupon rate) curve and the yield curve.

4. How are forward rates different from yields-to-maturity and zero-coupon rates?

5. Can forward rates be negative? Explain with a numerical example.

6. Graph the relationship of bond prices to ytm. Take a zero-coupon bond of maturity 0.1

years, and vary the ytm from 1% to 20%. Plot the bond price if continuous discounting

is applied for pricing the bond.

7. What is the value of a dollar at the end of a year if it earns 10% per annum, semiannually

compounded?

8. What is the present value of $225 received at the end of one year at a discount rate of

12%? Assume interest rates are quoted on a semiannual basis.

9. What is the present value of $225 received at the end of three years at a discount rate

of 12%? Assume interest rates are quoted on a semiannual basis.

10. What is the present value of $225 received at the end of one year at a discount rate of

12%? Assume interest rates are quoted on an annual basis.

11. Bond A has a maturity of $1 1
2

years. It pays a coupon of 10% with coupons paid

semiannually. Draw the time line with the correct cash flows. Its current price is $99.

What is the bond’s ytm?

12. Bond B has maturity one year. Its coupon is 8% per annum. The ytm is 8.5%. What is

the correct price of the bond if the semiannual convention is followed?

13. Coupon Bond P (with semiannual coupons) has maturity 1
2

year. Its ytm (semiannual

basis) is 10%. What is the zero-coupon rate (ZCR) for 1
2

year?

14. Coupon Bond Q trades at par. It has a maturity of one year. Its ytm (semiannual basis)

is 11%. What is the coupon rate of this bond?

15. Using the information about bonds P and Q above, determine the zero-coupon rate for

one-year maturity.

16. Using the information from the questions about bonds P and Q, determine the price of

a bond R that pays a cash flow of $50 in six months and another cash flow of $50 at the

end of one year.

17. Bond W has a coupon of 12% (semiannual basis) and a maturity of one year and

is trading at $99.25. If the one-year zero-coupon rate is 13%, what is the half-year

zero-coupon rate?

18. Consider a bond currently trading at $102. The bond has one year left to maturity and a

coupon of 8% on a face value of $100. Suppose coupons are paid semiannually. What

is the ytm of the bond expressed with semiannual compounding? With continuous

compounding?

19. A bond is currently trading at $99.50. The bond has nine months left to maturity and

carries a coupon of 3%. Coupons are paid semiannually (so the first coupon is due

in three months). If the bond’s face value is $100, what is its ytm expressed with

semiannual compounding? With continuous compounding?

20. Consider a bond that pays annual coupons of 7% on a face value of $100. The bond

has two years to maturity. If the ytm of the bond (expressed with annual compound-

ing) is 6.80%, what is its current price? What is the bond’s ytm under continuous

compounding?



Chapter 26 The Term Structure of Interest Rates: Concepts 663

21. A six-month zero-coupon bond is trading at $98, while a one-year 6% coupon bond

is trading at $99. Assume coupons are paid semiannually and that both bonds have a

face value of $100. What are the six-month and one-year discount functions implied

by these prices?

22. A six-month zero-coupon bond has a ytm of 5%, while a one-year 5% coupon bond has

a ytm of 5.50%. Assume ytm’s are expressed with semiannual compounding, coupons

are paid semiannually, and the face value of the bonds is $100.

(a) What are the six-month and one-year discount functions implied by these prices?

(b) What is the price of a one-year 4.50% coupon bond?

23. Suppose six-month and one-year discount functions are 0.9804 and 0.96, respectively.

What are the corresponding zero-coupon rates? What is the forward rate f (0.50, 1)?

(Assume all rates are expressed with continuous compounding.)

24. You are given the following information: the one-year spot rate is 5.50%, the forward

rate f (1, 2) is 6.0%, and the forward rate f (2, 3) is 7%. All rates are expressed in

continuously-compounded terms.

(a) What are the two- and three-year spot rates?

(b) What are the discount function values for one-, two-, and three-year maturities?

25. You are given the following information: the one-year spot rate is 6.50%, the forward

rate f (1, 2) is 7.50%, and the forward rate f (1, 3) is 9%. All rates are expressed in

continuously-compounded terms.

(a) What are the two- and three-year spot rates?

(b) What is the forward rate f (2, 3)?

(c) What are the discount function values for one-, two-, and three-year maturities?

26. If the (continuously-compounded) yield curve is flat at a rate of 5%, answer the following

questions:

(a) Price a 10-year semiannual pay bond, with a 5% coupon.

(b) Compute the duration of this bond.

(c) What is the convexity of this bond?

27. When interest rates are continuously compounded, the price of a unit zero-coupon bond

is defined by the following equation: P(t) = e−zt t where zt is the zero-coupon rate

for maturity t . We also saw that the price of a coupon bond could be represented as

the sum of the prices of the individual components ct (cash flows) of the bond, i.e.

P =
 

t e
−zt t ct . Therefore, the price of the coupon bond is said to be “additive” in its

components.

(a) Is the duration of the coupon bond also additive in its components? Why? Write

down the expression for the duration of the coupon bond using the notation provided

above in this question to justify your answer.

(b) Is convexity additive? Again, provide the algebraic expression for the convexity.

(c) Would your answers to the previous questions change if the compounding basis

was semiannual instead of continuous compounding?
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Appendix 26A

The Raw YTM Data
The table below describes the data from The Wall Street Journal used in Section 26.8.

as of August 27, 2003, The Wall Street Journal

Coupon Month Year Ask Price Type T (months) Ask YTM

2.75 9 2003 100.06 n 1 0.66

2.75 10 2003 100.1 n 2 0.85

4.25 11 2003 100.22 n 3 0.96

3 11 2003 100.17 n 3 0.92

11.875 11 2003 102.13 3 0.56

3.25 12 2003 100.24 n 4 0.98

3 1 2004 100.26 n 5 1.04

4.75 2 2004 101.22 n 6 1.06

5.875 2 2004 102.07 n 6 1.07

3 2 2004 100.31 n 6 1.05

3.625 3 2004 101.16 n 7 1.07

3.375 4 2004 101.16 n 8 1.11

5.25 5 2004 102.29 n 9 1.15

7.25 5 2004 104.1 n 9 1.17

3.25 5 2004 101.18 n 9 1.15

12.375 5 2004 107.3 9 1.16

2.875 6 2004 101.12 n 10 1.2

2.25 7 2004 100.28 n 11 1.28

2.125 8 2004 100.27 n 12 1.28

6 8 2004 104.16 n 12 1.27

7.25 8 2004 105.22 n 12 1.3

13.75 8 2004 111.28 12 1.32

1.875 9 2004 100.19 n 13 1.32

2.125 10 2004 100.27 n 14 1.4

5.875 11 2004 105.09 n 15 1.46

7.875 11 2004 107.22 n 15 1.46

2 11 2004 100.21 n 15 1.47

11.625 11 2004 112.06 15 1.46

1.75 12 2004 100.08 n 16 1.55

1.625 1 2005 100.01 n 17 1.6

7.5 2 2005 108.15 n 18 1.62

1.5 2 2005 99.24 n 18 1.67

1.625 3 2005 99.27 n 19 1.72

1.625 4 2005 99.23 n 20 1.8

6.5 5 2005 107.28 n 21 1.8

6.75 5 2005 108.09 n 21 1.81

1.25 5 2005 98.31 n 21 1.84

12 5 2005 117.09 21 1.72

1.125 6 2005 98.19 n 22 1.9

1.5 7 2005 99.03 n 23 1.97

6.5 8 2005 108.22 n 24 1.97

10.75 8 2005 116.27 24 1.97

5.75 11 2005 107.25 n 27 2.13

5.875 11 2005 108.02 n 27 2.12

5.625 2 2006 108.02 n 30 2.24

9.375 2 2006 116.3 30 2.26

2 5 2006 99.01 n 33 2.37

4.625 5 2006 105.25 n 33 2.41

6.875 5 2006 111.2 n 33 2.42

7 7 2006 112.12 n 35 2.52
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Coupon Month Year Ask Price Type T (months) Ask YTM

2.375 8 2006 99.14 n 36 2.57

6.5 10 2006 111.13 n 38 2.67

3.5 11 2006 102.13 n 39 2.71

3.375 1 2007 108.04 i 41 0.93

6.25 2 2007 111.08 n 42 2.81

6.625 5 2007 112.26 n 45 2.95

4.375 5 2007 104.3 n 45 2.96

3.25 8 2007 100.18 n 48 3.09

6.125 8 2007 111.09 n 48 3.08

3 11 2007 99.06 n 51 3.2

3.625 1 2008 109.27 i 53 1.31

3 2 2008 98.2 n 54 3.33

5.5 2 2008 109.04 n 54 3.29

2.625 5 2008 96.16 n 57 3.43

5.625 5 2008 109.17 n 57 3.42

3.25 8 2008 98.23 n 60 3.53

4.75 11 2008 105.13 n 63 3.6

8.75 11 2008 101.22 63 0.85

3.875 1 2009 111.17 i 65 1.62

5.5 5 2009 109.06 n 69 3.7

9.125 5 2009 105.24 69 1.03

6 8 2009 111.17 n 72 3.82

10.375 11 2009 110.21 75 1.47

4.25 1 2010 114.07 i 77 1.87

6.5 2 2010 114.12 n 78 3.96

11.75 2 2010 114.1 78 1.8

5.75 5 2010 109.31 n 81 4.09

10 5 2010 113.19 81 1.89

12.75 11 2010 122.22 87 2.19

3.5 1 2011 109.26 i 89 2.06

5 2 2011 105.01 n 90 4.21

13.875 5 2011 129.22 93 2.49

5 8 2011 104.2 n 96 4.31

14 11 2011 134.24 99 2.64

3.375 1 2012 108.27 i 101 2.21

4.875 2 2012 103.13 n 102 4.39

3 7 2012 105.29 i 107 2.26

4.375 8 2012 99.13 n 108 4.46

4 11 2012 96.09 n 111 4.49

10.375 11 2012 128 111 3.22

3.875 2 2013 95.05 n 114 4.51

3.625 5 2013 93.15 n 117 4.46

1.875 7 2013 95.29 i 119 2.34

4.25 8 2013 97.24 n 120 4.53

12 8 2013 138.12 120 3.51

13.25 5 2014 149.1 129 3.62

12.5 8 2014 146.15 132 3.73

11.75 11 2014 143.18 135 3.81

11.25 2 2015 157.06 138 4.73

10.625 8 2015 152.19 144 4.8

9.875 11 2015 145.28 147 4.85

9.25 2 2016 140.09 150 4.89

7.25 5 2016 121.13 153 4.96

7.5 11 2016 123.27 159 5.01
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Coupon Month Year Ask Price Type T (months) Ask YTM

8.75 5 2017 136.17 165 5.03

8.875 8 2017 138 168 5.05

9.125 5 2018 141.06 177 5.11

9 11 2018 140.13 183 5.14

8.875 2 2019 139.06 186 5.16

8.125 8 2019 131.06 192 5.22

8.5 2 2020 135.27 198 5.23

8.75 5 2020 138.26 201 5.24

8.75 8 2020 139 204 5.25

7.875 2 2021 129.05 210 5.29

8.125 5 2021 132.07 213 5.3

8.125 8 2021 132.1 216 5.31

8 11 2021 131.04 219 5.31

7.25 8 2022 122.06 228 5.37

7.625 11 2022 126.29 231 5.36

7.125 2 2023 120.25 234 5.39

6.25 8 2023 110.03 240 5.42

7.5 11 2024 126.06 255 5.41

7.625 2 2025 127.3 258 5.41

6.875 8 2025 118.1 264 5.44

6 2 2026 107.03 270 5.45

6.75 8 2026 117.01 276 5.44

6.5 11 2026 113.25 279 5.45

6.625 2 2027 115.17 282 5.44

6.375 8 2027 112.09 288 5.45

6.125 11 2027 108.3 291 5.45

3.625 4 2028 113.31 i 296 2.83

5.5 8 2028 100.21 300 5.45

5.25 11 2028 97.08 303 5.45

5.25 2 2029 97.09 306 5.45

3.875 4 2029 119.01 i 308 2.83

6.125 8 2029 109.16 312 5.44

6.25 5 2030 111.22 321 5.42

5.375 2 2031 101 330 5.3

3.375 4 2032 112.03 344 2.76



Chapter 27
Estimating the Yield
Curve

27.1 Introduction

In the last chapter, we defined three equivalent representations of the term-structure of

interest rates: as a discount function, as a zero-coupon (or yield) curve, and as a forward

curve. Building on this material, the current chapter examines estimation of the yield curve

from market data.

We first examine a simple and intuitively appealing method known as bootstrapping,

which extends the ideas presented in Sections 26.4–26.5 of the last chapter (see especially

Example 26.3). Bootstrapping can, in principle, be used to identify the yield curve, but it

also suffers from some important drawbacks in implementation. One of two alternatives is,

therefore, used in practice.

The first, a method called splining, was proposed originally by J. Huston McCulloch

in the early 1970s as a method of estimating the discount function (see McCulloch, 1971,

1975). Splining attempts to identify different segments of the yield curve and then to “knot”

them together at the common maturity points. Splining is the methodology used by the US

and Japanese central banks to compute their respective treasury yield curves.

The second method was proposed in a paper by Charles Nelson and Alex Siegel in 1987

and extended by Lars Svensson in 1994. The combined model is known variously as the

Nelson-Siegel-Svensson (NSS) model, the extended Nelson and Siegel (1987) model, or

the Svensson (1994) model; we shall refer to it as the NSS model. The NSS model posits a

single functional form for the entire yield curve (actually, the forward rate curve) and looks

to estimate the parameters of this function using regression analysis. The model has been

adopted widely around the world; it is used by the UK, Canada, and most central banks in

Europe to identify treasury yield curves.

27.2 Bootstrapping

Section 26.4 presented a simple example involving two bonds and showed how the values of

the discount function at two points in time could be recovered from the prices of these bonds.

The natural generalization of that procedure is known as “bootstrapping.” In bootstrapping,

we use the shortest maturity bonds to identify the discount function for short maturities and

then use the discount function identified thus far together with longer maturity bonds to

identify the discount function at longer maturities. An example will explain the procedure.

667
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Example 27.1 Consider a market with four bonds each with a face value of $1 at maturity. Assume that
coupons are paid semiannually. Suppose we are given the following information about their
prices:

Bond Price

6-month zero 0.95959
1-year zero 0.91851
18-month 8% coupon 0.98857
24-month 9% coupon 1.00127

By definition, the discount function d(t) is equal to the price of a zero-coupon bond with
maturity t and face value $1. Thus, the given data already contains information on the values
of the discount function for t = 0.5 and t = 1:

d(0.50) = 0.95959 d(1) = 0.91851 (27.1)

The 18-month 8% bond has cash flows of 0.04 at the six-month and one-year points and
a cash flow of 1.04 at the 18-month point. Expressing its price in terms of these cash flows
and the discount function, we have

0.98857 = (0.04) d(0.50) + (0.04) d(1) + (1.04) d(1.50) (27.2)

Substituting for d(0.50) and d(1) from (27.1), and solving for d(1.50), we obtain

d(1.50) = 0.87831 (27.3)

Finally, the 24-month 9% coupon bond has cash flows of 0.045 at the six-month, one-year,
and 18-month points, and a cash flow of 1.045 in 24 months. Thus, we have

1.00127 = (0.045) d(0.50) + (0.045) d(1) + (0.045) d(1.50) + (1.045) d(2) (27.4)

Substituting for d(0.50), d(1), and d(1.50) from (27.1) and (27.3), and solving for d(2), we
find that

d(2) = 0.83946 (27.5)

Thus, we obtain four points on the discount function:

d(0.50) = 0.95959
d(1.00) = 0.91851
d(1.50) = 0.87831
d(2.00) = 0.83946

(27.6)

These values may alternatively be expressed in terms of the spot yield (say, with semi-
annual compounding). As we saw in the previous chapter (see equation (26.9)), semiannu-
ally compounded spot yields r (2) are related to the discount function via

r
(2)(t) = [d(t)]−1/2t − 1 (27.7)

Using this in (27.6), we obtain four points on the yield curve:

r (2)(0.50) = 0.084223

r (2)(1.00) = 0.086835

r (2)(1.50) = 0.088402

r (2)(2.00) = 0.089440

(27.8)

■
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The bootstrapping procedure is even quicker than the above description suggests since

the discount function may be obtained from the bond prices and cash-flow information

through a process involving a single matrix inversion, a calculation that takes no time at all

on modern computers. Appendix 27A elaborates on this.

Problems with Bootstrapping
Bootstrapping is an excellent method in principle, but it suffers from several drawbacks in

application. There are several issues that complicate matters in practice.

One is that the bonds used in the bootstrapping procedure must all have cash flows on the

same set of dates. Moreover, the bonds with these common payment dates must be linearly

independent so that matrix inversion may be performed. Neither condition is easy to ensure

in practice. Further compounding these problems is that in most markets there is only a

limited set of bonds that are liquid and possess high information content and from which

the bonds used in bootstrapping should ideally be chosen.

Secondly, knowing the values of the discount function at the time points t1, . . . , tn does not

tell us how to value cash flows occurring between these dates. For instance, in Example 27.1,

we identified the discount function at six-month intervals from six months to two years.

There is no direct way to obtain from this information the present value of a cash flow of $100

occurring, say, eight months and three days from the present. For this, some interpolation

method (e.g., linear or cubic schemes) must be used.

Finally, it turns out in practice that the discount functions obtained by bootstrapping are

sensitive to which bonds are actually used as inputs. Changing the basis set of bonds tends

to alter the estimated discount functions. One reason is that different bonds are affected to

different extents by such factors as liquidity, and the impact of these factors is reflected in

their prices.

Ideally, we would like a methodology that uses the information present in all available

bonds regardless of their cash-flow dates and whether these dates coincide or not. The two

methods we discuss in the following sections are each motivated by these considerations.

27.3 Splines

If we want to use all the information in the set of bonds available for estimating the yield

curve, a regression-based procedure is the natural way to proceed. That is, we specify a

functional form for the yield curve and then use regression analysis to identify the curve’s

parameters. This will identify the discount function that most closely prices the bonds, i.e.,

that minimizes the pricing error taken over all the bonds.

Splines offer one way to achieve this end. The splining procedure may be summarized

as follows. Let [0, T ] be the horizon over which we wish to estimate the discount function;

that is, 0 is the current time and T is the maturity date of the longest-maturity bond. The

first step in the procedure is to divide the interval [0, T ] into N + 1 subintervals

[T0, T1], [T1, T2], . . . , [TN , TN+1]

where T0 = 0 and TN+1 = T . The intermediate points T1, . . . , TN are called “knot points”

for reasons that will become clear shortly. Over each subinterval [Tn , Tn+1], we specify a

parametric form gn(t) for the discount function. The functions gn(·) are functions solely of
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time t and are called “splines.” Thus, the overall discount function has the form

d(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g0(t), if t ∈ [T0, T1)
...

...

gk(t), if t ∈ [Tk , Tk+1)
...

...

gN (t), if t ∈ [TN , TN+1]

(27.9)

Over different subintervals, we may use different functions gk(·); this is an important

part of the flexibility of the splining procedure. However, to ensure that the entire discount

function is continuous and smooth, we must impose constraints at the end-points of the

intervals. For example, consider the value of the discount function at the time-point Tk .

The point Tk is the lower end-point of the interval [Tk , Tk+1). On this interval, the discount

function is given by the function gk . Thus, the value of the discount function at this point is

gk(Tk)

However, Tk is also the upper end-point of the time interval [Tk−1, Tk), and on this interval,

the discount function is specified by gk−1(·). Thus, the discount function at Tk may also be

taken to be

gk−1(Tk)

With a continuous yield curve, these values should coincide, so we must have

gk−1(Tk) = gk(Tk) (27.10)

Thus, the functions gk−1 and gk must be “knotted” together at their common end-points,

which explains the term “knot-points” to describe T1, . . . , TN .

Once we have specified functional forms for the splines g0, . . . , gN , we estimate the

parameters of these functions using regression analysis.

The choice of mathematical function for the splines usually devolves into two popular

forms. In a polynomial spline, each of the functions gk is a polynomial function of time t .

In an exponential spline, each function is an exponential function of time. The following

sections examine each of these in greater detail and discuss their implementation.

27.4 Polynomial Splines

In a polynomial spline, each function gk is taken to be a polynomial function of time of

order  . Thus, for example, if  = 1, we have linear splines: each gk is of the form

gk(t) = ak + bkt

If  = 2, we have quadratic splines: each gk is of the form

gk(t) = ak + bkt + ckt
2

If  = 3, we have cubic splines: each gk is of the form

gk(t) = ak + bkt + ckt
2 + dkt

3

By far the most commonly used form in practice is cubic.
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Parameters to Be Estimated
In a polynomial spline of degree  , the total number of unknown parameters is ( +1)(N+1)

since there are ( + 1) parameters associated with each  -th degree polynomial spline gk
and there are (N + 1) splines in all. Thus, in principle, there are ( + 1)(N + 1) parameters

to be estimated in the regression analysis. However, as we have seen, some restrictions have

to be imposed on the splines at the knot points. Here are four standard restrictions imposed

in practice:

1. Condition 0: The present value of $1 due immediately is just $1. Thus, we should have

d(0) = 1, which means

g0(0) = 1 (27.11)

2. Condition 1: Continuity of the Discount Function This requires, as we have seen, that

at the knot points we must have

gk(Tk+1) = gk+1(Tk+1), k = 1, . . . , N (27.12)

This places N restrictions on the parameters.

3. Condition 2: Continuity of the Forward Curve From equation (26.17), the instantaneous

forward rate is related to the discount function via

f (t) = −
1

d(t)
d  (t)

Thus, if we want a continuous forward curve, we need d  (·) to be continuous. Thus, the

values of d  (·) also need to be equated at the knot points. That is, we must have:

g 
k(Tk+1) = g 

k+1(Tk+1), for k = 1, . . . , N (27.13)

This places a further N restrictions on the parameters.

4. Condition 3: Smoothness of the Forward Curve Further, if we want the forward curve to

be smooth and not jagged, we also need f  (·) to be continuous. This means the second-

derivative d   (·) of the discount function must be continuous. Equating these second

derivatives at the knot points, we obtain

g  
k (Tk+1) = g  

k+1(Tk+1), for k = 1, . . . , N (27.14)

This too places N restrictions on the parameters.

These four conditions give us a total of 3N + 1 restrictions on the parameters. Thus, the

number of free parameters is only ( + 1)(N + 1) − (3N + 1). For example, if we use linear

splines, the number of parameters to be estimated is 2(N + 1) − (N + 1) = N + 1. (With

linear splines, there are only N + 1 restrictions since Conditions 2 and 3 do not apply. The

reader should think about why.) With quadratic splines, the number of free parameters to be

estimated is 3(N + 1) − (2N + 1) = N + 2. (In this case, Condition 2 is also relevant but

Condition 3 is not. Again, the reader should think about why.) With cubic splines, or splines

of a higher order than 3, all the conditions are relevant, and the number of parameters to be

estimated is 4(N + 1) − (3N + 1) = N + 3.

A Reduced-Form Representation of the Discount Function
Once we have identified the parameters to be estimated, the actual estimation can be carried

out via ordinary least squares or OLS. The first step in this procedure is to represent the dis-

count function in terms of the unknown parameters after incorporating the four restrictions
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discussed above. (We call this the “reduced-form discount function.”) We describe this first

step here.

For simplicity, we look at the case of a single interior knot point denoted τ . It is a simple

matter to extend the arguments to the case of n knot points. We also take the polynomials

to be cubic which is, as mentioned earlier, the most commonly used case in practice.

Let the single knot point be denoted τ . The discount function is then of the form

d(t) =

 
g0(t), t ∈ [0, τ )

g1(t), t ∈ [τ, T ∗]
(27.15)

where

g0(t) = a0 + b0t + c0t
2 + d0t

3

g1(t) = a1 + b1t + c1t
2 + d1t

3
(27.16)

In shorthand notation, we can write the discount function as

d(t) = g0(t) + It≥τ (g1(t) − g0(t)) (27.17)

where It≥τ is the indicator function on t ≥ τ , i.e., the function that takes on the value 1 if

t ≥ τ , and is zero otherwise. Writing the full forms of g0 and g1, this is

d(t) = a0 + b0t + c0t
2 + d0t

3

+ It≥τ [(a1 − a0) + (b1 − b0) t + (c1 − c0) t
2 + (d1 − d0) t

3]
(27.18)

There are eight parameters in total: (a0, b0, c0, d0) and (a1, b1, c1, d1). However, there

are four restrictions imposed on these parameters as described above:

• Condition 0 d(0) = 1. This means g0(0) = 1 so, from (27.16), we must have a0 = 1.

• Condition 1 At the knot point τ , we must have g0(τ ) = g1(τ ). Substituting for g0 and

g1 from (27.16), this results in

(a1 − a0) + (b1 − b0)τ + (c1 − c0)τ
2 + (d1 − d0)τ

3 = 0 (27.19)

• Condition 2 At the knot point τ , we must also have g 
0(τ ) = g 

1(τ ). From expression

(27.16),

g 
i (t) = bi + 2ci t + 3di t

2, i = 1, 2

so this means

(b1 − b0) + 2(c1 − c0) τ + 3(d1 − d0) τ
2 = 0 (27.20)

• Condition 3 Finally, at the knot point τ , we must also have g  
0 (τ ) = g  

1 (τ ). From

expression (27.16),

g  
i (t) = 2ci + 6di t , i = 1, 2

so

(c1 − c0) + 3(d1 − d0) τ = 0 (27.21)

Solving (27.19)–(27.21), we obtain:

a1 − a0 = −(d1 − d0)τ
3 (27.22)

b1 − b0 = 3(d1 − d0) τ
2 (27.23)

c1 − c0 = −3(d1 − d0) τ (27.24)



Chapter 27 Estimating the Yield Curve 673

Now, let e0 = d1 − d0. Substituting (27.22)–(27.24) into the expression (27.18) for the

discount function, the discount function may then be written

d(t) = a0 + b0t + c0t
2 + d0t

3 + e0 It≥τ (t − τ )3 (27.25)

Expression (27.25) is the reduced-form representation of the discount function.

Estimating the Parameters by OLS
Given a discount function, the predicted price of a bond is simply the sum of the cash flows

from the bond weighted by the appropriate discount factors. Consider a bond that has cash

flows of ξt at times t . With the discount function given by (27.25), the theoretical price of

such a bond is P =
 

t ξt d(t)

=
 

t ξt [1 + b0t + c0t
2 + d0t

3 + e0 I(t≥τ ) (t − τ )3]
(27.26)

Rearranging, we obtain

 P −
 
t

ξt = b0X1 + c0X2 + d0X3 + e0X4 (27.27)

where

X1 =
 

t ξt t

X2 =
 

t ξt t
2

X3 =
 

t ξt t
3

X4 =
 

t ξt I(t≥τ ) (t − τ )3

The four free parameters b0, c0, d0, and e0 may now be estimated by regressing (P−
 

ξt )

on X1, X2, X3, and X4. This is a simple OLS regression. Note that we will obtain one

equation for each bond that is traded in the market and that we choose to include in our

analysis. Stacking up all the bonds in the regression and then estimating the parameters by

OLS fits the entire spline model. This fitted model may then be used to obtain the discount

function d(t) for any maturity. Therefore, the spline model allows us to rapidly price any

set of cash flows, irrespective of the date on which the cash flow materializes.

27.5 Exponential Splines

Exponential splines use exponential functions of time as drivers. In an exponential spline,

each function gk takes on the form

gk(t) = ak + bk(1 − e−mt ) + ck(1 − e−2mt ) + dk(1 − e−3mt ) + · · · (27.28)

Here, m > 0 is an additional free parameter. This last parameter has a nice interpretation:

if f (t) denotes the forward curve generated by the splined discount function (27.28), then

it turns out that

m = lim
t→∞

f (t)

so m is the “long forward rate.” Once again, the most popular form is cubic exponentials,

i.e., to have each gk of the form

gk(t) = ak + bk(1 − e−mt ) + ck(1 − e−2mt ) + dk(1 − e−3mt ) (27.29)
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The implementation procedure for exponential splines works in a similar way to polyno-

mial splines with the same restrictions but there are a few differences (notably, the presence

of the parameter m). The details are presented in Appendix 27B.

27.6 Implementation Issues with Splines

Implementation detail always complicates good theory, and splines are no exception. Among

the issues that come up are how many knot points should be employed and where they should

be placed. The main trade-off here lies in balancing smoothness of the function versus the fit

of the function. With a larger number of knot points, there is greater flexibility in the shape

of the discount function, so evidently the fit to bond prices is improved. But the greater

the number of disparate splines that have to be knotted together, the more jagged are the

resulting spot and, especially, forward curves. A common choice is to use a larger number

of knot points in regions in which data is plentiful (typically at the short end of the curve)

and to use fewer knot points where the data gets relatively sparse. As always, there is no

substitute for good judgment.

In practice, to operationalize these concerns, the splined discount function is often es-

timated with an additional penalty function. The penalty is an increasing function of the

number of knot points. Hence, the higher the penalty, the greater smoothness being sought

in the fitting procedure. One widely-used example of implementing spline calibration with

a penalty is to minimize a function comprising the sum of (i) the penalty value and (ii) the

average mean squared error between the fitted curve and the empirical one.

The second aspect that needs to be kept in mind is that there are often issues with the

input data. The quality of the bond price data used to fit the discount functions is highly

variable. All bonds may not be adequately liquid. Usually, short maturity bonds tend to be

more liquid than longer bonds although this may not be true in all markets. For instance, in

Japan, the ten-year bonds tend to be most liquid and play the role of being the “benchmark”

for the rest of the curve. Bond prices may need to be adjusted for coupon effects since there

may be non-standard coupons on many of the bonds. Tax issues, embedded options, etc.,

are all issues that come into play and need to be cleansed in the data before it is taken to a

splining model.

27.7 The Nelson-Siegel-Svensson Approach

In contrast to the spline methods, the Nelson and Siegel (1987) approach (and its extension

by Svensson, 1994) model the forward curve rather than the discount function or spot

yield curve. Moreover, rather than break the curve into segments as splining does, the NSS

technique aims to fit the entire curve with a single function. We describe the Nelson-Siegel

model first and then the extension proposed by Svensson.

Nelson and Siegel (NS) suggested the following parametric form for the forward curve:

f (t) = β0 + β1 exp

 
−
t

θ

 
+ β2

 
t

θ

 
exp

 
−
t

θ

 
(27.30)

The spot rate curve implied by the forward curve (27.30) is given by

r (t) = β0 + (β1 + β2)

 
1 − exp(−t/θ )

t/θ

 
− β2 (exp(−t/θ )) (27.31)
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There are four parameters in the Nelson-Siegel function (27.30): β0, β1, β2, and θ .

As the parameters vary, the shape of the curve changes. Overall, four possible patterns

may be generated by the Nelson-Siegel function: increasing, decreasing, flat, and humped/

U-shaped. The parameters have attractive interpretations in this context:

• β0: As t → ∞, the forward rate f (t) given by (27.30) goes to β0. Thus, β0 is just the

long forward rate. Moreover, a change in β0 results in a parallel shift in the forward

curve. Hence, β0 is also called the “level” parameter.

• β1: At t = 0, the forward rate f (t) under (27.30) is equal to β0 +β1. Thus, β0 +β1 is the

short forward rate. This means β1 is the difference between the short and long forward

rates. This is called the “slope” of the curve.

• β2: This determines the magnitude and direction of the hump in f (t). If β2 > 0, then

the f (t) curve has a hump at θ . If β2 < 0, then the f (t) curve has a U-shape at θ . As

such, β2 is sometimes referred to as the “curvature” parameter.

• θ : This determines the location of the hump or U-shape. The last term of the NS func-

tion has two countervailing terms, (t/θ ), which increases in t , and exp(−t/θ ), which

decreases in t . As t increases (provided θ > 0), the curve rises initially on account of the

first part that increases in t , and then the exponential decay of the second part gathers

greater influence and drives the curve downward. Where this crossover occurs depends

on the size of θ and, hence, it determines the location of the hump.

The Nelson-Siegel model cannot generate more complex forms (e.g., combination of

U-shaped and humped). Motivated by this, Svensson (1994) proposed extending (27.30) by

using two additional parameters and defining

f (t) = β0 + β1 exp(−t/θ ) + β2 [t/θ ] exp(−t/θ )

+β3 [t/ν] exp(−t/ν)
(27.32)

This six-parameter model is variously referred to as the Nelson-Siegel-Svensson (NSS)

model, the Svensson model, or the extended Nelson-Siegel model. The implied spot rate in

this model is given by

r (t) = β0 + β1 {[1 − exp(−t/θ )]/[t/θ ]}

+β2 ({[1 − exp(−t/θ )]/[t/θ ]} − exp(−t/θ ))

+β3 ({[1 − exp(−t/ν)]/[t/ν]} − exp(−t/ν))

(27.33)

The first four parameters have the same interpretation as earlier. The two new parameters

β3 and ν are the obvious analogs of β2 and θ2: they allow for a second hump or U-shape

with ν determining whether this is a hump or U-shape and β3 determining its location.

Implementing the Nelson-Siegel-Svensson Model
Implementing the NSS model involves finding the forward curve that best prices the bonds

in the data set. The typical procedure involves the following steps:

1. Select a vector of starting parameters. This is the initial guess before the numerical search

for the best parameters can begin.

2. Compute the spot rate curve and discount function corresponding to these initial param-

eters.

3. Using the discount function, determine theoretical (or model) coupon bond prices (i.e.,

prices under chosen parameters).

4. Compute the difference between predicted and actual prices.

5. Minimize the squared difference using a numerical procedure.
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The NSS model is a very flexible one, making it widely applicable. By its very definition,

the model results in smooth forward curves unlike the jagged curves that often result under

splines. Moreover, studies looking at changes in yield curves using principal component

analysis have identified three key factors that seem to drive changes in the term structure:

the level, slope, and curvature. The parameters of the NSS model are directly identifiable

with these factors, increasing its appeal.

However, there are some drawbacks to the NSS approach as well. The nonlinearity in θ

and ν may create complications. Frequently, there are multiple local maxima and/or minima,

so several different sets of starting parameters need to be tried. But with six parameters,

specifying k different starting values for each parameter results in a total of k6 starting

values, considerably increasing the required computation.

27.8 Summary

The last chapter introduced the foundational concepts needed to build models for the pricing

of interest-rate derivatives. Most models used in practice take as input the current yield curve

in either the form of the zero-coupon yield curve or the form of the forward curve.

Although the yield curve is a vital input into term-structure modeling and risk-

management and although it is commonplace in financial analysis to refer to “the” yield

curve, the actual construction of the yield curve from the prices of traded bonds is a complex

and sensitive exercise. This chapter has described the two most popular methods used to

construct yield curves: the method of splines, introduced by McCulloch, and the Nelson-

Siegel-Svensson approach. Each approach has its advantages and disadvantages, and each

has its adherents. Virtually all central banks the world over base their Treasury yield curve

construction on one of these two methods.

The following three chapters build on this foundation and describe how to model in

an arbitrage-free manner the evolution of the yield curve to be used for the pricing of

interest-rate derivatives and, more generally, for interest-rate risk management.

27.9 Exercises 1. Write down the Nelson-Siegel model for fitting the forward rate curve. Explain what

the intuition is for each of the parameters of the model.

2. If the yield curve is monotonically increasing with maturity, will the forward curve

increase as well?

3. What are more variable across maturity: zero-coupon rates or forward rates? Explain.

4. The Neslon-Siegel (NS) model was extended by the Nelson-Siegel-Svensson (NSS)

model. What additional feature was provided by the NSS model over the NS model?

5. Using the following data on bond prices, bootstrap the spot rate curve for each half-year.

Assume that the semiannual compounding convention is followed.

Maturity (years) Bond Price (per $100) Bond Coupon (% p.a.)

0.5 100.12 3.02
1.0 99.87 3.44
1.5 100.40 4.00
2.0 98.67 4.20

6. Given two spot rates six months apart, 3% and 4%, interpolate the spot rate four months

after the first spot rate, assuming that each month is uniformly 1/12 of a year. Use three
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different interpolation schemes to do so, and present your answer under each one:

(a) Linear interpolation.

(b) Exponential interpolation.

(c) Logarithmic interpolation.

Each of these schemes is based on an interpolation function that is linear, exponential,

or logarithmic between known spot rates.

7. Which interpolation scheme (linear, exponential, or logarithmic) gives the highest inter-

polated rates? Why? Can you explain the relative ordering of the interpolation schemes

in your answer to the previous question?

8. In practice, bond prices are never available at conveniently spaced intervals. Some inter-

polation scheme is called for. However, by making an assumption of constant forward

rates between non-standard maturities, we can develop a spot rate curve even for unequal

time intervals. In this question, you will undertake a simple exercise of this type.

You are given the following discount bond prices at times t :

t Discount Bond Price

0.70 0.9754
1.32 0.9256
2.11 0.8777

All compounding and discounting are in continuous time.

(a) Assuming that forward rates are constant between these dates, find these forward

rates.

(b) Price a two-year $100 face value bond that pays 10% p.a. semiannually.

9. In the previous question, what type of interpolation scheme is being effectively used:

linear, exponential, or logarithmic?

10. This question requires you to develop zero-coupon and forward rate curves using real-

world data from the US government debt markets. Proceed by implementing the follow-

ing steps:

(a) Collect data for any one recent date on bond prices and yields. There are many

sources for such data, such as The Wall Street Journal, Bloomberg screens, etc. The

Wall Street Journal is the easiest. You will obtain a set of maturities and yields. You

need to get enough data for up to seven years of maturity. Anything from 20 bonds

or more would be appropriate. Arrange them on a spreadsheet in two columns: (1)

Maturity in Years (fractions allowed) from Today and (2) Yield to Maturity (ytm).

Call this Table 1.

(b) Plot the points with maturity on the x-axis and ytm on the y-axis (a scatter plot).

Call this Plot 1.

(c) Fit a curve through the plot. We leave this to your imagination, and you are free to

choose some way to fit a smooth line through this data. Spreadsheets usually provide

a tool to do this. Remember that a straight line is probably not the best way to do

this. Call this curve Plot 2.

On the same plot, fit a curve through the coupon rates and through the bond prices.

Now you have three interpolated curves for yields, coupons, and prices.

(d) With your fitted line for yields, generate a new table of ytms, coupon rates, and

prices, each observation being six months apart. Hence, if your last maturity bond

is of seven years, you will have 14 periods of a half year each. Call this Table 2.
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Remember that your fitted line gives you yield as a function of maturity. Hence, for

maturities t = 0.5, 1, 1.5, 2, . . . , 6.5, 7.0, you will compute matching yields.

(e) Using this table of ytms, prices, and coupons, compute (a) the zero-coupon rates

and (b) forward rates for all maturities in the table. Call this Table 3.

(f) Present plots of the (a) ytm curve, (b) zero-coupon rate curve, and (c) forward rate

curve on the same graph. Call this Plot 3.

(g) Now, as an alternative, show how you can use Table 1 with a regression method to

derive discount factors and zero-coupon rates. Feel free to make any simplifying

assumptions here. Create a table of zero-coupon rates spaced half a year apart. Call

this Table 4.

(h) Plot the zero-coupon curve from Table 3 versus the one from Table 4, and comment.

Call this Plot 4.

Be creative!

11. If you receive a cash flow of $100 at time 1.25 years, explain how you would allocate

this cash flow into two cash flows, A received at one year, and cash flow B received at

1.5 years. Assume that the zero-coupon rate for 1 year is 6% and that for 1.5 years is

6.5%. Assume continuous compounding.

12. Using a cubic splines scheme, fit the following discount factors using just one knot point

at t = 0.5 years.

t d(t)

0.1 0.9934
0.2 0.9845
0.6 0.9456
0.8 0.9267

Find the function that describes the entire discount function for any maturity t .

13. In the previous question, what would your solution be if you were given the following

larger set of points:

t d(t)

0.1 0.9934
0.2 0.9845
0.3 0.9778
0.6 0.9456
0.7 0.9389
0.8 0.9267

14. Fit a cubic splines framework to the following discount function values assuming two

knot points at t = 0.5 and t = 1 years.

t d(t)

0.35 0.97
0.70 0.93
1.05 0.88
1.40 0.82
1.75 0.75

Explain your equations and the number of parameters you need to find.
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15. Write a short Octave program to generalize the solution in the previous question to any

prespecified number of knots points (more than two).

16. Write a general program to compute the coefficients of an exponential cubic spline fitting

model given a parameterm. Then apply this program to a fitting of the following discount

functions with knot points at t = 0.5, 1.0.

t d(t)

0.35 0.97
0.70 0.93
1.05 0.88
1.40 0.82
1.75 0.75

Refit the discount functions to the model and compare your answers against the original

values. Explain.

17. You are provided the following discount function data. Fit it to a cubic exponential system

with knot points every half year until and including t = 4.5 years.

t d(t)

0.25 0.97092
0.50 0.95886
0.75 0.94881
1.00 0.94160
1.25 0.93464
1.50 0.92902
1.75 0.92497
2.00 0.91828
2.25 0.91395
2.50 0.90934
2.75 0.90569
3.00 0.90124
3.25 0.89710
3.50 0.89220
3.75 0.89058
4.00 0.88761
4.25 0.88480
4.50 0.88296
4.75 0.87922
5.00 0.87592

18. The table below presents the forward curve for a range of maturities. Fit the Nelson-

Siegel-Svensson model to this forward curve.

t (in years) f (t) (in % p.a.)

1/12 1.39
1/2 3.02
1.0 3.77
2.0 3.94
3.0 4.10
5.0 4.23
7.0 4.46

10.0 4.58
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Appendix 27A

Bootstrapping by Matrix Inversion
The procedure of bootstrapping to recover the discount function from bond prices and cash

flows was described in Section 27.2. A quicker way to obtain the discount function than by

the method described there is to use matrix inversion. We describe the general procedure

first, and then apply it to the data in the example in Section 27.2. This section requires

knowledge of basic matrix algebra.

Suppose we have n time points t1, . . . , tn and wish to identify the values of the discount

function d(t1), . . . , d(tn) at these points using n bonds. We assume, of course, that as in

Section 27.2, the cash flows of the bonds occur only at the time points t1, . . . , tn .

Denote the time-ti cash flow from the k-th bond by cki . Let Pk denote the current price

of the k-th bond. We have, for each k,

Pk =

n 
i=1

cki d(ti )

In matrix notation, this can be written as⎡⎢⎣ P1

...

Pn

⎤⎥⎦ =

⎡⎢⎣c
1
1 . . . c1

n

...
...

...

cn1 . . . cnn

⎤⎥⎦
⎡⎢⎣ d(t1)

...

d(tn)

⎤⎥⎦
or, in the obvious matrix shorthand, as

P = C · d

It follows from this expression that the n required points are given by

d = C−1 · P

To apply this matrix methodology to the numerical example of Section 27.2, note that in

that example we have

P =

⎡⎢⎢⎢⎣
0.95959

0.91851

0.98857

1.00127

⎤⎥⎥⎥⎦ C =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0.04 0.04 1.04 0

0.045 0.045 0.045 1.045

⎤⎥⎥⎥⎦ d =

⎡⎢⎢⎢⎣
d(0.50)

d(1.00)

d(1.50)

d(2.00)

⎤⎥⎥⎥⎦
Inverting the matrix C , we obtain

C−1 =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

−0.0385 −0.0385 0.9615 0

−0.0414 −0.0414 −0.0414 0.9569

⎤⎥⎥⎥⎦
so

d =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

−0.0385 −0.0385 0.9615 0

−0.0414 −0.0414 −0.0414 0.9569

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.95959

0.91851

0.98857

1.00127

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.95959

0.91851

0.87831

0.83946

⎤⎥⎥⎥⎦
which is, of course, the same set of values we obtained earlier in Section 27.2.
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This is a very easy method to implement on a computer. The only things needed as

inputs are the cash-flow matrix C and the price vector P . The matrix approach enables us

to collapse the step-by-step bootstrapping approach to a single matrix computation, which

on modern computers is conducted in an instant.

To illustrate, we implement this approach in the Octave mathematical programming

language. The commands that are required are as follows:

octave:1> P = [0.95959; 0.91851; 0.98857; 1.00127]

P =

0.95959

0.91851

0.98857

1.00127

octave:2> C = [1 0 0 0; 0 1 0 0; 0.04 0.04 1.04 0; 0.045 0.045 0.045 1.045]

C =

1.00000 0.00000 0.00000 0.00000

0.00000 1.00000 0.00000 0.00000

0.04000 0.04000 1.04000 0.00000

0.04500 0.04500 0.04500 1.04500

octave:3> d = inv(C)*P

d =

0.95959

0.91851

0.87831

0.83946

Since matrix inversion is feasible over exceedingly large cash-flow matrices, undertaking

bootstrapping with linear algebra on a computer is exceedingly fast. Hence, the procedure

may be undertaken several times a day on a trading desk with almost no computational

burden.

Appendix 27B

Implementation with Exponential Splines
Since the implementation procedure for exponential splines is similar to the procedure

we have already visited for polynomial splines, our exposition here is correspondingly

brief. Once again, we proceed by first describing the reduced-form discount function

that obtains when all restrictions have been factored in, and then we discuss estimation

by least squares. As with our exposition of polynomial splines, we keep things simple

by assuming a single knot point τ . The ideas are easily extended to the general case of

N knot points.
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Obtaining the Reduced-Form Discount Function

With a single knot point given by τ , the discount function has the form

d(t) =

 
g0(t), t ∈ [0, τ )

g1(t), t ∈ [τ, T ∗]
(27.34)

where for i = 0, 1, we have

gi (t) = ai + bi (1 − e−mt ) + ci (1 − e−2mt ) + di (1 − e−3mt ) (27.35)

There are nine parameters in all: (a0, b0, c0, d0), (a1, b1, c1, d1), and m. Applying the same

conditions as in the polynomial case results in the following equations:

• Condition 0 g0(0) = 1. This implies a0 = 1.

• Condition 1 g0(τ ) = g1(τ ). This gives us

(a1 − a0) + (b1 − b0)(1 − e−mτ ) + (c1 − c0)(1 − e−2mτ )

+(d1 − d0)(1 − e−3mτ ) = 0
(27.36)

• Condition 2 g 
0(τ ) = g 

1(τ ). This results in

(b1 − b0) + 2(c1 − c0) e
−mτ + 3(d1 − d0) e

−2mτ = 0 (27.37)

• Condition 3 g  
0 (τ ) = g  

1 (τ ). This leads to

(b1 − b0) + 4(c1 − c0) e
−mτ + 9(d1 − d0) e

−2mτ = 0 (27.38)

From Conditions 2 and 3, we can solve for b1 − b0 and c1 − c0 in terms of d1 − d0.

Substituting these into Condition 1 gives us a1 − a0 also in terms of d1 − d0. Summarizing

the results, we obtain the following:

a1 − a0 = (d1 − d0)[e
−3mτ − 3e−2mτ + 3e−mτ − 1]

(27.39)
= (d1 − d0)[e

−mτ − 1]3

b1 − b0 = 3(d1 − d0) e
−2mτ (27.40)

c1 − c0 = −3(d1 − d0) e
−mτ (27.41)

Define e0 = d1 − d0. Since a0 = 1, there are, then, only five unknown free parameters:

b0, c0, d0, e0, and m:

The discount function (27.34) can be written as

d(t) = g0(t) + It≥τ (g1(t) − g0(t))

where, as earlier, It≥τ is the indicator function that takes on the value 1 if t ≥ τ and 0

otherwise. Substituting for g0 and g1 and utilizing the restrictions derived above, we obtain

the desired reduced-form of the discount function:

d(t) = a0 + b0 (1 − e−mt ) + c0 (1 − e−2mt ) + d0 (1 − e−3mt )

+ e0 It≥τ (e−3mτ − 3e−mτ−2mt − 3e−2mτ−mt − e−3mt )
(27.42)

= 1 + b0(1 − e−mt ) + c0(1 − e−2mt ) + d0(1 − e−3mt )

+ e0 It≥τ (e−τ − e−t )3
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Intuition suggests a further restriction that limt→∞ d(t) = 0 or

1 + b0 + c0 + d0 + e0e
−3τ = 0

We can impose this as an additional constraint on the parameters if we wish. In reduced

notation, we can now rewrite (27.42) as

d(t) = 1 + b0Y1t + c0Y2t + d0Y3t + e0Y4t (27.43)

where

Y1t = (1 − e−mt )

Y2t = (1 − e−2mt )

Y3t = (1 − e−3mt )

Y4t = It≥τ (e−τ − e−t )3

Estimating the Parameters

We use bond prices to extract the required parameter values. Consider a bond that has cash

flows of ξt at time t . Under the splined discount function, the theoretical price of such a

bond is  P =
 

t ξt d(t)

=
 

t ξt [1 + b0Y1t + c0Y2t + d0Y3t + e0Y4t ]
(27.44)

Rearranging, we obtain P −
 
t

ξt = b0X1 + c0X2 + d0X3 + e0X4 (27.45)

where

X1 =
 

ξtY1t

X2 =
 

ξtY2t

X3 =
 

ξtY3t

X4 =
 

ξtY4t

The estimation procedure with exponential splines is somewhat more complex than with

polynomial splines on account of the additional parameter m. Since m enters the pricing

equations in a nonlinear way, simple regression techniques cannot be used. The following

procedure may be employed as a solution:

• Fix a “reasonable” initial value ofm. (Use the fact thatm = limt→∞ f (t) to get a ballpark

initial value.)

• For any fixed value of m, the four free parameters b0, c0, d0, and e0 may be estimated by

regressing P −
 

ξt on X1, X2, X3 and X4.

• Optimize over the choice of m.

The criterion for optimizing overm may be quite simple; for example, pick thatm for which

the fit of the regression is high.



Chapter 28
Modeling Term-
Structure Movements

28.1 Introduction

Modeling and pricing interest-rate derivatives requires us to first model the movements in

the underlying driver, the yield curve. The earliest models of term-structure dynamics were

developed in the mid- to late-1970s, but it was only in the 1980s that interest-rate modeling

really took off. The succeeding decades have seen the development of a large number of

models, and, importantly, different approaches to modeling itself.

In this context, this chapter has three immediate objectives. One is to discuss what

exactly is different about term-structure modeling, in particular, what differentiates it from

the modeling of stock price movements. As a corollary, this discussion will also highlight

the kinds of features that are desirable in a good interest-rate model. Second, the chapter

looks to lay the foundation for the detailed study of term-structure modeling under different

approaches that occupy the next two chapters. To this end, wework our way through a simple

example of a one-factor term-structure model in Section 28.4. Third, in Section 28.5, we

introduce and discuss some of the terminology commonly used in this literature, such

as the distinction between the “equilibrium” and “no-arbitrage” classes of term-structure

models.

28.2 Interest-Rate Modeling versus Equity Modeling

To appreciate the differences between equity and term-structure modeling, it is instructive

to begin with an examination of why the Black and Scholes (1973) model of stock price

behavior, one of the most widely used models to represent equity and currency dynamics,

is inadequate as a description of bond-price dynamics. Recall that the Black-Scholes model

involves the following three critical assumptions (among others):

1. The price St of the underlying security follows a lognormal distribution.

2. The interest-rate r is known and constant.

3. The volatility σ of the security’s returns is constant.

Each of these assumptions is inconsistent with the requirements of a term-structure

model. The assumption of a lognormal diffusion implies that the price of the underlying

grows indefinitely over time on average. Bond prices, however, cannot grow indefinitely

since they must revert to par at maturity. For a default-free bond, there are two points in

684
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time where its price is known with certainty: today and at maturity. The lognormal diffusion

fails to capture this key feature.

Second, the assumption of a constant interest rate is obviously problematic, even para-

doxical, in the context of an interest-rate derivatives model, especially if the derivatives we

are looking to price are those like caps and floors, which are directly dependent on interest

rates themselves. Constant interest rates are, of course, also inconsistent with bond prices

being stochastic.

Third, the assumption that volatility is constant means that uncertainty in a stock’s future

price distribution grows with time. But since a bond’s price must revert to par at maturity,

the bond price cannot have constant volatility.

As this comparison suggests, term-structure modeling must be built on a different foun-

dation from that of equities or currencies. Even the choice of the fundamental underlying

variable is an open one. In practice, rather than model the behavior of bond prices directly

(which would be the analog of modeling equity prices), it is far more popular to model

the underlying drivers of bond prices—the interest-rate processes. This enables the pricing,

hedging, and risk-management of various interest-rate and bond derivatives within a single

encompassing framework. Modeling interest rates directly rather than bond prices has a

number of advantages; interest rates can, for example, have constant volatilities.

But while modeling interest rates is more attractive than modeling bond prices directly, it

also introduces some complications. One concerns the dimensionality of the pricing lattice.

In modeling stock prices (or bond prices or exchange rates), we are modeling a single

variable, but in modeling interest rates, we are modeling the entire yield curve. In discrete-

time models, for instance, rather than a single price at each node, we have an entire vector of

interest rates. This means extra care must be taken to keep the models internally consistent

and free of arbitrage. In the next section, we describe a simple example of how inconsistency

could arise in model specification.

28.3 Arbitrage Violations: A Simple Example

In modeling equity prices, we had only one variable—the stock price—to keep track of. In

modeling interest rates, we have the entire yield curve, so there are as many variables as

there are different maturities. To keep the resulting model of stochastic dynamics tractable,

modelers typically assume there are only a small number of “factors” that influence all

interest rates. These factors are also referred to as the model’s state variables. We posit

processes for the evolution of these factors over time and use this to derive term-structure

movements.

The process sounds simple, yet care must be taken to ensure that the model remains

arbitrage-free. In this section, we present a very simple example to illustrate how seemingly

innocuous assumptions could lead to models that permit arbitrage.1 The example combines

two commonly used frameworks. The first is the approach of the binomial model; adapted

here, it means that either the entire term structure moves “up” (all rates increase) or the

entire term structure moves “down” (all rates decrease). This is a particular case of a one-

factor model; a single underlying factor either increases all interest rates or decreases all

of them. The second is the notion of a parallel shift in the yield curve. Parallel shifts in the

yield curve are commonly assumed in risk management exercises such as computing the

duration of a portfolio of bonds.

1 Marti Subrahmanyam showed us this example.
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Example 28.1 Time is discrete and periods are spaced one year apart. The yield curve consists of one-year,
two-year, and three-year zero-coupon yields. The initial yield curve is given by

Z0 =
 

0.10
0.11
0.12

 

After one year, if the yield curve registers an up move, all yields increase by 100 basis points,
so the new yield curve is:

Zu =
 

0.11
0.12
0.13

 

while if the yield curve moves down, all yields drop by 100 basis points:

Zd =
 

0.09
0.10
0.11

 

We will show that this marriage of the binomial model to parallel yield-curve shifts results
in an internally inconsistent model. Assume zero-coupon bonds have a face value of 100
and consider the following strategy. Buy a two-year zero-coupon bond (a two-year “zero”)
today. Finance this purchase by borrowing the required amount for one year at the one-year
rate. At the end of one year, sell the two-year zero and repay the loan.

Under this strategy, there are no net cash flows at inception. After one year, the two-year
zero has become a one-year zero. At this point, the one-year yield, according to the model,
will be either 11% (if all interest rates have gone up) or 9% (if all interest rates have gone
down). Thus, the price of the two-year zero at this point will be either

100

1.11
= 90.10

or

100

1.09
= 91.74

Now, the initial price of the two-year zero is

100

1.112
= 81.16

Therefore, the amount borrowed at inception under the strategy is 81.16. This is a one-
year borrowing and so takes place at the one-year rate of 10%. At the end of one year, the
amount to be repaid is

81.16× 1.10 = 89.276

Since this is less than either possible price of the two-year zero at the end of one year (90.10
or 91.74), the strategy leads to a cash inflow at the end of one year with no outflows. That
is, the model specification admits arbitrage. ■

If even this simple model results in arbitrage, the question arises as to how we can define

term-structure dynamics in an arbitrage-free manner in more general settings. We see this

in more detail over the next two chapters but present in the next section a simple example

of such an arbitrage-free development.
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28.4 A Gentle Introduction to No-Arbitrage Modeling

In this section, we work through a simple discrete-time example to illustrate both term-

structure modeling and option pricing in term-structure models. The example involves a

one-factor model and a binomial structure: in each period, either all interest rates go up in

response to the single factor, or all interest rates go down in response to the factor. As is

the common practice in such models, we take the single factor to be the “short rate,” i.e.,

the interest rate for the lowest maturity. (This is without any loss of generality. Since all

rates move up or down together, changes in the rates are perfectly correlated over each time

period. So any one of the rates may be taken to be representative of the driving factor.) Since

we use a discrete-time framework, the short rate is the one-period rate. A principal objective

of the exercise is to show how, from the movements in the short rate, the movements in bond

prices of all maturities may be extracted in an arbitrage-free manner.

Thus, we take as given an initial yield curve and a description of the dynamics of the

model’s sole factor, the short rate. Using these inputs, we answer two questions: (a) How

do we define the arbitrage-free evolution of the prices of bonds of different maturities?

(b) How do we use the tree of bond prices to price options on bonds? The main question is,

of course, the first one; the second is straightfoward once the trees have been constructed

and the risk-neutral probabilities identified.

An unanswered question in this process is from where the short-rate dynamics come.

There are many possible answers. The Vasicek and Cox-Ingersoll-Ross (CIR) models, dis-

cussed in the next chapter, posit specific continuous-time processes for the short rate, the

former an Ornstein-Uhlenbeck process and the latter a square-root diffusion. In principle,

the parameters of these processesmay be estimated fromhistorical data; alternatively, the pa-

rameters of the processes under the risk-neutral measure may be estimated from derivatives

prices. The Black-Deman-Toy (BDT) model, also discussed in the next chapter, assumes a

lognormal short-rate process and derives the risk-neutral short-rate process from the term

structure of yield volatilities.

Here, we do not concern ourselves with this question. Rather, our objective is to explain

the arbitrage-free derivation of movements in the yield curve from movements in the short

rate. In a sense, the simple model presented here is complementary to the BDT model.

In that model, as we will see, the probabilities of up and down moves are fixed, and the

task is to determine the values of the short rate at the nodes in the binomial tree. Here, the

values of the short rate in the tree are fixed and the objective is to determine the risk-neutral

probabilities consistent with this short-rate tree.

Input Information
We consider a three-year horizon. The time steps on our tree are also spaced one year

apart.

We take the current term structure to be as follows: the yields on one-year, two-year, and

three-year zero-coupon bonds are 10%, 11%, and 12%, respectively. Suppose also that the

short-rate tree evolves according to the information provided in Figure 28.1. That is, one

year from now, the one-year yield will be either 15% or 8.5%; and two years from now, the

one-year yield will be either 18% or 15% (if the yield a year from now is 15%), or it will

be either 15% or 6% (if the one-year yield a year from now is 8.5%).

We will use this input information to identify the arbitrage-free values of bond prices in

the future. More precisely, we will construct

1. A tree of prices for a two-year zero-coupon bond with a face value of 100.
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FIGURE 28.1
Interest-Rate Tree

15%

8.5%

18%

15%

6%

10%

2. A tree of prices for a three-year zero-coupon bond with a face value of 100. From the

prices of the three-year bond a year out, we know what the possible values are for the

two-year rate a year from now.

We will also describe how to use these trees to value options and other derivatives and,

in particular, how to compute risk-neutral probabilities. The arbitrage-free evolution of

bond prices on the interest-rate tree implies a set of risk-neutral probabilities, which we

will extract in our example. Once we have these probabilities, we will use them to price

interest-rate options.

The Two-Year Zero
Deriving the tree of values for a two-year zero in this model is simplicity itself. The initial

price of the two-year zero is

100

(1.11)2
= 81.162

After one year, the two-year zero becomes a one-year zero. The possible one-year yields

at this time are 15% and 8.5%. Therefore, the possible values of a two-year zero after one

year are

100

1.15
= 86.956 &

100

1.085
= 92.165

The tree of values for a two-year zero is presented in Figure 28.2.

Risk-Neutral Probabilities
The next step is to identify the model’s risk-neutral probabilities. By definition, these prob-

abilities must be such that the expected returns on all assets are the same. Thus, we must

identify the probabilities of the up and down moves on the tree to ensure this condition.

In the model described, there are three “primitive” (as opposed to derivative) assets: the

one-year, two-year, and three-year zeros. A one-year zero yields 10% in all circumstances.

After one year, a two-year zero is worth either 86.956 (if the one-year rate moves to 15%)

or 92.165 (if the one-year rate moves to 8.5%).
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FIGURE 28.2
Bond-Price Tree for a

Two-Year Zero

86.956

92.165

100.00

100.00

100.00

81.162

Therefore, the return from investing in a two-year zero for one year is either

86.956− 81.162

81.162
= 7.14%

which obtains if there is an up move in the one-year rate (to 15%), or

92.165− 81.162

81.162
= 13.56%

if the one-year rate moves down to 8.5%. Let p1 be the risk-neutral probability of an up

move in the one-year rate, so (1− p1) is the risk-neutral probability of a down move in the

one-year rate. Thus, the expected returns on the one- and two-year bonds are the same if

and only if

p1(0.0714) + (1− p1)(0.1356) = 0.10

Solving this equation yields

p1 = 0.55

Thus, the risk-neutral probability of the one-year rate moving up in the first period is 0.55,

so the risk-neutral probability of the rate moving down in the first period is 0.45.

The Three-Year Zero
The initial price of a three-year zero is directly computed to be

100

(1.12)3
= 71.178

After two years, the three-year zero is a one-year zero. At this time, there are three values

of the short rate: 18%, 15%, and 6%. The possible values of the three-year zero after two

years are

100

1.18
= 84.746,

100

1.15
= 86.956,

100

1.06
= 94.340

Thus, we obtain the following partial tree of prices for the three-year zero represented in

Figure 28.3.
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FIGURE 28.3
Three-Year Zero Tree

Bu

84.746

100

100

71.178 86.956

Bd

94.340

100

100

As shown in Figure 28.3, we denote the two unknown values of the three-year zero after

one year by Bu and Bd . Let p2 denote the risk-neutral probability of an up move in the short

rate after one year. That is, if the short rate after one year is 15%, p2 is the risk-neutral

probability it goes up to 18%, and (1− p2) is the probability it remains at 15%. Similarly,

if the short rate after one year is 8.5%, p2 is the risk-neutral probability that it goes up to

15% while (1− p2) is the risk-neutral probability it goes down to 6%.

Thus, the short-rate tree now has more periods and is depicted in Figure 28.4. We now

describe how to solve for Bu , Bd , and p2.

First, note that since (a) all bonds must yield the same return over the first year under the

risk-neutral probability p1, (b) p1 = 0.55, and (c) the one-year bond yields 10%, we must

have

(0.55)

 
Bu − 71.178

71.178

 
+ (0.45)

 
Bd − 71.178

71.178

 
= 0.10 (28.1)

FIGURE 28.4
Short-Rate Tree with

Risk-Neutral

Probabilities

13%

8.5%

18%

15%

6%

10%

0.55

p2 

p2 

1 ⫺ p2

1 ⫺ p2

0.45
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Next note that in the up state where the short rate is 13%, the three-year zero yields a return

of either

84.746− Bu

Bu
or

86.956− Bu

Bu

Since the expected return (under the risk-neutral probability) on all bonds must be equal

and a one-year zero yields 15%, we must have

(1− p2)

 
84.746− Bu

Bu

 
+ p2

 
86.956− Bu

Bu

 
= 0.15 (28.2)

Exactly the same argument applied to the down state (where the short rate is 8.5%) yields

(1− p2)

 
86.956− Bd

Bd

 
+ p2

 
94.340− Bd

Bd

 
= 0.085 (28.3)

Combining (28.1)–(28.3), a simple numerical search yields:

Bu = 74.502

Bd = 83.013

p2 = 0.58

The tree of values for the three-year zero and the tree of risk-neutral probabilities are then

depicted in Figures 28.5 and 28.6.

Valuing Options: Examples
The basic set-up for the pricing of options is the tree with interest rates at each node and

risk-neutral probabilities on each branch. On this tree, we may price interest-rate options.

The tree may also be used to generate bond-price trees, which may then be used along with

the risk-neutral probabilities to price bond options. The following examples illustrate the

technique.

FIGURE 28.5
Three-Year Zero Tree

74.502

84.746

100

100

71.178 86.956

83.013

94.340

100

100
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FIGURE 28.6
Short-Rate Tree with

Risk-Neutral

Probabilities

15%

8.5%

10%

0.55

18%

15%

6%

0.58

0.58

0.42

0.42

0.45

Example 28.2 Consider an option to buy a one-year zero for 90.00 one year from now. The asset underlying
this option is a two-year zero since a two-year zero will become a one-year zero after one
year. The values of a one-year zero a year from now will be either 86.956 (in the up state,
where the short rate moves to 15%), or 92.166 (in the down state where the short rate
moves to 8.5%). Therefore, the payoff from the option is zero in the up state, and is 2.166
in the down state.

Since the risk-neutral probability of the up state is 0.55, and the one-year rate is 10%,
the value of the option is obtained by discounting its expected risk-neutral payoffs:

1

1.10
[(0.55)(0) + (0.45)(2.166)] = 0.878

The same value for the option could also have been obtained by using replication or, equiv-
alently, the riskless hedge portfolio method we examined in Chapter 11. Consider the fol-
lowing portfolio:

Short position in the option, position in  units of a two-year zero ( > 0 implies
long position,  < 0 implies short position).

Since the call is worthless in the up state, and is worth 2.166 in the down state, the portfolio’s
value after one year is  

86.956 , in the up state

92.166 − 2.166, in the down state

These values are equal and the portfolio is riskless if and only if

 = 0.4158

Letting C denote the initial value of the call, and noting that 81.162 is the cost of the
two-year zero, the initial cost of the portfolio for  = 0.4158 is

(0.4158)(81.162) − C = 33.743− C

The riskless cash flow from the portfolio after one period is

(86.956)(0.4158) = 36.152

Since the one-year rate is 10%, we must have

33.743− C = 36.152

1.10

so C = 0.878, the same value obtained via risk-neutral pricing. ■
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Example 28.3 Consider a European option to buy a one-year zero at the end of two years for 90.00.
The asset underlying this option is a three-year zero since a three-year zero will be a one-

year zero after two years. From the tree of three-year zero prices, we see that the option’s
value at expiration is

• Zero if the short rate moves up twice.

• Zero if it moves up and then down, or down and then up.

• 4.340 if it moves down twice.

Let C denote the initial value of this option, Cu the option value if the short rate moves
up in the first period, and Cd the option value if the short rate moves down.

We identify Cu first. Note that the short rate at this point is 15%. If the short rate moves
up again in the second period, the option is worth zero, while if it moves down, the option
is also worth zero. So, Cu is obviously also 0.

Similar arguments yield:

Cd =
1

1.085
[(0.58)(0) + (0.42)(4.340)] = 1.686

Finally, since the risk-neutral probability in the first period is 0.55 and the short rate in
the first period is 10%, we obtain:

C = 1

1.10
[(0.55)(0) + (0.45)(1.686)] = 0.683 ■

28.5 “No-Arbitrage” and “Equilibrium” Models

It is common in the term-structure literature to distinguish between the “no-arbitrage” class

of term-structure models and the “equilibrium” class of models. This section discusses

the origin of this terminology and its evolution, looking, in particular, at the distinction

between the no-arbitrage and equilibrium approaches to term-structure modeling (as those

terms were historically used) and the no-arbitrage and equilibrium classes of models (as

those terms are currently used). The section concludes that the demarcation often made

between the equilibrium and no-arbitrage classes of models is not really a useful or even

meaningful one.2

The No-Arbitrage Approach
Early models of the term-structure in finance (Vasicek (1977), Richard (1978), Brennan

and Schwartz (1979), and others) followed Black and Scholes (1973) in adopting a “no-

arbitrage” approach to modeling. Broadly speaking, the no-arbitrage approach works by

(a) identifying portfolios of securities that are equivalent, (b) imposing the condition that

their costs should be the same (or else arbitrage would result), and (c) deriving the conse-

quences of this condition for security prices. For example, in the context of theBlack-Scholes

model, we construct a portfolio of the underlying stock and the risk-free asset that perfectly

replicates the option being priced. Under no-arbitrage, the replicating portfolio and the

option must have the same cost, and this leads to a partial differential equation (pde) that

option prices must obey (see Section 15.3 for details). The option price is determined by

solving this pde.

2 The material of this section is taken from notes on term-structure modeling developed by the first

author in the 1990s for his PhD class at NYU. Related discussions of this terminology also appear in

Back (1996), Pelsser (2000), and elsewhere.
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Section 29.4 explains the working of this approach in the context of term-structure

modeling. Broadly, the procedure is the same: a comparison of portfolios is employed to

obtain a pde that all bond prices must obey. For example, Vasicek (1977) studies a model in

which a single factor drives all changes in the yield curve. This means (as in the one-factor

example we presented earlier in this chapter) that any two bonds can be used to replicate

a third bond. Using this observation, one may derive a restriction on the risk premia of

bonds of different maturities; this is the so-called market price of risk associated with the

model’s single factor (see Appendix 29A for the technical details). From this comes the pde

that must be obeyed by all bond prices. To solve the pde for bond prices, some assumption

concerning the form of the market price of risk is necessary; in his paper, Vasicek takes it

to be a constant. Once such an assumption has been made, the pde is solved to obtain the

bond prices.

The Equilibrium Approach
The no-arbitrage approach works through identifying necessary conditions for the absence

of arbitrage, that is, conditions that are the consequence of assuming arbitrage is not present.

But necessary conditions do not, in themselves, ensure that the models are internally con-

sistent, i.e., that the prices obtained from the model are free of arbitrage.3 For that, we need

sufficient conditions, conditions whose satisfaction guarantees the absence of arbitrage. One

such sufficient condition, as we saw in Section 11C, is that the model possess at least one

risk-neutral measure.

Motivated by this shortcoming of the no-arbitrage approach (among other things), Cox,

Ingersoll, and Ross (1985) proposed a different approach to term-structure modeling that

was based on constructing a full dynamic general equilibrium model in which the prices

of all assets in the model were simultaneously determined. Since a set of prices cannot

represent an equilibrium if arbitrage is possible, their approach guaranteed the absence

of arbitrage (that is, it was sufficient for no-arbitrage). To distinguish this from the no-

arbitrage approach of Vasicek, Brennan and Schwartz, and others, and since it was based

on construction of an underlying economic equilibrium, this was called the “equilibrium

approach” to term-structure modeling.4

No-Arbitrage versus Equilibrium Models
Somewhere in the mid-1980s and especially following the publication of the Ho and Lee

(1986) paper (which is discussed in the next chapter), the use of the terms “no-arbitrage” and

“equilibrium” began to change from characterizing approaches to term-structure modeling

to characterizing groups of models with certain properties.

3 Here is a simple example of a necessary condition whose satisfaction does not ensure the model is

free of arbitrage. Consider the following situation. Suppose we have two risky stocks each following

a binomial process (with parameters (u1, d1) and (u2, d2), respectively), and one riskless asset with

return 1+ r . Then, it is necessary for the absence of arbitrage that we have di < 1+ r < ui for

i = 1, 2, or a trivial arbitrage arises between one of the risky assets and the riskless asset. But this is

clearly not sufficient. As we saw in Appendix 11C, arbitrage will still exist in this setting as long as

condition (11.22) identified there is not satisfied.

4 Although this is not immediately apparent, the CIR equilibrium approach is equivalent to risk-neutral

pricing. Harrison and Kreps (1979) and others have demonstrated in various contexts that if a

system of prices is free of arbitrage, then it is an equilibrium for some specification of endowments

and preferences, while conversely an equilibrium is always free of arbitrage. Thus, a model that does

not permit arbitrage is exactly the same thing as an equilibrium model. Modulo some technical

issues, the absence of arbitrage is equivalent to the existence of a risk-neutral measure, so the

equilibrium approach and risk-neutral pricing are the same thing.
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The Ho-Lee paper was the first paper to construct an arbitrage-free model of term-

structure movements that was also consistent with any given initial term structure, i.e.,

whose model-implied bond prices agreed with the initial prices of these bonds for bonds of

all maturities. This was significant because existing models of the term structure then were

not capable of generating prices to match the entire yield curve. In the Vasicek model, for

example, there are only four free model parameters: the long-run mean of the short rate θ ,

the speed of reversion κ to this long-run mean, the volatility σ of the fluctuations in the

short rate, and the market price of risk λ associated with the model’s single factor. With

only four free parameters, the model can match the initial prices of only four bonds, or

equivalently only four points on a given initial yield curve. For anyone using the model to

trade, this is not a desirable feature: If the model does not price correctly even the current

set of available bonds, any predictions about the future values of these bonds or estimates

of the prices of options on these bonds must evidently be taken with a pinch of salt.

Following the publication of the Ho-Lee paper, a number of other papers followed that

too exactly matched the given initial yield curve by construction. Such models came to be

known as the class of no-arbitrage models. In contradistinction, models such as Vasicek,

CIR, and others that did not match the entire initial yield curve were called equilibrium

models.

From a conceptual standpoint, how important or meaningful is the distinction between

equilibrium and no-arbitragemodels?Here is a hint: if an equilibriummodel such asVasicek

is capable of matching only four points on the yield curve because it has only four free

parameters, and the Ho-Lee model is capable of matching the entire yield curve, then the

Ho-Lee model must have a very large number of free parameters. This is, in fact, the case.

No-arbitrage models “work” by adding a large number of free parameters to a given model,

sufficiently many to be able to match any given initial yield curve. These parameters are

typically added in the market price(s) of risk associated with the model’s factor(s), although

other parameters of the model may be made time dependent as well. A pair of examples,

using two of the best-known members of the no-arbitrage class of models, the Ho-Lee and

Hull-White models, will help illustrate this point. The examples use the continuous-time

notation and terminology introduced in Chapter 15 (see especially Section 15.2).

Example 28.4 The Merton and Ho-Lee Models
An early model of the term structure was described in Merton (1973). In Merton’s model,
the process for the model’s single factor, the short rate, evolves according to an arithmetic
Brownian motion process as

drt = α dt + β dWt (28.4)

where Wt is a Wiener process and α and β are constants. If λ denotes the market price of
risk associated with the model’s single factor, then it can be shown that the risk-neutral
short-rate process in Merton’s model5 is given by

drt = (α − βλ) dt + β d  Wt (28.5)

where  Wt is a Wiener process under the risk-neutral measure. Suppose we take λ to be a
constant as in the Vasicek model. Then with only three free parameters (α, β, and λ), we
can match at most three points on a given arbitrary initial yield curve. This is the typical
dilemma that equilibrium term-structure models face.

5 See Section 29.4 for a general representation of the risk-neutral short-rate process in one-factor

models.
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The continuous-time version of the Ho-Leemodel is also a single factormodel with exactly
the process (28.4) for the short rate. But rather than assuming that the market price of risk
λ is a constant, we assume that λ is a deterministic function of time λt. The drift of rt under
the risk-neutral measure now becomes αt = α − βλt, so (28.5) is replaced by

drt = αt dt + β d  Wt (28.6)

Equation (28.6) provides us with the extra requisite number of free parameters λt to fit
any given initial yield curve. Specifically, remember that the price of any security is the
discounted expectation (under the risk-neutral measure) of its payoff. Therefore, the price
of a zero-coupon bond that pays $1 at time t is simply E [βT · 1], where βT , the discount
factor for horizon T , is given by

βT = exp

 
−
 T

0

rt dt

 
(28.7)

Each βt depends on the values of λs , 0 ≤ s ≤ t. By beginning at the lowest maturities and
working our way up, we can identify the λt’s required to match the model implied prices to
the actual prices.

Thus, the Ho-Lee model, which is a member of the no-arbitrage class of models, is iden-
tical to the Merton model, a member of the equilibrium class, except for the specifications
concerning the market prices of risk. ■

Example 28.5 The Vasicek and Hull-White Models
The Vasicek model uses as its single factor a short-rate process that evolves according to the
specification

drt = κ(θ − rt) dt + σ dWt (28.8)

Here, θ is the long-run mean of the short-rate process. If rt < θ , then the drift of the short-
rate process is positive and the short rate increases towards θ ; if rt > θ , then the drift of the
short rate is negative and the short rate decreases towards θ . The speed with which the rate
reverts to its long-term mean is regulated by the parameter κ. (All subsequent factor models
of the term structure follow Vasicek in using a mean-reverting drift term of this form.) The
parameter σ represents the noise in the evolution of the short-rate process.

When risk-neutralized, the market price of risk λ enters the process. The risk-neutral short-
rate process in the Vasicek model has the form

drt = (a− κrt) dt + σ d  Wt (28.9)

where a = κθ−σλ. If we assume λ is a constant, then there are only four free parameters—κ,
θ , σ , and λ—with which to match the yield curve, so at most four points on the curve can
be matched exactly.

Hull and White (1990) propose taking λ to be a deterministic function of time, λt. This
results in the risk-neutralized short-rate process having the form

drt = (at − κrt) dt + σ d  Wt (28.10)

(Actually, Hull and White directly propose the risk-neutral process (28.10) but this follows
from (28.8) only if the market price of risk is a deterministic function of time.) The model
now has the requisite number of extra free parameters to fit any given initial yield curve;
the λt’s that achieve this are identified precisely as explained in Example 28.4. ■

As these two examples demonstrate, there is not really a useful distinction between

no-arbitrage and equilibrium models of the term structure. Every equilibrium model has

its no-arbitrage counterpart. In particular, that no-arbitrage models fit the term structure
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exactly is nothing more than the consequence of the fact that they use a very much larger set

of free parameters, and does not indicate their superiority to equilibrium models. Finally,

it should be noted that when no-arbitrage models are fit to a given initial yield curve each

day, there is no reason to expect that the λt ’s identified on one day will be the same the next

day. That is, the model may change in inconsistent ways from one day to the next. This is an

undoubted shortcoming of the no-arbitrage class of models but one that we must tolerate if

we wish to fit yield curves exactly.

28.6 Summary

This chapter has sought to meet three objectives: (a) to discuss the extra subtleties that enter

into interest rate modeling that are not present in modeling equity or currency derivatives,

(b) to introduce term-structure modeling in the context of a simple one-factor example, and

(c) to discuss some commonly-used terminology in this literature, such as the distinction

between the equilibrium and no-arbitrage classes of models.

Regarding (b), the exampleweworked through in Section 28.4 took themovements in the

short rate (the model’s sole factor) as given andworked out the risk-neutral probabilities that

were consistent with these movements. In practice, the alternative of fixing the risk-neutral

probabilities and working out the drifts (and, therefore, future values of the short rate) that

are consistent with these probabilities is more popular. We illustrate this alternative in the

next chapter by studying two of the best-known discrete-time one-factor models: Ho and

Lee (1986) and Black, Derman, and Toy (1990).

28.7 Exercises 1. Why is the Black-Scholes model inappropriate for pricing options on bonds?

2. You are given a two-period tree of zero-coupon interest rates with each period on the

tree of half-year and a semiannual compounding convention applies in the model. Find

the initial (at t = 0) yield-to-maturities for half- and one-year maturities if the current

half-year spot rate is 6%. The half-year spot rate in a half-year is expected to be either

6.5% or 5.5% with equal probability. The one-year bond has a coupon of 6.3%.

3. In the previous question, find the initial curve of zero-coupon rates and of the forward

rates for periods of one-half year and one year.

4. Given the tree of spot rates and probabilities, is it possible to find the entire tree of

forward rates or is additional information required?

5. Explain why modeling the movement of the term structure is different than modeling

the movement of equity prices.

6. You are a trader in a bond fund. The current yield curve is flat at 6%. Assume you

decide to model the yield curve movement as a discrete annual process. Hence, at the

end of one year, the yield curve moves up or down. Your in-house economist tells you

that the yield curve will become either a flat 8% or a flat 3% with equal risk-neutral

probabilities. Based on these numbers, just as you are about to make a trade, the young

quant you hired to bring you sandwiches at lunch suddenly says that there is a huge

problem with the economist’s view. Is he right?

7. Is it possible that from some node on a binomial tree of interest rates the ensuing two

nodes both have higher interest rates than the current node? Construct an example to

show that this is possible or explain why it is impossible.
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8. On a binomial tree of interest rates, the two-year zero-coupon bond after one year has

prices 94.30 (up node) and 98.10 (down node). The one-year rate at t = 0 is 4%. If the

one-year cap option (with a notional of $100) on the interest rate with a strike of 3%

sells for $1, what is the price of the two-year zero-coupon bond? Assume simple annual

compounding.

9. If the initial rate at any node at time t on a binomial interest rate tree is r1 and

the two ensuing nodes after time h = 1 year are ru (with probability p) and rd
(with probability 1 − p), then given that the two-period zero-coupon rate is r2, write

down the analytic expression for the probability p assuming simple compounding for

each period.

10. The current one-year and two-year spot rates are 6% and 7%, respectively. Compounding

is annual. The model you are using prescribes that in a risk-neutral setting, the next

period’s one-year interest rates will be either 8% or 5%. No risk-neutral probabilities are

given. Does the modeling situation present an arbitrage? Why?

11. The initial spot rate curve (annual compounding) for three years is given as

0.060

0.065

0.070

After an assessment of volatilities and interest rate propagation in the future, your quant

team provides the following tree of spot rates at times 0, 1, 2 years:

0.06 0.08 0.11

0.05 0.07

0.03

This means that from a starting rate of 6%, one-year spot rates will move up to 8% or

down to 5%. From 8%, the move will be to 11% or 7%, etc.

What risk-neutral probabilities should be put on the tree so that the tree is free from

arbitrage? You are given one restriction, i.e., the probability of an up move in rates

may be different in each time period but is the same across all nodes in any given time

period.

12. Based on the computations in the previous problem, what general scheme for computing

risk-neutral probabilities at each period can you think of?

13. Can you explain what happens to the tree model in the previous two questions if we

lift the restriction that pt must be the same at all nodes in time period t? This means

that we do not require p(t , j) = pt for all nodes j . Does this result in an arbitrage

violation?

14. You are given the following annual step, discrete-time interest rate tree, where all

branches on the tree occur with probability of one-half.

0.04 0.06 0.08

0.03 0.05

0.01

Find the initial spot rate curve for three years.

15. A popular equilibrium model of interest rates is the Cox, Ingersoll, and Ross (1985)

model:

drt = κ(θ − rt ) dt + σ
√
rt d Zt



Chapter 28 Modeling Term-Structure Movements 699

Answer the following questions:

(a) How many free parameters are available to fit the model to the term structure of

interest rates?

(b) As a trader, would this model be suitable for yield curve arbitrage?

16. In theCox, Ingersoll, andRoss (1985)model (see the previous question),what adjustment

is required to make the model exactly fit the entire term structure of interest rates?

17. Can the mean-reversion rate κ in an interest-rate model be

(a) Less than 0?

(b) Greater than 1?



Chapter 29
Factor Models of the
Term Structure

29.1 Overview

This chapter has two parts to it that are largely independent of each other. The first part

presents in some detail two discrete-time one-factor models of the term structure, expanding

greatly on the example in Section 28.4. The second part describes general factor models of

the term structure in a continuous-time setting, introducing as special cases of the setting

the classic models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985), among others.

Early models of the term structure were developed in continuous-time settings. Discrete-

time tree-basedmodelswere first studied only in themid-1980s. The twomodels that occupy

the first part of this chapter are two of the earliest and best-known discrete-time models. The

first is the “BDT model,” the one-factor lognormal short-rate model developed by Black,

Derman, and Toy (1990). The second is the model of Ho and Lee (1986), which was not just

the first detailed tree-based interest-rate model but also the first representative of what came

to be called the no-arbitrage class of models (to which BDT also belongs; see Section 28.5

for the definition of this class of models).

While the BDT and Ho-Lee models are of limited use in practice today, we provide

detailed presentations of them for two reasons, both pedagogical. First, they illustrate well

and in relatively simple contexts how factor models recursively build interest-rate trees in an

arbitrage-free fashion. Second, they show how the risk-neutral pricing arguments introduced

earlier in the book in the context of equity options are extended to term-structure models

and the pricing of bond options. As with equity trees, the interest-rate trees we build in

this chapter will be recombining binomial trees. Of course, dimensionality is an important

difference between interest-rate trees and equity trees. Whereas the equity tree depicted the

movement of a single stock price, in the case of interest rates, the entire term structure of

interest rates is modeled on the tree.

Readers not interested in the mechanics of tree-construction may proceed directly to the

second part of this chapter beginningwith Section 29.4. This second part ismore general and

more technical, and focuses on a continuous-time setting. We begin by looking at general

one-factor models and discuss solving for bond prices in these models using both a partial

differential equation (pde) approach and a risk-neutral valuation approach. Closed-form

solutions for specific models are also described here. Following this, we look at multifactor

term-structure models. The chapter concludes with the important result of Duffie and Kan

(1996) on affine factor models.

700



Chapter 29 Factor Models of the Term Structure 701

29.2 The Black-Derman-Toy Model

The BDT paper aims to develop an arbitrage-free interest-rate model that is consistent with

the current term structure of interest rates and volatilities. The no-arbitrage condition is

satisfied by showing the presence of a risk-neutral measure in the model. Indeed, the BDT

model, like the Ho-Lee model, works directly in the risk-neutral world and develops the

interest-rate tree under this measure. Since the developed tree is, by construction, consistent

with a risk-neutral measure, arbitrage cannot exist. The challenge is to ensure the tree is

consistent with the given term structure of rates and volatilities.

To this end, BDT posit a single-factor, discrete-time model of the interest-rate process.

Since themodel is driven by a single factor, all bondpricemovements are perfectly correlated

over each period; in particular, all yields go up together or they all go down together. The

model’s single factor is identifiedwith the short rate, as it is in virtually all one-factormodels.

The short rate itself is assumed to follow a lognormal distribution on a binomial tree. If

σ denotes the volatility of the short rate at the current node in the binomial tree and if ru
and rd denote the two possible values of the short rate one period hence, then the volatility

is related to ru and rd by

σ = 1

2
ln

 
ru

rd

 
(29.1)

Why this particular form? Because if we assume that the probabilities of the up and down

moves are each equal to 1/2 (aswe shall in the risk-neutralworld), then the standard deviation

of the log of one-period-hence short rates is provided precisely by (29.1). We shall refer

to (29.1) as the “volatility equation.”

While reminiscent of the Cox-Ross-Rubinstein binomial model for equities, there is one

important difference between the BDT lognormal short-rate model and the CRR lognormal

model for equities. In the latter, volatility was constant over the tree. In the BDT model, the

term structure of zero-coupon rates has a corresponding term structure of volatilities and

short maturity rates may have different volatilities than longer maturity rates. Therefore,

the branching process in the tree can differ from node to node. Of course, the lognormal

assumption ensures that interest rates can never become negative.

