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Preface

The two of us have worked together academically for more than a quarter century, first as
graduate students, and then as university faculty. Given our close collaboration, our common
research and teaching interests in the field of derivatives, and the frequent pedagogical
discussions we have had on the subject, this book was perhaps inevitable.

The final product grew out of many sources. About three-fourths of the book came
from notes developed by Raghu for his derivatives course at New York University as well
as for other academic courses and professional training programs at Credit Suisse, ICICI
Bank, the International Monetary Fund (IMF), Invesco-Great Wall, J.P. Morgan, Merrill
Lynch, the Indian School of Business (ISB), the Institute for Financial Management and
Research (IFMR), and New York University, among other institutions. Other parts grew
out of academic courses and professional training programs taught by Sanjiv at Harvard
University, Santa Clara University, the University of California at Berkeley, the ISB, the
IFMR, the IME, and Citibank, among others. Some chapters were developed specifically
for this book, as were most of the end-of-chapter exercises.

The discussion below provides an overview of the book, emphasizing some of its special
features. We provide too our suggestions for various derivatives courses that may be carved
out of the book.

An Overview of the Contents

xvi

The main body of this book is divided into six parts. Parts 1-3 cover, respectively, futures and
forwards; options; and swaps. Part 4 examines term-structure modeling and the pricing of
interest-rate derivatives, while Part 5 is concerned with credit derivatives and the modeling
of credit risk. Part 6 discusses computational issues. A detailed description of the book’s
contents is provided in Section 1.5; here, we confine ourselves to a brief overview of
each part.

Part 1 examines forward and futures contracts, The topics covered in this span include
the structure and characteristics of futures markets; the pricing of forwards and futures;
hedging with forwards and futures, in particular, the notion of minimum-variance hedging
and its implementation; and interest-rate-dependent forwards and futures, such as forward-
rate agreements or FRAs, eurodollar futures, and Treasury futures contracts.

Part 2, the lengthiest portion of the book, is concerned mainly with options. We begin
with a discussion of option payoffs, the role of volatility, and the use of options in incor-
porating into a portfolio specific views on market direction and/or volatility. Then we turn
our attention to the pricing of options contracts. The binomial and Black-Scholes models
are developed in detail, and several generalizations of these models are examined. From
pricing, we move to hedging and a discussion of the option “greeks,” measures of option
sensitivity to changes in the market environment. Rounding off the pricing and hedging
material, two chapters discuss a wide range of “exotic” options and their behavior.

The remainder of Part 2 focuses on special topics: portfolio measures of risk such as
Value-at-Risk and the notion of risk budgeting, the pricing and hedging of convertible bonds,
and a study of “real” options, optionalities embedded within investment projects.

Part 3 of the book looks at swaps. The uses and pricing of interest rate swaps are covered
in detail, as are equity swaps, currency swaps, and commodity swaps. (Other instruments
bearing the “swaps” moniker are covered elsewhere in the book. Variance and volatility
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swaps are presented in the chapter on Black-Scholes, and credit-default swaps and total-
return swaps are examined in the chapter on credit-derivative products.) Also included in
Part 3 is a presentation of caps, floors, and swaptions, and of the “market model” used to
price these instruments.

Part 4 deals with interest-rate modeling. We begin with different notions of the yield
curve, the estimation of the yield curve from market data, and the challenges involved in
modeling movements in the yield curve. We then work our way through factor models of
the yield curve, including several well-known models such as Ho-Lee, Black-Derman-Toy,
Vasicek, Cox-Ingersoll-Ross, and others. A final chapter presents the Heath-Jarrow-Morton
framework, and also that of the Libor and Swap Market Models.

Part 5 deals with credit risk and credit derivatives. An opening chapter provides a
taxonomy of products and their characteristics. The remaining chapters are concerned with
modeling credit risk. Structural models are covered in one chapter, reduced-form models
in the next, and correlated-default modeling in the third.

Part 6, available online athttp://www.mhhe . com/sdle, looks at computational issues.
Finite-differencing and Monte-Carlo methods are discussed here. A final chapter provides
a tutorial on the use of Octave, a free software akin to Matlab, that we use for illustrative
purposes throughout the book.