The evolution of interest rates in the BDT binomial tree is determined using the current

term structure of interest rates and volatilities as inputs in a manner described below.

Building the Interest-Rate Tree: The Procedure
Under the risk-neutral probabilities, all assets must earn the same expected rate of return

over each period, which is equal to the short rate over that period. We set the risk-neutral

probability of an up move in the interest rate at any node to be equal to 1/2, and identify

the tree of short rates that is consistent with these probabilities as well as the other input

information on current rates and volatilities.

A recursive procedure is required to build up the pricing lattice in short rates. Thematurity

of this lattice extends to that of the longest underlying bond on which an option may be

priced. Using the short-rate volatilities and the risk-neutral probabilities, a bootstrapping

procedure is employed to recover the short rate tree. Specifically:

• The initial short rate r and a two-year zero-coupon bond are used to determine the

possible short rates ru and rd after one period.

• The rates r , ru , and rd are used with a three-year zero-coupon bond to determine the

possible short rates ruu , rud , and rdd after two periods.
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• Inductively, the procedure is completed with each step relying on all the previous steps

and the price and yield volatility of an appropriate-maturity zero-coupon bond.

An important additional extra assumption that is used in this process is that volatilities

depend on time but not on state. That is, the volatility at any node in a given time period is

the same as at any other node in that same time period. The procedure is illustrated below

in a numerical example that is taken from the original BDT paper.

Building the Tree: An Example
We will illustrate the BDT procedure in a three period example in which each period

represents one year. Consider the following data:

Maturity Zero-Coupon Rate Volatility
(Years) (%) (%)

1 10 20
2 11 19
3 12 18

This data is the first three years of the five-year input data used in the original BDT

paper. We use this data to construct the tree out to three years. Interest rates in the model

are quoted in discrete terms with annual compounding.

As a first step, we use the zero-coupon rates to calculate the prices of zero-coupon bonds

of various maturities. The current price of a one-year zero-coupon bond is

100

1.10
= 90.909

The current price of a two-year zero is

100

(1.11)2
= 81.162

The current price of a three-year zero is

100

(1.12)3
= 71.178

The following notation is used to denote the evolution of the short rate: r will denote

the initial short rate; ru and rd will denote the possible values of the short rate one year

hence and ruu , rud , and rdd possible values of the short rate two years hence. We are given

r = 10%. The remaining values are to be identified.

Step 1: Identifying ru and rd

After one year, a two-year zero becomes a one-year zero. Its value at this time is the face

value of 100 discounted back by the prevailing one-year rate at this point (which is either

ru or rd ):

100

1 + ru
and

100

1 + rd
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Therefore, the gross expected return (under the risk-neutral probabilities) from investing

in a two-year zero for one year is

1 + return = 1

81.162

 
1

2

 
100

1 + ru

 
+ 1

2

 
100

1 + rd

  
This must equal the one-year risk-free rate of 10%, so:

1.10 = 1

81.162

 
1

2

 
100

1 + ru

 
+ 1

2

 
100

1 + rd

  
This is one equation in the two unknowns ru and rd . A second equation is required. For this,

we use the information given that the two-year yield volatility is 19%. A two-year zero is

a one-year zero after one year. At this point, its yield is either ru or rd . Therefore, its yield

volatility is 1
2
ln(ru/rd ), and we obtain as our second equation:

1

2
ln

 
ru

rd

 
= 0.19

Solving the two equations, we obtain

ru = 14.32% and rd = 9.79%

Step 2: Identifying ruu, rud, and rdd

In the second step, we use r , ru , and rd with a three-year zero-coupon bond to identify ruu ,

rud , and rdd . As a first step, we compute the value of the three-year bond after two years. At

this point, the three-year zero has become a one-year zero, so its possible values are

Buu = 100

1 + ruu

Bud = 100

1 + rud

Bdd = 100

1 + rdd

A year before this, the original three-year zero was a two-year zero. Let Bu and Bd denote

its two possible values at this stage. From the risk-neutral pricing principle, these values are

the discounted expectation of its future values, so:

Bu = 1

1 + ru

 
1

2
Buu + 1

2
Bud

 

Bd = 1

1 + rd

 
1

2
Bud + 1

2
Bdd

 
Taking expectations of these values under the risk-neutral probability and discounting back

at the risk-free rate of 10%, we should obtain the initial price of the three-year zero:

71.178 = 1

1.10

 
1

2
Bu + 1

2
Bd
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We can now substitute (a) first for Bu and Bd in terms of Buu , Bud , and Bdd from the

earlier expressions, and then (b) for Buu , Bud , and Bdd in terms of ruu , rud , and rdd , to obtain

a single (large and unwieldy) expression involving the three unknowns ruu , rud , and rdd :

71.178 = 1

1.10

 
1

2

 
1

2

 
1

2
.

100

1 + ruu
+ 1

2
.

100

1 + rud

  

+ 1

2

 
1

2

 
1

2
.

100

1 + rud
+ 1

2
.

100

1 + rdd

   
We need two more equations to identify the three unknowns. For a second equation, we

appeal again to the volatility equation. Consider the three-year zero again. If state u occurs

after one period, the three-year zero is worth Bu . At maturity, it is worth 100. Therefore, the

yield of the three-year zero in state u will be

yu =
  

(100/Bu)
 

− 1

The square root is used since there are still two periods remaining on the three-year bond

at this point.

Similarly, the yield of the three-year zero in state d is

yd =
  

(100/Bd )
 

− 1

Since the current volatility of the three-year yield is given to be 0.18, we obtain our second

equation:

1

2
ln

 
yu

yd

 
= 0.18

Finally, recall the assumption that the volatility of the short rate can at most depend on

time. This means we must have

1

2
ln

 
ruu

rud

 
= 1

2
ln

 
rud

rdd

 
This provides us with our final equation in the three unknowns:

(rud )
2 = rdd · ruu

Solving these equations, we finally obtain

ruu = 19.42%

rud = 13.77%

rdd = 9.76%

Summing up, we have the interest-rate tree in Figure 29.1.

Bond Price Trees
The evolution of the prices of bonds of different maturities may be easily obtained from the

tree of short rates. Figure 29.2 presents the price tree for the one-year zero-coupon bond.

Figures 29.3 and 29.4 present the price trees for the two-year and three-year zero-coupon

bonds, respectively.
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FIGURE 29.1
The Interest-Rate Tree

in the BDT Model

14.32%

9.79%

19.42%

13.77%

9.76%

10%

FIGURE 29.2
Price Tree for the

One-Year

Zero-Coupon Bond

100

100

90.909

FIGURE 29.3
Price Tree for the

Two-Year

Zero-Coupon Bond

87.475

91.082

100

100

100

81.16
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FIGURE 29.4
Price Tree for the

Three-Year

Zero-Coupon Bond

75.070

83.739

100

100

100

71.178 87.899

81.521

91.108

100

Pricing Options
Establishing the interest-rate tree enables the pricing of options on interest rates such as

caps and floors. The corresponding bond-price trees allow the pricing of call and put options

on bonds. Both sets of trees enable the pricing of many other complex derivatives based on

the term structure of interest rates. We illustrate derivative pricing on the tree with some

simple examples.

Example 29.1 Consider a call option that gives its holder the right to buy a one-year zero in one year for
$90. The underlying asset in this case (on which the call is written) is a two-year zero since
a two-year zero will be a one-year zero after one year.

The possible prices of the two-year zero after one year are Bu = 87.475 and Bd = 91.082.
Therefore, the possible values of the call after one year are Cu = 0 and Cd = 1.082.

As usual, the arbitrage-free price of the option may be obtained by taking the discounted
expectation of the option payoffs under the risk-neutral probability. The risk-neutral proba-
bility of an up move is 1/2. The rate of interest over the one-year period is 10%. Therefore,
the current value of the option is

C = 1

1.10

 
1

2
(0) + 1

2
(1.082)

 
or C = 0.4917. The option pricing tree is presented in Figure 29.5. ■

Example 29.2 Consider a put option that gives its holder the right to sell a one-year zero for $90 in two
years. The asset underlying this option is a three-year zero, since a three-year zero will be a
one-year zero in two years.

We conduct the analysis in the following steps.

• Let P denote the current value of the option.

• Let Pu and Pd denote its possible values in one year.

• Let Puu, Pud, and Pdd denote its possible values after two years.
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FIGURE 29.5
Pricing Tree for a

Bond Call Option

r  ⫽ 0.10

B ⫽ 81.16

C ⫽ 0.4917

0.5

0.5

ru  ⫽ 0.1432

Bu ⫽ 87.475

Cu ⫽ 0

rd  ⫽ 0.0979

Bd ⫽ 91.082

Cd ⫽ 1.082

After two years, the possible prices of the three-year zero are

Buu = 83.739

Bud = 87.899

Bdd = 91.108

Therefore, the option values at the end of two years are

Puu = 6.261

Pud = 2.101

Pdd = 0.0

By the usual risk-neutral pricing arguments, we must have

Pu = 1

ru

 
1

2
Puu + 1

2
Pud

 

Pd = 1

rd

 
1

2
Pud + 1

2
Pdd

 
Substituting for ru, rd, Puu, Pud, and Pdd, we obtain

Pu = 3.157 Pd = 0.957

Finally, we must also have

P = 1

r

 
1

2
Pu + 1

2
Pd

 
Substituting for r , Pu, and Pd, we finally obtain

P = 1.435

The pricing tree for this put option is depicted in Figure 29.6. ■
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FIGURE 29.6
Pricing Tree for a Put

Option on a Bond

Bd ⫽ 81.521

Pd ⫽ 0.957

Bu ⫽ 75.070

Pu ⫽ 3.157

Buu ⫽ 83.739

Puu ⫽ 6.261

Bdd ⫽ 91.108

Pdd ⫽ 0

Bud ⫽ 87.899

Pud ⫽ 2.101
B ⫽ 71.178

P ⫽ 1.435

Example 29.3 Many bonds in the marketplace are callable at the option of the issuer. These bonds are
usually coupon paying as well. For this third example in the BDT setting, we consider a
three-year bond with a coupon rate of 10%. Let’s say that this bond is callable at the end
of the second year at par, i.e., the issuer can repay the bond at a price of 100.

In order to price this callable bond, we need to overlay its prices on the interest-rate
tree, previously depicted in Figure 29.1. We begin by generating the pricing tree for the
noncallable coupon bond, and subsequently, we modify it for the call feature. At the end
of three years, the cash flow on this bond is 110, which is the principal plus the coupon.
Therefore, we may write:

Buuu = Buud = Budd = Bddd = 110

Using the rates on the tree, we can obtain the prices of this bond at the end of year two.
As before, we discount the expected future value of the bond (based on the risk-neutral
probabilities) using the three interest rates that may transpire at the end of two years. The
calculations are as follows:

Buu = 1

1.1942

 
1

2
100 + 1

2
100 + 10

 
= 92.113

Bud = 1

1.1377

 
1

2
100 + 1

2
100 + 10

 
= 96.689

Bdd = 1

1.0976

 
1

2
100 + 1

2
100 + 10

 
= 100.219

Note that the pricing equation accounted for the principal and the interest received at the
end of the third year.

These three prices depict the values of the bond before the receipt of the coupon interest
at the end of year two. In order to compute the bond prices at the end of year one, we
add the coupon interest to these prices before discounting their value back to the previous
period. At the end of year one, the bond may take two values:

Bu = 1

1.1432

 
1

2
92.113 + 1

2
96.689 + 10

 
= 91.325

Bd = 1

1.0979

 
1

2
96.689 + 1

2
100.219 + 10

 
= 98.782
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FIGURE 29.7
Price Tree for a

Noncallable Coupon

Bond

91.325

92.113

110

110

110

95.503 96.689

98.782

100.219

110

Again, notice that the coupon is added to the expected cash flow before discounting. Finally,
these values may be discounted back to the start of the tree, i.e.,

B = 1

1.10

 
1

2
91.242 + 1

2
98.864 + 10

 
= 95.503

The tree for this bond is presented in Figure 29.7.
Note that this coupon bond does not trade at par even though at inception, the coupon

rate equals the short rate. This is because the interest-rate tree tends to be skewed upwards
over time, resulting in a discounting of the bonds’ cash flows at rates higher than the
coupon rate. The upward bias in interest rates comes from the lognormal assumption of the
BDT model; unlike most other one-factor models, the BDT model does not impose mean
reversion on the drift term of the short rate.

In order to price the bond with the call strike price at par (ex-coupon), we examine the
tree period by period and ascertain at which nodes the price of the bond is greater than
100. By ex-coupon strike, we mean that the price of the bond without the current coupon is
compared to the strike price of the call. It is at these nodes that the issuer will call the bond.
From Figure 29.7, it is clear that these nodes reside at the lower end of the tree where bond
prices are highest because interest rates are low. In this example, at the end of two years,
there is only one tree node at which the bond trades above par, i.e., at Bdd = 100.219.
Since the issuer will call the bond at this node, we reset the value of this node to 100.

We then proceed to discount prices back to the end of year one in the usual way. The
price in the upper node at the end of the first year remains at Bu = 91.325, but the price in
the lower node changes to Bd = 98.682, which is lower than that of the noncallable bond
since the investor conceded some value to the issuer on account of the call feature. Finally,
the price of the bond at the beginning of the tree also changes to be:

B = 1

1.10

 
1

2
91.325 + 1

2
98.682 + 10

 
= 95.458

The price tree for the callable bond is presented in Figure 29.8. If there are two numbers
at a node, the number at the top is the old number before allowing for callability, and the
lower number is the one after permitting callability.

The difference in price between the noncallable bond and the callable one represents the
value of the call feature. Subtraction tells us that this is worth 95.503 − 95.458 = 0.045. ■
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If there are two numbers at a node, the upper number is the value of a

noncallable bond, and the lower number is for the callable bond. If there

is only one number, it represents the common value of the callable and

the noncallable bond at that node.

FIGURE 29.8
Price Tree for the

Callable Coupon Bond

91.325

92.113

110

110

110

95.503

95.458
96.689

98.782

98.682

100.219

100.000

110

29.3 The Ho-Lee Model

The Ho-Lee model was among the earliest models developed for the pricing of bond options

using tree methods. We present the Ho-Lee tree-building algorithm here. Our exposition

follows the original paper as closely as possible yet is kept simple by avoiding excessive

notation and retaining a partiality towards a numerical exposition. The development of the

model is a little more complex than that of BDT; hence, our decision to present it after the

BDT model even though this reverses the chronological order of the papers.

Ho and Lee (1986) called their model an “AR” model, which stands for “arbitrage-free

rates” model. This initiated the class of no-arbitrage models of the term structure. We refer

to the Ho-Lee model in this section as the HL model.

Rather than construct a tree of zero-coupon rates as in the BDT model, the HL approach

directly models zero-coupon bond prices on the tree. Compared to the BDT model, this is

quite parsimonious. Whereas the BDT model requires computation of zero-coupon bond

prices on the tree as intermediate steps to the tree of zero-coupon rates, the HL model uses

these discount bonds as the primitives themselves.

We develop the exposition of the model using the same data as in the previous sections

and work with a three-period model. The table of zero-coupon interest rates and discount

bond prices is as follows.

T Zero-Coupon Rates Discount Bond Prices

1 0.10 0.9091
2 0.11 0.8116
3 0.12 0.7118

HLdescribed their recombining binomial tree of discount bonds using the variable Pn
i (T )

where n denotes the time period on the tree, i depicts the node on the tree at time n, and
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T the remaining maturity of the discount bond P at time n. We clarify this notation using

the prices from the table above as an example. The current time is n = 0. Since there is

only one node at time 0, there is but one state, and i = 0 (numbering in the HL model was

chosen to begin at 0). Finally, there are three bonds, and hence, T = {1, 2, 3}. Therefore,

the initial node on the tree comprises a vector of discount bond prices that are as follows:

P0
0 (1) = 0.9091

P0
0 (2) = 0.8116

P0
0 (3) = 0.7118

We write this vector as P0
0 (.).

At the end of the first period on the tree, i.e., at time n = 1, there will be two nodes on the

tree. These two nodes comprise zero-coupon bond prices for the remaining two maturities.

We may write the node values in the up state as follows:

P1
1 (1)

P1
1 (2)

and in the down state we have

P1
0 (1)

P1
0 (2)

Indeed, in general, the bifurcation from any vector Pn
i (.) comprising a node on the tree may

be represented in an evolution to two other vectors, an up node Pn+1
i+1 (.) and a down node

Pn+1
i (.). It is obvious by now that each node on the tree is indexed by (n, i), i.e., by the time

period n and the state i in each period.

As in any tree model, we may assign probabilities to the upshift on the tree and to the

downshift on the tree. In the HL model, the up move occurs with probability π , and the

down move with probability (1 − π ). These probabilities are held to be constant across the

entire tree, and in our numerical example, we set π = 0.5.

Next the lattice upshifts and downshifts need to be imposed, and the extent of divergence

between the up anddownmoves reflects the volatility in themodel.Wemultiply each element

of the current zero-coupon price curve by an upshift “perturbation” function denoted h(T ),

i.e., a vector of values for each maturity. The downshift perturbation is denoted h∗(T ).

Since we wish to have positive interest rates in the model, it is necessary that h(T ) > 0,

and h∗(T ) > 0. The relative difference in these two values is a function of the volatility of

the term structure.

Suppose we are at time n on the tree and in state i . Also assume that the interest rate

volatility is zero. Then the up and down nodes in the next period will coincide, and the

perturbation functions will be equal, i.e., h(T ) = h∗(T ) for all T . In this case, the zero-

coupon bond prices in the next period (n+1) are simply the forward prices of the bonds, i.e.,

Pn+1
i+1 (T ) = Pn+1

i (T ) = Pn
i (T + 1)

Pn
i (1)

But if volatility is positive, then the prices in the up and down nodes will be perturbed values

of the forward price: for all T , we have

Pn+1
i+1 (T ) = Pn

i (T + 1)

Pn
i (1)

h(T ) (29.2)

Pn+1
i (T ) = Pn

i (T + 1)

Pn
i (1)

h∗(T ) (29.3)
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We have not stated as yet what the perturbation functions look like, but they must be

chosen such that the expected discounted value on the tree equals current prices, i.e.,

Pn
i (T ) = Pn

i (1)[π Pn+1
i+1 (T − 1) + (1 − π )Pn+1

i (T − 1)]

or, after simplification,

πh(T ) + (1 − π )h∗(T ) = 1

HL show that this implies a particular functional form for the perturbation function with an

additional parameter δ:

h(T ) = 1

π + (1 − π )δT

h∗(T ) = δT

π + (1 − π )δT
, T ≥ 0

The parameter used to tune the volatility is denoted δ < 1. It is easy to see that as δ decreases,

the divergence between h(T ) and h∗(T ) widens, i.e., volatility increases.

We now take these simple equations into account while developing our numerical exam-

ple.Wehave already setπ = 0.5.Wenowalso specify the volatility by setting δ = 0.98. This

makes it straightforward to compute the perturbation functions, which are purely functions

of π and δ. First we compute h(T ).

h(1) = 1

0.5 + (0.5)(0.98)
= 1.010101

h(2) = 1

0.5 + (0.5)(0.982)
= 1.020200

h(3) = 1

0.5 + (0.5)(0.983)
= 1.030295

Likewise, we compute h∗(T ).

h∗(1) = 0.98

0.5 + (0.5)(0.98)
= 0.989899

h∗(2) = 0.982

0.5 + (0.5)(0.982)
= 0.979800

h∗(3) = 0.983

0.5 + (0.5)(0.983)
= 0.969705

We note that since these remain the same across the tree, recombination is facilitated. Armed

with h(T ) and h∗(T ), we may obtain the values of the price vectors in the next period as

follows. First, we compute the up node using equation (29.2).

P1
1 (1) = P0

0 (2)

P0
0 (1)

h(1) = 0.901803

P1
1 (2) = P0

0 (3)

P0
0 (1)

h(2) = 0.798774
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Next we compute the down node using equation (29.3).

P1
0 (1) = P0

0 (2)

P0
0 (1)

h∗(1) = 0.883767

P1
0 (2) = P0

0 (3)

P0
0 (1)

h∗(2) = 0.767143

This leaves the final period on the tree for which we need prices that reside at the end

of period 2, i.e., n = 2. These are obtained from similar calculations that we had before

and are done for all three nodes of the tree at the end of period 2. At each of these three

nodes, there is only one remaining zero-coupon bond price for the last period on the tree.

We compute each of these here.

P2
2 (1) = P1

1 (2)

P1
1 (1)

h(1) = 0.894699

P2
1 (1) = P1

1 (2)

P1
1 (1)

h∗(1)

= P1
0 (2)

P1
0 (1)

h(1) = 0.876806

P2
0 (1) = P1

0 (2)

P1
0 (1)

h∗(1) = 0.859269

We can see that the middle node may be computed either as being reached by a downward

branch from P1
1 (.) or via an upward branch from P1

0 (.). This confirms the recombination

of the tree. The complete tree is presented in Figure 29.9.

As a final check on the procedure enunciated above, we reprice the two- and three-year

zero-coupon bonds on the HL lattice. At the end of two years the two-year zero-coupon bond

pays 100. We discount this back to the time point at the end of one year where there are two

nodes, using the one-year discount price available at the two nodes at the end of one year.

100 × 0.901803 = 90.1803

100 × 0.883767 = 88.3767

FIGURE 29.9
The Ho-Lee Tree

0.883767

0.767143

0.901803

0.798774

0.894699

0.876806

0.859269

0.909091

0.811622

0.711780
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Finally, the current price of this bond will be obtained by taking the expected value of the

two prices above and discounting them back to time zero. 
1

2
90.1803 + 1

2
88.3767

 
× 0.909091 = 81.1622

which coincides exactly (as it should) with the price computed earlier.

We also reprice the three-year zero-coupon bond on the lattice. We first obtain its three

possible values at the end of two years by discounting the face value from maturity, i.e., 100

back to time 2. These prices are calculated as follows:

100 × 0.894699 = 89.4699

100 × 0.876806 = 87.6806

100 × 0.859269 = 85.9269

From these prices, we compute the two prices at the end of one year. 
1

2
89.4699 + 1

2
87.6806

 
× 0.901803 = 79.8774 

1

2
87.6806 + 1

2
85.9269

 
× 0.883767 = 76.7143

The price at time zero then is 
1

2
79.8774 + 1

2
76.7143

 
× 0.909091 = 71.1780

Any other payoff patterns may be priced in exactly the same way. Options and other deriva-

tives written as a function of interest rates may be easily and directly priced using this

tree.

29.4 One-Factor Models in Continuous Time

The Ho-Lee and BDT models are two examples of the broader class of one-factor mod-

els. In this section, we provide an introduction to the general family of one-factor models

in a continuous-time setting within which we locate and discuss the classic models of

Vasicek (1977) and Cox, Ingersoll, and Ross (1985). The sections following discuss mul-

tifactor models and the important subgroup of affine factor models. Complementing this

material, the next chapter introduces the Heath-Jarrow-Morton (HJM) and Market Model

frameworks.

One-Factor Models
In a one-factor model, a single stochastic factor drives all changes in the yield curve.

Historically, such models commonly began with positing a short-rate process that was

influenced by a single source of noise and derived movements in the remaining part of the

yield curve in a manner consistent with this short-rate process. This modeling process was

given formal mathematical justification in a paper by Litterman and Scheinkman (1991).

The Litterman-Scheinkman paper showed that almost all changes in Treasury bond yields

could be explained by three “principal components,” or, as they are commonly termed,

three “factors.” The first factor has a constant effect across maturities and so corresponds

to a parallel or “level” shift in the yield curve. This factor accounts for around 80%–90%

of the changes in the yield curve, and is naturally proxied by the short rate. The second
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factor’s effect increases monotonically with maturity, so corresponds to a “slope” factor that

affects the steepness of the yield curve. This factor accounts for about 80% of the variation

unexplained by the first factor. The third factor corresponds to a convexity or “curvature”

effect that explains a further 2%–3% of yield curve variations.

Consider a continuous-time setting. A general one-factor model is one in which the short

rate rt (i.e., the rate on an instantly-maturing bond) evolves according to the process

drt = α(t , rt ) dt + β(t , rt ) dWt (29.4)

where α(·) and β(·) denote, respectively, the drift and diffusion component of the short rate,

and Wt is a standard Brownian motion process. Three special cases of (29.4) of interest are

the Merton/Ho-Lee, Vasicek, and CIR models.

The Merton/Ho-Lee Model
The Merton (1973) model, which is also the continuous-time limit of the Ho-Lee model

described earlier in this chapter, uses

α(t , rt ) = ᾱ β(t , rt ) = β̄ (29.5)

where ᾱ and β̄ are positive constants. This model is mostly of historical interest. Short

rates in the model follow an arithmetic Brownian motion process, so carry unreasonable

implications. They can drift off to arbitrarily high values and can become negative.

The Vasicek Model
Vasicek (1977), the first detailed no-arbitrage modeling in finance of the term structure of

interest rates, introduces the Ornstein-Uhlenbeck or O-U process for representing changes

in the short rate. In the O-U process, the terms α(·) and β(·) are given by

α(t , rt ) = κ(θ − rt ) β(t , rt ) = β̄ (29.6)

where κ , θ , and β̄ are all positive constants. This is now simply called the “Vasicek model”

in the finance literature.

The drift term κ(θ − rt ) in the Vasicek model exhibitsmean reversion. If the current rate

rt is greater than its long-term mean θ , then the drift is negative and the rate is pulled down

towards θ . If rt < θ , then the drift is positive and the rate is pulled up towards θ . The constant

κ controls the rate at which reversion to the mean occurs. A large κ means that reversion is

rapid. Mean reversion is a common requirement imposed in modern term-structure models.

The diffusion component in the Vasicek model is a constant β̄. This implies short rates

have a Gaussian (i.e., normal) distribution with mean and variance given by

E[rt | r0] = θ + e−κt (r0 − θ )

Var(rt | r0) = 1

2κ
β̄2(1 − e−2κt )

As in Merton/Ho-Lee, the Gaussian implication means short rates can become negative.

The constant β̄ assumption is also in conflict with the casual observation that rates tend

to become more volatile at higher levels. Despite these undesirable features, the Vasicek

model has remained a popular one because it is parsimonious, easy to calibrate, and lends

itself to tractable models of option pricing.
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The CIR Model
Cox, Ingersoll, and Ross (1985) introduce a mean-reverting square-root diffusion process

for the short rate rt :

α(t , rt ) = κ(θ − rt ) β(t , rt ) = β̄
√
rt (29.7)

where κ , θ , and β̄ are all positive constants. This is now simply called the “CIR model” in

the finance literature.

The drift termκ(θ−rt ) in theCIRmodel exhibitsmean reversion, as in theVasicekmodel.

The form of the diffusion component β̄
√
rt implies that short rates follow a noncentral

chi-square distribution with

E[rt | r0] = θ + e−κt (r0 − θ )

Var(rt | r0) = 1

κ
β̄r 2

0 (e
−κt − e−2κt ) + 1

2κ
θβ̄2(1 − e−κt )2

In the CIR model, short rates are guaranteed to be positive as long as 2κθ > β̄2. It is also the

case that volatility increases with interest-rate level from the very form of the specification.

Thus, both shortcomings of the Vasicek model are overcome.

Other One-Factor Models
Many other one-factor models have been studied in the literature. Table 29.1, based on

Chan, Karolyi, Longstaff, and Sanders (1992) and other sources, presents in summary form

the drift and diffusion components of some of these. The entries ᾱ, β̄, etc., in the table are

scalar constants.

Solving One-Factor Models I: The PDE Approach
The “one factor” assumption in a one-factor model is that the evolution of all bond prices

in the model depends only on the evolution of the model’s single factor. That is, if P(t , T )

denotes the time-t price of a zero-coupon bond maturing at T , then

P(t , T ) = P(t , T , rt ) (29.8)

Let r (t , T ) denote the yield on this bond:

r (t , T ) = − 1

T − t
ln P(t , T ) (29.9)

Since a single factor drives all changes in the yield curve, changes in bond prices of any

two maturities must be perfectly instantaneously correlated. We can use this observation to

TABLE 29.1
One-Factor Interest

Rate Models

Model Drift α(t, rt) Diffusion β(t, rt)

Merton (1973) ᾱ β̄

Vasicek (1977) κ(θ − rt) β̄

Dothan (1978) 0 β̄

Brennan and Schwartz (1979) ᾱ0 + ᾱ1rt β̄rt

Cox, Ingersoll, and Ross (1985) κ(θ − rt) β̄
√
rt

Chan, Karolyi, Longstaff, and Sanders (1992) ᾱ0 + ᾱ1rt β̄r 1.5
t

Geometric Brownian motion ᾱrt β̄rt

Constant elasticity of variance (CEV) ᾱrt β̄r
γ
t
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show (see Appendix 29A for a proof) that the ratio

μ(t , T , rt ) − rt

σ (t , T , rt )
(29.10)

must be independent of T where μ(·) and σ (·) denote, respectively, the drift and volatility

of the bond, i.e., where we write the bond-price process as

dP(t , T ) = μ(t , T , rt )P(t , T ) dt + σ (t , T , rt )P(t , T ) dWt (29.11)

Let the ratio (29.10) be denoted by λ(t , rt ). λ is called the “market price of risk” associated

with the model’s single factor.

From this, we can derive the fundamental partial differential equation (pde) that bond

prices must follow. To describe this pde, some notational simplification will help. Write

α for α(t , rt ), λ for λ(t , rt ), etc. Let P denote the bond price P(r, t , T ), and let Pr and

Pt denote the partial derivatives of P with respect to the short rate r and current time t ,

respectively, and let Prr denote the second partial with respect to r . In Appendix 29A, we

show that in the absence of arbitrage, bond prices must satisfy the pde

(α − βλ) Pr + Pt + 1

2
β2Prr − r P = 0 (29.12)

Bond prices are obtained by solving this pde subject to the boundary condition P(T , T ) = 1.

The principal complication in solving for bond prices in this approach is that the form

of λ is unknown: λ is defined through the drift and volatility of the unknown bond prices.

Introducing a functional form for λ is necessary to be able to solve this pde. Below, we

examine the solutions in two specific cases.

Bond Prices in the Vasicek Model

Vasicek (1977) makes the assumption that λ(t , rt ) is a constant λ. Using this in conjunction

with the forms of α and β (expressions (29.6)), he solves the pde to obtain the following

expressions for bond prices in his model:

P(t , T , rt ) = exp[A(τ ) − rt B(τ )] (29.13)

where rt is the current (time-t) short rate, τ = T − t is the time left to maturity on the bond,

and

B(τ ) = 1

κ
[1 − exp(−κτ )] (29.14)

A(τ ) = [B(τ ) − τ ]R(∞) − σ 2

4κ3
[1 − exp(−κτ )]2 (29.15)

R(∞) = θ + λσ

κ
− σ 2

2κ2
(29.16)

Bond Prices in the CIR Model

CIR develop a general equilibriummodel and derive the form λ(t , rt ) = λ
√
rt for themarket

price of risk in their model. Using this with the forms for α(·) and β(·) in (29.7), CIR solve

the fundamental pde to obtain the following closed-form solutions for bond prices in their

model:

P(t , T , rt ) = exp[A(τ ) − rt B(τ )] (29.17)
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where rt is the current (time-t) short rate, τ = T − t is the time left to maturity on the bond,

and

A(τ ) = ln

  
2γ e(κ+λ+γ )τ/2

(γ + κ + λ)(eγ τ − 1) + 2γ

 2κθ/σ 2 
(29.18)

B(τ ) = 2(eγ τ − 1)

(γ + κ + λ)(eγ τ − 1) + 2γ
(29.19)

γ =
 

(κ + λ)2 + 2σ 2 (29.20)

Observe the similarity of the structures of the bond-pricing equations (29.13) and (29.17)

in the Vasicek and CIR models. This is not accidental. The Vasicek and CIR models are

each special cases of the general category of affine one-factor models, and, as we show in

Section 29.6 below, all one-factor affine factor models must have solutions of this form.

Bond Price Behavior

The Vasicek and CIR solutions are easy to implement, indeed simpler even than Black-

Scholes because they do not involve constructs such as cumulative normal distributions. To

illustrate, we implement the Vasicek model with sample parameters to examine the effect of

various inputs on the bond price. See Figure 29.10 for the discount bond price as maturity

increases.

In Figure 29.11, we see that the price of the bond declines as the mean-reversion rate

(κ) increases. Note that, since the bond is convex in the interest rate, it gains from volatility

through the convexity effect.Mean reversion dampens the effect of volatility and accordingly

also reduces the value of the bond. Based on the same reasoning, holding all else constant,

increases in volatility will raise bond prices. This is shown in Figure 29.12.

Solving One-Factor Models II: The Risk-Neutral Approach
An alternative way to solving for bond prices in factor models is to use the risk-neutral

pricing approach. We have already studied the risk-neutral valuation approach when pricing

equity options. The extension to term-structure modeling is straightforward.

The input parameters are κ = 0.2 (mean reversion), θ = 0.1 (long-run mean),

σ = 0.01 (volatility), and λ = 0.1 (market price of risk).
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The input parameters are κ = {0.1, . . . , 1} (mean reversion), θ = 0.1 (long-run

mean), σ = 0.1 (volatility), λ = 0.1 (market price of risk), and T = 5 years

(maturity).

FIGURE 29.11
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The input parameters are κ = 0.2 (mean reversion), θ = 0.1 (long-run

mean), σ = {0.05, . . . , 0.14} (volatility), λ = 0.1 (market price of risk),

and T = 5 years (maturity).

FIGURE 29.12
Vasicek Discount

Bond Price with

Changing Volatility

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

Volatility

D
is

c
o
u
n
t 
b
o
n
d
 p

ri
c
e

Suppose that the short rate follows the process

drt = α(t , rt ) dt + β(t , rt ) dWt (29.21)

under the actual (a.k.a. “physical” or “statistical”) measure. The first step in using risk-

neutral pricing is to define a numeraire asset. While any bond may be used for this purpose,

the most common choice in term-structure models is to use a “money market account” in

which an initial investment of $1 is rolled over continuously at the short rate rt . Let Bt
denote the value of this account at time t :

Bt = exp

  t

0

rs ds
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Normalizing asset prices by the money market account is the natural extension to stochastic

interest rates of the discount factor e−r t under constant interest rates. That is, if rt = r for

all t , then dividing asset prices by Bt is exactly the same thing as discounting by e−r t .
The risk-neutral measure Q with respect to Bt as numeraire must be such that all asset

prices normalized by Bt are martingales under Q. That is, if πt (X ) denotes the time-t price

of a claim that pays X at time T , we must have

πt (X )

Bt
= Et

Q

 
X

BT

 
where Et

Q specifies time-t expectations under Q. From the definition of Bt , it follows that

the time-t price of the claim is

πt (X ) = Et
Q

 
exp

 
−

 T

t

rs ds

 
X

 
In particular, a T -maturity zero-coupon bond is a claim that pays $1 with certainty at

time T . Therefore, the time-t price P(t , T ) of the bond is just

P(t , T ) = Et
Q

 
exp

 
−

 T

t

rs ds

  
(29.22)

To compute this expectation, we must identify the behavior of rt under the risk-neutral

measure Q. Expression (29.21) specifies the behavior of rt only under the statisticalmeasure.

The link between the two, it turns out, is precisely the market price of risk λ defined by

(29.10). Specifically, under Q, rt evolves according to

drt = (α − βλ) dt + β d  Wt (29.23)

where  Wt is a standard Brownian motion under Q and we have suppressed the arguments

and written α for α(t , rt ), etc. Given λ and the other parameters, the expectation in (29.22)

can be taken and bond prices identified.

Equation (29.23) highlights a fundamental point about factor models. In moving from

the actual to the risk-neutral world, the diffusion term β is not affected, which means in

principle that the diffusion term in the risk-neutral world can be estimated from historical

data. Not so, however, for the risk-neutral drift, which depends on the unknown market price

of risk λ. To proceed with the pricing, we need to know (or make some assumption about)

the form of λ. One way to sidestep this problem—effectively to sweep it under the carpet—

is to model the behavior of rt directly under Q; this is commonly done in the theoretical

literature.

This point also provides the chief motivation for the Heath-Jarrow-Morton class of

models developed in the next chapter. In the HJM class of models, as we will see, the drifts

of the forward rates in the risk-neutral world are functions of their volatilities, and the latter

do not change in going from the actual to the risk-neutral world.

29.5 Multifactor Models

One-factor models are empirically insufficiently rich to capture yield-curve movements.

Beginning with Brennan and Schwartz (1979), a number of authors have proposed models

with two or more factors driving the yield curve. Suggested second factors include the long
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rate, the rate of inflation, the mean of the short rate, the volatility of the short rate, and many

others.

In an n-factor model, there are n factors that affect changes in the yield curve. We may

model each of these factors separately (for example, in a two-factor model, we may specify

the short-rate and long-rate processes explicitly), then solve for the market prices of risk

associated with each factor, and use this to price the bonds using, say, the n-factor version

of the pde approach.

Alternatively, as equation (29.22) implies, to price bonds we need to know the behavior

of the short rate only under the risk-neutral measure Q. So, we may begin directly with a

specification of how the n factors affect the behavior of the short rate under Q and then use

(29.22) to price the bonds. We illustrate this process here since it is commonly used in the

theoretical literature.

For a general n-factor model, we begin with an n-dimensional process of the form

dXt = μ(Xt ) dt + σ (Xt ) d  Wt

where (a) X = (X1, . . . , Xn) is the vector of n factors driving the term structure; (b) (  Wt )

is an n-dimensional Brownian motion under an equivalent martingale measure Q (with

respect to the money-market account); (c) μ(·) is an n-dimensional vector that specifies

the drift of the Xt process under Q; and (d) σ (·) is an n × n matrix that is the diffusion

component under Q of the Xt process.

From the usual risk-neutral pricing arguments, the time-t price of a T -maturity zero-

coupon bond is

P(t , T ) = EQ

 
exp

 
−

 T

t

rs ds

  
(29.24)

As observed earlier, zero bond prices only depend on the behavior of the short rate rt under

Q. So we posit rt = R(Xt ) for some function R(·). Then, the triple (μ(·), σ (·), R(·))
completely specifies the n-factor model.

Expression (29.24) describes bond prices using the martingale measure. Bond prices can

also be described in terms of a pde in this model (i.e., using the risk-neutral specification).

For simplicity, we describe the pde in the one-dimensional model here; the extension to

n-dimensions is obvious. We have

dP = PX dX + Pt dt + 1
2
PXXσ

2 dt

= [μPX + Pt + 1
2
PXXσ

2] dt + σ PX d  Wt

But under the risk-neutral measure, we must also have

dP = r P dt + σ P d  Wt

So equating the drift terms on the right-hand sides, we obtain

r P = Pt + μPX + 1

2
PXXσ

2 (29.25)

Equation (29.25) is the fundamental pde. With X equal to the short-rate r , this pde is

identical to the one (29.12) derived earlier except that the earlier expression used the drift

of r under P and the market price of risk whereas this one directly uses μ, the drift of r

under Q. Of course, the two approaches are equivalent.
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Example 29.4 A Multifactor Example
Consider a two-factor version of the CIR model where the short rate is the sum of two
independent square root diffusions:

rt = x1t + x2t

where

dxi t = κi (θi − xi t) dt + σi

√
xi t dWi t, i = 1, 2

In this setting, the bond price inherits its form directly from the single-factor model and
is as follows:

P (t, T , x1t, x2t) =
  

i=1,2

Ai (τ )

 
×

 
exp

 
−

 
i=1,2

xi t Bi (τ )

  
τ = T − t

Ai (τ ) =
 

2γi e
(κi +λi +γi )τ/2

(γi + κi + λi )(eγi τ − 1) + 2γi

 2κi θi /σ
2
i

B i (τ ) = 2(eγi τ − 1)

(γi + κi + λi )(eγi τ − 1) + 2γi

γi =
 

(κi + λi )2 + 2σ 2
i

i ∈ {1, 2} ■

29.6 Affine Factor Models

The concept of affine factor models was introduced in Duffie and Kan (1996). Affine factor

models are factor models with a certain affine property in their structure as we explain

below. Duffie and Kan show that such models possess remarkable analytical tractability.

We confine our presentation of their analysis to factor models driven by Brownian motion

processes. For an extension that also allows for jumps, see Das and Foresi (1996) or the

Duffie-Kan paper. We state the Duffie-Kan result in this section and prove a simplified

version of the result.

Consider a typical n-factormodel inwhich the evolution of the factors X = (X1, . . . , Xn)

under the risk-neutral measure is given by

dXt = μ(Xt ) dt + σ (Xt ) d  Wt

where μ(Xt ) is an n × 1 vector and σ (Xt ) is an n × n matrix. Suppose also that the time-t

short rate is specified as R(Xt ). The three functions μ(·), σ (·), and R(·), of course, fully

specify the model. In an affine factor model, R, μ, and σσ  are all required to be affine

functions of the factors X :

R(X ) = a + b · X
μ(X ) = c + d · X
σ (X )σ (X ) = e + f · X

(29.26)

Many of the well-known models in the finance literature, including the Merton/Ho-Lee

model, the Vasicek model, and the CIR model, are affine factor models. From (29.23), the

general representation of the risk-neutral short-rate process in all three cases is

drt = (α − βλ) dt + β d  Wt (29.27)
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where α and β in the three cases are specified by (29.5), (29.6), and (29.7), respectively. The

market price of risk, λ, is a constant λ̄ in the Merton/Ho-Lee and Vasicek models, while in

the CIR model, it has the form λ̄
√
rt .

The Merton/Ho-Lee Model

Combining (29.5) and (29.27), the risk-neutral process followed by the short rate in this

model is

drt = (ᾱ − β̄λ̄) dt + β̄ d  Wt

This corresponds to an affine factor model in which R(X ) = X and the remaining

parameters of (29.26) are given by

c = ᾱ − β̄λ̄; d = 0; e = β̄2; f = 0

The Vasicek Model

In this case, combining (29.6) and (29.27), the risk-neutral short-rate process follows

drt = (κθ − β̄λ̄ − κrt ) dt + β̄ d  Wt

This corresponds to an affine factor model in which R(X ) = X and the remaining

parameters of (29.26) are given by

c = κθ − β̄λ̄; d = −κ; e = β̄2; f = 0

The CIR Model

From (29.7) and (29.27), the risk-neutral short-rate process here is given by

drt = [κθ − (β̄λ̄ + κ)rt ] dt + β̄
√
rt d  Wt

This corresponds to an affine factor model in which R(X ) = X and the remaining

parameters of (29.26) are given by

c = κθ ; d = −(β̄λ̄ + κ); e = 0; f = β̄2

An example of a short-rate process that is not of the affine form is geometric Brownian

motion. The risk-neutral version of this process is:

drt = (α0 + α1rt ) dt + σrt d  Wt

In this case, the diffusion term fails the affinity test.

The Main Result
A factor model is said to have affine yields if for all (t , T ), we have

r (t , T ) = 1

τ
[ζ (τ ) + η(τ ) · Xt ]

where τ = T − t , and ζ (·) and η(·) are C1 functions.1 If a model has affine yields, then

bond prices in the model are “exponential-affine” functions of the factors:

P(t , T ) = exp {−ζ (T − t) − η(T − t)Xt}

1 C 1 stands for continuously differentiable. In general, a function that is k-times continuously

differentiable is said to be of class C k .
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As we have seen, both the Vasicek and CIR models have bond prices of this form. Duffie

and Kan (1996) prove the powerful result that

Proposition 29.1 (Duffie-Kan) A model has affine yields if and only if it is an affine

factor model.

The Duffie-Kan result, in fact, identifies the functions ζ (·) and η(·) in terms of the

parameters (a, . . . , f ) up to a pair of partial differential equations. We derive the Duffie-

Kan result for n = 1 here. The general proof follows similar lines.

Proof of Duffie-Kan When n = 1

Let X denote the sole factor in the model. We assume, without loss of generality, that

R(X ) = X , so the sole factor is the short rate. We first derive a preliminary result:

Lemma 29.2 If a model has affine yields, it must satisfy

ζ  (τ ) + [1 − η (τ )]X = η(τ )μ(X ) + 1

2
η2(τ )σ 2(X ) (29.28)

where τ = T − t .

Proof of Lemma

Suppose the model has affine yields. By definition, we have

P(t , T ) = exp{ζ (τ ) + η(τ )X}

This gives us the following expressions for the partial derivatives of P:

PX = η(τ )P

PXX = η(τ )2P

Pt = −[ζ  (τ ) + η (τ )X ] P

Substituting these into the fundamental pde (29.25), we get

X P = −[ζ  (τ ) + η (τ )X ] P + μ(X )η(τ )P + 1

2
η2(τ )σ 2(X )P

Eliminating the common term P , this becomes

X = η(τ )μ(X ) − [ζ  (τ ) + η (τ )X ] + 1

2
η2(τ )σ 2(X )

which is precisely (29.28). This establishes the lemma. ■

Returning to the proof of the proposition, suppose now that yields are affine in X :

r (t , T ) = 1

τ
[ζ (τ ) + η(τ )X ]
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We shall show that the model must be an affine factor model, i.e., that μ(·) and σ (·) must

have the forms

μ(X ) = c + dX, σ 2(X ) = e + f X

for some constants c, d, e, f . Pick any T1, T2 and let τ1 = T1 − t , τ2 = T2 − t . Define the

2 × 2 matrix

B(τ1, τ2) =

⎡⎢⎢⎣η(τ1)
1

2
η2(τ1)

η(τ2)
1

2
η2(τ2)

⎤⎥⎥⎦
Then from (29.28), we have

B(τ1, τ2)

 
μ(X )

σ 2(X )

 
=

 
ζ  (τ1) + [1 + η (τ1)]X

ζ  (τ2) + [1 + η (τ2)]X

 
If B is invertible, then 

μ(X )

σ 2(X )

 
= B−1 ·

 
ζ  (τ1) + [1 + η (τ1)]X

ζ  (τ2) + [1 + η (τ2)]X

 
which says precisely that μ(·) and σ 2(·) are affine as required.

Conversely, suppose now that μ and σ are affine:

μ(X ) = c + dX, σ 2(X ) = e + f X

We have shown that if an affine yield exists, it must satisfy (29.28). Substituting for μ(·)
and σ (·) into (29.28), we obtain

ζ  (τ ) + [1 + η (τ )]X = η(τ )[c + dX ] + 1

2
η2(τ )[e + f X ] (29.29)

Each side is linear in X . Equating the coefficients of X , we have

1 + η (τ ) = d · η(τ ) + 1

2
f · η2(τ )

or

η (τ ) = dη(τ ) + 1

2
f η2(τ ) − 1 (29.30)

Equations of the form (29.30) are called Riccati equations (named after the mathemati-

cian J. F. Riccati). Solving this Riccati equation delivers us the function η(·). That leaves

the function ζ (·). Equating the constant terms in (29.29), we obtain

ζ  (τ ) = cη(τ ) + 1

2
eη2(τ ) (29.31)

Expression (29.31) can be solved for ζ (·). This completes the proof.

29.7 Summary

This chapter has explored the factor model approach to the modeling of interest-rate move-

ments. The material covered has three components to it. The first was an exploration of

discrete-time one-factor models, in particular, the mechanics of tree-building, using as

bases for illustration the models of Black, Derman, and Toy (1990) and Ho and Lee (1986).
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The second was a presentation of general continuous-time factor models and their solutions

using partial differential equations (pdes) or risk-neutral pricing; special cases of these

models include the classic models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985).

The last part was the discussion of affine factor models and the key result of Duffie and Kan

(1996).

The next chapter builds on this material and examines one of the most popular classes of

models, that introduced by Heath et al. (1990). The HJM class will be seen to provide many

engineering improvements over its predecessors.Wewill also see how the single-factorHJM

framework is extended to more than one factor. Then, rounding off our discussion of term-

structure models, we present the class of Libor Market Models that provide a theoretical

justification for common market pricing of interest-rate options such as caps and floors.

29.8 Exercises 1. What are some essential differences between pricing equity options on trees versus

pricing interest-rate options on trees?

2. In the Black-Derman-Toy model, explain why negative interest rates are not feasible

on the tree.

3. In the BDT model, why are all probabilities chosen to be the same across the tree at

every time point?

4. For the tree in the BDT model to recombine, is it necessary that the volatilities be the

same across all nodes in any period on the tree?

5. For the tree in the HL model to recombine, is it necessary that the probabilities be the

same across all nodes in any period on the tree?

6. Given an initial spot rate for one period of 12%, a two-period spot rate of 14%, and a

volatility of 5% for the spot rate over a period, what should the two possible values of

the spot rate be after one period? (Assume the BDT model applies.)

7. Assume the same parameters as in the previous question, but change the method of

discounting from linear to exponential, i.e., assume that discounting is on a continuous

basis. Rework the problem and assess the impact on the solution.

8. Suggest two alternate volatility functions for the BDT model that do not impact any

of the essential features of the model. Your answer will demonstrate that the model is

not specifically tied to the volatility function provided in the original model by Black,

Derman, and Toy.

9. Explain what happens to (a) feasibility and (b) computational burden as the number of

periods in the BDT tree increases.

10. Is it possible to have a bond price of value zero on the HL tree?

11. In the BDT model, what is the relation between the level of interest rates and the

absolute size of changes in interest rates on the tree? Is this behavior consistent with

the real observed behavior of interest rates in the economy?

12. You are given the following data for three periods, in which each period is one year.

T Zero-Coupon Rate Price σ

1 0.11 90.0901 —
2 0.13 78.3147 0.20
3 0.14 67.4972 0.15
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Use the BDT model to draw the tree of spot rates for three years. Compute the prices

of the following securities on the tree:

(a) Two-year zero-coupon bond prices.

(b) Three-year zero-coupon bond prices.

(c) Three-year 13% coupon bond prices, expressed as including interest on the date of

valuation.

(d) A two-year call option on a three-year 13% bond with a cum-coupon strike price

of $110.

13. Use the same inputs as the previous problem, i.e.,

T Zero-Coupon Rate Price σ

1 0.11 90.0901 —
2 0.13 78.3147 0.20
3 0.14 67.4972 0.15

What is the price of a three-year 13% coupon bond that is callable by the issuer on

coupon dates at an ex-coupon strike price of $100?

14. Instead of zero-coupon rates, asmodeled byBDT,what comprises the tree in theHo-Lee

model? What are the pros and cons of the approach?

15. What are h(T ) and h∗(T ) in the HL model? What is their relationship to the parameter

δ? What happens to h(T ) and h∗(T ) when δ increases? What can you say about the

role of δ in the model?

16. Given the following information, prepare the HL bond price tree for three dates,

t = 0, 1, 2. The parameter π = 1
2
, and δ = 0.8.

T Zero-Coupon Rate

1 0.06
2 0.07
3 0.08

17. Bond pricing in the Vasicek (1977) model: assume an interest rate process

dr = k(θ − r ) dt + σ dB

where base parameter levels are r = k = θ = σ = 0.1, T = 1, and dB is a standard

Brownian motion. Assume also that the market price of risk λ = 0. In each of the

following three cases, compute the bond price for each value of the given parameter

holding the other parameters at their base levels.

For each of the three cases, explain the direction in which the bond price changes. That

is, provide an economic explanation for why the bond price increases or decreases with

the given parameter, holding the other parameters at their base levels.

(a) k = {0.1, 0.2, 0.4}.
(b) θ = {0.05, 0.10, 0.15}.
(c) σ = {0.05, 0.10, 0.20}.

18. (Extending the Model) In this problem we extend the Vasicek model to allow the

mean rate θ to become stochastic. Think of a situation in which the Federal Reserve
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makes minor adjustments to short-term market rates to manage the temperature of the

economy. The model comprises the following two equations:

dr = k(θ − r ) dt + σ dB

dθ = η dB

The Brownian motion dB is the same for both the interest rate r and its mean level θ .

Answer the following questions:

(a) Given the bond price function P(r, θ , T ), write down the process for dP using

Ito’s lemma. T denotes the time to maturity. t may be used to denote current time.

(b) Suppose the market price of risk is zero for both stochastic variables r and θ .

Then the bond’s instantaneous return will be given by E(dP) = r P dt . Using

this identity, derive the pde for the price of the discount bond, stating clearly the

boundary condition for the bond price.

(c) Guess a functional form for the solution of the pde. Use the guess to derive a

closed-form expression for the price of the bond.

(d) Will bond prices be higher or lower in this model versus a model in which η = 0

where the mean rate is constant?

19. Write a function in Octave for the Cox, Ingersoll, and Ross (CIR 1985) model and

price the bond when the values are r = k = θ = σ = λ = 0.10, and T = 5 years.

20. In the CIR model, compute the yield curve from 1 to 10 years when r = k = θ = σ =
λ = 0.10.

21. Find a set of parameters in the CIR model such that the yield curve from 1 to 10 years

is of upward-sloping shape.
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Appendix 29A

Deriving the Fundamental PDE
in Factor Models
In this section, we derive the fundamental pde (29.12) in one-factor term-structure models.

In the process, we show that the market price of risk defined in (29.10) is independent of T

as claimed in the text.

Let the short-rate process be given by

drt = α(t , rt ) dt + β(t , rt ) dWt (29.32)

Since we are in a one-factor model, the prices of all bonds depend only on the rt process:

We have P(t , T ) = P(t , T , rt ). By Ito’s lemma (see Chapter 15),

dP(t , T ) = Pt dt + Pr dr + Prr
1
2
β2 dt

=  
Pt + αPr + 1

2
β2Prr

 
dt + βPr dWt

= μP dt + σ P dWt

where

μ = 1

P

 
Pt + αPr + 1

2
β2Prr

 
σ = 1

P
[βPr ]

Pick any two maturities T1 and T2. For notational ease, let P1 = P(t , T1), μ1 = μ(t , T1),

etc. Consider a portfolio consisting of

• 1 unit of the T1-maturity zero-coupon bond.

• γt units of the T2-maturity zero-coupon bond.

The portfolio value at t is V = P1 + γt P2. We have

dV = (μ1P1 + γtμ2P2) dt + (σ1P1 + γtσ2P2) dWt

Suppose we choose γt = −σ1P1/σ2P2. Then, the dWt term has a coefficient of zero, so

the portfolio is locally riskless. This means it must locally return the same as the short rate,

so we must have

μ1P1 + γtμ2P2 = rt V = rt (P1 + γt P2)

Substituting for γt , this means

μ1P1 − σ1P1

σ2P2

μ2P2 = rt

 
P1 − σ1P1

σ2P2

P2

 
Rearranging this, we obtain the condition

μ1 − rt

σ1

= μ2 − rt

σ2

(29.33)

Since T1 and T2 were arbitrary, (29.33) must hold for all T1 and T2. This means the ratios

cannot depend on T1 and T2. So if we define λ(t , rt ) by

λ(t , rt ) = μ(t , T ) − rt

σ (t , T )
(29.34)

then λ(t , rt ) is independent of T . This establishes (29.10).
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Now, by definition, we have

μ = 1

P

 
Pt + αPr + 1

2
β2Prr

 
σ = 1

P
[βPr ]

Since λσ = μ − r , we have

1

P
λβPr = 1

P

 
Pt + αPr + 1

2
β2Prr

 
− r

Rearranging this, λβPr = Pt + αPr + 1
2
β2Prr − r P , or

(α − λβ)Pr + Pt + 1

2
β2Prr − r P = 0 (29.35)

Expression (29.35) is the fundamental partial differential equation of one-factor term-

structure models and appears in the text as expression (29.12).



Chapter 30
The Heath-Jarrow-
Morton and Libor
Market Models

30.1 Overview

The framework of Heath, Jarrow, and Morton (1990, 1992b), hereafter HJM, marks a

significant advance in the modeling of term-structure movements and the pricing of interest-

rate derivatives. Unlike factor models that work by modeling the dynamics of certain points

on the yield curve (e.g., the short rate) and deriving the movements in the rest of the curve

in an arbitrage-free manner, the HJM framework works directly with the entire yield curve

and models simultaneously the changes in rates of all maturities. By construction then, the

HJM approach is consistent with any given initial yield curve. Implementation requires only

two pieces of information: the initial yield curve itself and the volatilities of forward rates

of different maturities.

Since its introduction, the HJM framework has proved a popular one for modeling secu-

rities dependent on interest-rate risk in financial markets worldwide. Further enrichment of

the field came in the mid 1990s with the class of so-called Market Models. In this chapter,

we present first the HJM framework and then describe one category of Market Models, the

Libor Market Models, or LMMs. The other class of market models, Swap Market Models,

or SMMs, are conceptually similar to LMMs but are calibrated to swap market data rather

than Libor market data; we provide a brief review of SMMs towards the end of this chapter.

In their most general forms, the models studied in this chapter are technically quite

complex. Our aim is to convey the essence of these models in as transparent a setting as

possible, so we focus on the simplest forms of these models. Full-blown expositions of

these models may be found in advanced fixed-income modeling books, such as Brigo and

Mercurio (2001), Pelsser (2000), and Rebonato (2002a).

30.2 The HJM Framework: Preliminary Comments

Our presentation of the HJM framework begins in this section with a broad discussion of

the approach and the technical advantages it offers.

At the outset, a comment. It is common in the literature to refer to the HJM “model.” This

is something of a misnomer in that HJM is not a specific model in the sense in which, say,

731
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Black, Derman, and Toy (1990) is. Rather, the HJM framework offers a general approach

to modeling interest-rate movements that considers movements in rates of all maturities

simultaneously and describes how to model these movements in an arbitrage-free manner.

The number of noise sources that drive these movements is a choice made by the modeler.

Thus,we can have a one-factorHJMsetting inwhich the entire yield curvemoves in response

to a single factor, a two-factor HJM setting, or, more generally, a k-factor HJM setting for

any desired k. In contrast, specific factor models are explicitly tied down to the modeled

number of factors. Vasicek (1977), Cox, Ingersoll, and Ross (1985), and Black, Derman,

and Toy (1990) are all necessarily one-factor models, Brennan and Schwartz (1979) is

necessarily a two-factor model, and so on. Similarly, the manner in which the factors matter

is fixed in these papers; in Vasicek, the single factor obeys an Ornstein-Uhlenbeck process,

in CIR a square root process, in BDT a lognormal process, and so on. In HJM, the choice of

how the factors matter is also left to the modeler. Thus, HJM describes a general framework

rather than a specific model. Nonetheless, we bow to popular terminology and refer to the

framework as the HJM model.

There are two distinguishing features of the HJM approach when compared to factor

models. One is the yield curve that is modeled. In factor models, it is the spot yield curve

that is the focus of the modeling exercise. HJM models the forward rate curve instead. Of

course, the forward and spot curves are equivalent representations, but the HJM papers

show that modeling forwards has significant technical advantages.

The second distinguishing feature is a technical one and is one of the advantages of the

HJM approach. As we noted in Chapter 29 (see the discussion following equation (29.23)),

in a factor model, the drift of the short rate in the risk-neutral world depends on the (often

unknown) market price of risk. In the HJM setting, it turns out that the risk-neutral drifts

of the forward rates are functions solely of the volatilities. In principle, this facilitates

implementation of the model using historical data alone.

To expand further on this point, we use the context of a continuous-time setting; the

arguments here concerning factor models are essentially those that were made in Chap-

ter 29. Readers uncomfortable with continuous-time mathematics may skip this material

without loss of continuity since the main result (the relation between risk-neutral drifts and

volatilities in an HJM model) is derived further below in this chapter in a discrete-time

setting.

Consider the Vasicek (1977) model as a specific example. The model posits a short-rate

process of the form

drt = κ(θ − rt ) dt + σ dWt

where θ is the long-run mean of the short rate, κ is the rate of mean reversion, and σ is the

volatility of the short rate. As noted in Section 29.4, under the risk-neutral measure, this

process has the form

drt = (a − κrt ) dt + σ d  Wt (30.1)

where a = κθ − σλ and λ is the market price of risk. Thus, the behavior of rt un-

der the risk-neutral measure—in particular, the drift of rt—depends on the market price

of risk.

Whydoes this dependence onλmatter?Recall that the price of any claim is the discounted

expectation of its payoffs under the risk-neutral measure. That is, if XT denotes the payoffs

of the claim at time T , then its value at time 0 is just

E[βT XT ] (30.2)
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where expectations are taken under the risk-neutral measure and βT , the discount factor, is

determined from the short-rate process as

βT = exp

 
−
 T

0

rs ds

 
(30.3)

From (30.2)–(30.3), pricing the claim requires knowledge of the behavior of rt under the

risk-neutral measure. But from (30.1), the drift of rt under the risk-neutral measure depends

onλ, so the pricing of derivatives cannot be carried outwithout some assumption concerning

the market price of risk. (Note here that unlike the drift, the volatility of rt is the same under

the original and risk-neutral measures.)

In the HJM framework, the risk-neutral drifts of the forward rates are functions of the

volatilities of these rates. Since volatilities do not change in going from the original to

the risk-neutral world, this means the model can be implemented without assumptions

concerning the market prices of risk. Indeed, in principle, the model can be implemented

and derivatives priced on the basis of historical data alone. Technically and conceptually,

this is a significant leap forward over the factor model approach.

In summary, the HJM model owes its popularity to a number of features. The model

is consistent with any given initial term structure. It is tractable in both discrete- and

continuous-time settings. The model admits great flexibility in its specification since both

the number of factors that affect the yield curve as well as the manner in which they matter

are choice variables for the modeler. Lastly, the risk-neutral drifts of interest rates in the

model are solely functions of the volatilities, so no assumptions concerning the forms of

the market prices of risk are needed to price derivatives.

The material to follow develops these points in greater detail. We focus on the discrete-

time version of HJM as described in Heath et al. (1990). The continuous-time version of

Heath et al. (1992b) is more extensive and comprehensive but is also technically more

demanding. The discrete-time model suffices to describe the model’s main features and its

working.

30.3 A One-Factor HJM Model

Consider an n-period model with time-points numbered t = 0, 1, 2, . . . , n. Each period is

of length h years each, so the horizon T of the model is equal to nh years.

The forward rate at time t for a one-period borrowing or investment at time s (where

s ≥ t and s ≤ n− 1) is denoted f (t , s). Note that f (t , s) is quoted at time t but applicable

to the period from s to s+ 1. All interest rates are quoted in continuously compounded and

annualized terms. Since the time interval between s and s + 1 is h years, this means $1

invested at time s at the rate f (t , s) will grow by time s + 1 to

exp{ f (t , s) · h}
In this discrete-time setting, the forward curve at time 0 is composed of n forward rates:

f (0, 0), f (0, 1), f (0, 2), . . . , f (0, n−1).At time1,we are a step closer to the horizonof the

model, so the forward curve has only (n−1) forward rates ( f (1, 1), f (1, 2), . . . f (1, n−1)).

Note that the rate f (t , t) at any t denotes the spot rate at that point.

Let P(t , s) denote the time-t price of a zero-coupon bond maturing at time s and with a

face value of $1. The usual spot-forward parity arguments (see Section 26.14) tell us that

we must have

P(t , s) = exp

 
−

s−1 
i=t

f (t , i) · h
 

(30.4)
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A Numerical Example
To help exposition of the HJM setting, we shall work in parallel with a numerical example.

The example takes h = 1 year. It involves a horizon of five years. The following is the

initial input information used:

T Forward Rate Value

0 f (0, 0) 0.10
1 f (0, 1) 0.11
2 f (0, 2) 0.12
3 f (0, 3) 0.13
4 f (0, 4) 0.14

The prices of zero-coupon bonds of all maturities may be identified from this data. For

example, the time-0 price of a zero-coupon bond maturing at the end of five years is

P(0, 5) = exp

 
−

4 
i=0

f (0, i) × 1

 
= 0.548812

Evolution of the Forward Curve
Our initial exposition will remain within a one-factor model in which the forward curve

evolves on a binomial tree. If we use the bold-face notation f(t , T ) to denote the forward

curve at time t , then the forward curve f(t + 1, T ) at time t + 1 can take one of two

values: fu(t + 1, T ), corresponding to an “up” move in the forward curve, and fd (t + 1, T )

corresponding to a “down” move in the forward curve:

fu(t + 1, T ) =

⎡⎢⎢⎢⎢⎣
fu(t + 1, t + 1)

fu(t + 1, t + 2)

...

fu(t + 1, n − 1)

⎤⎥⎥⎥⎥⎦ fd (t + 1, T ) =

⎡⎢⎢⎢⎢⎣
fd (t + 1, t + 1)

fd (t + 1, t + 2)

...

fd (t + 1, n − 1)

⎤⎥⎥⎥⎥⎦
To complete the specification of the model, we must explain how the curves fu and fd

are related to f. Let X be a random variable that takes on the value +1 with probability q

and −1 with probability 1− q. Then, for each s, we assume that

f (t + 1, s) = f (t , s) + α(t , s) h + σ (t , s)X
√
h

This means that for each s, we have

fu(t + 1, s) − f (t , s) = α(t , s)h + σ (t , s)
√
h

fd (t + 1, s) − f (t , s) = α(t , s)h − σ (t , s)
√
h

The probabilities q and 1 − q represent the risk-neutral probabilities of up and down

moves in the model. For convenience, we choose q = 1
2
. This is what HJM also assume,

but the assumption is for expositional simplicity only and is not analytically necessary.

This evolution of forward rates is expressed graphically in Figure 30.1. Note that the

forward rate change for each fixed s is comprised of two components. The first is the drift

term α. The second is a shock or volatility term σ . (The reason these are called the drift

and volatility terms will become clear shortly.) The drift and volatility terms may depend

on current time t , the specific maturity s to which they relate, and other information such
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FIGURE 30.1
Evolution of Forward

Rates

f (t, s)

1/2

1/2

f (t, s)   ␣(t, s)h   ␴(t, s)√h

f (t, s)   ␣(t, s)h   ␴(t, s)√h

as the current level of forward rates; this dependence on additional information has been

suppressed in the description above to save notation.

Given this evolution, we can compute for each pair (t , s), the expected change Et and

variance Vt of the forward rate change:

Et [ f (t + 1, s)| f (t , s)] = f (t , s) + α(t , s)h

Vt [ f (t + 1, s)| f (t , s)] = σ (t , s)2h

Since rates change on average by α(t , s)h, it is natural to call α the (risk-neutral) drift of

the (t , s)-forward rates. And consistent with our usual definition of this term, the standard

deviation of the change, σ (t , s)
√
h, is the volatility of (the change in) forward rates. Note

that α and σ are both in annualized terms (hence, the adjustment by h and
√
h, respectively).

Adapting this evolution structure to the specific context of our numerical example, we

have h = 1, so the forward curve after one period in the up state is:

fu(t + h, T ) =

⎡⎢⎢⎢⎣
fu(1, 1)

fu(1, 2)

fu(1, 3)

fu(1, 4)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

f (0, 1) + α(0, 1) + σ (0, 1)

f (0, 2) + α(0, 2) + σ (0, 2)

f (0, 3) + α(0, 3) + σ (0, 3)

f (0, 4) + α(0, 4) + σ (0, 4)

⎤⎥⎥⎥⎦ (30.5)

while in the down state we have

fd (t + h, T ) =

⎡⎢⎢⎢⎣
fd (1, 1)

fd (1, 2)

fd (1, 3)

fd (1, 4)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

f (0, 1) + α(0, 1) − σ (0, 1)

f (0, 2) + α(0, 2) − σ (0, 2)

f (0, 3) + α(0, 3) − σ (0, 3)

f (0, 4) + α(0, 4) − σ (0, 4)

⎤⎥⎥⎥⎦ (30.6)

We shall make the following very simple assumption concerning the volatility structure

in this example:

σ (t , s) = 0.015 for all (t , s)

This is solely for expositional convenience. As the workings below will make clear, it is a

trivial matter to allow for more complex volatility functions.
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Substituting the values for the initial forward rates and the volatilities into (30.5)–(30.6),

we obtain the following evolution of forward rates over the first period in the example:

⎡⎢⎢⎢⎢⎢⎣
0.10

0.11

0.12

0.13

0.14

⎤⎥⎥⎥⎥⎥⎦
 
 

⎡⎢⎢⎢⎣
0.125+ α(0, 1)

0.135+ α(0, 2)

0.145+ α(0, 3)

0.155+ α(0, 4)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.095+ α(0, 1)

0.105+ α(0, 2)

0.115+ α(0, 3)

0.125+ α(0, 4)

⎤⎥⎥⎥⎦
We show now that the values of α (i.e., the risk-neutral drifts of the model) may be

recovered from just this input information (i.e., the current forward rates and the volatilities)

by appealing to no-arbitrage.

Identifying the Risk-Neutral Drifts
There are four risk-neutral drifts to be determined. We begin with α(0, 1) and solve for the

others in turn by repeated appeal to the no-arbitrage condition.

To determine α(0, 1), we use the price of a two-year zero-coupon bond. Assuming, as

usual, a face value of $1, the initial price of this bond may be obtained from the forward

curve as

P(0, 2) = exp[−(0.10+ 0.11)] (30.7)

But we may also price this bond using risk-neutral methods off the forward-rate evolution

lattice: we discount the terminal payoff at the end of year 2 back to the end of year 1, and

then further discount back to time zero. At the end of year 1, there are two possible values

of the short rate. If the forward curve has moved up, then the short rate is

fu(1, 1) = 0.125+ α(0, 1)

The corresponding value of the bond after one year is

Pu(1, 2) = exp[−(0.125+ α(0, 1))]

where P(1, 2) denotes the time t = 1 price of the bond maturing at T = 2. Likewise, if the

forward curve has moved down, then the short rate is

fd (1, 1) = 0.095+ α(0, 1)

The corresponding value of the bond after one year is

Pd (1, 2) = exp[−(0.095+ α(0, 1))]

Since the risk-neutral probabilities of the up and down moves have been assumed to be

1/2 each, we can obtain the time-0 price of this bond by weighting the up and down prices

equally and discounting the expected value back to time zero:

P(0, 2) = exp(−0.10) × 1

2
[Pu(1, 2) + Pd (1, 2)]

= exp(−0.10) × 1

2
{exp[−(0.125+ α(0, 1))]+ exp[−(0.095+ α(0, 1))]}



Chapter 30 The Heath-Jarrow-Morton and Libor Market Models 737

Equating this expression to (30.7), we obtain a single equation in the unknown quantity

α(0, 1). Solving, we get

α(0, 1) = 0.000112

Plugging this back into the tree, we can restate the one-period evolution as follows

⎡⎢⎢⎢⎢⎢⎣
0.10

0.11

0.12

0.13

0.14

⎤⎥⎥⎥⎥⎥⎦
 
 

⎡⎢⎢⎢⎣
0.125112

0.135+ α(0, 2)

0.145+ α(0, 3)

0.155+ α(0, 4)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.095112

0.105+ α(0, 2)

0.115+ α(0, 3)

0.125+ α(0, 4)

⎤⎥⎥⎥⎦
We now move on to solving for α(0, 2). To do this, we use a three-year zero-coupon

bond. After one year, the price of this bond takes one of two values, depending on whether

we are in the up state or down state. In the up state, the price of the bond is

Pu(1, 3) = exp[−(0.125112+ (0.135+ α(0, 2)))]

And in the down state, the price is

Pd (1, 3) = exp[−(0.095112+ (0.105+ α(0, 2)))]

At time zero, this bond’s price must be

P(0, 3) = exp(−0.10) × 1

2
(Pu(1, 3) + Pd (1, 3))

= exp(−0.10) × 1

2
(exp[−(0.125112+ (0.135+ α(0, 2)))]

+ exp[−(0.095112+ (0.105+ α(0, 2)))])

which should be equal to

P(0, 3) = exp[−(0.10+ 0.11+ 0.12)]

Solving for α(0, 2), we obtain

α(0, 2) = 0.000337

Plugging this into the tree, we get the revised forward curve evolution

⎡⎢⎢⎢⎢⎢⎣
0.10

0.11

0.12

0.13

0.14

⎤⎥⎥⎥⎥⎥⎦
 
 

⎡⎢⎢⎢⎣
0.125112

0.135337

0.145+ α(0, 3)

0.155+ α(0, 4)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.095112

0.105337

0.115+ α(0, 3)

0.125+ α(0, 4)

⎤⎥⎥⎥⎦
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Our procedure here is a “bootstrapping” one. We first solved for α(0, 1) and then used

this value to solve for α(0, 2). We then proceed by using the values of α(0, 1) and α(0, 2) to

solve for α(0, 3) in the same way. Thus, maturity after maturity, we solve for the risk-neutral

drifts in each period of the model. Rather than repeat the same calculations again, we simply

state the solutions for the remaining alphas:

α(0, 3) = 0.000562

α(0, 4) = 0.000787

This finalizes the first period evolution on the HJM tree, which is represented as follows:

⎡⎢⎢⎢⎢⎢⎣
0.10

0.11

0.12

0.13

0.14

⎤⎥⎥⎥⎥⎥⎦
 
 

⎡⎢⎢⎢⎣
0.125112

0.135337

0.145562

0.155787

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.095112

0.105337

0.115562

0.125787

⎤⎥⎥⎥⎦
Extending to Multiple Periods
We have completed most of the heavy lifting for the model. The procedure just outlined for

the evolution of the forward curve over one period may be repeated for ensuing periods.

At the end of the first period, we obtained two forward curves, one for the upshift state

fu(1, T ) and the other for the downshift fd (1, T ). Starting with the upshifted curve as the

initial curve, and the same volatilities, we can compute the two curves that evolve from

this one. Likewise, starting with the downshifted curve as the initial one, we can compute

two curves in the next period. This results in a total of four forward curves on the tree

after two periods. However, this assumes that the tree does not recombine. If it did, then

the forward curve that evolved from a down move of fu would coincide with the one that

evolved from an up move of fd , and there would be only three forward curves at the end of

period 2. We will examine the conditions for recombination shortly. First, we compute the

tree as it emanates from the upper node at the end of time 1. We denote this as the “upper”

subtree.

The Upper Subtree
Let us deal with the upshifted forward curve as the initial one. Starting from here, the one-

period evolution of the “subtree” from period 1 to period 2 may be depicted as follows (note

that there are three remaining periods in the model after time 2, and so the two forward

curves generated as the upper subtree will contain three elements each):

⎡⎢⎢⎢⎣
0.125112

0.135337

0.145562

0.155787

⎤⎥⎥⎥⎦   

⎡⎢⎣ 0.150337+ α(1)

0.160562+ α(2)

0.170787+ α(3)

⎤⎥⎦
⎡⎢⎣ 0.120337+ α(1)

0.130562+ α(2)

0.140787+ α(3)

⎤⎥⎦
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We manipulate this “triple” of forward curves in exactly the same way as before to compute

α(1), α(2), and α(3). Even though we are aware that this triple applies to the time period

between year 1 and year 2, we simply treat it as if it were for a new model beginning at the

start of year 1. Therefore, even though we are building the subtree starting at t = 1 and we

are interested in computing the forward rate curves at time t = 2 years, we operate as if the

root node of the tree is fu , which will make the computations identical to that for the prior

subperiod. One more time, we solve for α(1). The price of a two-year bond will be

P(1, 3) = exp[−(0.125112+ 0.135337)]

which will also be equal to pricing on the tree, i.e.,

P(1, 3) = exp(−0.125112) × 1

2
[Pu(2, 3) + Pd (2, 3)]

where

Pu(2, 3) = exp[−(0.150337+ α(1))]

Pd (2, 3) = exp[−(0.120337+ α(1))]

Solving for α(1), we obtain

α(1) = 0.000112

Bootstrapping, we can also solve for the remaining alpha values. The reader may wish to

check the computations, which are left as an exercise. The solutions are

α(2) = 0.000337

α(3) = 0.000562

Plugging these into the subtree, we get the following:

⎡⎢⎢⎢⎣
0.125112

0.135337

0.145562

0.155787

⎤⎥⎥⎥⎦   

⎡⎢⎣ 0.150449

0.160899

0.171349

⎤⎥⎦
⎡⎢⎣ 0.120449

0.130899

0.141349

⎤⎥⎦
The Lower Subtree
Now we take up the evolution of the tree taking the downshifted forward curve as the initial

one. Starting from here (i.e., at fd ), the one-period evolution of the “subtree” from period

1 to period 2 may be depicted as follows:

⎡⎢⎢⎢⎣
0.095112

0.105337

0.115562

0.125787

⎤⎥⎥⎥⎦   

⎡⎢⎣0.120337+ α(1)

0.130562+ α(2)

0.140787+ α(3)

⎤⎥⎦
⎡⎢⎣0.090337+ α(1)

0.100562+ α(2)

0.110787+ α(3)

⎤⎥⎦
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We omit the usual calculations here and simply state the computed alpha values.

α(1) = 0.000112

α(2) = 0.000337

α(3) = 0.000562

And we may then depict the finalized lower subtree here

⎡⎢⎢⎢⎣
0.095112

0.105337

0.115562

0.125787

⎤⎥⎥⎥⎦   

⎡⎢⎣0.120449

0.130899

0.141349

⎤⎥⎦
⎡⎢⎣0.090449

0.100899

0.111349

⎤⎥⎦
The upshift forward curve here coincides with the downshifted curve from the previous

subsection, i.e., recombination of the tree is attained. For completeness, we now present the

entire tree over two periods.

⎡⎢⎢⎢⎢⎢⎣
0.10

0.11

0.12

0.13

0.14

⎤⎥⎥⎥⎥⎥⎦
 
 

⎡⎢⎢⎢⎣
0.125112

0.135337

0.145562

0.155787

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.095112

0.105337

0.115562

0.125787

⎤⎥⎥⎥⎦

 
 

 
 

⎡⎢⎣0.150449

0.160899

0.171349

⎤⎥⎦
⎡⎢⎣0.120449

0.130899

0.141349

⎤⎥⎦
⎡⎢⎣0.090449

0.100899

0.111349

⎤⎥⎦
Tree Recombination
Our current numerical example of tree building in the HJM model resulted in a recombining

tree. After two periods on the tree, we ended up with three different unique states (forward

rate curves). Indeed, it is easy to show that with this particular chosen volatility function,

the entire tree for n periods will always recombine, no matter how large n may be chosen

to be; and, of course, after n periods, there will be (n + 1) states or nodes, each of which

contains a forward rate curve.

What conditions do we need to impose on the model to ensure a recombining tree? The

answer lies in the way we specify the volatility function for forward rates, i.e., the form of

σ (t , s). There are two cases in which the tree is recombining.

1. σ (t , s) = σ0 for all s. That is, the volatility is constant and identical across all maturities

of forward rates. This is exactly the case considered so far in our numerical example.

2. σ (t , s) = σ (s) for all s. That is, the volatility may be different for each forward maturity

s, but it should not depend on current time t or any other factor. Note that case 1 is

simply a special form of case 2.

On the other hand, if the volatility function depends on current time t or on the level of

current forward rates f (t , s), then the tree is not guaranteed to be recombining.
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Example 30.1 We use the two-period arbitrage-free tree we computed to illustrate interest-rate derivative
pricing. We shall price options on a five-year coupon bond with a coupon of 13% per
year. In particular, we price the one-year call option on this bond at a strike (ex-coupon)
of 100.

In order to price this option, we need to determine the price of the five-year bond at the
end of one year. There are two states at the end of one year, and at each node there is a
forward curve with four rates, one for each of the remaining years. These forward curves
may be used to price the bond at the end of one year. In the up state, the forward curve is⎡⎢⎢⎣

0.125112

0.135337

0.145562

0.155787

⎤⎥⎥⎦
The price of the bond (coupon = 13%) is obtained by discounting all coupons and the final
principal (remember that h = 1):

Pu = 13 exp[−(0.125112)]
+13 exp[−(0.125112+ 0.135337)]

+13 exp[−(0.125112+ 0.135337+ 0.145562)]

+113 exp[−(0.125112+ 0.135337+ 0.145562+ 0.155787)]

= 94.58296

Since this price is less than the call strike of 100, the call will not be exercised, and its value
in the up state is zero.

An identical calculation may be undertaken for the down state price, which turns out to
be

Pd = 104.5823

In this state, the call option is in-the-money and generates a payoff of 4.5823. The time-0
price of the option may now be easily computed by taking expected values (when q = 1

2
)

and discounting back to the beginning of year 1,

Call price = exp(−0.10)
 
1

2
× 0+ 1

2
× 4.5823

 
= 2.0731

■

An HJM Advantage over Spot-Rate Models
At this juncture, it is useful to point out the advantage of building a tree with the entire

forward curve at each node (compared to a tree with only the short rate at each node, as for

example, in the Black-Derman-Toy (BDT) model). In the BDT model, in order to price the

option on the five-year bond, we would need to build the tree for five years, i.e., out to the

maturity of the bond. Using this tree, we would discount back cash flows to the end of year

1 to assess the option’s value. However, in the HJM model, we needed only to build the tree

to a maturity of one year, i.e., out to the maturity of the option even though the underlying

bond was for a longer maturity. This is because there is enough information in the entire

forward curve available at the end of one year to price the five-year bond and thus compute

payoffs on interest-rate options.

If we regard the discrete binomial model as an approximation to the continuous time

model, the more periods that are imposed on the tree, the more accurate is the discrete model

relative to the continuous time one. Since the HJM model requires extending the tree only to

the maturity of options, not to that of the underlying bonds, it can accommodate many more

time steps within a given fixed maturity, thereby allowing for far higher model accuracy.
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30.4 A Two-Factor HJM Setting

In the one-factormodel described in the last section, all rate changes are driven by a common

factor so the changes are perfectly correlated. In the binomial example, this meant that all

rates move up or all rates move down. (The one-factor model also permits any rate to move

always in the opposite direction to the others as well, meaning that it is perfectly negatively

correlated to the other rates. In the binomial model, this may be accomplished by simply

reversing the sign of σ for that rate.)

If we introduce a second factor, then each rate is affected by two shocks, one for each

factor. This makes it easy to introduce imperfect correlation in the changes and more

interesting interest-rate dynamics. We illustrate this with an example. The example has

three periods with each period having a length of h = 1 year. The initial forward curve is

given by

f (0, 0) = 0.10

f (0, 1) = 0.11

f (0, 2) = 0.12

Motivated by Heath, Jarrow, and Morton (1990a), we posit the following two-factor

trinomial-tree process for the evolution of forward rates: for each (t , s),

f (t + 1, s) =

⎧⎪⎨⎪⎩
f (t , s) + α(s)h + σ1(s)

√
h + σ2(s)

√
h with prob 1/3

f (t , s) + α(s)h + σ1(s)
√
h − σ2(s)

√
h with prob 1/3

f (t , s) + α(s)h − σ1(s)
√
h − σ2(s)

√
h with prob 1/3

(30.8)

Finally, σ1(·) and σ2(·) are specified by

σ1(1) = 0.010 σ2(1) = −0.001

σ1(2) = 0.009 σ2(2) = −0.002

This is, of course, a particular example of how a two-factor model may be specified. It

does not purport to be a general specification of such models. The shock factors σ1 and

σ2 in this specification depend only on the maturity date s of the forward rates, not on the

current time or on the current level of forward rates as they may in general.

Nonetheless, there are several interesting features of this specification. Observe that the

impact of the factors is sometimes specified to be negative. This simple device permits the

twoσ functions towork in opposite directions to eachother. Second, the value ofσ1 decreases

as the maturity of the forward rate increases. This is motivated by the empirically observed

relationship between maturities and forward rate volatilities and occurs because of mean

reversion of yields. Third, the volatility function σ2 has different signs for different maturity

dates with the long volatility being negatively signed and the short volatility positively

signed. This means the second factor drives the short forward rates in the opposite direction

to the long forward rate. This may be interpreted as a “slope” factor, one that tends to drive

the short end up and the long end down or vice versa. This feature actually introduces a

twist in the yield curve and is an important feature if you do not wish to assume parallel

shifts in the term structure of interest rates.

From this input information, we show how to build out the full three-period tree of

forward rates, identifying along the way the risk-neutral drifts of the rates.

Building the Trinomial Tree: The First Period
Using the specification of the σ functions, the forward-rate evolution over the first period

may be represented as a trinomial branching tree as in Figure 30.2. For simplicity, we have

written α1 and α2 for the drift terms α(0, 1) and α(0, 2).
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FIGURE 30.2
Initial Two-Factor

HJM Tree

0.10

0.11

0.12

1/3

1/3

1/3

0.11   ␣1   0.010   0.001

0.12   ␣2   0.009   0.002

0.11   ␣1   0.010   0.001

0.12   ␣2   0.009   0.002

0.11   ␣1   0.010   0.001

0.12   ␣2   0.009   0.002

We solve for α1 and α2 in two steps. First, using the two-period bond, we solve for the

value of α1. Then, using a three-period bond and the value of α1, we solve for the value of

α2. We undertake the first step in the following equation.

exp[−(0.10)]× exp[−(0.11)] = exp[−(0.10)]× 1

3
× exp[−(0.11+ α1 + 0.010− 0.001)]

+1

3
× exp[−(0.11+ α1 + 0.010+ 0.001)]

+1

3
× exp[−(0.11+ α1 − 0.010+ 0.001)]

The equation above arises simply from the fact that the discounted expected value of the

two-year zero must equal its current price when expectations are taken under the risk-neutral

measure. Note that on each side of the equation, we could have eliminated the discounting

back to time zero since this calculation is the same on both sides and is redundant. The

solution to this equation is

α1 = −0.00362614

We now carry out the second step. The value of α2 comes from the following equation:

exp[−(0.11+ 0.12)]

= 1

3
× exp[−(0.11+ α1 + 0.010− 0.001)] exp[−(0.12+ α2 + 0.009− 0.002)]

+1

3
× exp[−(0.11+ α1 + 0.010+ 0.001)] exp[−(0.12+ α2 + 0.009+ 0.002)]

+1

3
× exp[−(0.11+ α1 − 0.010+ 0.001)] exp[−(0.12+ α2 − 0.009+ 0.002)]

Here, discounting back to time zero has been eliminated from both sides of the equation

above. Given that we already know the value of α1, this equation contains only one unknown

value, α2. The solution to this equation is:

α2 = −0.00356759

Substituting these values {α1, α2} back into the tree results in the updated tree in

Figure 30.3.
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FIGURE 30.3
Two-Factor Tree with

Completed First Period

0.115374

0.123432

0.117374

0.127432

0.10

0.11

0.12

0.097374

0.109432

.123432   ␩1   .009   .002

.123432   ␩1   .009   .002

.123432   ␩1   .009   .002

.127432   ␩2   .009   .002

.127432   ␩2   .009   .002

.127432   ␩2   .009   .002

.109432   ␩3   .009   .002

.109432   ␩3   .009   .002

.109432   ␩3   .009   .002

Building the Trinomial Tree: The Second Period
We now proceed to solving for the forward rates in the second period of the model. We set

the drift values to be η1 in the uppermost subtree, η2 in the middle subtree, and η3 in the

lowest subtree. (See Figure 30.3.) There is only one maturity drift term to be solved for in

each case as there is only one year left in the horizon at this point. Therefore, there is only

one equation required in each subtree.

For the upper-most subtree, we solve for η1 using the by-now familiar approach. The

equation to be solved is

exp[−0.123432] =
exp[−(0.123432+ η1 + 0.009− 0.002)]× 1/3

+ exp[−(0.123432+ η1 + 0.009+ 0.002)]× 1/3

+ exp[−(0.123432+ η1 − 0.009+ 0.002)]× 1/3

The solution is η1 = −0.00363685.

Similar calculations may be done for the remaining two subtrees. Carrying them out, the

three values are

η1 = −0.00363685

η2 = −0.00363685

η3 = −0.00363685

The three drift terms are identical because the stochastic process that evolves from each

of the three nodes at the end of the first period is the same across the nodes. Substituting

these values back into the tree, we get the final tree of forward rates, depicted in Figure 30.4.

Observe that while there is partial recombination, the tree fails to be fully recombining.

(There is one node in common between the upper and middle thirds of the tree after two

periods. Similarly, there is one node in common between the middle and lower thirds of the

tree after two periods as well.) Recombination is lost even though all forward rate volatilities

are constant over time. This happens because the model has two factors. This is a useful

fact to remember about most interest-rate tree models: recombination is hard to achieve.
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FIGURE 30.4
Final Two-Factor Tree

0.115374

0.123432

0.117374

0.127432

0.10

0.11

0.12

0.097374

0.109432

0.126796

0.112796

0.130796

0.130796

0.116796

0.134796

0.112796

0.0987956

0.116796

However, fairly accurate pricing is still possible even on trees with few periods, using

techniques that vary the length of the time step across the tree. These ideas are described

in Heath, Jarrow, Morton, and Spindel (1992).

Example 30.2 Consider a coupon bond with a maturity of three years and a coupon of 12%. We price a
one-year call option on this bond at a strike price of 100. The strike price is the ex-coupon
strike, i.e., we compare the call strike price with the value of the bond excluding the coupon.

Using the tree, we compute the possible values of the underlying bond at the end of
one year. There are two remaining cash flows at the end of one year, and the forward curve
may be used to determine the prices. The three nodes at time 1 give us the following three
values:

12 exp[−(0.115374)]+ 112 exp[−(0.115374+ 0.123432)] = 98.8999

12 exp[−(0.117374)]+ 112 exp[−(0.117374+ 0.127432)] = 98.3509

12 exp[−(0.097374)]+ 112 exp[−(0.097374+ 0.109432)] = 101.962

Finally the option value is computed.

Option Value =
 
1

3
max(0, 98.8999− 100) + 1

3
max(0, 98.3509− 100)

+1
3
max(0, 101.962− 100)

 
exp[−0.10]

= 0.591898
■

One-Factor versus Two-Factors: Summary
Summarizing this entire discussion, the main lessons from extending the one-factor model

to two-factors are as follows:

• The basic idea of no arbitrage remains unchanged and is applied in the same way as

before. Discounting zero-coupon bond values under risk-neutral probabilities allows

solving for the drift terms and thus enables building the tree period by period.
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• The tree structure changes, and the two-factor model may be implemented most parsi-

moniously on a trinomial tree. However, there is no reason to restrict the structure to a

trinomial form, and quadrinomial forms are also possible. In fact, this form may even

be more flexible. Pentanomial and hexanomial forms have also been used in practice.

• The dynamics of the forward curve are greatly expanded. Changes in forward rates are

no longer perfectly correlated. Also, richer evolution is possible. For example, the Heath,

Jarrow, and Morton (1990a) model we examined permits twists in the curve.

• Finally, attaining tree recombination becomes harder.However, there aremany two-factor

models in which recombination is not lost.

30.5 The HJM Risk-Neutral Drifts: An Algebraic Derivation

The previous sections derived the risk-neutral drifts of the model in terms of the volatilities

in the context of examples. In this section, we do this derivation algebraically and show

that an analytic recursive expression may be derived for expressing this relationship. To

facilitate comparison with the one-factor example, the derivation here is in the context of a

one-factor binomial model with equiprobable up and down moves; we also use a volatility

specification that is a simple generalization of that used in the one-factor example. For a

full-blown algebraic derivation of this result in a general setting, see Appendix 30A.

We restrict attention to a three-period model; as will become apparent, the derivation is

easily generalized. The initial forward rate curve is given by the vector [ f (0, 0), f (0, 1),

f (0, 2)]. As in our examples, we assume that the volatilities σ (t , s) depend only on s; this

too is easily generalized, although the expressions for the drifts will not then look as neat.

We begin with the risk-neutral drifts over the first period. There are two forward rates

left at the end of this period. Writing σ1 for σ (1), etc., the up state forward curve is: 
f (0, 1) + α1h + σ1

√
h

f (0, 2) + α2h + σ2

√
h

 
The down state forward curve is 

f (0, 1) + α1h − σ1

√
h

f (0, 2) + α2h − σ2

√
h

 
We solve for α1 and α2 exactly as we did in the numerical examples. Starting with the

two-period $1 zero-coupon bond as the basis, we compute its two possible prices at the end

of the first period, i.e., in the up state and down state. These prices are, respectively,

exp[−( f (0, 1) + α1h + σ1

√
h)h]

exp[−( f (0, 1) + α1h − σ1

√
h)h]

We take expected values and discount this value to inception to obtain the price of the

bond

P(0, 2) = exp[−( f (0, 0)+ f (0, 1))h] · 1
2

 
exp[−(α1h + σ1

√
h)h]+ exp[−(α1h − σ1

√
h)h]
 

This should equal the current price of the bond priced directly off the initial forward curve,

i.e.,

P(0, 2) = exp[−( f (0, 0) + f (0, 1))h]
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Equating these expressions provides an analytic relationship between the drift α1 and σ1,

1 = 1

2

 
exp[−(α1h + σ1

√
h)h]+ exp[−(α1h − σ1

√
h)h]
 

which may be rewritten as

α1 =
1

h2
ln

 
1

2

 
exp[σ1

√
hh]+ exp[−σ1

√
hh]
  

= 1

h2
ln

 
1

2

 
exp[σ1h

3
2 ]+ exp[−σ1h

3
2 ]
  

= 1

h2
ln
 
cosh

 
σ1h

3
2

  
where cosh is the hyperbolic cosine function defined by cosh(x) = (exp(x)+ exp(−x))/2.

This simple expression relates the arbitrage-free drift term for the one-period maturity to

the corresponding volatility of the same maturity. The expression for the second period drift

is similar; we undertake the derivation in full again for completeness.

This time, we start with the three-period $1 zero-coupon bond as the basis, and we

compute its two possible prices at the end of the first period, i.e., in the up state and down

state. These two prices are, respectively,

exp[−( f (0, 1) + α1h + σ1

√
h + f (0, 2) + α2h + σ2

√
h)h]

exp[−( f (0, 1) + α1h − σ1

√
h + f (0, 2) + α2h − σ2

√
h)h]

The usual calculation gives the price of the bond at the initial time point

P(0, 3) = exp[− f (0, 0)h]×
1

2

 
exp[−( f (0, 1) + α1h + σ1

√
h + f (0, 2) + α2h + σ2

√
h)h]

+ exp[−( f (0, 1) + α1h − σ1

√
h + f (0, 2) + α2h − σ2

√
h)h]
 

This should equal the current price of the bond priced directly off the initial forward

curve:

P(0, 3) = exp[−( f (0, 0) + f (0, 1) + f (0, 2))h]

Equating these expressions provides a relationship between the drifts α1 and α2 and the

volatilities σ1 and σ2.

1 = 1

2

 
exp[−(α1h + α2h + σ1

√
h + σ2

√
h)h]+ exp[−(α1h + α2h − σ1

√
h − σ2

√
h)h]
 

which may be rewritten as

α1 + α2 =
1

h2
ln

 
1

2

 
exp[σ1

√
hh + σ2

√
hh]+ exp[−σ1

√
hh − σ2

√
hh]
  

= 1

h2
ln

 
1

2

 
exp[(σ1 + σ2)h

3
2 ]+ exp[−(σ1 + σ2)h

3
2 ]
  

= 1

h2
ln
 
cosh

 
(σ1 + σ2)h

3
2
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This expression generalizes in the obvious way. If there are T periods in the model, then

the general form of this equation for the sum of T drifts is

T 
t=1

αt =
1

h2
ln

 
cosh

  T 
t=1

σt

 
h

3
2

  
(30.9)

Here is the Octave program code to generate the forward rate curves one period ahead.

By calling this program recursively, one can generate the entire tree of forward rates.

% hjm(f0,sig0,h)

% Program to generate the HJM Tree

% The program takes in a fwd curve and vol curve and returns

% the next periods up and down fwd curves

%f0 : initial forward rate curve

%sig0 : forward rate volatilities (for this node)

function u = hjm(f0,sig0,h);

n = length(f0);

m = n-1;

fu = f0(2:n);

fd = f0(2:n);

sigma = sig0(2:n);

alpha = zeros(m,1);

for j=[1:m];

if (j==1);

alpha(j) = log(0.5*(exp(-sigma(j)*h*sqrt(h)) + ...

exp(sigma(j)*h*sqrt(h))))/h^2;

end;

if (j>1);

alpha(j) = log(0.5*(exp(-sum(sigma(1:j))*h*sqrt(h)) + ...

exp(sum(sigma(1:j))*h*sqrt(h))))/h^2-sum(alpha(1:j-1));

end;

end;

fu = fu+alpha*h+sigma*sqrt(h);

fd = fd+alpha*h-sigma*sqrt(h);

u = [fu fd];

In order to illustrate the implementation, here is a snippet of the results from running the

program above in the Octave programming language:

octave:1> f0 = [0.10; 0.11; 0.12; 0.13; 0.14];

octave:2> sig0 = 0.015*ones(5,1);

octave:3> h=1;

octave:4> hjm(f0,sig0,h)

ans =

0.125112 0.095112

0.135337 0.105337

0.145562 0.115562

0.155787 0.125787
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We can see that these results are precisely those we developed earlier through the process

of bootstrapping. Note that this is the program code (function) for a single node on the HJM

tree. Repeatedly calling this function spawns the full tree in complete generality because

we may choose a different volatility vector at each node.

As noted at the top of this section, a general derivation of the relation between risk-

neutral drifts and volatilities in the context of discrete-time HJM models is presented in

Appendix 30A.

30.6 Libor Market Models

Market Models were developed by Brace, Gatarek, and Musiela (1997) and Jamshidian

(1997). Other versions of these models were developed around this time, but the main

credit for popularizing these models has been ascribed to these two papers. For an analysis of

pricing derivatives in closed form in this framework, see the paper by Miltersen, Sandmann,

and Sondermann (1997).

We have seen in the previous sections that HJM offers a general framework in which

many types of term-structure evolution may be accommodated. An appealing feature of

HJM models is that the risk-neutral drifts for interest-rate stochastic processes may be

expressed completely in terms of forward rate volatilities as in equation (30.9). Since these

volatilities may be implied from the prices of interest-rate derivatives, the entire HJM model

is, in principle, based on observables. The information in the term structure of forward rates

is coupled with information from the term structure of volatilities to develop a lattice of

forward rates admitting no arbitrage on which interest-rate derivatives may be priced. The

HJM framework is widely used.

Libor Market Models (or LMMs) represent a natural development from the HJM class

of models. They too are based on forward rates and volatilities. As we will see, they are

much more particular in form than HJM models. One may well ask that if HJM models

are so general and widely used, then what is the need for the more particular class of

LMMs? Rather than model instantaneous forward rates as in the HJM model, in the LMM,

observable Libor rates are modeled directly. Their volatilities are also extracted directly

from the prices of traded options. This makes it much easier to link the LMM to the prices

of commonly traded products.

To understand the evolution of LMMs, we note that market practice has been to model

forwardLibor rates using a lognormal distribution.This assumption ensures that rates remain

positive at all times. Also, lognormal rates deliver closed-form option pricing formulae for

caps and floors that are similar to those obtained in the Black-Scholes model. LMMs are

based on lognormal forward rates so that the pricing and calibration of simple derivatives

on forward rates may be analytically tractable. Indeed, we have examined the pricing of

caps and floors already using the Black (1976) model (see Chapter 23).

Within a cap option, each caplet is usually based on consecutive but non-overlapping

Libor rates. The total price of the cap does not require imposing correlation assumptions on

the various forward Libor rates. This is because the price of each caplet may be computed

separately from the others using the Black model since each underlying forward rate applies

to one and only one caplet. Further, risk-neutral pricing of derivatives on single forward

Libor rates may be undertaken under different martingale measures for each rate.1

1 This is analogous to pricing each stock option on a separate binomial tree for each stock. In all cases

a martingale probability measure is used but there is no restriction imposed to keep all probability

measures the same.
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Each caplet’s market price may be used to directly extract the implied volatility of each

forward Libor rate. This is done using the closed-form Black pricing equation. This makes

calibration easy and simple.

Interest rate derivatives that are written on more than one forward Libor rate need to be

priced using the same probability measure for rates of all maturities. The heart of the LMM

approach lies in transforming all Libor rates so as to bring them under the same probability

measure under which all discounted (normalized) asset prices will be martingales.

Accordingly, in the ensuing sections, we will revisit the concept of martingales as well as

that of change of measure. We will learn how to adjust the drifts of the stochastic processes

for forward Libor rates so as to bring them under a unified measure. The setup in which this

is done is known as the “Market Model” framework.

Before proceeding, we note that there are two main classes of markets to which these

models are calibrated, Libor markets (using caps and floors) and swap markets (using

swaptions). Hence, we get two types of market models, the Libor Market Model (LMM)

and the Swap Market Model (SMM). In this chapter, we focus on the former, using it to

illustrate concepts that are important for understanding this class of models.

We turn now to a description of the LMM. After revisiting martingale concepts, we

present a simple version of the model so the basic ideas may be easily understood. We

elaborate each step so that the reader may find it easy to implement the model if needed.

Following this description, we undertake a brief presentation of the related class of SMMs.

Extensive derivations and details for the more technically inclined reader may be obtained

in the book by Brigo and Mercurio (2001). A survey of both the theory and the empirical

validity of the model may be found in Rebonato (2002b).

30.7 Mathematical Excursion: Martingales

We undertake a short diversion here to review martingales. This mathematical concept has

taken center stage in the pricing of derivative securities since the papers by Harrison and

Kreps (1979) and Harrison and Pliska (1981). In this section we review their ideas in brief.

A random variable X is said to be a martingale if its expected value in the future is equal

to its value today. For a simple example of a martingale, consider a coin toss where heads

wins you a dollar and tails loses a dollar. Assuming a fair coin (heads and tails are equally

likely), the expected value of this gamble is zero. In fact, the expected value of your wealth

after t tosses is equal to zero. More generally, suppose your wealth after t tosses is St . Then,

E[Sk |F t ] = St , k ≥ t (30.10)

Inwords, (30.10) says that viewed from time t and conditional on all informationFt available

at time t (including the past realizations of tosses and the wealth level St reached by time

t), the expected wealth at time k > t is the same as the value at time t .

The condition (30.10) is the defining condition in probability theory for St to be a

martingale. Note the implicit dependence of this condition on the probability measure with

respect to which future wealth is calculated. It was only because the coin is a fair one

(Prob(H ) = Prob(T ) = 0.50) that (St ) is a martingale. If, for instance, we had Prob(H ) =

0.60, then you are more likely to win a dollar than to lose one, so your expected wealth

increases over time; the process is now called a submartingale. If we had Prob(H ) = 0.40,

then your expected wealth would decrease over time, that is, it would be a supermartingale.

The significance of martingales for derivative pricing was described in the simplified

setting of Chapter 11 (see Appendix 11). Briefly, given a setting with n security price

processes, pick any one security to act as a “numeraire.” Express all other securities prices
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in terms of units of the numeraire security; that is, divide all security prices by the price of

the numeraire security. These prices are called the “normalized” or “discounted” security

prices. In notational terms, if Skt denotes the time-t price of security k, and security  has

been chosen to be the numeraire, then the discounted price of security k, denoted, say, Zkt ,

is given by

Zkt =
Skt

S t

Note that the discounted price Z t of the numeraire security  itself is always equal to 1.

The fundamental connection between martingales and derivatives pricing is the follow-

ing: if there exists a set of probabilities (i.e., a probability “measure,” denoted, say, Q) under

which all discounted securities prices aremartingales, then (a) the model is free of arbitrage,

and (b) the “correct” arbitrage-free price of any derivative can be identified by taking the

expectation under Q of the discounted payoffs of the derivative. Following Harrison and

Kreps (1979), the probability measure that makes discounted securities prices martingales

is called a “martingale measure.” Modulo some technical conditions, the converse is also

true that if a model is free of arbitrage, then a martingale measure exists for any choice of

numeraire.

Note that the martingale measure depends on the choice of numeraire security, i.e., the

security with respect to which the discounted security prices are defined. If we change the

numeraire, there is no reason to expect the new discounted prices will remain a martingale.

Thus, to be complete, we should really say that (for example) “Q is a martingale measure

with respect to the numeraire  .” Change the numeraire asset, and you need to change the

probabilities to make discounted security prices martingales.

As one may guess, there are many combinations of numeraires and their associated

martingale probabilities. The accumulated money market account (described by rolling

over a dollar at the risk-free rate) is a common choice of numeraire in practice. This

is the numeraire security we have used so far in this book to derive the risk-neutral

probabilities. The risk-neutral measure for this choice of numeraire is called the “spot”

martingale measure.

Sometimes it is more convenient to use a numeraire that is the price of a T -maturity

discount bond P(t , T ) instead of the money market account. In this case, as we move ahead

in time, i.e., as t increases, the price of the bond rises until it reaches unity at t = T , i.e.,

P(T , T ) = 1. To distinguish the martingale measure with respect to P(t , T ) as numeraire

from the “spot” one, such martingale measures are denoted as “forward measures.” In the

following sections, we will be working with forward measures, and we will see why they

are more convenient than spot measures for pricing Libor-based interest-rate derivatives.

The appendix also contains some additional results on forward measures that the reader

may refer to for additional insights.

30.8 Libor Rates: Notation

The LMM is a model that (a) has forward Libor rates moving continuously but has (b)

discrete periods over which Libor rates are defined. The model is implemented on a time

line with discrete intervals, each assumed to be of δ years. Let time 0 be the initial time point

of the model. Subsequently, at any current time t , define “end-of-period” times measured

from t as the time points

T1 = t + δ, T2 = t + 2δ, . . . , TN = t + Nδ
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Given we are at time t , time T1 is the end of the first period thereafter. Likewise, T2 is

the end of the second subsequent period, and so on. Next, let Li be the forward Libor rate

at time t for the period of length δ ending in Ti . For example, L1 is the Libor rate for the

forward period ending in T1. Between time Ti−1 and Ti , an invested dollar earning Libor

will become (1+ δLi ).
2 The following diagram reflects this timing convention.

0 t T1

L1

T2 T3
. . . TN

L2 L3

Our exposition of the LMM assumes that the source of uncertainty for Li is a Brownian

motion (Wi ). We assume the following lognormal stochastic process for Libor rates Li :

dLi (t) = μi (t)Li (t) dt + σi Li (t) dWi (t), i = 1, . . . , N

It is useful to keep in mind that the subscript i refers to the end of the period over which a

given forward Libor rate applies, and t represents the current calendar time.

We first look at the connection between Libor rates and discount bonds. Define P(t , Ti )

as the time-t price of the zero-coupon bond maturing at time T1 and paying a certain dollar

at that point. It is easily checked that the following consistency relationships exist between

discount bonds:

P(t , t) = P(t , T1)[1+ δL1]

P(t , T1) = P(t , T2)[1+ δL2]

P(t , T2) = P(t , T3)[1+ δL3]

:

P(t , Ti−1) = P(t , Ti )[1+ δLi ]

:

P(t , TN−1) = P(t , TN )[1+ δLN ]

Rearranging these expressions, we get in general:

δLi =
P(t , Ti−1)

P(t , Ti )
− 1, for all i

Suppose we take P(t , Ti ) as the numeraire asset and assume that there exists a probability

measure Qi such that, under Qi , the discounted price P(t , Ti−1)/P(t , Ti ) is a martingale.

Examining the equation above, we see that this implies that the Libor rate Li is also a

martingale under Qi with respect to numeraire P(t , Ti ). This immediately implies that the

evolution of the Libor rate will be arbitrage-free under Qi , which is thence known as a

“forward martingale measure.”

This creates an unusual situation. Since each Libor rate Li has its own numeraire bond

P(t , Ti ), each rate is a martingale with respect to a differentmeasure Qi , i = 1...N . We thus

have a set of martingale measures, one for each i , with numeraires P(., Ti ) respectively. But

to have a consistent pricing system, all Libor rates must be governed by the same probability

measure. Fixing one martingale measure for a chosen Libor rate, we will undertake a change

2 Since the Libor market uses the Actual/360 convention, the day-count fractions δ will not all be the

same even if each period represents, say, three months. Some three-month periods may have 91

days in them, so δ will be 91/360. Others may have 92 days, so we have δ = 92/360. For simplicity,

to avoid introducing further notation, we assume this away and use the same day-count fraction for

all periods.
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of measure for the other Libor rates to bring them under one measure. We will derive this

common measure in the next section.3

Finally, note that caps and floors are options on Libor rates. Since Libor rates are not

traded assets, we need to be sure that we can replicate them using discount bonds. This is

easy to show. Suppose we are interested in locking in an investment at time t at rate Li for

the period (Ti−1, Ti ). We may replicate this as follows:

• At time t Short 1 unit of the bond P(t , Ti−1) and use the proceeds to buy P(t ,Ti−1)

P(t ,Ti )
units

of the bond maturing at Ti . The net cash flow at t is zero.

• At time Ti−1 Buy back the short position in the bond maturing at time Ti−1. Since this

is a discount bond the net cash flow is −1.

• At time Ti Sell the position in the bond maturing at Ti , resulting in a cash flow of
P(t ,Ti−1)

P(t ,Ti )
. This amount is equal to (1+ δLi ).

We have created a replicating portfolio that results in a cash flow of −1 at time Ti−1 and

another cash flow of (1+ δLi ) at time Ti . This is exactly analogous to investing in an asset

at time Ti−1 at a return rate of Li for the interval (Ti−1, Ti ).

Before proceeding, let us recap. We have defined a model, based on lognormal forward

Libor rates. In the HJM model, discounted bond prices are martingales under a “spot”

martingale measure—the one that takes the money market account as numeraire. The LMM

model has rates based on a “forward” martingale measure, one in which the numeraire asset

is the price of a bond maturing in the future. The LMM may be summarized as a model

framework in which an entire family of forward rates is modeled under a common forward

measure such that consistency with caplet prices is maintained.

Next we develop the mechanics for implementing the change of measure needed to bring

all forward Libor rates under the same probability measure while retaining their connection

to traded caps and floors.

30.9 Risk-Neutral Pricing in the LMM

We now derive the risk-neutral process for all Libor rates. This is undertaken in two steps.

First, we choose a numeraire bond. Second, we determine the drifts μi of all Libor rates

such that they are transformed to be governed by a common probability measure.

As before, Libor rates are assumed to be lognormally distributed, i.e.,

dLi

Li

= μi dt + σi dWi , i = 1, . . . , N

It is simplest to choose the discount bond of maturity TN as the numeraire asset. Based on

this, we will compute the drift terms μ1, μ2, . . . , μN such that L1

P(t ,TN )
, L2

P(t ,TN )
, . . . , LN

P(t ,TN )

are martingales with respect to a probability measure over correlated Brownian motions

W1, W2, . . . , WN . The numeraire is no longer a money market account as in the case of the

HJM model. Instead, it is a bond maturing in the future, and, hence, the probability measure

is known as the “forward” measure. From a nomenclature point of view, pricing in the HJM

model is undertaken under the “spot” measure.

The calculation of risk-neutral drifts in the LMM is less than trivial, and, hence, with a

view to keeping the exposition gentle, we will work with only a three period model, i.e.,

3 We might say, “One Measure to rule them all, One Measure to find them, One Measure to bring

them all and in no-arbitrage bind them,” (adapted from Lord of the Rings with apologies to J.R.R.

Tolkein).
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N = 3. The results developed for three periods generalize easily to as many periods as are

necessary. Thus, there are three Libor rates in our model, {L1, L2, L3}, corresponding to

periods (t , T1), (T1, T2), and (T2, T3). Our numeraire is P(t , T3). The martingale probability

measure is Q3. The current point in time is denoted t .

Deriving the Martingale Process for L3

We begin with Libor rate L3 and determine its martingale process when the numeraire is

P(t , T3). From the previous section, we restate the functional form for L3

δ · L3 =
P(t , T2)

P(t , T3)
− 1

The right-hand side of the equation contains an expression for the price of the two-period

bond P(t , T2) normalized by numeraire P(t , T3). By assumption, this must be a martingale

under the probability measure based on the Brownian motion W3. The expected change of

the right-hand side of the equation is therefore zero. Given this, the expected change of

the left-hand side is also zero, implying that L3 is a martingale. Hence, if L3 is already a

martingale, its drift must be zero, i.e., μ3 = 0. We may then specify the stochastic process

for L3 as follows:

dL3 = σ3L3 dW3

Note that L3 is lognormal and it is a martingale.

Deriving the Martingale Process for L2

Turning to L2, we write down its relation to discount bonds:

δ · L2 =
P(t , T1)

P(t , T2)
− 1 = P(t , T1) − P(t , T2)

P(t , T2)

Since the normalizing asset on the right-hand side of the equation is P(t , T2), not the

numeraire P(t , T3), the process for L2 is not a martingale with respect to the required

numeraire, and, hence, we need to make a change of probability measure to convert it into

a process with respect to the chosen numeraire, P(t , T3). To do this, multiply both sides of

the equation by P(t , T2) and divide both sides by P(t , T3). This results in the following:

δ · L2 ×
P(t , T2)

P(t , T3)
= P(t , T1) − P(t , T2)

P(t , T3)

In the absence of arbitrage, all assets of any shape or form, normalized by P(t , T3), must be

martingales. Hence, looking at the left-hand side of the equation above, the asset L2P(t , T2)

normalized by P(t , T3) is also a martingale with respect to Q3. On the right-hand side of

the equation above, an asset defined as the difference of two bonds, i.e., P(t , T1)− P(t , T2)

normalized by P(t , T3) is also, by construction, a martingale. Defining Z2 ≡ P(t ,T2)
P(t ,T3)

, we

have

δ · L2Z2 =
P(t , T1) − P(t , T2)

P(t , T3)

Let A2 = L2Z2. Applying Ito’s lemma to A2, we get (via an extension of the product rule)

d A2 = L2 dZ2 + Z2 dL2 + dZ2 dL2

Dividing both sides by A2, we get

d A2

A2

= dZ2

Z2

+ dL2

L2

+ dZ2

Z2

dL2

L2
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A2 is a martingale, as is Z2, an asset normalized by the numeraire. Therefore, taking

expectations on both sides with respect to the martingale probability measure results in

0 = 0+ E

 
dL2

L2

 
+ E

 
dZ2

Z2

dL2

L2

 
Noting that E

 
dL2

L2

 
= μ2 dt , we get, via a series of simplifying steps, the expression for

the drift that makes L2 a martingale with respect to the chosen numeraire.

μ2 dt = −E

 
dZ2

Z2

dL2

L2

 
= −E

 
dZ2

dL2

L2

 
1

Z2

= − 1

Z2

E

 
d(1+ δL3)

dL2

L2

 
= −δL3

Z2

E

 
dL3

L3

dL2

L2

 
= −δL3

Z2

E [σ2σ3 dW2 dW3]

= −δL3

Z2

ρ23σ2σ3 dt

= − δL3

1+ δL3

ρ23σ2σ3 dt

Note that in lines 3 and 7 of the derivation above, we exploited the fact that

Zi =
P(t , Ti )

P(t , Ti+1)
= 1+ δLi+1, ∀i

Thus, we have derived the drift term for Libor rate L2 to make it a martingale with respect

to numeraire P(t , T3). The final result is

μ2 = −
δL3

1+ δL3

ρ23σ2σ3

Deriving the Martingale Process for L1

The calculations for L1 are only slightly more complicated and lead on directly to the

general case of many periods. Therefore, it is instructive to work through this last period of

the model in detail.

Turning to L1, we write down its relation to discount bonds:

δ · L1 =
P(t , t)

P(t , T1)
− 1 = P(t , t) − P(t , T1)

P(t , T1)

Since the normalizing asset on the right-hand side of the equation is P(t , T1), not the

numeraire P(t , T3), the process for L1 is not a martingale with respect to the required

numeraire, and, hence, we need to make a change in the equation to convert it into a process

with respect to the chosen numeraire, P(t , T3). To do this,multiply both sides of the equation

by P(t , T1) and divide both sides by P(t , T3). This results in the following

δ · L1 ×
P(t , T1)

P(t , T3)
= P(t , t) − P(t , T1)

P(t , T3)



756 Part Four Interest Rate Modeling

We modify the left-hand side of the equation a little bit as follows:

δ · L1 ×
P(t , T1)

P(t , T2)

P(t , T2)

P(t , T3)
= P(t , t) − P(t , T1)

P(t , T3)

which may also be written as

δ · L1Z1Z2 =
P(t , t) − P(t , T1)

P(t , T3)

Let A1 = L1Z where Z = Z1Z2 and using Ito’s lemma, we get the following:

d A1 = Z dL1 + L1 dZ + dL1 dZ

Dividing both sides by A1, we have

d A1

A1

= dL1

L1

+ dZ

Z
+ dL1

L1

dZ

Z

Because A1 and Z are martingales, we must have that, after taking expectations on both

sides,

0 = E

 
dL1

L1

 
+ 0+ E

 
dL1

L1

dZ

Z

 
Noting that Z = Z1Z2 and that Ito’s lemma gives dZ

Z
= dZ1

Z1
+ dZ2

Z2
+ dZ1

Z1

dZ2

Z2
, the equation

above may be written as

0 = μ1 dt + 0+ E

 
dL1

L1

 
dZ1

Z1

+ dZ2

Z2

+ dZ1

Z1

dZ2

Z2

  
Simplifying, and noting that the third power term dL1 dZ1 dZ2 = 0, we get

μ1 dt = −E

 
dL1

L1

dZ1

Z1

+ dL1

L1

dZ2

Z2

 
= −E

 
dL1

L1

dZ1

Z1

 
− E

 
dL1

L1

dZ2

Z2

 
Let’s simplify each term on the right-hand side separately.

−E

 
dL1

L1

dZ1

Z1

 
= 1

1+ δL2

E

 
d(1+ δL2)

dL1

L1

 
= − δL2

1+ δL2

E

 
dL2

L2

dL1

L1

 
= − δL2

1+ δL2

σ1σ2E(dW1 dW2)

= − δL2

1+ δL2

ρ12σ1σ2 dt (30.11)

−E

 
dL1

L1

dZ2

Z2

 
= 1

1+ δL3

E

 
d(1+ δL3)

dL1

L1

 
= − δL3

1+ δL3

E

 
dL3

L3

dL1

L1

 
= − δL3

1+ δL3

σ1σ3E(dW1 dW3)

= − δL3

1+ δL3

ρ13σ1σ3 dt (30.12)
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Combining both terms (30.11) and (30.12), we get the following final result:

μ1 = −
 

δL2

1+ δL2

ρ12σ1σ2 +
δL3

1+ δL3

ρ13σ1σ3

 
By simple analogy, we may write down the result for the general case immediately:

μi = −
N 

j=i+1

 
δL j

1+ δL j

ρi jσiσ j

 
, ∀i < N (30.13)

and when i = N , μi = 0. Equation (30.13) is the main result of the Libor market model

derivation above and may be then used in all further computations. It provides the drift

terms that are then substituted back into the stochastic processes for Libor rates. The risk-

neutral Libor dynamics under which no-arbitrage pricing may be undertaken with respect

to numeraire P(t , TN ) may now be stated as follows:

dLi

Li

= −
N 

j=i+1

 
δL j

1+ δL j

ρi jσiσ j

 
dt + σi dWi , ∀i < N (30.14)

As in the HJM model, we note that the risk-neutral drifts of the LMM Libor processes are

also functions of the volatilities and correlations. If instead of separate Brownian motions

Wi , we have a simple one-factor LMM model, then ρi j = 1 in the equation above.

30.10 Simulation of the Market Model

In market models, pricing is usually undertaken by simulating Libor rates. If there are N

rates, then we need to simulate rates L1, L2, . . . , LN jointly with the correct correlation

among the rates. The N Brownian motions Wi , i = 1, . . . , N have volatility coefficients σi

and pairwise correlations between Wi and Wj equal to ρi j .

Our procedure is as follows. At each point in time, we generate N standard normal

random numbers Wi with correlation matrix {ρi j }. Each Wi has a mean of 0 and a variance

of 1. Assuming a simulation time interval denoted by h, we generate the next period’s Libor

rates using the following discrete-time version of equation (30.14):

Li (t + h) = Li (t) exp

  
−

N 
j=i+1

 
δL j

1+ δL j

ρi jσiσ j

 
− 1

2
σ 2
i

 
h + σi

√
h ·Wi

 
, ∀i

(30.15)

Weare able to derive this expression directly sincewe have already encountered it previously

in the case of the Black-Scholes model where stock prices are lognormal as are Libor rates

here.

30.11 Calibration

One of the main advantages of the LMM class of models over others is ease of calibration to

market prices. We explore this feature here. We begin with developing the pricing equation

for cap options. A cap is a collection of caplets, and its value is the sum of the values of

caplets.

Recall that options on forwards are priced using Black (1976)’s formula. The formula for

options on forwards is based on two assumptions: one, that the process for the underlying

forward variable is lognormal and, two, that the volatility is nonstochastic, i.e., a constant
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or a deterministic function of time. Caplets are options on Libor forward rates Li . As long

as the volatilities σi are nonstochastic, Black’s formula applies directly. In the case of our

exposition here where we have assumed σi to be constant, we meet the conditions for Black’s

model and obtain a closed-form pricing equation for caps and floors.

Consider a caplet with strike X and maturity Ti . The option is therefore written on the

forward Libor rate Li+1 for the period (Ti , Ti+1). Applying Black (1976)’s model, we have

the solution for the option:

C0 = P(0, Ti ) [Li+1(0) N (d1) − X N (d2)] δ

where

d1 =
1

σi+1

√
Ti

 
ln

 
Li+1(0)

X

 
+ 1

2
σ 2
i+1Ti

 
and

d2 = d1 − σi+1

 
Ti

where σi+1 is the volatility for the Libor rate Li+1.

A similar argument shows that the price of a floorlet on Li+1 with maturity Ti and strike

K is

F0 = P(0, Ti ) [−Li+1(0) N (−d1) + X N (−d2)] δ

where d1 and d2 are as defined above. This is obtained by making the usual sign changes to

terms in the equations for caps.

This closed-form model makes calibration simple. All we need to do is compute the

value of σi+1, which matches the model price to that of the caplet for maturity Ti . Doing so

for all strikes and maturities results in the volatility surface for caps and floors.

We have looked at a very simple model in which the volatility of the Libor rates was

taken to be constant. The generalizations to time-varying Libor volatility are quite easy. As

with the case of time-varying volatility derived by Merton (1973), all we need do is replace

the volatility term in the equation above with the integrated time-varying volatility, i.e.,

replace the term σi+1

√
Ti with the following! Ti

0

σ 2
i+1(t) dt

The reader will find sufficient further detail in the original paper by Brace et al. (1997).

30.12 Swap Market Models

In this section, we briefly review swap market models (SMMs). As with LMMs, one of the

advantages of SMMs is that direct calibration to the swap and swaptions market is possible.

Since a full development of LMMs has already been undertaken, the main principles and

concepts have been covered. However, it is instructive to focus on the differences between

LMMs and SMMs as well as the relation between these two approaches.

Our comparison of LMMs and SMMs focuses on the following three main points:

1. Numeraires Recall that under the forward probability measure, Libor rates are mar-

tingales. The i-th Libor rate, Li (t), has the following relationship to zero-coupon bond
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prices:

δLi (t) =
P(t , Ti−1)

P(t , Ti )
− 1 (30.16)

where δ is the time interval covered by each period in the swap, and we have assumed

that T0 ≡ t . The rate Li is a martingale with respect to the measure Qi if

EQi

 
P(t , Ti−1)

P(t , Ti )
− 1

 
= EQi

 
P(t , Ti−1) − P(t , Ti )

P(t , Ti )

 
= 0

In other words, in the LMM setting, Libor rates are martingales with respect to numeraire

P(t , Ti ).

A swap comprises an exchange of fixed-for-floating payments. Each floating payment

is of the amount δLi and at time Ti has the following present value:

δ Li (Ti−1) P(Ti−1, Ti ) = P(Ti−1, Ti−1) − P(Ti−1, Ti )

This is obtained by rearranging equation (30.16) and setting t = Ti−1. A swap is

nothing but a collection of such floating payments in exchange for fixed payments.

We focus on the floating payment first. Since Libor rates are martingales, we can see

that the present value at time t of any floating payment is simply obtained by moving the

equation above to time t so that the expected present value of the entire floating side of

the swap is

N 
i=1

δ Li (t) P(t , Ti ) =
N 

i=1

[P(t , Ti−1) − P(t , Ti )] = P(t , T1) − P(t , TN )

(30.17)
The present value of the fixed side of the swap is the present value of payments made at

the fixed rate S:

δS

N 
i=1

P(t , Ti ) (30.18)

Equating (30.17) and (30.18), we see that the fair swap rate S is written as

S(T1, TN ) = P(t , T1) − P(t , TN )

δ
"N

i=1 P(t , Ti )

where S ≡ S(T1, TN ) is written to indicate that the swap covers the cash-flow periods

that end in the range (T1, TN ). From equation (30.16), it follows that because [P(t , T1)−
P(t , TN )] is a martingale, then S is a martingale with respect to the numeraire

N 
i=1

P(t , Ti )

which is the present value of the sum of unit payments each swap period. Compare this to

the numeraire in the LMM, which is just P(t , Ti ). Thus, the essential difference between

the LMM and SMM models boils down to a specification of numeraire.

2. Incompatibility The LMM model assumes that Libor rates are lognormal. From equa-

tion (30.16), it follows that the change in zero-coupon bond prices is also lognormal. The

numeraire in the SMM is the sum of discount bond prices and is therefore not lognormal

when Libor rates are lognormal.

Practitioners make a choice as to which market they should calibrate to, the Libor

market or the swap market. If they choose to calibrate to the swap market (and swaptions
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prices), they assume that swap rates are lognormal and then directly apply theSMM.From

the preceding paragraph, it is clear that choosing the SMM with lognormal swap rates

must imply that another model that assumes lognormal Libor rates cannot be consistent

with it. It is not possible for both models to simultaneously assume lognormal rates and

still remain compatible with each other. Because of this inherent inconsistency between

the models, a trading room needs to pick one of the models and stick to it.

3. Model choice The quandary posed by the incompatibility problem begs the question as

to which model is the better choice, the LMM or the SMM. As always, model choice

is based on two important attributes: calibration and hedging. Depending on the pre-

dominant business of a trading desk, traders will usually calibrate their models either to

Libor futures and caplets or swaps and swaptions. Also, they will use the same instru-

ments for hedging. This choice determines which of the two variants of market model

is chosen.

Without doubt, trading practice is the most important determinant of model choice.

But it also raises the natural question about cross-model error. Suppose one opts for the

LMM. Then what is the extent of mispricing of swaps and swaptions? Conversely, one

would like to know how biased caplet prices are if the underlying model is calibrated

to swap markets. There is limited empirical analysis of this issue. The question was

assessed in a paper by DeJong, Driessen, and Pelsser (2001). They found that calibrating

the LMM to caplets resulted in lower pricing error for swaptions than the calibration of

the SMM (to swaptions) for pricing the caplets. Much of the mispricing can be traced to

a tendency to overfit these models to the data so that the in-sample fit is extremely good,

but the out-of-sample performance of these models deteriorates significantly.

30.13 Swaptions

The SMM may be used to obtain swaption prices in closed form in much the same way in

which the LMM rendered closed-form equations for caps and floors. We define the values

of the floating and fixed side of the swap using equations (30.17) and (30.18) as follows:

Floating side: A =
N 

i=1

δ Li (t) P(t , Ti ) (30.19)

Fixed side: B = δS

N 
i=1

P(t , Ti ) (30.20)

where S is the fixed rate that is set on the swap that underlies the swaption. As swap rates

change in the market, the fair swap rate S will always be such that floating and fixed sides

are equal, i.e., that
"N

i=1 δ Li (t) P(t , Ti ) = δS
"N

i=1 P(t , Ti ). The ratio of the fair-price

floating-side value to the fixed side value is

A

B
= δS

"N

i=1 P(t , Ti )

δS
"N

i=1 P(t , Ti )
= S

S

Since S is constant, if we assume that S is lognormal with volatility σ , then we are in the

setting of the Black and Scholes (1973) model. If the ratio A/B is lognormal, then the

swaption that is the option to exchange the floating side (receive) in return for the fixed

side (pay) will be an option to exchange one side for the other and may be valued using

the well-known formula of Margrabe (1978). The value of a swaption at time t to receive
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floating Libor and pay fixed-rate S for maturity T ≤ T1 is as follows:

Swaption(receive floating, pay fixed) = A N (d1) − B N (d2)

d1 =
ln(A/B) + 1

2
σ 2T

σ
√
T

d2 = d1 − σ
√
T

Correspondingly, the value of the swaption to pay floating and receive fixed is as follows:

Swaption(pay floating, receive fixed) = B N (−d2) − A N (−d1)

d1 =
ln(A/B) + 1

2
σ 2T

σ
√
T

d2 = d1 − σ
√
T

Afinal point to note is that nothing in the derivation abovewas particular to themarketmodel

framework. The same derivation applies to models such as HJM and to other interest-rate

models where the underlying swap rates are assumed to be lognormal.

30.14 Summary

This chapter has examined two of the most important classes of term-structure models.

The first is the Heath-Jarrow-Morton (HJM) model. The HJM approach works by modeling

movements in the entire forward curve. It has some important advantages over the factor

model approach. In particular, drifts of the forward-rate processes under the risk-neutral

measure are functions of the volatilities. The framework is also a very general one, admitting

any desired number of driving factors each of which could matter in different ways.

The second class of models examined is the so-called “Market Models,” viz., the Libor

Market Model (LMM) and the Swap Market Model (SMM). The lognormality of these

models achieves (even in multifactor settings) solutions that are analogous to those of the

Black and Scholes (1973) and Black (1976) models and offers solutions that are available in

closed form. This makes the calibration of model volatilities similar to backing out implied

volatilities. The LMM class of models has become a popular tool for the pricing of interest

rate derivatives.

30.15 Exercises 1. State at least three differences between theHJMmodel and themodel ofBlack-Derman-

Toy (BDT).

2. Denote the forward rates in the HJM model by f (t , T ), where t is current time, and the

forward rate is for the future period [T , T + h], where h = 1 year is the discrete time

interval. Suppose you are given the following binomial evolution of forward rates:

f (t + h, T ) = f (t , T ) + α(T )h ± σ
√
h

Finally, suppose you are also provided the following data:

f (0, 0) = 0.06, f (0, 1) = 0.07

If the price of a one-year call option on a two-year zero-coupon bond at a strike of $90

is $4, then what is the value of the parameter σ?

3. Assume the following process for HJM forward rates:

f (t + h, T ) = f (t , T ) + α(T )h ± σ (T )
√
h
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Let the current forward curve be given by

f (0, 0) = 0.08

f (0, 0.5) = 0.09

f (0, 1) = 0.10

Finally suppose that

σ (0.5) = 0.03, σ (1) = 0.02

Derive the arbitrage-free forward curves one period from now.

4. (Requires writing code) Develop the program code for the HJM model where, given

an initial forward curve, volatility curve, and the length of the time step, you provide a

function to generate the two forward curves for the next period. (This problemgeneralizes

the procedures you followed in the previous two problems.) Present the results of the

model for three years where the time step in the model is h = 1/2. Assume that the

initial forward curve is flat at 6% and that the volatility curve is also flat with σ = 0.05.

Program this model in Octave.

5. (Requires writing code) Redo the previous problem using Excel VBA.

6. There are six half-year periods on a forward curve. The curve is currently flat at 6%, and

you are given the following declining volatility curve:

0.06

0.05

0.04

0.03

0.02

0.01

(a) What feature of interest ratesmight result in the volatility curve declining so sharply?

(b) Solve for the two forward curves a half-year ahead, and plot each of them. What

effect does the declining volatility have on the two curves in the next period?

7. Suppose that the time interval on an HJM tree is h and the forward rate process is

binomial:

f (t + h, T ) = f (t , T ) + αh ± σ
√
h

Show that for T = t + h

α = 1

h2
ln[cosh(σ h3/2)]

8. In the previous question, what can you say about the expression for the drift in terms of

its representation of the interest-rate risk premium? What is it uniquely a function of?

9. The following table summarizes the initial forward curve for three half-year periods and

the initial volatility curve at t = 0. Compute the two forward curves at time t = 0.5 and

the three forward curves at time t = 1.

(0, T ) f (0, T ) σ(T )

(0,0) 0.04 —
(0,0.5) 0.045 0.015
(0,1) 0.05 0.012
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10. Based on the same input parameters as the previous question, price a cap option contract

with exercise dates at t = 0.5 and t = 1, at a strike rate of the half-year interest rate of

5%. Assume the notional on the contract to be $100.

11. (Requires writing code) Using Excel VBA develop a spreadsheet to create trees in the

HJM model, where you present the tree of one-period spot rates.

(a) As an example, taking the time step h = 1/2, show the five-period tree when the

initial forward curve is

f0
0.09

0.10

0.11

0.12

0.13

and the volatility function is given by

σ (T ) = 0.005 exp[−2λ(T − 0.5)]

where λ = 0.2 is the coefficient of mean reversion.

(b) Increase λ = 0.5 and show the new tree of spot rates. What can you say about the

effect of λ on the tree?

12. In this question you will use programming to implement the Heath-Jarrow-Morton

model. The model will be implemented for a non-recombining tree because the volatility

function in the model will be based on a volatility matrix instead of a simple vector of

volatilities. Assume that the tree you build will be for ten periods of a half year each.

Hence, the model extends to a maturity of five years. The initial term structure of forward

rates will be as follows:

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.020

0.022

0.023

0.030

0.035

0.040

0.045

0.050

0.044

0.042

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The volatility function, which also defines the volatility matrix, is simply that the volatil-

ity of each forward rate at each point in time t is equal to 0.05× f (t , T ) for each forward

rate of maturity T . This effectively defines a different volatility at each node of the tree

for each forward rate. Or in other words, it defines a volatility matrix. Please note that

the volatilities will be different at each node of the tree.

You should write your program code to generate the tree and then price a $100 notional

cap comprised of 10 caplets (one for each half year). The strike rate for all the caps is

3%. What is the price of the entire cap?

Hint: Write the program using recursion and you will find that there is very little pro-

gramming involved. To make sure it is working, test it on fewer periods, say three, which

will allow you to run more tests. Also write the code so that you can pass the program a

forward curve ( f ), the time step (h), and the volatility function, so that it is completely
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general to all numbers of time periods (you can infer how many periods there are in the

model from the length of the forward rate curve that you pass into the program).

13. What claimed deficiencies of the HJM model are ameliorated by using the Libor Market

Model (LMM)?

14. What is the “forward” measure? Explain its importance in the pricing of interest rate

derivatives.

15. (Requires writing code) Given a flat term structure of interest rates at 6% and a flat

volatility term structure of 10%, use a one-factor Libor Market Model to price a one-

year cap at a strike rate of 7%. Write program code in Octave. Use a monthly time step.

You will need to simulate the movement of rates in the LMM to arrive at the solution.
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Appendix 30A

Risk-Neutral Drifts and Volatilities in HJM
In this section, we derive formally the connection between the risk-neutral drifts and the

volatilities in a general discrete-time HJM model. For the most part, we confine attention

to a one-factor model, although, as we explain towards the end of this appendix, extending

the arguments to multiple factors is more intensive only algebraically, not conceptually. For

the original paper on which this appendix is based, see Heath, Jarrow, and Morton (1990).

To keep the appendix self-contained, we redefine the notation. The model is set in a time

line beginning at time t = 0. There are n periods in the model, each of length h years. The

last time point is nh.

A general forward rate in this setting is denoted by f (t , T ) where f (t , T ) is the rate

quoted (seen) at time t for borrowing or investment over the interval [T , T + h]. At each t ,

there is, therefore, one forward rate for each time-point T ≥ t . Forward rates are observed

at the times t = (ih), where i = 0, 1, . . . , n.

After one period, the forward rate f (t , T ) for maturity at T becomes f (t + h, T ). The

change in the forward rate over the interval [t , t + h] is then

f (t + h, T ) − f (t , T ), ∀T
This change is assumed tobe composedof a deterministic component (the “drift,” denoted

α(t , T )) and a random component (the “volatility,” denoted σ (t , T )):

f (t + h, T ) = f (t , T ) + α(t , T )h + σ (t , T )X1

√
h, ∀T ≥ t (30.21)

Here X1 is a randomvariablewithmean zero and variance 1 (e.g., a standard normal variate).

It is easy to see that the expected change in the forward rate is α(t , T )h and the standard

deviation of the change is σ (t , T )
√
h.

The one-period spot rate of interest at any time t is just the instantaneous forward rate

f (t , t). This one-period spot rate (or the “short rate”) is known at time 0, but at this time,

future values of the short rate are unknown. These random values will be the sums of

the deterministic components of changes in the rates and the random components. This is

expressed in the following equation:

r (t) = f (t , t) = f (0, t) +
t
h
−1 

j=0

[α( jh, t)h + σ ( jh, t)X1( j)
√
h] (30.22)

The X1( j)’s are i.i.d. random variables each with the distribution of X1. We may also express

this short rate process as

r (ih) = f (0, ih) +
i−1 
j=0

[α( jh, ih)h + σ ( jh, ih)X1( j)
√
h] (30.23)

More generally, we can write down an equation describing the law of motion for the

one-period forward rate beginning at time ih:

f (t , ih) = f (0, ih) +
t/h−1 
j=0

(α( jh, ih)h + σ ( jh, ih)X1( j)
√
h) (30.24)

Note that f (t , ih) as seen at time 0 is also a random variable.
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Wewill use these laws ofmotion of the short rate (equation 30.22) and forward rate (equa-

tion 30.24) to determine the risk-neutral drifts of this model as functions of the volatilities.

We begin by writing out the price of a zero-coupon bond paying $1 at time t with maturity

T . The price of this bond may be computed by discounting at the sum of forward rates over

the life of the bond:

P(t , T )

= exp

⎡⎣− T
h
−1 

i= t
h

f (t , ih)h

⎤⎦
= exp

⎛⎝− T
h
−1 

i= t
h

 
f (0, ih) +

t/h−1 
j=0

(α( jh, ih)h + σ ( jh, ih)X1

√
h)

 
h

⎞⎠ (30.25)

In the second line of the equation above, we have inserted the expression for the forward

rate from equation (30.24). Again, as seen from time 0, the price of the zero-coupon bond

is a random variable.

Martingale pricing ideas were presented in Chapter 11. We know that the absence of

arbitrage implies that the prices of all normalized securities are martingales under the risk-

neutral probabilities. Normalization is usually undertaken by means of a numeraire asset.

Assuming the existence of a risklessmoneymarket account B(t) as the numeraire for pricing

bonds, this account accumulates random value at the short rate of interest as follows:

B(t) = exp

⎡⎣ t
h
−1 

i=0

r (ih)h

⎤⎦
= exp

⎛⎝ t
h
−1 

i=0

 
f (0, ih) +

i−1 
j=0

(α( jh, ih)h + σ ( jh, ih)X1

√
h)

 
h

⎞⎠ (30.26)

The term 1/B(t) then represents the discount function for all assets over the time interval

[t , t + h].

Recall that when we price options on trees (as we did earlier in this chapter), in each

period we are discounting the expected future value of the asset. In the special case of a

binomial tree with an up-branch probability p and a down-branch probability (1− p), we

would, at each time t , write the value of a zero-coupon bond as follows:

P(t , T ) = p
Pu(t + h, T )

Bu(t + h)
+ (1− p)

Pd (t + h, T )

Bd (t + h)

where Pu(t + h, T ) and Pd (t + h, T ) are the values of the bond in the up and down states

one period ahead. Likewise, Bu(t + h) and Bd (t + h) are the corresponding values of the

money market account in each state. Note that all of these values are random variables

since at time t , they are seen one period ahead. The present value at time t of the bond

in any state is the price of the bond divided by the accumulated money market account.

Hence, the ratios Pu(t + h, T )/Bu(t + h) and Pd (t + h, T )/Bd (t + h) in the expression

above. More generally, when there are many states, we may write the same expression

simply as

P(t , T ) = Et

 
P(t + h, T )

B(t + h)
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where the subscript t indicates that the risk-neutral expectation Et [.] is taken at time t .

Noting that at time t , B(t) = 1, we may also write this as

P(t , T )

B(t)
= Et

 
P(t + h, T )

B(t + h)

 
Now we define the normalized zero-coupon bond prices as

Z (t , T ) = P(t , T )

B(t)
, Z (t + h, T ) = P(t + h, T )

B(t + h)

Under the risk-neutral measure, the discounted prices of assets must follow martingales,

and this is exactly the expression we have here, that is,

Z (t , T ) = Et [Z (t + h, T )]

or stated differently,

Et

 
Z (t + h, T )

Z (t , T )

 
= 1 (30.27)

This mathematical expression simply says that if the normalized asset Z (t) is a martin-

gale, then the ratio of succeeding values of the asset in expectation must be unity. Making

the necessary substitutions from equations (30.25) and (30.26) into the no-arbitrage condi-

tion (30.27) above, we can solve for the values of the drifts that satisfy this condition. The

calculations are long and tedious and are as follows. First, we compute Z (t , T ):

Z (t , T ) = P(t , T )

B(t)

= exp

 
−

T/h−1 
i=0

f (0, ih)h

 

× exp

 
−

T/h−1 
i=t/h

t/h−1 
j=0

(α( jh, ih)h + σ ( jh, ih)X1

√
h)h

 

× exp

 
−

t/h−1 
i=0

i−1 
j=0

(α( jh, ih)h + σ ( jh, ih)X1

√
h)h

 
Analogously, we get the value of Z (t + h, T ):

Z (t + h, T ) = P(t + h, T )

B(t + h)

= exp

 
−

T/h−1 
i=0

f (0, ih)h

 

× exp

 
−

T/h−1 
i=t/h+1

t/h 
j=0

(α( jh, ih)h + σ ( jh, ih)X1

√
h)h

 

× exp

 
−

t/h 
i=0

i−1 
j=0

(α( jh, ih)h + σ ( jh, ih)X1

√
h)h

 
To make the notation simpler, we define

A( jh, ih) = (α( jh, ih)h + σ ( jh, ih)X1

√
h)h
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Then we have the following calculation:

Z (t + h, T )

Z (t , T )

=
exp
 
−"T/h−1

i=t/h+1

"t/h

j=0 A( jh, ih)
 

exp
 
−"t/h

i=0

"i−1
j=0 A( jh, ih)

 
exp
 
−"T/h−1

i=t/h
"t/h−1

j=0 A( jh, ih)
 

exp
 
−"t/h−1

i=0

"i−1
j=0 A( jh, ih)

 
=

exp
 
−"T/h−1

i=t/h+1

"t/h

j=0 A( jh, ih)
 

exp
 
−"T/h−1

i=t/h
"t/h−1

j=0 A( jh, ih)
 exp

 
−

t/h−1 
j=0

A( jh, t)

 

=
exp
 
−"T/h−1

i=t/h+1

 "t/h−1
j=0 A( jh, ih) + A(t , ih)

  
exp
 
−"t/h−1

j=0 A( jh, t) −"T/h−1
i=t/h+1

"t/h−1
j=0 A( jh, ih)

 exp

 
−

t/h−1 
j=0

A( jh, t)

 

=
exp
 
−"T/h−1

i=t/h+1

 "t/h−1
j=0 A( jh, ih) + A(t , ih)

  
exp
 
−"T/h−1

i=t/h+1

"t/h−1
j=0 A( jh, ih)

 
= exp

 
−

T/h−1 
i=t/h+1

A(t , ih)

 
Based on equation (30.27), we have

E

 
exp

 
−

T/h−1 
i=t/h+1

A(t , ih)

  
= 1

or

E

 
exp

 
−

T/h−1 
i=t/h+1

(α(t , ih)h + σ (t , ih)X1

√
h)h

  
= 1

Rearranging, we get the solution for the drift terms α(t , ih):

T
h
−1 

i= t
h
+1

α(t , ih) = 1

h2
log E

⎛⎝exp

⎡⎣−h T
h
−1 

i= t
h
+1

σ (t , ih)X1(t)
√
h

⎤⎦⎞⎠ , ∀i (30.28)

Note that the expression for A(t , ih) = (α(t , ih)h + σ (t , ih)X1

√
h)h is for the one-

factor version of the HJM model. However, we may write it more generally as A(t , ih) ='
α(t , ih)h +"m

k=1 σk(t , ih)Xk

√
h
(
h and obtain an m-factor model instead.

By substituting the drift [α(.)] into the original process in equation (30.21), we obtain

the risk-neutral evolution of the term structure. This transformed process can then be used

to carry out the valuation of any contingent claim written on stochastic interest rates.

Equation (30.28) is a recursive equation. It provides the value of each maturity drift term

(maturities are indexed by i). The left-hand side of the equation is presented as a sum of drift

terms. What this means is that the drifts need to be bootstrapped. First solve for the drift of

the shortest maturity forward rate. Then we may solve for the sum of the first and second

drifts; since we know the value of the first drift, we can deduce that of the second. Next,

using equation (30.28), we solve for the sum of the first three drifts. And so on. Even though

this equation looks vastly more complex than that encountered before, it is clearly not any

different technically or intuitively from that presented in the prior numerical examples in

this chapter.
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Chapter 31
Credit Derivative
Products

31.1 Introduction

Conventionally, finance has distinguished between two kinds of risk, market risk and credit

risk. Market risk is the risk of changes in prices of various sorts: changes in equity prices,

commodity prices, interest rates, bond prices, exchange rates, index levels, and so on.

Conventional derivatives such as futures, forwards, options, and swaps may be used to

position and realign such risk.

Credit risk is the risk that promised payments on an obligation (e.g., a bond or a loan)

will not materialize. It has two components to it: the occurrence of default on the underlying

obligation and the risk of incomplete recovery in the event of default. As compensation for

bearing this risk, the holder of such an obligation typically receives a higher yield than could

be obtained on similar instruments with lower credit risk. The credit spread is a measure of

the extra yield on a credit-risky asset over a benchmark risk-free rate.

In the derivatives industry, credit risk is an area that came into prominence in the early

1990s. Derivatives on credit risk (“credit derivatives”) were first proposed in 1992 at the

conference of the International Swaps andDerivativesAssociation (ISDA). Such derivatives

enable stripping and transferring the credit risk of a security separately from its other risks,

so facilitate trading in solely the credit risk attributes of an instrument. In principle, such

derivatives can promote efficiency gains from at least two sources. First, loan and bond

markets are very often illiquid, making it difficult, if not impossible, to take short positions

in an underlying credit (i.e., in the credit risk of an issuer). Credit derivatives facilitate such

shorting: the derivative may be used to achieve the desired profile synthetically rather than

achieving it through the underlying cash instrument. Second, the unbundling and separate

trading of risks in an instrument means that each attribute of a security will be held by the

market participant who values it maximally.

This chapter describes the vast range of credit derivative products. While we make a few

remarks concerning the pricing of these instruments (particularly in the context of credit

default swaps), the focus of this chapter is mainly on the characteristics of the products and

their uses. Different approaches to the pricing of credit risk are presented in the succeeding

chapters.

Why Only in the 1990s?
Since credit risk is an aspect of economic activity that is almost as old as economic activity

itself and since derivatives for handlingmarket risks have been around for centuries, onemay

771
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legitimately ask: why did credit derivatives come into prominence only recently? Several

contributory factors may be identified.

Banks, which are the primary agents of lending in almost every country, traditionally

handled credit risk through two techniques. The first was simple diversification, commonly

operationalized by limiting the maximum exposure to any single entity. The second was to

control default risk at the level of the individual borrower by undertaking lending based on

relationships and the so-called 3 C’s of banking: judging the repayment risk by a borrower’s

character, collateral, and capacity to repay the borrowed funds.

As quantitative techniques of portfolio management became popular in the finance in-

dustry, such techniques attracted the attention of the holders of loan and bond portfolios

too. However, the implementation of portfolio optimization solutions presupposes a traded

market in the underlying risks: without this, one cannot get from the portfolio one cur-

rently holds to the portfolio one wishes to hold. The notorious illiquidity of loan markets

meant that other tools had to be employed to create the required long and short positions

synthetically. Credit derivatives were able to meet this role.

Other factors also contributed. Worldwide, there has been a huge increase in the size of

debt markets. For instance, S&P rated a total of only 8 sovereigns in 1970, but by 1996, this

had grown to 62 sovereigns, and the figure almost doubled by 2007 to 116. The increased

sovereign, corporate, and retail debt worldwide lowered average credit quality.

Alongside came other pressures from the banking system.While bankswere traditionally

the main lenders in all countries, they have been steadily disintermediated in recent times,

particularly in the advanced economies. On the one hand, new lenders have emerged in the

form of finance companies, insurance companies, and others, offering competition to banks.

On the other hand, capitalmarkets have become increasingly accessible to firms, particularly

in the advanced economies where thousands of firms routinely access the commercial paper

market to obtain short-term funding. The consequence of this has been that banks have

largely been left with smaller and weaker credits, with thinner margins on account of

the increased competition, worsening the risk-return trade-off. Using derivatives to shed

unwanted loan risks and to achieve portfolio diversification has an obvious attraction under

these circumstances.

Finally, as in many other cases, regulatory considerations—in this case, the capital ade-

quacy requirements specified by the Basle (or Basel) Accords—played an important role.

We highlight this in some of the examples we provide below. It should be emphasized,

however, that these regulations themselves are likely targets for modification in the wake

of the financial crisis that erupted in 2008, so this incentive for the use of credit derivatives

may cease to be a factor of importance going forward.

Terminology: “Credit Risk” and “Protection”
A terminological point is important at the outset. Suppose an investor (say, a bank) uses

a credit derivative to transfer the credit risk in a loan to a second investor (say, a hedge

fund). The first investor, the bank, is then selling credit risk, while the second investor, the

hedge fund, is buying credit risk. In credit derivatives markets, an alternative terminology

is popular. Since the hedge fund is assuming the credit risk through the derivative, it has

effectively undertaken to compensate the bank in the event of any default on the underlying

obligation. So the fund is said to be selling protection on the underlying obligation to the

bank. The bank in turn is referred to as a buyer of protection.

Thus, one should be careful in using the terms “buyer” and “seller” to emphasize what

exactly is being bought and sold. The buyer of credit risk is the seller of protection, while

the seller of credit risk is the buyer of protection. In this chapter, we mainly use the terms

“buyer” and “seller” to refer to the buyer and seller of protection.
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Uses of Credit Derivatives
We provide here a summary of the main advantages of using credit derivatives, that is, of

what can be achieved with credit derivatives that would be difficult or impossible without

them. We elaborate further on these benefits in the chapter in the context of discussing

specific products.

First, consider a potential buyer of protection (i.e., the seller of credit risk). For example,

think of a bank that is managing its loan portfolio. Credit derivatives enable the bank

to actively manage credit exposure in the portfolio even where cash market sales of the

underlying instruments are impossible (say, because of illiquid loan markets) or undesirable

(for relationship reasons—the bank may not want its client, the borrower, to know that

it is shedding the client’s loan from its portfolio). In particular, the bank can use credit

derivatives to transfer the risks in specific loans to third parties; that is, it can hedge those

loans by creating synthetic short positions using credit derivatives. Such hedging would

be impossible without an active credit derivatives market. Similarly, too, the bank can

take on new exposures by creating synthetic long positions in loans or other instruments

using credit derivatives. In turn, this facilitates the active management of both external

(regulatory) constraints on lending operations as well as internal ones (e.g., restrictions on

lines of credit to individual borrowers). Superior portfolio management and balance sheet

benefits result.

Second by enabling the decomposing and stripping of risks from securities, credit deriva-

tives enable credit risk to be managed independently of other risks. For many buyers of

protection, this is an attractive feature. For example, convertible arbitrageurs typically buy

convertible bonds to “unlock” the cheap volatility in the bonds; they do not have an interest

in the bond’s credit risk, per se. By buying protection to maturity or first call of the bond,

they can eliminate credit risk considerations and focus on the conversion optionality in the

bond.

For the sellers of protection (i.e., the buyers of credit risk), the main advantage of credit

derivatives is that they allow investors to access entire new asset classes (e.g., syndicated

loans) which only a limited set of market participants could access earlier. Too, leverage

is often built into the credit derivative, making it more attractive to take on the exposure

via a credit derivative than the cash instrument. Further, credit derivatives offer another

vehicle for expressing directional views: an investor who is skeptical about the prospects

of Widget Corporation can buy protection on the company as an alternative to shorting its

shares.

Aparticular advantage of credit derivatives, fromboth the buyer’s and seller’s standpoints,

is that they enable the creation of synthetic instruments of any desiredmaturity. For example,

a seller of protection can take on two-year credit exposure to a given entity (say, Widget

Corporation) using a credit derivative even if there are no two-year credits issued byWidget

Corporation. Similarly, a bank that holds a five-year loan (say) ofWidget Corporation on its

books and feels that the company’s prospects do not look bright over the next two years but

believes that the company should do well if it survives the next two years, can buy two-year

protection on the five-year loan.

A Taxonomy of Credit Derivatives
The range of credit derivative products is huge, so some form of classification helps. A

simple one is to first divide the derivatives into two categories: ones that depend on just

the credit risk of a single entity (“single-name credit derivatives”) and those that depend on

several entities (“multiname,” “basket,” or “portfolio” credit derivatives, often also called

“correlation products”). Within each category, there is considerable variety.
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Single-Name Credit Derivatives

At one end of the single-name credit derivative category are total return swaps. As the

moniker suggests, these are products that transfer all the risk in a product, market risk as

well as credit risk, fromone counterparty (the total return “payer”) to another (the total return

“receiver”). Consider, for example, a total return swap on an underlying bond. The bond

may lose value because of an increase in riskless interest rates (market risk), a deterioration

in the issuing corporation’s creditworthiness (“spread-widening” risk, one aspect of credit

risk), or even default on the bond. In all cases, the loss in value is shouldered by the total

return receiver.

One level further specialized are “spread” products, such as credit spread forwards

and credit spread options. Credit spread options are options on the credit spread above a

reference risk-free rate: buying them involves making an up-front premium payment, and

the options pay off if the spread is above (or below) a specified strike spread. Thus, they

provide one-sided protection against a deterioration (including default) or improvement in

the creditworthiness of the issuing entity. Credit spread forwards are cash-settled forward

contracts whose payoff atmaturity depends on the difference between the actually prevailing

credit spread on the reference obligation and a specified spread. Credit spread options and

forwards transfer both spread-changing risk (resulting from a change in creditworthiness

of the issuing entity for the reference obligation) and default risk from one counterparty to

the other; but unlike total return swaps, they do not transfer market risk.

Even more specialized are event-triggered products such as credit default swaps. A

credit default swap (CDS) pays off only if a specified credit event occurs, and pays nothing

otherwise. (For now, think of the credit event as default. The actual event referenced in

credit default swap contracts is a little wider, as we explain later.) Thus, a CDS offers a

payout in the event of default, but not if spreads widen.1 CDSs have become by far the most

important component of the credit derivatives market. Many other products—credit-linked

notes, basket default swaps, synthetic CDOs, and credit indices such as CDX—are based

on the CDS.

Total return swaps and credit default swaps are off-balance-sheet unfunded products:

like forwards or swaps, there is no up-front payment to enter into these contracts. On-

balance-sheet funded versions of the instruments can also be created by embedding them

in other instruments. A particularly popular example is a credit-linked note, a note issued

by one entity in which the coupon payments and/or principal repayment is tied to default

on a specified instrument issued by another (usually unrelated) entity. A variant, a credit-

sensitive note (a.k.a. “performance sensitive debt”), is one in which the issuer of the note

references its own credit quality in the note, typically making the coupon size a function of

its credit rating. Many other exotic single-name credit derivatives also exist.

Multiname Credit Derivatives

The most popular multiname credit derivatives are basket default swaps, collateralized debt

obligations or CDOs, and index products such as the CDX and iTraxx indices.

Basket default swaps are natural extensions of credit default swaps. Instead of a single

name,we beginwith a basket of K names (typically, 5 to 10). A “first-to-default” basket pays

off when at least one name in the basket experiences a credit event; a “second-to-default”

basket pays off when at least two names experience credit events; and so on. Since the

number of defaults in the basket is governed by not only the individual default probabilities

but also the correlation of these events, such swaps are called “correlation products.”

1 To be sure, CDSs can also be used as a hedge against spread-widening. Such widening typically

implies an increase in default likelihood, so the price of new protection will increase. This implies a

marked-to-market gain for those who are already long protection. This gain may be realized by

unwinding the contracts.
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A collateralized debt obligation pools debt issued by various entities and tranches out

the resulting cash flows. Tranching is the specification of how the cash flows are paid out,

including, in particular, who takes the losses on account of default on the underlying debt.

All CDOs have an “equity” tranche that takes the first set of losses up to some prespecified

amount, say the first 5%of losses. One ormore “mezzanine” trancheswould take the next set

of losses above the equity loss limit (say, the next 10% of losses), and the “senior” tranche

takes losses only after the loss limits of the mezzanine tranches are reached. The more

junior the tranche, the greater the likelihood of losses on account of default, so the higher

the coupon received by the holders of that tranche. CDOs are, evidently, also correlation

products. Traditionally, CDOswere created using bonds (or loans) issued by various entities,

but synthetic CDOs, those in which the CDO cash flows were created using credit-default

swaps rather than bonds, became popular in the early- to mid-2000s. The financial crisis of

2008–09 has had a severe effect on the CDO market, and it is to be seen whether, and in

what form, the market returns.

Credit indices such as theCDXand iTraxx indices offer a readingof the credit health of the

entiremarket inmuch the sameway as equity indices offer a reading of the entire equitymar-

ket. In North America, for example, the investment-grade index (CDX.NA.IG) is computed

using the CDS prices of the leading 125 investment-grade names, chosen using specified

rules. Similarly, there is a North American high-yield index, a European investment-grade

index, etc. Credit indices offer investors the ability to hedge against economy-wide changes

in credit risk.

Outline of This Chapter
The first part of this chapter discusses single-name credit derivatives, beginning with total

return swaps and credit-spread products.We thenmove to the centerpiece of this discussion,

credit-default swaps (CDSs). Following this, we present a description of credit-linked notes

(CLNs) and credit-sensitive notes (CSNs). Building on this foundation, the second part of

the chapter discusses correlation products, especially basket default swaps and CDOs.

31.2 Total Return Swaps

Total Return Swaps (TRSs) were, in the early days of the credit derivatives market, among

the most popular of credit derivatives. Also called a Total Rate of Return Swap, a TRS

is a bilateral financial contract in which one counterparty (called the “total return payer”)

pays the total return on a specified asset (called the “reference obligation”) to the other

counterparty (the “total return receiver”) in exchange for a specified cash flow (typically

Libor plus a spread on the notional amount of the swap).

The maturity of the TRS need not be, and very often in practice is not, the same as that

of the underlying reference obligation. Thus, for example, one can have a three-year total

return swap on an underlying ten-year bond. In this case, the total returns experienced on

the bond over the three-year horizon are transferred from the total return (TR) payer to the

TR receiver.

The “total return” in a TRS refers to returns received in the form of cash flows from the

underlying reference obligation (e.g., coupons or interest payments if the underlying is a

bond or a loan) as well as any changes in the capital value of the reference obligation. The

change in value of the reference obligation can be positive (if the obligation appreciates in

value) or negative (if it depreciates). Thus, the total return can be positive or negative. If the

total return is negative, then the TR receiver makes a payment to the TR payer.

For example, suppose a bond pays a coupon of $2.50 during a specified period but also

loses $5 in value over that period (say, because of a deterioration in creditworthiness of
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the issuer of the obligation). Then the total return over the period is −$2.50. This negative

return accrues to the TR receiver, who must now make a payment of $2.50 to the TR payer.

The change in value settlements may be at maturity of the swap or periodic. In the

former case, only the cash flows from the underlying reference obligation are exchanged

during the life of the swap. The change in value payments is exchanged once and for all at

the swap’s maturity. In the latter case, each exchange of cash flows involves not only the

coupons or other cash flows received from the reference obligation but also the change in

value of the reference obligation from the time of the previous payment. For specificity, we

will assume the former structure for the swap throughout our discussion. Only minor and

obvious modifications are required to cover periodic settlements of value changes.

What happens if there is a default on the reference obligation during the life of the swap?

Simple: the swap terminateswith a final exchange to reflect the loss in value of the obligation

consequent to default. The loss in value may be measured, depending on the contract, from

the par value of the reference obligation or from the initial value of the reference obligation

at the swap’s inception. (The two will not coincide if the obligation was not trading at par

at the swap’s inception.)

This final exchange itself is effected in one of two ways. If physical settlement is used,

the TR payer delivers the defaulted obligation to the TR receiver in exchange for a cash

payment of the reference obligation’s par (or, depending on the contract specifications, its

initial) value. If cash settlement is used, then the TR receivermakes a cash payment to the TR

payer equal to the loss in value of the defaulted obligation, that is, equal to the par (or initial)

value of the reference obligation minus the post-default market price of the obligation. The

post-default market price is identified using a specified mechanism (for example, a dealer

poll). Of course, from an economic standpoint, cash and physical settlement are equivalent,

but cash settlement has the advantage that there is no need for the TR payer to source the

defaulted obligation to deliver it, while physical settlement has the advantage that there is no

need to identify a potentially contentious post-default market price. Figure 31.1 summarizes

the TRS assuming physical settlement at maturity.

TRSs as Synthetic Long/Short Positions
As this discussion makes clear, the TRS effectively creates a synthetic long position in

the reference obligation for the TR receiver; that is, even though the TR receiver does

not own the instrument, the cash returns he receives are the same as would have been

received from actual ownership of the instrument. (Note, however, that any other benefits of

actual ownership—voting or servicing rights, for example—are not conferred by the TRS.)

FIGURE 31.1
A Total Return Swap
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Similarly, the TRS creates a synthetic short position in the reference obligation for the TR

payer. This could be a “naked short,” that is, the TR payer does not need to actually hold the

underlying asset in order to enter into a TRS. But if the TR payer does hold the reference

obligation too, the TR swap provides a hedge: it eliminates the risk in owning the obligation

by transferring all returns to the TR receiver—but without transferring other benefits of

ownership such as voting rights.

TRS as a Form of Financing
In many ways, a TRS resembles a lease: in exchange for making regular payments, the TR

receiver obtains the “use” of the underlying asset. Thus, the TRS is effectively a form of

financing: the TR payer lends the use of the asset to the TR receiver for the swap duration.

Assuming the TR payer holds the asset on its books, it is lending the use of its balance sheet

to the TR receiver.

It follows that low funding-cost entities—that is, high-rated entities that can access assets

cheaply on their balance sheets—fit naturally into the role of payers in TRS transactions,

while lower-rated entities are more naturally TR receivers. (Intuitively, if I can access funds

more cheaply than a leasing company, it does not pay forme to lease a car from them since the

lease rate would have to reflect not only their cost of funds but also a mark-up to cover their

other costs.) This gives rise to “funding-cost arbitrage,” a term used to describe transactions

in which entities with relatively high funding costs access assets synthetically using TRSs

by borrowing the balance sheets of entities with lower funding costs. We describe a simple

example below.

Obtaining cheap financing may not be the only reason for using TRSs. The TR receiver

may simply not have access to the asset or find the asset difficult to access, while the TRpayer

has ready access. For example, a New York–based hedge fund looking to gain exposure to

treasury bonds of an emerging market might find it easier to gain this exposure by entering

into a total return swap with a global bank that can more readily access the underlying

instruments. Moreover, TRSs provide leveraged exposure. The hedge fund may be required

to post a collateral of (say) 20% of the face value of the bonds in exchange for which it gets

full exposure, via the TRS, to changes in the bonds’ value; the leverage in this case is 5:1.

Funding-Cost “Arbitrage”
Asmentioned above, funding-cost arbitrage is essentially a situation inwhich a high-funding

cost entity uses the balance sheet of a lower-funding-cost entity to gain a desired exposure.

The general idea is quite simple as the following example illustrates.

Example 31.1 Consider two banks, Bank A, a relatively high-quality bank with a low funding cost, and
Bank B, a lower quality bank with a higher funding cost. For specificity, suppose that Bank A’s
funding cost is Libor (L ) flat while Bank B’s funding cost is L + 40 basis points. Suppose too
that the reference obligation in question is currently yielding L + 70 basis points.

If Bank B were to buy the asset outright, this would result in a pick-up over funding costs
of only 30 basis points, whereas if Bank A were to buy the asset, the pick-up is 70 basis
points. Suppose Bank A bought the asset and entered into a TRS with Bank B in which B
pays L + x basis points in exchange for receiving the total returns on the asset.

The potential advantages to Bank B from this transaction are obvious. If x < 40 basis
points, Bank B obtains the use of the asset off-balance-sheet at a cheaper cost than it could
access it on-balance-sheet. For example, if x = 30 basis points, then Bank B effectively
experiences a 10 basis point pick-up over what it could obtain by funding the asset on its
balance sheet.
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FIGURE 31.2
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But why might Bank A want to enter into this transaction? Consider first the credit quality
of the asset Bank A holds. Bank A is not exposed to the credit risk of the reference obligation
since that risk has been transferred to Bank B. Nor is Bank A exposed to the credit risk of
Bank B, since ownership of the asset resides with Bank A. Rather, what Bank A is exposed to
is the risk of joint default of Bank B and the reference obligation. The lower the correlation
between Bank B and the reference obligation, the higher is the quality of this synthetic asset.
For example, if Bank B is rated A−, the reference obligation is rated BBB, and there is zero
correlation between them, then the synthetic asset that Bank A holds has an implied rating
of A+. Thus, the TRS enables Bank A to create a synthetic asset exposed to the risk of joint
default of Bank B and the reference obligation, which may have a superior yield to similarly
rated assets traded in the market.

Regulatory considerations too may push Bank A to go in for the synthetic asset rather than
purchasing outright a cash asset with the same rating as the implied rating of the synthetic
asset. Under Basel capital adequacy regulations, a bank in an OECD country buying a credit
risky asset is required to hold a specified amount of capital as protection against default. But
a bank that holds an asset and buys protection from another OECD bank is required to hold
only 20% of that capital since the risk is now much smaller. So, in our example, if Bank A
were to buy a cash asset outright, it would have to hold the full amount of capital, but if it
buys the reference obligation and enters into a TRS, it is required to hold only 20% of this
amount.2

Returning to our example, what values of x might arise in the TRS? As we have seen, x
has to be at most 40 basis points, or Bank B will prefer to buy the asset outright to accessing
it via the TRS. On the other hand, we must also have x ≥ 0, or Bank A will not make up
even its funding cost on the transaction. This creates a 40 basis point range within which
x could lie. (The figure of 40 basis points is just the difference in funding costs, i.e., the
saving that arises from having A buy the asset rather than B.) A possible outcome, one that
splits the gains from trade equally, is shown in Figure 31.2. In this outcome, Bank A gets
a pick up of 20 basis points over its funding cost for taking on the risk of joint default,
while Bank B obtains the use of the asset for L + 20 basis points, 20 basis points below its
funding cost. ■

2 As noted earlier in the chapter, the regulatory treatment of credit derivatives may well undergo some

change following the financial crisis that erupted in 2008. For the latest regulatory requirements, we

refer the reader to the website of the Bank for International Settlements, http://www.bis.org.
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TRS: A Summary
To summarize, a TRS is an instrument that creates synthetic long and short positions (for

the TRS receiver and payer, respectively) in an underlying reference obligation. From the

standpoint of the receiver, the advantages of the TRS are that it may enable access to a

desired asset class such as syndicated loans to which no access is otherwise available; it can

be used to create new assets with maturities not available in the market; it may be used to

obtain financing cheaper than on-balance-sheet purchase of an asset; and it provides levered

exposure to the asset. For the TR payer, themain advantages are that the TRS creates a hedge

for both price risk and default risk even while ownership is retained by the TR payer and

that the TRS enables creating high-quality synthetic assets (with possibly low regulatory

capital requirements) if there is sufficiently low correlation between the counterparty and

the reference asset.

31.3 Credit Spread Options/Forwards

Credit spread products are derivatives on the credit spread. They may be written directly as

options on the spread (with respect to Treasuries or Libor or asset swap spreads) or indirectly

as options on bonds. A call option on the spread pays when spreads increase. A call option

on a bond pays when bond prices increase, i.e., when the credit spreads decrease. Thus, a

call option on spreads is akin to a put option on bonds and vice versa. (The analogy is not

quite pristine. Bond options are not pure credit spread options. Bond prices may also change

because of fluctuations in the riskless interest rate.) Credit spread forwards are instruments

(usually cash settled) for which the payoff is a linear function of the final spread relative to

an agreed-upon benchmark level.

The popularity of credit spread options has been declining over time. The British Bankers

Association estimates that they accounted for around 5% of the credit derivatives market in

2000 but only around 1% in 2006. In part, this was because options on credit default swaps

(credit default “swaptions”) became increasingly popular over this period. Credit default

swaps are the subject of the next section.

31.4 Credit Default Swaps

Credit default swaps (CDSs) are today by far the most important component of the credit

derivatives market. Hugely important in their own right, they also form the building block

for several portfolio credit derivatives such as synthetic CDOs and the CDX and iTraxx

credit indices. Other products such as basket default swaps are natural generalizations of

the CDS structure.

ACDS is a bilateral contract inwhich one party (the “protection buyer”)makes a periodic

payment to another party (the “protection seller”) in exchange for a single contingent

payment following a “credit event” on a specified underlying instrument (the “reference

obligation”). The reference obligationmay be any credit-risky obligation issued by an entity,

for example, the obligation of a corporation, sovereign, or semi-government institution. As

in a TRS, the maturity of the CDS need not, and in practice often does not, match that

of the reference obligation. CDS maturities vary from 1 to 10 years. The most popular

maturity in themarket is 5 years, but over the years good liquidity has also developed at other

maturities.

Figure 31.3 illustrates the CDS. The lower panel in the figure assumes physical settlement

if a credit event were to occur. (Physical settlement was described in the discussion on total

return swaps.) Alternative settlement procedures are explained later in this section.
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FIGURE 31.3
A Credit Default Swap
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There are three key questions concerning a CDS: (a) What constitutes a “credit event”?

(b) If a credit event occurs, what is the payment to be made by the protection seller to the

protection buyer? (c) How is this payment to be effected? We turn to a description of these

issues.

The Credit Event
The contract definitions set by the International Swaps and Derivatives Association (ISDA)

specify six possibilities that may constitute credit events in CDS contracts:

1. Failure to Pay This is subject to a materiality threshold (the amount due must be at least

some specified minimum) and a grace period (usually three days).

2. Bankruptcy The corporation becomes insolvent or unable to meet its debts. Obviously,

this is not relevant for sovereigns.

3. Repudiation/Moratorium The borrower declares a moratorium on servicing the debt

or repudiates the debt.

4. Obligation acceleration The obligation becomes due on account of non-financial de-

fault.

5. Obligation default The obligation becomes capable of being due and immediately

payable.

6. Restructuring This is a “soft” credit event that is explained in detail below.

Of these six events, the first two are self-explanatory and are uniformly used in CDS

contracts. The third, fourth, and fifth, while admissible as credit events, are, in practice, never

used in G-7 corporate contracts (although the third is used in emerging market contexts).

Thus, effectively, for corporate CDS contracts, the credit event consists of bankruptcy,

failure to pay, and restructuring.

What is “restructuring”?We discuss this in some detail below after discussing settlement

alternatives. While restructuring is an important credit event, we note that going forward, it

may become just a historical curiosity in the North American context: new North American

CDS contracts traded following the “BigBang” ofApril 2009 (seeAppendix 31A)will trade

without restructuring as a credit event. However, European CDS contracts are expected to

include the Mod-Mod-R restructuring clause described below.

Settlement Alternatives
Alternative settlement methodologies in CDS contracts are illustrated in Figure 31.4. There

are two basic settlement methods: cash settlement and physical settlement.
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FIGURE 31.4
Settlement
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In a cash-settled CDS contract, the protection seller makes a cash payment to the pro-

tection buyer of an amount equal to the loss-given-default or, more precisely, the loss in

value on account of the credit event. This loss is usually measured from par: that is, the

cash settlement amount is defined as the par value of the obligation minus the post-default

market price of the obligation. The initial value of the obligation (the value at inception

of the CDS) is sometimes used instead of the par value. If the obligation was trading far

from par at the inception of the CDS, then obviously these two alternatives have very dif-

ferent consequences. Some cash-settled CDS contracts (known as “digital CDS” contracts)

specify simply a fixed sum to be paid if a credit event were to occur.

In physically-settled CDS contracts, the protection buyer delivers the defaulted obli-

gation to the protection seller and receives the par value of the obligation in exchange.

Economically, this is, of course, equivalent to cash settlement. The protection buyer in

physically-settled CDS contracts has a “cheapest-to-deliver” option: the delivered obliga-

tion may be any obligation of the defaulting entity that ranks pari passu with the reference

obligation. This option sometimes becomes valuable, especially following a restructuring,

as in the Conseco case described below.

Restructuring: Old-R, Mod-R, Mod-Mod-R, and No-R
The restructuring clause in CDS contracts introduced by ISDA in 1999 (and now called

Old-R) triggers protection if one of the following happens:

• There is any reduction in interest or principal payable.

• There is a postponement of interest or principal repayments.

• There is a change in the priority of the reference obligation.

• There is a change in currency of payment.

A number of cases in the early 2000s pointed to the need to modify this clause. The most

famous of these cases was that of Conseco.
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The Conseco Case

Conseco, a financial services firm operating primarily in the insurance market, lost access

to the commercial paper market in 2000 following poor performance and some failed acqui-

sitions. Its debt was downgraded, and the company had to draw on bank backstop facilities.