Background Knowledge

It would be inaccurate to say that this book does not pre-suppose any knowledge on the
part of the reader, but it is true that it does not pre-suppose much. A basic knowledge of
financial markets, instruments, and variables (equities, bonds, interest rates, exchange rates,
etc.) will obviously help—indeed, is almost essential. So too will a degree of analytical
preparedness (for example, familiarity with logs and exponents, compounding, present
value computations, basic statistics and probability, the normal distribution, and so on). But
beyond this, not much is required. The book is largely self-contained. The use of advanced
(from the standpoint of an MBA course) mathematical tools, such as stochastic calculus, is
kept to a minimum, and where such concepts are introduced, they are often deviations from
the main narrative that may be avoided if so desired.

What Is Different about This Book?

It has been our experience that the overwhelming majority of students in derivatives courses
go on to become traders, creators of structured products, or other users of derivatives, for
whom a deep conceptual, rather than solely mathematical, understanding of products and
models is required. Happily, the field of derivatives lends itself to such an end: while
it is one of the most mathematically-sophisticated areas of finance, it is also possible,
perhaps more so than in any other area of finance, to explain the fundamental principles
underlying derivatives pricing and risk-management in simple-to-understand and relatively
non-mathematical terms. Our book looks to create precisely such a blended approach, one
that is formal and rigorous, yet intuitive and accessible.

To this purpose, a great deal of our effort throughout this book is spent on explaining
what lies behind the formal mathematics of pricing and hedging. How are forward prices
determined? Why does the Black-Scholes formula have the form it does? What is the option
gamma and why is it of such importance to a trader? The option theta? Why do term-structure
models take the approach they do? In particular, what are the subtleties and pitfalls in
modeling term-structure movements? How may equity prices be used to extract default risk
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of companies? Debt prices? How does default correlation matter in the pricing of portfolio
credit instruments? Why does it matter in this way? In all of these cases and others throughout
the book, we use verbal and pictorial expositions, and sometimes simple mathematical
models, to explain the underlying principles before proceeding to a formal analysis.

None of this should be taken to imply that our presentations are informal or mathemati-
cally incomplete. But it is true that we eschew the use of unnecessary mathematics. Where
discrete-time settings can convey the behavior of a model better than continuous-time set-
tings, we resort to such a framework. Where a picture can do the work of a thousand (or even
a hundred) words, we use a picture. And we avoid the presentation of “black box” formulae
to the maximum extent possible. In the few cases where deriving the prices of some deriva-
tives would require the use of advanced mathematics, we spend effort explaining intuitively
the form and behavior of the pricing formula.

To supplement the intuitive and formal presentations, we make extensive use of numerical
examples for illustrative purposes. To enable comparability, the numerical examples are
often built around a common parametrization. For example, in the chapter on option greeks,
a baseline set of parameter values is chosen, and the behavior of each greek is illustrated
using departures from these baselines.

In addition, the book presents several full-length case studies, including some of the most
(in)famous derivatives disasters in history. These include Amaranth, Barings, Long-Term
Capital Management (LTCM), Metallgesellschaft, Procter & Gamble, and others. These
are supplemented by other case studies available on this book’s website, including Ashanti,
Sumitomo, the Son-of-Boss tax shelters, and American International Group (AIG).

Finally, since the best way to learn the theory of derivatives pricing and hedging is by
working through exercises, the book offers a large number of end-of-chapter problems.
These problems are of three types. Some are conceptual, mostly aimed at ensuring the basic
definitions have been understood, but occasionally also involving algebraic manipulations.
The second group comprise numerical exercises, problems that can be solved with a calcu-
lator or a spreadsheet. The last group are programming questions, questions that challenge
the students to write code to implement specific models.

Possible Course Outlines

Figure 1 describes the logical flow of chapters in the book. The book can be used at the
undergraduate and MBA levels as the text for a first course in derivatives; for a second (or
advanced) course in derivatives; for a “topics” course in derivatives (as a follow-up to a first
course); and for a fixed-income and/or credit derivatives course; among others. We describe
below our suggested selection of chapters for each of these.

A first course in derivatives typically covers forwards and futures, basic options material,
and perhaps interest rate swaps. Such a course could be built around Chapters 1—4 on futures
markets and forward and futures pricing; Chapters 7—14 on options payoffs and trading
strategies, no-arbitrage restrictions and put-call parity, and the binomial and Black-Scholes
models; Chapters 17—19 on option greeks and exotic options; and Chapter 23 on interest
rate swaps and other floating-rate products.