Through improved operations and other actions, Conseco accumulated $450million in cash

by late 2000 but by then had exhausted its bank facilities and faced repayment of maturing

bank loans.

Conseco’s bankers agreed to extend the maturity of its loans; the alternative would

have been to push Conseco into bankruptcy. Under the agreement, Conseco would repay

outstanding debt of $450million in full, and the bankers agreed to extend the maturity of the

remaining amount of some $900 million by 15 months in exchange for which they obtained

a higher interest rate and some collateralization.

Under the Old-R definitions, a restructuring event had unambiguously occurred, and

banks that had purchased protection triggered the contingent payment on their default

swaps. The contracts were for physical settlement, and the “cheapest-to-deliver” option

in the contracts meant they could deliver any senior unsecured bonds of Conseco. The

problem was that because of the restructuring, the company’s short-term financial position

had improved, so bonds maturing around the same time as the bank facilities were paid

in full, and the restructured 15-month loan was trading at around 92% of face value, but

long-dated senior unsecured bonds were trading only at around 70% of their face value.

Protection buyers delivered the long-dated bonds resulting in losses of over $60 million to

the protection sellers.

Spurred by the Conseco case among others, ISDA modified the restructuring clause in

2003. A new clause, the Mod-R clause, was introduced for the North American market.

Under Mod-R, the maturity of deliverable obligations following a restructuring was limited

to a maximum of 30 months; more specifically, to the maximum of the remaining maturity

of the CDS contract or the lesser of (a) 30 months after the restructuring date and (b) latest

final maturity date of any restructured loan or bond.

For various reasons, Mod-R was unsuitable for the European market, so a further modifi-

cation, Mod-Mod-R, was introduced for European CDS contracts. Mod-Mod-R too placed

limits on the maturity of the deliverable obligations following a restructuring, in this case to

themaximumof the remainingmaturity of the CDS contract and 60months (for restructured

bonds/loans) or 30 months (for other deliverable obligations).

Since 2003, users of CDS contracts have had four choices concerning restructuring: Old-

R, Mod-R, Mod-Mod-R, or No-R, the last of which refers to a CDS contract that excludes

restructuring as a credit event. Most North American CDS contracts on investment-grade

names have traded Mod-R, while those on high-yield names have traded No-R. In Europe,

the popular contract form has been Mod-Mod-R. As mentioned earlier and elaborated on

in Appendix 31A, much of this may become just a historical footnote for North American

contracts. Following the “Big Bang” of April 2009, new CDS contracts in North America

will trade only No-R. It appears likely, however, at the time of writing that the new European

contracts will continue to trade Mod-Mod-R rather than No-R.

Some Uses of CDS Contracts
As is immediately apparent from the definitions, a credit-default swap is just a form of

insurance against default (or, more accurately, against the credit event): the protection

buyer gets nothing if there is no credit event and is compensated for the loss in value (i.e.,

is “made whole”) if there is a credit event.

As insurance, a CDS is a potentially valuable tool for banks and other institutions looking

to hedge loan or bond portfolios. By buying protection on specified assets in the portfolio, it
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The upper panel shows the behavior of five-year CDS spreads on Morgan

Stanley from late 2007 to early 2009. The lower panel does the same for

Goldman Sachs. Note the sharp rise in CDS spreads in September 2008.

FIGURE 31.5
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enables them to transfer the credit risk in those assets (essentially to taking a short position in

the underlying credits) without transferring ownership. This enables active management of

credit-risky portfolios even where trading in the underlying credits is difficult or impossible.

Note, however, that unlike a TRS,market risk remains with the protection buyer; only credit

risk in the underlying obligation is transferred.

To be sure, investors need not own the asset in order to buy protection. Indeed, CDSs

have become a popular alternative vehicle for expressing negative credit views. (Figure 31.5

shows, for example, the way that CDS spreads on Morgan Stanley and Goldman Sachs

reacted during the height of the financial crisis in September 2008 when market sentiment

turned sharply negative on the entire financial sector.) An investor anticipating deterioration

in an entity’s financial condition can buy protection on that entity. If the deterioration occurs



784 Part Five Credit Risk

as anticipated, the price of protection will rise, leading to a marked-to-market gain on the

contract held by the investor.

From the standpoint of the protection seller, the CDS enables obtaining unfunded ex-

posure to the credit risk of the underlying reference obligation, essentially to taking a long

position in the underlying credit. In a precise sense, as we explain shortly, selling protection

via a CDS is equivalent in cash flow terms to a fully financed position in a bond or an

asset swap. However, the protection seller does not receive any of the other benefits, such

as voting rights, that would flow from actual ownership.

CDSs also provide the foundation for many other credit derivatives such as credit-linked

notes and CDOs. As the market’s favored gauge of the price of credit risk, CDSs form the

basis of market-wide indices of credit risk such as the CDX and iTraxx indices. We explore

some of these relationships in more depth later in this chapter.

Finally, it bears emphasis that a naked short CDS position (i.e., selling protection and

leaving the position unhedged) canbe a risky proposition. Themaximumgain is the premium

payments received from the CDS, but the maximum loss can be much larger, up to the par

value of the reference obligation. In this sense, selling naked protection resembles writing

a naked put. We have seen in Chapter 8 how the selling of naked puts on the Nikkei killed

Barings Bank. The dangers of unhedged short CDS positions are correspondingly illustrated

by the story of AIG.

Credit Default Swaps and the Collapse of AIG

Operating through its financial subsidiary, AIG Financial Products, the US giant American

International Group (AIG) sold around $450 billion of protection on a variety of reference

obligations including super-senior tranches of CDOs, and left these almost completely

unhedged. Presumably the idea was that with low individual default probabilities and a

well-diversified portfolio, defaults should not bunch together in such quantities as to cause

catastrophic losses in the portfolio. Unfortunately, in times of economic crisis, defaults do

tend to bunch and default correlations to increase generally, though that is not precisely

what caused AIG’s collapse.

Rather, as the seller of protection, AIG had been required to post collateral to protection

buyers. When US real estate prices declined steeply in 2008, AIG was required under

accounting rules to mark down the value of its mortgage-backed securities portfolio. This

reduced the size of its capital reserves, in turn leading to a sharp downgrading of AIG by the

major ratings agencies. The downgrading resulted in counterparties to the CDS contracts

demanding a huge amount of extra collateral—over $100 billion in all. This wasmoneyAIG

simply did not have and resulted in the huge—and contentious—US government bailout of

AIG, which by early 2009 had consumed more than $150 billion. One reason the bailout

became contentious was the question of exactly whowas getting bailed out; many, including

members of the US Senate and writers in the financial press, argued that it was as much

the CDS counterparties that were beneficiaries of the US injection of funds. The initial

reluctance of AIG and even of regulators to reveal exactly who these counterparties were

and how much each of them had received in extra collateral did not help matters.

It is true that it was the steep decline in the US real estate market and the consequent

losses on mortgage-backed securities that provided the proximate cause of AIG’s collapse.

But the reason these factors constituted more than just a manageable financial setback for

the insurance giant was the hundreds of billions of dollars worth of protection AIG had sold

and left unhedged.

Funding-Cost Arbitrage with a CDS
Funding-cost arbitrage with a CDS works in a similar way to that with total return. Here is

an example.
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Example 31.2 Consider the same simple setting used in the TRS setting. Bank A, a highly rated bank, has
a funding cost of Libor (L ) flat, while Bank B, a lower rated entity, has a funding cost of
L + 40 basis points. Bank A has on its books an obligation currently yielding L + 60 basis
points. Bank B wants exposure to the credit risk of that obligation.

If Bank B were to buy the obligation outright, its pick-up over its funding cost would be
only 20 basis points. An alternative arrangement that exploits Bank A’s lower funding cost is
for Bank B to enter into a credit-default swap with Bank A in which Bank A buys protection
from Bank B at a premium of x basis points. As long as x ≥ 20, Bank B benefits: it obtains
more than 20 basis points for taking on virtually the same credit exposure.

What about Bank A? Once it has entered into the credit default swap, Bank A’s credit
exposure is to the joint default of Bank B and the reference obligation. The lower the corre-
lation between Bank B and the reference obligation, the higher the quality of this synthetic
asset. For example, if Bank B is rated A, the reference obligation is rated BBB, and they are
uncorrelated credit risks, the implied rating of a security exposed to joint default is AA−.
Creation of such synthetic assets providing a greater yield than similarly-rated cash assets is
one possible motivation for Bank A.3

As in the TRS, regulatory capital requirements could be another motivation. If Bank B is an
OECD bank, the capital requirement is only 20% of the amount that would be required for
holding a similarly-rated cash asset. And, lastly, balance sheet management may be another
motivation. Both external constraints (freeing up capital for other purposes) and internal
constraints (expanding lines of credit to the entity that issued the reference obligation) may
be addressed using the CDS. ■

The “Fair Price” of a CDS
A CDS is a derivative contract on credit risk. Can it be priced by replication? The answer

is a qualified “yes,” as we explain.

Suppose thatwehave afive-yearCDSon some referenceobligation issuedbyWidgetCor-

poration. Let the CDS premium be y basis points per annum.Under idealized conditions, the

fair price of thisCDS (i.e., the value of y) can be determined by replication and arbitrage con-

siderations. Assume first that there is a floating-rate note issued byWidget Corporation that

• is currently trading at par;

• has the same maturity as the CDS (in this case, five years); and

• has the same seniority as the reference obligation.

Let the coupon on the floating-rate note be Libor (L)+x basis points. Next, assume too that

you can fund the purchase of the note at Libor flat. Lastly, assume that the CDS and bond

markets are perfectly liquid so one can take long and short positions with equal facility. We

will show that under these conditions, we must have y = x , that is,

The fair price of a CDS is equal to the spread on a par floater that (a) is issued by the same

reference entity, (b) has maturity equal to the CDS, and (c) has the same seniority as the

reference obligation.

To see this, note the following two preliminary points. First, cross-default provisioning

ensures that if Widget Corporation is in default on the reference obligation, it is also in

default on the five-year floating-rate note (and vice versa), so the event of default is the

same for the two instruments. Second, since the reference obligation and the note have the

same seniority, they experience the same loss-given-default.

3 Of course, some caution is in order here. Estimating default correlations is a tricky task. With high

correlation, the credit quality of the synthetic asset will be little better than the weaker of the two

assets.
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For specificity, suppose that the par value of the note is 100. (By assumption, this is also

its initial price). Consider a portfolio consisting of a long position in the five-year floating

rate note funded by borrowing 100 at Libor. There are two possibilities:

• There is no default on the note to maturity. In this case, you receive L + x on the note

and pay L in financing costs, so the portfolio results in a cash flow of x basis points per

annum for five years. At maturity, you receive the par value from the note and use this

to repay the initial Libor borrowing, so there is no net cash flow on this account.

• There is a default before maturity. Let R denote the recovery on the floating-rate note.

Then you receive R from the floating-rate note and pay 100 on the borrowing, for a net

loss of 100− R.

This structure of cash flows is identical to that received from selling protection on the

CDS. If you sell protection, there are two possibilities:

• There is no default over the five years. In this case, you receive y basis points per annum

for five years.

• There is a default within five years. Since the reference obligation and the par floater have

the same seniority, they have the same recovery rate, so the loss on selling protection is

also equal to 100− R.

It follows easily now that if x  = y, there is an arbitrage:

• If x > y, buy the par floater, finance the purchase at Libor, and buy protection. This

will result in a cash flow of x − y basis points to maturity or until default. There are no

cash-flow consequences of default on account of the purchased protection.

• If x < y, short the par floater, invest at Libor, and sell protection. This will bring in a

cash flow of y − x basis points per annum to maturity or default, and once again, there

are no net cash-flow consequences of default.

In practice, there may be many factors causing a divergence from this idealized world:

most importantly, the existence of a floater with the desired properties but also liquidity

issues in the bond and CDS markets, financing costs, and so on. A common alternative that

is used is the asset swap spread.

The Asset Swap Spread

An asset swap is a package consisting of a bond with fixed coupons and an interest rate

swap that converts the fixed coupons into Libor plus a spread x (which could, in principle,

be negative). Since this results in a synthetic floating-rate bond of the reference entity, the

spread to Libor x is then interpreted as the price of that entity’s credit risk and is known as

the “asset swap spread.”

Two points about asset swaps are important. First, asset swaps are commonly par instru-

ments. That is, the buyer of the asset swap pays par at inception for purchase of the package.

If the bond is not trading at par, then the value of the swap at inception must offset this

difference so that the asset swap costs par. For example, suppose the bond is trading at 105

against a par value of 100 when the swap is initiated. Then the swap has to be worth −5 at

inception, which means that at inception, the asset swap seller has a credit exposure to the

asset swap buyer. The reverse is true if the bond is trading at a discount, say at 90. In this

case, the buyer of the asset swap package has bought a bond worth 90 and a swap worth 10,

so the asset swap buyer has a credit exposure to the seller.

An alternative, but less popular, version of asset swaps is those that trade at the market

price of the bond (“market-in, market-out” asset swaps). In this case, at inception, the asset
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swap buyer pays the market price of the bond, say P , for the package. However, in market

asset swaps, there is also a final exchange of cash flows at maturity when the asset swap

buyer pays par and receives the initial market price P of the bond.

Second, the swap in an asset swap package does not terminate if the underlying bond

defaults. So the buyer of the asset swap has the risk that upon default, the fixed coupon

paymentswill have to continue beingmade on the swap even though no coupons are received

from the bond. Equivalently, the buyer has the risk of having to close out the swap at the

marked-to-market value.

These features mean that a financed par asset swap package is akin to a CDS if the bond

is trading at par but not if the bond is far from par. As an example, suppose the bond is

trading at 90 at inception, and immediately after inception the bond defaults. Suppose the

post-default price of the bond is 40. Then, the buyer of the par asset swap has paid 100,

recovers 40, and has a swap with a marked-to-market value of 10, for a total loss of 50.

Similarly, if the bond is trading at 105 at inception of the swap and defaults immediately

after inception, the asset swap buyer has paid 100 for the asset swap, recovers 40 on the bond,

and has a swap with a marked-to-market value of −5, so has a total loss of 65. However,

in either situation, the loss in a CDS would have been par minus post-default market price,

which is 60. It is only where the bond was trading at (or near) par that the losses on the CDS

and asset swap would resemble each other.

The CDS-Asset Swap Basis

The CDS-asset swap basis (sometimes also referred to as the CDS-bond basis) is the

difference between the CDS spread and the corresponding asset swap spread. In principle,

the similarity between these instruments means that arbitrage forces should drive these

spreads close together, but while the difference is often small, it is also often substantial.

Here are some reasons.

• Negative Credit Views When credit-market views turn negative on a name, one can

either short the bond or buy protection. The difficulty of shorting corporate bonds may

cause the basis to diverge as protection buyers may be willing to pay more than the

benchmark spread reflected in the asset swap.

• Convertible Issuance Convertible arbitrageurs’ primary interest in convertible bonds is

in theoptionality component. It is not uncommon tohedge the credit risk in the convertible

for at least an initial period of time. This is easiest to do via buying protection rather than

shorting the bond, so again will generally cause the CDS-asset swap basis to diverge.

• Synthetic CDO Issuance Synthetic CDOs became particularly popular in the early

2000s. In a synthetic CDO, the issuer of the CDO sells protection on individual names

to raise the cash required to meet coupon payments on the various tranches. This tends

to drive CDS spreads down relative to asset swap spreads, i.e., to narrow the basis.

• Debt Not Trading at Par If debt is trading below par, the loss on debt will be less than

the loss on a CDS which is measured from par. Consequently, the CDS spread will be

wider to account for this. Conversely, if debt is trading above par, the loss on debt will

be greater than the loss on a CDS, so the CDS spread will be tighter.

Changes to CDS Contracts in 2009: The CDS “Big Bang”
The credit derivatives market has been in continuous evolution since its birth in the early

1990s, and its flagship product, the CDS, is no exception. The most significant alterations

to the contract terms in North America came in April 2009, an event termed the “CDS Big

Bang.” The CDS Big Bang is described in Appendix 31A.
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31.5 Credit-Linked Notes

Credit default swaps are unfunded off-balance-sheet instruments; there is no up-front pay-

ment to purchase a CDS. Credit-linked notes (CLNs) represent one method by which CDSs

are converted into funded form. A CLN is essentially a credit-default swap embedded in a

note. The purchaser of the note pays for the note up front. Coupons and principal repayment

on the note are tied to performance of a reference obligation. If the reference obligation

does not experience a credit event, coupons and principal are paid on the note as promised.

If the reference obligation experiences a credit event, then the loss in the value of the ref-

erence obligation is taken out of the note, and the balance is returned to the investor. As

compensation for taking on the risk of the reference obligation defaulting, the purchaser of

the note receives a higher coupon than would otherwise be the case. Thus, the purchaser

plays the role of a protection seller: if the reference obligation does not default, he receives

the higher coupon, while if there is a default, he suffers the loss-given-default.

CLNs serve many purposes. Investors whose mandates do not allow them to use off-

balance-sheet derivatives cannot sell protection via a CDS; however, they can achieve effec-

tively the same end using a CLN. In principle too, CLNs may be bought and sold like other

fixed-income instruments. From the standpoint of the protection buyer, buying protection

obtained through a CLN has advantages to protection obtained via a CDS. Unlike a CDS,

the protection seller in a CLN (i.e., the investor in the note) pays for the instrument up front;

so neither the credit rating of the investor nor the correlation between the credit risks of the

investor and the reference obligation is important.

The actual mechanics of a CLN are a bit more complex than the foregoing description of

the product may suggest. At the heart of the CLN structure is a special-purpose vehicle or

SPV. The SPV is the legal entity that acts as an intermediary between the buyers and sellers

of protection. On the one hand, the SPV issues the CLN to investors (and so buys protection

on the reference obligation from them). On the other, it sells protection via CDSs on the

reference obligation to protection buyers; thematurity of theCDSs equals thematurity of the

CLN. The collateral received from the sale of the notes is invested in AAA-rated securities.

Thus, the SPV receives cash from two sources: from selling protection and from its

investment in AAA-rated collateral. It uses the cash raised to pay investors the promised

coupon on the CLN. If there is a default on the reference obligation, the SPV liquidates the

collateral and uses this to first satisfy the claims of the protection buyers. Any remaining

amount is paid back to the investors in the note. If there is no default, the collateral is

liquidated at maturity of the CLN, and the investors are repaid their principal.

An example will help clarify these mechanics. The example is a modified and disguised

version of an actual transaction to the details of which one of the authors had access.

Example 31.3 Consider the following setting. There is a large manufacturer whose bonds are currently
trading at the Treasury rate T plus 90 basis points. The credit quality of the manufacturer is
dropping and its suppliers, mostly small firms for whom the manufacturer’s business consti-
tutes a large part of cash flows, are balking at granting generous 120-day credit terms to it,
proposing instead to reduce these terms to 60 days. Were this to happen, the manufacturer
would face a drastic increase in its requirement for working capital, further worsening its
credit condition.

A bank undertakes the following series of transactions. It first sets up an SPV. The SPV
enters into credit default swap transactions with the suppliers of the manufacturer in which
it sells protection to them with the bonds of the manufacturer as the reference obligation.
(The protection may not be solely on the manufacturer’s defaulting; the trigger could be
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even a significant deterioration in the creditworthiness of the manufacturer, for example, a
decline in its credit rating below a threshold level or an increase in its bond spreads above a
threshold level.) Suppose that the spread in the CDS contracts is 75 basis points per annum.
Having purchased this protection, the suppliers agree to retain the 120-day credit terms
they currently provide the manufacturer.

A natural question to ask at this point is why the suppliers would purchase the CDS and
agree to extend favorable credit terms to the manufacturer. For many of the suppliers, by
assumption, a large share of their business depends on the manufacturer. Now that they are
insured against a deterioration in the manufacturer’s creditworthiness, it is in their interest
to continue the business relationship rather than to tighten the screws and take the chance
that the manufacturer may go out of business.

The SPV then issues a CLN with principal amount equal to the notional on the CDSs it
has sold. The coupon and principal repayment on the note are linked to the performance
of the manufacturer’s bonds, and the note carries a coupon of T + 100. Investors in these
notes are taking on the risk of the manufacturer’s credit standing deteriorating; for this risk,
the note pays them T +100 rather than the T +90 they could get by a straight investment
in the manufacturer’s bonds.

Finally, the SPV invests the proceeds received from the note issuance in AAA-rated collat-
eral yielding T + 30 basis points. The entire structure is summarized in Figure 31.6. There
are now two possibilities:

1. The Reference Bond Does Not Default In this case, the suppliers pay their premia of
75 basis points, the SPV receives T + 30 basis points from the collateral, and the SPV
pays out T + 100 to the investors in the note. Thus, the SPV makes a five basis points
pick-up.

2. The Reference Bond Defaults In this case, the SPV liquidates the collateral, uses the
proceeds to first repay the buyers of protection (i.e., the suppliers) and then returns any
remaining amount to the investors. The SPV is terminated.

What is the net effect of the transaction? First, suppliers are able to continue their busi-
nesses as usual without worrying about the default of the manufacturer. Second, the man-
ufacturer obtains the credit terms it needs to stay in business. Third, the investors in the
note obtain 10 basis points more than they would have obtained for essentially the same
risk. (Note the risks are not completely the same. Investing in the CLN also involves the risk
that the collateral be managed properly. Mismanagement of the collateral will reduce the
proceeds received by investors.) Lastly, the SPV registers a five-basis points pick-up until
maturity (or default). ■

FIGURE 31.6
Credit-Linked Note:

Example
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T   10075 bps
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A Variant: Credit-Sensitive Notes
A variant of the credit-linked note structure, called a credit-sensitive note, is one in which

the cash flows from the note are linked to the credit rating of the issuer itself rather than to

a third party’s obligation. Credit-sensitive notes (CSNs) are also known as step-up bonds.

One of the earliest issues of CSNs was by Enron in 1989. Enron at that time had a barely

investment-grade rating of Baa3 (Moody’s) and BBB− (S&P). Enron issued $100 million

in CSNs in which it promised the holder of the note a steep increase in coupons if it got

downgraded even a notch (to Ba1/BB+) but only a gradual decrease in the coupon size if

its rating improved. The coupon that Enron promised to pay was dependent on the worse of

its Moody’s and S&P ratings, and was given by the following:

Rating
Applicable

Moody’s S&P Rate (%)

Aaa AAA 9.20
Aa1–Aa3 AA+− AA− 9.30
A1–A3 A+− A− 9.40

Baa1–Baa3 BBB+− BBB− 9.50
Ba1 BB+ 12.00
Ba2 BB 12.50
Ba3 BB− 13.00

B1 or lower B+ or lower 14.00

In issuing this note, Enron was aiming to send a credible signal to the market that it

expected its rating to improve, and most certainly did not expect it to decline. The credi-

bility of the signal depended on the fact that it was costly to send the signal—the smallest

downgrading would cost Enron 250 bps in coupon size. The security offering was especially

expedient since it was issued at the time of the collapse of the high-yield debt markets when

marginal investment-grade firms were hard pressed in their attempts to raise money from

bond market investors.

Shortly after Enron’s issue, there was a spate of CSN issues culminating in the late 1990s

and early 2000s with large issues by telecom and airline companies including Deutsche

Telekom, France Telecom, and British Airways. The bursting of the Internet bubble at that

point and the recession that followed showed that CSNs were not without their downsides

for the issuer. When business slowed in the recession for reasons beyond the companies’

control, the ratings agencies downgraded the companies. The downgrade led to an increase

in coupon size and to further pressure on the companies’ cash flows, and so on, in some

cases threatening the existence of the companies themselves.

31.6 Correlation Products

So far, we have discussed products that reference a single issuer’s credit risk. Products that

reference several names are also widely traded. In a subsequent chapter, we will take up the

mathematical analysis of correlated default products in greater detail. Here we undertake a

general introduction to three of the most popular products in this class.

Basket Products
A first-to-default (FTD) basket is a natural generalization of a credit-default swap (CDS).

As in a CDS, there is a protection buyer who makes regular periodic premium payments to
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a protection seller for protection against a credit event. The key difference is that instead of

a single reference entity, there is a basket of reference entities. Protection is triggered at the

first point where one of the credits in the basket experiences a credit event. Second-to-default

(STD) baskets and, more generally, nth-to-default (nTD) baskets are defined similarly.

A typical basket structure has 5–10 names. For a specific example, consider a basket of

10 credits with a notional of $10 million on each credit. The protection buyer pays the seller

a regular premium (typically quarterly). In an FTD basket, if any of the credits experiences

a credit event, the protection seller pays $10 million in exchange for the protection buyer

delivering $10 million in face value of the defaulted credit. The basket default swap then

terminates. As with CDS contracts, physical delivery has been the settlement method of

choice in this market, although this is changing.

Why Basket Default Swaps?

Why FTD baskets? For the seller of protection, using an FTD basket provides the seller with

leverage. As we discuss later on in the chapter on reduced-form models, the fair spread on

a defaultable instrument is given approximately by λ(1 − φ) where λ is the (risk-neutral)

default likelihood and φ the anticipated recovery rate. By considering a basket rather than

a single credit, the likelihood of a credit event, λ, increases. Assuming that all the credits in

the basket have roughly similar recovery rates denoted by φ, this increases the fair spread

λ(1−φ). As a consequence, the premium from selling FTD protection on a basket can be a

multiple of the individual CDS spreads on the credits in the basket. However, the maximum

loss the seller of protection can have is 1− φ, which is the same whether protection is sold

on one name or the basket. Thus, selling protection on an FTD basket is “like” selling CDS

on each credit in the basket but with much lower potential losses.

From the buyer’s standpoint, the FTD basket provides an equity cushion, an imperfect but

inexpensive hedge against defaults on a portfolio. Consider an investormanaging a portfolio

of (say) 10 names. One way to protect the portfolio is to buy protection on each single name

in the portfolio. A cheaper alternative is to buy FTD protection on the portfolio. The FTD

protection is identical to the protection from a portfolio of CDSs if only one default occurs,

but, of course, the FTD basket does not provide protection beyond the first default (which

is why it costs less). There is a cost-benefit trade-off: if the investor does not think two or

more defaults on the portfolio are a likely occurrence, then she may prefer the low-cost

FTD route.

Valuing Basket-Default Swaps

The FTD basket swap can be viewed as a basket of CDSs with a knock-out feature (the

protection ceases to exist upon the occurrence of the first credit event). Upper and lower

limits on the fair price of the basket are easily identified. First, the FTD basket premium

clearly cannot exceed the sum of the premia on the individual CDSs; otherwise you could

buy protection on each individual name and get more protection at less cost. Second, the

FTD basket premium must be at least equal to the CDS premium for the weakest credit in

the basket.

Unfortunately, beyond these broad limits, one cannot say much more about pricing

without a formal model. The reason is that an FTD basket cannot be replicated with existing

instruments (such as the individual CDSs), so replication-based arbitrage pricing is ruled

out and only model-based pricing is possible.

What kind of inputs might a valuation model for a general n-th to default (nTD) basket

need? Clearly, the value would depend on the number of credits N in the portfolio, as

well as the value of n. Clearly, too, it would depend on the qualities of the individual

credits and their spreads, the anticipated recovery rates, the maturity of the basket, and
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so on. To a great extent, these are either observable variables or ones whose values can be

inferred from other instruments (e.g., CDS spreads) using a model. The critical additional

variable is correlation: how likely are credits to default together? This is not unfortunately,

an observable variable.

Default correlation matters even for FTD baskets. Both systematic and idiosyncratic

factors contribute to default, and default correlation is generally positive since most names

have an exposure to overall macroeconomic conditions. In general, the effect of default

correlation can be complex, but for FTD baskets, we can bemore precise about the direction

of impact. Intuitively, default correlation is the same as survival correlation. If names tend

to default together, they also tend to survive together. So (again, intuitively), as correlation

increases, the likelihood of zero defaults increases, which means the probability of one or

more defaults must decrease. In turn, this means FTD premia must be a decreasing function

of correlation.

Collateralized Default Obligations (CDOs)
A natural extension of basket contracts is the securitization of default risk using an under-

lying basket or pool of debt obligations. This underlying pool is called the “collateral” or

the “reference pool.” Tranching and selling off baskets of default risk occur in the market

for CDOs (collateralized default obligations).

CDOs are natural analogs to collateralized mortgage obligations (CMOs) in the securi-

tization of mortgage risks. In a CDO securitization, tranches of debt are sold based on an

underlying pool of debt. At the simplest level, there is a senior tranche, which has priority

over cash flows. This is usually credit-enhanced by means of one or more “mezzanine”

tranches, which provide the necessary subordination required to give the A tranche a high

credit-quality rating. The residual tranche is called “equity” and is the backstop for first

credit loss. By specifying the levels of credit loss for each tranche, the CDO can be tai-

lored to meet specific investor demand. There may be various other credit enhancements

in the CDO structure. Additional credit protection may be provided by early amortization

clauses, which are imposed if the collateral defaults excessively or fails to generate cash at

prespecified rates.

For a simple example of how a CDO tranching process works, consider a reference pool

with 100 investment-grade names and a notional of $10 million each. The total notional of

the CDO is then $1 billion. Suppose the cash flows from the pool are divided among three

tranches: equity, mezzanine, and senior. The equity tranche takes all losses due to default

on the pool up to a pre-specified maximum; let us suppose this in the example to be 5% of

the notional amount (or $50 million). The mezzanine tranche takes all further losses from

default again up to a pre-specified maximum; suppose this is 10% of the portfolio notional

of $100 million. All remaining losses are absorbed by the senior tranche. Note that each

tranche is specified by its attachment point (the point at which it begins to take losses) and

its width (the percentage of losses it absorbs). In this example, the mezzanine tranche, for

instance, has an attachment point of 5% and a width of 10%.

The one final point remaining is the distribution of cash flows from the collateral pool

among the tranches. The equity tranche clearly has the greatest risk, so receives the highest

coupon. The equity tranche is typically unrated. The mezzanine tranche has intermediate

risk, so earns a lower coupon than equity; it usually carries a high speculative-grade/low

investment-grade rating (e.g., BBB). The senior tranche is the least risky and carries the

lowest coupon. To gauge the risk of the senior tranche in this example, note that the senior

tranche is protected against the first $150 million of losses from default. If we assume an

average recovery rate of 40% on defaulted names (a standard assumption in the industry),
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a single name’s default costs $6 million. (Recall that the notional amount of each name

is $10 million.) So for the $150 million cushion to be used up and for defaults to begin

affecting the senior tranche, 25 names—or one-fourth of all the credits in the pool—have

to default before the senior tranche is at risk.

How likely are 25 names to default? Obviously, this will depend on the credit quality

of the individual names in the portfolio, the maturities, the anticipated recovery rates, and

so on, but, as with basket default swaps, a critical driving variable is the hard-to-estimate

and elusive default correlation. In times of economic crisis (the fourth quarter of 2008, for

example), both individual default probabilities and default correlations across names tend

to increase sharply, and a seemingly safe tranche can become very risky very quickly.

The CDX and iTraxx Indices
The huge growth of the CDS market has resulted in the creation of indices based on CDS

spreads. Credit indices now encompass all major corporate bond markets. There are two

major families of indices: the CDX indices that cover North America (NA) and emerging

markets (EM); and the iTraxx indices, which cover Europe and the rest of Asia. Each of

these major indices also has a number of sub-indices based on sectors, geography, ratings,

etc.

Credit indices are like equity indices in one sense. Just as equity indices are obtained

by aggregating individual equity prices, credit indices are obtained by aggregating CDS

spreads. However, there is one important difference. While equity is infinitely lived, CDSs

are not. This means the index itself has a maturity. For example, if all the CDSs underlying

the index have five-year maturities, we obtain a five-year index. Moreover, if we wish

to maintain indices of given benchmark maturities (e.g., the popular five-year maturity),

the precise underlying securities in the index have to be changed periodically. This is

accomplished by “rolling” the index, a process we explain further below.

Since the number of indices and sub-indices available is huge, we confine attention here

to describing just a few of these.

North American Indices I: The CDX.NA.IG

This index is made up of 125 equally weighted North American (NA) investment-grade (IG)

names. It is divided into five sector sub-indices: consumer, energy, financials, industrials

and telecom, and media and technology. It also has a sub-index called HVOL consisting

of the 30 highest volatility names in the index. The indices trade in a variety of maturities.

The IG and HVOL indices trade in maturities of 1, 2, 3, 5, 7, and 10 years. The sectoral

sub-indices trade in maturities of 5 and 10 years.

The credit ratings of the names in the index span the entire investment-grade spectrum

but, reflecting the distribution of CDSs, are concentrated in the lower end of investment

grade. Typically, over 50% are rated BBB or Baa, and another 30% are rated A. The index

trades only No-R, i.e., the only credit events are bankruptcy and failure to pay.

North American Indices II: The CDX.NA.HY

The North American high-yield (HY) index consists of 100 equally-weighted NA high-

yield names. It has three sub-indices: a high-volatility index, a BB index consisting of all

the BB-rated names in the index, and a B index, consisting of all the B-rated names in the

index. A range of maturities is available. The main HY index trades in maturities of 3, 5, 7,

and 10 years, while the sub-indices trade in 5-year maturities.
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European Indices I: iTraxx Europe

This is a benchmark index for the European investment-grade market. It consists of 125

equally-weighted CDSs on European investment-grade names. Two-thirds of the names

come from the UK, France, and Germany. The main index trades in maturities of 3, 5, 7,

and 10 years; there is also a high-volatility (HVOL) sub-index, as well as seven sectoral

sub-indices.

How the Indices Work

Each CDX or iTraxx index is like a CDS on a basket of names. The index is specified by a

start date, an end date, a premium (or running payment), and a notional amount. The notional

amount on the index is divided equally between the names in the index. For example, if an

investor sells protection on $100 million of the CDX.NA.IG index, the notional on each

name is $(100 million/125) = $0.80 million. This means selling $100 million of protection

on the index is akin to selling $0.80 million of protection on each individual name but using

a single contract.

Index Rolls

Each index is “rolled” every six months. Rolling is the process by which new names are

introduced and some old names dropped from the previous index. The process is governed

by transparent rules and is based on dealer polls. Each roll increases the maturity of the

“on-the-run” (the most current) indices by six months.

The composition of the old indices is not affected by the roll. They continue to trade as

before. Since the new index composition is different from that of the old index, the new

index may trade at a wider spread or a narrower spread than the previous one.

Pricing Conventions

Each index comes with a fixed spread or “coupon.” At inception, this spread will be roughly

equal to the average spread of the names in the index. The spread represents the running

premium payment received by sellers of protection on the index. Since the market price of

protection on the basket of CDSs represented by the index will typically differ from this

fixed spread, an up-front payment/receipt is required to compensate the seller and buyer.

This up-front payment is equal to the (risky) present value of the difference between the

market spread and the fixed spread.

For example, suppose that on February 1, 2009, an investor wishes to sell protection on

$1 billion of the five-year CDX index maturing on December 20, 2013. Suppose that the

fixed spread on the index is 100 basis points and that the current market spread is 163 basis

points. Then, the investor will receive a running premium payment of approximately

0.25× 0.010× 1,000,000,000 = 2,500,000

In addition, the investor will receive an up-front payment equal to the risky present value

of 63 bps on the notional principal amount of $1 billion.

What If There Is a Default?

If a component of the index experiences a credit event (for simplicity,we call this a “default”),

then the protection seller compensates the protection buyer via either physical or cash

settlement. Restructuring is not a credit event in CDX contracts unlike in the pre-Big Bang

US CDS contracts. The iTraxx European indices, however, do use Mod-Mod-R as a credit

event. Following a credit event, the defaulting name is then removed from the index. The

index continues to trade on the remaining names. The notional and all subsequent premium

payments are reduced proportionately to reflect the altered portfolio.
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For example, suppose a buyer has purchased €125 million of protection on the iTraxx

Europe index (i.e., €1 million per name), and there is a credit event on one name. The

protection seller then compensates the buyer for the loss-given-default on that name on

a notional of €1 million via either physical or cash settlement. All subsequent premium

computations are on a notional of €124 million. For example, if the running premium is

75 bps, then the new quarterly payments are approximately

0.25× 0.0075× 124,000,000 = 232,500

Index Tranches and Correlations

In addition to the indices themselves, tranches on the indices with standard attachment

points also trade. Figure 31.7 provides sample quotes from August 2005. The figure shows

the standard attachment points for each tranche. On the North American investment grade

index (NA.IG), for instance, there are five tranches available: 0–3% (the equity tranche),

FIGURE 31.7
Quotations for Various

Indices

Source: Bear Stearns, Moody’s.

Indicative mid-market data

derived from proprietary models

Index tranche prices and implied correlation

North America investment grade (five year)

Series

Series

Series

Series

Full index Baa3 50.0  49.0 

0–3% Caa3 39.6% 11 37.9% 12

3–7% Baa1 127.0 1 124.5 2

7–10% Aaa 36.0 12 35.8 12

10–15% Aaa 20.3 19 17.5 19

15–30% Aaa 9.8 33 8.4 33

DJ CDX NA IG 4

North America high yield (five year)

Full index B2 100.0  100.5 

0–10% C 82.75% 26 81.69% 26

10–15% Caa3 55.00% 19 53.94% 17

15–25% Ba3 580.0 15 530.0 14

25–35% A1 60.0 12 55.0 12

DJ CDX NA HY 4

Europe investment grade (five year)

Full index Baa2 36.0  35.0 

0–3% Caa2 24.0% 16 22.8% 17

3–6% A3 82.5 4 77.5 4

6–9% Aaa 26.5 12 24.5 12

9–12% Aaa 14.5 18 13.5 18

12–22% Aaa 9.0 28 8.8 28

iTraxx 3

Japan investment grade (five year)

Full index - 22.8  21.5 

0–3% - 13.0% 26 12.4% 26

3–6% - 90.0 9 80.0 9

6–9% - 28.0 18 25.5 18

9–12% - 20.0 29 20.0 29

12–22% - 14.3 40 13.0 40

DJ CDX NA IG 4

DJ CDX NA HY 4

iTraxx 3

iTraxx CJ 3 iTraxx CJ 3

est. ratings

(Moody’s)

30 Aug 2005

level (bp*) tranche

correlation

23 Aug 2005

level (bp*) tranche

correlation
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3–7%, 7–10%, 10–15%, and 15–30%. For a given value of a tranche notional, the implied

underlying portfolio notional can be computed using the width of the tranche. For example,

if the equity tranche has a notional of $15 million, the implied underlying portfolio notional

is $(15/0.03) million= $500 million. Similarly, if the notional on the 3–7% tranche is $40

million, the implied underlying portfolio notional is $(40/0.04) million = $1 billion.

As in a CDO, the attachment and detachment points of a tranche specify the loss taken by

the tranche. The equity tranche in both theNA.IG and theEuropean investment grade indices

absorbs the first 3% of losses on the underlying portfolio. If, for instance, the underlying

portfolio notional is €1 billion, then all losses on the portfolio up to €30 million are taken

by the equity tranche of the Europe investment grade index. How many names must default

for the equity tranche to be completely wiped out? This depends on the loss-given-default

on a name. Since this index has 125 names in it, each name accounts for a notional of

€8 million. Assuming a loss-given-default of 50%, default on each name would result in a

loss of €4 million. So the equity tranche is wiped out only if there are at least eight defaults.

Of course, a lower recovery rate means fewer defaults are needed to wipe out a tranche.

If the loss-given-default is 75%, the equity tranche would be wiped out with only five

defaults.

Investors may buy and sell protection on tranches. Sellers of protection receive a spread

(a “coupon,” as it is called) from the buyers of protection. This coupon is stated in basis

points of the tranche notional. For example, Figure 31.7 shows that on August 30, 2005, a

seller of protection on the 7–10% tranche of the NA.IG index would receive a coupon of

36 basis points per year from the buyer of protection, paid quarterly. For the equity tranches

of the investment grade indices, the coupon is fixed at 500 basis points per annum, but the

seller of protection also receives a portion of the notional amount up front. As Figure 31.7

shows, on August 30, 2005, these up-front payments were 39.6% on the NA.IG index and

24% on the Europe investment grade index. On the North American high-yield (NA.HY)

index, the bottom two tranches trade with up-front payments (and no coupons). On August

30, 2005, these up-front payments received by the sellers of protection were 82.75% for the

0–10% tranche and 55% for the 10–15% tranche. The remaining tranches have specified

coupons.

The other aspect of importance is tranche-implied default correlation. Since the default

times of the issuers in the index are correlated, the number of defaults will depend on

these default correlations. As correlations vary, the effects are similar to that of all de-

fault baskets: with increasing correlation, the equity tranche (analogous to a first-to-default

basket) becomes less risky and the senior tranches (analogous to many-to-default baskets)

become riskier. The tranche correlation number represents the average correlation of de-

fault across all issuers in the index that produces the exact spread (price) of the tranche seen

in the quotations. The correlations are run through a market-standard model (known as a

Gaussian copula), which we will investigate in Chapter 34.

Notice that each tranche has a different correlation! How might this be, given that all

tranches are priced off the same underlying basket of issuers? It turns out that no single

correlation in the model will produce a default loss distribution, which when translated

into tranche spreads, matches the spreads of all tranches exactly. The fact that each tranche

requires a different correlation to be priced correctly results in the phenomenon known as

the “implied correlation smile,” which is analogous to the notion of the implied volatility

smile we encountered when pricing equity options. As in the case of equity options, the

smile in implied correlations comes from the fact that the statistical structure of the market’s

standard Gaussian copula model does not capture the true joint default distribution of all

issuers. However, as with implied volatility, implied correlation is used more as a quotation

mechanism than as an indicator of true economic meaning.
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Instead of tranche correlation, sometimes another form of correlation known as “base

correlation” is quoted. In this case, the correlation for the equity tranche is the single average

correlation that results in losses that match the spread level of the equity tranche. For the

CDO equity, tranche correlation and base correlation coincide. But for the next mezzanine

tranche, the base correlation is the level of correlation that matches the average price of

both equity and mezzanine tranches, i.e., the correlation that corresponds to the average

spreads of both the 0–3% and 3–7% tranches, or in other words, the 0–7% loss level. The

base correlation for the 7–10% tranche will be the correlation that matches the average

spreads of the 0–3%, 3–7%, and the 0–10% loss levels, i.e., the 0–10% loss bracket, and so

on, for the remaining tranches.

31.7 Summary

Credit derivatives have transformed the derivatives landscape in dramatic fashion since

the mid-1990s. By 2008, the credit derivatives market exceeded $50 trillion in notional

outstanding worldwide, almost 10% of the world derivatives market’s combined notional

outstanding. The financial crisis of 2008–2009 took its toll on the market, particularly in

its more exotic reaches into collateralized debt obligations (CDOs), but other portions of

the market, notably the credit default swap (CDS) and index components, have also been

affected.

A range of credit derivatives trade in the market today. Of these, the most important by

far are CDSs. Useful in their own right, CDSs also constitute the building blocks for a range

of other products including basket default swaps, credit-linked notes, synthetic CDOs, and

credit indices such as those in the CDX and iTraxx families. The tremendous growth of

credit derivatives in the years leading to 2008 was fueled at least in part by the wide-ranging

applicability of these instruments, for example, in gauging the market’s estimate of the

credit health of a company or for taking short positions in credits. But the crisis of 2008

also revealed a dark side to this market. It appears likely at the time of writing (mid-2009)

that the CDS and index markets will survive and even grow (perhaps in modified form as

trading moves to centralized clearing houses), but it is less clear what the future holds for

the more exotic correlation-driven parts of the market such as bespoke CDO tranches.

31.8 Exercises 1. If you are an equity asset manager and wish to diversify away from stocks, what credit

derivative would you choose?

2. What are some of the advantages to a seller and a buyer in a credit spread option

contract?

3. What is a credit-sensitive note (CSN)? How does it work? What is the advantage to the

issuer? To the investor? What are the drawbacks to the investor?

4. What is an n-th to default contract? How does credit correlation impact this contract?

5. You expect that the market’s expectation of recovery rates of a given issuer will be

higher in a few weeks. There are two reference instruments for the same issuer: senior

(S) and junior (J). Which of the following strategies would you prefer? Explain why.

(a) Long S, long J.

(b) Long S, short J.

(c) Short S, long J.

(d) Short S, short J.
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6. In a CDO, suppose there are three tranches: A gets first claim to all cash flows from

the collateral, B gets second claim, and there is a residual equity tranche E. Suppose

the level of default risk in the economy declines but the correlations of default increase.

What would be the likely impact of this on the values of the three tranches?

7. A credit default swap provides protection against the default of the reference issuer in

the contract. Does it provide protection against the deterioration of the credit quality of

the reference name before default occurs?

8. A bond fund wishes to speculate on the value of a five-year B-rated junk bond. It believes

that, conditional on the bond surviving the next two years, it will rise in quality and be

worth more. Suggest a risk management strategy for this trade.

9. In the previous question what should the fund manager do if instead he/she wanted to

bear credit risk for the first two years but not for the remaining three?

10. EZFund can raise financing at six-month Libor plus 25 bps for five years. It finds that

five-year Ampco bonds (BB rated) are trading at a yield to maturity of 10%. If total

return swaps linked to the BB index are at 9.50% versus six-month Libor, what arbitrage

trade may be available? What is the risk in this trade?

11. The credit default swap on a three-year bond is trading at a spread (premium) of

1%. If the credit spread on the bond is at 1.1%, suggest a trade to take advantage of

this. Why do you think there might be a difference in spreads on the CDS and the

bond?

12. You expect credit correlations to increase. If so, which of the following strategies is

appropriate:

(a) Long a first-to-default (FTD) contract and long a second-to-default (STD)

contract.

(b) Long FTD, short STD contracts.

(c) Short FTD, long STD contracts.

(d) Short FTD, short STD contracts.

13. Suppose you have a model for pricing convertible bonds that accounts for equity risk,

interest-rate risk, and credit risk and is calibrated using observable stock prices, bonds,

and credit default swaps. If the model price of the convertible bond exceeds that of the

market and you believe the model is accurate, what broad strategy will you adopt to

construct an arbitrage portfolio?

14. Howmight you convert a mortgage-backed securities (MBS) portfolio into a credit-risk-

based CDO using CDS contracts? What should the CDS have as underlyings?

15. Can you suggest another credit contract that may be used to construct a synthetic CDO

from a portfolio of MBS?

16. A CDO structure comes with a special clause for the A tranche whereby early amorti-

zation occurs if more than three issuers default within the first two years of the CDO.

What happens to the value of the A tranche as we increase the number of issuers in the

collateral?

17. Suppose we wish to price the spread on a two-year annual payment credit default swap.

The constant interest rate is 10%. Suppose the conditional probability of default each

year is also constant and is denoted p. Write down an expression that expresses the

two-year fair value of the CDS spread (s) in terms of the other parameters of the model.

Assume that all default payments are made at the end of the period, and all premium

payments are made at the beginning of each period. Also assume that recovery is 40%

of face value.
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18. In the problem above, what is the fair spread s if the premium payments are made at the

end of each period only if the reference name has not defaulted? Is the premium higher

or lower? Why?

19. If the correlation of default remains the same but the correlation of recovery between two

issuers increases, what is the impact (ceteris paribus) on the price of a second-to-default

contract?

20. In a synthetic CDO, does the issuer of the CDO tranches hold CDS contracts in long or

short positions? Explain.
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Appendix 31A

The CDS Big Bang
Until 2008, the CDS market was an over-the-counter (OTC) market, and, as such, had

several shortcomings to it. There was a high degree of counterparty risk in the system. The

propensity for unconfirmed bilateral deals was high—it was estimated in 2005 that over half

of all outstanding contracts were still pending confirmation. Since the system had no netting,

hedging an existing position with a new contract resulted in multiple exposures, amplifying

systemic risk. There was no auction protocol in place for finalizing the settlement of CDS

contracts. Settlement could be based on a comparison of prices of the reference instrument

before and after the credit event, and contracts sometimes failed to specify the dates for these

valuations precisely. Finally, protection in CDS contracts usually became effective on the

contract date. Since credit events sometimes are revealed onlywith a (possibly considerable)

lag, buyers of protection might want the effective date of protection to pre-date the contract

date. Spurred by these shortcomings, the Federal Reserve and 14 dealer banks began, in

2005, to develop the framework for an improved CDSmarketplace. The resulting proposals,

which resulted in the “Big Bang” of April 2009 in the CDS market, are described in this

appendix.

The New CDS Market

The exchange-traded CDS market has standardized contracts with a fixed-coupon conven-

tion. Conventional quotations of CDS spreads (where the spread quoted on each reference

entity may be different) are called “par spreads.” The par spread on a CDS is the spread

that is charged on a periodic basis such that the expected present value of spread payments

is equal to the expected present value of default payments. The new system will have a

standardized spread (referred to as the “coupon”) for all names of either 100 bps or 500 bps

but with an up-front payment to reflect the fact that the fair spread may be different from

this standardized spread.

For example, if the fair spread for a name is 160 bps, then 100 bps is too low a price

to pay for protection, so the buyer of protection must compensate the seller of protection

with an up-front payment. Conversely, if the fair spread is less than 100 bps, then the seller

compensates the buyer with an up-front payment. The up-front payment now becomes the

quotation for the contract.

The change to the quotation mechanism is significant. CDS quotations will be based on

the ISDA CDS Standard Model. ISDA provides a standard tool for converting the conven-

tional spread into a fixed-coupon plus up-front payment. Markit provides a calculator to

convert the conventional spread into the new quotation, available at www.markit.com/cds.

The program code for the ISDA CDS standard model is now open source, and every

trader may take this code and adapt it to its own use. Standardized inputs to be used with

the code such as the daily yield curve and recovery assumptions for different debt seniority

(senior 40%, subordinated 20%) are provided at www.cdsmodel.com.

Using these standardized contract terms, conversion from the conventional spread to the

new fixed-coupon/up-front-payment model is done as follows.

1. The convention is that a constant hazard rate be assumed for default risk. (Hazard

rate models are described in Chapter 33.) Premium payments are assumed to be free of

default risk. Periodicity of the premium payments is quarterly. Discounting is undertaken

using the yield curve published online.
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2. Using the conventional spread quoteC , the implied hazard rateλ is computed by equating

the expected present value of payments on the fee leg of the CDS to the expected present

value of payments on the default leg.

3. Using λ and assuming C = 100 or 500 bps as required, the difference between the

expected present values of the default leg and of the fee leg is computed. This is the

up-front payment.

Example: Pricing New Contracts

Suppose a new five-year CDS contract, settling on March 23, 2009, with a maturity of

March 23, 2014, has a conventional spread of 150 bps. The notional is 1 million dollars. The

assumed recovery rate is 40%. By using the online CDS converter, the equivalent quotation

for this contract is determined to be a fixed coupon of 100 bps and an up-front payment

(from the protection buyer to the protection seller) of $20,144.45. If the conventional spread

rises to 160 bps on the same day, then the equivalent 100 bps fixed coupon contract will

have an up-front payment of $24,547.67, i.e., a mark-to-market gain to the buyer of the

contract of $4,403.22.

Example: Migrating Legacy Trades

Existing CDS contracts will need to be migrated to the new convention. Two features need

to be preserved: (a) the notional on the contract should remain the same after the migration

and (b) the periodic premium payment (usually quarterly) must stay the same. Suppose, as

in the previous example, we had a $1 million notional CDS with a conventional spread of

150 bps. This could be converted into a portfolio of two possible contracts.

These two contracts are a 100 bps fixed-coupon contract with an up-front payment of

$20,144.45, and a 500bpsfixed-coupon contractwith anup-front payment of−$170,011.17.

Since in this case the fixed-coupon is higher than the conventional spread, the up-front

payment is negative and results in a cash inflow to the protection buyer.

The original contract has a notional of $1 million and an annual premium of 150 bps,

i.e., $15,000. We may use the two contracts above to obtain a replicating portfolio that gives

the same notional and premium payments as follows. Let the dollar notional investment

in the 100 bps contract be denoted X and that in the 500 bps contract be denoted Y . We

then require that the following two equations be solved so that we preserve notional and

premium:

X + Y = 1,000,000

0.01 X + 0.05 Y = 15,000

Solving we get

X = 875,000, Y = 125,000

Hence, the original conventional spread contract is replaced with a 100 bps contract with

a notional of $875,000 and a 500 bps contract of notional $125,000. There will also be an

up-front one-time settlement amount to be paid computed as follows:

$20,144.45 X + $(−170,011.17) Y = −$3,625

implying that the buyer will receive a rebate of $3,625 at contract migration. This process

of mass migration of legacy contracts at a predetermined date was dubbed the “CDS Big

Bang.”



Chapter 32
Structural Models
of Default Risk

32.1 Introduction

Default risk and its measurement have always been a central concern of participants in

financial markets. Early approaches to measuring credit risk took a statistical route, look-

ing to distinguish between defaulters and non-defaulters using, for example, discriminant

analysis. The most successful of these approaches was the Z-score model developed in the

1960s by Edward Altman. Altman’s model assigns to each company a number (the so-called

Z-score) based on five financial ratios:

Z = 1.2 X1 + 1.4 X2 + 3.3 X3 + 0.6 X4 + 0.999 X5

where

• X1 =Working Capital/Total Assets

• X2 = Retained Earnings/Total Assets

• X3 = Earnings before Interest and Taxes/Total Assets

• X4 =Market Value of Equity/Book Value of Debt

• X5 = Sales/Total Assets

A high Z-score corresponds to a lower risk of default. The model classifies firms as “safe” if

Z > 3, and as “distressed” if Z < 1.80, with Z -scores between 1.80 and 2.99 representing a

zone of uncertainty. The Altmanmodel predicts default two years ahead with good accuracy

and continues to be used widely today.

In 1974, Robert Merton introduced a new option-theoretic approach to credit-risk mod-

eling and measurement. Merton’s model formalized and developed ideas that were implicit

in Black and Scholes (1973). The class of models that has developed around the Merton

(1974) approach is now called the class of “structural models.”

The basis of the structural model approach is the observation that the value of the

liabilities (debt and equity) of a firm at a point in time depends on the value of the firm’s

assets at that point as well as the outlook concerning that value. That is, debt and equity

are contingent claims on the firm’s assets. The value of the firm’s assets acts as the central

driving variable in structural models. In the typical structural model, the firm’s debt and

equity structure is taken as given, a process is posited for the evolution of the firm’s asset

value, conditions are specified that constitute “default,” and debt and equity are priced off

the posited process.

802
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Since the firm’s value process is unobserved, implementation of structural models is

commonly effected in an indirect manner using the characteristics of the firm’s equity. That

is, given that equity is a contingent claimon thefirm’s assetswhose value andother properties

are observed, the implied value and other properties of the firm’s assets may be backed out

from this information. From this implied value, we may then calculate the desired output

such as likelihood of the firm’s default over any chosen horizon. One of the most successful

commercial implementations of the structural model approach is that developed by KMV

Corporation (now Moody’s KMV) in the late 1980s. The KMV approach is described later

in this chapter.

Structural versus Reduced-Form Models
Structural models are distinguished from an alternative approach that was developed in

the 1990s and that is now called the “reduced-form” approach. In a structural model,

the likelihood of the firm’s default over any horizon is derived from the model given the

capital structure and the assumptions concerning the firm’s value process and conditions

determining default. Reduced-form models, the subject of the next chapter, take the default

process as the model’s “primitive”: a process is directly posited for default likelihood that

is then calibrated to the prices of securities issued by the firm or to the prices of derivatives

based on those securities.

Reduced-form models thus have more of a financial engineering flavor than structural

models. There are also differences in the implementation methodologies. As mentioned

above (and as described in detail later in this chapter), structural model implementation

is typically undertaken using equity market information. Reduced-form models, on the

other hand, are commonly implemented using debt-market (usually bond-price) or credit-

derivative (credit-default swap) data.

Outline of This Chapter
This chapter discusses structural models. We first present the Merton model, the foundation

of the structural model approach, in Section 32.2. Section 32.3 then discusses issues in

the implementation of the model, in the course of which some extensions of the Merton

model are also described. Section 32.4 describes the KMV implementation of the structural

model approach. Theoretical extensions of theMertonmodel are the subject of Section 32.5.

Finally, Section 32.6 presents an evaluation of the structural model approach to credit-risk

measurement including a summary of its empirical performance.

32.2 The Merton (1974) Model

Aswith all structural models, theMerton model begins with a specification of the stochastic

process for firm value (that is, the economic value of the total assets of the firm). Let Vt

denote the time-t value of the firm. The model assumes that Vt evolves according to a

geometric Brownian motion:

dVt = μVt dt + σVt dWt (32.1)

where μ is the drift of firm value and σ is its volatility.

The second input into a structural model is the capital structure of the firm. The Merton

model assumes that the firmhas equity and only a single issue of debt outstanding.Moreover,

this debt is taken to be of zero-coupon form: the face value of the debt is denoted D and

the maturity date is T .
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To complete the model, the conditions leading to default and costs in the event of default

must be specified. The Merton model assumes that there are no covenants that could trigger

default before T ; default can occur only on date T . Moreover, absolute priority is assumed

to hold at maturity of the debt: debt holders must be paid in full before equity holders receive

anything. Finally, the model assumes away market frictions. In particular, there are no costs

of liquidation or transfer of control in the event of default.

Under these assumptions, theMerton model derives its key insight: that risky debt issued

by a firm is just an option on firm value andmay be valued using option-theoretic techniques.

We describe this next.

Risky Debt as an Option
On date T , when the debt matures, there are two possibilities. If there is enough value in

the firm to meet the amount due to debt holders (i.e., if VT ≥ D), debt holders are repaid

the amount they are owed, and equity holders get the balance. However, if VT < D, then

debt holders receive whatever value there is in the firm, and equity holders get nothing. In

notational terms, what debt holders receive is 
D, if VT ≥ D

VT , otherwise
(32.2)

In shorthand notation, debt holders receive min{VT , D}. This may be rewritten as

D −max{D − VT , 0} (32.3)

Expression (32.3) shows that the debt holders’ claim is equivalent to a portfolio that is

• Long a default-risk-free bond paying D at time T (the first part of (32.3)).

• Short a put option on the firm’s assets with strike D and maturity T (the second part of

(32.3)).

That is, holding risky debt is equivalent to a situation in which debt is riskless (debt holders

are going to get back D for certain), but equity holders have the right to take back the

payment of D and give debt holders the firm in exchange, a right that will be exercised

whenever VT < D. It follows that the value of the firm’s debt may be determined by

identifying the values of the default-risk-free (henceforth, simply “risk-free” or “riskless”)

bond and the put. Denote these values by B and P , respectively, and the value of the risky

debt by B∗. We have

B∗ = B − P (32.4)

This decomposition alsomeans that the spread on the risky debt—the difference between

the promised yield on the risky debt and the risk-free rate—is completely determined by

the value P of the put. A higher value of P increases the price difference between the risky

and riskless bonds, increasing the spread. This makes it possible to identify how different

factors affect credit spreads under the model’s assumptions. For example:

• An increase in the volatility of the firm value process (the “underlying” for the put)

increases the value of the put, so reduces the value of the risky debt and increases

spreads.

• An increase in the risk-free rate decreases the value of the put (recall from Section 17.7

that put values vary inversely with the risk-free rate), so lowers spreads.

The principal observation made in this segment—that risky debt is equivalent to riskless

debt minus a put on the firm—does not depend on the specific stochastic process driving
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firm value. But to give these observations quantitative expression, we must make use of the

assumptions made in this regard. We turn to this next.

Valuing Risky Debt
Let t denote the current time. We have already assumed that the value process of the firm

evolves according to a geometric Brownian motion. Suppose also that the risk-free rate of

interest (expressed with continuous compounding) is a constant r .

Then, the value B of riskless debt is just the face amount D due at T discounted to the

present time t at the risk-free rate r :

B = e−r (T−t)D (32.5)

The value P of the put can be identified using the Black-Scholes formula since all the

conditions of the Black-Scholes model are met:

• The put is European in style with strike D and maturity T .

• The price of the underlying (here, the firm value V ) evolves according to a geometric

Brownian motion with constant volatility σ .

• The risk-free rate of interest is a constant r .

Applying the Black-Scholes formula, the value of the put option is

P = e−r (T−t)D N (−d2) − Vt N (−d1) (32.6)

where

d1 =
1

σ
√
T − t

 
ln

 
Vt

D

 
+ (r + 1

2
σ 2)(T − t)

 
(32.7)

d2 = d1 − σ
√
T − t (32.8)

and N (·) is the cumulative standard normal distribution.

Merton (1974) expresses the put price slightly differently. He defines

L = e−r (T−t)D

Vt

(32.9)

and writes

P = e−r (T−t)D · N (−d + σ
√
T − t) − Vt N (−d) (32.10)

where

d = 1

σ
√
T − t

 
ln

 
1

L

 
+ 1

2
σ 2(T − t)

 
(32.11)

The term L here is a measure of leverage: it is the ratio of the present value of debt to the

total value of the firm. The reader is encouraged to compare the formulae (32.9)–(32.11)

above to the original Black-Scholes formula (32.6)–(32.8) to confirm that the value of the

put is exactly the same in the two cases.

Recall that B∗ = B − P is the value of the firm’s debt. From (32.5) and (32.10), some

simplification yields

B∗ = e−r (T−t)D N (d − σ
√
T − t) + Vt N (−d) (32.12)

Equivalently, (32.12) may be written as

B∗ = e−r (T−t)D

 
N (d − σ

√
T − t) + 1

L
N (−d)

 
(32.13)
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TABLE 32.1 The

Merton Model: Inputs

for Numerical

Example

Input Variable Value

Current firm value (Vt) 100
Face value of zero-coupon debt (D) 60
Maturity (T − t) 1 year
Volatility of firm value (σ ) 0.30
Risk-free interest rate (r ) 0.10

Expression (32.13) provides a closed-form expression for the value of the debt issued by

the firm in the Merton model. A numerical example illustrates.

Example 32.1 Suppose we are given the data in Table 32.1. Using these values, we first determine the
price B of riskless debt:

B = D · exp{−r (T − t)} = e
−0.10×1 = 54.29025

Next, using equation (32.13), we determine the price B ∗ of risky debt. This works out to

B
∗ = 54.12146

This is lower than that of risky debt as is to be expected. The difference in the values of the
two types of debt is precisely the value (32.10) of the put. ■

The Risk-Neutral Probability of Default
TheMerton model can also be used to extract the risk-neutral probability of default, i.e., the

risk-neutral probability of VT < D. Indeed, this is simple. The risk-neutral probability of

default is precisely the risk-neutral probability that the put P finishes in-the-money. From

Chapter 14, this probability is just

N (−d + σ
√
T − t)

where d is defined in (32.11). Expressed in full form, this probability is

N

 
1

σ
√
T − t

 
ln

 
D

Vt

 
−

 
r − 1

2
σ 2

 
(T − t)

  
(32.14)

Example 32.2 Consider again the numbers given in Table 32.1. For the firm in this example, the risk-neutral
probability of default is

Prob[VT < 60] = N

 
1

0.3×
√
1

 
ln

 
60

100

 
−
 
0.10− 1

2
(0.32)

 
(1)

  
= 0.029642

or about 2.96%. ■

And the Actual Default Probability?
Under the assumed process (32.1) for V , the actual (“real world”) probability of default is

the probability that VT < D given that VT has drift μ and volatility σ . In the risk-neutral

world, the drift of the firm value process is the risk-free rate r . Since μ and r may be

different, the risk-neutral probability of default (32.14) may not be the same as the actual

probability of default. Indeed, if μ > r , the firm value in reality drifts upward faster than

in the risk-neutral world, so the actual probability of default will be lower than the risk-

neutral probability. Conversely, if μ < r , the actual probability of default will exceed the

risk-neutral probability of default.
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A closed-form expression for the actual probability of default is not hard to obtain: it is

simply the expression (32.14) with r replaced with the true drift μ:

N

 
1

σ
√
T − t

 
ln

 
D

Vt

 
−

 
μ− 1

2
σ 2

 
(T − t)

  
(32.15)

Example 32.3 Suppose that in addition to the information in Table 32.1, we are given the information that
the actual drift of the firm is μ = 0.20. Then, the real-world default probability is

N

 
1

0.3×
√
1

 
ln

 
60

100

 
−
 
0.20− 1

2
(0.32)

 
(1)

  
= 0.013229

This is substantially lower than the risk-neutral default probability of 2.96%. ■

From an economic point of view, we may interpret the higher risk-neutral default proba-

bility as comprising the actual probability of default plus a risk premium for the uncertainty

around the timing and magnitude of default. (In the Merton model, there is no uncertainty

considering the possible timing, but in more general models, and certainly in reality, there

is.) The actual default probability will usually be less than the risk-neutral probability since

we will typically have μ > r .

From where do we estimate μ? One possibility is to extract it using the equity return rE
(determined from standard models such as the capital asset pricing model (CAPM) or other

factor models for equity returns), and then de-levering it to determine firm value returns.

Risk-Neutral Recovery Rates
The Merton framework admits a closed-form expression for the expected recovery rates

under the risk-neutral measure, a useful feature of the model. At maturity T , if the value of

the firm VT is less than the debt D to be repaid, the firm is in default. The recovery amount

will be some value less than D. If the recovered amount is denoted a, the recovery rate φT is

defined to be the fraction a/D. The expected recovery rate as seen at time t (contingent on

default at T ) is denoted Et [φT ]. It is easy to derive this expected value under the risk-neutral

measure, as we now show.

In the Merton model, there are no costs of liquidation or transfer of control and so the

recovered amount a in the event of default is just VT . Thus, viewed from time t , the expected

amount received by debt holders, contingent on default, is

Et [VT | VT < D]

Letting f (·) denote the probability density function for VT (given the time-t value Vt ) and

expanding this conditional expectation, we have

Et [VT |VT < D] =
  D

0

VT f (VT ) dVT

    D

0

f (VT ) dVT

 

The denominator is the risk-neutral probability that VT < D. This is just the quantity given

by (32.14): N (−d + σ
√
T − t). The numerator may be written as the difference of two

terms:  D

0

VT f (VT ) dVT =
 ∞

0

VT f (VT ) dVT −
 ∞

D

VT f (VT ) dVT

The first term on the right-hand side is the time-t expectation of VT under the risk-neutral

measure, which is er (T−t)Vt . Expressed in the notation of this chapter, Section 15.4 (see
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expressions (15.37)–(15.44)) shows that

e−r (T−t)
 ∞

D

VT f (VT ) dVT = Vt N (d)

so we obtain  ∞

D

VT f (VT ) dVT = er (T−t)Vt N (d)

Putting it all together, we obtain the following expression for the risk-neutral expected

recovery rate in the Merton model:

1

D
Et [VT |VT < D] = er (T−t)

 
Vt

D

  
N (−d)

N (−d + σ
√
T − t)

 
(32.16)

The Term Structure of Credit Spreads
The difference between the values of risky and riskless debt is commonly expressed in terms

of a credit spread. The spread is the difference between the (promised) yield on the risky

bond and the yield on riskless bonds.

Let R denote the yield on the risky bond. By definition, B∗ = e−R(T−t)D, so

R = −
 

1

T − t

 
ln

 
B∗

D

 

The yield on the riskless bond is, of course, just the riskless rate r . Using (32.13), the spread

R − r is given by

R − r = −
 

1

T − t

 
· ln

 
N

 
d − σ

√
T − t

 
+ 1

L
· N (−d)

 
(32.17)

The term structure of credit spreads refers to a plot of spreads against maturities By

varying T in (32.17), we obtain the term structure of credit spreads implied by the Merton

model. From the definition of d, this term structure depends only on five variables: (i) the

volatility of firm value σ , (ii) the risk-free rate r , (iii) the face value of debt D, (iv) the

current value of the firm Vt , and, of course, (v) the maturity T − t .

Example 32.4 Consider again the inputs from Table 32.1. For the given maturity of one year, the value of
the credit spread in this example is

R − r = − ln

 
54.12146

60

 
− 0.10 = 0.003114

which is 31.14 basis points (or 0.3114%). ■

More generally, using the other inputs from Table 32.1 but varying the maturity T , we

may compute debt values and spreads for various maturities. The results for maturities

ranging from 1 to 10 years are presented in Table 32.2. The term structure of credit spreads

obtained from these input values is plotted in Figure 32.1.

Notice the humped shape of the plot. Spreads are low at short maturities, increase with

maturity initially, and then decline at longer maturities. This shape is typical of what obtains

in the Merton model when Vt > D. Intuitively, for very short maturities, default is an

unlikely event, so spreads are low. As maturity lengthens, there is sufficient time for the

bond to default as the firm value may drop below the value of debt, thereby resulting in

higher spreads. For much longer maturities, the spread declines because, conditional on the

bond not having defaulted for some time, the likelihood of the firm being far from default

is high on average, thereby resulting in a lower probability of default.
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TABLE 32.2
Merton Model

Example: Term

Structure of Credit

Spreads

Maturity (T ) Riskless Debt Risky Debt Spread (bps)

1 54.2902 54.1215 31.1387
2 49.1238 48.5562 58.1090
3 44.4491 43.5873 65.2647
4 40.2192 39.1835 65.2249
5 36.3918 35.2708 62.5788
6 32.9287 31.7827 59.0387
7 29.7951 28.6639 55.2948
8 26.9597 25.8687 51.6363
9 24.3942 23.3590 48.1810
10 22.0728 21.1021 44.9705

FIGURE 32.1
Merton Model
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A simpler way of seeing the intuition is to think about two possible trajectories of firm

value, one high and the other low. For shortmaturities, even if the firm took the low trajectory,

there may not be sufficient time for it to reach default before the bond matures. At medium

maturities, the low trajectory will be given enough play to allow sufficient time to reach

default, and, hence, medium-term spreads tend to be higher than short-term ones. Finally, if

the firm is still solvent after a long period of time, it is muchmore likely to have experienced

a high trajectory, resulting in lower long-term spreads.

The same ideas may be put into an option-theoretic context. The extent of the credit

spread is determined by the value of the European put option on Vt with strike D and

maturity date T . Provided Vt > D, for very short maturities (small T − t) there is little

likelihood of the put finishing in-the-money, so the value of the put is low, leading to low

spreads. As maturity increases, the put value initially also increases since there is now a

higher chance that the put will finish in-the-money. (For instance, suppose Vt = 100 and

D = 60 as in Table 32.1. With a very short time to maturity—e.g., a day or a week—there

is very little likelihood that the value of the firm will fall enough to push the put into the
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money, so the put will have little value. As maturity increases to, say, three months, there is

a greater likelihood of this event, so a greater value for the put.) But at very long maturities,

the put value again declines, since it is a European put. The maximum payoff from the put

at maturity is D, which has a present value of PV (D); so PV (D) is an upper bound for

the value of the put at any point. As T →∞, PV (D) → 0, so the put value also goes to

zero. This means spreads must decline towards zero at very long maturities.

One shortcoming of the Merton model that was mentioned above but bears stressing is

the inability of the model to generate short-term spreads of the size observed in practice.

Technically, themajor reason for this is that theMertonmodel is based on Brownianmotion,

which evolves continuously. So if Vt > D, then it is unlikely over short horizons that the

value will move below D and default will result. If the process could include discontinuities

(i.e., the value could suddenly “jump” down), then even over relatively short horizons,

higher spreads would be generated since a jump to default is possible.

In the next few examples, we shall consider how some of the other parameters of the

model affect the shape of the term structure of credit spreads.

The Impact of Leverage
We measure leverage by the ratio of the face value of debt D to the initial (time t) value of

the firm Vt . How do spreads vary with leverage?

Figure 32.2 presents the spread curves for three different values of leverage: 50%, 65%,

and 80%. The volatility of firm value is taken to be 25%, and the risk-free rate is 5%. The

spreads are reported in basis points.

For any fixed maturity, spreads increase as leverage increases, which is expected. What

is more interesting is the shape of the term structure of spreads in the three cases. In general,

since Vt > D in all three cases, the term structure has the classical hump shape for the

reasons enunciated above. However, the location of the hump occurs at shorter maturities

as leverage increases, giving rise to very different behavior in the curves over the 1 year–10

year range of maturities considered in the figure.

FIGURE 32.2
Spreads as Leverage
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FIGURE 32.3
Spreads as r Varies
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When D/V = 80%, the term structure is effectively downward sloping over the 1 year–

10 year range of maturities: the peak is reached very quickly. When D/V = 65%, the peak

is reached more gradually and the decline is not very visible in the figure. At D/V = 50%,

the term strucure of spreads is increasing over the entire horizon in the figure. Put differently,

theMertonmodel implies an essentially downward-sloping term structure for highly levered

or “risky” firms and an upward-sloping term structure for relatively safe firms.

The Impact of Changes in the Risk-Free Rate
Next, we look at what happens to the term structure of spreads when the risk-free rate

r varies. The impact is captured in Figure 32.3. The figure considers three levels of the

risk-free rate: 2%, 4%, and 6%. Volatility is fixed at 20%, and D is taken to be 60% of the

initial value of the firm. Spreads are shown in basis points

For fixed T , the plot shows an inverse relationship between risk-free interest rates and

spreads: spreads decline as risk-free rates increase. The reason for this was noted earlier:

the spread is determined by the value of a put option on the firm’s assets, and put option

values are negatively related to interest rates as explained in Section 17.7.

The Impact of Changes in Volatility
Figure 32.4 captures the effect on spreads of changes in the firm’s asset-value volatility σ .

The figure considers three levels of volatility: 10.0%, 12.5%, and 15.0%. The risk-free rate

is fixed at 5%, and the level of debt D is taken to be 80% of the firm’s initial value Vt .

Spreads are shown in basis points.

For any fixed maturity, an increase in firm volatility increases spreads. Intuitively, addi-

tional riskmeans future firmvalues becomemore spread out. Debt holders,whosemaximum

payoffs are capped, cannot reap additional benefit from the higher firm values but stand to

lose from the lower firm values. Thus, the higher volatility lowers debt value, in effect

transferring value from debt holders to equity holders.
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FIGURE 32.4
Spreads as Asset
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More generally, a rise in firm risk (σ ) has two effects. First, as risk increases, the spread

curve rises. This “level” effect is what we have described in the previous paragraph. Second,

as risk increases, the hump of the spread curve is exacerbated. Because of higher risk

levels, spreads initially tend to increase more rapidly with maturity, and then, conditional

on survival, spreads decline just as dramatically. Thus, there is also a “shape” or “curvature”

effect.

32.3 Issues in Implementation

The numerical examples of the previous section make the Merton model appear easy to

implement in practice. However, a little thought shows two hurdles to be surmounted before

the model can be applied to real-world firms:

1. Two key inputs, V and σ , are unobservable.

2. The model assumes that the firm has a single issue of zero-coupon debt outstanding.

Real-world debt structures will be more complex.

We discuss each of these problems below. The procedures we highlight here are those

commonly used in practice to resolve these problems. Besides these, there are also some

concerns with other aspects of the model, such as the assumption that the Absolute Priority

Rule (APR) holds. We discuss these in a later section dealing with extensions of the Merton

model.

Problem 1: Unobservability of the Vt Process
Although the firm value process Vt and its volatility σ are themselves unobservable in the

marketplace, it is possible to use prices of traded securities issued by the firm to identify

these quantities. Specifically, consider a publicly traded firm with observable equity prices

E . In such a case, the volatility of equity prices σE may also be estimated from the data. We

explain how these two inputs E and σE may be used to obtain working estimates of current

firm value V and volatility σ .
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The first step is to express equity value E as an option on firm value V . On the maturity

date T of the debt, the amount ET received by equity holders is any remaining amount after

paying back the debt holders what they are owed:

ET =
 
VT − D, if VT ≥ D

0, otherwise
(32.18)

In shorthand notation, this is max{VT − D, 0}. Thus, equity value is the value of a long call

option on the firm’s assets with strike D and maturity T . Intuitively, equity holders have the

right at time T to take control of the remaining assets of the firm by paying the debt holders

the amount D they are owed, or they can walk away from the firm and receive nothing.

The time-t value of equity Et is the time-t value of this call, which in turn depends on

the value and volatility of the underlying (i.e., on Vt and σ ), as well as on the observable

variables D (the strike), T − t (the maturity), and r (the risk-free rate). Letting f denote the

call-pricing function and suppressing dependence on the observable variables (D, T − t , r ),

we write

Et = f (Vt , σ ) (32.19)

The pricing function f depends on the specific assumptions made concerning the firm’s

asset value process. For example, under the geometric Brownian motion assumption made

by the Merton model, f is simply the Black-Scholes formula for the price of a call with

underlying Vt , strike D, and maturity T − t :

f (Vt , σ ) = Vt · N (d) − e−r (T−t)D · N (d − σ
√
T − t) (32.20)

where d was defined in (32.11) and N (·) is the cumulative standard normal distribution.

Now, since equity is an option on firm value, the volatility of equity, denoted σE , is also

a function of Vt and σ . Denote this function by g:

σE = g(Vt , σ ) (32.21)

Again, once we have made specific assumptions about the firm value process, the form of

g may be identified. For example, in the Merton model, it can be shown using Ito’s Lemma

(Chapter 15) that

g(Vt , σ ) = σVt ·
fV

f
(32.22)

where f is the call-pricing function (32.20) and fV = ∂ f/∂V is the delta of the call option

at time t (which under the Black-Scholes assumptions is just N (d)).

Expressions (32.19) and (32.21) give us two (nonlinear) equations for the two unknowns

Vt and σ in terms of

• Equity value Et .

• Equity volatility σE .

• Other observable variables (D, T−t , r ).

Since equity values are observable and equity volatilities may be computed from observ-

able stock price histories or implied from option prices, we can use these two equations to

solve for the two unknowns Vt and σ .

Example 32.5 Suppose we observe the following current (time t) equity value and equity volatility in the
market for some given firm:

E t = 45.88, σE = 0.6445
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Suppose too that a check of the company’s balance sheet reveals that it has a single issue of
debt outstanding with face value D = 60 maturing in one year. The one-year risk-free rate
of interest is 10%.

Using equations (32.19) and (32.21), we plug in the input values above. This results in
two equations with two unknowns, {Vt, σ }. The solution to these equations may be readily
computed using numerical methods, even on a spreadsheet. Carrying out the computations
reveals:

Vt = 100 σ = 0.30

This means the value of the firm’s debt is

B
∗
t
= Vt − E t = 100− 45.88 = 54.12

The corresponding price of risk-free debt with the same face value and maturity, given the
risk-free rate of 10%, is

Bt = e
−r (T−t) = 54.29

Thus, the spread on the firm’s debt is

R − r = − 1

T − t
ln

 
B ∗
t

Bt

 
= 0.003114

or 31.14 bps. ■

Problem 2: More Complex Capital Structures
The second problem with the Merton model is that it assumes too simplistic a capital

structure. Capital structures in practice are far more complex than assumed by the model.

There are usually many issues of debt outstanding, with varied coupons, maturities, and

subordination structures. From an implementation standpoint, this presents us with two

alternatives:

1. Extend the theoretical structure of the model to enable it to handle more complex debt

structures.

2. Simplify reality to make it fit within the existing model.

Both alternatives have been examined in theory as well as in practice. We examine each

in turn.

Solution 1: Extending the Theoretical Model

The first solution appears intuitively attractive and the economically correct way to pro-

ceed. Robert Geske and others have developed extensions of the Merton model that al-

low for the simultaneous existence of multiple debt issues that can differ along many

dimensions such as (a) the size of coupons, (b) maturity, and (c) seniority or subordi-

nation (see Geske (1977), Geske (1979), and Delianedis and Geske (1998)). In addition,

these models can also incorporate issues such as safety covenants, sinking-fund provisions,

amortization, etc.

Pricing risky debt in the extended model is conceptually not difficult but is technically

more complex than in the Merton model. In particular, equity now becomes a compound

option on firm value rather than a simple European option. Why is this the case? Because

each payment presents the equity holders with an option: they can make the payment, in

which case they retain control of the firm until the next payment, or they can default, in

which case control passes to the debt holders and equity holders receive nothing. Effectively,
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each payment provides the right to proceed to the next payment, so is an option on the option

represented by the next payment.

Here’s a slightly more formal explanation. Imagine a situation in which a company

owes debt payments D1, . . . , Dn at times t1, . . . , tn . The payments could be coupon and/or

principal repayments and could come from one or several different debt issues. We derive

the compound option nature of equity in steps.

Equity Value between tn−1 and tn Suppose the first n− 1 payments have been made, and

consider any time t between tn−1 and tn . At this point, there is only a single payment left,

so we are effectively in the Merton setting. The value of equity at t is therefore the time-t

value Ct of a European call option on the firm’s assets with strike Dn and maturity tn . (In

particular, Ctn−1
denotes the value of equity at tn−1 just after the payment due at tn−1 has

been made.) The payoff of this option at maturity is

Ctn = max
 
Vtn − Dn , 0

 
(32.23)

Equity Value between tn−2 and tn−1 Now, consider the equity holders’ decision choice at

tn−1. At this point, equity holders can:

• Make the payment Dn−1, in which case the firm remains in equity holders’ control. The

value received by the equity holders is Ctn−1
.

• Default on the payment, in which case control of the firm’s assets passes to the debt

holders and equity holders receive nothing.

So equity holders’ payoff at tn−1 is

max
 
Ctn−1

− Dn−1, 0
 

(32.24)

This is the payoff at maturity from a call option with strike Dn−1 and maturity tn−1 whose

underlying is the tn-maturity call with maturity payoffs of (32.23). Thus, at any t between

tn−2 and tn−1, the value of equity is the value of this call-on-call compound option. Denote

this value by C
[2]
t , with the superscript 2 indicating that the option is a call-on-call. In

the Black-Scholes setting, the closed-form solution for this compound option involves a

bivariate normal distribution (see Section 18.5).

Equity Value between tn−3 and tn−2 The same line of reasoning shows that at time tn−2,

equity holders can either

• pay Dn−2 and continue the firm, in which case they receive the time-tn−2 value of the

compound option that pays (32.24) at tn−1; or

• default, in which case they receive zero.

Thus, their payoffs at time tn−2 are

max
 
C [2]

tn−2
− Dn−2, 0

 
(32.25)

This is the payoff from a call option with strike Dn−2 and maturity tn−2 whose underlying

is the call-on-call with time-tn−1 payoffs of (32.24). Thus, at any t between tn−3 and tn−2

the value of equity is given by a compound option that is a call-on-call-on-call. In the

Black-Scholes setting, the closed-form solution for this option involves a trivariate normal

distribution.

And so on . . .
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With each additional payment due, the “compound” nature of the call increases one

additional level. The resulting solution for equity values does continue to have a closed-

form representation but an increasingly complex one: if there are n promised payments

remaining, the closed-form expression involves an n–dimensional multivariate normal

distribution.

The added complication is not without its potential upside. One example is the notion

of forward default probabilities described in the model of Delianedis and Geske (1998).

Delianedis and Geske undertake a minimalist expansion of the Merton model by collapsing

a firm’s capital structure into two debt “buckets” (rather than one as in the Merton model):

a short-term debt bucket and a long-term debt bucket. This means equity is a compound

option (a call-on-call). Because there are two maturities of debt, two probabilities of default

exist in the model: a short-term probability (the likelihood of default occurring on the

short-term debt) and a conditional long-term probability (or what Delianedis and Geske

call the “forward” default probability). Useful information is obtained by comparing the

short-term and long-term default probabilities. We may also calculate the total probability

of default, i.e., of defaulting at either of the twomaturity dates. TheDelianedis-Geskemodel

is described in more detail in Appendix 32A.

Nonetheless, the complexity of the solution for equity values creates problems in imple-

mentation.On the one hand, the full-blownmodel requires precise and complete information

on the actual debt structure. On the other, the process of inverting equity values and volatility

to identify the unobservable firm values and volatility gets significantly more complicated

than in the Merton model. These are serious hurdles. The alternative to complicating the

Merton model is to simplify reality so as to make it fit within the model’s structure. We

describe this next.

Solution 2: Simplifying Reality

The Merton model assumes a single debt issue outstanding that is further required to be of

zero-coupon form. Capital structures in practice are much more complex. To make them

fit within the Merton model, we seek to replace the given debt structure with an equivalent

zero-coupon structure. The challenge, of course, is in identifyingwhat is “equivalent.” There

are many ways one could go here. One, for example, is to take a zero-coupon bond that

has the same duration as the given debt structure. This is similar to the approach taken by

Delianedis and Geske (1998) in their empirical analysis.

An alternative that is used in the popular Moody’s KMV vendor model is to take the

zero-coupon equivalent level D to have a maturity of one year and a face value that

is the sum of (i) the face value of all short-term (less than one year) liabilities in the

given capital structure, and (ii) half the face value of all longer-term liabilities.1 The

Moody’s KMV approach is based on the observation that, in practice, default tends to

occur when the market value of the firm’s assets drops below a critical point that typi-

cally lies below the book value of all liabilities but above the book value of short-term

liabilities.

Of course, there is a certain arbitrariness in these approaches to simplifying the debt

structure, but ultimately, the question is whether the models do well in practice, and the

available evidence, both empirical as well as the popularity of theMoody’s KMVand related

approaches, suggests an affirmative answer.

1 The actual rule is a little more complicated than this since Moody’s KMV also allows for other

securities in the capital structure than just equity and straight debt. We also note that Moody’s

KMV updates and revises the model on an ongoing basis.
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32.4 A Practitioner Model

In the 1980s,Moody’sKMV (then an independent firm calledKMVCorporation) developed

a particular implementation of a structural credit-risk measurement model. The Moody’s

KMV (henceforth, MKMV) framework is based on the classical Merton model but also dif-

fers from it in significant ways. This section provides a description of theMKMV approach.

Since MKMV revises and updates the model on an ongoing basis, readers are encouraged

to consult the company website (http://www.moodyskmv.com) for more information.

Broadly speaking, the MKMV approach uses a four-step procedure to track changes in

credit risk for publicly traded firms. The first step is to collapse the firm’s capital structure

so as to make it fit within the Merton model’s zero-coupon structure. This is accomplished

as described above: that is, by setting the face value D of the zero-coupon debt (called the

“default point”) to be equal to the sum of the face values of the short-term liabilities and a

fraction of the face values of the longer-term liabilities.

The second step is to use the default point D together with the firm’s equity value

and equity volatility to identify firm value V and firm volatility σ . The procedure for

accomplishing this has also been described above in equations (32.19)–(32.22).

At this point, we are still very much within the framework of the Merton model, but here

is where the MKMV approach ploughs a different path. Having obtained the firm value

and volatility, the third step is to define what is called the “distance to default.” Intuitively,

the distance to default is the number of standard deviation moves the firm value has to

make before the firm is in default. Technically, this should use the lognormal distribution

assumption on V ; indeed, given the drift μ and volatility σ of V , the distance to default is

precisely the point at which N (·) is evaluated in (32.15). But MKMV define the distance to

default δ in a simplified way as2

δ = Vt − D

σVt

(32.26)

The numerator is just the distance, measured in dollars, between the current value of the

firm Vt and the default point D. The denominator normalizes this distance by the “dollar

standard deviation.” The ratio δ represents the number of standard deviations the firm is

from default. Normalizing the distance in this fashion makes it possible to compare how far

two firms are from default even if they differ substantially in other ways. A higher distance

to default implies a safer firm.

In the final step, the MKMV approach applies the estimated distance to default δ to a

proprietary default database, and asks the question: of all firms in the database that had

a distance to default close to δ, how many actually defaulted within one year? This is the

expected default frequency, or EDF. The EDF, the model’s principal output, is the likelihood

the given firm will default within one year. The EDF may, of course, be calculated for any

horizon, not just one year. As of the time of writing,MKMVprovides EDFs out to five years.

The following example illustrates the MKMV procedure.

Example 32.6 Suppose we carry out the first two steps of the KMV procedure on a hypothetical firm and
obtain the following results:

1. Estimated default point: D = $15 billion.

2. Estimated market value of the firm: Vt = $45 billion.

3. Estimated volatility of firm value: σ = 20%.

2 See Equation (2), p. 9, of Crosbie and Bohn (2003).
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The next step is to estimate distance to default. In dollar terms, the firm is $30 billion
from default (its value is $45 billion against a default point of $15 billion). One standard
deviation of firm value is approximately σVt = 0.20 × 45 billion, or $9 billion. Thus, in
standard deviation terms, the firm is a distance

45− 15

0.20× 45
= 30

9
= 3.33

from default. That is, it would take a 3.33 standard deviation move in the firm value to put
the firm into default.

For the final step, suppose that MKMV’s database shows that historically, firms with a
distance to default of 3.3 to 3.4 defaulted with a frequency of 1 in 300. (This is for illustrative
purposes only; it is not based on MKMV’s actual database.) Then, the EDF assigned to the
firm is 1/300 = 0.33%.

Now, suppose a year from the time of our initial estimate, we examine the firm’s credit
risk again. Suppose that over this year, the firm’s debt has decreased but that its equity
value has also decreased (say, because its business prospects appear poorer). Has the firm’s
debt become riskier? If so, how much? The MKMV model (as, of course, with any structural
model) enables a quantification of the answers. Specifically, suppose that based on the new
data, we identify the following values for the new default point and for the firm value and
volatility:

1. Default point D = $12 billion.

2. Firm value: Vt = $40 billion.

3. Firm volatility: σ = 25%.

The lower firm value and higher volatility reflect the poorer business prospects of the firm,
while the lower default point reflects the lower level of indebtedness. The new distance to
default is

40− 12

0.25× 40
= 28

10
= 2.8

The lower distance to default indicates the firm’s credit risk has worsened over the course of
the year. Computing the EDF for the new distance to default enables us to put a number on
just how much riskier the firm has become. Suppose, for example, that MKMV’s empirical
database yields an EDF of 1 in 210, or 0.48%. Then, this means that the likelihood of the
firm’s default over the next year is almost 1 1

2
times the level it was earlier. ■

Comments

In principle, given a firm’s drift, volatility, and default point, we should be able to compute

its theoretical default probability using the assumption that the firm value process is log-

normally distributed. In practice, there are two problems with taking this route. First, the

drift of firm value is difficult to estimate with any degree of accuracy. Second, investigations

of this approach suggest that this results in an (often very large) underestimate of default

probabilities compared to the data. MKMV’s unusual mixed theoretical-empirical approach

sidesteps both problems. It obviates the need to estimate the firm’s drift, and by construction,

it is broadly consistent with the default probabilities in the data.

One reason for underprediction of default in the Merton model is its assumption of

normality in the returns distribution. Reality is considerably more fat-tailed (leptokurtic),

meaning that extreme events (including default) are far more likely than under the assumed

returns distribution. From a theoretical standpoint, one way to address this problem is to

use a different returns distribution that is leptokurtic (e.g., stable Paretian); an alternative is

to create fat tails by adding features to the model that induce this effect (jumps or stochastic

volatility). While these theoretical extensions are not hard to carry out, they are certainly

harder to implement in the context of measuring credit risk.
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In this context, KMV’s approach guarantees, by construction, a degree of empirical

consistency with the data. Nonetheless, there are some potential shortcomings of the ap-

proach that should be noted. The Merton model, like all contingent claims modeling, is a

forward-looking model. Its implementation uses the expectations of market participants as

embedded in security (particularly equity) prices. However, in translating a specific firm’s

distance to default into a default probability for the firm, the procedure maps the distance

to default into a historical database of defaults. The resulting default probability is thus no

longer purely forward-looking and is no longer purely specific to the firm in question over

the period of interest. In particular, the historical database of defaults may include defaults

by firms of differing sizes, from a range of industries, and over periods of recession and

expansion. These are all concerns from a conceptual standpoint. Nonetheless, the approach

pioneered by MKMV has so far proved a popular one in practice.

32.5 Extensions of the Merton Model

As noted earlier, the Merton model involves a number of other simplifying and potentially

restrictive assumptions. One of these—the simplicity of the assumed capital structure—has

been discussed above. Other restrictive assumptions in the Merton setting include:

1. The assumption that default is possible only at maturity of the firm’s debt. In particular,

the model assumes that there are no covenants that could trigger default before the

maturity date.

2. The assumption that the absolute priority rule holds in default with debt holders paid in

full before equity holders receive anything. Available evidence in the US suggests that

absolute priority is often violated in practice.

3. The assumption that no renegotiation of debt is allowed, contrary to casual empirical

observation.

4. The assumption that liquidation/transfer of control is costless, i.e., that the deadweight

costs of bankruptcy are nil.

Besides these are a host of other issues: the use of normality in the returns distribution

rather than one allowing for tail fatness; the assumption of nonstochastic interest rates;

the lack of a clearly defined cash-flow process from which the firm asset value process is

defined, and the management of that cash-flow process between debt repayment, dividend

payments, and cash reserves; the static nature of the capital structure of the firm, although

evidence suggests that firms may have target leverage ratios; and so on.

Over the years, a number of attempts have been made in the finance literature to address

these shortcomings. A brief discussion of some of these papers follows. We emphasize that

this description is meant to be indicative rather than comprehensive.

An early extension of the Merton model was undertaken by Black and Cox (1976). They

retain much of the Merton structure but assume that default can occur before maturity if

the value of the firm falls sufficiently. Specifically, a default barrier Mτ is defined, and it

is assumed that default occurs at the first time τ such that τVτ ≤ Mτ . Because there is

the additional possibility of default before maturity, spreads in the Black-Cox model are

usually wider than in the Merton model.

The Black and Cox (1976) model was extended by Longstaff and Schwartz (1995)

who also allowed for stochastic interest rates. This injects an extra source of stochastic

variation in the model, and also affects the firm value process through the correlation

between changes in interest rates and firm value. Leland (1994) and Leland and Toft (1996)

further extend this approach by endogenizing the default boundary: equity holders seeking
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to maximize the value of equity optimally choose the point of default. They also introduce

tax benefits of debt into the model and derive closed-form solutions for the optimal capital

structure.

Anderson and Sundaresan (1996) andMella-Barral and Perraudin (1997) allow for costs

of liquidation/transfer of control. They argue that the presence of such costs provides equity

holders with incentives to indulge in “strategic” debt service, i.e., to renegotiate debt pay-

ments downwards since rejecting the proposed offer and liquidating the firm might make

debt holders evenworse off. The possibility of such opportunistic behavior by equity holders

is, in equilibrium, factored into the pricing of debt; it lowers debt prices and raises spreads.

Anderson and Sundaresan (1996) model the underlying cash-flow process that generates

firm value, but all periodic cash flows in their model must be paid out as debt service

or dividends. Acharya, Huang, Subrahmanyam, and Sundaram (2006) extend this setting

to allow for cash reserves and “optimal” (equity value-maximizing) dividend and debt-

service policies. While cash reserves are intended to raise equity values, it is shown that

such reserves may benefit debt holders as well, so spreads are lower than when reserves

are disallowed. Moreover, because the option to service debt strategically affects the cash

reserve policy, strategic debt service may not always act to raise spreads, and may even

result in lower spreads in some situations.

Zhou (1997) addresses the issue of fat tails in returns. He models the firm value pro-

cess as a jump-diffusion. As in Black and Cox (1976) and Longstaff and Schwartz (1995),

Zhou assumes default can occur before maturity if firm value drops below some exoge-

nously specified level (in his model, a constant K ). Because firm value can jump down,

the value at default time could be strictly less than K ; this is not possible in Black-Cox

or Longstaff-Schwartz. As a consequence, recovery rates in default in Zhou’s paper are

naturally stochastic. Zhou shows that jumps can have a significant effect on model outputs

including spreads.

Collin-Dufresne and Goldstein (2001) incorporate another observed empirical regularity

into their model: that firms appear to target leverage ratios. They develop a model with

stochastic interest rates andmean-reverting leverage ratios and find that themodel generates

spreads that are generally more consistent with patterns in the data than earlier models.

Among vendor models of credit risk that have a structural basis is the CreditGrades

model developed by RiskMetrics. The model’s main objective is to eliminate the inability

of pure Merton models to generate realistic short-term spreads. The model is similar in

some respects to Black-Cox, but in the CreditGrades model, the default barrier is allowed to

be stochastic, which creates a stochastic recovery rate in the model. This feature generates

sufficiently large short-term spreads because of the additional source of random variation

in the model.

32.6 Evaluation of the Structural Model Approach

From a conceptual standpoint, there is much to recommend the structural model approach.

The model has a sound economic basis. It is a causal model: the key driving variables can

be observed and analyzed. Recovery rates (risk-neutral) are also naturally defined in the

model in a manner consistent with the probabilities of default. The implementation of the

structural models makes use of current market price information, in particular, information

from equity markets, which tends to bemore liquid and informative than credit markets. It is

a forward-looking model (although the use of historical data in approaches such asMoody’s

KMVqualifies this statement to a degree). Empirically, various versions of structuralmodels

have been found to have good predictive power for defaults and ratings transitions.
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All this is to the good. But balancing this are some weaknesses. The model is compu-

tationally challenging for all but the simplest debt structures. In particular, for firms with

debt of varying seniority, to value a particular tranche of corporate debt, one has to simul-

taneously value all issues senior to it. In fact, in practice, the model is rarely used to value

specific tranches of debt; rather, it is used primarily as an indicator or predictor of distress.

Structural models are also primarily models of a single corporation, not general-purpose

credit- or counterparty-risk models. They cannot be used to value sovereign debt from

emerging markets, much less emerging market credit derivatives.3 Even as models of cor-

porate risk, structural models are difficult to apply to private companies because of the

unavailability of traded equity prices.

Nor do structural models facilitate the valuation of most credit derivatives (although Das

(1995) shows how some credit derivatives may be priced within this framework). Finally,

the models make many stylized asumptions that are often violated in practice. Although

the literature has developed generalizations to handle many of these issues, the practical

applicability of many of these generalizations is limited.

The Empirical Performance of Structural Models
Finally, there is the question of the empirical performance of thesemodels.Here the evidence

is mixed. Early investigations (e.g., Jones, Mason, and Rosenfeld, 1984) found that the

Merton model tended to underpredict spreads, often by wide margins. Collin-Dufresne,

Goldstein, and Martin (2001) examine the determinants of changes in credit spreads. They

find that the key variables identified by structural models as determinants of spreads can

explain only a small fraction of the changes in spreads even when supplemented by a range

of financial and macroeconomic variables.

Eom et al. (2004) test five structural models—Merton, Geske, Longstaff-Schwartz,

Leland-Toft, and Collins-Dufresne and Goldstein—on a common data set of bond prices

from 1986 to 1997. They find that while the Merton model does substantially underpredict

spreads, the others suffer from the problem of overpredicting spreads on average, severely

overstating the credit risk of riskier bonds even while they underestimate the risk of safer

bonds.

Huang and Huang (2003) take a different approach to comparing models and also come

up with different conclusions. They compare six models: Longstaff-Schwartz; a strategic

debt-service model based on Anderson and Sundaresan (1996) and Mella-Barral and Per-

raudin (1997); an endogenous default barrier model based on Leland (1994) and Leland and

Toft (1996); the mean-reverting leverage model of Collins-Dufresne and Goldstein (2001);

and two new models that they introduce in the paper. Huang and Huang calibrate each

model to data on historical default experience and find that all the models generate roughly

the same credit spreads for these choices of parameters. However, these spreads are sub-

stantially smaller than observed spreads, particularly for short maturities and high-quality

bonds.

Taken together, these studies suggest that the ability of structural models to explain the

levels of spreads may be limited. On the other hand, one concept coming out of structural

models—the notion of distance to default—has been shown to be useful in a variety of

ways, as we discuss below.

3 Some efforts have been made to extend structural models to sovereign debt, in particular to define

the notions of asset and equity values for sovereigns. See, for example, Gray, Merton, and Bodie

(2006) or Gapen, Gray, Lim, and Xiao (2005).
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Distance to Default and the CAP Curve
Samples of observed bankruptcies may be used to assess the predictive validity of default

models. Since distance to default is a normalized metric, it may be used to rank order

firms according to how likely they are to fail. A firm’s propensity to default increases as its

distance to default decreases. If the sequence of firm failures exactly matches the ordering

of firms by distance to default, then the model is 100% accurate. Think of firms queued

up in order of increasing distance to default. The firms at the front of the queue are the

ones with the smallest distances to default. As we go down the queue, distance to default

increases. If actual defaults occur more or less from the front of the queue, we can safely

assume a high degree of predictive validity for the model. However, if firms fail randomly

from anywhere in the queue, the model is not a good one.

A formal statistical metric for measuring the forecast validity of distance to default is the

cumulative accuracy profile (CAP) of the model. A CAP curve is the plot of the cumulative

percentage of defaulted firms (plotted on the y-axis) in each cumulative percentile of the

population of all firms sorted by the default metric (plotted on the x-axis). For example,

assume we have a population of 1000 firms, and of these, 25 default. We sort firms by

distance to default and find that of the first 10 firms, we have 9 defaults. In the next 10, there

are 8 defaults. Percentile three has 5 defaults and percentile four has 3 defaults. The first

four percentiles account for all 25 defaults. The values on the CAP curve would appear as

shown in Table 32.3.

The CAP curve is drawn by plotting the fourth column of Table 32.3 against the third

column. It rises steeply initially and then tapers off, finally peaking out at 100% and remain-

ing flat thereafter necessarily. The curve rises sharply in this example because the model

has high predictive power. If the default model has no predictive ability, then the average

outcome for the CAP curve will be seen as a 45-degree line. Therefore, the area between the

CAP curve and the 45-degree line may be used as a metric of predictive ability. Denote this

area as A. Likewise, denote the area between the CAP curve of a perfectly predictive model

(the fifth column in Table 32.3) and the 45-degree line. Denote this area as B. The ratio

A/B is known as the “accuracy ratio” (AR) of the model. This quantifies the performance

of the model. A schematic diagram of the relation between CAP curves and accuracy ratios

is shown in Figure 32.5. The accuracy ratio for the example values in Table 32.3 is 99.72%

(the reader is encouraged to rework this as an exercise).

There is substantial evidence showing that structuralmodels dowell in default prediction.

Accuracy ratios vary from65–90%, depending on the specifics of themodel and the universe

of firms. For example, Duffie, Saita, and Wang (2007) mix distance to default along with

TABLE 32.3 A

Cumulative Accuracy

Profile (CAP)

Percentage Percentage Cumulative Cumulative Cumulative
Range of of Defaulted Percentile of Percentage of Percentage of
All Firms Firms All Firms Defaulted Firms Perfect Model

0 0 0 0 0
0–1 36 1 36 40
1–2 32 2 68 80
2–3 20 3 88 100
4–5 12 4 100 100
5–6 0 5 100 100
: : : :
: : : :

99–100 0 100 100 100
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FIGURE 32.5
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other covariates, macroeconomic and from the equity markets, and achieve accuracy ratios

of over 85%. These so-called hybrid models that use variables other than just firm-specific

ones look to improve on models based purely on distance to default.

32.7 Summary

This chapter demonstrates how derivatives models and observable market information may

be used to determine the default risk of a firm. Themain idea underlying the approach in this

chapter germinated in the seminal work of Black and Scholes (1973) and Merton (1974).

These papers showed how equity option formulae could be used to treat debt in the firm as

containing an embedded option, which could then be valued using other traded observable

securities.

The main philosophy behind the structural model and its implementation is that equity

markets provide the best assessment of the default likelihood of a firm. This is reasonable

insofar as equity is often the most liquid security issued by a firm. But there are two

shortcomings to this. First, there is often no place in the implementation procedures for

information from other securities markets (like bond markets) or derivatives markets (like

options or credit-default swapmarkets). Second, itmakes themodel difficult to apply to those

corporate entities whose equity is not publicly traded, and, even more so, to non-corporate

entities such as emerging-market sovereigns.

On the other hand, there is no doubt that as far as public firms are concerned, the structural

model approach has yielded rich insights, most notably concerning default probabilities and

its drivers. As Leland (2006) notes, structural models also provide insights into corporate

finance decisions such as optimal leverage, maturity, and investment decisions. Perhaps the

biggest shortcoming of most structural models remains their inability to match empirical

short-term spreads especially from low-risk firms, althoughmodels incorporating jump risk

(e.g., Zhou, 1997) and/or recovery-rate uncertainty (e.g., the CreditGradesmodel) show that

significant improvement is possible in tractable frameworks.
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32.8 Exercises 1. The Merton (1974) model may be used to value bonds with default risk in a company.

Explain how debt is viewed as an option in this framework.

2. What information do structural models deliberately ignore in the valuation of debt in a

firm?

3. In the Merton model, why do we obtain very low short-term spreads?

4. Is it possible to determine the probability of a firm’s default from the Merton (1974)

structural model?

5. The volatility of a firm’s assets is 20%. The firm’s assets are worth $200 million and are

normally distributed. The risk-free rate of interest is 2% and the expected rate of return

on the firm is 10%. The firm has $100 million in face value of debt maturing in one

year. Compute both the risk-neutral and the real-world one-year default probabilities

for this firm. Which is higher? Why?

6. Explain why for small distance to default, the spread curve in the Merton model is

hump-shaped.

7. The volatility of company ABC’s assets is 30%. The current value of its assets is $50

million. The risk-free rate of interest is 3%. If the face value of two-year maturity debt

is $30 million, what is the value of the firm’s equity? Use the Merton (1974) model.

What is the value of debt?

8. If the risk-free rate of interest is 4%, firm value is 75 million, and equity is 50 million,

what is the credit spread on the bonds of the firm if they are of zero-coupon form with

face value 30 million and expire in one year? (Assume continuous compounding.)

9. If the value of the firm is $100 million, the value of equity in the firm is $40 million,

the risk-free rate is 4%, and debt has a face value of $70 million with zero coupons and

a maturity of three years, what is the firm’s volatility of returns on its assets? What is

the risk-neutral probability of the firm becoming insolvent in three years if we assume

that the Merton (1974) model applies?

10. In the question above, what is the firm’s distance to default based on theMoody’s-KMV

model?

11. Express the distance to default in terms of the risk-neutral probability of default.

12. Firm ABC has a current equity price of $50. The face value of zero-coupon debt per

share with maturity one year is $50. If the one-year implied volatility of equity from

the prices of options is seen to be 40% and the risk-free rate of interest is 3%, what

is the value of the debt per share if there are no dividends on the stock? Assume the

Merton (1974) model.

13. ABC Co has equity trading at a price of 50. The volatility of the equity is given to be

50%. If the face value of zero-coupon debt per share in the firm is 60 and the risk-free

rate of interest is 10%, compute the term structure of credit spreads for 1–10 years

using the Merton model, assuming the debt in each case is of maturity ranging from

1–10 years as well.

14. Assuming that you have good historical data, how would you convert the risk-neutral

default probabilities from the Merton model into default probabilities under the real-

world measure?

15. In the Geske-Delianedis model, there are two tranches of debt, short term and long

term, hence allowing for short-term and long-term risk-neutral probabilities of default.

If short-term debt has a maturity of one year, the probability of default is p1 = 2%,

long-term debt has a maturity of two years, and the cumulative probability of default

is p2 = 3%, what is the forward probability of default between one and two years?
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16. If short-term debt has a maturity of one year, the probability of default is p1 = 2%,

long-term debt has a maturity of five years, and the cumulative probability of default

is p2 = 10%, what is the annualized forward probability of default between one and

five years?

17. In order to stay within the Merton model framework, one way to accommodate firms

with multiple debt issues in their capital structures is to collapse all debt into zero-

coupon format some representativematurity (e.g., one year). For example, one approach

is to treat the debt face value at maturity of one year as being equal to the sum of all

short-term debt plus one-half of long-term debt. The reason for taking only half of

long-term debt is:

(a) Long-term debt is less valuable than short-term debt because its present value is

less.

(b) Long-term debt has a maturity greater than one year.

(c) It is possible to take steps in time to avoid bankruptcy in the long run.

(d) Only the coupons on long-term debt are due at the end of one year.

18. Assume we modify the Merton (1974) model as follows. Whereas in the Merton model

default can occur at maturity only if the firm’s value (V ) is lower than the face value of

debt (F), we now assume that default also occurs whenever the firm hits a barrier level

before maturity denoted φF for φ < 1. Here φ is the fixed recovery rate on default.

There is a deadweight loss on default ξF, 0 < ξ < 1. Analyze whether credit spreads

will be higher or lower than that in the Merton model.

19. In the Merton (1974) model with maturity 1 year, assume that V = 100. Let r = 0, and

F = 75. Then if we vary the Moody’s-KMV distance to default (DTD) to take values

in the set {1, 2, 3}, compute the credit spread curve for 1–10 years (in annual steps) for

each of the DTDs (i.e., three spread curves). Explain what you see in your answer.

20. Write down the cumulative risk-neutral probability of default in the Merton model.
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Appendix 32A

The Delianedis-Geske Model
This appendix describes the model of Delianedis and Geske (1998) (henceforth DG). There

are two tranches of zero-coupon debt, face value D1 with maturity T1 and face value D2

with maturity T2, and T2 > T1. The values of debt are denoted B1 and B2, respectively, and

we are interested in computing the prices of these two tranches of debt. Since there are two

dates, equity holders have two points in time at which they choose to default if their residual

claims in the firm are worthless. Thus, the DG model involves a compound option pricing

approach.

At the first maturity date T1, the firm is solvent if

VT1 > D1 + B2,T1 ,

If it is solvent, then we assume it will refinance the first tranche of debt with equity. The

same model may be implemented by assuming that refinancing is not permitted, but this

would be less realistic as it would adversely impact the second tranche of debt. Thus, the

condition above defines a critical cut-off value V ∗ for firm value at T1, which is analogous

to the strike price of the first option in a compound option. Therefore,

V ∗ = D1 + B2,T1 (32.27)

The strike price for the second option at date T2 is just the face value of the second debt

tranche, i.e., D2.

The price of equity today is the value of the compound option with two exercise prices

as above. Delianedis and Geske (1998) provide the following solution:

Et = Vt N2[d1 + σ
 

T1 − t , d2 + σ
 

T2 − t ; ρ]

−D2e
−r (T2−t)N2[d1, d2; ρ]− D1e

−r (T1−t)N (d1) (32.28)

ρ =
 

T1 − t

T2 − t
, (32.29)

d1 =
ln

 
Vt
V ∗

 + (r + 1
2
σ 2)(T1 − t)

σ
√
T1 − t

(32.30)

d2 =
ln

 
Vt
D2

 
+ (r + 1

2
σ 2)(T2 − t)

σ
√
T2 − t

(32.31)

Here, N2[.] is the cumulative bivariate standard normal distribution with correlation coef-

ficient ρ.

DG provide three risk-neutral probabilities from their model as follows:

Total default probability = T RN PD = 1− N2[d1, d2; ρ] (32.32)

Short-term probability = RN PD1 = 1− N (d1) (32.33)

Long-term probability = RN PD2 = 1− N2[d1, d2; ρ]

N (d1)
(32.34)

The total default probability is the probability of the firm defaulting at either T1 or T2.

The short-term default probability is the probability of default at time T1. The long-term

probability is the probability of default at T2 conditional on not having defaulted at the first

maturity date T1 and is the forward default probability.
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The DG model has the appealing feature that it captures the short-run and long-run

default characteristics of the firm. There are many firms that are of poor quality yet have,

conditional on short-term survival, reasonable long-term prospects. A model of this type

keys into these features more precisely since the long-run default probability would reflect

the possibly increasing value of the firm conditional on survival. Likewise, the model

also captures current adverse circumstances accurately through short-run probabilities of

default. Hence, this parsimonious extension of theMertonmodel results in a rich framework

within which to analyze each firm’s credit risk. Rating agencies that rate firms “through the

business cycle” may also prefer to use the long-term default probability instead of default

probabilities from the Merton (1974) model. Delianedis and Geske empirically find that the

model is able to forecast rating changes well.

Example 32.7 The DG model is easy to implement, and we illustrate this with a numerical example. The
ideas are essentially the same as with the implementation of the Merton model. We use the
equity price in the market and the equity volatility to back out the value of the firm and
its volatility. To do so, we need two equations. One of the equations is the equity-pricing
equation using the compound option formula presented in (32.28). The second equation
is the volatility equation, which is the same as in the Merton (1974) model (the underlying
firm value process is identical in both models) and is as follows:

σE =
∂ E

∂V

V

E
σ ≈ N(d1)

V

E
σ (32.35)

Once we have Vt and σ , the rest of the model follows from the equations provided in the
previous subsection.

Say we observe the following equity price and volatility in the market:

E t = 54.73, σE = 0.5425

We are also given the following balance sheet values: the short-term debt per share in the
firm is D1 = 30, and the maturity of this zero-coupon debt, as is usual in these mod-
els, is taken as one year (T1 − t = 1). The long-term debt is of maturity five years and is
of face value D2 = 30. Once again, this is zero-coupon debt. The risk-free interest rate
is r = 0.10.

The only additional complexity of the DG model over the Merton model arises from the
additional variable V ∗ (the cut-off value), which also needs to be solved for in the problem.
Hence, our solution program solves for {Vt, σ, V

∗} using equations (32.28), (32.35), and
(32.27). For the parameter values above, we have the following solution:

Vt = 100

σ = 0.30

V
∗ = 49.57689

Using these values, we can check thatwe recover the equity price correctly. Nextwe compute
the risk-neutral default probabilities of interest using the formulae in equation (32.33). These
are:

T RNP D = 1− N2[d1, d2; ρ] = 0.0186

RNP D1 = 1− N(d1) = 0.0058

RNP D2 = 1− N2[d1, d2; ρ]

N(d1)
= 0.0129

The total probability of defaulting on either of the bond issues over five years is about
1.86%. The probability of default within the first year is much lower, only 0.58%. And we
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have the forward default probability for the interval between one and five years, which is
about 1.29%.

We can use the model to undertake a sensitivity analysis. Suppose we want to know what
the default probabilities are if the equity price were to drop to $50 from its current price of
$54.73. Recomputing the model provides the following results:

Vt = 95.28

σ = 0.2876

V
∗ = 49.6721

T RNP D = 1− N2[d1, d2; ρ] = 0.0179

RNP D1 = 1− N(d1) = 0.0067

RNP D2 = 1− N2[d1, d2; ρ]

N(d1)
= 0.0113

There are several interesting outcomes from this analysis. Since the equity price has dropped,
the firm value correspondingly falls. But firm volatility has also dropped because it reflects the
lower call option value of equity. The fall in volatility has made the firm less likely to default
since the total risk-neutral probability of default has declined from1.86% to 1.79%. The drop
in equity value has resulted in an immediate increase in the short-term default probability
from 0.58% to 0.67% but with a corresponding decline in the long-term probability of
default from 1.29% to 1.13%. This is because conditional on surviving the first debtmaturity,
the lower firm volatility has reduced the forward probability of default. But it has pushed
up the short-term default probability because the lower equity value signifies a lower value
of the firm. Thus, we can see how a change in a market-observed variable such as the equity
price results in a change in the slope of the term structure of default probabilities. ■



Chapter 33
Reduced-Form Models
of Default Risk

33.1 Introduction

In structural models, default is based on the properties of the firm’s assets and its capital

structure. The likelihood of the default event is endogenously determined from these inputs.

In this sense, structural models have an “economic” basis. In contrast, reduced-form models

(a term coined by Duffie and Singleton 1999a) directly posit a stochastic process governing

the time-to-default. This process is specified exogenously without necessarily referencing

the underlying firm value or its capital structure. Thus, the reduced-form approach has a

flavor of financial engineering to it.

The parameters of the posited default process in a reduced-form model are commonly

calibrated to or estimated from observed debt prices, another contrast with structural models

which are typically implemented using equity prices. A third point of distinction has to do

with the default event itself. In the typical Brownianmotion-driven structural model, default

is not a “surprise” since the firm-value process is continuous. Firms gradually “diffuse” to

default. In reduced-form models, default is always (by definition) a surprise event; the

underlying entity experiences a jump-to-default in the manner described in the binomial

example in Section 16.2.

Reduced-form models may appear less intellectually satisfying than structural models

since they do not explicitly model the processes leading to default or the drivers of default.

Nonetheless, they enjoy some important advantages over the structural approach. By al-

lowing the modeler freedom in specifying the default process rather than requiring this to

be pinned down by other variables, they offer greater flexibility in fitting the data. Since

there is no underlying asset value process, the model can be applied to sovereigns and other

entities that do not fit within the structural paradigm. Finally, since implementation is done

from debt market prices, the requirement of a traded equity price—central to the common

implementation of structural models—is also eliminated, making the models applicable to

private firms also.

The key component of a reduced-form framework is the process that governs the like-

lihood of default over any given horizon. Through much of this chapter, we examine the

most popular approach to modeling this process, one based on default “intensities.” Sec-

tion 33.2 opens with an introduction to intensity processes and intensity-based default mod-

eling, while Section 33.3 adds some comments on recovery-rate specification andmodeling.

Section 33.4 then looks at what is perhaps the earliest member of the reduced-form class,

the model of Litterman and Iben (1991). A key theoretical valuation result derived by

829
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Duffie and Singleton (1999a) and its implications for reduced-form modeling is the subject

of Section 33.5. Section 33.6 describes the class of “defaultable” Heath-Jarrow-Morton

(HJM) models.

An alternative approach to reduced-form default modeling was proposed by Jarrow,

Lando, and Turnbull (1997) (henceforth, JLT). The JLT approach is based on the use of

ratings-transition matrices rather than default intensities. In such an approach, a firm’s

financial health—as measured by its credit rating—can not only deteriorate suddenly to

default but also jump to other (better orworse) ratings. The JLTmethodology for identifying

risk-neutral ratings transition matrices from historical ones is discussed in Section 33.7.

As an application of this material, a final section then describes the pricing of credit-

default swaps in reduced-form models.

33.2 Modeling Default I: Intensity Processes

Default in the reduced-form approach is most commonly handled through an “intensity”

process λt . The intensity process determines (in a manner explained below) how likely

default is over any given time interval. Loosely speaking, a higher intensity of default

implies a greater likelihood of default over any given time horizon. A good place to begin

the description of intensity-basedmodeling iswith constant intensity processes, the simplest

class of intensity processes.

Constant Intensity Processes
A constant intensity process is one in which λt = λ for all t where λ > 0. The intensity

λ has the following interpretation: The likelihood that a firm will “survive” at least t years

(i.e., will not default over the horizon [0, t]) is given by

ψ(t) = e−λt (33.1)

Note that for any λ > 0, this survival probability goes to zero as t → ∞, so all firms

eventually fail. Note also that for any given horizon [0, t], a higher value of λ implies a

lower probability of survival over the horizon since e−λt decreases as λ increases.

The likelihood that default will happen in the interval [0, t] is denoted ϕ(t) and is just

one minus the probability of survival over the interval:

ϕ(t) = 1− e−λt (33.2)

The higher isλ, the higher is the probability of default over any given horizon, and, of course,

the probability of default goes to 1 as t → ∞. Figure 33.1 plots the default probability

curves for different values of λ.

The Mathematical Context
Intensity processes are intimately linked to Poisson processes, which were introduced in

Chapter 16 in describing jump-diffusion processes. Poisson processes are used to describe

the random arrival rates of some event (e.g., the arrival of customers at a coffee shop or,

as in Chapter 16, the incidence of jumps in the stock price). In the context of credit risk,

default is equated with the first jump time of the Poisson process. Second and subsequent

jumps are not relevant; implicitly, the assumption is one of jump-to-default.

In a homogeneous Poisson process with intensity λ, the number of arrivals between times

s and t follows a Poisson distribution:

Prob(Nt − Ns = k) = e−λ(t−s)[λ(t − s)]k

k!
(33.3)
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FIGURE 33.1
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Let T1, . . . Tn , . . . denote the arrival times of the event being modeled. The inter-arrival

time Tk+1 − Tk is the random time that elapses between the k-th arrival and the (k + 1)-th

arrival. If N is a homogeneous Poisson process with intensity λ, then the inter-arrival times

are independent and are exponentially distributed:

Prob(Tk+1 − Tk ≤ τ ) = 1− e−λτ (33.4)

Default is viewed as the first jump time of the counter N . The time of default is the

distribution of the first arrival time T1, which is exponential:

Prob (Default before t) = Prob(T1 ≤ t) = 1− e−λt

This is equivalent to saying that the probability of the firm surviving past t is e−λt . Of

course, these expressions for default and survival are just the expressions (33.1)–(33.2).

The intensity λ itself is just the conditional default arrival rate:

lim
h↓0

1

h
Prob (T1 ∈ (t , t + h]  T1 > t) = λ (33.5)

In words, expression (33.5) says that over very short time intervals dt , the likelihood of

default between t and t + dt (given no default up to t) can be approximated by λ× dt .

Limitations of Constant Intensities
Constant intensity processes are easy to work with but are of limited value in describing

most real-life situations. For example, the arrival rate of customers at a coffee shop is likely

to be higher at certain times of the day and is perhaps also dependent on the season and the

weather. In the context of credit risk, the default arrival rate λ is similarly likely to depend on

industry and economic conditions and other factors. Ignoring these considerations results

in unrealistically restrictive implications for the spread curves.

This limitation is illustrated below, but an important point first. Recall that for pricing

purposes, what matters is the risk-neutral likelihood of different states of the world. Default

is just another state of theworld, so to price defaultable securities using risk-neutralmethods,
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we must make use of the risk-neutral default process. So here and in the sequel, when we

refer to default intensities in the context of pricing securities, it is understood that these are

risk-neutral intensities.

Consider afirmwhosedefault likelihood is describedby a constant (risk-neutral) intensity

process λ. For simplicity, assume that in the event of default, there is zero recovery: debt

holders receive nothing. What is the term structure of spreads for this firm?

Let B∗ be the price of a T -year zero-coupon bond with face value $1 issued by the firm.

Suppose r is the T -year interest rate expressed in continuously-compounded terms. There

are two possibilities. If the firm does not default over the T -year horizon, then the bond

pays its face value of $1. Given the default intensity of λ, this happens with probability

e−λT . With the complementary probability 1 − e−λT , the bond defaults and pays nothing.

The price of the bond is the discounted risk-neutral expectation of its payoffs, so we have

B∗ = e−rT
 
e−λT · 1+ (1− e−λT ) · 0 = e−(r+λ)T (33.6)

Now, the yield on the bond is that value of R for which B∗ = e−RT , so from (33.6), the yield

is R = r + λ. This means the T -year spread sT on the bond (i.e., the difference between

the T -year bond yield R and the T -year risk-free rate r ) is

sT = (r + λ) − r = λ

a constant independent of the maturity T or other factors! This is patently unrealistic. For

richer and more realistic spread curves, we must use richer specifications of the default

process.

Non-Constant Intensity Processes
The notion of a homogeneous Poisson process with a constant λ is readily generalized to

that of a non-homogeneous Poisson process with a time-varying intensity λt . Given (λt ),

define

mt =
 t

0

λτ dτ

In a non-homogeneous Poisson process with intensity (λt ), the number of arrivals between

times s and t is determined probabilistically by

Prob(Nt − Ns = k) = e−(mt−ms )[mt − ms]
k

k!
(33.7)

Of course, if λt = λ for all t , then mt = λt , so (33.7) reduces to (33.3).

The distributions of default and survival times generalize accordingly: the survival and

default probabilities are now given by

ψ(t) = Prob of survival up to t = exp

 
−
 t

0

λτ dτ

 
(33.8)

ϕ(t) = Prob of default before t = 1− exp

 
−
 t

0

λτ dτ

 
(33.9)

where we have written exp{x} for the exponential function ex .

Spread Curves with Non-Constant Intensities
More interesting spread curves obviously result than with constant intensities. Consider

a zero-coupon bond with maturity T and face value $1. Given the time-varying default

intensity process λt , the price B∗T of this bond (continuing with the assumption of zero
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recovery in default) is

B∗T = e−rT [ψ(T ) · 1+ (1− ψ(T )) · 0] = e−rTψ(T )

Substituting for ψ(T ) from (33.8), the bond price is

B∗T = exp{−rT } × exp

 
−
 T

0

λt dt

 
= exp

 
−
 

rT +
 T

0

λt dt

  

It follows that the T -year yield on the bond is

R = 1

T

 
rT +

 T

0

λt dt

 
= r + 1

T

 T

0

λt dt

Therefore, the T -year spread on the bond, denoted sT , is

sT = 1

T

 T

0

λt dt

For example, if the intensities are affine in t (λt = a + bt), the T -year spread is

sT = 1

T

 T

0

(a + bt) dt = a + 1

2
bT

Thus, now we can get both constant (b = 0) and upward-sloping (b > 0) or downward-

sloping (b < 0) spread curves, although we are still limited to linear spread curves.1

Similarly, if the intensities are quadratic in t (λt = a + bt + ct2), we obtain

sT = a + 1

2
bT + 1

3
cT 2

so the spread curves are themselves now quadratic. Figure 33.2 plots the spread curves for

quadratic intensities for three values of c (taking a = 0.005 and b = 0.001). By choosing

other forms of λt , we can generate a variety of spread curves.

The Litterman-Iben model described below uses a time-varying but deterministic inten-

sity of the sort described here. In that model, λt is calibrated to observed spreads in the

market. The Litterman-Iben approach is commonly used on trading desks to estimate the

term structure of default probabilities from credit-default swap spreads.

Nonetheless, from a conceptual standpoint, deterministic intensities are limiting. Such

intensities imply that the only factor that affects the future likelihood of default is current

time, i.e., survival to the current point. In particular, the intensity cannot depend on even the

state of the economy or the industry, factors that one would intuitively judge to be important

in evaluating credit risk. A richer class of intensities that admits such dependence is the

class of stochastic intensities. We discuss these next.

Stochastic Intensities
Stochastic intensities were introduced in a number of papers in the 1990s (e.g., Duffie and

Singleton (1999a) or Lando (1998)). A popular approach uses Cox processes (also known

as “doubly stochastic processes”) to represent stochastic intensities. In a Cox process, the

1 Downward-sloping curves arise if b < 0, but care has to be taken with b < 0 to ensure that the

intensity λt does not become negative. That is, the intensity can have the affine form a+ bt only

over that horizon [0, t] where λt remains positive.
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FIGURE 33.2
Spread Curves with
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probability of default by time T conditional on a specific realization of  = (λt ) is given

by (33.9): that is,

Prob{Default before T   } = 1− exp

  T

0

λt dt

 
(33.10)

But since λ is itself stochastic, the unconditional probability of default over a T -year horizon

is obtained by taking the expectation of (33.10) with respect to the distribution of  :

Prob{Default before T } = 1− E

 
exp

  T

0

λt dt

  
(33.11)

Stochastic intensities are, in general, more difficult to work with than deterministic ones,

but they can be surprisingly tractable. Appendix A of Duffie and Singleton (2003) gives

several examples of doubly stochastic intensities for which survival probabilities can be

calculated explicitly in closed form. The principal theoretical valuation result in models

with stochastic intensities is derived in Duffie and Singleton (1999a), who show that under

certain conditions, an analytically attractive form obtains for the valuation equation. The

Duffie-Singleton result is described in Section 33.5 below.

A key input into the Duffie-Singleton result is the convention for stating recovery rates

in the event of default. Several different conventions have been proposed in the literature.

A discussion of these conventions is essential before we examine specific reduced-form

models.

33.3 Modeling Default II: Recovery Rate Conventions

There are two components to credit risk: the likelihood of default and the amount recovered

in the event of default. The previous section focused on the first of these components. Here,

we offer a few comments on the recovery rate.
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TABLE 33.1
Recovery Rates on US

Corporate Bonds,

1982–2004

(Numbers in the table are a

percent of face value of

defaulted debt.)

Subordination Level Average Median Min Max Standard Deviation

Senior secured 57.4 55.3 35.7 83.6 14.3
Senior unsecured 44.9 45.2 23.1 62.8 11.2
Senior subordinated 39.1 43.5 20.3 67.9 11.4
Subordinated 32.0 33.4 12.3 46.2 10.5
Junior subordinated 28.9 23.7 7.8 62.0 18.9

All levels 42.2 43.1 25.7 61.7 8.7

A glance at the data shows that recovery rates exhibit considerable variability. Table 33.1

presents data on recovery rates on US corporate bonds by seniority for the period 1982–

2004. The data is from Moody’s and is based on Table 27 of Hamilton, Verma, Ou, and

Cantor (2005). The table shows thatmean recovery rates are indeed increasingwith seniority,

going from 28.9% for junior subordinated debt to almost twice that for senior secured. But

what is remarkable is the variability within each seniority class: the difference between the

minimum and maximum recovery rates within each class is at least 34% and ranges as

high as 54%.

Reduced-form models state recovery rates in one of three ways in the modeling process.

The first is what is called Recovery of Par or RP. (This is also called Recovery of Face

Value or RFV.) In this case, recovery rates are stated as a percentage of the par value due

at maturity of the bond. Recovery of par is the common convention in practice for stating

recovery rates. The recovery rates in Table 33.1 are as a percentage of par.

While recovery of par is market convention, it turns out that for technical reasons,

it is sometimes easier to define recovery in one of two other ways. Jarrow and Turn-

bull (1995) introduce a recovery notion that is now called Recovery of Treasury or RT.

In this convention, the recovered amount in the event of default at some time t is stated

as a fraction of an otherwise identical default-risk-free (or “Treasury”) bond. (“Other-

wise identical” means identical in maturity, coupons, payment dates, etc. to the defaulted

bond.) Intuitively, it is as if upon default, the defaulting bond is replaced with φ units of

the Treasury bond, where φ is the recovery-rate fraction in this convention. For instance,

if φ = 50%, then a zero-coupon bond with a face value of $100 that defaults at any

time in its existence pays $50 on its maturity date. In contrast, if we were using the RP

convention, a recovery rate of 50% means that the defaulting bond pays $50 at the time

of default.

Jarrow and Turnbull (1995) and Jarrow, Lando, and Turnbull (1997) develop reduced-

form models based on the RT assumption. The role of the RT assumption in providing

analytical tractability in specific settings may be seen in our descriptions below of the

Litterman-Iben and Jarrow-Lando-Turnbull models (Sections 33.4 and 33.7, respectively).

Duffie and Singleton (1999a), who are responsible for the terminology for describing

different recovery rate conventions, introduce a third way of capturing recovery rates, Re-

covery of Market Value or RMV. In RMV, the recovery rate upon default at time t is stated as

a fraction of the market value of the security at time t−, i.e., immediately prior to default.
For example, if a security with a face value of $1 trades at a price of 0.75 immediately

prior to default, and its post-default value is 0.50, the recovery rate is 0.50/0.75 = 66.67%.

Duffie and Singleton show that RMV has very significant analytical advantages in describ-

ing valuation expressions in general reduced-form models with stochastic intensities. Their

result is described in Section 33.5.
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33.4 The Litterman-Iben Model

Litterman and Iben (1991) were perhaps the first to introduce a model of credit risk in

what we would today call a reduced-form framework. Their paper provides a simple but

instructive way in which information concerning default probabilities and their evolution

may be extracted from the prices of traded debt instruments.

Time is discrete in the Litterman-Iben world and is indexed by t = 0, 1, 2, . . . . The

model uses three inputs:

• The current term structure of (default-)risk-free interest rates.

• The current term structure of risky bond yields (from some given issuer). This is the set

of current yields of defaultable zero-coupon bonds of various maturities t issued by that

entity.

• A model for the evolution of risk-free interest rates.

Using these inputs, the model may be used to derive two outputs. The first is the forward

default probabilities for the risky bonds: at each t , given no default up to that point, what

is the probability of default in period t? The second is the stochastic evolution of credit

spreads (i.e., of the excess of risky bond yields over risk-free bond yields) implied by the

model. The second point is discussed in the original paper only briefly and informally. We

formalize the ideas and provide a more comprehensive discussion of the process.

Notice that we have not mentioned recovery rate assumptions. The Litterman-Iben paper

takes losses in the event of default to be 100% (zero recovery).We present here a generalized

version of their model in which positive recovery rates are admitted. Specifically, we will

make the Recovery of Treasury (RT) assumption:

Upon default of the risky bond, the holder of the defaulted bond receives φ units of a risk-free

bond with the same maturity.

We take the fraction φ (0 ≤ φ ≤ 1) to be a constant in this presentation, although it is not

difficult to generalize this to allow φ to depend on time t . The case φ = 0 is the setting of

the Litterman-Iben paper.

The face value of all bonds is normalized to $1. All yields are quoted with annual

compounding. The t-year risk-free rate is denoted rt and the price of a t-year risk-free zero

is denoted Bt . We have, by definition,

Bt =
1

(1+ rt )t

Similarly, r∗t and B∗t will denote, respectively, the risky t-year yield and the price of a risky

t-year zero. Again, by definition:

B∗t = 1

(1+ r∗t )
t

The t-year spread is denoted st . Of course, st is just r∗t − rt .

The model overlays this information on a risk-free interest-rate model. Any term-

structure model that has been calibrated to current data may be used for this purpose.

For specificity, we use the Black, Derman, and Toy (1990) model of short-rate evolution,

which was described in Chapter 29. This is also the model used in the Litterman-Iben paper.

To aid in the presentation, we work through a specific numerical example to illustrate the

working of the ideas. With the exception of the recovery rate, the example uses the same

inputs as the one in the Litterman-Iben paper. The example uses periods that are spaced one
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TABLE 33.2 Prices

of Risky and Risk-Free

Bonds

Riskless Risky Riskless Risky
Year Yields Spread Yields Bond Prices Bond Prices

1 10.00 0.50 10.50 90.91 90.50
2 11.00 0.55 11.55 81.16 80.36
3 12.00 0.60 12.60 71.18 70.05
4 12.50 0.65 13.15 62.43 61.01
5 13.00 0.70 13.70 54.28 52.63

TABLE 33.3
Evolution of the

Risk-Free Rate

Year 1 Year 2 Year 3 Year 4 Year 5

25.53
21.79

19.42 19.48
14.32 16.06

10 13.77 14.86
9.79 11.83

9.76 11.34
8.72

8.65

year apart and has a horizon of five years. Table 33.2 contains the information on the prices

and yields on risk-free and risky zero-coupon bonds of maturities 1, 2, 3, 4 and 5 years.

For the interest-rate model, we use the five-year short-rate tree from the Black-Derman-Toy

paper, which is described in Table 33.3 (see Chapter 29 for the derivation of the first three

periods of this tree); the risk-neutral probabilities of up and down moves in this tree are

each 0.50. Finally, we take the recovery rate φ to be 0.40.

The Forward Probabilities of Default
Consider a one-year risky bond. At the end of one year, the bond pays its face value of $1

if there is no default. If there is a default, the bondholder receives φ units of a one-year

risk-free bond, which means the holder of the risky bond receives φ at the end of one year.

So the payoff at maturity from a one-year risky zero-coupon bond is 
1, if no default occurs

φ , if default occurs

Let p1 be the (risk-neutral) probability of default in one year. Then, the expected return on

the risky bond is

(1− p1) · 1+ p1 · φ
B∗1

Since p1 is a risk-neutral probability, this expected return should be equal to the one-year

risk-free rate. This gives us

(1− p1) · 1+ p1 · φ
B∗1

= 1

B1

Solving, we obtain

p1 =
 

1

1− φ

  
1− B∗1

B1

 
(33.12)
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Given the numbers in our example, this results in p1 = 0.007541. That is, there is approx-

imately a 0.75% risk-neutral probability of default occurring in the first year.

Now, we use p1 to identify p2, the conditional probability of default in year 2 given

no default in year 1. Consider a two-year risky bond. If there is a default in the first year,

the bondholder receives φ units of a two-year risk-free zero-coupon bond, so effectively

receives φ at maturity (i.e., at the end of two years). If there is no default in the first year,

then two further possibilities result. If there is default in the second year, then again the

bondholder receives φ units of a zero-coupon bond maturing at the end of the two years,

so receives φ at maturity. If there is no default in the second year either, the bondholder

receives the promised face value of $1 at maturity.

Summing up, the payoffs at maturity from the risky two-year zero are:

Event Payoff Probability

Default in period 1 φ p1
Default in period 2 φ (1− p1) p2
No default 1 (1− p1)(1− p2)

Note the use of the RT assumption here. Regardless of when default occurs, the RT

assumption implies that the payoff can be translated into a payoff of φ at maturity of the

original bond. Of course, differences in the recovery rates in periods 1 and 2 can easily be

accommodated by changing the payoffs in the first two lines to φ1 and φ2, respectively.

From these payoffs, the risky zero’s payoff in two years is 
φ , with probability p1 + (1− p1) p2

1, with probability (1− p1)(1− p2)

Therefore, by the usual risk-neutral pricing arguments, its initial price is

B∗2 =
(1− p1)(1− p2) + [p1 + (1− p1) p2]φ

(1+ r2)2

or, equivalently, using B2 = 1/(1+ r2)
2

B∗2 = {(1− p1)(1− p2) + [p1 + (1− p1) p2]φ} × B2

Solving, we obtain

p2 =
1

(1− p1)(1− φ)

 
1− p1 + p1φ −

B∗2
B2

 
(33.13)

We have already solved for p1 (expression (33.12)), the values of B2 and B∗2 are known,
and we have taken the recovery rate φ to be 0.40. Using this information in (33.13), we

obtain p2 = 0.008920.

Working similarly, we can solve for the remaining forward probabilities of default. The

probabilities in our example are summarized in Table 33.4.

The Evolution of Spreads
In identifying the forward probabilities of default, we made no use of the short-rate process.

Now we use the forward probabilities of default together with the short-rate process to

derive a stochastic process for the evolution of spreads.

At the end of year 1, there are two states that can occur: one where the riskless short

rate is 14.32% and the other where it is 9.79%. Corresponding to these rates, there are two
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TABLE 33.4
Forward Probabilities

of Default in the

Litterman-Iben

Example

Year Forward Probability of Default

1 0.007541
2 0.008920
3 0.010275
4 0.011779
5 0.013210

possible prices for the price of a riskless one-year bond. In the state u, the bond will be

worth

B1(u) =
1

1.1432
= 0.8747

In the state d, the bond will be worth

B1(d) =
1

1.0979
= 0.9108

Consider a one-year risky zero-coupon bond at this stage. Let B∗1 (u) and B∗1 (d) denote its
prices in the states u and d, respectively. As we have already seen, the one-year probability

of default of the bond at this stage is 0.008920. Therefore, regardless of states u or d, the

expected payoffs on this bond are

(1− 0.008920) · 1+ (0.008920) · φ = 0.991080+ 0.008920φ

Thus, the expected return on the bond in the state u is

0.991080+ 0.008920φ

B∗1 (u)

This expected return must, by definition of the risk-neutral probability, be equal to the

one-year risk-free rate at this state, so

0.991080+ 0.008920φ

B∗1 (u)
= 1

B1(u)
= 1.1432

Solving, we get B∗1 (u) = 0.870056, so the return on the risky one-year bond at the node u

is

1

B∗1 (u)
− 1 = 1.1494− 1 = 14.94%

Thus, the one-year spread at the node u is 0.1494− 0.1432 = 0.0062, or 62 basis points.

Exactly the same sequence of arguments shows that the expected return on a one-year

risky bond at the node d is

0.991080+ 0.008920φ

B∗1 (d)

Equating this to the one-year risk-free rate of 9.79% at the node d, we obtain a risky one-year

zero price at this node of B∗1 (d) = 0.9060, so the yield on a one-year risky zero at the node

d is 10.38%. This implies the one-year spread at this node is 0.1038 − 0.0979 = 0.0059,

or 59 basis points.

Combining all of this information, we have shown that the one-year spread, which is

50 basis points initially, moves either to 62 basis points (in the state u) or to 59 basis points

(in the state d). Repeating the same arguments at the remaining nodes in the tree, we obtain

the tree of one-year spreads (expressed in %) shown in Table 33.5.
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TABLE 33.5
Evolution of One-Year

Spreads in the

Litterman-Iben Model

Year 1 Year 2 Year 3 Year 4 Year 5

0.987
0.858

0.736 0.940
0.613 0.817

0.500 0.701 0.903
0.589 0.787

0.676 0.876
0.766

0.854

In a similar fashion, by using riskless yields and risky bonds of longer maturities, we

can also identify the evolution of risky yields of longer maturities. Having identified the

processes for the evolution of the spreads, we can price derivatives on these instruments

(for example, options on the one-year spread) in the usual way.

Litterman-Iben and Intensity Processes
What intensity process underlies Litterman-Iben? That is, what is λt? The model does not

explicitly introduce an intensity, but since information is available only at discrete time

points, the most natural form to assume for λt is a deterministic time-varying intensity that

has a “step-function” form:

λt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0, if t ≤ t1

a0 + a1, if t ∈ [t1, t2)

a0 + a1 + a2, if t ∈ [t2, t3)

...
...

where t1, t2, etc., correspond to the maturities at which we observe the zero prices (in

the Litterman-Iben model, this is years 1, 2, etc.). An intensity of this form introduces as

many free parameters as there are maturities, so the spread curve can always be matched

exactly. More precisely, it is the presence of as many free parameters as the number of

pieces of information that allows the Litterman-Iben procedure to use the information in

the entire yield curve in extracting default information. If we begin with a parametric

specification of the intensity, whether deterministic or stochastic, that depends on only a

finite number m of parameters, we will be able to match only m points on the spread curve

exactly.

Thus, the Litterman-Iben model is mostly an exercise in curve fitting. As is apparent

from the model description, the procedure can be used to extract default probabilities not

just from bond prices but also from the term-structure of credit-default swap (CDS) spreads.

As the spread curve changes from day to day, the model is recalibrated to the new data, and

new values are identified for the parameters of the intensity process.

Intensity processes defined in this form have the virtue that they fit the data on any

given day exactly (this is true by construction), but they lack any interesting properties.

As deterministic functions of time alone, they cannot exhibit state-dependence; for in-

stance, the Litterman-Iben forward-default probabilities depend on time but not on which

node in the tree we are currently in. Nor does it allow for correlation between the interest-

rate and default processes. To capture richer situations, we must turn to stochastic

intensities.
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33.5 The Duffie-Singleton Result

The paper by Duffie and Singleton (1999a) coined the term “reduced-form models” to

describe approaches to credit-risk modeling that work directly with default (and recovery)

processes rather than derive these from primitive assumptions concerning firm values. The

paper discusses and relates several different reduced-form approaches, particularly with

respect to recovery rate modeling. In this section, we describe the main result of the paper,

the valuation formula that is derived for defaultable claims under the RMV convention for

recovery rates.

The model is set in continuous time. Three exogenous processes, all specified under the

model’s risk-neutral measure Q, constitute the main inputs into the model:

1. The short-rate process rt describing the evolution of the default-risk-free short rate.

2. The intensity process for default, λt , which may be stochastic.

3. The recovery rate in the event of default, φt .

The recovery rate in the model is stated in terms of the Recovery of Market Value or RMV

convention. Recall that under this convention, if a security defaults at time t , the recovered

value is φt Vt− where Vt− denotes the value at which the security was trading at time t−, i.e.,
“just before” default occurred at t . The model is consistent with any term-structure model

for the short-rate process rt and permits any desired correlation structure between interest

rates, default intensities, and recovery rates.

The main result demonstrated by Duffie and Singleton is the following. Consider a

defaultable claim that promises to pay Z at time T . (The amount Z could be state-dependent,

as in the case of an option or other derivative, or it could be a constant amount as in the case

of a bond.) Then, the time-t arbitrage-free price of the claim is given by

Vt = E Q
t

 
exp

 
−
 T

t

Rs ds

 
Z

 
(33.14)

where

Rt = rt + λt (1− φt ) (33.15)

As the superscript “Q” emphasizes, expectations in the valuation expression are taken under

the risk-neutral measure Q.

In words, the Duffie-Singleton result says that defaultable claims can be valued exactly

as default-risk-free claims, namely by taking expectations of their discounted promised

payoffs under the risk-neutral measure. The key difference is that for a default-free claim,

the discounting is done at the risk-free rate rt while for a defaultable claim, it is done at

a risk-adjusted rate Rt = rt + λt (1 − φt ). If there is no likelihood of default (λt ≡ 0) or

if there is no loss in the event of default (φt ≡ 1), then there is no credit risk, and (33.14)

reduces to the standard risk-neutral pricing expression for default-risk-free claims.

In Appendix 33A, we describe a simplified (and intuitive) derivation of the Duffie-

Singleton result in a discrete-time setting. The role of the RMV convention in obtaining

the valuation expression (33.14) is central. In contrast to the simplicity of the expression

(33.14), valuation formulae obtained using, for example, the RP convention tend to bemuch

more complex (see Lando 1998). One setting in which the precise recovery convention is

irrelevant is that of zero recovery; some intuition for the Duffie-Singleton may be obtained

by considering this case.
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The Special Case of Zero Recovery
Suppose there is no recovery in the event of default: φt = 0. Conditional on specific paths

for rt and λt (and conditional on survival up to t), the time-t probability of survival up to T

(see (33.8)) is

ψ(t , T ) = exp

 
−
 T

t

λs ds

 

while the discount factor for the horizon is

Bt ,T = exp

 
−
 T

t

rs ds

 

Thus, conditional on these paths and given that there is zero recovery in the event of default,

the time-t value of the payoff Z at time T is the payoff Z multiplied by the risk-neutral

probability of survival, discounted back to time t :

Bt ,T × [ψ(t , T ) × Z ] = exp

 
−
 T

t

(rs + λs) ds

 
× Z

Taking expectations over the risk-neutral distributions of the possible paths of (rt , λt ) gives

us the unconditional time-t value of the claim Z :

E Q
t

 
exp

 
−
 T

t

(rs + λs) ds

 
Z

 
(33.16)

This is just the special case of the Duffie-Singleton valuation expression (33.14) corre-

sponding to φt = 0. With zero recovery, the fractional loss rate in expected terms is just

the default intensity λt . With non-zero recovery, the fractional loss rate is the likelihood of

default λt times the loss-given-default (1 − φt ). Using this fractional loss rate in place of

λt in (33.16) results in the full valuation expression (33.14).

Using the Valuation Expression
The key benefit of the Duffie-Singleton result is that standard term-structure models may be

adapted to a credit-risk context by replacing the term-structure model’s short rate rt with the

risk-adjusted short rate Rt . (That is, we require of Rt the properties we would have required

of rt .) This makes possible analytically tractable models for defaultable bond pricing. In

particular, any term-structure model that yielded closed-form solutions for the prices of

default-risk-free zero-coupon bonds can also be adapted to obtain closed-form solutions

for the prices of defaultable bonds.

Alternatively, we may place conditions separately on the short rate rt and the “short

spread” st = λt (1− φt ) in such a way as to ensure tractability of the overall model. [Note

that the Duffie-Singleton result depends only on the short spread, not on its individual

components λt and φt . The short spread is so called because it measures the spread between

the risk-adjusted short rate Rt and the risk-free short rate rt .] One example of this approach

is provided by the paper of Duffee (1999). Duffee models the short-rate rt as

rt = ξ0 + ξ1Xit + ξ2X2t

where ξ1, ξ2 > 0, and X1 and X2 are independent square root diffusion processes under the

risk-neutral measure. He further specifies the short spread process as

st = ζ0 + ζ1X1t + ζ2X2t + ζ3X3t

where X3 is a square root diffusion process that is independent (under the risk-neutral

measure) of X1 and X2. Correlation between rt and st is built in through their common
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dependence on the factors X1 and X2. The sign of this correlation depends on the signs

of ζ1 and ζ2. That spreads depend on an additional factor means they are not perfectly

instantaneously correlated with risk-free rates; this third factor may capture firm-specific

or industry-specific risks. Since rt and st are each affine processes in Duffee’s specification,

so also is rt + st . Appealing to the standard results in the literature on affine term-structure

models, we can obtain pricing expressions for defaultable bonds in this model.

The analytical tractability provided by the Duffie-Singleton result has made the doubly

stochastic framework a popularmodeling choice and the basis of a number of theoretical and

empirical studies, both on individual issuer defaults and in the study of correlated defaults

by multiple issuers. As some examples: Duffee (1999) examines the ability of the model to

price non-callable corporate bonds and finds the average pricing error in the sample used is

under 10 basis points. Driessen (2005) uses the model to decompose empirical bond returns

into default, liquidity, and tax factors. He identifies the risk premium associated with the

default event, and finds that significant risk premia exist with respect to common intensity

factors. Longstaff, Mithal, and Neis (2006) study the liquidity component of corporate

bond yield spreads. They compare corporate bond yield spreads to credit default swap

(CDS) spreads, and under the assumption that the liquidity component of the latter is zero,

identify the non-credit component of bond yield spreads. They find that this component

has a strong relationship to both bond-specific illiquidity as well as bond-market liquidity

factors. Duffie, Pedersen, and Singleton (2003) utilize a reduced-form framework to study

the more complex problem of sovereign (in their case, Russian) default.

Despite its attractive theoretical properties, however, empirical work by Das, Duffie,

Kapadia, and Saita (2007) suggests that the doubly stochastic model may be too restrictive

in describing the data, notably in the context of multifirm defaults. In a multifirm context,

one implication of the doubly stochastic process is that default events in some firms cannot

affect the default intensities of other firms. A number of alternatives have been proposed in

the literature that allow for feedback from events to intensities; see, for example, Giesecke

and Goldberg (2005).

33.6 Defaultable HJM Models

An alternative reduced-form approach to modeling defaultable debt is to generalize the

framework ofHeath-Jarrow-Morton (HJM) to also incorporate default risk. Such extensions

have been provided in Schönbucher (1998), Duffie and Singleton (1999a), and Das and

Sundaram (2000). The presentations in Schönbucher andDuffie-Singleton are in continuous

time, while Das and Sundaram develop their framework in discrete time.

The distinguishing feature of defaultable HJM models is that the primitive inputs in

the model are “forward spreads” rather than default intensities and recovery rates. To the

extent that spreads are observable and their volatilities can be calculated on the basis of

historical data, this facilitates implementation of the model. Since spreads are a function of

both default intensities and recovery rates, the implied default intensities in these models

can be recovered from assumptions concerning the recovery process.

Recall that the principal result in the HJM model (Chapter 30) is that the drifts of the

forward rates under the risk-neutral measures are functions of the volatilities of the forward

rates. This result makes it possible to implement the HJM model on the basis of volatilities

alone. Defaultable HJM models show that an analogous result also holds for defaultable

bonds, namely that the risk-neutral drifts of the “forward spreads” on defaultable bonds are

functions of the volatilities of these spreads and the risk-free forward rates. We describe the

discrete-time derivation of this result from Das and Sundaram (2000) in this section.
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Description of the Model
The horizon of the model is T ∗. Time periods are of length h years. The initial (current)

time is time 0, so the time points in the model are of the form h, 2h, 3h, . . . , nh = T ∗. For
notational ease, we denote a typical time point by t or T .

Denote by B(t , T ) the time-t price of a default-risk-free zero-coupon bond of maturity

T ≥ t and by B∗(t , T ) its risky counterpart. All zero-coupon bonds are taken to have a face

value of $1. Let r (t , T ) and r∗(t , T ) denote the corresponding spot yields expressed with

continuous compounding:

B(t , T ) = exp{−r (t , T ) · (T − t)}, B∗(t , T ) = exp{−r∗(t , T ) · (T − t)}
Denote by f (t , T ) the time-t forward rate for default-risk-free investment or borrowing

over the period (T , T + h). As shown in Chapter 26, the forward rates are defined from the

spot rates as

f (t , T ) = 1

h
[r (t , T + h) · (T + h) − r (t , T ) · T ]

When t = T , the forward rate f (t , T ) will be called the “short rate” and denoted by r (t).

Define the “risky” forward rates f ∗(t , T ) analogously:

f ∗(t , T ) = 1

h
[r∗(t , T + h) · (T + h) − r∗(t , T ) · T ]

The forward spread s(t , T ) is defined by

s(t , T ) = f ∗(t , T ) − f (t , T )

The forward spread plays a central role in this approach. Rather than model the default-

risk-free and risky forward rates, we model the default-risk-free forward rates and forward

spreads.

For future reference, note that the forward rates and bond prices are related via the

following expressions:

B(t , T ) = exp

 
−

T/h−1 
k=t/h

f (t , kh) · h
 

(33.17)

B∗(t , T ) = exp

 
−

T/h−1 
k=t/h

f ∗(t , kh) · h
 

(33.18)

Onefinal definition is required. Let M(t) be the time-t value of a “moneymarket account”

that uses an initial investment of $1 at time 0 and rolls the proceeds over at the rate r (t):

M(t) = exp

 
t/h−1 
k=0

r (kh) · h
 

(33.19)

As in the HJM model, M(t) is taken to be the numeraire security. Let Q be a risk-neutral

probability with respect to M(t) as numeraire. All stochastic processes defined below are

under the probability Q.

The first assumption in the model concerns the default-risk-free forward rates f . These

forward rates are taken to evolve according to a standard one-factor discrete-time HJM

setting:

f (t + h, T ) − f (t , T ) = α(t , T )h + σ (t , T )X1

√
h (33.20)
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where α is the drift of the process and σ its volatility; and X1 is a random variable. Both α

and σ may depend on other information available at t , such as the time-t forward rates.

The second assumption concerns the evolution of the forward spreads (and so of the

risky forward rates). These spreads are taken to follow the process

s(t + h, T ) − s(t , T ) = β(t , T )h + η(t , T )X2

√
h (33.21)

where β(t , T ) and η(t , T ) are the drift and volatility coefficients, respectively, and X2

is a random variable. Both β and η may depend on other information available at t . No

restrictions are required on the joint distribution of X1 and X2; thus, changes in risk-free

and risky forward rates could be arbitrarily correlated.

The Main Result
In the HJM model, it is shown that the drift α of the default-risk-free forward rates under

the risk-neutral measure is a function of the volatilities σ . Extending this result, Das and

Sundaram show that the drift β of the spread process under the risk-neutral measure is a

function of the volatilities σ and η. Thus, all that is required to implement the model are

the term-structures of volatilities σ and η.

Here is a formal statement of these results. In the one-factor discrete-time HJM model

introduced above, the drifts α are related to the volatilities σ via the recursive relationship

T/h−1 
k=t/h+1

α(t , kh) = 1

h2
ln

 
Et

 
exp

 
−

T/h−1 
k=t/h+1

σ (t , kh)X1h
3/2

   
(33.22)

Das and Sundaram show that a similar recursive relationship holds between α and β on the

one hand and the volatilities σ and η on the other:

exp

 
T/h−1 
t/h+1

[α(t , kh) + β(t , kh)]h2

 

= Et

 
exp

 
−h3/2

T/h−1 
t/h+1

[σ (t , kh)X1 + η(t , kh)X2]

  

(33.23)

Since we have solved for α in terms of σ using (33.22), we may now use (33.23) to solve

for β in terms of σ and η. Appendix 33B contains a proof of (33.22)–(33.23).

Das and Sundaram discuss and illustrate implementation of this model and the pricing

of credit derivatives using an “endogenous default” approach similar to that used in the Das

and Sundaram (2007) model which was described in Chapter 21. For a general continuous-

time approach to defaultable HJM models, see Duffie and Singleton (1999a) or Bielecki

and Rutkowski (2002).

33.7 Ratings-Based Modeling: The JLT Model

Jarrow, Lando, and Turnbull (1997) describe another reduced-form approach to modeling

defaultable debt: one based on ratings, for example as provided by ratings agencies such

as Moody’s or Standard and Poor’s (S&P). The fundamental input into such a model is a

ratings migration matrix or a ratings transition matrix. Such matrices are available from

ratings agencies themselves.



846 Part Five Credit Risk

TABLE 33.6 A

Ratings Transition

Matrix

“To” Rating
“From”
Rating 1 2 3 4 5 6 Default (D)

1 0.9081 0.0833 0.0068 0.0006 0.0012 0.0000 0.0000
2 0.0070 0.9065 0.0779 0.0064 0.0006 0.0014 0.0000
3 0.0009 0.0227 0.9105 0.0552 0.0074 0.0026 0.0006
4 0.0004 0.0035 0.0597 0.8695 0.0532 0.0119 0.0020
5 0.0020 0.0031 0.0084 0.0790 0.8070 0.0901 0.0123
6 0.0068 0.0079 0.0092 0.0111 0.0716 0.8414 0.0588
D 0 0 0 0 0 0 1

The ratings transition matrix takes as given a firm’s current rating and provides, for each

rating class in which the firm might conceivably be after a given period of time (typically,

one year), the probability of being in that rating class. For example, the Moody’s transition

matrix describes the probabilities that a firm rated A by Moody’s today will be rated Aa

(or Aaa or Baa or Ba . . . ) in one year’s time. [Moody’s and S&P each employ eight basic

ratings classes: Aaa, Aa, A, Baa, Ba, B, C, and Default (Moody’s), and AAA, AA, A, BBB,

BB, B, C, and Default (S&P).]

Table 33.6 provides a numerical illustration of a ratings transition matrix. There are six

nondefault ratings classes in the matrix. The highest class is rating class 1 and the lowest is

rating class 6. There is also a seventh class denoted D (for “default”). The matrix depicts

the probability of moving from one rating class to another over one year. Thus, for example,

according to the table, the probability of a firm that is currently in rating class 2 still being

in rating class 2 after one year is 90.65%. Such a firm would have improved its rating (i.e.,

moved to rating class 1) with probability 0.70%, while with probability 7.79%, its rating

would have declined to class 3. Note that rating category D is an “absorbing” class: the

probability of transiting from D to any other class is zero, and the probability of staying on

in D is 1. (This may not be literally true in practice because firms do restructure and emerge

from default. However, the assumption that default is an absorbing state is commonly made;

it helps ensure that there is a well-defined event of default in the model.)

The rating transition matrix in practice is estimated using a historical data sample that

goes back suitably long. Actual rating transitions are used to determine the frequency of

each cell in the matrix.

If we assume that the matrix does not change from period to period (a good first-order

approximation), then we can use the single-period transition matrix to obtain multiperiod

transition matrices. For example, to find the probability that a firm in rating class 2 in our

example would continue to be in rating class 2 after two periods, we find all possible “paths”

by which the firm could be in rating class 2 in two periods’ time, identify the probabilities

of these paths, and add them up. In the example, there are six such paths: the firm could be

in any of six rating classes 1, . . . , 6 after one period and then from each of these classes,

the firm could move to rating class 2 after the second period. So the probability that it will

still be in rating class 2 after two periods is

(0, 0070)(0.0833) + (0.9065)(0.9065) + (0.0779)(0.0227)

+(0.0064)(0.0035) + (0.0006)(0.0031) + (0.0014)(0.0079) = 0.8241

Mathematically, expressing these multiperiod transition probabilities is easier than these

computations make it appear. If we denote the single-period transition matrix by  , the

two-period transition matrix is just  2 (i.e.,  × ), the three-period transition matrix is
 3 (i.e.,  × × ), and so on.
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The ratings transition matrices provided by ratings agencies contain historical probabil-

ities. For valuation purposes, what we need are risk-neutral probabilities of moving from

one rating class to another. The JLT model addresses this issue and proposes one possible

method for identifying the risk-neutral transition matrix. The proposed method is a recur-

sive procedure that generates the risk-neutral transition matrix from the historical matrix

under some assumptions concerning the “risk premium.” We describe the JLT model in this

section.

The JLT model begins with two assumptions:

1. There is no correlation (under the risk-neutral measure) between changes in interest rates

and ratings migration probabilities.

2. Recovery rates, stated in terms of the Recovery of Treasury convention, are a constant

φ. Upon any default, the bondholder receives φ units of an otherwise identical treasury

bond.

The model uses two main inputs: a model for the evolution of default-risk-free interest

rates, and the historical rating transitionmatrix. To describe themodel further, some notation

is necessary.

Notation
Time is discrete and is indexed by t = 0, 1, 2, . . . . There are K rating classes. Classes

1, . . . , K − 1 are the nondefault classes, while class K is default. The one-period historical

(or “statistical”) rating transition matrix is denoted  .  i j is the probability of moving

from rating class i to rating class j in one period. We will use  i to denote the vector

( i1, . . . , i K ). The t-period statistical transition matrix is just  t .

The one-period risk-neutral transition matrix at time 0 is denoted Q = (Qi j ). Qi j is the

risk-neutral probability that an entity that was in rating class i at time 0 will be in rating

class j at time 1. The t-period risk-neutral transition matrix from time 0 is denoted Q(0, t).

Note that Q(0, 1) = Q.

The t-period risk-free interest rate is denoted r (t), while the t-year spread on a zero-

coupon bond currently in rating class i is denoted si (t). Interest rates are quoted in simple

terms with a compounding frequency equal to the length of time between periods. Thus,

for example, $1 invested at the risk-free rate for

• one period grows to (1+ r (1)) by maturity

• two periods grows to (1+ r (2))2 by maturity

and so on.

The time-0 price of a risk-free zero-coupon bond with maturity t (and face value $1)

is denoted B(t). The corresponding price for a bond in rating class i is denoted Bi (t). We

have

B(t) = 1

(1+ r (t))t
Bi (t) =

1

(1+ r (t) + si (t))t

We begin with the identification of the one-period risk-neutral transition matrix Q.

Identifying Q = Q(0,1)
Consider a one-period zero-coupon bond in rating class i . The current price of the bond is

Bi (1) =
1

1+ r (1) + si (1)
(33.24)
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After one period, the bond is at maturity. At this point, it pays

• $1 if the bond is in rating classes i ∈ {1, . . . , K−1}.
• $φ if the bond is in rating class K .

By definition of the risk-neutral probabilities Qi j , the current price of the bond is the

discounted expectation under Q of its payoffs in one period:

Bi (1) =
 

1

1+ r (1)

 
[Qi1 + · · · + Qi,K−1 + φQi K ] (33.25)

Since (33.24) and (33.25) are equivalent, we have

1+ r (1)

1+ r (1) + si (1)
= [Qi1 + · · · + Qi,K−1 + φQi K ] (33.26)

The problem is that we have just one equation but K − 1 unknowns, Qi1, . . . , Qi,K−1. (The
K -th risk-neutral probability is just 1 minus the sum of the other K −1 probabilities.) There
is no way to identify just a single solution.

JLT propose using an “adjustment factor” αi whose effect is to reduce (33.26) to just

one unknown and so uniquely identify the probabilities Qi j . This factor, which is specific to

each rating class, links the risk-neutral transition probabilities to the statistical probabilities.

Specifically, the JLT proposal is to set

Qi j =
 

αi · i j , if j  = i

1− j  =i Qi j , if j = i
(33.27)

In words, all “off-diagonal” risk-neutral probabilities Qi j are the same linear multiple αi

of their statistical counterparts, while the diagonal probability Qii is determined by the

requirement that the probabilities have to sum to one.

What should the value of αi be? This is easy. Substitute the forms (33.27) for the Qi j ’s

into (33.26). The right-hand side of (33.26) is then a function solely of αi and the statistical

probabilities i j . Since the statistical probabilities are known, we have one equation in the

one unknown αi . Solving this and using the solution in (33.27), we get the risk-neutral

probabilities (Qi1, . . . , Qi K ).

Identifying Q(0, t) for t > 1
The next step is to extend the arguments to identify the t-year risk-neutral transition matrix

Q(0, t). Simplifying this procedure is the following observation. The probability, beginning

from state i in period 0, of reaching state j in period t is the sum over all k of the probability

of reaching state k in period t − 1 times the probability of transiting from state k in period

t − 1 to state j in period t . In matrix notation, Q(0, t) is the product of

• the t-step risk-neutral transition matrix Q(0, t − 1), and

• the risk-neutral matrix of transition probabilities Q(t − 1, t) between t − 1 and t .

Suppose Q(0, t−1) is known. (This is certainly true for t = 2.)We show how to identify

Q(t − 1, t) and, therefore, Q(0, t). As earlier, suppose that Q(t − 1, t) is related to the

one-step statistical transition probabilities  via “adjustment factors” αi (t):

Qi j (t − 1, t) =
 

αi (t) i j , if j  = i

1− j  =i Qi j (t − 1, t), if j = i
(33.28)
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Consider a t-year zero-coupon bond whose issuer is in rating class i at time 0. The initial

price of this bond is

Bi (t) =
1

(1+ r (t) + si (t))t
(33.29)

This bond price must also equal the risk-neutral expectation of the discounted cash flows

from the bond. If the bond does not default, it pays $1 at t . If it defaults at any point, then, by

the RT assumption, it pays $φ at t . Thus, to value the bond using risk-neutral probabilities,

we need identify only the risk-neutral probability of the bond surviving until date t .

This survival probability is just 1−Qi K (0, t). Now, Q(0, t) = Q(0, t−1)×Q(t−1, t).

The first term, Q(0, t−1), is known, by assumption. By (33.28), the second term, Q(t−1, t),

depends only on one unknown αi (t). This means that the survival probability—and hence,

the risk-neutral pricing expression for the bond—contains just one unknown αi (t). Equating

this expression to the bond price (33.29), we can solve for αi (t).

Identifying all the αi (t)’s in this manner finally enables us to identify Q(t − 1, t), and

so Q(0, t), completing the recursion.

A simple example will help illustrate the JLT procedure.

Example 33.1 We work through a two-period example with each period representing one year. Assume
there are four ratings classes: investment grade (I ), mezzanine grade (M), junk grade ( J ),
and default (D). The following inputs are used in the example:

1. The risk-free spot rates are 0.03 (for one period) and 0.04 (for two periods).

2. The statistical transition matrix  is given by:

 =

I

M

J

D

⎡
⎢⎢⎣
0.85 0.05 0.05 0.05

0.10 0.70 0.10 0.10

0.05 0.10 0.70 0.15

0 0 0 1.00

⎤
⎥⎥⎦

3. The one- and two-period credit spreads by ratings levels are:

sI =
 
0.005

0.010

 
, sM =

 
0.010

0.020

 
, sJ =

 
0.020

0.030

 
4. The recovery rate (in the RT convention) is φ = 0.50.

From this information, we can compute the initial values of risky zero-coupon bonds of
maturities one period and two periods:

B I (1) =
1

(1+ 0.03+ 0.005)
= 0.9662

B I (2) =
1

(1+ 0.04+ 0.010)2
= 0.9070

BM(1) =
1

(1+ 0.03+ 0.010)
= 0.9615

BM(2) =
1

(1+ 0.04+ 0.020)2
= 0.8900

B J (1) =
1

(1+ 0.03+ 0.020)
= 0.9524

B J (2) =
1

(1+ 0.04+ 0.030)2
= 0.8734
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At maturity, the bond will be in one of four states {I , M, J , D}. If it is in any of the first
three states, the principal is repaid in full. In the last state, the bondholder receives φ. We
denote these terminal cash flows by a vector C :

C =

⎡
⎢⎢⎣

1

1

1

0.50

⎤
⎥⎥⎦

We first identify αI (1), the adjustment that must be made to the statistical transition
probabilities to obtain the risk-neutral one-period transition probabilities for grade I . The
one-step statistical transition probabilities for grade I are given by

 I = [0.85 0.05 0.05 0.05]

As suggested by JLT, take the one-period risk-neutral transition probabilities for grade I
to have the form

QI (0, 1) = [1− 0.15αI (1) 0.05αI (1) 0.05αI (1) 0.05αI (1)]

The value of αI (1) must be such that the expected value under the risk-neutral measure
of discounted cash flows equals the initial price of the bond:

B I (1) =
1

1+ 0.03
× QI (0, 1) × C

or

0.9662 = 0.9709 [1 · (1− 0.10αI (1)) + 1 · 0.05αI (1) + 1 · 0.05αI (1) + φ · 0.05αI (1)]

This yields αI (1) = 0.1932.
Analogous procedures for grades M and J yield

αM(1) = 0.1923

α J (1) = 0.2540

This gives us the one-period risk-neutral transition probability matrix as

Q(0, 1) =

I

J

M

D

⎡
⎢⎢⎣
0.9710 0.0097 0.0097 0.0097

0.0192 0.9423 0.0192 0.0192

0.0127 0.0254 0.9238 0.0381

0 0 0 1.0000

⎤
⎥⎥⎦

We now move on to the two-period risk-neutral transition matrix. As outlined in the JLT
procedure, this is accomplished by first identifying the forward transition matrix Q(1, 2) that
specifies the risk-neutral transition probabilities for the period (1, 2). The statistical transition
matrix for the period (1, 2) remains . Using the usual JLT adjustment procedure on (and
denoting the second-period adjustment factors by αI (2), etc.), we may write the matrix
Q(1, 2) as the matrix  adjusted by the factors αi (2):

Q(1, 2) =

⎡
⎢⎢⎣
1− 0.15αI (2) 0.05αI (2) 0.05αI (2) 0.05αI (2)

0.10αM(2) 1− 0.30αM(2) 0.10αM(2) 0.10αM(2)

0.05α J (2) 0.10α J (2) 1− 0.30α J (2) 0.15α J (2)

0 0 0 1

⎤
⎥⎥⎦

To identify the three unknown variables, we must set the initial values of two-period bonds
from each category equal to the risk-neutral prices obtained using the matrices Q(0, 1)
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and Q(1, 2): ⎡
⎢⎢⎣

B I (2)

BM(2)

B J (2)

BD(2)

⎤
⎥⎥⎦ =
⎡
⎢⎢⎣
0.9070

0.8900

0.8734
-

⎤
⎥⎥⎦ = Q(0, 1) × Q(1, 2) × C × 1

(1+ 0.04)2

Note that while we have written these equations in matrix form to be concise, each
adjustment factor αi (2) can be solved for individually as we did in the first period. However,
it is computationally easier to solve them all at once usingmatrix computations. The solutions
are:

αI (2) = 0.5554

αM(2) = 0.5680

α J (2) = 0.5101

This means the matrix Q(1, 2) resolves from  as

Q(1, 2) =

⎡
⎢⎢⎣
0.9167 0.0278 0.0278 0.0278

0.0568 0.8296 0.0568 0.0568

0.0255 0.0510 0.8470 0.0765

0 0 0 1.0000

⎤
⎥⎥⎦

Now, the risk-neutral transition matrix over two periods is just the product of the transi-
tions from periods 0 to 1 and from 1 to 2:

Q(0, 2) = Q(0, 1) × Q(1, 2)

Carrying out the multiplication, we obtain

Q(0, 2) =

⎡
⎢⎢⎣
0.8909 0.0355 0.0357 0.0379

0.0716 0.7833 0.0703 0.0748

0.0366 0.0685 0.7842 0.1106

0 0 0 1.0000

⎤
⎥⎥⎦

completing the example. ■

Comments on the JLT Approach
The JLT model offers a good starting point for thinking about the integration of Treasury

markets with default information provided by rating agencies. It is also a model that can be

used for the pricing and hedging of derivatives that depend explicitly on ratings.

Themodelmakes some special assumptions. Someof thesemaybe relaxedwithout losing

analytical tractability. For example, Das and Tufano (1996) show that the JLT requirement

that there be zero correlation (under the risk-neutral measure) between risk-free interest

rates and changes in ratings may be generalized to allow for arbitrary correlation. Das and

Tufano also show that the RT condition, which appears less natural than RP or even RMV,

can be modified to allow for recoveries on defaulting bonds to occur immediately rather

than at maturity.

JLT also propose a very specific method for moving from the statistical transition prob-

abilities to the risk-neutral ones. Now, there are many different adjustments that could

be applied to reduce (33.26) from a one-equation/(K − 1)-unknowns system to a one-

equation/one-unknown system. As one example, Das and Tufano offer a computation-

ally advantageous alternative that is a slight variant on the JLT procedure. However, the
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two procedures result in different risk-neutral transition matrices. There are no theoreti-

cal grounds for preferring one approach over the other—or a third approach to either of

them—nor is empirical guidance available. The material below elaborates.

A Comment on the JLT Adjustment Factors
In each step of the JLT model, the adjustment factors are applied to the statistical transition

matrix  from which the forward transition matrices Q(t , t + 1) are successively recov-

ered. Then, from knowledge of Q(0, t), the (t + 1)-period transition matrix Q(0, t + 1) is

determined as Q(0, t + 1) = Q(0, t) × Q(t , t + 1).

Das and Tufano (1996) propose an alternative method in which the t-period risk-neutral

transition matrix Q(0, t) is recovered directly from the t-period statistical transition matrix

 (0, t) in the same manner in which Q(0, 1) is recovered from . That is, the adjustments

are performed directly on the off-diagonal elements of (0, t). Thismethod is computation-

ally advantageous compared to the JLT method since a formula is available for calculating

the adjustment factors αi (t).

Here is how the procedure works. First, we identify  (0, t). This is just  t , the t-

th power of the matrix  . Let  i j (0, t) denote the (i, j)-th element of  (0, t). Define

Qi j (0, t) similarly. Now let

Qi j (0, t) =
 
αi (t) i j (0, t), if i  = j

1− j  =i Qi j (0, t), if j = i

The risk-neutral valuation of a bond that is initially in category i and is maturing in t

periods can be identified using Q(0, t) and the t-period risk-free rate. Equating this to the

current price of the bond, we can identify the required t-year adjustment factor αi (t). The

following example illustrates.

Example 33.2 We continue with the two-period setting of Example 33.1. Under the Das-Tufano (DT) pro-
cedure, the first-period risk-neutral transition matrix is the same as under JLT since the pro-
cedures are identical for t = 1. Consider Q(0, 2). To identify this matrix in the DT procedure,
we first identify  (0, 2). This is just  2:

 (0, 2) =

⎡
⎢⎢⎣
0.7300 0.0825 0.0825 0.1050

0.1600 0.5050 0.1450 0.1900

0.0875 0.1425 0.5025 0.2675

0 0 0 1.0000

⎤
⎥⎥⎦

Now apply the adjustment to  (0, 2) to obtain:

Q(0, 2) =

⎡
⎢⎢⎣
1− 0.27αI 0.0825αI 0.0825αI 0.1050αI

0.1600αM 1− 0.4950αM 0.1450αM 0.1900αM

0.0875α J 0.1425α J 1− 0.4975α J 0.2675α J

0 0 0 1.0000

⎤
⎥⎥⎦

The risk-neutral pricing argument tells us that the initial prices of two-period bonds are just
the discounted values of the expected payoffs under the risk-neutral probabilities, i.e.,⎡

⎢⎢⎣
B I (2)

BM(2)

B J (2)

BD(2)

⎤
⎥⎥⎦ = 1

(1+ 0.04)2
× [Q(0, 2) × C ]
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Here C is the column vector of terminal payoffs (1, 1, 1, φ) that was defined earlier in the
JLT example. These values must be equal to the given initial values of these bonds.⎡

⎢⎢⎣
B I (2)

BM(2)

B J (2)

BD(2)

⎤
⎥⎥⎦ =
⎡
⎢⎢⎣
0.9070

0.8900

0.8734

–

⎤
⎥⎥⎦

Equating these, we can solve for the values of the adjustment factors αi (2):

αI (2) = 0.3611

αM(2) = 0.3935

α J (2) = 0.4134

This results in the final transition matrix under the risk-neutral measure as follows:

Q(0, 2) =

⎡
⎢⎢⎣
0.9025 0.0298 0.0298 0.0379

0.0630 0.8052 0.0571 0.0748

0.0362 0.0589 0.7943 0.1106

0 0 0 1.0000

⎤
⎥⎥⎦

■

The entries in this matrix (barring the last column) differ from the Q(0, 2) matrix com-

puted using the JLT procedure. This means ratings-dependent derivative prices may differ

under the two procedures. Since each procedure is somewhat arbitrary, there are no real

theoretical grounds for preferring one to the other.

From a computational standpoint, the DT procedure does have one important advantage.

The adjustments α can be computed in closed-form in this procedure. Specifically, let μi (t)

denote the probability of default from grade i over t periods. Then the risk-adjustment factor

for grade i in computing the t-period risk-neutral transition probability matrix is

αi (t) =
 
1−
 

1+ r (t)

1+ r (t) + si (t)

 t  
1

(1− φ)μi (t)

 

whereμi t is the total probability of default under the statistical measure for the entire period

from time 0 to the maturity of the security.

33.8 An Application of Reduced-Form Models: Pricing CDS

Credit default swaps (CDSs) were introduced in Chapter 31 as the most important single-

name credit derivative and as the building block of other credit derivatives such as credit-

linked notes or synthetic collateralized debt obligations (CDOs). In this section, we illustrate

the pricing of CDS contracts using a reduced-form model. As we show, the process is not

complex. Once the forward probabilities of default are determined, the pricing scheme

follows automatically.

A CDS is a contract in which one party makes a steady stream of premium payments

in exchange for a single contingent payment that is made if a “credit event” occurs on

the underlying reference instrument. For simplicity, we refer to the credit event as simply

“default,” although default is only one component of a credit event in CDS contracts (albeit

the most important one). The contingent payment is specified in the contract and usually

involves compensation in the amount of the loss in value (measured from par) on the

reference instrument.

From a theoretical standpoint, the fair value of the periodic premium that is paid for

this contract must be such that the present value of the premium payments made equals the
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present value of the payout received in the event of default. With a reduced-form model

in hand that specifies the risk-neutral probabilities of defaults over different future time

intervals, these present values are easily calculated and the CDS priced.

To illustrate the process, say that there are T years in the horizon. Let t index the time

points at which payments are made. Let h denote the time interval between payment periods

(measured in years), and suppose there are N payments due in all if no default occurs (i.e.,

assume that Nh = T ).

Denote the risk-neutral forward probability of default for the j-th time interval (t−h, t)

by λ j . This is the probability of default over the interval (t − h, t) for t = jh. The

corresponding recovery rate is denoted φ j . The pricing is carried out at time 0 and the

expectations are taken at time 0. The short forward rates at any time point t are denoted by

f (t , t) = ft .

We first compute the present value of the “premium leg.” For this purpose, we compute

the present value of $1 premium payments made over all future periods or until a default

event occurs. Call this PV 1. Note that if the actual premium payment is $p, then the present

value of the premium leg is just p × PV 1. Assuming that premium payments are made at

the start of each period, we have

PV 1 = E0

 
1+

N−1 
t=1

 
t−1 
j=0

(1− λ j+1)e
− f j h

  
(33.30)

To interpret this expression, note that the initial payment made at time 0 is $1. (It is assumed

that the reference asset is not in default at inception of the contract!) In each successive

period, a premium payment is made only if there has not been a default so far. The likelihood

of this is captured by the products of the survival probabilities (1−λ j ) from inception to the

payment date. These expected payments are then discounted back to the present. Summing

these over all the payment periods provides the required present value.

Remark The payments under this model may be adjusted to be paid at the end of the

period as well. CDS contracts often follow the convention that when payments are made at

the end of the period, if default occurs within the period, then a pro rata premium payment

is made for the time between the last premium paid and the time of default. Hence, it is

important to adjust formulae such as those provided in this section appropriately for varying

premium conventions.

This formula undergoes minor modification if the contract specifies that premium pay-

ments are to be made at the end of each time period in the model. Assuming for simplicity

that full payment is made even if default occurs in that period, the applicable equation is

PV 1 = E0

 
e− f0h

 
1 +

T−1 
t=1

t 
j=1

(1− λ j )e
− f j h

  
(33.31)

Next, we calculate the present value of the “payment leg,” i.e., of the contingent payment

made in the event of default. For simplicity, we assume that these payments occur at the end

of each time period. This present value, denoted D, is

D = E0

 
T 

t=1
λt (1− φt )

t−1 
j=0

(1− λ j )e
− f j h

 
(33.32)

The term
 t−1

j=0(1 − λ j )e
− f j h represents the probability of not defaulting until the end of

period (t − 1), and the term λt (1− φt ) is the probable loss in period t given as the product

of the probability of default and the loss on default.
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Since the value of the premium and payment legs should be equal, we find the following

expression for the fair value of a CDS:

CDS spread in bps = D

PV 1
× 1

h
× 10,000 (33.33)

The division by h and multiplication by 10,000 are done to express the CDS spread in basis

point units per annum as is customary.

In the calculations in this section, we have assumed that default and contingent payments

occur only at the premium payment time points. In fact, since default can occur at any

time, including between payment points, a more sophisticated model would allow for this

possibility also. The present value expressions become somewhat more complicated, but

the principle behind identifying the fair value of the CDS remains the same.

33.9 Summary

The reduced-form class of models presented in this chapter complements the structural

models of the previous chapter. Together these models comprise a large portion of the an-

alytic techniques used in quantitative credit modeling. The reduced-form class of models

uses debt-market information directly rather than equity market information as in structural

models. They work through positing directly stochastic processes that determine the like-

lihood of default over any horizon. These processes most commonly take on the form of

stochastic intensities (or what are called “doubly stochastic processes”), although there are

also reduced-form models that operate via ratings transitions.

Reduced-form models generally tend to be analytically tractable, thanks to results in the

theoretical literature that show that under some general conditions, reduced-form valuation

of defaultable claims is essentially equivalent to risk-neutral valuation of the promised

payoffs but with a credit-risk-adjusted discount factor. As a result, the models described

in this chapter are relatively easy to use for the pricing of credit derivatives relative to

structural models. They are also easy to calibrate because credit-linked securities may be

used directly to extract default information. The flexibility in the choice of intensity process,

recovery model, and term-structure model make this class of models very useful across a

wide sprectrum of applications.

33.10 Exercises 1. If default intensity λ = 3, what is the probability of two or more defaults in a quarter

of a year?

2. If λ = 2, what is the probability of survival for three years?

3. Suppose that the default intensity of a firm varies over time t and is given by the

following function:

λt = 0.5− 0.01t

What is the probability of the firm defaulting in two years?

4. State a few important differences between reduced-form models and structural models

of default risk.

5. Assume continuous compounding. Suppose the firm has a constant default intensity

λ = 2. The risk-free rate of interest is r = 0.02. The recovery rate is φ = 0.5, and

all recovery of a defaulted security is assumed to occur at the original maturity of the
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security. Price a two-year zero-coupon bond without default risk. Also price the same

bond with default risk.

6. You are given that the intensity of default is λ = 0.5, and recovery rate is φ = 0.5. The

risk-free rate of interest is r = 0.01. In contrast to the previous question, the recovery

amount is obtained at the time of default, not at the stated maturity of the security. Find

the price of a one-year defaultable security that pays off $1 at maturity.

7. The intensity of default is constant, λ = 0.5. What is the conditional probability of

default at time t?

8. You are given that the cumulative probability of default for one year is 6% and for two

years is 10%. The intensity is given by the following function of time

λ(t) = a + bt

What are the values of a, b?

9. We examine the pricing of a semiannual pay, one-year credit default swap (CDS). The

premium payments are made at the beginning of each semiannual period, and default

payments are made at the end of each period. The default intensity is given by the

following function

λ(t) =
 
2a if t ∈ (0, 0.5)

2a + b if t ∈ (0.5, 1.0)

The CDS spreads for a half year and one year are

s(0.5) = 0.02, s(1.0) = 0.04

The risk-free rate is r = 0.01 and the recovery rate is φ = 0.6. Recovery is a fraction of

par. Solve for a, b assuming the CDS contracts are fairly priced.

10. Given that λ = 0.2, the risk-free rate r = 0, and the recovery rate φ = 0.5, price a CDS

contract with maturity for two years, with semiannual premium payments made at the

start of each period. Default payments are made at the end of each period.

11. Assume there are three debt ratings: A, B, and D, where D stands for default. The

one-period risk-neutral transition probability matrix for ratings is given as:

Q =

⎡
⎢⎣
0.9 0.1 0

0.1 0.8 0.1

0 0 1

⎤
⎥⎦

What is the probability of default of an A-rated firm in one period, two periods, and ten

periods?

12. Using the transition matrix from the previous question, what is the price of a five-year

defaultable, A-rated zero-coupon bond if the risk-free rate is r = 0 and the recovery rate

is φ = 0.7?

13. The default intensity is given as λ = 0.1 per period. The recovery rate is φ = 0.5. The

risk-free rate of interest is r = 0.10 per period. Compute the price of a zero coupon bond

with a maturity of two periods under the following assumptions:

• No default risk (i.e., Treasury).

• Default risk with recovery of par (RP).

• Default risk with recovery of Treasury (RT).

• Default risk with recovery of market value (RMV).
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14. Consider a class of firms with hazard rate equal to 3. The default of one firm is unrelated

to that of the others.

(a) What is the average number of firms that will default in this class in one quarter of

a year?

(b) For the same firms, what is the average time to the first default?

(c) What is the probability of two or more firms defaulting in the first year?

(d) What is the probability of no firm in this class defaulting in two years?

15. The risk-free rate of interest is constant and is 10%. The credit spread for an issuer is

also constant and is 2%. If the recovery rate is 50%, all componding and discounting is

continuous, and default is assumed to occur at the end of the year,

(a) What is the probability of default in one year?

(b) What is the price of a one-year $1 zero-coupon bond issued by this firm?

16. The risk-free rate of interest is constant and is 10%. The credit spread for an issuer is also

constant and is 3%. If the recovery rate is 40%, then given continuous compounding,

(a) What is the probability of default over a two-year period?

(b) What is the price of a two-year $1 zero-coupon bond issued by this firm? Assume all

cash flows occur at maturity, whether or not the bond defaults in the interim period.

17. The one-year riskless interest rate and spread are 5% and 1%, respectively. At the end

of the year, the next year’s riskless rates are either 7% or 4% with equal risk-neutral

probability. If the riskless rate is 7%, then the spread over the next year will be 0.5%,

and if the riskless rate is 4% then the spread will be 2%.

(a) Depict the rates and spreads on a binomial tree.

(b) If the recovery rate is 40% (RMV), what is the price of a two-year bond with an

annual coupon of 6%? Assume that compounding and discounting are continuous.

(c) What is the probability of default over the first period?

(d) What is the probability of default over the second period from each of the nodes on

the tree at the end of the first period?

(e) At what annual spread (in basis points) will a two-year CDS trade? Assume that

payments on default are made at the end of each year and premiums are paid at the

start of each year.

18. This question deals with a reduced-form model of risky debt. Suppose we can depict the

risk-free interest rates on a tree (each period is one year) for which the current interest

rate is 10%. Rates can change after one year and will become 12% or 9%. The recovery

rate is constant at 40%.

(a) Find the price of a risk-free Treasury bill that pays off 100 at the end of two years

(it has no coupon).

(b) There is a defaultable bond that we want to value using a reduced-form model. You

are given the following default probability function at each node of the tree that

depends on the risk-free interest rate:

λ = 1− exp(−a r )

Here r is the risk-free interest rate and a is the hazard rate parameter. Suppose the

credit spread on the bond is 20 basis points. Find the price of the defaultable zero-

coupon bond, which also pays off 100 at the end of two years, and the value of the

hazard function parameter “a.” (You will need a spreadsheet and solver to work this

out.)
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19. This question refers to the model of Litterman and Iben presented in the chapter. The

model takes as input the prices of riskless and risk-free bonds and generates forward

probabilities of default. At the end of Section 33.4 is Table 33.4 presenting the forward

default probabilities. This question relates to reverse engineering the spreads in the

Litterman-Iben model.

Suppose all forward probabilities of default increased by 1% per annum. What should

the new credit spreads in the model be to be consistent with the revised forward default

probabilities?

20. This question requires you to implement the Das-Sundaram (DS) model presented in the

chapter. The notation is the same as that used in the chapter. You are given the following

table of forward rates and spreads along with their volatilities:

Period (T − h, T ) T f (0, T ) σ s(0, T ) η

(0,0.5) 0.50 0.10 0.020 0.020 0.002
(0.5,1.0) 1.00 0.11 0.018 0.030 0.003
(1.0,1.5) 1.50 0.12 0.016 0.040 0.004
(1.5,2.0) 2.00 0.13 0.014 0.050 0.005
(2.0,2.5) 2.50 0.14 0.012 0.060 0.006
(2.5,3.0) 3.00 0.15 0.010 0.065 0.007

The correlation between spreads and interest rates is −0.30.
(a) Build the tree in interest rates and spreads for five periods using all the data provided

above.

(b) Generate another tree with just the probabilities of default at each node on the tree

if the recovery rate is taken as two times the short rate at each node.

(c) Use the tree of forward rates and default probabilities to price a three-year semiannual

premium credit default swap on the issuer. Express your answer for the premium in

basis points credit spread.
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Appendix 33A

Duffie-Singleton in Discrete Time
We derive a version of the Duffie-Singleton valuation expression (33.14) here in a discrete-

time setting.

A One-Period Model

Begin with a simple one-period model. Consider a bond that pays $1 in one period if there

is no default, and suppose the bond pays φ if there is a default. Let t denote the length of

the period, and let 1− e−λt denote the risk-neutral default probability over the one period.

Finally, let s be the current spread on the bond and let r denote the risk-free rate, both in

continuously-compounded terms.

The current price of the bond is

V0 = e−(r+s)t (33.34)

Its value computed using risk-neutral valuation is the discounted value of its expected payoff

at maturity:

e−r t [e−λt + φ(1− e−λt )] (33.35)

Equating these two values, we obtain

e−st = e−λt + (1− e−λt )φ

Using the approximation ex = 1+ x , which is a very good approximation for small values

of x , we see that for small values of t , the LHS is approximately 1 − st while the RHS is

approximately 1− λt + λtφ. This gives us

1− st ≈ 1− λt + λtφ

so canceling common terms results in

s ≈ λ(1− φ) (33.36)

Substituting this in (33.34), we obtain V0 ≈ e−r+λ(1−φ) , which is the Duffie-Singleton

formula in this simple world.

Expression 33.36 provides a simple approximate relationship between the spread, the

probability of default, and loss-given-default. Called the “credit triangle,” this relationship

is commonly used on trading desks to obtain quick estimates of default probabilities from

observed spreads given assumptions concerning recovery rates.

A Multiperiod Setting

Duffie and Singleton (1999a) provide a multiperiod discrete-time motivation of their result.

Suppose the current time is t , periods are spaced  years apart, and maturity of the de-

faultable claim is at T = t + n . Let φτ be the time-τ recovery rate in the event of default

expressed in the RMV convention. In discrete time, this means that if default takes place at

time τ + , the recovered amount  is

 τ = φτ Eτ [Vτ+ ] (33.37)
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where for any s, Vs is the value of the claim at time s contingent on it not having defaulted

so far, and Es[·] denotes expectation taken at time s conditional on all the information

available at that point.

Now, in general, risk-neutral pricing gives us the following recursive pricing relation:

Vt = λt e−rt  t + (1− λt )e
−rt Et (Vt+ ) (33.38)

The first term on the RHS is the present value of the amount received on default, and the

second term is the value if there is no default. Taking the expectations of these payoffs

(under the risk-neutral probability of these events) and discounting it back gives us the

present value of the instrument. This is equation (33.38).

Using (33.37) in (33.38), we obtain the simplification

Vt = e−rt [λt φt + (1− λt )] Et (Vt+ ) (33.39)

Define R by e−Rt = e−rt [λt φt + (1− λt )]. Then,

Vt = e−Rt Et (Vt+ )

Carrying the recursion forward to maturity, we obtain

Vt = Et

 
e
−
 n−1

j=0 R j 
Zt+n 

 
(33.40)

Expression (33.40) is a discrete-timeversionof theDuffie-Singletonvaluation result (33.14).

It says that the present value of the defaultable claimmay be identified by taking its promised

payoffs at maturity (ZT = Zt+n ) and discounting these payoffs back at a credit-risk-

adjusted rate. Indeed, for small values of  , Rt ≈ rt + λt (1 − φt ), so the approximation

becomes progressively closer to (33.14) as the time-period  shrinks.

Appendix 33B

Derivation of the Drift-Volatility Relationship
We derive here the recursive relationships (33.22) and (33.23) in the defaultable HJMmodel

of Section 33.6.We first derive (33.22). To this end, denote by λ(t) the probability of default

by time t + h given that default has not occurred up to t . Concerning the recovery rate, the

model utilizes the Duffie-Singleton RMV convention. Let  t denote the recovery amount

in the event of default at t . The RMV condition then states that conditional on default

occurring at time t + h, the time-t expectation Et [ t+h] of the amount bondholders will

receive is given by

Et [ t+h] = φ(t)Et [B∗(t + h, T )] (33.41)

where φ(t) denotes the time-t “recovery rate.”

Let Z (t , T ) denote the price of the default-risk-free bond B(t , T ) discounted using M(t):

Z (t , T ) = B(t , T )

M(t)
(33.42)

Since Z is a martingale under Q, for any t < T we must have Z (t , T ) = Et [Z (t + h, T )],

or, equivalently,

Et

 
Z (t + h, T )

Z (t , T )

 
= 1 (33.43)
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Now, Z (t + h, T )/Z (t , T ) = (B(t + h, T )/B(t , T )) · (M(t)/M(t + h)). Using (33.17),

some algebra shows that the first term is

B(t + h, T )

B(t , T )
= exp

 
−
 

T/h−1 
k=t/h+1

[ f (t + h, kh) − f (t , kh)] · h
 
+ f (t , t)h

 

(33.44)

The second term M(t)/M(t + h) is just exp{− f (t , t)h}. Combining these, we obtain

Z (t + h, T )

Z (t , T )
= exp

 
−

T/h−1 
k=t/h+1

[ f (t + h, kh) − f (t , kh)] · h
 

(33.45)

Using (33.45) in (33.43), the martingale condition becomes

Et

 
exp

 
−

T/h−1 
k=t/h+1

[ f (t + h, kh) − f (t , kh)] · h
  

= 1 (33.46)

Substituting for ( f (t + h, kh) − f (t , kh)) from (33.20), this is the same as

Et

 
exp

 
−

T/h−1 
k=t/h+1

[α(t , kh)h2 + σ (t , kh)X1h
3/2]

  
= 1 (33.47)

Since α(t , ·) is known at t , it may be pulled out of the expectation. This gives us after some

rearranging the recursive HJM expression relating the risk-neutral drifts α to the volatilities

σ at each t :

T/h−1 
k=t/h+1

α(t , kh) = 1

h2
ln

 
Et

 
exp

 
−

T/h−1 
k=t/h+1

σ (t , kh)X1h
3/2

   
(33.48)

We now derive the analogous result (33.23) for the drifts β(t , T ). The following result

relating the “short spread” to the default probabilities and recovery rates comes in handy:

s(t , t) = −1

h
ln[1− λ(t) + λ(t)φ(t)] (33.49)

To see (33.49), consider a risky bond at t that matures at (t + h). By definition, its time-t

price is given by

B∗(t , t + h) = exp{−( f (t , t) + s(t , t)) · h} (33.50)

Now, a one-period investment in this bond fetches a cash flow of $1 at time (t + h) if there

is no default at t + h and a cash flow of φ(t) if there is a default. The discounted expected

cash flow under the risk-neutral probability must equal the current price of the bond, so

B∗(t , t + h) = exp{− f (t , t)h}[1− λ(t) + λ(t)φ(t)] (33.51)

Expression (33.49) is an immediate consequence of (33.50) and (33.51).

Now, pick any t < T and consider a one-period investment in B∗(t , T ) at t . Viewed

from time t , there are two possibilities regarding expected cash flows at t + h from this

investment:

• If the bond has not defaulted by t+h, there is an expected cash flow of Et [B∗(t+h, T )].

• If the bond has defaulted, the expected cash flow is φ(t)Et [B∗(t + h, T )].



862 Part Five Credit Risk

Since the probability of default by t + h is λ(t), the expected cash flow at t + h is

(1− λ(t)) Et [B∗(t + h, T )]+ λ(t)φ(t) Et [B∗(t + h, T )] (33.52)

which is the same as

[1− λ(t) + λ(t)φ(t)] Et [B∗(t + h, T )]

By definition of Q, when discounted at the short rate r (t), this expected cash flow must

equal B∗(t , T ), so we have

Et

 
[1− λ(t) + λ(t)φ(t)] B∗(t + h, T )

exp{r (t)h}B∗(t , T )

 
= 1 (33.53)

Now using (33.18) and the relation s(t , t) = f ∗(t , t)− f (t , t), some algebra reveals that

B∗(t + h, T )

exp{r (t)h}B∗(t , T )

= exp

 
−
 

T/h−1 
k=t/h+1

[ f ∗(t + h, kh) − f ∗(t , kh)] · h
 
+ s(t , t)h

 

(33.54)

Further, by (33.49), we know that [1− λ(t) + λ(t)φ(t)] = exp{−s(t , t)h}. Combining
this with (33.53) and (33.54), we obtain

Et

 
exp

 
−

T/h−1 
k=t/h+1

[ f ∗(t + h, kh) − f ∗(t , kh)] · h
  

= 1 (33.55)

Using the definition f ∗(t , T ) = f (t , T )+s(t , T ), we can substitute for ( f ∗(t+h, kh)−
f ∗(t , kh)) from (33.20) and (33.21). Some rearranging now gives us the second recursive

relation, this one defining α and β in terms of σ and η:

exp

 
T/h−1 
t/h+1

[α(t , kh) + β(t , kh)]h2

 

= Et

 
exp

 
−h3/2

T/h−1 
t/h+1

[σ (t , kh)X1 + η(t , kh)X2]

  
(33.56)

Since we have solved for α in terms of σ using (33.48), we may now use (33.56) to solve

for β in terms of σ and η. This completes the derivation of the risk-neutral drifts in terms

of the volatilities.



Chapter 34
Modeling Correlated
Default

34.1 Introduction

In the preceding chapters, we discussed the modeling of credit risk for individual issuers,

with Chapters 32 and 33 presenting, respectively, the structural and reduced-form ap-

proaches to estimating this risk. It is natural to ask how these models may be extended

to the analysis of multiple credits so as to determine the joint risk of issuers in credit

portfolios. We provide the answers in this chapter.

Modeling joint default risk has become essential in the pricing and risk management of

products that are based on correlated default. These include collateralized debt obligations

(CDOs), basket default swaps, credit index tranches, and others. In Chapter 31, we intro-

duced these products; now, in this chapter, we will examine the technicalities of modeling

these securitizations.

There are many ways to model correlated default, and we present several approaches in

this chapter with an eye to their practical application. Over the course of the chapter, we work

our way through several papers on the subject, including the non-parametric models in Chen

and Sopranzetti (2003), hazard models of Lando (1994), the stopping time copula models

of Li (2000), the fast recursion method of Andersen, Sidenius, and Basu (2003), implied

copulas of Hull and White (2006b), the top-down correlated default models of Longstaff

and Rajan (2006), and a tree model for correlated default (Hull and White, 2006a). We

will also present a simple classification of correlated default products. By working through

simple examples, we hope to provide a fundamental understanding of the ideas in different

models as well as the differences between these models.

34.2 Examples of Correlated Default Products

Modeling correlated default is critical for several products in credit markets. One exam-

ple is the CDO or collateralized default obligation. CDOs were described in Chapter 31.

A CDO is a pool of underlying credits (the “collateral”) whose cash flows are tranched

out according to specified rules. The senior or “A” tranche has primary claim over cash

flows; no other tranche can receive its promised cash flows until the claims of the se-

nior tranche are fully met. Next comes the subordinated “B” tranche (mezzanine notes)

whose cash-flow claims are junior only to the A tranche; there may be more than one

863
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subordinated tranche. Last comes the “equity” tranche, which has the juniormost claim on

cash flows and takes the first set of losses on the portfolio. Correlations between securities

in the CDO collateral determine the value of the tranches. For example, as default corre-

lations increase, the senior tranche becomes more likely to experience losses and falls in

value, while subordinated tranches may gain in value. Correlation is also key to valuing

losses on credit indices such as the CDX and iTraxx which comprise many underlying

names.

Another product that requires correlated default analysis is the basket default swap. In

a basket default swap, a payoff is triggered when a specified number of credits in a given

basket of credits experience a credit event. The general form is an nth-to-default (nTD)

basket, a security which pays off when the nth default occurs in a given basket of N se-

curities. The most popular nTD baskets are first-to-default (FTD) and second-to-default

(STD) baskets. In the next section we will see that nTD baskets are highly sensitive to credit

correlations. Some, such as first-to-default baskets, increase in value as credit correlations

decline. Others, such as second-to-default baskets, increase in value as credit correlations

increase.

This chapter is intended to be a brief but comprehensive introduction to modeling default

loss distributions for credit portfolios. The exposition that ensues is aimed at exposing the

reader to mathematical details that are simple and germane to understanding the techniques

applied in practice for valuing the products briefly mentioned in this section. Before pro-

ceeding to the technical details, we describe two very broad classes of correlated default

models: bottom-up models and top-down models.

Bottom-Up versus Top-Down Approaches
Bottom-up models begin by modeling the probabilities of default of individual names in the

credit portfolio. The joint loss distribution is then based on specifying the correlations of

default among all names in the portfolio. By simulating draws of individual default with the

appropriate correlation between the names, the modeler generates a credit-loss distribution

of the entire portfolio. The bottom-up model arrives at the portfolio loss distribution by

aggregating the losses from individual names, hence, the moniker. Credit correlation in this

class of models is obtained by positing correlations between the names in the portfolio,

and then calibrating correlations to portfolio credit products such as CDOs and tranches of

CDOs.

In contrast, the top-down approach does not the default of individual issuers in the credit

portfolio, choosing instead to model the aggregate loss level directly. A stochastic process

for loss arrivals that may be a function of other underlying latent variables is posited. The

model is calibrated directly to prices of portfolio credit products such as CDO tranches.

Credit correlation in this class of models is modeled only to the extent that it impacts the

shape of the aggregate loss distribution of the credit portfolio, and this is manipulated in

the model by setting the appropriate number and level of latent variables driving defaults in

the portfolio. This is a more direct approach and is somewhat easier to implement, but since

individual defaults are not tracked in the model, it makes hedging the risk of individual

names more difficult and is limited to products that depend only on aggregate default

levels.

Much of this chapter will focuses on the bottom-up approach although we discuss the top-

down model as well. We begin with a simple exposition of correlated default mathematics.

The simple concepts we introduce here are essential one wishing to understanding the more

generalized forms of correlation that we eventually get to later in the chapter.
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34.3 Simple Correlated Default Math

Basic Variables and Relationships
Default modeling centers on the event of default. We denote this event by means of an

indicator variable Di , which indicates if firm i has defaulted:

Di =
 

1 if firm i defaults

0 if firm i does not default
(34.1)

Denote by pi is the probability of default for firm i . Since Di is an indicator variable, we

have

E(Di ) = [1× pi ]+ [0× (1− pi )] = Pr [Di = 1] = pi (34.2)

Var(Di ) = pi (1− pi ) (34.3)

This non-parametric approach was introduced in Chen and Sopranzetti (2003). The devel-

opment of this section adopts their approach.

Extending this notation, we can also define the default correlation of two firms i and j .

This is

ρi j ≡ Corr(Di , Dj ) =
E(Di Dj ) − E(Di )E(Dj ) 

Var(Di )Var(Dj )
(34.4)

= E(Di Dj ) − pi p j 
pi (1− pi ) p j (1− p j )

(34.5)

In order to simplify exposition, we write Pr (Di ) for Pr (Di = 1). Then, the probability

of joint default is

Pr (Di ∩ Dj ) = E(Di Dj ) (34.6)

= pi p j + ρi j
 

pi (1− pi ) p j (1− p j ) (34.7)

which follows from equation (34.5). Therefore, the probability of joint default is linear in

the correlation of joint default. But it is important to note that they are not the same.

Note that the correlation ρi j cannot be arbitrarily specified. Since the probability of i and

j both being in default cannot exceed the individual probabilities of default, we must have

pi p j + ρi j
 

pi p j (1− pi )(1− p j ) ≤ min{pi , p j }

Equivalently, we may write

pi = min{pi , p j }  ⇒ ρi j ≤
 

pi (1− p j )

p j (1− pi )

For example, if pi = 0.01 and p j = 0.10, then

ρi j ≤
 

(0.01)(0.90)

(0.10)(0.99)
≈ 0.3015
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Example 34.1 Assume that pi = 0.01 and pj = 0.10. The following table provides a comparison of the
probability of joint default and the correlation of default. Note that the maximum possible
correlation in this case is roughly 0.3015.

ρi j Pr(Di ∩ Dj)

0.000 0.00100
0.025 0.00175
0.050 0.00249
0.075 0.00324
0.100 0.00398
0.125 0.00473
0.150 0.00548
0.175 0.00622
0.200 0.00697
0.225 0.00772
0.250 0.00846
0.275 0.00921
0.300 0.00995

■

The probability of joint default may also be written in the following forms, exploiting

the fact that Di is an indicator (0, 1) variable:

Pr[Di ∩ Dj ] = Pr(Di ) + Pr(Dj ) − Pr[Di ∪ Dj ] (34.8)

which is analogous to

E(Di Dj ) = E(Di ) + E(Dj ) − Pr[Di ∪ Dj ] = pi + p j − Pr[Di ∪ Dj ] (34.9)

These expressions are based on well-known set theoretic relationships. Using this, we may

rewrite the correlation of default as follows:

ρi j =
pi + p j − Pr[Di ∪ Dj ]− pi p j 

pi (1− pi ) p j (1− p j )
(34.10)

which extends equation (34.5). These various forms of the joint default relationship come

in handy because the data may come in different forms, and one or the other expression for

default correlation may be more applicable.

Conditional Default
Conditional default probability is an alternative way of thinking of default correlations.

For instance, we may be interested in the proliferation of default within an industry and

the cascading effect of further defaults once initial defaults occur. We therefore care about

the conditional probability of default of firm j given firm i has already defaulted. This

conditional probability is written as Pr[Dj |Di ]. The probability of joint default may then

be written as

Pr [Di ∩ Dj ] = Pr [Dj |Di ] Pr (Di )

= Pr [Di |Dj ] Pr (Dj )

which is just an implementation of Bayes’ theorem.
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Example 34.2 Let pi = 0.01 and pj = 0.10, and Pr[D j |Di ] = 0.8 (if firm i defaults, then j defaults 80% of
the time, signifying an increase in pj after conditioning). This implies that

Pr[Di ∩ D j ] = 0.8× Pr(Di ) = 0.8× 0.01 = 0.008

We consider two interesting questions:

1. What is the default correlation given the conditional probability of default? In this
example, we compute the default correlation as follows:

ρi j = Corr[Di ∩ D j ] =
Pr(Di ∩ D j ) − pi pj 
pi (1− pi )pj (1− P j )

= 0.008− (0.01)(0.10)√
(0.01)(0.99)(0.10)(0.90)

= 0.2345

2. What is the reverse conditional probability of default, i.e., Pr[Di |D j ]? This may again
be computed applying Bayes’ theorem as follows:

Pr[Di |D j ] =
Pr[Di ∩ D j ]

Pr(D j )

= 0.008

0.100
= 0.08 = 8%

■

How does correlation affect first-to-default contracts? Conditional default is useful in

analyzing products such as first-to-default baskets. These are contracts that pay off when

any one of a set of bonds in a chosen basket defaults. In the case of two issuers i and j , this

is clearly dependent on the following probability:

Pr[Di ∪ Dj ] = Pr(Di ) + Pr(Dj ) − Pr[Di ∩ Dj ]

= pi + p j − Pr[Dj |Di ] pi

We may analyze two cases:

1. When there is perfect positive conditional default, i.e., Pr[Dj |Di ] = 1, then

Pr[Di ∪ Dj ] = pi + p j − 1. pi = p j

2. When there is zero conditional default, i.e., Pr[Dj |Di ] = 0, then

Pr[Di ∪ Dj ] = pi + p j − 0. pi = pi + p j

This gives the interesting result that the first-to-default basket contract will be more valuable

when there is weak conditional default. This is intuitively convincing as well—when the

correlation is low, there is little dependence between the credits, and hence, any one can

default independently of the other. This makes the chance of any one firm defaulting more

likely.

How does correlation affect second-to-default contracts? The pricing of contracts based

on conditional default can be counterintuitive. For example, the reader may wish to consider

whether the intuition of the first-to-default basket carries over to a second-to-default basket.

The latter is a contract in which the payoff occurs only after two bonds in a basket have

defaulted. Hence, the payoff depends on the probability of joint default. We have seen in

equation (34.6) that this probability of two defaults increases in the correlation of default.

Therefore, the value of this contract increases with default correlation, exactly opposite to

what occurs in the case of first-to-default contracts.
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What is the relationship of conditional default probability to default correlation? We may

use conditional default expressions as a way to reexpress the correlation of joint default.

ρi j =
Pr[Di ∩ Dj ]− pi p j 
pi (1− pi ) p j (1− p j )

= Pr[Dj |Di ]pi − pi p j 
pi (1− pi ) p j (1− p j )

= pi (Pr[Dj |Di ]− p j ) 
pi (1− pi ) p j (1− p j )

=
√

pi (Pr[Dj |Di ]− p j ) 
(1− pi ) p j (1− p j )

≡
√

p j (Pr[Di |Dj ]− pi ) 
pi (1− pi )(1− p j )

The last line follows from the symmetry of Bayes theorem. Rearranging, we also have

another expression for conditional default:

Pr(Dj |Di ) =
1

pi

 
ρi j
 

pi (1− pi ) p j (1− p j ) + pi p j

 
(34.11)

which can be seen to be linear in default correlation.

34.4 Structural Models Based on Asset Values

Since correlated default products, such as CDOs, are based on baskets of hundreds of

issuers, tranches written on such collateral with many constraints and conditions comprise

some of the most complex derivatives in existence. Vast simplification of the assumptions

underlying these products may sometimes result in closed-form solutions, but most cases

require substantial numerical handling.

In this section, we will develop the basic intuition for the way in which we may simulate

correlated default. The approach here is based on the structural model framework described

in Chapter 32.

Assume that firm i has asset value denoted by Ai and that the volatility of these assets isσi .

For now, assume that the asset return is normally distributed; we will relax this assumption

eventually. The firm has zero-coupon debt in the amount of Fi . The distance to default for

this firm is defined to be:

di = DT Di =
Ai − Fi

σi Ai

The distance to default di specifies the number of standard deviations of its value the firm

is away from default (implicit here is an assumed maturity for the debt of the firm, which

may be taken as one year when not specified otherwise). Default is denoted as before by

the indicator variable Di taking a value of 1.

The firm’s probability of default may be stated in terms of the distance to default, i.e.,

Prob of default = pi = N (−di ) = 1− N (di )

where N (.) stands for the cumulative normal density function. Therefore, if we are given

the probability of default, we may switch to the distance to default and vice versa, i.e.,

di = N−1[1− pi ]
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For this initial discussion, we ignore the time horizon over which default risk is being

assessed. However, both pi and di are implicitly based on a time horizon chosen by the

modeler or investor.

In order to simulate default for this issuer, we generate a number from the standard

normal distribution, i.e., xi ∼ N (0, 1), and then check whether it is less than the distance

to default, in which case the default event Di = 1 is deemed to be triggered. Thus, we have

Di =
 

1 if xi ≤ −di

0 if xi > −di
(34.12)

In the model, default is precipitated when the random variable xi is drawn from far enough

out in the left tail of the distribution so as to be less than the distance to default.

To illustrate how to use this approach to simulate correlated default, we specify another

firm j , with distance to default d j . We assume that the correlation of asset values is

Corr(Ai , A j ) = ρi j
If the two firm’s assets are distributed as multivariate normal, then from the relationship

of di in terms of Ai , the correlation of default is induced by the correlation of both firms’

assets. We generate joint default draws from the following distribution: 
xi
x j

 
∼ MVN

  
0

0

 
;

 
1 ρi j

ρi j 1

  

Therefore, we draw xi and x j and then check each against its respective distance to de-

fault, di , d j , determining separately whether default has occurred. In general, this two-firm

example may be extended to many firms, and we draw a vector of values from the following

system:

x ∼ MVN[0;R]

where the vector x is drawn from the mean zero sample with correlation matrix R. Default

is generated by comparing the following inequality element by element:

x ≤ −d
where d is a vector of all firm distances to default. We will demonstrate the generation of

correlated default with a simple example.

Example 34.3 Consider the case of 10 issuers, all of whom have distance to default equal to 2. The cor-
relation of asset values is taken to be an average for all firms and is 0.20 in one simulation
and 0.80 in another. Using the Octave program (below), we generate 100,000 iterations of
the random vector x, and in each iteration, we check for the number of firms that default.
Keeping a count, we generate a histogram for both correlation levels. These are presented
in Figure 34.1.

%Program to simulate defaults in asset values model

%Input Variables

n = 10; %number of firms

d = 2; %dtd

rho = 0.8; %avg correlation across firms

%Set up correlation matrix

R = rho*ones(n,n);

for i=1:n;

R(i,i) = 1;

end;
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FIGURE 34.1
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%Generate many correlated defaults

iter = 100000;

x = mvn_rnd(R,iter);

numdef = zeros(iter,1);

for i=1:iter;

numdef(i) = length(find(x(i,:)<=-d));

end;
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%Plot Histogram

grid;

title(’Histogram of Defaults: Rho = 0.80’);

hist(numdef);

The above Octave program uses a special-purpose function that we created for generat-
ing correlated random normal vectors, and the function is provided below (see the function
mvn rnd). The function uses Cholesky decomposition to generate random correlated vectors
(more detail on this will be specifically provided in Chapter 36).

%Octave function to generate multivariate standard random normal variates

%You need to pass the correlation matrix only (all diagonal elements are 1)

function u = mvn_rnd(corr,n);

m = length(corr);

z = randn(m,n);

L = chol(corr)’;

u = (L*z)’;

An examination of the histograms in Figure 34.1 shows that most times, there are no
defaults of any of the 10 firms. However, this is more prevalent when the asset values are
more correlated. When ρ = 0.8, the probability of zero defaults is more than 90%, and when
ρ = 0.2, the probability of zero defaults is lower, around 80%. The intuition for this comes
from conditional default reasoning. When default correlations are high, conditional on the
nondefault of one firm, the nondefault of the other firms is more likely as well. (We had un-
dertaken this analysis earlier when considering first-to-default and n-th to-default contracts).
Notice also that when the correlation is high, the probability of all firms defaulting is also
higher. Thus, we see that a first-to-default contract will be worth more when correlations
are low than when high.

On the other hand, consider a second-to-default contract. In this contract, the payoff is
triggered only when two or more issuers default. From the histograms, we see that when
ρ = 0.2, the probability of this happening is roughly of the order of 3%, but when ρ = 0.8,
the probability is 4%. (We can get these values by subtracting the probability of 0 and 1
default fromunity.) Hence, the second-to-default contract ismore valuablewhen correlations
are high, which reverses the effect noticed in the case of first-to-default contracts. ■

Reducing the Dimension of Large Systems
The simulation based on asset values is easy to implement as we have seen. But the speed at

which the implementation works is misleadingly efficient for small problems such as basket

contracts. When the same implementation needs to be undertaken for baskets of obligors

numbering in the hundreds, the computation can become very time consuming, and han-

dling a correlation matrix of a size such as 1,000× 1,000 can quickly become infeasible.

Specifically, drawing a vector of 1,000 random numbers is slow because Cholesky decom-

position degrades in speed very quickly when the size of the correlation matrix increases.

In such situations, reducing the dimensionality of the problem becomes an urgent necessity.

There are two ways in which we may address the high dimension issue. First, we can

carry out what we will choose to call a “block” simulation. Second, we may adopt the

method of projecting the system onto a parsimonious set of factors. In this subsection, we

will analyze the former approach, leaving the second for the next subsection.

We assume that the firms in the basket or CDO collateral may be subdivided into M

“sectors.” These sectors may be based on any chosen classification, for example, an in-

dustry breakdown. The number of firms within each sector j is denoted Nj . We denote

the correlation matrix of aggregate sector asset values as R. Therefore, R is of dimension
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M × M . We then draw a random vector y ∈ RM from this system, i.e.,

y ∼ MVN[0;R]

The values in this vector are for the average firm from each sector. Such a firm does not

exist in reality, but the random vector y will be used to support the simulation for each

individual firm as well. For now, this vector y is the default variable for each sector. Since

the correlation matrixR is used, this approach ensures that a cross-sector default correlation

is implemented. It also ensures that the dimensionality of the system is low, for it is restricted

to the number of sectors that are stipulated, this being far fewer than the total number of firms.

The next step is to draw default variables for each individual firm. This is done sector

by sector using the within-sector correlation matrix, which we denote R j for each j . This

correlation matrix is of dimension Nj × Nj . Using this, we draw a random vector x j with

the following distribution:

x j ∼ MVN[0;R j ]

This is done for each industry, i.e., for all j . Finally, the default variable is determined for

each individual firm within an industry as follows:

x j = x j + y j1, ∀ j
where 1 is a unit vector of dimension Nj . We then compare each element of this vector with

the corresponding distance to default to determine which firms fail.

To recap, this reduction in dimension of the problem emanates from breaking the sim-

ulation of default for a large system into two steps. First, the default level for each sector

in the system is simulated. This provides an average effect for each entire sector in the

credit basket. Second, the default levels for each individual firm within a sector are gener-

ated using the intra-sector correlation matrix. Then, the sector average effect is added to

the within-sector effect to get the final default variable for each firm. These may then be

compared to the individual firm distances to default to determine which firms are in default.

The largest dimension of correlation matrix being handled here is limited to that of the

biggest sector, or the number of sectors, i.e., max(max(Nj ), M). Unless the distribution of

the number of firms within sectors is extremely skewed, this dimension is much smaller than

that of the entire set of firms, which is
 

j N j . Hence, this provides a large computational

benefit. Further, the breakdown into sectors effectively imposes a simple factor structure on

the simulation model, such that each sector is treated as if it has its own loading on a factor,

i.e., there are M factors in the system. In the next subsection, we will discuss reducing the

dimensionality of the model even further, such that the number of factors is strictly less

than M .

Factor Models
A common approach to capturing correlated default is based on a factor model. There are

many variants of this class of models, naturally arising from a range of factor structures that

may be chosen. Factor models also vary because of the form in which they are implemented.

Here, we will work with the distance to default di of firm i . We denote the return on the

firm’s assets as Ri , which is the simple ratio of the asset value of the firm at the end of the

period to that at the beginning minus 1; i.e., over period (0, T ), this is
 

AT

A0
− 1
 

. We model

Ri as a function of firm-specific variables, which are fixed, and a factor set, which varies

over time. This may be written generally as

Ri = fi (X; β i , θi )
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The vector of factors is denoted X, and the factor loadings for firm i are denoted βi . The

vector θi comprises a set of firm-specific variables that remain fixed in time, such as the

firm’s target debt-to-equity ratio, and other policy variables. The factors may be chosen

to be market or macroeconomic variables, such as equity and bond indexes, GDP growth,

inflation, currency proxies, the level and slope of the term structure of interest rates, the

VIX volatility index, etc. See Duffie, Saita, and Wang (2007) for a nice exposition of the

power of well-chosen state variables to explain the cross section of defaults in the economy.

Because all firms’ returns will depend on the same factor set, this will induce correlation

across defaults in the system. For example, a very simple factor model may be in linear

form as follows:

Ri = β  i X+  i , ∀i
where  i is the idiosyncratic (nonfactor) component of return. This model ignores firm-

specific variables altogether and may be easily fitted using a time-series regression. Here,

the variance of firm returns follows automatically from the regression, i.e.,

σ 2
i = β  

i
 βi + σ 2

 i

where  is the factor covariance matrix, and σ 2
 i

is the variance of  i . Once the model is

fitted for all firms, then simulation of correlated default involves the following steps:

1. Draw a sample of the factors using the multivariate factor distribution. For example, if

this is multivariate normal, then we have

X ∼ MVN[μ; ]

whereμ is the mean of factor levels. The factor system may be translated into mean-zero

terms and then μ = 0. We also draw the value of idiosyncratic return, as follows:

 i ∼ N
 
0, σ 2

 i

 
Thus, the generated return will be:

Ri = β  i X+  i
2. The factor vector is used to compute the values of returns for all the firms, which may

then be used to determine whether default has occurred. This is done by comparing the

normalized return

xi =
Ri

σi

with the distance to default di . Thus, default occurs if

xi < −di , ∀i
The last step here requires further explanation, and we show how to link it to the discussion

on distance to default. Recall that the distance to default for firm i is as follows:

di =
1

σi

 
Ai − Fi

Ai

 

where Fi is the face value of zero-coupon debt of firm i . Assuming that at the outset Ai > Fi ,

the value in square brackets above is the return by which the firm value needs to fall to trigger

default. Therefore default occurs if

Ri < −
 
Ai − Fi

Ai
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Dividing both sides by σi , we see that default is triggered when

xi ≡
Ri

σi
< − 1

σi

 
Ai − Fi

Ai

 
≡ −di (34.13)

This is equivalent to the condition we stipulated above. We can see that the framework of

comparing a random default variable xi with distance to default di is followed here as in

prior sections. The difference lies in the way in which xi is generated for each firm.

In this factor model, the two main advantages are as follows. First, the computations

required to generate the random variables are parsimonious because the dimension of the

random vector is restricted to the number of factors, usually much smaller than the number

of sectors, and substantially smaller than the number of firms. Second, the correlations

among firm returns follow easily from the factor equation, which may be estimated using

standard models.

In sum, the factor model uses a set of basis factors to generate returns for each firm. The

post-return firm values are implicitly compared against debt value to determine whether

default has occurred. This is done explicitly by comparing normalized returns with distance

to default.

All the models looked at so far are based on a comparison of a default variable xi
with distance to default di . The models differ in the degree of detail of the correlation

structure used. Our first model was the most detailed and required the correlation matrix

of individual firms. The second model reduced the dimension of the correlation matrix by

grouping firms by sector. The third model based on a simplified factor structure was the most

parsimonious.

34.5 Reduced-Form Models

In addition to structural models, which are based on asset value correlations, reduced-form

models also enable the simulation of correlated default. Here joint default is driven by

the correlation of default intensities, which were described in Chapter 33. We will use the

results in that chapter as a basis for the framework presented here.

The basic unit of analysis is a default rate λi for firm i . The rate or intensity is stochas-

tic and changes over time. Given a time interval (0, t), the intensity implies a survival

probability

si (t) = exp

 
−
 t

0

λi (u) du

 

Note the similarity of this expression to the probability of zero events in a Poisson density

function. The probability of default is 1 minus the probability of survival, i.e.,

pi (t) = 1− si (t)

Reduced-form models reside in the class of “doubly stochastic” models because there

are two sources of uncertainty. First, the intensity is stochastic. Second, conditional on a

given level of intensity, the default event is also probabilistic. In the default context, doubly

stochastic processes are called Cox processes; see Lando (1994)—the main feature is that

after we have conditioned on intensities, the actual default of firms is independent. In other

words, all default correlation comes from the correlation of intensities. There are no further

sources of correlation such as contagion effects. The presence of contagion would imply

that even after fully accounting for the correlation between obligor intensities, additional

correlation is experienced when defaults occur. To account for contagion, simulation models
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must draw random default times in a correlated manner, even after accounting for the

correlation of default intensities.

One should note here that the doubly stochastic feature of these models also exists in

the class of structural models. In the discussion preceding this section, we assumed that

the distance to default di was already determined and the event of default was drawn

probabilistically. This is akin to drawing default in the reduced-form model conditional on

a given intensity level.

Therefore, simulating default in a basket of issuers comprises first sampling intensi-

ties with the appropriate correlation, and thereafter, if the doubly stochastic assumption is

violated, sampling default events with the correct additional dependence. The following

example will make these ideas more explicit.

Example 34.4 Suppose we have 10 issuers in a basket of credits. The constant default intensity for each
issuer is λi = 0.1, ∀i = 1 . . .10. If the horizon for the analysis is one month (i.e., t = 1/12),
then the one-month default probability is

pi = 1− exp(−λi t) = 0.0082987

Now we assume that default is conditionally independent, i.e., we sample 10 independent
uniform random variables xi and check if xi ≤ pi , ∀i . For example, we generated 10 random
numbers from xi ∼ U [0, 1] and obtained:

0.8807160 0.6384585 0.5407283 0.1113356 0.2733150

0.1002537 0.9708890 0.9470903 0.6617928 0.0022545

Only one of these values—the last one in the set of numbers above—is less than 0.0082987.
Hence, one of the 10 firms defaults in this random draw. ■

In reduced-form models, the first level of correlation comes from drawing the set of λis

with the appropriate correlation (in the example above, we assume this was already done).

If the doubly stochastic assumption holds, then there is no further correlation and, as above,

independent random uniform numbers are drawn to check for default.

Of course, if the defaults are not conditionally independent, then the uniform random

numbers would need to be drawn with the appropriate correlation. This may be done effi-

ciently using the technique of “copula” functions and will be taken up later in this chapter.

Generating the set of intensities in a dependent manner requires a correlation matrix of

intensities. Hence, the dimensionality of the simulation depends on the number of issuers.

Since this may be a large number, the computational effort may grow rapidly. As before, the

way in which high dimensionality may be addressed is by reducing the system to a much

smaller one based on a factor set. By specifying intensities as modeled on a parsimonious

set of factors, the computational complexity is curtailed successfully.

34.6 Multiperiod Correlated Default

So far, we assumed that the simulation of correlated default was undertaken for just one

period. We may extend the model to many periods. To fix ideas, consider the modeling of

a CDO with a collateral of many issuers and a maturity of 10 years. Suppose the discrete

interval in our model is set to be annual. Then we need to run 10 annual simulations of

correlated default to determine the total set of defaults over the full life of the CDO.

The probability of default (indicated by the default intensity in reduced-form models and

by the distance to default in structural models) can no longer be assumed to be a constant over

the entire period. Therefore, in a multiperiod setting, we need to use stochastic processes
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for the default intensities of each firm if we are working in a reduced-form model. If we

work in a structural model, then we need to simulate the asset values of each firm over time.

A brief list of the steps in the procedure is as follows:

1. Generate the default intensity from a stochastic model for all firms (if the framework is

reduced form) or generate the return on the firm’s assets if the framework is structural.

During this process, ensure that the correlations are factored in while simulating the new

values.

2. Conditional on these values, determine which firms default within the first year. Unless

conditional independence is imposed on the model, make sure that the default variables

used to check for default are generated with appropriate correlations.

3. Using the values of default intensity or firm value (as the case may be) at the end of the

first year, we proceed back to step 1 above and repeat the process for the next year. We

continue to do this loop until all years have been accounted for. We make sure to record

all defaults that occur in each year.

The outline of the multiperiod simulation is intentionally very general and admits many

specific implementation forms. It applies to both structural and reduced-form models. This

would be the approach used if one were pricing the tranches of a cash-flow CDO. Each

period needs to be simulated so as to generate cash flows appropriately and check various

covenants and conditions.

Synthetic CDOs are often easier to simulate. The method outlined above, although gen-

eral, is inefficient if implemented literally. It is more efficient to simulate default times than

default occurrences. This brings us to the concept of a stopping time. In brief, one may think

of a stopping time as the time at which the event in question occurs. Therefore, the simulation

of default may be thought of as the generation of random default times for each issuer.

The stopping time approach is not very different from that outlined earlier in which we

simulated a default variable (which we denoted xi ) and compared it with the distance to

default di (in structural models) or with pi (in reduced-form models). In the stopping time

framework, a variable xi is also generated but is compared with a time horizon. The method

is best explained with an example.

Example 34.5 Assume again a set of 10 firms for which we have generated default intensities, which are
constant and equal, i.e., λi = 0.10. We are interested in simulating defaults over the in-
terval of time (0, t). Conditional on these intensities, we need to generate stopping times
τi , ∀i = 1 . . .10. Since default arrival is Poisson, the time between Poisson arrivals is ex-
ponentially distributed. We exploit this distributional property in our simulation algorithm.
Our procedure for generating stopping times is as follows.

1. Generate a default variable for each obligor: xi ∼ U [0, 1], ∀i . This generates 10 uniform
random numbers between 0 and 1.

2. Transform these uniform random numbers into default times using the exponential dis-
tribution, i.e., set

xi = exp(−λi τi )

A transformation of the previous expression gives the stopping time τi as follows:

τi = −
1

λi
ln(xi )
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3. Compare the stopping time with horizon t, and establish default as follows:

Di =
 

1 if τi ≤ t

0 if τi > t

Therefore, if the stopping time occurs after the horizon, the interpretation is that default
has not occurred. If the stopping time is less than the horizon, default is triggered.

As is now familiar, the stopping times may be generated independently conditional on the
intensities. But this may be relaxed, and stopping times can be generated in a correlated
manner too, by drawing the xi s with appropriate correlation.

To complete the example, we present one sample draw for the 10 firms assumed above,
taking default to be conditionally independent once the intensities are generated. The hori-
zon is set to t = 1, i.e., one year. The Octave code is as follows:

octave:1> x = rand(10,1)

x =

0.086135

0.449259

0.307056

0.243939

0.125794

0.912623

0.664363

0.732090

0.731622

0.458583

octave:2> lambda = 0.1; tau = -log(x)/lambda

tau =

24.51845

8.00156

11.80724

14.10837

20.73112

0.91433

4.08927

3.11851

3.12491

7.79614

octave:3> t=1; def_firm_no = find(tau<t)

def_firm_no = 6

We first generated the default variables x from a uniform distribution. These are then
transformed into stopping times tau (τ ) using the stated intensities. Finally, the stopping
times are compared to the horizon t to find the firms that are in default. In our example,
exactly one firm had a stopping time under 1 year, i.e., firm number 6 (its stopping time
was 0.91433 years).

Now if the horizon was 10 years, i.e., t = 10, then more firms would be in default in the
single sample draw depicted above, as can be seen from the results of the following Octave

code.

octave:10> t=10; def_firm_nos = find(tau<t)’

def_firm_nos =

2 6 7 8 9 10

Of the 10 firms, 6 defaulted in this random draw over a 10-year horizon. ■
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Simulating stopping times is a highly parsimonious way of generating defaults especially

when the time horizon is long, as is usually the case in products such as CDOs. Only one

sample of default variables xi is required for the entire period of time. In the alternative

approach in which default is generated (say) each year at a time, the simulation needs to be

repeated once for each year, leading to a lot more computation. The stopping time approach

is faster because it exploits the fact that each issuer can default only once and no more. For

more details on simulating correlated default in a practical manner, see the paper by Duffie

and Singleton (1999b).

34.7 Fast Computation of Credit Portfolio Loss Distributions
without Simulation

From the preceding sections, we see that computing loss distributions is easy to do by

means of simulation in either a structural or reduced-form framework. By drawing a vector

of random variables from a specified joint distribution and checking these against the

probability of default of each name in the portfolio, we are able to build up an entire loss

distribution. However, like all simulation approaches, computation tends to be slow when

the dimension of the problem becomes large, and in cases where the tails of the distribution

matter, we need an extremely large number of simulation draws to ensure that the loss

distribution is not an aberrant one. We will now examine an alternate analytic approach to

computing the loss distributions of credit portfolios.

The work of Andersen, Sidenius, and Basu (2003) provides a fast semianalytic com-

putation scheme to obtain the credit portfolio loss distribution. Once we have been given

the set of default probabilities of all the issuers in the credit portfolio, a recursion scheme

computes the loss distribution in run time that is linear with respect to the number of names

in the portfolio. The approach works in three steps:

1. Generate the Set of State-Dependent Probabilities of Default Assume we have

distance to defaults dk for K issuers. Conditioning on state variable(s) X , generate a set

of default probabilities for each name k out of the total number of issuers K drawn from a

model in which the appropriate default correlation is maintained. For simplicity, assume

a one-factor model of default such that a single factor drives all default correlation

between the issuers in the portfolio. Let this common factor be normalized and denoted

X ∼ N (0, 1). Assume that each issuer has a default variable

Yk =
√
ρk X +

 
1− ρk Zk

where ρk is the correlation coefficient relative to the common factor X . Zk ∼ N (0, 1)

is an idiosyncratic shock term that is different for each issuer. This means that Yk is

also normally distributed with a mean of zero and a variance equal to 1. Normality

is imposed here for illustrative purposes only, and any distribution may be applied in

the equation above. Suppose we are given the distance to default of each issuer in the

portfolio, denoted dk . Then the probability of an issuer defaulting, denoted pk , specified

as follows is

pk = Prob[Yk < −dk] = Prob[
√
ρk X −

 
1− ρk Zk < −dk]

Since Zk is normally distributed, we can then denote pk , conditional on X as

pk |X = N

 −dk −√ρk X√
1− ρk
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2. Generate the State-Dependent Loss Distribution L(X) For a given level of the state

variable X , we use the vector of probabilities pk |X to compute a loss distribution L(X ),

which is described in detail below. The approach uses a recursion scheme.

3. Generate the Aggregate Loss Distribution L Repeating step 2 for the entire range

of X values gives a set of loss distributions, one for each value of X . Combining all

of these loss distributions results in the total loss distribution of the credit portfolio,

L =  
X
L(X ) Prob(X ) dX .

We now describe in detail the recursion approach of Andersen, Sidenius, and Basu (2003)

to build up the loss distribution L(X ) analytically (step 2 above). Note that in the ensuing

discussion, we are looking at the “inner” loop of the scheme in which we compute but one

loss distribution L(X ) for a fixed value of X . The “outer” loop combines the various L(X )

distributions into the aggregate loss distribution L (step 3). To keep the notation simple, we

write pk |X as just pk and drop the conditioning (on X ) notation, bearing in mind always

that we are computing the loss distribution for a given value of the state variable X .

Our credit portfolio comprises the K issuers: k = 1, . . . , K . Let wk be the loss level of

the k-th name. This is fixed, and hence, implies that conditional on the issuer defaulting, the

dollar loss amount is prespecified and is constant. The set of loss levels (in round dollars)

is denoted as

l = {0, 1, . . . , lmax}

The probability of a total loss level of l if the first k firms is considered is denoted Pk(l).

Andersen, Sidenius, and Basu (2003) applied the following recursion:

Pk+1(l) = Pk(l)[1− pk+1]+ Pk(l − wk+1) pk+1 (34.14)

Therefore, the probability of a loss level of l, after considering (k+ 1) firms, is equal to the

sum of two terms: (a) the probability of a loss of l after considering k firms, and the (k+1)st

firm does not default and (b) the probability of a loss of l −wk+1 after considering k firms,

and the (k+ 1)st firm does default. This simple recursion equation is the key to building up

the entire loss distribution. This distribution L(X ) is, of course, a set of discrete loss levels

and corresponding probabilities of these loss levels. We showcase the implementation with

a numerical example.

Example 34.6 Let the number of names be K = 4, and the individual loss for each firm be specified as

w = {w1,w2,w3,w4} = {2, 1, 7, 3}

Hence, the maximum possible loss occurs when all firms default, and lmax = 13. We have
14 loss bins l = 0, 1, . . . , 13. Since K = 4, we will have four iterations of equation (34.14)
in total in the algorithm.

1. In the first iteration, only two possible outcomes exist: either that the first name does not
fail or that it fails, so the loss will be 0 or 2:

P 1(0) = 1− p1

P 1(2) = p1

There are no other possible loss levels if only the first issuer is considered. Hence, all other
P 1(l ) values are zero, i.e., P 1(l ) = 0, if l  = {0, 2}.
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2. For the second iteration, we need all combinations of losses from the first two names,
i.e., we apply the recursion equation (34.14) for k = 2:

P 2(0) = P 1(0)[1− p2] = (1− p1)(1− p2)

P 2(1) = P 1(1)[1− p2]+ P 1(1− 1)p2 = 0+ (1− p1)p2

P 2(2) = P 1(2)[1− p3]+ P 1(2− 1)p2 = p1(1− p2) + 0

P 2(3) = P 1(3)[1− p2]+ P 1(3− 1)p2 = 0+ p1 p2

Therefore, after accounting for the second firm (iteration 2), the maximum loss level is 3,
given that firm 1 has a loss level of 2 and firm 2 has a loss level of 1. After k = 2, there are
four possible loss levels, {0, 1, 2, 3}, and these have the four probabilities given above.
The probabilities sum to 1. Note how, after iteration 2, we have a loss distribution that
describes losses in a credit portfolio comprised of the first two issuers.

3. We proceed to iteration 3. Here the third firm may default as well, and so the maximum
loss level is 10. We can write down a few of the probabilities for the possible loss levels
as follows:

P 3(0) = P 2(0)[1− p3] = (1− p1)(1− p2)(1− p3)

P 3(1) = P 2(1)[1− p3]+ P 2(1− 7)p3 = (1− p1)p2(1− p3) + 0

P 3(2) = P 2(2)[1− p3]+ P 2(2− 7)p3 = p1(1− p2)(1− p3) + 0

P 3(3) = P 2(3)[1− p3]+ P 2(3− 7)p3 = p1 p2(1− p3) + 0

P 3(7) = P 2(7)[1− p3]+ P 2(7− 7)p3 = 0+ (1− p1)(1− p2)p3

P 3(8) = P 2(8)[1− p3]+ P 2(8− 7)p3 = 0+ (1− p1)p2 p3

Likewise, we can write down P 3(4), P 3(5), P 3(6), P 3(9), and P 3(10). We may move on
in this way to the fourth issuer as well, and compute the entire loss distribution. This is
left as an exercise.

It turns out that this approach is exceedingly simple to program. Let the set of prob-
abilities of default of the four firms be p1 = 0.10, p2 = 0.05, p3 = 0.03, and p4 = 0.20.
The Octave program to implement this scheme is as follows:

%INPUTS

%PROGRAM: asb_recusrsion.m

w = [2,1,3,7]; %Loss weights

p = [0.1, 0.05, 0.03, 0.2]; %Loss probabilities

%BASIC SET UP

N = length(w);

maxloss = sum(w);

bucket = [0:maxloss];

LP = zeros(N,maxloss+1); %probability grid over losses

%DO FIRST FIRM

LP(1,1) = 1-p(1);

LP(1,w(1)+1) = p(1);

%LOOP OVER REMAINING FIRMS

for i=2:N;

for j=1:maxloss+1;

LP(i,j) = LP(i-1,j)*(1-p(i));
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if bucket(j)-w(i) >= 0; LP(i,j) = LP(i,j) + LP(i-1,j-w(i))*p(i); end;

end;

end;

%SHOW HISOTOGRAM OF LOSS DISTRIBUTION

lossprobs = LP(N,:);

fprintf(’CHECK: Sum of final probs = %10.6f \n’,sum(lossprobs));

[bucket’ LP’]

The loss distribution computed from the program is as follows:

octave-2.9.17:4> asb_recursion

CHECK: Sum of final probs = 1.000000

ans =

0.00000 0.90000 0.85500 0.82935 0.66348

1.00000 0.00000 0.04500 0.04365 0.03492

2.00000 0.10000 0.09500 0.09215 0.07372

3.00000 0.00000 0.00500 0.03050 0.02440

4.00000 0.00000 0.00000 0.00135 0.00108

5.00000 0.00000 0.00000 0.00285 0.00228

6.00000 0.00000 0.00000 0.00015 0.00012

7.00000 0.00000 0.00000 0.00000 0.16587

8.00000 0.00000 0.00000 0.00000 0.00873

9.00000 0.00000 0.00000 0.00000 0.01843

10.00000 0.00000 0.00000 0.00000 0.00610

11.00000 0.00000 0.00000 0.00000 0.00027

12.00000 0.00000 0.00000 0.00000 0.00057

13.00000 0.00000 0.00000 0.00000 0.00003

The left column in the tableau of shows the various possible loss levels (buckets), and each
column thereafter shows the loss distribution after each iteration. Hence, the right-most
column shows the final loss distribution probabilities.

Note that the results do not depend on the sequence in which the firms are processed
in the iterations. The reader may enter the program into Octave and try shuffling the
sequence of losses in variable w and respective probabilities p at the top of the program.
The last column will be the same each time, though the intermediate columns will be
different. ■

34.8 Copula Functions

In this section, we will generalize the modeling approaches for correlated default to mul-

tivariate settings in which we may choose from various different joint distributions. The

technique will use what are known as copula functions. These were introduced to the arena

of correlated default by Li (2000). But before delving into the specifics of copulas, it is best

to recap what we know so far:

1. Individual default probabilities (pk , k = 1 . . . K ) for issuers may be determined in

either structural or reduced-form models.

2. Defaults of individual issuers are determined in a simulation setting by drawing num-

bers Yk with appropriate correlation from a multivariate probability distribution and

then comparing these numbers to cutoff values dk that are based on the probabil-

ities of default pk in order to ascertain which issuers default and which do not. In
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general, dk = F−1
k ( pk), where F(·) is a distribution function. Clearly, whether pk comes

from a structural model or a reduced-form model does not matter. The application of

copulas is therefore agnostic to the class of default model that generates the default

probabilities.

3. The key to correlated default modeling lies in generating the values Yk with the right

correlation. In this section, we will look at how this is done using copula functions. A

copula function takes as input the various distribution functions Fk(·) and “couples” them

into a joint distribution with the required shape. As we will see (a) copula functions are

able to couple univariate distributions, all of which may be different, into a multivariate

one and (b) copulas may also be chosen in a manner that specifies the shape of the joint

distribution (specifically, how fat its tails are).

Copulas are functions that, as the name suggests, couple individual probability functions

into joint probability functions. It is easy to intuit that there are many ways in which

individual probability functions governed by a given correlation matrix can be coupled into

a multivariate one—in other words, the joint distribution is not unique. It will depend very

much on the coupling scheme, i.e., on the chosen copula.

We follow a two-step creation of the joint distribution.

1. First, the individual or marginal probability functions are chosen.

2. Second, these are coupled into the joint function using a copula. There are many copulas

available, such as the Gaussian, Student’s t , Gumbel, Frank, and Clayton. Each of these

imposes different properties on the joint distribution.

A good reference (somewhat technical) on copulas is the book by Nelsen (1999).

The separation of the choice of marginal distribution from that of the joint distribution

is a key practical benefit of using copula techniques. It offers great flexibility in creating

the required correlation structure. This idea is best exemplified as follows. Consider two

very different scenarios, A and B. We have two random variables x1, x2, and they have a

correlation equal to 40% in both scenarios. In scenario A, extreme values of the random

variables tend to be more correlated than nonextreme ones. The opposite occurs in scenario

B where nonextreme values are more correlated. Even though, on average, both scenarios

have the same correlation, thepatternof correlation is quite different. One can easily imagine

the scenarios to be economic regimes, and it is easy to come up with examples of random

variables that may be more like one scenario than the other. For instance, default correlations

in the high-yield debt market are higher in poor economic conditions (extremal observations

of firm value) than when times are normal. Such episodes result in “tail fatness” in the joint

distribution.

To look at how the joint distributions with the same correlation can embody varying

amounts of tail fatness, we look at plots that depict a scatter plot in the bivariate distribution.

In Figure 34.2, we provide two graphs. The one on the left side shows the joint distribution

of two standard normal variates with a correlation of 40%. The right-side plot is based on

two variates drawn from a Students’s t distribution with the same correlation and degrees of

freedom equal to 5. Since the correlation is positive, the scatter is heavy along the positive

sloped diagonal for both plots. Even though the correlations are identical across the two

plots, the shapes of the depicted bivariate distributions are quite different. The Student’s t

distribution is more stretched (less circular, more ellipsoid) and has a much fatter tail, which

may be seen from a comparison of the range of the axes in both plots. There are many more

extreme outliers than in the case of the normal variates. With this informal discussion on

why the shape of the joint distribution matters, we move on to an explicit consideration of

copula functions.
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FIGURE 34.2
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The formal definition of a copula begins by modeling an m-variate distribution. A ran-

dom draw from this distribution comprises a vector X ∈ Rm = {X1, X2, . . . , Xm}. Each

of the m variates has a marginal distribution, which we denote Fi (Xi ), i = 1 . . .m.

The joint distribution is denoted F(X ). The copula associated with F(X ) is a function

C : [0, 1]m → [0, 1], which maps an m-dimensional space onto a line interval [0, 1].



884 Part Five Credit Risk

We may write

F(X ) = C[F1(X1), F2(X2), . . . , Fm(Xm)] (34.15)

One may well ask: is it always possible to fit a copula to a set of marginal distributions

to create a joint distribution? It turns out that the answer to this question is yes. This was

shown in well-known papers: Sklar (1959, 1973). The proof is beyond the scope of this

book, and not essential to understanding the practical use of copula functions.

Copulas are useful in modeling multivariate distributions very generally with flexible

dependence structures. The reason for this lies in the feature that copula density functions

separate the univariate distributions from the coupling function. To see this, assume we have

two random variables X1 and X2, with joint distribution function

F(x , y) = C[FX1
(x1), FX2

(x2)] = C(u, v)

where C is the copula function, u = FX1
(x1), and v = FX2

(x2). We can easily see that the

joint density function is given by

f (x1, x2) =
∂2F(x1, x2)

∂x1∂x2

= ∂2C[FX1
(x1), FX2

(x2)]

∂x1∂x2

= ∂2C(u, v)

∂x1∂x2

= ∂2C(u, v)

∂u∂v

∂u

∂x1

∂v

∂x2

= c(u, v) fX!
(x1) fX2

(x2)

The last line shows the separation of the joint probability density into the copula density

c(u, v) and the marginal probability densities fX1
(x1) and fX2

(x2). We may choose any

marginal density functions as we require, and this choice is unaffected by the choice of

copula function, nor does it impose any restrictions on the copula.

Copula techniques lend themselves easily to risk analysis. First, different copulas may

be examined for statistical fit to the data. Since the copula technique provides the joint

distribution, parameter estimation becomes viable by maximum likelihood. Second, once

the copula and marginal distributions are available, risk analysis is also feasible via scenario

simulation by drawing from the joint distribution. Third, copulas enable injection of the

desired level of correlation among the stochastic process of default of individual issuers.

In the next subsection, we review the concept of rank correlation, which is needed for

the operationalization of copulas.

Rank Correlations
If random variables track together, then the measure of linear correlation used earlier in

this chapter would reflect this and would be positive. When a copula is applied to marginal

distributions, it effects a scale transformation on the original distributions, and the linear

correlations may change. This would not occur if rank correlations (i.e., the correlations

of ranks, to put it very loosely) were used. Since rank correlation is invariant to scale

transformations, the rank correlation in the joint distribution will be preserved irrespective

of the copula that is used.
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One measure of rank correlation is Kendall’s τ . If (X1, Y1) and (X2, Y2) are two inde-

pendent draws from a joint distribution of X and Y , then

τ = Pr [(X2 − X1)(Y2 − Y1) > 0]− Pr [(X2 − X1)(Y2 − Y1) < 0] (34.16)

If (X2 − X1)(Y2 − Y1) > 0, the pair of random draws is concordant, else it is discordant.

If we define c as the number of concordant pairs and d as the number of discordant pairs,

then we can also define the rank correlation as:

τ = c − d

c + d
= c − d

n(n−1)
2

= 2

n(n − 1)

 
i< j

sign[(Xi − X j )(Yi − Yj )] (34.17)

Rank correlation has the following properties:

• τ ∈ [−1, 1].

• If X, Y are independent, then τ = 0.

• τ is invariant under strictly monotonic transformations, that is, if f (X ), g(Y ) are strictly

increasing or decreasing functions. Then, τ [ f (X ), g(Y )] = τ (X, Y ).

In particular, with the normal distribution,

τ [ (X ),  (Y )] = τ [X, Y ] = 2

π
arcsin(ρ(X, Y )) (34.18)

which connects the rank correlation τ with the linear correlation coefficientρ. The following

program code is a fast and parsimonious function to compute Kendall’s τ based on an

implementation of equation (34.17) above.

function u = ktau(x,y);

k=length(x);

xminusx = triu(kron(x,ones(1,k)) - kron(x’,ones(k,1)),1);

yminusy = triu(kron(y,ones(1,k)) - kron(y’,ones(k,1)),1);

u=2*sum(sum(sign(xminusx.*yminusy)))/(k*(k-1));

To illustrate this, we generate two random columns of data from a bivariate normal distribu-

tion with correlation equal to 0.4 and compute the τ value. The code snippet is as follows:

octave:1> x = mvn_rnd([1 0.4; 0.4 1],1000);

octave:2> ktau(x(:,1),x(:,2))

ans = 0.29548

octave:3> corrcoef(x)

ans =

1.00000 0.44774

0.44774 1.00000

octave:4> ktau(x(:,1),exp(x(:,2)))

ans = 0.29548

octave:5> corrcoef([x(:,1),exp(x(:,2))])

ans =

1.00000 0.33849

0.33849 1.00000

Here, we first generate 1000 values each of two standard normal variates with correlation

0.4. Next we compute the rank correlation and obtain τ = 0.29548. The linear correlation is
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0.44774. We transform the second variable by exponentiating it and then rerun the rank cor-

relation between the first (untransformed variable) and the second transformed one. Kendal’s

τ remains 0.29548 even for the transformed variables. But when we compute linear correla-

tionρ for the transformed variables, we get 0.33849, which is not the same as 0.44774, show-

ing that linear correlation is not preserved under monotone nonlinear transformations of the

variables. Thus, we see that the exponential transform does not affect the rank correlation, but

it does change linear correlation. Hence, Kendall’s τ is unaffacted by nonlinear transforms.

We also verify the relationship between linear correlation ρ and Kendall’s τ of equation

(34.18), which is

τ [x1, x2] =
2

π
arcsin(ρ(x1, x2))

⇓

0.29548 = 2

π
arcsin(0.44774) = 0.29554

which is verified in the code below (the small difference being a matter of rounding):

octave:6> 2/pi*asin(.44774)

ans = 0.29554

Next we consider how to sample random variables from a normal copula.

Sampling Random Variables with the Normal Copula
The Gaussian copula is a popular one for scenario generation because of its parsimony and

ease of use. One approach to generate joint random variables {xi } using the Gaussian copula

is as follows.

1. Compute the matrix of rank correlation coefficients prior to the simulation. This may

be computed from the data or it may be derived from an economic model. Denote this

matrix as {τ }i j .
2. Convert this matrix into the linear correlation matrix by computing values from the

inverse of the transform equation used above, i.e.,

ρi j = sin
 π

2
τi j

 
3. Generate multivariate random normal numbers with mean zero and correlation matrix

{ρ}i j , to get a random vector (Z1, Z2, . . . , Zm) .

4. Let ui =  (Zi ), i = 1..m. Here  (Zi ) is the cumulative normal distribution function

over Zi .

5. Finally, we get xi = F−1
i (ui ), i = 1 . . .m, where Fi is the marginal distribution and

may be different for each i .

A similar approach may be used to generate samples from a Student’s t distribution using

copulas. Or for that matter, any other distribution. Each xi comes from its own distribution

Fi . This procedure is best illustrated with an example.

Example 34.7 Suppose we have two random variates x1, x2, which are from different distributions. We
assume that x1 comes from an exponential distribution with mean 0.1, and x2 is standard
chi-square with degrees of freedom equal to 3. We specify that the rank correlation between
the two variables is 0.6. Our goal is to generate a scatter diagram of the two variables based
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on their marginal distributions coupled together by a Gaussian copula. We implement the
following steps:

1. Convert the rank correlation into a linear correlation parameter, i.e.,

ρ12 = sin
 
π

2
τ12

 
= sin

 
π

2
× 0.6

 
= 0.80902

2. We generate 1000 correlated pairs of random normal values using ρ12, and the code is
as follows:

octave:2> z = mvn_rnd([1 0.80902; 0.80902 1],1000);

3. Convert these z values into [0, 1] variates using the normal CDF, i.e.,

octave:3> u1 = normal_cdf(z(:,1)); u2 = normal_cdf(z(:,2));

4. Generate the random values by parsing the ui through their respective marginal distri-
butions. This is done by inverting the CDF for each marginal distribution.

octave:4> x1 = exponential_inv(u1,0.1); x2 = chisquare_inv(u2,3);

We can then also examine the correlation between the variables x1 and x2. This is equal
to 0.78936, and is computed as follows:

octave:5> corrcoef([x1 x2])

ans =

1.00000 0.78936

0.78936 1.00000

octave:6> ktau(x1,x2)

ans = 0.59775

The rank correlation we started out with, i.e., τ = 0.6, is preserved, as the final rank corre-
lation is also almost the same, i.e., 0.59775. The linear correlation is also almost the same
as its original value of 0.8, but this need not in fact always be the case. The scatter plot of
the bivariate distribution is presented in Figure 34.3. ■

Tail Dependence
The significant benefit of the copula method lies in the ability to tune “tail dependence”

in the joint distribution. What does this mean? In nontechnical terms, tail dependence is

the extent to which the correlation in the joint distribution comes from extremal obser-

vations rather than central observations. As we have seen in Figure 34.2, the Students’s t

simulation generates a scatter plot with many more jointly extreme observations. Hence,

its tail dependence would be higher than that of the normal distribution. Tail dependence is

usually spoken of more specifically as left- or right-tail dependence, depending on which

tail evidences higher correlation relative to the central part of the joint distribution.

Intuitively, tail dependence depends on the interaction of the various distributions cou-

pled together by the copula. The choice of the copula may also permit the choice of tail

dependence. For instance, when using a Students’s t copula, the lower the degrees of free-

dom, the higher is the tail dependence that is achieved. Many other copulas also have

parameters that permit tuning of the extent of tail dependence. One special class is that of

Archimedean copulas.

Archimedean Copulas
The Archimedean copula structure is generally written as the function

C(F1, . . . , Fm) =  −1[ (F1) + . . .+ (Fm)]
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The x-variable relates to an exponential distribution with parameter 0.1; the y-variable is

based on a chi-square distribution with 3 degrees of freedom. The rank correlation between

the variables is assumed to be 0.6.

FIGURE 34.3
Exponential and

Chi-Square with a

Normal Copula
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The function  (F) is known as the “generator” of the copula. Frees and Valdez (1998)

summarize various examples of generators. For instance, the Gumbel copula has a generator

 (F) = (−ln(F))α .

Example 34.8 An example will illustrate some of the features of Archimedean copulae. Consider a Gumbel
copula with random variables from two distribution functions F 1 and F 2. The copula is as
follows:

C (F 1, F 2) =  −1[(− ln F 1)
α + (− ln F 2)

α]

where  (F i ) = (− ln F i )
α = y is as above. Inverting this function, we get

 −1[y] = e−y1/α

Substituting and rearranging, we get

C (F 1, F 2) = exp

 
−
  

ln
1

F 1

 α
+
 
ln

1

F 2

 α 1
α

 

To check that this does result in a joint distribution function on [0, 1] we verify the following:

lim
F 1 → 0
F 2 → 0

C (F 1, F 2) = 0, lim
F 1 → 1
F 2 → 1

C (F 1, F 2) = 1

In the Gumbel copula, tail dependence depends on the parameter α. As α increases, the
extent of tail dependence increases. In Figure 34.4, we see how the density function varies
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This graph shows how the density function varies as the tail dependence parameter α is

varied. We hold F1 = 0.5 and then compute the density function as F2 varies from 0 to 1.

When α = 2, as in the left-side plot, the graph is less leptokurtic than when α = 4 as in the

right-side plot.

FIGURE 34.4
Tail Dependence in the

Gumbel Copula
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as the tail dependence parameter α is varied. We hold F 1 = 0.5 and then compute the
density function as F 2 varies from 0 to 1. When α = 2, as in the left-side plot, the graph is
less leptokurtic than when α = 4 as in the right-side plot. ■
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Implied Correlation from Copulas
In practice, the price of a CDO tranche may be used to “imply” the correlation of default

times among the reference names in a CDO. This assumes that all obligors in the CDO

have the same pairwise correlation coefficient ρ. If the default probabilities of the obligors

are known, then given the single correlation parameter ρ, we simulate loss samples from

a normal copula and price the CDO tranche. By searching over values of ρ, we find its

particular value that results in the simulated price of the CDO tranche that matches its

market price. This value of ρ is the “implied” correlation for the CDO tranche.

The concept of implied correlation is analogous to that of implied volatility extracted

from an equity option price. From any single call or put option on a stock, we find the

value of volatility that makes the model price equal to the market price of the option. This

volatility is the implied volatility of the option. Implied equity volatility is model dependent

in that it refers to the Black-Scholes model with its underlying assumption of normally

distributed returns. Likewise, implied correlation is extracted with reference to a normal

copula model.

Just as we may extract different implied volatilities from the Black-Scholes model de-

pending on which particular call or put we use, we also obtain varying implied correlations

from the normal copula depending on which model-based tranche price is matched to

market. Hence, the concept of the “volatility smile” from the equity markets is mirrored in

the CDO markets by the existence of the “correlation smile.” The correlation smile is the

plot of implied correlations for each of the tranches of the CDO.

Consider a CDO with tranches given by attachment points 0–3%, 3–7%, 7–10%,

10–12% and 12% onward.1 This means that the first tranche bears entirely the first 3%

of losses, the second tranche bears the next 4% of losses, the third tranche the next 3%, and

so on. Depending on which tranche we are considering, we back out an implied correlation

that matches its model price to its market value. This is the “standard” notion of implied

correlation. The market also employs an alternate notion of implied correlation, known as

“base” correlation. Base correlation for the first tranche is the same as standard implied

correlation. The base correlation for the second tranche is that implied correlation that

matches the total value of the first two tranches. The base correlation for the third tranche is

that which matches the total value of the first three tranches. And so on. Correlations may

be quoted in either form.

There are strong skews and spikes in base correlation, mostly arising from the relative

over-pricing of some tranche in the CDO and from the fact that the normal copula provides

a poor fit to the true joint distribution of default times just the way the normal distribution

is a poor descriptor of the return distributions of stock prices. In the following sections, we

will review some of the approaches that have been devised to accommodate the correlation

smile so that a single parametrization of the correlated default model fits all CDO tranche

prices.

Implied Copulas
Copulas offer a more general multivariate distribution with which to fit the joint default times

of many obligors in a credit portfolio. In this section, we explore an alternative approach

to modeling joint defaults that attempts to rectify some deficiencies of the normal copula

method. Copula approaches are static in that they generate the entire set of default times

for obligors in a portfolio without making later defaults depend on earlier ones. Hence, it is

1 Attachment points circumscribe the loss ranges for each tranche. Hence, the 3–7% tranche bears all

losses from 3% of the face value of the CDO to 7%.
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not easy to impose path dependence in defaults in copula settings. Hull and White (2006c)

argue that in particular, the Gaussian copula model implies a reduction in uncertainty about

future hazard rates as the horizon increases, which does not accord well with empirical data.

Using the t-copula may provide an antidote to this problem since the extra tail fatness in

the distribution of hazard rates of default fits the data better.

Copula models calibrated to underlying issuer CDS quotes are not empirically able to

exactly match prices of CDS on CDX indexes and their tranche prices simultaneously. This

is reflected in the fact that the implied correlation between obligors in a CDO structure

is different depending on which tranche we imply the correlation from. This is prima

facie evidence that the shape of the joint distribution generated by the copula model is

different from the empirical one implied by the prices of CDO tranches. In short, it is

well-nigh impossible to exactly match the prices of all CDO tranches with one set of

copula parameters. Hence, fitting a copula to a system of joint default is known to be

an imperfect exercise. Nevertheless, market participants still use copulas, particularly the

Gaussian copula, simply because it is tractable. They have also become comfortable with

different “base” correlations calibrated to different tranches, resulting in the “correlation

smile” in almost the same manner in which traders in options are intuitively comfortable

with the volatility smile.

The “implied copula” technique, developed by Hull and White (2006b), is an attempt to

rectify the imperfect fit of copula models. Hull and White christened their implied copula

model as a “perfect” copula. While there is no rigorous definition of “perfectness” that

we know of, certainly a system of joint default that exactly matches all tranche prices at a

given point in time has a certain appeal. It is conceptually similar to the ideas developed in

Rubinstein (1994) for fitting an option tree that exactly matches the prices of all options of

a given maturity.

Consider a one-factor model driven by a single common variable X . Each obligor j has

a default indicator Yj related to the common factor through the following model:

Yj = ρ j X +
 

1− ρ2
j Z j , ∀ j

where the coefficient ρ j provides the link that makes all obligors in the credit portfolio

correlated via the common factor X . Z j is an idiosyncratic shock variable with distribution

function Hj . Yj has a distribution function denoted Fj . We are interested in generating the

distribution of default times τ j , denoted G j , by mapping the distribution of Yj to that of τ j .

The correlation that exists in Yj induces a correlation in the default times τ j of all obligors

in the credit portfolio. Hence, we consider the mapping defined by τ j = G−1
j [Fj (Yj )]. Such

mappings exist in all copula models; see, for example, the implementation scheme outlined

in Section 34.8.

Conditional on a fixed value of X , the probability of default may be defined by the

likelihood of random variable Yj being less than a cut-off level Y (based on the probability

of default of the obligor), i.e.,

Prob[Yj < Y |X ] = Hj

⎡
⎣Y − ρ j X 

1− ρ2
j

⎤
⎦

Since this maps directly into default time, we may also write the probability of defaulting

in time τ as

Prob[τ j < t |X ] = G j (t |X ) = Hj

⎡
⎣ F−1

j [G(t)]− ρ j X 
1− ρ2

j

⎤
⎦ (34.19)
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We can see that as X increases, the probability of default decreases (which is clear from

either one of the preceding equations). The key here is that the joint default of firms depends

mainly on the time path of the driving factor X . Hence, by choosing a model with a rich

enough structure for the evolution of X , we should be able to exactly fit the prices of all

tranches in a CDO structure. This is analogous to “finding” the perfect copula.

Let us assume that we are interested in finding the system that best matches the prices

of a five-year CDS on the CDX index and five tranche prices, that is, six prices in all. We

proceed through the following steps.

1. Select distributions Hj for all obligors. The normal distribution for X would be a natural

choice.

2. Select distributions Fj and G j for all obligors. These will describe the mapping from Yj

to default times τ j and implicitly define the copula that is being used. (This is analogous

to the choice of distributions F and  in Section 34.8.) This is where the connection to

copulas arises in this model.

3. Calibrate the values of ρ j such that the model prices of individual CDS on the obligors

match market prices. The loss distribution of each issuer is based on default probabilities

from equation (34.19) computed over all values of X .

4. Generate n possible values of X , that is, Xi , i = 1 . . . n and denote the probabilities of

each outcome as pi ,
 

i pi = 1. These should be chosen in a way to cover the range

of values Yj . Hull and White (2006b) suggest that n ≥ 50. Each value of X implies a

default time distribution G j (τ |Xi ) for all obligors. This also implies an expected set of

cash flows (a recovery rate needs to be assumed) for the CDO and its tranches, which

may then be used to value these securities. By appropriately choosing the sets of {Xi , pi },
match the prices of all securities.

Of course, this approach has many more degrees of freedom than needed. Fitting should

be easily achieved. If n = 50, then there are 100 parameters (50 values of X and 50 of p)

with which to fit just six prices. There are an infinite number of ways in which to achieve this.

Which one do we choose? Hull and White (2006b) suggest that the X values be chosen in a

manner that imposes equal spacing between the different values of X . If we assume that X is

normally distributed, then centering its values around zero should suggest a range of values

spaced equally apart between−3 and 3. For other distributions, the standard ranges suggest

themselves just as easily. By imposing some smoothness properties on the probabilities p,

a natural choice of the implied copula is feasible. Therefore, it is possible to narrow down

the range of “implied” distributions that are employed. The overfitting that is undertaken

here is a natural consequence of setting up a model that mimics an incomplete markets

setting in which the number of states being used exceeds the number of securities being

spanned. This is analogous to extracting the probability distribution induced by options in

the approach pioneered by Breeden and Litzenberger (1978), which is, however, a complete

markets approach.

Hull and White (2006c) report that the fitting scheme is extremely stable. We refer the

reader to their paper in which they suggest an optimization approach to select the system of

{Xi , pi } that is calibrated to market prices. The outcomes of this approach are said to be less

sensitive to the interpolation procedures used and to minor variations in base correlations,

both problems that occur frequently with regular copulas. Most important, the model prices

in this approach, by dint of being exactly matched to market, are arbitrage free by fiat,

a desirable property for any model. The implied copula approach may, however, lead to

overfitting in sample with the result that out-of-sample values might be less accurate. This

is, of course, an empirical matter.
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34.9 Top-Down Modeling of Credit Portfolio Loss

We have seen how credit portfolio loss distributions may be built up from individual loss

distributions in the so-called bottom-up approach in which probabilities of default are

determined either in a structural or a reduced-form framework. Further, we have seen how

the joint distribution of default may be specified as multivariate Gaussian or much more

generally using copula functions.

In this section, we will consider the “top-down” class of portfolio credit models in

which the object of interest is the aggregate portfolio credit loss distribution, not individual

loss distributions. Here aggregate loss is modeled directly without recourse to individual

probabilities of default.

Longstaff and Rajan’s Model
An empirically implemented example of the top-down class of models is by Longstaff and

Rajan (2008). They show that a three-factor top-down model provides the best fit to CDX

(CDO index) data. To keep the exposition simple, we will examine only a one-factor version

of their model here. The extension to more factors is simple and will be described at the

end of this section.

Let the underlying credit portfolio be normalized to a face value of $1 and contain M

issuers, each with equal face value. For example, the CDX (North America) index is equally

weighted among 125 issuers. We start at time 0 and let the cumulative portfolio loss at time

t on this $1 portfolio be denoted as Lt . Naturally, L0 = 0.

The instantaneous proportional loss on the current value of the portfolio is therefore

given by dL/(1− L), and Longstaff and Rajan (2008) specify this as follows:

dL

1− L
= γ dN (λ)

where N is a Poisson counter with intensity λ, i.e., losses arrive at rate λ per unit time

(usually annual). The variable γ is the loss size. Hence, every time a loss event occurs, the

portfolio’s total loss increases by an amount γ . Integrating the equation above, we arrive at

the expression for losses Lt :  t

0

dL

1− L
=
 t

0

γ dN

and solving given that N0 = 0 gives

Lt = 1− e−γ Nt (λt )

Hence, the number of default events Nt translates naturally into the loss level Lt . There are

many possible stochastic specifications for this model. The arrival rate of default events λ

may be either constant or based on a stochastic process. We will explore both cases here.

The loss severity γ may be a constant or drawn from a distribution. Both λ and γ may be

functions of underlying state variables and, thus, default and loss severity may be set up to

have general correlation to each other.

Suppose that γ and λ are constant. Then the probability distribution of Lt is determined

entirely by the probability function p j ≡ Prob(Nt = j), where j = {0, 1, 2, 3, . . .}. That is,

p j =
e−λλ j

j!

The discrete loss distribution is very easy to compute.
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What if γ is constant but the rate of default λ comes from a distribution or from a

stochastic process in which its value changes over time (as in the case of the Longstaff and

Rajan, 2008, model)? In this setting,

p j =
 
λt

e−λtλ j
t

j!
f (λt ) dλt

where f (λt ) is the probability density function of λt .

To illustrate, let the distribution for λt come from a beta distribution with parameters

{α, β} denoted as follows:

f (λt ) =
 (α + β)

 (α) (β)
(1− λt )β−1λα−1

t

Then the probability function would be

p j =
 
λt

e−λtλ j
t

j!

 (α + β)

 (α) (β)
(1− λt )β−1λα−1

t dλt

Any function g(Lt ) of loss Lt , such as the price of a CDO tranche, is also a function of

Nt , and is driven by probability function p j (λt ). These pricing functions may be computed

in closed-form in special cases, else numerical computation of the expectation E[g(Lt )]

is feasible. In our simple version here, the pricing model would have three parameters:

{α, β, γ }, and we could calibrate the parameters of the model by using three or more CDO

tranche prices. Since the CDO tranches can be priced in the model using the loss probability

distribution, a simple least squares fit of tranche prices to model prices may be undertaken

to find the best values of the unknown parameters. Hence, the Longstaff and Rajan (2008)

model is very easy to fit to the data.

The model may be generalized to n factors by setting the specification to be

dL

1− L
=

n 
k=1

γk dNk

with a solution given by

Lt = 1− exp

 
−

n 
k=1

γk Ntk(λk)

 

Now the number of parameters increases for as many processes as are used to drive the

loss process of the credit portfolio. The number of processes might be increased until the

mean-squared pricing error is within tolerable bounds.

Self-Exciting Default Models
Other authors have provided alternative implementations of top-down models. For an early

example, see Giesecke and Goldberg (2005). A special enhancement of top-down models is

that of Errais, Giesecke, and Goldberg (2006). In this model, the hazard rate of default λ is

specified as a function of the current loss level L itself. The main point of this specification

is that it captures the clustering of default identified in Das, Duffie, Kapadia, and Saita

(2007). Since the default intensity λ grows with accumulating defaults, it makes defaults

cluster in just the same manner as seen in the data.

In a one-factor setting, the model of Longstaff and Rajan (2008) would be specified as

follows:

dL

1− L
= γ dN (λ(L))



Chapter 34 Modeling Correlated Default 895

where ∂λ/∂L > 0; the only enhancement to the model of Longstaff and Rajan (2008) is

that intensity is specified as λ(L). And for strong clustering, the second derivative will

be positive as well. A process such as this is known as a Hawkes process and is called

“self-exciting” or “self-affecting.” Specifically, think of intensity (λt ) following a simple

stochastic process of the form

dλ = α(β − λ) dt + δ dL

That is, there is a jump in intensity every time there is a loss-triggering event (dL > 0).

We require that δ > 0 for the effect to be self-exciting. Hence, every time there is a

loss, the intensity jumps and then slowly reverts to its mean level β at rate α. Therefore,

the self-exciting loss process is a simple yet powerful extension to the class of top-down

correlated default models. Errais et al. (2006) provide closed-form expressions for the loss

distributions in this model. Loss distributions in this model have fatter tails than those of a

Poisson distribution.

Top-Down Models with Binomial Trees
Hull and White (2006a) show how we can implement the top-down modeling approach

on a binomial tree. Despite being simple, the approach allows for dynamic modeling of

portfolio losses, in contrast to modeling correlated default times using copulas, which is a

static approach. We present a simple version of their model and then discuss how it may be

extended to more complex settings.

The main idea in the Hull and White (2006a) model is that portfolio credit derivatives

are priced off expected cash flows (for the entire portfolio or for specific tranches of the

portfolio) at discrete points in time. By modeling these cash flows directly, the pricing of

CDOs, tranches on CDOs, and other basket derivatives can be considerably simplified. The

expected cash flows are functions of each issuer’s cumulative survival function S(t), which

is the well-known expression:

S(t) = exp

 
−
 t

0

λ(u) du

 

where λ(t) is the hazard rate of default. The probability of default up to time t is the

expectation q = E[1− S(t)]. We also note that S(0) = 1 and S(t) ≥ 0.

The model is based on a time line where defaults and cash flows occur at discrete points

in time: t1, t2, . . . , tm . Let the time interval be constant, i.e., ti − ti−1 = h. Noting that

λ(0) = 0, at every point in time, we assume that the change in λ is given by the following

scheme:

 λ = μ h + J

where μ ≥ 0 is a drift term, and J ≥ 0 is a jump in intensity that occurs with probability

p. Therefore, with probability p, λ jumps by J , but with probability (1 − p), there is no

jump. For now, we assume that μ, J , and p are all constant.

The movement in λ over time may be represented on a binomial tree as follows. Starting

at time t = 0, the value of λ(0) is zero. In the next period, we have that accumulated λ

intensity will be either μ h+ J with probability p or μ h with probability (1− p). We will

denote the accumulated intensity with the variable I . After two periods, I (t2) will be one

of three values:

I (t2) = {2μ h + 2J, 2μ h + J, 2μ h}
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Each up move occurs with probability p and down moves with probability (1− p).FIGURE 34.5
Binomial Tree with the

Values of I , the

Cumulated Intensity

Process for Each Issuer

µh   J

2µh   2J

3µh   3J

3µh   2J

3µh   J

I(0)   0 2µh   J

µh

2µh

3µh

with probabilities

{p2, p(1− p), (1− p)2}
respectively.The survival function at eachnodeon the treewill simplybe S(t) = exp[−I (t)].

The tree of values of I is shown in Figure 34.5.

Since at each node of the tree we have the accumulated intensity I , we also have the

survival function S = e−I and the cumulative probability of defaults q = 1− S. Assuming

that there are N identical issuers in the credit portfolio, each with face value 1/N , gives us

a normalized credit portfolio value at the outset of $1. Let the recovery rate on default be

constant and denoted φ. The probability that n of these N names has defaulted by the time

we reach a given node on the tree is given by the binomial formula

P(n) = N !

n!(N − n)!
qn(1− q)N−n , ∀n = 0, 1, . . . , N (34.20)

Then it is easy to calculate the expected principal balance (B) of the credit portfolio at this

node as

E(B) =
N 

n=1

P(n)[1− (n/N )(1− φ)]

Suppose that we have a derivative that pays rate s on the principal balance over time; we

may easily price this by working out E(B) at each node of the tree, multiplying it by s,

and then discounting the cash flows on the tree by backward recursion using the branching

probabilities p, 1− p to weight the cash flows.

As another example, say we are interested in a tranched security with lower and upper

attachment points (xl , xu) ≤ 1. The expected principal balance at each node will be given

by

E(B) =
N 

n=1

P(n)T (n)
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where

T (n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if (n/N )(1− φ) ≤ xl

xu−(n/N )(1−φ)

xu−xl
if xl < (n/N )(1− φ) ≤ xu

0 if (n/N )(1− φ) > xu

And any function of these cash flows may be taken to construct a tranche derivative.

The same process may be run in reverse in order to calibrate securities in the model. We

may choose a set of CDOs and CDO tranches and then choose the values of μ, J (maybe

even φ) such that model prices best match observed prices in the market. Note also that if

more degrees of freedom are needed to fit market prices, it is easy to make J dependent on

both time and state on the tree. If we make J higher for nodes on the upper levels of the tree

relative to lower levels, then we are also accounting implicitly for contagion in the credit

portfolio. Therefore, this model is quite flexible while remaining easy to calibrate.

As with all top-down models, modeling credit portfolio losses is parsimonious in the

Hull and White (2006a) model. Their model is especially useful since its representation

on the tree makes it simple to implement as well as easy to understand. It also offers easy

generalization to state and time dependence of default rates. The downside, of course, is

that given n defaults out of N issuers, there is no way to identify which names defaulted

along any path. This is a crucial difference between all top-down models and their distant

cousins, the bottom-up models. The other drawback of the model presented above is that we

assumed all issuers to have identical trees for cumulated intensity processes. This made the

calculation in equation (34.20) simple. This is denoted by Hull and White (2006a) as the

“homogenous” case of their model. The case in which intensity trees are different for each

issuer in the credit portfolio is called the “heterogenous” case. In this setting, the method for

computing the loss distribution at each node of the aggregate tree and, hence, the principal

balance, would proceed along the lines of the fast recursion scheme presented earlier in the

model of Andersen et al. (2003).

34.10 Summary

We have seen that modeling default correlations is more complex than modeling return

or price correlations. This is because default correlations are based on the comovement

of indicator (i.e., discrete, binomial) variables, whereas correlations are usually based on

variables over a continuous range of values. Nevertheless, we portrayed the probability

calculations required in a simple manner so as to be able to implement basic models of

correlated default with a view to pricing a range of basket default securities.

We explored how to simulate correlated defaults in baskets of issuers in both frameworks,

structural models and reduced-form models. In fact, one can safely say that this analysis

of correlated defaults shows that these two model classes are not as different from each

other as one might imagine when looking at the models separately in Chapters 32 and 33.

Simulating correlated default raises the challenge of managing high-dimensional random

vector generation, and we examined how these large-scale systems could be circumscribed

using projections onto smaller factor spaces.

But simulations are always time consuming, and in the fast-paced, competitive environs

of Wall Street and trading arenas around the world, the search is on for quick algorithms to

generate credit portfolio loss distributions. For simpler payoffs on security baskets, there

are a few fast approaches that have been developed. Some use Fourier transforms with
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probability generating functions—see the papers by Burtschell et al. (2005), Gregory and

Laurent (2003), Gregory and Laurent (2004)—or use a recursion approach (see the paper

by Andersen et al., 2003). All these approaches begin with modeling individual firm default

risk and build these up to the portfolio level using appropriate correlation structure. We

called this the “bottom-up” approach.

More recently, the failure of the bottom-up approach to correctly calibrate to the prices

of CDO tranches has increased disillusionment with this method. Turning everything on its

head, the “top-down” approach in which the goal is to model directly the shape of the loss

distribution rather than to model individual credits is gaining favor. Papers in this vein that

represent the early work in the field are by Giesecke and Goldberg (2005), Longstaff and

Rajan (2008), Schonbucher (2005), and Sidenius, Piterbarg, and Anderson (2005).

34.11 Exercises 1. What is the main difference between a cash flow CDO and a synthetic CDO?

2. What is the primary goal of the following tranche holders in a CDO: (a) the A-tranche,

(b) the mezzanine tranche, and (c) the equity tranche?

3. In an n-th to default basket in which payment is triggered if there are n defaults in a

basket of m bonds, does the value of the contract increase or decrease if (a) n increases,

(b) m increases, or (c) the average correlation of bonds increases.

4. In an n-th to default basket, assume there are but two bonds. If the correlation of default

between these two bonds increases, then what is the impact on (a) a first-to-default basket

and (b) a second-to-default basket?

5. There are two firms, A and B, with the probability of A defaulting being 0.05. The

conditional probability of B defaulting given A defaulted is 1. If the correlation of

default of A and B is 0.30, then what is the probability of B defaulting?

(a) 0.10

(b) 0.28

(c) 0.37

(d) 0.50

6. For a maturity of T = 1 year, let the default probability of a firm be p = 0.1. Define

an indicator variable d = 1 if default occurs and d = 0 if default does not occur.

(a) What is E(d)?

(b) What is Var (d)?

7. There are two firms with default probabilities p1 = 0.1, p2 = 0.2. The correlation of

joint default ρ(d1, d2) = 0.5 where d1, d2 are indicator variables for default of each

firm. What is the probability of both firms defaulting?

8. If Pr [d1 ∩ d2] = 0.08 and p1 = 0.1, p2 = 0.2, what is Pr (d1|d2) and Pr (d2|d1)?

9. Given two firms, if the probability of neither defaulting is 80% and the probability of

each defaulting is p1 = 0.1 and p2 = 0.2, what is the probability of both defaulting?

10. If Pr (d1 ∩ d2) = 0.01 and p1 = 0.1, p2 = 0.2, what is the probability of exactly one

default?

11. In the previous question, what is the expected payoff of a first-to-default and a second-

to-default contract, both of which pay $100 if the contract is triggered?
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12. Given two firms, if the probability of default of firm 1 is p1 = 0.2 and the condi-

tional probability of firm 2 defaulting if firm 1 defaults is Pr (d2|d1) = 0.9, find the

expected payoff (based on $100) of a first-to-default and a second-to-default contract

if you assume that the probability of neither firm defaulting is half that of both firms

defaulting.

13. Based on a structural model that assumes a normal distribution of firm value, the

distance to default for firm 1 is DT D1 = 2. Likewise, for firm 2, DT D2 = 1. If

the correlation of default between the two firms is 0.3, what is the probability of joint

default?

14. Suppose default intensities are lognormally distributed for n firms with identical inten-

sities given by λ = ex where x ∼ N (μ, σ 2). Explain the sequence of steps you would

follow to generate λ1, λ2, . . . , λn from a Gaussian copula with common correlation ρ

among all firms.

15. If intensities λi ∼ exp(μi ), i = 1 . . . 5, where μi = 10 is the parameter of an expo-

nential distribution with mean 1/μi , then use a Gaussian copula to simulate defaults

from 10,000 runs with a correlation of ρ = 0.5. Find the probability that the number

of defaults in one year is more than or equal to 2.

16. If the intensity of default is 0.2, what is the expected time to default?

17. If the expected time to default is four years, what is the probability of default in less

than two years?

18. Two firms have rank correlation of default given by Kendall’s tau= 0.6. The probability

of default of the first firm is p1 = 0.05 and that of the second firm is p2 = 0.20. Find

the probability of joint default if default is triggered using correlated random variables

as follows: generate x1, x2 from a bivariate standard normal distribution; default is

triggered if N (x) < p. Repeat the exercise but draw from a Student’s t (0,1) distribution

with degrees of freedom equal to 5 and the same correlation. Default is triggered if

t (x) < p. Compare your results from the two distributions.

19. In a system of three firms, we simulate default by drawing three xi ∼ N (0, 1) random

variables. We say that default occurs if xi < −2. What is the probability of all three

firms defaulting if their joint distribution is described by a Gumbel copula with tail

dependence parameter α = 2? Does the probability of all firms defaulting increase if

α = 5?

20. The following several questions relate to models for 20 issuers in a correlated default

framework. You are required to develop a model for correlated default using the Octave

programming language if required. You need to provide (a) a well-documented answer

to all questions, (b) program code used, and (c) results from run-time execution of the

program to demonstrate that the program works.

Assume that you are forming a credit portfolio using 20 issuers, all of which have

default intensity of λ = 0.05. This default intensity is constant. The recovery rate on

each issuer’s securities in the event of default is also given as 40% of the par value of

the security. The correlation of default of all issuers is 0.3. For a five-year horizon, what

is the expected loss on an equally weighted portfolio of $100 in value?

21. If you assume that the joint distribution of default times is multivariate normal, then

what is the standard deviation of the loss distribution?

22. Show the steps in Octave that are needed to simulate the losses from this set of issuers

using a Gaussian copula that combines a set of Gaussian marginal distributions and

report the mean of the loss distribution for this portfolio.
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23. Find the value of a first-to-default basket option with a maturity of one year. Assume

that the payoff is $100.

24. What would happen to the price of this first-to-default security if there were no corre-

lation of default between issuers?

25. Find the value of a second-to-default basket option with a maturity of one year. Keep

the assumptions the same as in the previous question.
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Chapter 35
Derivative Pricing with
Finite Differencing

35.1 Introduction

In this chapter, we build on the material presented in Chapter 15. There we presented

the formal mathematics of the Black-Scholes model and derived the differential equation

leading to their famous equation. The solution there was obtained in closed form. Extensions

and variations of the Black-Scholes model may lead to differential equations that admit no

closed form solutions. In such cases, numerical techniques are required. One of the popular

numerical approaches is to solve the differential equations using the approach of finite

differencing. This is the subject matter of this chapter.

The concepts developed here use the technical concepts of Chapter 15. The material in

this chapter will be much harder to follow unless the reader is familiar with the content of

Chapter 15.

Beginning with Black and Scholes (1973), the continuous-time derivation of derivative

prices is based on the “fundamental pricing equation” (see Chapter 15, equation 15.24),

which is a unique partial differential equation (pde) for all derivative securities written on

the same underlying risks. For different derivative securities, the boundary conditions vary,

even though the differential equation is the same. This results in different solutions, i.e., the

prices of varied derivative securities.

The fundamental equation for pricing options in the Black-Scholes setting is based on a

risk-neutral geometric Brownian motion (GBM) process which is as follows:

dS(t) = r S(t) dt + σ S(t) dz(t) (35.1)

where S(t) is the underlying stock price at time t , r is the risk-free rate of interest, andσ is the

volatility parameter. The random variation in the process is driven by a Brownian motion

z(t) with a Wiener increment dz(t) ∼ N (0, dt). We will denote the derivative security

based on S(t) as F(S, t), i.e., a function of the stock price and time. Using continuous-time

hedging arguments presented in their original paper, Black and Scholes showed that the

fundamental pricing equation (pde) for this process is:

1

2

∂2 F

∂S2
σ 2S2 + ∂F

∂S
r S + ∂F

∂t
= r F (35.2)

This is a parabolic partial differential equation and is the usual class of differential equation

that occurs in derivative pricing situations. This fundamental equation applies to all deriva-

tive securities priced off equation (35.1). Different boundary conditions result in the prices

903
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of different derivative securities. If we were interested in pricing a call option, the boundary

condition at maturity T would be

C(T ) = max[0, S(T ) − K ]

where K is the strike price of the option. Similarly, the put option boundary condition is

P(T ) = max[0, K − S(T )]

In this chapter, we will examine the finite-differencing approach to the numerical solution

of this differential equation along with its attendant boundary conditions. Our goal is to

develop a good understanding of the technique so as to be able to implement it even on

spreadsheets without reaching for the full complexity of an industrial-strength implementa-

tion. Nevertheless, we will access the entire conceptual detail required for finite-differencing

implementation in the solution of derivative pricing problems. Finite differencing is the tool

of choice for many trading desks across the spectrum of derivative product classes. It gen-

erality lends itself to handling many different products, and in many cases, it is the most

efficient numerical technique for delivering pricing models. In the next section, we begin

with an overview of the numerical approach for solving differential equations.

35.2 Solving Differential Equations

Differential equations are expressions of the dynamics of a function driven by underlying

variables. In this section, we present a very simple example of how to derive the value of a

security when its underlying dynamics are specified. We look at the pricing of a discount

bond.

We are interested in the current (time t = 0) value of a function that is changing in a

specified way over time. If we know the dynamics of the function (given by the differential

equation), and its final (terminal) value (given by the boundary condition), then we can work

backwards to find its current value. In general, this is the approach behind most solution

techniques involving differential equations. Finite differencing is the methodology used to

work from the boundary conditions to the value of the function at all points in time prior to

maturity, including the initial time.

To make this idea a little more explicit, we examine a simple example first. By restricting

ourselves to a function of only one variable (in this case time t), we work in the realm of

ordinary differential equations (odes; functions of more than one variable lead to partial

differential equations, or pdes). The following differential equation represents the way in

which a bond B(t) changes in value (accumulates interest) over time t , in a case where

continuous compounding is used:

d B(t) = r B(t) dt

Simply put, this statement says that the change in the value of the bond d B over a very

small interval of time is equal to the product of the interest rate r , the bond’s current value

B, and the infinitesimal time interval dt . If we stipulate that the bond will be worth $1 at

maturity T (i.e., it is a unit zero-coupon security), then the statement

B(T ) = 1.0

is the boundary condition that will be used to price the bond. Our goal is to determine what

the price of the bond is today at time t = 0.

Suppose we wish to use finite differencing to find the current value of this bond. What

does this mean? It implies that we will be using a finite number of discrete intervals over
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which to represent the dynamics of the bond price (hence “finite differencing”). Over these

intervals, we will start from the final boundary value and then work backwards, using the

differential equation, to arrive at the current value.

This is best exemplified using actual numbers. Suppose the bond maturity is two years,

i.e., T = 2. Let the interest rate be r = 0.06, or 6% per year. Under continuous compounding,

we already know that the price of this zero-coupon bond is

Price = 1 exp[−r T ] = exp[−0.06× 2] = 0.88692

Now, instead of this known solution, we solve the ordinary differential equation instead so as

to examine a standard approach for solution via finite discretization of the space underlying

the differential equation.

The equation d B = r Bdt is one in which time is assumed to be moving forward, i.e.,

changes in time are positive. In solving for the price of the bond, we start at maturity

and move backward, i.e., time moves back. Therefore, our variable of interest is not time

but remaining maturity (we will denote this as τ ). It is easy to see that as time increases,

remaining maturity decreases, i.e.,

dt = −dτ

Therefore, we may rewrite the differential equation as follows:

d B = −r B dτ

Now we will build a discrete-time scheme to arrive at a fairly accurate price for the

zero-coupon bond. We divide up each year into 12 periods, i.e., the discrete time interval is

 τ = 1/12. Using this, we can write the differential equation approximately as a difference

equation:

 B = −r B  τ

In moving from time τ to time τ + τ , we restate the equation above as follows:

B(τ + τ ) − B(τ ) = −r B(τ )  τ

or

B(τ + τ ) = B(τ ) − r B(τ )  τ

and the boundary condition is

B(τ = 0) = 1.0

When there is no time left to maturity, the price of the bond is $1. Now when there is  τ

left to maturity, we can obtain the value of the bond by plugging and chugging into the

difference equation above:

B(1/12) = B(0) − r B(0)  τ

= 1− 0.06(1)(1/12)

= 0.99500

and using this value, we get the bond value for one preceding period, i.e.,

B(2/12) = B(1/12) − r B(1/12)  τ

= 0.99500− 0.06(0.99500)(1/12)

= 0.99450
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Therefore, finite differencing involves repeated application of the difference equation to

the value of the function until the current time is reached. The following Octave program

offers a simple implementation of the problem we just looked at:

%Program to solve the ODE for the zero-coupon bond

T = 2;

r = 0.06;

dt = 1/12;

n = T/dt;

B = 1.0;

for i=1:n;

B = B - r*B*dt;

fprintf(’tau = %10.6f, Bond price = %10.6f \n’, i*dt, B);

end;

The output is as follows:

tau = 0.083333, Bond price = 0.995000

tau = 0.166667, Bond price = 0.990025

tau = 0.250000, Bond price = 0.985075

tau = 0.333333, Bond price = 0.980150

tau = 0.416667, Bond price = 0.975249

tau = 0.500000, Bond price = 0.970373

tau = 0.583333, Bond price = 0.965521

tau = 0.666667, Bond price = 0.960693

tau = 0.750000, Bond price = 0.955890

tau = 0.833333, Bond price = 0.951110

tau = 0.916667, Bond price = 0.946355

tau = 1.000000, Bond price = 0.941623

tau = 1.083333, Bond price = 0.936915

tau = 1.166667, Bond price = 0.932230

tau = 1.250000, Bond price = 0.927569

tau = 1.333333, Bond price = 0.922931

tau = 1.416667, Bond price = 0.918316

tau = 1.500000, Bond price = 0.913725

tau = 1.583333, Bond price = 0.909156

tau = 1.666667, Bond price = 0.904610

tau = 1.750000, Bond price = 0.900087

tau = 1.833333, Bond price = 0.895587

tau = 1.916667, Bond price = 0.891109

tau = 2.000000, Bond price = 0.886654

The current price at τ = 2 is $0.886654, which may be compared to the price from the exact

formula above, which was $0.886920. Hence, the discrete finite-differencing algorithm is

not entirely accurate. However, it is a good approximation, given a discretization interval of

one month. We can rerun the algorithm with a much smaller finite interval, say τ = 1/365

(daily), and the result is as follows:

B(τ = 2) = 0.88691

which is almost exactly the true solution value.

To summarize, the solution to the ordinary differential equation involved the following

steps:
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1. Discretize the differential equation by choosing a finite time interval (not too large) t ,

resulting in a difference equation.

2. This equation is run backwards in time, as is usually the case when pricing securities

whose terminal conditions are known, and the current prices are the goal. Hence, we

change the time variable t to the maturity variable τ .

3. Impose the boundary condition and then recurse backwards using the difference equation.

4. Stop at t = 0, i.e., τ = T , and examine the value of the function to obtain the final price.

The trajectory along which we recursed backward in time was in one dimension (τ ), and

hence can be represented on a line (or actually, a time line). In the next section, we examine

a trajectory in two dimensions, stock price and time, in order to solve the option pricing

problem.

35.3 A First Approach to Pricing Equity Options

The basic ideas in the previous section may now be extended to the fundamental pricing

differential equation. The function being solved for is F(S, t), which is represented in the

parabolic partial differential equation (pde) in equation (35.2). Since there are two drivers

of the dynamics of this function, time t and the stock price S, the problem requires solving

a pde, not an ode. Therefore, the solution will reside on a two-dimensional lattice, unlike in

the preceding section, where the solution scheme worked on a line in a single dimension.

Our exposition will focus on pricing put options; the procedure for calls is the same except

for different boundary conditions. We repeat equation (35.2) with its boundary condition

here:

1

2

∂2 F

∂S2
σ 2S2 + ∂F

∂S
r S + ∂F

∂t
= r F, PT = max(0, K − ST )

Note that the sign of the time derivative term has also changed in the pde—we are now dealing

with time moving forward (in terms of t) instead of time moving backward (τ ). Rather

than embed this pde on a solution lattice directly, it is standard to make a transformation,

which results in a different pde, one with constant coefficients. To do this, we create a new

variable, i.e.,

Y = ln(S)

and transform the pde into one in Y rather than in S. We will soon see why this is a useful

thing to do.

In the pde, we replace the terms in S with Y , but we also need to replace the derivatives

in S with those in Y . Therefore, we use the following equivalent expressions:

∂F

∂S
= ∂F

∂Y

dY

dS
= ∂F

∂Y

1

S

∂2 F

∂S2
= ∂

∂S

 
∂F

∂Y

1

S

 

= 1

S

∂2 F

∂Y 2

dY

dS
+ ∂F

∂Y

 
− 1

S2

 

= 1

S

∂2 F

∂Y 2

1

S
+ ∂F

∂Y

 
− 1

S2

 

= 1

S2

 
∂2 F

∂Y 2
− ∂F

∂Y
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We then substitute these expressions into the original pde and simplify to obtain the following

new pde:

1

2

∂2 F

∂Y 2
σ 2 + ∂F

∂Y

 
r − 1

2
σ 2

 
+ ∂F

∂t
= r F, PT = max(0, K − exp[YT ])

We now see why the substitution from S to Y is useful. The partial derivatives terms are

no longer multiplied by the value of S (or the logarithm of S, i.e., Y ). In other words, we

have obtained a constant coefficient pde. This makes the programming of the lattice much

simpler, as we will see shortly.

The Solution Lattice
The pricing problem has two state variables, the stock price or its log value, i.e., Y , and time

t . Therefore, the solution lattice contains two dimensions. Imagine a two-dimensional grid

with the up-down axis denoting the variable Y and the right-left axis denoting the variable t .

The up-down axis represents a low stock price of zero and an upper price that is reasonably

high and for which the option is deep out-of-the-money. Likewise, on the time axis, the left

side is time 0 and the right side is time T .

The stock axis is divided into n+1 discrete time points and is indexed by i , which varies

from 1 to n + 1. Likewise, the time axis is indexed by t into m + 1 discrete points in time,

where t varies from 1 to m + 1. The function F for the put option will be computed at

each node of the solution lattice, i.e., F(i, t). We specify the intervals between prices on the

stock axis to be of magnitude k and the time intervals to be of length h. Figure 35.1 depicts

the relationship of a set of nodes on the lattice.

We use this representative node set to approximate the first- and second-order derivatives

in the pde. There are two derivatives with respect to the variable Y and one with respect to

FIGURE 35.1
Representative Node

Set on Finite-

Difference Solution

Lattice
F (i,   1, t   1)

F (i, t    1)

F (i,   1, t   1)

F (i, t )

h

k
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time t . We write these approximations as follows:

∂F

∂Y
≈ F(i + 1, t + 1) − F(i − 1, t + 1)

2k

∂2 F

∂Y 2
≈ 1

k

 
F(i + 1, t + 1) − F(i, t + 1)

k
− F(i, t + 1) − F(i − 1, t + 1)

k

 

= F(i + 1, t + 1) − 2F(i, t + 1) + F(i − 1, t + 1)

k2

∂F

∂t
≈ F(i, t + 1) − F(i, t)

h

We are now ready to substitute this into the pde in terms of Y and obtain a differencing form

of the equation. (The reader may wish to substitute the three expressions above into the pde

and rearrange it to be sure that the next equation follows from some simple algebra.) This

is what we obtain:

r F(i, t) = 1

2
σ 2

 
F(i + 1, t + 1) − 2F(i, t + 1) + F(i − 1, t + 1)

k2

 

+
 

r − 1

2
σ 2

  
F(i + 1, t + 1) − F(i − 1, t + 1)

2k

 

+
 

F(i, t + 1) − F(i, t)

h

 

If we collect terms by each node, then we obtain the following form after multiplying each

term by h:

F(i, t)(1+ rh) = F(i + 1, t + 1)

 
σ 2h

2k2
+
 

r − 1

2
σ 2

 
h

2k

 

+ F(i, t + 1)

 
1− σ

2h

k2

 
(35.3)

+ F(i − 1, t + 1)

 
σ 2h

2k2
−
 

r − 1

2
σ 2

 
h

2k

 

Notice that the values in square brackets in the equation above are such that they add up

to a value of 1. If all the values are within (0, 1) bounds, then we may think of these as

probabilities. Then the RHS of the equation is the expected value of the forward outcomes

of the option function F . If we discount this back, i.e., divide by (1 + rh), then we obtain

the present value at node (i, t). Define the following quantities (these are the expressions

in the square brackets above):

p1 =
σ 2h

2k2
+
 

r − 1

2
σ 2

 
h

2k

p2 = 1− σ
2h

k2

p3 =
σ 2h

2k2
−
 

r − 1

2
σ 2

 
h

2k

We note that p1+ p2+ p3 = 1. It is immediately apparent that Figure 35.1 is a representation

of a risk-neutral trinomial tree pricing algorithm, whose backward recursion formula is
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as follows:

F(i, t) = 1

1+ rh
[p1 F(i + 1, t + 1) + p2 F(i, t + 1) + p3 F(i − 1, t + 1)]

(35.4)

This equation is an expected present value representation obtained from a rearrangement of

equation (35.3). Thus, a trinomial tree approach is embedded on the solution lattice. Notice

that we essentially have three probabilities that weight the subsequent three branches from

each node and that these must lie between the values of 0 and 1 to be valid probabilities.

In fact, it is true that the scheme is not viable unless p1, p2, p3 are valid probabilities. That

is, they sum to 1 and remain in the range (0, 1). In the next subsection, we describe the

solution procedure in greater detail, paying special attention to some of the implementation

issues that arise.

Solution Procedure
We begin the solution procedure by determining the final value of the put option at the last

column of the grid, i.e., at time-T or index (m + 1). Since we know the payoff function for

a put option [F(i, m + 1) = max(0, K − exp(YT )), ∀i], this is easily done.

Next, at time (T −h), we determine the value of the option using the backward recursion

formula (35.4) developed in the preceding subsection. Each node F(i, m) at time (T − h)

is a function of nodes at time T , i.e., F(i + 1, m + 1), F(i, m + 1), and F(i − 1, m + 1).

The terms p1, p2, p3 are the probability weights for these values. Notice also that these are

constant at all nodes of the lattice since they are not functions of Y or t . This is a direct

consequence of the transformation of S to Y , which demonstrates the benefit of making a

variable change in an appropriate way.

During the execution of the solution procedure, for each time indexed by t , nodes are

computed as functions of three other nodes ahead in time. However, there are two exception

nodes, the ones for the lowest and highest stock prices, i.e., indexed by i = 1 and i = n+1.

These nodes do not have three nodes ahead of them since they are on the lower and upper

edge of the solution grid, respectively. Also, since they are at the boundary of the solution

grid, we may impose economically determined boundary values for these nodes as follows:

1. When i = 1, the stock price is very low, and the put option is deep in-the-money, with

the result that the option delta is as good as unity. Therefore, the option price may be

given by

F(1, t) = F(2, t) − S × P = F(2, t) + k S(1)

where S(1) is the stock price corresponding to the node i = 1, and the put delta is

 P ≈ −1 because the stock price is very low. Note that since Y = ln S, we have that

dY/dS = 1/S, or dS = S dY = k S. This explains the equation above.

2. When i = n, the stock price is exp(nk), and the value of the option is very low and is

given by

F(n, t) = 1

1+ rh
[a × 0+ b F(n, t + 1) + c F(n − 1, t + 1)]

a is multiplied by zero because we can safely assume that the upper boundary of values

of the put option is close to zero when the stock price is much higher than the strike

price.

Using the backward recursion in equation (35.4) and the two boundary equations above, we

can populate the entire finite-differencing lattice with the values for the put option until we

arrive at time t = 0, when we can read off the current option prices.
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Properties of the Numerical Scheme
The approach adopted above mimics a trinomial tree model and is therefore very close in

spirit to that of binomial tree models in which the discounted expectation of future node

values equals the current value. Such models are known as “explicit” finite-differencing

models.

Finite-difference numerical schemes need to satisfy two main properties. They need to

converge, by which we imply that they should, as the time and space steps on the lattice

are reduced, get closer to the true value of the derivative security that is being priced. In

the explicit scheme, this is usually not hard to achieve. The model also needs to be stable.

Stability requires that the scheme not generate an approximation error that blows up. This

usually happens when the error from discretization is not controlled and propagates itself

through the lattice. It turns out that stability is achievable in the explicit scheme by ensuring

that the probabilities {p1, p2, p3} remain bounded between 0 and 1 and sum to a value of 1.

In the next subsection, we explore a numerical example to see how finite differencing works.

Example 35.1 Numerical Example of Explicit Finite Differencing
The explicit scheme is simple enough so as to be implementable on a spreadsheet. Our
example will use the following data:

Input Value

S 100
K 100
T 1 year
σ 0.30
r 0.10

Our goal is to price a European put option with the above parameters that in the Black-
Scholesmodel results in an option price of $7.22. To implement the finite-difference scheme,
we choose a time step as well as a step for the change in variable Y (recall that Y = ln(S),
which implements a useful change of variables). We assume the following steps on the grid:

h = 1

12
Step on the time axis (the x-axis)

k =  Y = 0.10 Step on the (log) stock price axis (the y-axis)

The resulting solution lattice is presented in Table 35.1. The table has time t on the top
ranging monthly (h = 1/12) until maturity T = 1. Therefore, the last column of the table
contains the final payoff of the put option, i.e., max[0, K − S(T )]. This may be compared
against the first column of the table that contains the stock prices, which range from 20.19
to 604.96. The choice of the range of prices on the table is a modeling choice, and some
judgment is required to ensure that the range is not too small The upper end should be
several standard deviations away from the current stock price. Choosing a reasonable range
around the current stock price usually works well. The only care required here is that one of
the values in the stock price range should be the current price, which in this case is S = 100.
The second column of the table contains the variable Y = ln(S), which is the transformed

variable. Note that the centered value of Y corresponding to S = 100 is 4.6052. The final
solution resides in the column for t = 0 at the row corresponding to the initial stock price and
shows that the value of the put option is equal to P (0) = $7.17 (the number in boldface),
which may be compared against the Black-Scholes equation value of $7.22. Therefore, even
with a sparse grid, reasonable convergence is attained.
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The values of the three probabilities are as follows:

p1 = 0.398
p2 = 0.250
p3 = 0.352

We can see that these probabilities do sum to 1. These are applied in the backward recursion
to achieve the final price. Since these are also all within the range (0, 1), we obtain a stable
pricing scheme.
At the lower edge of the lattice, when stock prices are very low, the option is deep

in-the-money. The last row of the lattice (corresponding to the stock price $20.19) requires
application of the boundary condition described earlier. As an example, look at the value
(77.188) in the last row that corresponds to the time t = 0.75. The value is generated as
follows:

F (1, t) = F (2, t) + k S(1) = 75.169+ k 20.19 = 77.188
At the upper edge of the lattice, the stock price is high, and the put option is out-of-the-
money. Again, look at the value (0.000) in the top row for time-t = 0.75. This comes from
an application of the boundary equation:

F (n, t) = 1

1+ r h
[b F (n, t + 1) + c F (n− 1, t + 1)] = 0.000

Since the upper edge of the grid is sufficiently high, the value of the option at the upper
edge always turns out to be zero. The nodes that are not at the upper or lower edge are
handled in the usual manner, as described by equation (35.4). ■

35.4 Implicit Finite Differencing

In the explicit scheme, to determine the value of node F(i, t), the first and second derivatives

of the option with respect to Y were based on the values of the option at time (t + 1), i.e.,

the node set {F(i + 1, t + 1), F(i, t + 1), F(i − 1, t + 1)}. In the explicit scheme, we saw

that this required careful choice of discretization intervals h, k to ensure that the scheme

was stable. We imposed the requirements that p1, p2, p3 ∈ (0, 1) and p1 + p2 + p3 = 1.

In this section, we will consider an alternative way of computing derivatives of the option

function. We will compute the first and second derivatives of the option with respect to Y

based on the unknown values of the option at time t itself, not using the known values at

time (t + 1), i.e., the node set {F(i + 1, t), F(i, t), F(i − 1, t)}. If we are at time t , then we

actually do not know the value of these nodes. Hence, this scheme requires more complex

handling than the explicit one. The benefit is that it is easier to ensure model stability in an

implicit finite-differencing scheme.

We approximate the derivatives as follows:

∂F

∂Y
≈ F(i + 1, t) − F(i − 1, t)

2k

∂2 F

∂Y 2
≈ 1

k

 
F(i + 1, t) − F(i, t)

k
− F(i, t) − F(i − 1, t)

k

 

= F(i + 1, t) − 2F(i, t) + F(i − 1, t)

k2

∂F

∂t
≈ F(i, t + 1) − F(i, t)

h
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Using these approximations, we rewrite the finite-difference form of the fundamental

pde as follows:

r F(i, t) = 1

2
σ 2

 
F(i + 1, t) − 2F(i, t) + F(i − 1, t)

k2

 

+
 

r − 1

2
σ 2

  
F(i + 1, t) − F(i − 1, t)

2k

 

+
 

F(i, t + 1) − F(i, t)

h

 

We see that the first line contains the second derivative of the option value with respect to Y ,

and the second line contains the first derivative of the option value. The third line contains

the time derivative. Rearranging, we arrive at the following expression:

F(i + 1, t)

 
− σ

2h

2k2
−
 

r − 1

2
σ 2

 
h

2k

 

+ F(i, t)

 
1+ rh + σ

2h

k2

 

+ F(i − 1, t)

 
− σ

2h

2k2
+
 

r − 1

2
σ 2

 
h

2k

 
= F(i, t + 1), ∀i (35.5)

The left-hand side above has unknown F(., t) values, and the right-hand side has a known

F(., t + 1) value. Defining the values in square brackets in the equation above as p1, p2,

and p3, respectively, we may write the equation as:

p1 F(i + 1, t) + p2 F(i, t) + p3 F(i − 1, t) = F(i, t + 1), ∀i (35.6)

Note that this equation is applied at all levels of the stock price, i.e., for all values indexed

by i , across the entire grid, i.e., it is a system of equations. The values of the function on the

left side of the equation are not known at time-t , but those on the right are at time (t + 1)

and are known. Whereas each stand-alone equation in the system cannot be solved (being

one equation in three unknowns), the entire system comprises a set of n+ 1 equations in an

equal number of unknowns and is thus possible to solve. This system may be represented

in the form of a matrix equation at each time t . Let the vector F(t) stand for column of

function values at time t , i.e.,

F(t) =

⎡
⎢⎢⎢⎢⎣

F(1, t)

F(2, t)

:

F(n, t)

F(n + 1, t)

⎤
⎥⎥⎥⎥⎦

These function values are not known, but the values at time t + 1 are known. Let these be

denoted as

F(t + 1) =

⎡
⎢⎢⎢⎢⎣

F(1, t + 1)

F(2, t + 1)

:

F(n, t + 1)

F(n + 1, t + 1)

⎤
⎥⎥⎥⎥⎦

Now the system of equations (35.6) may be written as

F(t) Q = F(t + 1) (35.7)
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where

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p3 + p2 p1 .. .. .. .. 0 0

p3 p2 p1 .. .. .. .. 0

.. p3 p2 p1 .. .. .. ..

: : : : : : : :

: : : : : : : :

0 : : : : p3 p2 p1

0 0 : : : : p3 p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35.8)

All of the elements not on the main diagonal and the diagonal on each side of the main

diagonal are set to zero. The matrix Q is called a “tridiagonal” matrix, the nomenclature

following from its diagonal structure. Therefore, with this setup, the value of the function

vector at time-t is obtained by the following solution:

F(t) = Q−1 F(t + 1) (35.9)

By repeating this operation for all times t , we recurse backward until we arrive at time zero.

The vector F(0) gives all option prices corresponding to the stock prices on the grid.

Example 35.2 Numerical Example
We revisit the example used in the explicit scheme from earlier in this chapter. The same
parameters are used here for the implicit scheme. Because matrix inversion is involved in
each recursive step, it is not convenient to undertake this exercise on a spreadsheet. Rather,
we use the matrix language Octave. It is possible to write very parsimonious code for this
problem. The program is as follows:

%Program to implement Implicit Finite Differencing

%Basic Set up

s0 = 100;

strike = 100;

sigma = 0.30;

rf = 0.10;

T = 1;

n = 30;

m = 12;

h = T/m;

k = 0.10;

S = zeros(n+1,1);

Y = zeros(n+1,1);

Y(n/2+1) = log(s0);

for i=(n/2):-1:1;

Y(i) = Y(i+1) - k;

end;

for i=(n/2)+2:(n+1);

Y(i) = Y(i-1) + k;

end;

S = exp(Y);

%Create TriDiagonal Matrix

q = zeros(n+1,n+1);

p1 = -0.5*sigma^2*h/k^2 - (rf-0.5*sigma^2)*h/(2*k);



916 Part Six Computation

p2 = sigma^2*h/k^2 + rf*h + 1;

p3 = -0.5*sigma^2*h/k^2 + (rf-0.5*sigma^2)*h/(2*k);

q(1,1) = p1+p2; q(1,2) = p1;

q(n+1,n) = p3; q(n+1,n+1) = p2;

for i=2:n;

q(i,i-1) = p3;

q(i,i) = p2;

q(i,i+1) = p1;

end;

qinv = inverse(q);

%Backward recursion phase

F = zeros(n+1,m+1);

F(:,m+1) = max(0,strike-S);

for t=12:-1:1;

F(:,t) = qinv*F(:,t+1);

end;

%Plot the put option price as a function of stock price and time

t = [0:(1/12):1];

mesh(S,t,F’);

title(’European Put Option Function’);

xlabel(’Stock Price’);

ylabel(’Time’);

The program runs in a few simple steps (the reader is encouraged to peruse the program
code). At the end of the program, we generate a three-dimensional plot showing the put
option prices at each stage of the iteration backwards in time. Figure 35.2 shows the value
of the option function at all points in time for all possible stock prices.
We may easily extend the scheme for pricing American options by checking at each stage

whether it is optimal to exercise the American put early. This requires a single additional line

FIGURE 35.2
The European Put

Option Function in

Time and Stock Price

Space

 0  
50  

100  
150  

200  
250  

300  
350  

400  
450Stock price

 0.2

 0.4

 0.6

 0.8

 1

Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90



Chapter 35 Derivative Pricing with Finite Differencing 917

in the program above. The code segment is as follows:

%Backward recursion phase

F = zeros(n+1,m+1);

F(:,m+1) = max(0,strike-S);

for t=12:-1:1;

F(:,t) = qinv*F(:,t+1);

F(:,t) = max(strike - S, F(:,t));

end;

Note the extra line of program code above the “end” statement that replaces the function
(continuation) value with the early exercise value if it is optimal to do so. We computed
the American put value and compared it to the European one at t = 0. The American put
values are higher than the European ones. At the initial stock price of $100, the value of the
American option is $7.90, and that of the European option is $6.96 (recall that the explicit
scheme value was $7.17). We used very few time and grid steps in these examples, and,
hence, the values are only approximate. The lack of high accuracy levels is a consequence
of the sparseness of the solution grid being used here. In practice, much smaller time and
stock space steps are used. ■

35.5 The Crank-Nicholson Scheme

The basic difference between the explicit and implicit schemes is in the way the deriva-

tives are computed. The explicit scheme computes derivatives in a “forward” manner, i.e.,

using values of the option function at a future point in time. The implicit scheme uses the

“backward” form. Even though this may appear to be a relatively minor difference, the

implementation approach, as we have already seen, ends up being very different.

In this section, we describe briefly a third scheme aimed primarily at improving accuracy.

This approach is known as the Crank-Nicholson scheme and involves a mixture of the

explicit and implicit forms. Both forward and backward derivatives are used. The first- and

second-order derivatives of the option function are modified to be as follows:

∂F

∂Y
≈ F(i + 1, t + 1)− F(i − 1, t + 1)+ F(i + 1, t)− F(i − 1, t)

4k

∂2 F

∂Y 2
≈ F(i + 1, t + 1)− 2F(i, t + 1)+ F(i − 1, t + 1)+ F(i + 1, t)− 2F(i, t)+ F(i − 1, t)

2k2

These derivatives are the averages of the forward and backward derivatives. The time deriva-

tive remains the same.

Putting these derivatives into the fundamental pde, we obtain the following balanced

equation for all i :

F(i + 1, t)

 
σ 2

4k2
+
 

r − 1

2
σ 2

 
1

4k

 

+F(i, t)

 
−1

h
− r − σ 2

2k2

 

+F(i − 1, t)

 
σ 2

4k2
−
 

r − 1

2
σ 2

 
1

4k

 
=

F(i + 1, t + 1)

 
− σ

2

4k2
−
 

r − 1

2
σ 2

 
1

4k

 

+F(i, t + 1)

 
−1

h
+ σ 2

2k2

 

+F(i − 1, t + 1)

 
−σ

2h

4k2
+
 

r − 1

2
σ 2

 
1

4k

 

(35.10)

The left side of this equation contains the function values at time-t , which are to be computed,

and the right side has values at time t+1, which are known. We may write this economically

as:
P F(t) = Q F(t + 1)
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where P and Q are tri-diagonal matrices with the coefficients from the equation above.

Backward recursion proceeds in the same manner, i.e.,

F(t) = P−1 Q F(t + 1)

The values of the European and American puts are $7.07 and $8.08, respectively. The

program code in Octave is as follows:

%Program to implement Crank-Nicholson Finite Differencing

%Basic Set up

s0 = 100;

strike = 100;

sigma = 0.30;

rf = 0.10;

T = 1;

n = 30;

m = 12;

h = T/m;

k = 0.10;

S = zeros(n+1,1);

Y = zeros(n+1,1);

Y(n/2+1) = log(s0);

for i=(n/2):-1:1;

Y(i) = Y(i+1) - k;

end;

for i=(n/2)+2:(n+1);

Y(i) = Y(i-1) + k;

end;

S = exp(Y);

%Create TriDiagonal Matrix

q = zeros(n+1,n+1);

p = zeros(n+1,n+1);

p1l = sigma^2/(4*k^2) + (rf-0.5*sigma^2)/(4*k);

p2l = -sigma^2/(2*k^2) -1/h - rf;

p3l = sigma^2/(4*k^2) - (rf-0.5*sigma^2)/(4*k);

p1r = -sigma^2/(4*k^2) - (rf-0.5*sigma^2)/(4*k);

p2r = sigma^2/(2*k^2) -1/h;

p3r = -sigma^2/(4*k^2) + (rf-0.5*sigma^2)/(4*k);

q(1,1) = p1l+p2l; q(1,2) = p1l;

q(n+1,n) = p3l; q(n+1,n+1) = p2l;

p(1,1) = p1r+p2r; p(1,2) = p1r;

p(n+1,n) = p3r; p(n+1,n+1) = p2r;

for i=2:n;

q(i,i-1) = p3l;

q(i,i) = p2l;

q(i,i+1) = p1l;

p(i,i-1) = p3r;
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p(i,i) = p2r;

p(i,i+1) = p1r;

end;

qinv = inverse(q);

%Backward recursion phase

F = zeros(n+1,m+1);

F(:,m+1) = max(0,strike-S);

for t=12:-1:1;

F(:,t) = qinv*p*F(:,t+1);

F(:,t) = max(strike - S, F(:,t));

end;

%Plot the put option price as a function of stock price and time

t = [0:(1/12):1];

mesh(S,t,F’);

title(’American Put Options by Crank-Nicholson’);

xlabel(’Stock Price’);

ylabel(’Time’);

35.6 Finite Differencing for Term-Structure Models

So far we have looked at equity options that are based on an underlying process that is

a geometric Brownian motion. Here we look at processes for interest rates and the finite-

differencing approach for the pricing of bonds and options on bonds.

Cox, Ingersoll, and Ross (1985) developed a canonical model for pricing bonds in their

seminal paper. This model is based on the following stochastic process:

dr (t) = k[θ − r (t)] dt + σ
 

r (t) dz(t)

where r (t) is the short rate of interest, which follows the mean-reverting process given

above. The term θ is the long-run mean level of the short interest rate, and k is the rate

at which interest rates revert to this mean. The volatility is modulated by the parameter σ ,

and the total volatility is proportional to the square root of the interest rate. Hence, this

stochastic process is also known as a square root diffusion. The stochastic nature of the

process comes from the Wiener increment dz(t) ∼ N (0, dt).

Zero-coupon bond prices are denoted P(r, t), i.e., they are functions of the interest rate

and time. Using Ito’s lemma, we write down the stochastic process for P , which is (time

subscripts are suppressed):

d P = ∂P

∂r
[k(θ − r ) dt + σ√r dz]+ 1

2

∂2 P

∂r 2
σ 2r dt + ∂P

∂t
dt (35.11)

Following the work of Vasicek (1977), martingale arguments lead to the expected change

in the bond price being equal to the riskless return, i.e.,

E(d P) ≡ ∂P

∂r
[k(θ − r ) dt]+ 1

2

∂2 P

∂r 2
σ 2r dt + ∂P

∂t
dt = r P dt

Simplifying and rearranging, we get the fundamental pde for this term-structure model:

1

2

∂2 P

∂r 2
σ 2r + ∂P

∂r
k(θ − r ) + ∂P

∂t
= r P
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Building a lattice in r is often problematic as r ∈ [0, ∞) but is usually very low in value

and remains in the extreme low end of this range. Therefore, creating a solution grid in r

itself usually means that only a small fraction of the grid is representative of the normal

behavior of r . In the material region, r may not take on sufficiently enough values to make

the solution accurate enough. Therefore, in order to get around this problem, a suitable

transformation of variables is called for. The standard one that is used is to move from r to

a variable y (see Duffie, 1996, Chapter 11), as follows:

y = 1

1+ γ r
, γ > 0.

When r ↓ 0, we have that y ↑ 1; and when r ↑ ∞, then y ↓ 0. Therefore, we note that

y ∈ (0, 1), which is a nice tight range. By choosing γ carefully, we can ensure that most of

the range is populated by frequent values of r . For instance, let γ = 40. In this case, we get

the following relationship between y and r :

y r

0.10000 0.22500
0.20000 0.10000
0.30000 0.05833
0.40000 0.03750
0.50000 0.02500
0.60000 0.01667
0.70000 0.01071
0.80000 0.00625
0.90000 0.00278
1.00000 0.00000

It is easy to see how we get a range of r that is fairly realistic, going from zero to 22.5%.

The next step, of course, is to transform the derivatives of P in terms of r into terms

in y. This is based on the following equivalences.

∂P

∂r
= ∂P

∂y

dy

dr

= ∂P

∂y

 −γ
(1+ γ r )2

 

= ∂P

∂y
[−γ y2]

The second-order derivative is a little more complicated and is as follows:

∂2 P

∂r 2
= ∂2 P

∂y2

dy

dr

 −γ
(1+ γ r )2

 
+ ∂P

∂y

 
2γ 2

(1+ γ r )3

 

= ∂2 P

∂y2

γ 2

(1+ γ r )4
+ ∂P

∂y

2γ 2

(1+ γ r )3

= ∂2 P

∂y2
γ 2 y4 + ∂P

∂y
2γ 2y3

Substituting these values into the fundamental pricing equation, as well as substituting

everywhere for r in terms of y, we get the following form of the equation:

1

2
σ 2

 
∂2 P

∂y2
γ 2 y4 + ∂P

∂y
2γ 2y3

 
+k

 
θγ

 
y

1− y

 
− 1

 
∂P

∂y
(−γ y2)+γ

 
y

1− y

 
∂P

∂t
= P
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This equation may now be embedded on an explicit or implicit finite difference grid in (y, t)

and solved as before.

The main difference in this interest-rate model and the one used earlier for pricing equity

options is that probabilities p1, p2, p3 will no longer be constant across the grid and will be

changing from node to node. This will result in an increase in computing time because the

probabilities need to be computed separately for each node. However, computing complexity

does not increase, and the increase in run time is purely linear, not exponential. In short,

the interest-rate version of the finite differencing algorithm is very fast and run time is not

an issue.

35.7 Summary

Finite difference methods have become very popular for solving option pricing prob-

lems over the past three decades. A very useful reference for the methods in this chap-

ter is Ames (1992). For a specific exposition of the finite-difference method as applied

to finance, see the book by Tavella and Randall (2000). Commercial providers now of-

fer sophisticated numerical packages aimed at solving the typical pde that emanate from

derivatives models. The popularity of this approach is based on some generally useful

properties:

1. The approach suits continuous time models in finance particularly well. Because such

models naturally give rise to differential equations, finite differencing is a more gen-

erally applicable technique than others. In comparison to tree models, it is more gen-

eral because it does not depend on knowing the solution to the stochastic differential

equation of the underlying risky factor. Nor does it depend on knowing the condi-

tional statistical distribution of the underlying, required for Monte Carlo simulation

approaches.

2. The finite-difference approach is computable in polynomial time. The numerical com-

plexity is low since the solution grid effectively mimics a recombining lattice and does

not suffer from an exponential blowup in computational time. In contrast, except for

the simplest cases, most tree models do not admit recombining trees, resulting in high

computation times.

3. Finite-difference models usually admit a useful change of variables that simplifies the

problem even further. We have already seen the change of variables undertaken in the

case of pricing equity options. A very different one applies in the case of mean-reverting

processes for interest rates. We examined the derivation of the finite difference scheme

for a very common case of mean-reverting processes, the Cox et al. (1985) model for

pricing interest-rate options. There the change of variables is a little more complex, yet

the pricing via backward recursion is just as simple as for stock options.

4. The finite-difference scheme has been applied in many settings where there is more

than a single state variable. This is done on higher-dimensional grids where the deriva-

tives become more complex. It is usually easier to work with this approach than with

tree models. If the reader wishes to delve into these issues in more detail, techniques

such as the alternating direction implicit (ADI) method are applicable and well

documented.

In general, the pleasing features of finite differencing are the closeness of the link to the

continuous-time stochastic process and the ease of programming the solution. A perusal

of some of the code provided in this chapter shows how parsimonious the solution is to

implement.
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35.8 Exercises 1. The explicit finite-differencing model may be reinterpreted as a lattice model. What

type of lattice model does it conform to?

2. In an explicit finite-differencing lattice, what is required for the model to be stable and

convergent?

3. In the model for pricing American options in the Black-Scholes setting with explicit

finite-differencing, what is the main advantage of making a logarithmic transformation

of the stock price?

4. The following question relates to the Black-Scholes model, which is based on a ge-

ometric Brownian motion. You are asked to price a one-year range option where the

option pays off $100 at the end of each month if the price of the stock lies between $90

and $110. If you set this problem up on a finite-differencing lattice, how would you

handle the values at the upper and lower boundaries of the lattice?

5. Given a setting in which the range option in the previous question pays off when the

stock price at the end of each month lies outside the specified range rather than inside

it, what is the modification you would impose on the boundaries of the lattice?

6. What is the main advantage of the implicit finite-difference method over the explicit

one? What might be a disadvantage?

7. You are given the following node values on an explicit finite-difference lattice.

V (i + 1, j + 1) = 4.5, V (i + 1, j) = 5.2, V (i + 1, j − 1) = 6.3

(a) Is this more likely to be a call or put option?

(b) The time step (increasing in index i) is denoted h = 1/12, and the log stock price

step (increasing in j) is denoted k = 0.10. The risk-free rate is 0.1. If the stock

return volatility is 30%, what is the value of the derivative security at node V (i, j)?

8. Given the following parameters, compute the {p1, p2, p3} values in the implicit finite-

differencing scheme.

S = 100, K = 100, σ = 0.3, r = 0.10

The time step is h = 1/48, and the log stock price step is k = 0.10.

9. Using the implicit finite-differencing program in the chapter, price an American put of

maturity two years on a stock trading at $45. The strike of the option is $50. Assume

that the risk-free rate is 1%, The volatility of the stock is 20%. Choose any time step

you like but not less than monthly. Also price the option at strikes of $55 and $40.

10. Suppose you were to price an option on a stock that follows the stochastic process given

here:

dS(t) = r S(t) dt + σ S(t)1.5 d Z (t)

where the process is not the usual lognormal one. Instead note that the variance of the

stock is proportional to the cubed value of the stock price.

(a) Write down the process for a derivative security that is a function of the stock price

and time, i.e., F(S, t).

(b) Using this result, derive the partial differential equation for the value of this deriva-

tive.

(c) Explain why this problem may be solved more easily on a finite-difference lattice

than on a binomial/trinomial tree.



Chapter 36
Derivative Pricing with
MonteCarlo Simulation

36.1 Introduction

Derivative securities are becoming increasingly complex and as a consequence, closed-

form solutions for derivatives prices are mostly unavailable. In some cases, even formulaic

numerical solutions are hard to come by.With increasing frequency,Monte Carlo simulation

needs to be resorted to. This approach is especially useful in pricing securities whose payoffs

are path dependent or involve the modeling of many stochastic processes. Early seminal

work leading to the active use of Monte Carlo methods in finance is the paper by Boyle

(1977). For an excellent recent reviewof thesemethods, see also the paper byBoyle,Broadie,

and Glasserman (1997).

Monte Carlo simulation is not a panacea for all derivatives pricing problems. There are

many contracts that are not directly amenable to simulation solutions. A case in point is the

American option pricing problem. Whereas there are techniques for pricing such contracts

by simulation, these are by no means the best solution to the problem. However, Monte

Carlo simulation is one of the most general and widely applicable approaches to derivative

pricing and warrants a full and separate treatment.

In this chapter, we examine various aspects of the use of simulation for valuing derivative

contracts. We begin with a brief introduction to random variables and then proceed to

studying the main approaches that have been developed specifically for pricing derivatives.

We explore the various ways in which we can make the solutions more accurate, without

excessive increases in computational effort. The approach is intentionally simple; for a

detailed examination of the theory and application of simulation to derivative pricing, the

reader may refer to the excellent text by Paul Glasserman (2003).

The effective use of simulation requires software with the ability to generate a wide range

of random numbers, usually accompanied by powerful graphics tools. Spreadsheets are also

being used extensively to undertake simulation. Popular commercial packages exist that are

widely used for mathematical modeling in general but also for simulation in particular, such

as Mathematica and Matlab, among many others. There are many other free programs

that are available, many of which offer high-performance computing; Octave and R are

two often used numerical packages for scientific computing. These are fully open source

and easily accessed and installed from the Internet. Moreover, they may be installed on

many different types of hardware and run on various operating systems. We use Octave

extensively in the examples here. The reader may use the programs in this chapter as a

means to getting hands-on experience with the Octave mathematical language.

923
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36.2 Simulating Normal Random Variables

The normal distribution plays a major role in finance models, which implies the need for a

random number generator that provides standard normal [N (0, 1)] numbers.1

Most spreadsheets provide a random uniform number generator that samples a number

drawnuniformlybetween0and1.Each element of this rangemaybedrawnwith equal proba-

bility. Howdowe convert uniformU (0, 1) randomnumbers into an N (0, 1) randomvariate?

We may do this in one way by exploiting the central limit theorem (as summarized

in Boyle et al., 1997, p. 1270) from which we know that the sum of numbers from any

random distribution is normal in the limit. One common algorithm that exploits this idea

is as follows: generate a certain number of uniform random numbers and then compute

their mean to obtain a normal random variate. Therefore, in what is a commonly adopted

approach, we generate 12 uniform random numbers in the range (0, 1), subtract 0.5 from

each one to get numbers in the range (−0.5, +0.5), and then take their sum. As follows:

z =
12 
i=1

(yi − 0.5)

yi ∼ U (0, 1)

z ∼ N (0, 1)

The subtraction of 0.5 from each yi centers the mean of z at zero. This is a crude approach

to creating a random normal number. In practice, this method is never used now that a

wide range of normal random generators exists in popular computing packages. However,

it is instructive to look at the idea in some detail. Note that the variance of (yi − 0.5) ∼
U (−0, 5, +0.5) is 1/12 (the variance of a uniform random variable is equal to the square

of the difference between its maximum and minimum value, divided by 12). Hence, the

variance of the sum of 12 such numbers will havemean zero and variance of 1. This explains

why exactly 12 numbers are generated.

A second and more sophisticated approach also begins with a uniform random number.

Here we exploit the inverse of the normal CDF, which we denote as  −1(z) where z is a

normal random variable. If the normal PDF is denoted as φ(z), then the normal CDF is2

 (a) =
 a

−∞
φ(z) dz

We generate the random variate as follows:

z =  −1(y)

y ∼ U (0, 1)

⇒ z ∼ N (0, 1)

This is more parsimonious since only one uniform number is required instead of 12 as in

the previous method. However, it does require calling the inverse function for the normal

distribution.3 The inverse CDF method is more accurate since it uses an analytic function

and does not require a limiting argument as is necessary in the first method that calls for

the application of the central limit theorem.

1 Recall that N(0, 1) stands for a normal distribution with mean zero and variance equal to 1.

2 CDF stands for cumulative density function, and PDF stands for the probability density function.

3 Using this method in Excel is undertaken with the following command: NORMSINV(RAND()).
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Note that this method, which relies on using the inverse CDF, is quite general and may

be used for any probability distribution. If F(.) is the CDF of any probability distribution,

then we can generally create a random variable from this distribution by computing z =
F−1(y), y ∈ U (0, 1).

36.3 Bivariate Random Variables

So far we have considered univariate stochastic processes. Often we would like to simulate

two randomvariables, for example both the stock price and interest rate simultaneously. This

requires generating twonormal randomvariables jointly. These two randomvariablesmaybe

correlated. The correlation coefficient is denoted ρ. Of course, we require that−1 ≤ ρ ≤ 1.

How do we produce two random variables jointly with the correct correlation? Denote

these as z1 and z2. The procedure is as follows:

z1 = e1

z2 = ρ e1 + (
 

1 − ρ2) e2

where (e1, e2) are two independent random normal numbers. Hence,

E(ei ) = 0, i = 1, 2

Var(ei ) = 1

E(e2i ) = Var(ei ) + E(ei )
2 = 1 + 0 = 1

E(e1 e2) = Cov(e1, e2) + E(e1)E(e2) = 0 + 0 = 0

We can check that the generated random numbers z1 and z2 are indeed of mean zero and

variance 1 with correlation ρ as follows.

E(z1) = E(e1) = 0

E(z2) = E(ρe1 + (
 

1 − ρ2)e2) = ρ E(e1) +
 

(1 − ρ2) E(e2) = 0

Var(z1) = E(z21) − E(z1)
2 = E(e21) − 0 = Var(e1) = 1

Var(z2) = E(z22) − E(z2)
2 = E(ρ2e21 + 1 − ρ2e22) − 0

= ρ2E(e21) + 1 − ρ2E(e22) − 0 = 1

Cov(z1, z2) = E(z1z2) − E(z1)E(z2)

= E(ρe21 + (
 

1 − ρ2)e1e2) − 0 = ρE(e21) = ρVar(e1) = ρ

The same idea may be generalized to multiple dimensions, i.e., m-variate distributions

where m > 2. The general approach is better expressed using matrix algebra and uses a

well-known linear algebra function, namely Cholesky decomposition.

36.4 Cholesky Decomposition

Given a symmetric positive definite matrix A, the Cholesky decomposition is a procedure

that generates an upper triangular matrix U such that

A = UTU

Therefore, U is like the square root of matrix A. (The superscript T denotes the transpose

of the matrix). An equivalent decomposition involves the lower triangular matrix L , i.e.,

A = L LT
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These are both embodiments of the “square root” of A. This decomposition is also known

as the LU decomposition because

A = L U

The decomposition is a factorization procedure. The “square root” connotation of the

covariance matrix that is linked to the Cholesky decomposition is useful when consid-

ering covariance matrices. While it is not accurate to say that the decomposition of the

variance-covariance matrix delivers the standard deviation, L and U are indeed the “roots”

of the covariance matrix.

Let’s take an example we are already familiar with, i.e., the bivariate case from the

previous section. If we want two standard normal random variates with correlation ρ, then

the covariance matrix is

A =
 
1 ρ

ρ 1

 

If we apply Cholesky decomposition to this matrix A, we get

L =
 
1 0

ρ
 

1 − ρ2

 

This simplifies the mathematics in generating correlated random numbers. For example, if

we generate two uncorrelated random normal variates, we can then use the U or L matrix

to convert these numbers into correlated numbers. Let the two uncorrelated random normal

numbers be

X =
 
e1
e2

 

Then we convert these into correlated numbers as follows:

Z = L X

or in full form  
z1
z2

 
=
 
1 0

ρ
 

1 − ρ2

  
e1
e2

 

This is exactly the same specification as we had in Section 36.3.

Instead of the correlation matrix, it is more usual to work with the Cholesky decompo-

sition of the covariance matrix. In the example above, our use of the correlation matrix was

correct since we assumed it to be based on (0, 1) random variables where the variance was

1 and means were zero. Therefore, the correlation matrix coincided with the covariance

matrix.

Example 36.1 Here is a sample run under Octave with which we generate correlated random numbers
and confirm that they indeed come from the original distribution.

octave:1> cv = [0.02 0.01 0.01; 0.01 0.03 0.01; 0.01 0.01 0.04]

cv =

0.020000 0.010000 0.010000

0.010000 0.030000 0.010000

0.010000 0.010000 0.040000

octave:2> n=10000
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n = 10000

octave:3> x=randn(3,n);

octave:4> L=chol(cv)’

L =

0.14142 0.00000 0.00000

0.07071 0.15811 0.00000

0.07071 0.03162 0.18439

octave:5> z = L*x;

octave:6> cov(z’)

ans =

0.020188 0.010398 0.010348

0.010398 0.030880 0.010105

0.010348 0.010105 0.040086

The steps are as follows:

octave:1 – Input the covariance matrix.
octave:2 – Set the number of samples (10,000 in this case).
octave:3 – Generate three independent standard normal random numbers per sample.
octave:4 – Compute the lower decomposition matrix using Cholesky decomposition.
octave:5 – Generate samples of correlated random normal numbers using L.
octave:6 – Compute the covariance matrix from the random samples to confirm that we
get the same covariances (approximately only—a bigger sample would do much better) as
we input in the first step. ■

36.5 Stochastic Processes for Equity Prices

The first step in derivative pricing comprises making an assumption about the mathematical

process followed by the underlying stochastic variable in the model. When pricing equity

options, we assume a stochastic process for the stock price. This is done in the form of

a stochastic differential equation (sde). An sde is a differential equation with a stochastic

term describing a random evolution of the variable in question. For example, the Black and

Scholes (1973) model is based on the following sde:

dS(t) = μS(t) dt + σ S(t) dZ (t), S(0) = S0 (36.1)

The parameterμ represents themean return (continuously compounded) on the stock, and σ

is the volatility parameter. The random shock is injected by the Brownian motion increment

dZ (t) ∼ N (0, dt).

The solution to this sde for equity prices is as follows:

S(t) = S(0) exp

  
μ − σ 2

2

 
t + σ Z (t)

 
(36.2)

Thus, the stock price is lognormal, and the continuously compounded return is normal;

both results follow from the normality of Z (t).

The expected future value of the stock is

E[S(t)] = S(0) exp(μt)
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which follows directly from a simple calculation based on the lognormal distribution. Note

that equation (36.2) may be written as

S(t) = S(0) ex(t) , x(t) =
 
μ − σ 2

2

 
t + σ Z (t)

Therefore,

E[x(t)] =
 
μ − σ 2

2

 
t , Var[x(t)] = σ 2t

From the properties of the lognormal distribution, if x(t) is normally distributed, then

E[ex(t)] = exp[E[x(t)] + 1

2
Var[x(t)]] = exp[μ t]

For the purpose of implementing the random evolution of the stock via Monte Carlo

simulation, we use the following discretized equation:

S(t + h) = S(t) exp

  
μ − σ 2

2

 
h + σ z

√
h

 
(36.3)

where z ∼ N (0, 1), and h is the discrete time step in the simulation. For example, if the

interval is one trading day, then h = 1/260, if there are 260 trading days in one year.

Simulation is undertaken using a series of draws of z from a standard normal distribution.

Hence, equity prices are characterized by a price process that grows exponentially. From

the previous equation, we can also see that equity prices have an exponential form and will

never become negative.

The following program (written in Octave) illustrates a simulation of five paths of stock

prices.

%Program to simulate stock price paths

n = 2600; %No of days (10 years)

h = 1/260; %Time step in units of years

m = 5; %Number of price paths

s0 = 100; %Initial stock price

mu = 0.15; %growth rate

sig = 0.25; %volatility

stkp = zeros(n+1,m);

for i=1:m;

stkp(1,i) = s0;

for j=2:n+1;

stkp(j,i) = stkp(j-1,i)*exp((mu-0.5*sig^2)*h+sig*randn(1,1)*sqrt(h));

end;

end;

title(’Stock price simulation for 10 years’);

grid; xlabel(’Trading days’); ylabel(’stock price’);

plot(stkp,";;");

The program results in a plot of five stock price paths over 10 years illustrated in Fig-

ure 36.1. Some of the stock price paths demonstrate the exponential character underlying

this stochastic process.
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FIGURE 36.1
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36.6 ARCH Models

The Nobel Prize for Economics in 2003 was awarded to Robert Engle for his innovation

known as the Auto-regressive Conditional Heteroskedastic (ARCH) model, which has been

found to characterize many financial time series very well.

ARCH implies that (a) financial data are autocorrelated and (b) their variance changes

over time (heteroskedasticity).

The ARCH model for a stochastic variable yt over time is stipulated as follows:

yt = α0 + α1xt + et , et ∼ N [0, η2
t ] (36.4)

η2
t = β0 + β1e

2
t−1 (36.5)

The first equation is called the “mean” equation, and the second one is the “variance”

equation. The variance equation is autoregressive, conditional on the previous innovation

(et−1), and injects heteroskedasticity. Hence the nomenclature. The parameters that are to

be estimated are α0, α1, β0, and β1.

In layman’s terms, this states that the variable yt has a variance that depends on the

previous period’s shock. This conforms to a common feature in the financial markets, i.e.,

a large shock in one period causes volatility to rise and stay high for a while, or in other

words, volatility is “persistent.”

If we apply the ARCH model to the equity process (geometric Brownian motion) seen

earlier, we will get the following system of equations:

S(t) = S(t − h) exp

  
μ − σ (t)2

2

 
t + Z (t)

 
(36.6)

σ (t)2 = Var[Z (t)] = β0 + β1Z (t − h)2 (36.7)

with parameters μ, β0, and β1.
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The generalized ARCH, or GARCH, model is an extension of the ARCHmodel and was

developed by Tim Bollerslev. The GARCH framework recognizes that volatility depends

not only on the previous period’s deviation from the expected change in stock prices but

also on the level of the prior volatility. The system of equations is as follows:

yt = α0 + α1xt + et , et ∼ N [0, η2
t ] (36.8)

η2
t = β0 + β1e

2
t−1 + β2η

2
t−1 (36.9)

with the additional parameter β2. In the GARCH specification, the variance each period

depends not only on the shock (et−1) from the previous period but also on the previous

variance (η2
t−1). This natural extension is also found to calibrate to stock data very well.

Simulation of the ARCH or GARCH process is easily achieved by repeated application of

the equation pairs above.

36.7 Interest-Rate Processes

Interest rates do not grow exponentially over time like stock prices. Instead, they cycle with

the economy. Technically speaking, they are mean reverting. A wide range of formulations

has been used to model interest-rate movements over time. We will briefly look at some of

the more common ones here.

The Vasicek (1977) model is a popular choice for simple interest-rate processes. It is

based on the Ornstein-Uhlenbeck (OU) stochastic process, quite well known in physics.

This process is as follows.

dr (t) = κ[θ − r (t)]dt + σdZ (t), r (0) = r0 (36.10)

Here, κ is the speed of mean reversion, and θ is the long-run mean of the interest-rate

process. The solution to this sde is as follows:

r (t) = r (0)e−κt + θ (1 − e−κt ) + σ

 t

0

e−κ(t−s)dZ (s) (36.11)

The interest rate is normally distributed in this model. The expectation and variance of the

interest rate are:

E[r (t)] = r (0)e−κt + θ (1 − e−κt ) (36.12)

Var[r (t)] = σ 2

2κ
(1 − e−2κt ) (36.13)

Whereas the mean of r (t) depends on the initial interest rate r (0), the variance does not.

Simulation may be undertaken via the following discretized equation:

r (t) = r (0)e−κt + θ (1 − e−κt ) + σe−0.5κt z
√
t (36.14)

where z ∼ N (0, 1). This is an approximation to the OU process and is a simple one. There

are other more complex discretizations that are employed, but we retain this parsimonious

one since it is sufficient for the ideas being developed here.

The OU process permits negative interest rates. Hence, a popular alternative to the OU

process is the square root diffusion process, first used in finance by Cox, Ingersoll, and Ross

(CIR, 1985). This process is:

dr (t) = κ[θ − r (t)]dt + σ
√
rdZ (t), r (0) = r0 (36.15)



Chapter 36 Derivative Pricing with Monte Carlo Simulation 931

The only change from theOUprocess is in the volatility function.Volatility is nowdependent

on the level of interest rates, and if σ 2 < 2κθ , then interest rates will never reach zero in this

model. This is a desirable property for models of the nominal interest rate that cannot take

on negative values. However, it is inappropriate for the real interest rate since it excludes

negative real rates commonly seen in past decades.

The CIR model may be simulated from the following approximation equation, which is

a modification of the earlier OU model:

r (t) = |r (0)e−κt + θ (1 − e−κt ) + σe−0.5κt 
 
r (t) t | (36.16)

where  ∼ N (0, 1). While in continuous time the original process in equation (36.15) never

reaches zero, it may still do so during simulation in discrete time. Hence, the absolute value

of the interest rate is taken during the Monte Carlo step in equation (36.16) . This approach

was first pointed out by Beaglehole and Tenney (1992). They showed that the absolute sign

representation does not destroy the properties of the original square root process during the

simulation. The following program is an example of a simulation of the CIR interest-rate

process.

%Program to simulate CIR interest rate paths

n = 2600; %No of days (10 years)

h = 1/260; %Time step in units of years

m = 5; %Number of price paths

r0 = 0.10; %Initial stock price

kappa = 0.15; %mean reversion rate

theta = 0.10; %Long run mean of interest rate

sig = 0.25; %volatility

intr = zeros(n+1,m);

for i=1:m;

intr(1,i) = r0;

for j=2:n+1;

intr(j,i) = intr(j-1,i) + kappa*(theta - intr(j-1,i))*h

+ sig*randn(1,1)*sqrt(intr(j-1,1)*h);

intr(j,i) = abs(intr(j,i));

end;

end;

title(’CIR interest rate simulation for 10 years’);

grid; xlabel(’Trading days’); ylabel(’interest rate’);

plot(intr,";;");

gset term postscript;

gset output "simcir.eps";

replot;

The resultant plot of five interest-rate paths over a period of 10 years is illustrated in

Figure 36.2. The mean reversion in the series is evident.

In the next few sections, we examine simple approaches to determining the volatility

parameter for these simulation models.
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36.8 Estimating Historical Volatility for Equities

In the simulation of the equity prices process, we need to estimate the volatility parameter.

The volatility σ is the annualized standard deviation of continuously-compounded stock

returns. It is not the volatility of the stock price itself. This follows from equation (36.2).

Historical volatility is computed from a time series of continuously compounded stock

returns. If the time interval between two consecutive stock prices is h, the continuously

compounded return for that time interval is:

Rt ,t+h = ln

 
St+h

St

 

For example, if St = 101 and St+h = 105, then Rt ,t+h = 0.03884.

Usually, we use daily data and compute a return for each day, resulting in a time series

of continuously compounded daily returns. From this time series, we compute the variance

of daily returns, i.e., Var[Rt ,t+h].

The annualized variance is obtained by multiplying the variance of daily returns by the

number of trading days in the year. This is based on the assumption that the returns in each

period are independent of each other, which is a working assumption for the equity process

in equation (36.2).

σ 2 = Var[Rt ,t+h] × (Number of Trading Days per Year)

And finally, the annualized volatility is the square root of the annualized variance, i.e.,
√
σ 2.

36.9 Estimating Historical Volatility for Interest Rates

Since the interest-rate process is usually a mean-reverting one, the approach used for equity

volatility does not apply. However, the volatility may be ascertained without too much

trouble here as well. Regression is a simple approach to estimating interest-rate process
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parameters. Recall the OU process used earlier:

dr (t) = κ[θ − r (t)]dt + σdZ (t), r (0) = r0 (36.17)

A simple discrete-time version of this process is as follows:

r (t + h) − r (t) = κ[θ − r (t)]h + σ (t)
√
h (36.18)

where h is the time interval between observations. Again, more complex versions may be

used; we restrict the exposition here to the simplest one.

This process may be rewritten as a linear regression model:

y(t) = α + βr (t) + e(t) (36.19)

where

y(t) = r (t + h) − r (t)

α = κθh

β = −κh

e(t) = σ (t)
√
h

Note that this is a simple ordinary least squares (OLS) regressionwhere y(t) is the dependent

variable and r (t) is the independent variable. The intercept of the regression is α, and the

coefficient on the independent variable is β.

The coefficients [α, β] are estimated from a time series of interest rates using the re-

gression. The parameter h depends on the frequency of the data used. If, for example, daily

interest rates are used, the time interval is h = 1/260 where 260 is the number of trading

days in the year (5 trading days for 52 weeks).

From α and β, we can invert the values of the stochastic process parameters as follows:

κ = −β

h

θ = α

κh
= −α

β

The parameter σ is obtained from the standard error of the regression, i.e., from the

value of σe = √
Var[e(t)], i.e., the variance of the residuals from the regression. Note that

Var[e(t)] = σ 2h

Hence,

σ =
 

1

h
Var[e(t)] = 1√

h
σe

Exercise for the reader: can you use theOLSmethod for the CIRmodel?What is the possible

difficulty here? With which parameter? Suggest an alternative approach.

36.10 Path-Dependent Options

Simulation is especially useful for options in which the payoff at maturity depends on the

entire or a part of the sample path of the process prior to maturity, not only on the value

of the random variable at maturity. Monte Carlo methods offer a seamless way of pricing

path-dependent options. Pricing involves only keeping track of the path of stock prices or

interest rates during the simulation.
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An example of a path-dependent option is the “Asian” option based on the average of

the stock price up to and including maturity. The period for which the average is computed

is called the “averaging period,” and it may be shorter than the life of the option itself.

For example, the option may be written for a maturity of a year, but the averaging period

may be the half year just preceding option maturity. Asian options may be puts or calls.

The payoff is based on a comparison of the average price over the sample path with the

exercise price.

We illustrate the pricing of an Asian put option on a stock using the following program.

%Program to simulate stock price paths and price Asian options

n = 260; %No of days (1 year)

h = 1/n; %Time step in units of years

m = 10000; %Number of price paths

s0 = 100; %Initial stock price

r = 0.05; %interest rate

sig = 0.25; %volatility

K = 100; %Strike price

%Generate all the stock price paths and keep track of the average

stkp = s0 * ones(m,1);

stkpsum = zeros(m,1);

for j=1:n;

stkp = stkp.*exp((r-0.5*sig^2)*h+sig*randn(m,1)*sqrt(h));

stkpsum = stkpsum + stkp;

end;

stkpavg = stkpsum/n;

%Finalize pricing

vanillaput = exp(-r*h*n) * mean(max(0,K-stkp));

asianput = exp(-r*h*n) * mean(max(0,K-stkpavg));

%Print the results

printf(’Vanilla Put Price = %10.6f \n’, vanillaput);

printf(’Asian Put Price = %10.6f \n’, asianput);

This program has been optimized relative to the ones presented earlier by means of

vectorization. Note carefully the way in which this program simulates all 10,000 paths

simultaneously. The speedup from vectorization of the simulation is immense. The same

idea also suggests how easy it is to parallelize many such option calculations. The output

from this program is as follows:

octave:1> simasian

Vanilla Put Price = 7.411061

Asian Put Price = 4.390482

Notice that the Asian put is worth less than the ordinary put option. This is because the

average of the stock price series is less volatile than the stock series itself. But, this is also

dependent on the fact that the option is at-the-money. The same result need not hold for

in-the-money options, since they may be less prone to losing their moneyness on account

of the lower volatility of the average. For the parameters in the program above, this tends
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to happen at a strike price of K = 130, i.e., when the vanilla put option would be deep

in-the-money. The results for a 130 strike are:

octave:2> simasian

Vanilla Put Price = 26.479113

Asian Put Price = 26.527535

Another example of path dependence arises in the pricing of mortgage-backed securities

(MBS). The prepayment function, a key ingredient of the pricing model for MBS, typically

depends on the path of interest rates. In this setting, simulation is the only realistic approach

for the valuation of mortgage-backed securities.

36.11 Variance Reduction

Monte Carlo simulation is an estimation technique based on random numbers. Hence, it is

not precise unless a very large number of random draws is used. Running a Monte Carlo

simulation results in a different answer each time. By increasing the number of samples

in each iteration, the difference between the answers obtained in each iteration diminishes.

Usually, the error in the estimation may be reduced by running more simulation runs.

To estimate the price of a vanilla option, we simulate a path of the stock price from its

starting value. We then compare its terminal value at maturity under the simulation with

the strike price. If we simulated but one sample path, our estimate would have considerable

error. Therefore, we usually simulate many sample paths. Our choice of the number of

simulations depends on the degree of accuracy desired, which is a choice based on the

practical requirements of the situation.

Suppose we choose to run n simulations. Each sample path is independent of every

other path by construction of the Monte Carlo method. After generating n sample paths, we

average the resultant derivative payoff values obtained from each sample path to estimate the

expected price of the option. Under the assumption of independence, doubling the number

of simulations to 2n will result in a decrease in the variance of the estimate by one-half.

In general, if we run k × n simulations, the variance will scale by 1
k
. Once we have run

the Monte Carlo pricing algorithm for n simulations and determined the variance, we can

extrapolate to the number of simulations needed to obtain any desired level of accuracy.

The estimated variance depends on all features of the option, its moneyness, maturity, and

volatility.

Increasing the number of simulations is a naive and simpleway to increase the accuracy of

the estimator. However, it naturally involves an increased computational burden. Simulation

methods that offermuchbetter trade-offs between computational effort and accuracy arewell

known.These are usually describedunder the rubric of “variance-reduction” techniques. The

goal of these techniques is to reduce the estimation variance with a less than proportionate

increase in the run time of the Monte Carlo algorithm. There are many methods that may

be used. We outline a few below.

Antithetic Variate Method
Standard Monte Carlo simulation imposes independence of sample paths. By modifying

this feature, variance reduction is attainable. The antithetic variate method is based on the

idea that rather than generate n independent random variates, we will generate n
2
pairs

of negatively correlated random variates. Thus, if we overstate the value in one direction

through a random draw, the antithetic variate acts as a compensator, thereby reducing the

variance in the estimation model.
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To get some intuition for why this approach works, it is best to consider an extreme

example. What if each path were perfectly correlated with every other? This would mean

all paths were identical. Increasing n does not result in a reduction in estimation variance.

Therefore, moving to the other extreme away from perfect positive correlation results in the

opposite effect, i.e., a reduction in the variance of the estimator by better coverage of the

sample space.

At the simplest level, a standard normal random variable xt would have as its antithetic

the variable x  
t = −xt . If the variable x were standard uniform, then its antithetic would be

x  
t = 1 − xt . In both cases, we are assured that the covariance between the variable xt , and

its antithetic x  
t is such that Cov(xt , x

 
t ) ≤ 0.

Implementation of the antithetic variate method is very simple. Instead of generating one

sample path at a time, we generate two paths, the primary path and its antithesis. Whenever

we generate a normal random number  for the primary path, we set the random number

for the antithetic path to be − .

The method provides two paths for the computational price of one. Hence, instead of

generating n paths, we generate n/2. This may or may not be a large saving in computation

time and depends on the type of random variable being generated. For more complex

distributions, this cost need not be trivial, in which case the antithetic approach results in a

reduction in variance along with a substantial gain in computation time as well.

We implement a program that demonstrates the value of this approach. Let us compute

the price of a European call option using the naive approach aswell as the antithetic approach

and report the variance. The program is as follows.

%Program to demonstrate the antithetic model.

clear all;

%Input parameters

s0 = 100;

k = 100;

v = 0.4;

t = 1.0;

r = 0.10;

n = 260;

h = t/n;

m = 10000;

numrep = 100;

%Do all replications

call1 = [];

call2 = [];

for j = [1:numrep];

%Generate sample paths

stk1 = s0*ones(m,1); % Naive method prices

stk2 = s0*ones(m,1); % Antithetic series

for i = [1:n];

e1 = randn(m,1);

e2 = [e1(1:m/2); -e1(1:m/2)];

stk1 = stk1.* exp((r-0.5*v^2/2)*h + v*e1*sqrt(h));
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stk2 = stk2.* exp((r-0.5*v^2/2)*h + v*e2*sqrt(h));

end; %iloop

c1 = exp(-r*t)*mean(max(0,stk1-k));

c2 = exp(-r*t)*mean(max(0,stk2-k));

call1 = [call1; c1];

call2 = [call2; c2];

end; %jloop

mean = mean([call1 call2])

stdev = std([call1 call2])

The program run looks as follows:

octave:5> antithetic

mean =

23.116 23.136

stdev =

0.34937 0.25428

The first value is from the simulation model without variance reduction; the second one

is from the model with the antithetic technique applied. As expected, the mean call option

price is very similar in both runs, but the standard deviation of option prices is lower for

the antithetic approach.

Control Variate Techniques
A given set of random numbers used for Monte Carlo simulation results in the estimate

being biased high or low. If the sign of the bias was known, we could skew our estimate

accordingly in the right direction.

Monte Carlo estimation is used when no closed-form pricing equation is available.

Sometimes, a closed-form solution is known to a problem that is similar to, but not exactly

the same as, the one under consideration. This known solution, denoted a “control-variate,”

may be used to impose bias correction on simulation estimates. Our exposition here follows

the development of Boyle et al. (1997).

Denote theMonte Carlo estimate of our pricing problem as P . The “look-alike” problem

that admits a closed-form solution has a Monte Carlo estimate denoted Q. The exact price

from the closed-form equation for the control variate is Q0. By comparing Q with Q0, we

can discover the direction of the bias from the simulation algorithm.

After accounting for the bias, we correct the original estimate P as follows:

P  = P + (Q0 − Q)

where P  is the estimator after the bias correction. That is, we skew the simulated price in

the direction required to reduce the bias. The bias is given by (Q0 − Q). For this to provide

variance reduction requires that

Var[P  ] < Var[P]
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Let us compute the variance of the revised estimate P  :

Var[P  ] = Var[P + (Q0 − Q)]

= Var[P − Q]

= Var[P] + Var[Q] − 2Cov(P, Q)

Therefore,

Var[P  ] < Var[P] if Cov(P, Q) >
1

2
Var[Q]

Simply put, the greater the similarity between the original problem and its control variate

closed form, the greater the benefit from the technique.

Caveat

The random numbers used for computing P and Q must be exactly the same. Therefore,

the simulation for P must store the random numbers used and reuse them for estimating Q.

36.12 Monte Carlo for American Options

It is difficult to use the Monte Carlo method for pricing American options. Why? Recall

how American options are priced on a binomial tree. The technique involves backward

recursion on the tree resulting in a choice of early exercise at each node. If the immediate

exercise value exceeds the continuation value, then the option is exercised early, or the buyer

holds on to it or sells it in the open market in preference to exercising it. Unlike backward

recursion, simulation is a technique that uses forward movement along the sample path of

the stock price. Hence, at any point of time in the simulation, it is not possible to determine

the expected continuation value of all possible paths that the stock price can take. It is also

not possible to account for all possible future optimal early exercise decisions that may

occur. Hence, a comparison of immediate exercise value with continuation value is not

feasible. Thus, simulation is not ideally suited to dynamic programming to make optimal

early exercise decisions.

In recent times, many techniques have been developed to get around this problem. We

will examine a couple of these here. Each of these techniques is aimed at establishing a rule

for early exercise that may be applied in the forward progress of the simulation.

Polynomial Boundary Technique
In this technique, the presence of an early exercise boundary is exploited. We know from

the binomial tree model that there is a set of nodes on the tree that comprise the “exercise

region” for the option. For example, the exercise region for an American put option is the

lower range of stock prices. All prices (tree nodes) below the early exercise boundary fall

into the exercise region. The complement of this set of nodes is the “continuation region”

of the tree. For the American put, these are the tree nodes that lie above the early exercise

boundary. It turns out that for plain vanilla options, there is a continuous early-exercise

boundary that separates one set from the other.

This fact may be exploited in a simulation algorithm. The idea is as follows. Suppose we

are given the early-exercise boundary (or the exercise region). Then, during the forward path

in the simulation, if we cross through the early exercise boundary (from the continuation

region into the exercise region), we exercise the option at that point in the simulation, and

the value along that sample path is the present value of the exercise payoff.

The critical issue in this approach is how to find the early exercise boundary (EEB) in

the first place so that we may run the Monte Carlo algorithm. How do we know that we
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have found the best EEB? In the binomial tree setting, we used dynamic programming via

backward recursion to determine our optimal decision at each node. In contrast, in theMonte

Carlo approach we undertake forward simulation by positing a functional form for the EEB.

Since the American option problem comprises optimal early exercise choices, the value of

the option will be highest for the optimally chosen boundary. For all other EEBs, the option

value must be lower because for those boundaries, the exercise behavior implemented in

the Monte Carlo simulation is suboptimal. Thus, the problem devolves into searching over

possible EEBs until we find the one that yields the highest American option value from our

simulations. We may write this idea somewhat more formally as follows:

A = max
{EEB(θ )}

1

n

n 
i=1

V (i, EEB) (36.20)

where i indexes the sample paths, V (i, EEB) is the value under each sample path and

EEB, and θ is a set of parameters that characterize the early-exercise boundary (EEB). We

denote the value of the American option as A. There are n simulation paths. V (i, EEB) is

the present value of the realization of sample path i for a given boundary EEB. We search

over the set of all boundaries by varying the parameter set θ , eventually finding the one that

yields the best value. Of course, an element of judgment enters here in the choice of the

functional form of the EEB. By choosing sufficiently flexible forms, we are more likely to

come close enough to the true and optimal but yet unknown EEB.

We illustrate this approach using a simple simulation program for the standard American

put option contract:

%Program to price American PUT options with a barrier

%Uses Geometric Brownian Motion

clear all;

%Basic input

s0 = 100;

v = 0.2;

T = 1;

r = 0.1;

K = 101;

h = 1/52;

m = T/h;

%Barrier function parameter

alpha = 0.08;

%Simulation [very simple barrier: EEB = K*exp(-alpha*remaining_t]

n = 1000; %no of paths

rn = randn(n,m);

for alpha = [0.02:0.02:0.20];

pvput = zeros(n,1); %to store path pv

for j=1:n;

s = s0;

for i=1:m;

s = s*exp((r-v^2/2)*h+v*sqrt(h)*rn(j,i));

remt = (m-i)*h;

barrier = K*exp(-alpha*remt);

if (s<=barrier); pvput(j) = exp(-r*i*h)*(K-s); break; end;
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end; %i

end; %j

putv = mean(pvput);

fprintf(’alpha = %10.6f, put value = %10.6f \n’,alpha,putv);

end; %alpha

The barrier used in this model takes a simple one-parameter form,

EEB(T ) = K exp(−αT ) (36.21)

where T is the remaining maturity of the option. Notice that when T = 0 (i.e., at maturity),

the barrier is equal to the strike price K . This is a necessary property of EEBs for American

puts. Themonotone declining and convex shape of the barrier prescribed in equation (36.21)

is also consistent with the shapes of EEBs we obtain from solving for the price of American

put options on binomial trees. As the remaining time to maturity increases, the barrier

becomes lower, as is the case with American puts, i.e., the stock price needs to fall more

for early exercise to occur when there is a long time to maturity. Here is the output from the

program for various values of the parameter α:

octave:1> barriermc

alpha = 0.050000, put value = 3.965325

alpha = 0.100000, put value = 4.845767

alpha = 0.150000, put value = 5.139861

alpha = 0.200000, put value = 5.104347

alpha = 0.250000, put value = 5.147242 <==== MAX

alpha = 0.300000, put value = 5.123476

alpha = 0.350000, put value = 5.077187

alpha = 0.400000, put value = 5.050253

alpha = 0.450000, put value = 4.918068

alpha = 0.500000, put value = 4.901533

alpha = 0.550000, put value = 4.816195

alpha = 0.600000, put value = 4.799667

We see that the value of the put is maximized when α = 0.25. The optimal price of the put

option is $5.15. Using a binomial tree model for pricing the American put, we obtain a price

of $5.22. The binomial tree price is higher than that from the simulation model because

the latter is based on a very simplistic choice of the EEB and, hence, will suffer some

suboptimality in the price it generates relative to the true value of the option. Nevertheless,

despite this deficiency, the model appears to do very well.

The Longstaff and Schwartz (2001) Approach
The paper by Longstaff and Schwartz (2001) develops a simple and computationally ef-

ficient approach to the valuation of American style options. This method uses a regres-

sion approach, which is used to implement backward recursion over a simulated space of

stock prices. Simulation is a forward approach, quite different from backward recursion

on binomial trees. Longstaff and Schwartz’s approach introduces backward recursion using

regression in a forward simulation framework and provides a very general scheme in which

many types of American options may be valued.

To keep matters simple, we price a vanilla American put. We present an example anal-

ogous to that from the original paper by Longstaff and Schwartz (LS) to facilitate readers

who may want to refer to the original article and work through it in detail, which is certainly

recommended.
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The essential steps in the LS algorithm are as follows:

1. Choosing a given number of periods t = 1, . . . , T , of period h, simulate j = 1, . . . , n

paths of the stock price. This will result in a table {S} j t of dimension n × T .

2. At time t = T , compute the payoffs to the option at maturity, assuming no exercise has

occurred in the intervening period. Denote these payoff cash flows as C j (t).

3. Discount these payoffs back to time t = T − 1 for each path j . Denote these discounted

payoffs as Yj (t) = C j (t + 1) exp(−r h) where r is the risk-free rate per annum.

4. At time t = T −1, find all paths where the value of early exercise of the option is strictly

positive; these are the paths on which a decision needs to be made as to whether early

exercise should be undertaken or not. Compute the early exercise value on these paths

at time t .

5. To ascertain onwhich paths early exercise is a dominating strategy requires a comparison

of the early exercise value, which we will denote Vj (t), with the expected value of

continuation, conditional on the current stock price Sj (t). The expected conditional

continuation value is E[Yj (t)|Sj (t)]. We may compute this expected value by regressing

the values of Yj (t) on polynomial powers of Sj (t) only for those paths where Vj (t) > 0.

Having done so, we can ascertain on which paths early exercise occurs by checking

where Vj (t) > E[Yj (t)|Sj (t), Vj (t) > 0]. Only on these paths, set C j (t) = Vj (t). Also

set all cash flows after time t on these specific paths to zero, i.e., C j (k) = 0, ∀k > t .

6. Recursively repeat steps 3 to 5 for time periods receding from T −1 backward until time

zero. Then discount all cash flows C from all paths and compute their average. This will

be the price of the option, accounting correctly for early exercise.

Intuitively, the idea is exceedingly simple. The choice to exercise an American option

early needs to bemade when the current exercise value exceeds the continuation value given

the current time and the current level of the underlying stock price. Hence, there is a need

to estimate the continuation value. Recall that in the binomial tree framework of Cox, Ross,

andRubinstien (1979), the continuation value at any node of the tree came from the expected

value of the subtree emanating from that node. In a simulation model, the value is estimated

via a regression of path values Yi (t) against the current stock price across all paths where

early exercise is feasible, i.e., E[Yj (t)|Sj (t), Vj (t) > 0]. The rest is just backward recursion.

The choice of the regression function to determine the continuation value in step 5 is

a critical dimension of the problem. The “better” the choice of the regression model, the

closer the model solution is to the true value of the American option. Therefore, it is clear

that the judgment of the modeler plays a critical role here.

The model may be exemplified with the following Octave program. We use a cubic

polynomial for the regression function in this program.

function u = lsmoctave(s,k,mat,v,r,n,t);

%Monte Carlo of sample paths

dt = mat/t;

stk = zeros(n,t+1);

stk(:,1) = s;

for i=[2:t+1];

stk(:,i) = stk(:,i-1).*exp((r-0.5*v^2)*dt+v*sqrt(dt).*randn(n,1));

end;

fprintf(’Mean Stock Price (PV) = %10.4f\n’,mean(stk(:,t+1))*exp(-r*mat));

%Backward recursion of LSM
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opt = zeros(n,t+1);

opt(:,t+1) = max(0,k-stk(:,t+1));

for i=[t:-1:2];

%Regression step

index = find(k-stk(:,i)>0);

w = exp(-r*dt)*opt(:,i+1); y = w(index);

x = stk(:,i); x = x(index);

x = [ones(length(x),1) x x.^2 x.^3];

b = ols(y,x);

%Continuation value step

earlyindex = zeros(n,1); earlyindex(index) = 1;

x = stk(:,i);

x = [ones(length(x),1) x x.^2 x.^3]; %CUBIC POLYNOMIAL REGRESSION

contval = (x*b).*earlyindex;

earlyindex2 = zeros(n,1);

index = find(k-stk(:,i)>contval); earlyindex2(index) = 1;

earlyindex = earlyindex.*earlyindex2;

opt(:,i) = earlyindex.*(k-stk(:,i)) + (1-earlyindex).*w;

%fprintf(’i = %5.0f\n’,i);

end;

opt(:,1) = opt(:,2)*exp(-r*dt);

u = max(mean(opt(:,1)),k-s);

We use the same parameters as in the previous subsection on polynomial boundary tech-

niques. The functional equation used in the regression pass above uses a polynomial up to

a third power of the stock price. The method is extremely fast, and run times are very low.

The program run is as follows:

octave:2> lsmoctave(100,101,1,0.2,0.1,10000,52)

Mean Stock Price (PV) = 99.9678

ans = 5.1945

The price of the American put in this model is $5.19. The tree-based model returned a

value of $5.22 for the American put. The value we obtain from the model of Longstaff and

Schwartz is very close to this.

36.13 Summary

This chapter provides a basic introduction to simulation techniques for pricing options. We

examined standard approaches for generating random numbers and simple implementations

of stochastic processes for the generation of sample paths of financial variables, including

ARCH-type formulations. The variables for these simulations are easy to estimate quickly

using simple methods. The chapter also covered two standard ways in which variance

reduction is implemented in simulation schemes: antithetic variates and control variates.

One of the difficulties we face with simulation is that it is not easy to price American

options because optimal early exercise is usually determined via backward recursion. Two

recent techniques developed to work around this problem were discussed to conclude this

chapter. First, a polynomial approach to estimating the early exercise boundary, and second,

the regression approach of Longstaff and Schwartz (2001).

There are many additional techniques that have been developed for pricing derivative

securities using simulation, all of which cannot be covered here. These are extensively

covered in texts such as the one by Glasserman (2003).
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36.14 Exercises 1. Using Octave (or Excel), generate 1000 uniform random numbers. Write out your

commands used, and state the mean and variance of the list of numbers.

2. Generate 1000 random standard normal numbers. Write out the command used, and

state the mean and variance.

3. You are given the following covariance matrix for three random normal variates:

v =

⎡
⎢⎣
0.04 0.02 0.02

0.02 0.05 0.02

0.02 0.02 0.06

⎤
⎥⎦

Compute from Cholesky decomposition the matrix L (lower diagonal matrix) and state

your code and the result.

4. Using the results of the previous question, generate a 1000 × 3 matrix of correlated

random normal numbers and then compute the covariance matrix of the three columns

of the matrix. State the code and the resultant covariance matrix.

5. Simulate 1000 paths of monthly stock prices for one year using the geometric Brownian

motion stock model. Since the simulation is monthly, you need a time step of 1/12 of a

year. Assume an interest rate of 5% per annum and a stock return variance of 35% per

annum. Present your code and the mean and variance of the distribution of final 1000

stock prices at the end of one year. Assume the starting price is S0 = 100.

6. Simulate 10,000 paths of monthly stock prices for one year using the geometric Brow-

nian motion stock model. Since the simulation is monthly, you need a time step of 1/12

of a year. Assume an interest rate of 5% per annum and a stock return variance of 35%

per annum. Assume the starting price is S0 = 100. Plot the histogram of final prices.

Draw the rough density function here.

7. In the previous question, is the distribution you see from your graph that of a normal

distribution? Why or why not?

8. (Barrier Monte Carlo for American Options) Using these parameters, set up your simu-

lationmodel for the geometric Brownianmotion of a stock price: S(0) = 100, r = 0.10,

T = 1, and v = 0.4. Assume that there is an American put option at strike K = 101.

The early-exercise barrier function is given by B(t) = K exp[−alpha t], where “alpha”

is a parameter you need to find, and “t” is remaining maturity. What are the optimal

alpha and the value of the American put option?

9. (Question on Venture Economics) Entrepreneur Rich Trimiluk has started a new ven-

ture, embedding his human capital and intellectual property (IP). He believes the idea

today, even before development, is worth $100. The IP in the venture grows in fits

and starts (not smoothly), and on average, there will be two repricing events a year

(the arrival of the repricing events is uncertain). At each repricing, the IP is changed

by a multiplicative function [exp(−0.5v2 + G)], where G ∼ N (0, v). The variable v

is chosen by Rich and is higher if he chooses a riskier implementation strategy. Let’s

say he can choose from a range of values between 1 and 5. He now needs to obtain a

valuation with which to approach a VC for funding for the firm.

If the IP falls below $50, he is forced to liquidate his firm by the VC at the prevailing

IP. If the IP reaches $500, the VC will force an IPO at which point the firm will be

worth 1.5 times the IP since it is now publicly traded. The firm remains alive as long

as it has not gone IPO or been liquidated. As long as it is alive, it keeps experiencing

repricing events.

Using Monte Carlo simulation, help Rich choose an optimal strategy: what v should

Rich choose? What is the value he will quote to the VC? Given this choice, what is the
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average time to IPO if an IPO occurs?What is the average time to liquidation, assuming

that it occurs? What is the probability of an IPO?

10. You are required to provide a one-half to one-pagewrite-up onhowyouwould useMonte

Carlo simulation in a practical setting. Choose an application that is as practical as you

might believe, especially one that is fromyourworkplace if possible. A good benchmark

for your idea would be an analysis you were not able to do without simulation. Feel

free to present as much detail as you think is needed to convince anyone of the value

of the application.

11. (Correlated Default Simulation of the N th to Default Model). In this model, we wish to

simulate the price of a security that pays off $100,000 only if both bonds in a portfolio

default in one year. The one-year hazard rate (or probability of default) of each bond

is denoted as p(i), i = 1, 2 for the two firms. The probabilities are given as follows:

p(1) = exp[q(1)], q(1) ∼ N (−3.5, 3)

p(2) = exp[q(2)], q(2) ∼ N (−2.5, 3)

The covariance between q(1) and q(2) is 1.0.

To simulate a scenario of joint default, first draw p(1) and p(2) from their respective

distributions to get the one-year probability of default for each firm. Then use each

probability and randomly decide whether the firm defaults or not. (How do you do

this?) Repeat this for 10,000 scenarios. What is the probability of the contract paying

off?

12. Write a program to simulate call and put prices in the Black-Scholes model. Use the

following parameters:

S = 40, K = 41, T = 2, r = 0.02, σ = 0.4

There are no dividends. Use a time step of one day. Let the number of simulations be

10,000. Check whether put-call parity holds.

13. Using the same parameters as the previous problem, replace the random shock with

a random variable that is distributed per the Student’s t distribution with degrees of

freedom equal to 5. Recompute the call and put prices and compare them to those

obtained from the normal random shockmodel. Are the prices higher or lower? Explain.
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Using Octave

We present a very brief introduction to the open-source, free mathematical language known

as Octave. Octave replicates many of the features of the commercial package Matlab. We

decided to use it in this book because it is free and has many functions that can be accessed

from the web. Almost all the syntax of Octave corresponds to that of Matlab, so students

may eventually migrate to Matlab if they so wish (or go from Matlab to Octave as well).

One of the advantages of Octave is that it runs on the Windows, Macintosh, and

Linux platforms. The binary program may be downloaded from http://www.gnu.org/

software/octave/. The index of functions may be accessed at http://www.gnu.org/

software/octave/doc/interpreter/Function-Index.html#Function - Index.

Installation is easy. Plotting in Octave is undertaken using GnuPlot, another free, open-

source, and widely used graphics package. GnuPlot is automatically installed when you

install Octave.

We hope that the reader will install Octave and then use the program code provided in

the book and answer keys to try out the derivatives models under study. This is the best way

to learn and retain the ideas of the hundreds of pricing models we present. Here are some

simple commands that are useful to get you started using Octave.

37.1 Some Simple Commands

• To change to the directory in which your files are, type in the following command:

>> cd <directory name>

• You can also read in data directly from an ASCII file where the data has been listed in

columns, separated by spaces. Suppose you have a data file called mydata.txt. To load

in this data file, you give the following command at the prompt:

load mydaya.txt

This will create a matrix in memory with the name mydata. The file extension is dropped

when creating the variable in memory. To see the dimensions of the matrix, type in size

mydata.

• To see all the variables resident in memory, type in who.

• When you start the program, you will get a window with the command prompt. You can

run Octave in two ways. One is from the command line by typing in one command after

another. This makes your use of the program similar to that of a sophisticated calculator.

Second, you can write lengthy (or short) programs into a separate file and then call that

program file from the command line. The system will then execute all the commands in

945
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the program file. Usually, the convention for naming program files is that they end in .m,

so for example, you may have a program file called prog.m.

• So, you can call the program code in prog.m by using the following command:

>> prog

The system will automatically assume the .m file extension.

“For” Loops
Writing loops uses the [for ... end] wrapper. Here is a loop that computes the factorial of

the number n.

octave:1> n=6; fact=1; for j=1:n; fact = fact*j; end; fact

fact = 720

Briefly, this is what we programmed. We initialized n = 6. Then we initialized the factorial

fact to be unity. The loop ran over index j from 1 to n, each time multiplying the previous

value of fact by the next value of j . When the loop was finished, we just typed factwithout

a semicolon at the end to get the result. When you type a statement with the semicolon, it

suppresses displaying the result.

We could also have done the same less economically as follows:

octave:2> n=6;

octave:3> fact=1;

octave:4> for j=1:n; fact = fact * j; end;

octave:5> fact

fact = 720

“While” Loops
Loops may also be implemented using the [while ... end] statements. Here is the same

example as above, implemented differently:

octave:10> n=6; fact=1; j=n; while j>0; fact=fact*j; j=j-1; end; fact

fact = 720

Example 37.1 Factorials
As is well known, we may also compute factorials using a recursion. In order to implement
a recursion, we need to define a function, which then calls itself. First we create a function
called fact.m:

function u = fact(n);

if n==0 || n==1;

u = 1;

else

u = n * fact(n-1);

end;

You can see that the function calls itself on the fifth line. We store this function in a separate
file called fact.m, noting the suffix is standard in the programming language. The first line
of the function is also standard and describes how functions are specified in Octave. The
remaining lines also demonstrate how the [if ... else ... end] statement is used. The
second line shows how a conditional if statement is specified. Note that the statement n==0
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uses a double equal-to sign, not just one. The recursive function call is in line 5. Save this
function file in the working directory, and then call the program as follows:

octave:3> fact(6)

ans = 720 ■

Example 37.2 Binomial Trees
In the chapter on pricing options with binomial trees, we learned to use a double loop (over
both time and stock price) to implement the Cox, Ross, and Rubinstien (1979) model. We
will not go into the details of this model here. However, we will implement the same model
recursively, replacing the double loop with a single recursion.

First, we write a function (program) to price the option recursively. This is as follows:

function u = crr_rec(s,X,T,sigma,rf,pc,N);

if N==0;

if pc==1; optval=max(0,s-X); end;

if pc==0; optval=max(0,X-s); end;

else

h = T/N;

u = exp(sigma*sqrt(h));

d = exp(-sigma*sqrt(h));

R = exp(rf*h);

q = (R-d)/(u-d);

optval = (q*crr_rec(s*u,X,T-h,sigma,rf,pc,N-1)+ ...

(1-q)*crr_rec(s*d,X,T-h,sigma,rf,pc,N-1))/R;

end;

u = optval;

The function requires many inputs, not just one as in the previous example. We need to
pass into the function the stock price (s), the strike price (X), time to maturity (T), volatil-
ity (sigma), risk-free rate (rf), put or call flag (pc), where the value 1 indicates a call and
value 0 indicates a put. Finally, we also stipulate how many steps we want in the binomial
tree, i.e., N.

The recursion builds out a tree by spawning a new pair of nodes (recall that the tree
is binomial) from each current node. We can see the function call itself on the two suc-
ceeding nodes in the function lines 11 and 12. At each function call, the next nodes are
instantiated by calling the function at both succeeding nodes; note that all the parameters
need to be passed along each time such a call is made. Lines 2–5 contain the condition
at which the recursion is terminated, i.e., when the last time period in the tree is reached.
At this point, the terminal value of the option is generated, and then the recursion begins
to unwind itself.

Let’s price a six-period option. We price both the call and the put. We then also compute
put-call parity to check our model. Here are the function calls:

octave:6> call = crr_rec(100,101,0.5,0.3,0.05,1,6)

call = 8.9539

octave:7> put = crr_rec(100,101,0.5,0.3,0.05,0,6)

put = 7.4602

octave:8> call - put

ans = 1.4937

octave:9> 100 - 101*exp(-0.05*0.5)

ans = 1.4937

We can see that the put-call parity condition (C − P = S − P V (K )) is satisfied as well. ■
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37.2 Regression and Integration

Whereas Octave is primarily a matrix language, it contains many statistical tools as well.

Here we create some data and then run a regression to demonstrate how it works. To create

the data, we also demonstrate the random number generators that are available.

We can generate uniform random numbers using the rand function call. Let’s create a

column of 200 such numbers:

octave:12> u = rand(200,1);

From this we will create a column of data to mimic our dependent variable

octave:13> y = u * 5;

We also create the independent variable by multiplying the original variable by 10 and then

adding a random normal number using the function call randn (note this has the same call

as before but the function name has an extra “n” at the end).

octave:14> x = u * 10 + randn(200,1);

It is useful to see the power of a matrix language here. Even though the statements above

make it look like we are operating on a single variable, we are indeed computing the entire

vector of 200 values at one time. We are now ready to run the regression of y on x using

ordinary least squares. The regression line will be

y = a + b x + e

where a, b are the coefficients in the regression and e is the residual or error term. In order

to do this regression, we also need to create a column of data for the intercept term a. Hence,

we enhance the dependent variable to include a column of ones. This is how to do it:

octave:18> x = [ones(200,1) x];

The function ones(m,n) creates a matrix of ones of dimension m rows and n columns.

Finally, we run the regression as follows:

octave:19> ols(y,x)

ans =

0.25025

0.44932

This returns the required values from the regression, which are a=0.25025 and b=0.44932.

Help
All canned functions in Octave come with a help function. For example, if we wanted to

know how to specify the regression syntax, we could have typed

help ols

and we would have obtained the following:

octave:20> help ols

ols is the user-defined function from the file

/sw/share/octave/2.1.53/m/statistics/base/ols.m

-- Function File: [BETA, SIGMA, R] = ols (Y, X)
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Ordinary least squares estimation for the multivariate model

y = x b + e with mean (e) = 0 and cov (vec (e)) = kron (s, I).

where y is a t by p matrix, x is a t by k matrix, b is a k by

p matrix, and e is a t by p matrix.

Each row of Y and X is an observation and each column a variable.

The return values BETA, SIGMA, and R are defined as follows.

BETA

The OLS estimator for B, ‘BETA = pinv (X) * Y’, where ‘pinv

(X)’ denotes the pseudoinverse of X.

SIGMA

The OLS estimator for the matrix S,

SIGMA = (Y-X*BETA)’

* (Y-X*BETA)

/ (T-rank(X))

R

The matrix of OLS residuals, ‘R = Y - X * BETA’.

Additional help for built-in functions, operators, and variables

is available in the on-line version of the manual. Use the command

‘help -i <topic>’ to search the manual index.

Help and information about Octave is also available on the WWW

at http://www.octave.org and via the help-octave@bevo.che.wisc.edu

mailing list.

Integration
There are standard numerical integration routines in Octave. The most common one is the

function quad, which uses a quadrature approach. As an example, we will integrate the

normal probability density function over the range (−a, +a) as follows:

octave:25> a = 1; quad(’normal_pdf(x)’,-a,a)

ans = 0.68269

octave:26> a = 2; quad(’normal_pdf(x)’,-a,a)

ans = 0.95450

octave:27> a = 3; quad(’normal_pdf(x)’,-a,a)

ans = 0.99730

octave:28> a = 4; quad(’normal_pdf(x)’,-a,a)

ans = 0.99994

octave:30> a = 5; quad(’normal_pdf(x)’,-a,a)

ans = 1.00000

octave:31> a = 6; quad(’normal_pdf(x)’,-a,a)

ans = 1.00000

Hence, we have done the integration many times, going from 1-sigma to 6-sigma, and we

can see that the area under the normal curve increased until we reached unity.
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Suppose instead that we wanted to do the same integration mechanically without using

the canned quadrature routine. In other words, we want to approximate the integral by a

discrete sum, i.e.,

 a

−a

φ(x) dx ≈

a 
x=−a

φ(x) δx

For example, say we want to do this over the range from (−3, +3). First, we create a discrete

small step size, say δx = 0.01.

octave:32> dx = 0.01;

Next, we create a vector of discrete values over the entire support, at intervals of δx . This

is done as follows:

octave:33> x = [-3:dx:3];

This creates a vector of values {−3, −2.99, −2.98, . . . , 2.99, 3}. Finally, we implement the

discrete sum, using the sum function, as follows:

octave:34> sum(normal_pdf(x) * dx)

ans = 0.99734

Note that when we call the normal probability density function and pass to it an entire

vector of values, it returns back a vector of function values. As we can see, the result is

quite accurate and is almost the same as what was obtained using the quadrature function.

In order to increase accuracy, we may take δx = 0.001 instead. Here is the result using the

new value:

octave:35> dx = 0.001;

octave:36> x = [-3:dx:3];

octave:37> sum(normal_pdf(x) * dx)

ans = 0.99730

Now we get exactly the same answer as with the quadrature routine.

37.3 Reading in Data, Sorting, and Finding

Suppose we have a data file with two columns of data stored in a plain text file. Let’s call

the file mydata.txt. Here is the file:

% X1 X2

1.75552 1.43763

2.48603 3.30246

4.28121 4.08831

4.72918 3.91513

3.16090 1.32696

0.31241 0.79171

1.79625 5.44980

0.77824 9.00096

1.14772 8.05371

2.97055 4.22001

Note that in Octave, you can have only numeric values in a file. We will load the data into

a matrix as follows:
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octave:41> load mydata.txt

octave:42> mydata

mydata =

1.75552 1.43763

2.48603 3.30246

4.28121 4.08831

4.72918 3.91513

3.16090 1.32696

0.31241 0.79171

1.79625 5.44980

0.77824 9.00096

1.14772 8.05371

2.97055 4.22001

The load function stores the data in a matrix that has the name of the input file without

its suffix. Hence, the data matrix in memory is called mydata. The program only reads in

lines that do not have a % sign in front of them. Hence, when creating the data file, you can

have a header line but comment it out so that it is not read in. The load function will also

not work with non-numeric data.

If we want to store the variables separately, we can always “slice” pieces off the main

data matrix as follows:

octave:43> x1 = mydata(:,1)

x1 =

1.75552

2.48603

4.28121

4.72918

3.16090

0.31241

1.79625

0.77824

1.14772

2.97055

The slice took all rows and the first column of mydata and stored it in a vector x1. If we

wanted rows 3–5 and columns 1–2, we would do the following:

octave:44> mydata(3:5,1:2)

ans =

4.2812 4.0883

4.7292 3.9151

3.1609 1.3270

The same could also be achieved with the following command:

octave:45> mydata(3:5,:)

ans =

4.2812 4.0883
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4.7292 3.9151

3.1609 1.3270

This is because we want all columns.

Sorting
Say we want to sort the mydata matrix in the order of the first column. This is done using

the sort function as follows:

octave:47> x = mydata(:,1)

x =

1.75552

2.48603

4.28121

4.72918

3.16090

0.31241

1.79625

0.77824

1.14772

2.97055

octave:48> [S,I] = sort(x)

S =

0.31241

0.77824

1.14772

1.75552

1.79625

2.48603

2.97055

3.16090

4.28121

4.72918

I =

6

8

9

1

7

2

10

5

3

4

We began by extracting the first column of the data and storing it in a variable x. Next we

called the sort function, which returns two columns of data: S, which is the sorted column

of data, and I the “index” of the sort. The index returns the positions of the elements of
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the sorted column instead of the sorted values. Since the sixth element is the smallest, it

appears first in the vector I. Likewise, the fourth element is the largest and appears last.

We now use the index vector to obtain the sorted list of the second column of data as

follows:

octave:49> x2 = mydata(:,2)

x2 =

1.43763

3.30246

4.08831

3.91513

1.32696

0.79171

5.44980

9.00096

8.05371

4.22001

octave:50> x2(I)

ans =

0.79171

9.00096

8.05371

1.43763

5.44980

3.30246

4.22001

1.32696

4.08831

3.91513

Note that we wanted the second column of data in the sort order based on the first column

of data. Hence, we used the statement x2(I), which means to return the elements of x2

indexed by I. Hence, the sixth element of x2 appears first, and the fourth element appears

last.

Finding
The find command is very useful to extract slices of data based on some criterion. This is

best illustrated with an example. We use the same mydata from above. Suppose we wanted

to collect all values of x2 (the second column of data) when the value of x1 (the first column

of data) is greater than 3. First let’s print out mydata one more time:

octave:51> mydata

mydata =

1.75552 1.43763

2.48603 3.30246

4.28121 4.08831

4.72918 3.91513

3.16090 1.32696
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0.31241 0.79171

1.79625 5.44980

0.77824 9.00096

1.14772 8.05371

2.97055 4.22001

We can see that there are only three cases in which the values in the first column are greater

than 3, i.e., the elements 3, 4, and 5. We use the following commands to obtain the index

set of these elements:

octave:52> x1 = mydata(:,1);

octave:53> I = find(x1>3);

octave:54> I

I =

3

4

5

The function find contains a mathematical condition (x1>3) and returns an index vector

containing the element numbers that satisfy the criterion. Next we use this index vector just

as we had done in the previous section to obtain these specific elements of x2.

octave:55> x2(I)

ans =

4.0883

3.9151

1.3270

We obtain the desired subvector based on the index set. If we want to know how many

elements there are, we simply use the function length:

octave:56> length(I)

ans = 3

What if we run the find command on the entire matrix?

octave:57> find(mydata>3)

ans =

3

4

5

12

13

14

17

18

19

20

The result is self-explanatory. However, note that the numbering (indexing) is column by

column.
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37.4 Equation Solving

Equation solving is a useful tool. In many cases in finance, we need to find roots of equations

in parts of our numerical analyses. The following example demonstrates how easy it is to

undertake this in Octave:

octave:59> fsolve(’2*x^2-12*x+3’,1)

ans = 0.26139

We solved the equation 2x2 − 12x + 3 = 0 and passed the starting value of 1. What if we

used a different starting value?

octave:59> fsolve(’2*x^2-12*x+3’,6)

ans = 5.7386

We get a different answer, which is not surprising, since the equation is a quadratic and there

are two solutions. The example highlights the care required in numerical work because one

needs to make sure that the root we obtain is the one we require.

37.5 Screenshots

Figure 37.1 is a screen shot demonstrating how to call the normal distribution probability

density function and plot it with a background grid. The figure also shows the commands

needed to generate the plot.

FIGURE 37.1
Generating a Normal

Probability Density

Plot
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Figure 37.2 is a screen shot showing how to program nested loops and then plot a 3-D

graph.

Figure 37.3 is a screen shot showing the use of various statistical functions.

Figure 37.4 is a screen shot showing how to solve a system of simultaneous equations

using matrix algebra. This solves the matrix equation AX = B. Check the result yourself

by typing: A*X.

FIGURE 37.2
Nested Loops and 3-D

Plots

FIGURE 37.3
Basic Statistical

Functions
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FIGURE 37.4
Solving a System of

Equations
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Affine-factor models, 722–725

AIG (American International Group), 1, 59

Air Products and Chemicals, 593

Amaranth LLC case study, 46–53

American International Group (AIG), 1, 59

American options, 9, 156

call

bounds on call option prices and, 188

on dividend-paying stocks, pricing,

273–275

early exercise of, 217–218

on non-dividend-paying stocks,

pricing, 272

Monte Carlo simulation for, 938–942

Longstaff and Schwartz approach for,

940–942

polynomial boundary technique and,

938–940

pricing, 269–272

binomial model and, 303

of options on dividend-paying stocks,

273–275

of options on non-dividend-paying stocks,

270–272

put

on dividend-paying stocks, pricing, 275

early exercise of, 218–220

horizontal put spreads using, 182

on non-dividend-paying stocks, pricing,

270–272
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Amortizing swaps, 589
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cash-and-carry, 61

convertible bonds and, 542

funding-cost

with CDSs, 784–785

TRSs and, 777–778

implied repo rate and, 90–92

modeling term-structure movements and. See

Modeling term-structure movements

from overvalued forward, 63–64, 65
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ARCH models, 358, 929–930

generalized. See GARCH models
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and, 254–255

Asian options, 479–485
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hedging, 483–484

pricing of

on arithmetic average, 482–483
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put-call parity for, 481

smoothing data and, 480

speculation using, 480–481

vanilla puts versus, 484–485

Asset(s)

dividend-paying, 198

non-dividend-paying, 198

options on, 9. See also Option(s); specific

types of options

underlying. See Underlying

Asset-or-nothing options, 445

pricing, 446–447

Associated persons (APs), 23

Asymmetric butterfly spreads, 195

As-you-like-it options, 450–452

hedging, 451–452

pricing, 451, 452

straddles and, 450–451

At-the-money call options, 158

At-the-money put options, 160

B

Backwardation, 44

forward pricing and, 88–89

futures pricing and, 88–89

Backwards induction, 263–264

Bankers Trust (BT), 590

Barings Bank, 1

case study of, 189–192

Barrier options, 470–479

hedging, 478–479
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pricing, 472–474, 475–478

pricing formulae and, 496–497
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volatility and, 474–475, 476

Basis currency swaps, 636

Basis risk, 44–45, 102–103

hedging without, 105–106

Basket default swaps, 774, 864

Basket products, 790–791

Basle Accords, 772

BBAISR (British Bankers Association

Interest Settlement Rate), 131

BDT (Black-Derman-Toy) model,

701–710

bond price trees and, 704–706

building interest-rate tree and, 701–702

pricing options and, 706–710

Bear Stearns, 595

Berkshire Hathaway, 595

Bermudan options, 9, 156

Binary options, 445–449

Binomial model, 229–235, 289–303
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computer implementation of, 298–303

American options and, 303

convergence and, 303

recombining tree models and, 300–302

recursion and, 298–300

implied binomial trees and, 379–389

interest rates and, 230

jumps in, 359–360

jump-to-default, convertible bond pricing

and, 530–531

lognormal distribution and, 289–298

lookback pricing and hedging and, 486–487

multiperiod, convertible bond valuation in,

525–526

one-period, convertible bond valuation in,

524–525

option pricing by. See Binomial option
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stochastic volatility model based on,

368–369, 370

volatility in, 230

Binomial option pricing, 229–235, 242,

259–281

of American options, 269–272

on dividend-paying stocks, 273–275

on non-dividend-paying stocks, 270–272

of Asian options, 483

cash dividends and, 272–279

American options and, 272–275

risk-neutral probability and, 276–277

stock-price tree and, 276

dividend yields and, 279–281

notation and, 259–260

n-period, of European options, 269

one-period, 260–261

option delta and, 260

pricing by replication and, 231–235

by replication, 260

risk-neutral pricing and, 260–261

of put options, by replication in one-period

binomial model, 233–235

of shout options, 490–492

two-period, 261–269

of calls, 263–264

dynamic replication and, 265–266

end-of-tree approach to, 268–269

of European options, 262–269

maturity and, 268

option deltas and, 267–268

payoffs at maturity and, 264

of puts, 266–268

recombination and, 261–262

Binomial trees

dividend yields in, 279–281

in Octave, 947
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top-down modeling of credit portfolio loss

with, 895–897

Black-Derman-Toy (BDT) model, 701–710

bond price trees and, 704–706

building interest-rate tree and, 701–702

pricing options and, 706–710

Black formula for pricing caps, floors, and

swaptions, 604–609

Black-Scholes model, 308–335, 344–354

algebraic manipulation and, 315–319

ARCH models and, 358

assumptions of, 308–309

delta and, 338–339

dividends in, 319–324

cash, 320–322

continuous dividend yields and, 322–324

formula derivation and

via CAPM, 353–354

via replication, 348–350

via risk-neutral pricing, 351–353

formulae of, 311

fundamental partial differential equation of,

349–350

GARCH models and. See GARCH models

generalizing or replacing, 332

geometric Brownian motion and, 308–309,

344–348

implied binomial trees and. See Implied

binomial trees

implied volatility and, 327–332

jump-diffusion models and. See

Jump-diffusion models

log-stable models and, 358, 378–379

notation and, 309–310

option greeks and, 436–439

option prices in, stochastic volatility prices

compared with, 370–372

option pricing in setting of, 310–313

options on currencies and, 324–325

options on futures and, 325–326

options on indices and, 324

order of analysis and, 310

plotting option prices and, 314–315

replication and, 311–312

risk-neutral probabilities and, 312–313

sensitivity analysis and, 407

stochastic volatility models and. See

Stochastic volatility models

variance-gamma models and, 358, 379

VIX and its derivatives and, 332–335

BM&F (Brazilian Mercantile and Futures

Exchange), 20

BM&FBovespa, 20

Bonds

callable, 10, 170

convertible. See Convertible bonds

lognormal distribution as model of returns

on, 293

pricing using yield curve, 654

zero-coupon, 652n

Bootstrapping

by matrix inversion, 680–681

yield curve and, 667–669

Bovespa (Sao Paolo Stock Exchange), 20

Box spreads, 187

Brazilian Mercantile and Futures Exchange

(BM&F), 20

Breakeven analysis, convertible bonds and,

522–523

British Airways, 790

British Bankers Association Interest Settlement

Rate (BBAISR), 131

Brownian motion, geometric, 308–309,

344–348

drift and variance and, 345

Ito processes and Ito’s lemma and, 345–347

Wiener processes and, 344–345

BT (Bankers Trust), 590

Butterfly spreads, 178–180

asymmetric, 195

convexity of option prices and, 195

reasons for using, 179–180

using calls, 178–179

using puts, 180, 195

C

Callability of convertible bonds, 521

bond pricing and, 528–529

Callable bonds, 10, 170

Call bear spreads, 177

Call bull spreads, 175–176

Call option(s), 3, 9, 156

bear spreads using, 177

bounds on prices of, 199–202

bull spreads using, 175–176

butterfly spreads using, 178–179, 195

depth-in-the-money and, 317

early exercise of, 217–218

horizontal spreads using, 180–182

as insurance for buyers, 157

payoff from long and short positions and,

158–160

prices of, 231–233

bounds on call option prices and, 199–202

decomposition of, 214, 215–216

strike price and, 205–206

time-to-maturity and, 207

Call option premium, 4

Call protection, convertible bonds and, 521

Cap(s), 9, 170, 571, 599–603

Black model for pricing, 604–607

controlling financing costs with, 601–602

floors, 600–603

payoffs and, 600

put-call parity and, 602–603

uses of, 600–601

Capital-asset pricing model (CAPM)

Black-Scholes formula via, 353–354

option pricing through, 235–236

Caplets, 599

Cash-and-carry arbitrage, 61

Cash dividends

in binomial tree, 272–275

risk-neutral probability and, 276–277

stock-price tree and, 276

Cash flows. See also Payoffs; specific

instruments

bucketing of, 598–599

generation using factor approach, 562–563

from hedged position, 104–105

stochastic, real options with, 550–551

variance from hedged position, minimized,

107–108

Cashless collars, 187

Cash-or-nothing options, 445–446

greeks and, 448–450

hedging, 447

pricing, 445–446

Cash settled contracts, 27

CBoT (Chicago Board of Trade), 19, 20, 57

changing product mix at, 20–21

CDOs (collateralized debt obligations), 774,

775, 792–793, 864

CDSs. See Credit default swaps (CDSs)

CDX indices, 793–797

CEA (Commodity Exchange Act), 27, 58

CFMA (Commodity Futures Modernization

Act), 58–59

CFTC (Commodity Futures Trading

Commission), 27–29

Chase Manhattan, 129

Cheapest-to-deliver grade, 34

Chicago Board of Trade (CBoT), 19, 20, 57

changing product mix at, 20–21

Chicago Mercantile Exchange (CME), 19–20

China Aviation Oil Corporation, 480–481

Cholesky decomposition, 925–927

Chooser options, 450–452

hedging, 451–452

pricing, 451, 452

straddles and, 450–451

CIR model, 716, 723

Clearinghouse, 29

Clearinghouse margins, 39

Clearing members, 29

Cliquets, 488–490

hedging, 489–490

pricing, 489

reverse, 490

CLNs (credit-linked notes), 774, 788–790

Closing out futures positions, 34–35

Closing price, 25

Closing range, 25

CME (Chicago Mercantile Exchange), 19–20

CMOs (collateralized mortgage obligations),

792

Collars, 186–187

Collateralized debt obligations (CDOs), 774,

775, 792–793, 864

Collateralized mortgage obligations

(CMOs), 792

Combinations, 182–185

straddles, 183

strangles, 184

straps, 185

strips, 184–185

COMEX (Commodity Exchange), 19

Commitments, 5

Commodity basis risk, 102

Commodity Exchange (COMEX), 19

Commodity Exchange Act (CEA), 27, 58

Commodity Exchange Administration, 58

Commodity forwards, pricing, 86–87, 88,

640–641

Commodity futures

pricing, 86–87, 88

size of, 31, 32
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Commodity Futures Modernization Act

(CFMA), 58–59

Commodity Futures Trading Act, 58

Commodity Futures Trading Commission

(CFTC), 27–29

Commodity pool operators (CPOs), 23

Commodity swaps, 10, 639–643

commodity forward pricing and, 640–641

fixed-for-floating, 643

floating-for-floating, 643

valuing and pricing, 641–642

variants of, 643

Commodity trading advisers (CTAs), 23

Complete volume (CV) limit orders, 24

Compounding frequency, 79–81

converting between frequencies and, 80–81

present value and, 80

Compound options, 453–457

delta and gamma and, 457

hedging, 457

as installment options, 455

payoffs from, 453–454

pricing, 454–455

pricing formulae for, 455–457

Condors, 188

Contango, 44

forward pricing and, 88

futures pricing and, 88

Continental Illinois, 129

Continuous compounding, 79

currency forward prices under, 67–68

pricing forwards by replication and, 62–63

Continuous dividend yield, put-call parity

with, 225

Convenience yields, pricing forwards with, 100

Conversion factor, calculation of, 149

Conversion price, 519

of convertible bonds, 519

Conversion ratio, 519

Convertible bonds, 10, 170, 519–543

arbitrage and, 542

attractions of, 522

breakeven analysis and, 522–523

callability of, 521

call protection and, 521

conversion price and, 519

conversion ratio and, 519

coupon structure of, 521

credit risk and, 530–534

Das and Sundaram model for, 531–532

generalizations of jump-to-default

binomial model and, 530–531

practitioner approach using blended

discount rates, 532–534

greeks of, 535–541

maturity and, 521

parity and, 520

preferred, 521

premium for, 520

pricing, 523–529

call feature and, 528–529

coupons and, 526–528

dividends and, 528, 529

generalization to many periods and,

525–526

put feature and, 529

valuation in one-period binomial model

and, 524–525

puttability and, 521–522

terminology for, 519–520

Convertible delta, 535–536

Convertible gamma, 536–537

Convertible omicron, 541

Convertible rho, 539–541

Convertible theta, 537

Convertible upsilon, 541

Convertible vega, 538–539

Convexity bias, 134–136

Copula functions, 881–892

Archimedean copulas and, 887–889

implied, 890–892

implied correlation from, 890

rank correlations and, 884–886

sampling normal values with normal copula

and, 886–887

tail dependence and, 887

Corners, 33

Correlated default models, 863–898. See also

Basket default swaps

basic variables and relationships and,

865–866

bottom-up versus top-down approaches

to, 864

collateralized debt obligations, 774, 775,

792–793, 864

conditional default and, 866–868

copula functions and, 881–892

Archimedean copulas and, 887–889

implied, 890–892

implied correlation from, 890

rank correlations and, 884–886

sampling normal values with normal

copula and, 886–887

tail dependence and, 887

fast computation of credit portfolio loss

distributions without simulation and,

878–881

multiperiod correlated default and, 875–878

reduced-form, 874–875

structural models based in asset values and

factor models, 872–873

reducing dimension of large systems and,

871–872

structural models based on asset values and,

868–874

top-down modeling of credit portfolio loss

and, 893–897

with binomial trees, 895–897

Longstaff and Rajan’s model and, 893–894

self-exciting default models and, 894–895

Correlation, implied, from copula

functions, 890

Cotton Futures Act, 58

Coupons, convertible bond pricing and,

526–528

Coupon structure of convertible bonds, 521

Covered calls, 172–173

Covered interest-rate parity, 67

Cox processes, 833–834

Cox-Ross-Rubinstein (CRR) solution, 295,

297–298

CPOs (commodity pool operators), 23

Crank-Nicholson scheme for finite differencing,

917–919

Credit default swaps (CDSs), 774, 779–787

CDS big bang and, 787, 800–801

credit event and, 780

fair price of, 785–787

funding-cost arbitrage with, 784–785

migrating legacy trades and, 801

new market for, 800–801

pricing, reduced-form models for, 853–855

restructuring and, 781–782

settlement alternatives and, 780–781

uses of, 782–784

Credit derivatives, 4, 771–797

multiname, 774–775

basket products, 774, 790–792

CDX indices, 774, 775, 793–797

collateralized debt obligations, 774, 775,

792–793

iTraxx indices, 774, 775, 793, 794–797

reasons for development of, 772

single-name, 774

credit-default swaps. See Credit default

swaps (CDSs)

credit-linked notes, 774, 788–790

credit spread options/forwards, 774, 779

total return swaps. See Total Return Swaps

(TRSs)

terminology and, 772

uses of, 773

CreditGrades model, 820

Credit-linked notes (CLNs), 774, 788–790

Credit portfolio loss, top-down modeling of,

893–897

with binomial trees, 895–897

Longstaff and Rajan’s model and, 893–894

self-exciting default models and, 894–895

Credit risk, 772

convertible bonds and, 530–534

Das and Sundaram model for, 531–532

generalizations of jump-to-default

binomial model and, 530–531

practitioner approach using blended

discount rates, 532–534

Credit-risk linked swaps, 10

Credit-sensitive notes (CSNs), 774, 790

Credit spread(s), term structure of, Merton

model and, 808–810

Credit spread forwards, 774, 779

Credit spread options, 774, 779

Cross-hedging, 102, 109–111

with currencies, 109–110

with equities, 110–111

CRR (Cox-Ross-Rubinstein) solution, 295,

297–298

CSNs (credit-sensitive notes), 790

CTAs (commodity trading advisers), 23

Currencies

cross-hedging with, 109–110

forward pricing on, 66–69

options on, 168

Black-Scholes model and, 324–325

Currency derivatives, 4

Currency swaps, 10, 631–639

basis, 636

bid and offer rates and, 633–634
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forward FX versus, 637–639

forward points and, 634

FX forward pricing and, 632–633

hedging cross-currency borrowing and,

634–636

pricing of, 639

spot and forward foreign exchange, 632

uses of, 636–637

CV (complete volume) limit orders, 24

D

Daily price limits, 26–27

Default

correlated. See Correlated default models

margining and, 37

Default risk

reduced-form models of, 829–855

defaultable HJM models, 843–845,

860–862

Duffie-Singleton result and, 841–843,

859–860

intensity processes and, 830–834

JLT model, 845–853

Litterman-Iben model, 836–840

pricing CDSs and, 853–858

recovery rate conventions and,

834–835

structural models versus, 803

structural models of, 802–823

Delianedis-Gaske model, 816, 826–828

evaluation of approach, 820–823

extensions of Merton model, 819–820

Merton model, 803–816

MKMV model, 816, 817–819

reduced-form models versus, 803

Default times, 876

Delianedis-Gaske (DG) model, 816, 826–828

Delivery basis risk, 102

Delivery options for futures contracts, 33–34,

72–73

Delivery price, 5

Delta

Black-Scholes model and, 319

option. See Option delta

position, 429–430

of swap position, 598

Delta hedging, 244

Delta-normal approach

for estimating VaR, 501–503

risk contributions in, 509

Delta vector, 598

Derivatives, defined, 2–4

Deutsche Telekom, 790

DG (Delianedis-Gaske) model, 816, 826–828

Discount functions

reduced-form, 682–683

term structure of interest rates and, 652–653

Discount rates

blended, convertible bond pricing and,

532–534

Treasury bill futures and, 139

Dividend(s)

in Black-Scholes model, 319–324

cash, 320–322

continuous dividend yields and, 322–324

convertible bond pricing and, 528, 529

Dividend-paying (DP) assets, 198

American options on, 223–224

calls, 217–218

put, 219–220

European options on, 221–222

Dividend yields

in binomial trees, 279–281

continuous, put-call parity with, 225

Dojima Rice Market, 19, 57

DP (dividend-paying) assets, 198

American options on, 223–224

calls, 217–218

put, 219–220

European options on, 221–222

Drift, geometric Brownian motion and, 345

Duffie-Singleton result, 841–843

in discrete time, 859–860

valuation expression and, 842–843

zero recovery and, 842

Duration

of futures contracts, 141, 151

of portfolio, as sensitivity measure, 150–151

Duration-based hedging, 140–143

fixed-income futures and, 115

problems in, 143

E

EBFs (exchange basis facilities), 27

EDF (expected default frequency), 817

EFP (exchange-for-physicals), 27

Electronic trading systems, 20

Embedded options, 170

Enron, 790

Equation solving, Octave and, 955

Equities

cross-hedging with, 110–111

estimating historical volatility for, 932

options on, 168

pricing of, stochastic processes for, 927–928

Equity derivatives, 4

Equity modeling, interest-rate modeling versus,

684–685

Equity options, pricing of, finite differencing

and, 907–913

Equity risk, index futures and, 114–115

Equity swaps, 10, 613–628

interest rate swaps and, 614

payoffs from, 616–620

hedged cross-currency equity swaps and,

620–621

Libor with fixed notional principal and,

616–617

Libor with variable principal and, 618–619

unhedged cross-currency equity swaps

and, 619–620

uses of, 614–616

valuation and pricing of, 622–628

of cross-currency two-equity swaps,

626–627

of equity swaps with variable notionals,

627–628

of fixed notional swaps, 623–626

of same currency two-equity swaps, 626

ES (expected shortfall), VaR and, 514

Euler’s theorem

exchange options and, 459–460

VaR and, 507

Eurex, 20

Eurodollar(s), 122–123

Eurodollar futures, 129–136

contract specification and, 130–131

forward-rate agreements versus, 134–136

hedging interest-rate risk using, 131

PVBP analysis and, 134, 148

tailing the hedge and, 132–134

trading volume and liquidity and, 130

Euronext, 20

European option(s), 9, 156

European option prices, 286–288

binomial model and, 300–302

of call options, 263–264

bounds on, 199–200

put-call parity and, 220–222

of put options, 266–267

horizontal put spreads using, 182

of two-period options, 262–269

Exchange basis facilities (EBFs), 27

Exchange-for-physicals (EFP), 27

Exchange options, 458–460

Euler’s theorem and replicating portfolio and,

459–460

hedging, 459

pricing, 458–459

variants on theme of, 462–465

Exchange-traded derivatives, 5

Exchange-traded options, 167, 168–169

Exercise price, 9

for options, 156

Exotic options, 9, 170. See also Path-dependent

exotics; Path-independent exotics

Expected default frequency (EDF), 817

Expected returns from options, leverage and,

236

Expected shortfall (ES), VaR and, 514

Expiration dates for options, 9, 156

Exponential splines, 681–683

yield curve and, 673–674

F

Factorials in Octave, 946–947

Factor models to capture correlated default,

872–874

FCMs (futures commission merchants), 23

Fill-or-kill (FOK) limit orders, 24

Final settlement price, 26

Financial forwards. See also Forward contracts

pricing, 86

Financial futures. See also Futures contracts

pricing, 86

size of, 31

Financial press, futures prices in, 29–30

Finding in Octave, 953–954

Finite differencing, 903–921

Crank-Nicholson scheme and, 917–919

implicit, 913–917

pricing equity options and, 907–913

properties of numerical scheme and, 911–913

solution lattice for, 908–910

solution procedure for, 910

solving differential equations and, 904–907

for term-structure models, 919–921

First-to-default (FTD) baskets, 790–791

Fixed-for-floating commodity swaps, 643
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Fixed-for-floating interest rate swaps, 575–576

analyzing funding costs with, 578

cash flows generated by, 579–581

comparative advantage and, 576–577

risk/maturity management and, 578

speculation and, 578

valuing and pricing, 582–586

forward method for, 583–586

principal method for, 582–583

swap spread and swap curve and, 583

Fixed-income futures, duration-based hedging

and, 115

Fixed-strike lookback options, 485, 487–488

Floating-for-floating commodity swaps, 643

Floating-rate notes (FRNs), 571–575

valuation of, 572–575

forward method for, 573–575

no-arbitrage approach for, 572–573

Floating-strike lookback options, 485, 487

Floor(s), 9, 170, 571

Black model for pricing, 604–607

controlling financing costs with, 601–602

put-call parity and, 602–603

Floor brokers, 23

FOK (fill-or-kill) limit orders, 24

Foreign exchange (FX) contracts

forward, 632

currency swaps versus, 637–639

spot, 632

“For” loops in Octave, 946

Forward contracts, 2–3, 5–8

forward price and, 7–8

futures contracts differentiated from, 8–9

hedging with, 3–4. See also Hedging

interest-rate. See Forward-rate agreements

(FRAs)

key characteristics of, 6

marked-to-market value of, 70–71

options versus, 3–4, 164

overvalued, arbitrage from, 63–64, 65, 68

payoffs from, 6–7

pricing. See Forward pricing

undervalued, arbitrage from, 64–66, 68

Forward curve, 652

Forward price, 5, 7–8

Forward pricing, 60–74

arbitrage and, 63–66

backwardation and, 88–89

with constant interest rates, 81–83

contango and, 88

with continuous compounding, 62–63

with convenience yields, 100

on currencies and related assets, 66–69

forward-rate agreements and, 69, 125–126

future spot prices and, 92–93

implied repo rate and, 89–92

index arbitrage and, 93–97

interest rates and, 62

marked-to-market value of forward contract

and, 70–71

no-arbitrage assumption and, 60

option pricing compared with, 228–229

in real world, 85–89

by replication, 60, 61–63

on stock indices, 69, 94–95

transactions costs and, 92

Forward-rate agreements (FRAs), 5, 69,

123–128, 571

arbitrage-free rate for, derivation of, 147

Eurodollar futures versus, 134–136

existing, valuing, 126–127

hedging with, 127–128

new, pricing, 125–126

payoffs from, 124–125

swaps as portfolio of, 583–586

Forward-starting swaps, 588–589

Forward start options, 442–445

Forward swap rate, 608

France Telecom, 790

FRAs. See Forward-rate agreements (FRAs)

FRNs (floating-rate notes), 571–575

valuation of, 572–575

forward method for, 573–575

no-arbitrage approach for, 572–573

FTD (first-to-default) baskets, 790–791

Fundamental partial differential equation (PDE)

of Black-Scholes model, 349–350

in factor models, deriving, 717, 729–730

Funding-cost arbitrage

with CDSs, 784–785

TRSs and, 777–778

Futures commission merchants (FCMs), 23

Futures contracts

closing out (offsetting) positions and, 34–35

delivery options for, 33–34

duration of, 141, 151

fixed-income, duration-based hedging

and, 115

forward contracts differentiated from, 8–9

hedging with. See Hedging

interest-rate. See Eurodollar futures;

Treasury bill futures; Treasury bond

futures; Treasury note futures

margins and, 36–39

multiple, hedging with, 112–113

options on, 168–169

Black-Scholes model and, 325–326

options versus, 164

reversing a futures position and, 8

rise of, 20–21

rolling over, 83–84

size of, 31, 32

standard grade in, 31

standardization of, 8, 30–34

on stock indices, 93–97

U.S. regulation and, 57–59

Futures markets, 8–9, 19–59. See also Futures

contracts

case studies in, 39–53

clearinghouse and, 29

consolidation of, 19–20

contract performance and, 29

delivery procedures in, 27

electronic trading systems and, 20

financial futures and, 20–21

financial press reporting on, 29–30

order types in, 23–25

players in, 22–23

position limits in, 27–29

prices in, 25–26. See also Futures pricing

price ticks and price limits in, 26–27

settlement procedures in, 27

Futures pricing, 60, 72–74

backwardation and, 88–89

with constant interest rates, 81–83

contango and, 88

daily marking-to-market and, 73–74

delivery options and, 72–73

in financial press, 29–30

implied repo rate and, 89–92

index arbitrage and, 93–97

in real world, 85–89

spot, forward prices and, 92–93

transactions costs and, 92

of Treasury bond futures, 138–139

of Treasury note futures, 140

FX (foreign exchange) contracts

forward, 632

currency swaps versus, 637–639

spot, 632

FX derivatives, 4

G

Gamma

option. See Option gamma

position, 430–431

GARCH models, 358, 374–378, 930

calibration and simulation of GARCH

processes and, 377–378

option pricing and, 377

program code for simulating stock price

distributions and, 399–400

Geometric average, Asian options and, 481

exposure to average and, 479–480

pricing and, 481–482

Geometric Brownian motion, 308–309,

344–348

drift and variance and, 345

Ito processes and Ito’s lemma and, 345–347

Wiener processes and, 344–345

GFD (good-for-day) limit orders, 24

Gibson Greetings, 593

GNMA (Government National Mortgage

Association) Collateralized Depository

Receipt (CDR) futures contract, 40–42

Goldman Sachs, 480

Good-for-day (GFD) limit orders, 24

Good-till-canceled (GTC) limit orders, 24

Government National Mortgage Association

(GNMA) Collateralized Depository

Receipt (CDR) futures contract, 40–42

Grain Futures Act, 58

GTC (good-till-canceled) limit orders, 24

Guarantee fund, 29

H

Heath-Jarrow-Morton (HJM) model, 731–749

defaultable, 843–845, 860–862

one-factor, 733–741

advantage over spot-rate models, 741

evolution of forward curve and, 734–736

extending to multiple periods, 738

first period and, 742–743

lower subtree and, 739–740

numerical example of, 734

risk-neutral drift identification and,

736–738

second period and, 745–746
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tree recombination and, 740–741

two-factor models versus, 745–746

upper subtree and, 738–739

risk-neutral drifts and volatilities in, 765–768

two-factor, 742–746

one-factor models versus, 745–746

Hedge ratio, 103

minimum variance, 106–109

optimal, derivation of, 120–121

Hedge rebalancing, option gamma as indicator

of, 418

Hedgers in futures markets, 22

Hedging, 3, 5–6, 11–13, 101–115

of Asian options, 483–484

of barrier options, 478–479

basis risk and, 102–103

cash flow from hedged position and, 104–105

of cash-or-nothing options, 447

of choosers, 451–452

of cliquets, 489–490

of compound options, 457

of cross-currency borrowing, 634–636

cross-hedging and, 102, 109–111

delta, 244

duration-based. See Duration-based hedging

of Eurodollar futures, PVBP analysis

and, 148

of exchange options, 459

with forward-rate agreements, 127–128

of forward starts, 444–445

hedge ratio and, 103, 106–109

implementing, 111–114

index futures and changing equity risk and,

114–115

of interest-rate risk, using Eurodollar

futures, 131

of interest rate swaps, 597–599

of lookback options, 486–487

margining and, 39

minimum-variance hedge ratio and, 106–109,

111–112

with multiple futures contracts, 112–113

of multiple risks simultaneously, 113

with no basis risk, 105–106

of option positions, delta and, 244

risk decomposition and, 510–511

riskless hedge portfolios and, 237–238

stack-and-roll strategy for, 43

tailing the hedge and, 113–114

Help function in Octave, 948–949

Historical simulation for estimating VaR,

503–504

Historical volatility, 291

estimating, 306–307

for equities, 932

for interest rates, 932–933

HJM model. See Heath-Jarrow-Morton (HJM)

model

Ho-Lee model, 710–714

Horizontal spreads

using calls, 180–182

using puts, 182

I

IBs (introducing brokers), 23

ICE swaps, 47, 48

Immediate-or-cancel (IOC) limit orders, 24

Implicit finite differencing, 913–917

Implied binomial trees, 358, 379–389

Implied copula functions, 890–892

Implied correlation from copula functions, 890

Implied repo rate, 89–92

arbitrage and, 90–92

as synthetic borrowing/lending rate, 89–90

Implied volatility, 291

Black-Scholes model and, 327–332

jump-diffusion models and, 365, 366

Implied volatility skew, jump-diffusion models

and, 365, 366

Index arbitrage, 93–97

Index futures, changing equity risk and,

114–115

ING, 191–192

Initial margin, 36

Insurance value of an option, 204–205, 214

put-call parity and rules of thumb for early

exercise and, 224–225

Integration in Octave, 948–950

Intensity processes

Litterman-Iben model and, 840

reduced-form models of default risk and,

830–834

constant intensity processes and, 830, 831

limitations of constant intensities and,

831–832

mathematic context of, 830–831

non-constant intensity processes and, 832

spread curves with non-constant

intensities and, 832–833

stochastic intensities and, 833–834

Interest

compounding frequency and, 79–81

converting between frequencies and,

80–81

present value and, 80

continuous compounding and, 79

currency forward prices under, 67–68

pricing forwards by replication and,

62–63

Interest rate(s)

Black-Scholes model and, 319

compounding frequency and, 79–81

constant, forward and futures prices with,

81–83

estimating historical volatility for, 932–933

pricing forwards by replication and, 62

term structure of, 651–652

yield-to-maturity and, 649–661

construction of yield-to-maturity curve

and, 657–661

discount functions and, 652–653

forward rate and, 654–657

zero-coupon rate and, 653–654, 656–657

zero-coupon, yield-to-maturity and,

653–654, 656–657

Interest-rate derivatives, 4

Interest-rate forwards and futures, 122–143.

See also Eurodollar futures;

Forward-rate agreements (FRAs);

Treasury bill futures; Treasury bond

futures; Treasury note futures

duration-based hedging and, 140–143

Eurodollars and, 122–123

Libor rates and, 123

Interest-rate modeling, equity modeling versus,

684–685

Interest-rate options, 9, 155

Interest-rate processes, 930–931

Interest-rate risk, hedging using Eurodollar

futures, 131

Interest rate swaps, 10, 11, 575–593

accrediting, 589

amortizing, 589

changing fixed rates and, 587, 588

credit risk and credit exposure and, 596–597

cross-currency. See Currency swaps

fixed-for-floating. See Fixed-for-floating

interest rate swaps

forward-starting, 588–589

hedging, 597–599

LTCM case study of, 593–596

off-market, 586, 587

P&G case study of, 589–593

roller-coaster, 589

spread to Libor and, 588

zero-coupon, 586–587

Intermediaries in futures markets, 23

International Swaps and Derivatives

Association (ISDA), 771

In-the-money call options, 158

In-the-money put options, 160

Introducing brokers (IBs), 23

Inverted market, 88

IOC (immediate-or-cancel) limit orders, 24

ISDA (International Swaps and Derivatives

Association), 771

Ito processes, 345–346

Ito’s lemma, 345–347

iTraxx indices, 793, 794–797

J

J. Aron, 480–481

Jarrow-Lando-Turnbull (JLT) model, 845–853

adjustment factors and, 852–853

notation and, 847

Jarrow-Rudd (JR) solution, 296, 297–298

J.P. Morgan, 498

JP Morgan Chase, 52

JR (Jarrow-Rudd) solution, 296, 297–298

Jump-diffusion models, 357, 358–367

bias from ignoring jumps and, 361–362,

365–366, 367

calibration and empirical performance of,

366–367

depicting jumps in binomial models and, 359

implied volatility skew and, 365, 366

Merton option-pricing formula and, 364–365

moments and, 363–364

multiperiod example of, 360–361

one-period example of, 360, 361

Poisson distribution and, 362

program code for, 393–394

returns specification and, 363

Jump risk, option gamma as view on, 417

K

Knock-in barrier options, 470–472

Knock-out barrier options, 470–472
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Kurtosis, 330–332

sources of, 331–332

volatility skew and, 331

L

Leptokurtosis, 330

Leverage

expected returns from options and, 236

futures contracts and, 52

margin sizes and, 38–39

Merton model and, 810–811

Levy processes, 378

Libor, spread to, swaps and, 588

Libor Market Model (LMM), 749–758

calibration and, 757–758

martingales and, 750–751

risk-neutral pricing in, 753–757

simulation of, 757

Libor rates, 10, 123

notation for, 751–753

LIFFE (London International Financial Futures

and Options Exchange), 20

Limit orders, 23–24

Limit price, 23

Linear homogeneity, VaR and, 507, 511

Liquidity

Eurodollar futures and, 130

futures contracts and, 53

Litterman-Iben model, 836–840

evolution of spreads and, 838–840

forward probabilities of default and,

837–838, 839

intensity processes and, 840

LMM (Libor Market Model), 749–758

calibration and, 757–758

martingales and, 750–751

risk-neutral pricing in, 753–757

simulation of, 757

Locals in futures markets, 23

Local volatility models, 379–389, 400–403

Lognormal distribution, 289–298

actual and risk-neutral, 293–294

as model of bond returns, 293

Log-stable models, 378–379

London Interbank Offered Rates (Libor),

10, 123

notation for, 751–753

London International Financial Futures and

Options Exchange (LIFFE), 20

London Stock Exchange, 155

Long position, 5, 9

minimum-variance hedge ratio and, 107

options with, 156

Long Term Capital Management (LTCM) case

study, 593–596

Lookback options, 485–488

fixed-strike, 485, 487–488

floating-strike, 485, 487

pricing and hedging, 486–487

LOR Associates, 48, 247

LTCM (Long Term Capital Management) case

study, 593–596

M

Maintenance margin, 36

Margin

clearinghouse, 39

initial, 36

maintenance, 36

variation, 36

Margin account, 36

Margin calls, 36

Margining, 36–39

clearinghouse margins and, 39

default and, 37

hedging and, 39

leverage and, 38–39

procedure for, 36–37

valuation and, 39

Marked-to-market value

of forward contracts, 70–71

futures pricing and, 73–74

Market direction, options and, 162

Market-if-touched (MIT) orders, 24

Market Models, 731, 749–758

Market-on-close (MOC) orders, 25

Market-on-open (MOO) orders, 25

Market orders, 23

Marking-to-market, 36

daily, Eurodollar futures and, 134

Martingale(s), 750–751

Martingale measures, 257–258

Martingale probabilities. See Risk-neutral

probabilities

Matrix inversion, bootstrapping by, 680–681

Maturity

convertible bonds and, 521

yield to. See Yield-to-maturity entries

Maturity dates, 5

for options, 9, 156

Merchant Association of St. Louis, 57

Merton/Ho-Lee model, 715, 723

Merton model, 803–816

actual default probability and, 806–807

changes in risk-free rate and, 811

changes in volatility and, 811–812

extensions of, 819–820

implementation issues with, 812–816

leverage and, 810–811

risk-neutral probability of default and, 806

risk-neutral recovery rates and, 807–808

risky debt as option and, 804–805

term structure of credit spreads and, 808–810

valuing risky debt and, 805–806

Merton option-pricing formula, 364–365

Metallgesellschaft AG, 1

case study of, 42–45

Microsoft, 198n

Milwaukee Chamber of Commerce, 57

Mini futures contracts, 31

Minimum-variance hedge ratio, 106–109

alternatives to, 108–109

long versus short futures positions and, 107

minimized cash-flow variance and, 107–108

Minimum-variance hedges, 102–103

MIT (market-if-touched) orders, 24

MKMV (Moody’s KMV) model, 816, 817–819

MNCs (multinational corporations), real

options and, 563

MOC (market-on-close) orders, 25

Modeling term-structure movements, 684–697

arbitrage violations and, 685–686

equilibrium approach for, no-arbitrage

modeling versus, 694–697

interest-rate modeling versus equity

modeling and, 684–685

no-arbitrage modeling and, 687–697

equilibrium approach versus, 694–697

input information for, 687–688

risk-neutral probabilities and, 688–689

three-year zero and, 689–692

two-year zero and, 688, 689

valuing options and, 691–693

Monotonicity, VaR and, 511–512

Monte Carlo simulation, 923–942

for American options, 938–942

Longstaff and Schwartz approach for,

940–942

polynomial boundary technique for,

938–940

ARCH models and, 929–930

bivariate random variables and, 925

Cholesky decomposition and, 925–927

estimating historical volatility and

for equities, 932

for interest rates, 932–933

for estimating VaR, 504

interest-rate processes and, 930–931

path-dependent options and, 933–935

simulating normal random variables and,

924–925

stochastic processes for equity prices and,

927–928

variance reduction and, 935–938

antithetic variate method and, 935–937

control variate techniques and,

937–938

Moody’s, 845, 846

Moody’s KMV (MKMV) model, 816,

817–819

MOO (market-on-open) orders, 25

Mortgage-backed securities, futures contracts

on, 20

Multinational corporations (MNCs), real

options and, 563

Multiperiod correlated default, 875–878

N

Naked option positions, 158–161

Natural gas derivatives, 46–47, 48

Natural gas market, 46, 47

NDP (non-dividend-paying) assets, 198

American options on, 222–223

calls, 217

puts, 219

European options on, 220–221

Nelson-Siegel formulation, 659

Nelson-Siegel-Svensson formulation, 659

yield curve and, 674–676

New York Butter and Cheese Exchange, 57

New York Cotton Exchange, 57

New York Gold Exchange, 57

New York Mercantile Exchange (NYMEX),

19, 57

New York Produce Exchange, 57

New York Stock Exchange (NYSE), 20

No-arbitrage assumption, pricing forwards

and, 60
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Non-dividend-paying (NDP) assets, 198

American options on, 222–223

calls, 217

puts, 219

European options on, 220–221

Normal market, 88

NYMEX (New York Mercantile Exchange),

19, 57

NYSE (New York Stock Exchange), 20

NYSE Euronext, 20

O

OCO (one-cancels-the-other) orders, 25

Octave, 945–956

blended discount rate valuation tree and,

545–546

commands in, 945–947

binomial trees and, 947

factorials and, 946–947

“for” loops and, 946

“while” loops and, 946

equation solving and, 955

finding and, 953–954

reading in data and, 950–952

regression and integration and, 948–950

help function and, 948–949

screenshots and, 955–957

sorting and, 952–953

Official close, 25

Off-market swaps, 586, 587

Off-market trades, 6–7

Offsetting futures positions, 34–35

One-cancels-the-other (OCO) orders, 25

One-factor models of term structure

CIR, 716

in continuous time, 714–720

Merton/Ho-Lee, 715

PDE approach for solving, 716–718

risk-neutral approach for solving, 718–720

Vasicek, 715

Open and shut real options, 553–554

Opening price, 25

Option(s), 3, 5, 9–10, 155–164. See also

Forward contracts; Futures contracts;

Swap(s)

American. See American options

barrier. See Barrier options

Bermudan, 9, 156

call, 3, 9, 156

cash-or-nothing, 445–446

greeks and, 448–450

hedging, 447

pricing, 445–446

chooser, 450–452

hedging, 451–452

pricing, 451, 452

straddles and, 450–451

compound. See Compound options

on currencies, 168

definition of, 155–156

directional views and, 162

embedded, 170

on equities, 168

European. See European option entries

exchange, 458–460

Euler’s theorem and replicating portfolio

and, 459–460

hedging, 459

pricing, 458–459

variants on theme of, 462–465

exchange-traded, 167, 168–169

exotic, 9, 170. See also Path-dependent

exotics; Path-independent exotics

as financial insurance, 156–157

forward contracts differentiated from, 3–4

forwards/futures/spots versus, 164

on futures, 168–169

greeks of. See also specific option greeks

of binary options, 447

of cash-or-nothing options, 448–450

as insurance, 3–4, 10

insurance value of, 214

interest-rate, 9, 155

long position and, 9

maturity (expiration) date of, 9

naked option positions and, 158–161

over-the-counter, 170

plain vanilla, 9

portfolio insurance and, 246–248

put, 3, 9, 156

short position and, 9

strike (exercise) price of, 9

underlying and, 9

volatility and, 162–164

Optionality of caps and floors, 571

Option delta, 242–246, 405, 408–412

Black-Scholes, 437

in Black-Scholes model, 338–339

of compound options, 457

computing, 408

curvature and, 411–412

European, two-period, 267–268

option gamma and, curvature and

delta-hedging and, 415–417

option gamma as predictor of changes in,

417–418

properties of, 243–244, 408–409

replication and, 260

uses of, 244–246

using, 410

Option gamma, 246, 406, 412–418

Black-Scholes, 437–438

of cash-or-nothing options, 448

of compound options, 457

computing, 412–413

curvature and delta-hedging and, 415–417

as curvature correction, 414–415

gamma-theta trade-off and, 423, 424

as indicator of hedge rebalancing, 418

as predictor of changes in delta, 417–418

properties of, 413–414

as view on jump risk/volatility, 417

Option premium, 10, 157

Option pricing, 10, 157, 196–210, 228–248

of Asian options

on arithmetic average, 482–483

binomial example of, 483

on geometric average, 481–482

of asset-or-nothing options, 446–447

of barrier options, 472–474, 475–478

pricing formulae and, 496–497

binomial model and. See Binomial option

pricing

Black-Derman-Toy model and, 706–710

in Black-Scholes setting, 310–313. See also

Black-Scholes model

of call options, 231–233

bounds on call option prices and, 199–202

decomposition of, 214, 215–216

strike price and, 205–206

time-to-maturity and, 207

through CAPM approach, 235–236

of cash-or-nothing options, 445–446

of choosers, 451, 452

of cliquets, 489

of compound options, 454–455

pricing formulae for, 455–457

of European options, 286–288

of exchange options, 458–459

forward pricing compared with, 228–229

of forward starts, 443–444

homogeneity of degree 1 and, 443

insurance value of options and, 204–205

leverage and expected returns and, 236

of lookback options, 486–487

modeling term-structure movements and,

691–693

notation for, 198–199

of put options, 233–235

bounds on put option prices and,

202–204

decomposition of, 214–216

strike price and, 206–207

time-to-maturity and, 207–208

of quantos, 460–462

replicability and, 236–237

by replication, dynamic, 237

riskless hedge portfolios and, 237–238,

252–253

risk-neutral, 238–242

examples of, 239–241

explanation for, 241

historical background of, 238

steps in, 239

terminology for, 239

of shout options, 490–492

strike price and, 205–207

time-to-maturity and, 207–208

Option rho, 405, 426–429

Black-Scholes, 439

of cash-or-nothing options, 449–450

properties of, 427–428

using, 428–429

Options markets, 167–170

exchange traded, 167, 168–169

over-the-counter, 167

size and composition of, 167–168

Options trading strategies, 171–192

Barings case and, 189–192

collars, 186–187

condors, 188

covered calls, 172–173

most widely used, 189

protective puts, 173–174

spreads. See Spread(s)

straddles, 183, 450–451

strangles, 184

straps, 185

strips, 184–185
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Option theta, 405, 418–423

Black-Scholes, 438

of cash-or-nothing options, 448–449

decomposing, 420–422

depth-in-the-money and, 420, 421

gamma-theta trade-off and, 423, 424

sign of, 419–420

using, 422–423

Option vega, 405, 423–426

Black-Scholes, 438

of cash-or-nothing options, 448, 449

properties of, 424–426

using, 426

Ornstein-Uhlenbeck (OU) process, 373, 930

Osaka Exchange (OSE), 189

OTC (over-the-counter) derivatives, 5

OTC (over-the-counter) options, 170

OU (Ornstein-Uhlenbeck) process, 373, 930

Out-of-the-money call options, 158

Out-of-the-money put options, 160

Over-the-counter (OTC) derivatives, 5

Over-the-counter (OTC) options, 170

Over-the-counter options markets, 167

Overvalued forward contracts, arbitrage

from, 68

P

Parity. See also Put-call parity

convertible bonds and, 520

Path-dependent exotics, 470–492,

933–935

Asian. See Asian options

barrier. See Barrier options

cliquets (ratchets), 488–490

hedging, 489–490

pricing, 489

reverse, 490

lookback, 485–488

fixed-strike, 485, 487–488

floating-strike, 485, 487

pricing and hedging, 486–487

shout, 490–492

pricing, 490–492

Path-independent exotics, 440–465

asset-or-nothing, pricing, 446–447

binary, 445–449

cash-or-nothing, 445–446

greeks and, 448–450

hedging, 447

pricing, 445–446

chooser (as-you-like-it or U-Choose),

450–452

hedging, 451–452

pricing, 451, 452

straddles and, 450–451

compound, 453–457

delta and gamma and, 457

hedging, 457

as installment options, 455

payoffs from, 453–454

pricing, 454–455

pricing formulae for, 455–457

exchange, 458–460

Euler’s theorem and replicating portfolio

and, 459–460

hedging, 459

pricing, 458–459

variants on theme of, 462–465

forward start options, 442–445

quanto, 460–462

pricing, 460–462

Payer swaptions, 603

Payoffs. See also Cash flows; specific

instruments

from compound options, 453–454

from forward contracts, 6–7

from forward-rate agreements, 124–125

from long and short positions on call options,

158–160

from long and short positions on put options,

160–161

PDE (fundamental partial differential equation)

of Black-Scholes model, 349–350
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