A second course, focused primarily on interest-rate and credit-risk modeling, could begin
with a review of basic option pricing (Chapters 11-14), move on to an examination of more
complex pricing models (Chapter 16), then cover interest-rate modeling (Chapters 26-30)
and finally credit derivatives and credit-risk modeling (Chapters 31-34).

A “topics” course following the first course could begin again with a review of basic op-
tion pricing (Chapters 11-14) followed by an examination of more complex pricing models
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(Chapter 16). This could be followed by Value-at-Risk and risk-budgeting (Chapter 20);
convertible bonds (Chapter 21); real options (Chapter 22); and interest-rate, equity, and
currency swaps (Chapters 23-25), with the final part of the course covering either an intro-
duction to term-structure modeling (Chapters 26—28) or an introduction to credit derivatives
and structural models (Chapters 31 and 32).
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Finally, a course on fixed-income derivatives can be structured around basic forward
pricing (Chapter 3); interest-rate futures and forwards (Chapter 6); basic option pricing and
the Black-Scholes model (Chapters 11 and 14); interest rate swaps, caps, floors, and swap-
tions, and the Black model (Chapter 23); and the yield curve and term-structure modeling
(Chapters 26-30).

A Final Comment

This book has been several years in the making and has undergone several revisions in that
time. Meanwhile, the derivatives market has itself been changing at an explosive pace. The
financial crisis that erupted in 2008 will almost surely result in altering major components
of the derivatives market, particularly in the case of over-the-counter derivatives. Thus, it is
possible that some of the products we have described could vanish from the market in a few
years, or the way these products are traded could fundamentally change. But the principles
governing the valuation and risk-management of these products are more permanent, and
it is those principles, rather than solely the details of the products themselves, that we have
tried to communicate in this book. We have enjoyed writing this book. We hope the reader
finds the final product as enjoyable.
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Chapter

Introduction

The world derivatives market is a zuge one. The Bank for International Settlements estimates
that by December 2008, the volume of derivatives outstanding worldwide, measured in terms
of notional outstanding, was a staggering $592 trillion. The gross market value of these
derivatives was a more modest, but still respectable, $33.9 trillion. By way of comparison,
the gross domestic product in 2007 of the United States, the world’s largest economy, was
“only” about $13.8 trillion.

Not only is the market immense; it has also been growing at a furious pace. The notional
amount outstanding in derivatives contracts worldwide increased more than sevenfold in the
nine years ending December 2007, doubling in just the last two years of that span (Tables 1.1
and 1.2). The global financial crisis that erupted in 2008 took its toll on the market, but at
the end of December 2008, the notional outstanding was roughly the same as at the end
of December 2007, and the gross market value of these derivatives was more than 130%
higher.

The growth has been truly widespread. There are now thriving derivatives exchanges not
only in the traditional developed economies of North America, Europe, and Japan, but also
in Brazil, China, India, Israel, Korea, Mexico, and Singapore, among many other countries.
A survey by the International Swaps and Derivatives Association (ISDA) in 2003 found
that 92% of the world’s 500 largest companies use derivatives to manage risk of various
forms, especially interest-rate risk (92%) and currency risk (85%), but, to a lesser extent,
also commodity risk (25%) and equity risk (12%). Firms in over 90% of the countries
represented in the sample used derivatives.

Matching—and fueling—the growth has been the pace of innovation in the market.
Traditional derivatives were written on commodity prices, but beginning with foreign cur-
rency and other financial derivatives in the 1970s, new forms of derivatives have been intro-
duced almost continuously. Today, derivatives contracts reference a wide range of underlying
instruments including equity prices, commodity prices, exchange rates, interest rates, bond
prices, index levels, and credit risk. Derivatives have also been introduced, with varying suc-
cess rates, on more exotic underlying variables such as market volatility, electricity prices,
temperature levels, broadband, newsprint, and natural catastrophes, among many others.

This is an impressive picture. Yet derivatives have also been the target of fierce criticism.
In 2003, Warren Buffet, perhaps the world’s most successful investor, labeled them “finan-
cial weapons of mass destruction.” Derivatives—especially credit derivatives—have been
widely blamed for enabling, or at least exacerbating, the global financial markets crisis that
began in late 2007. Victims of derivatives (mis-)use over the decades include such promi-
nent names as the centuries-old British institution Barings Bank, the German industrial
conglomerate Metallgesellschaft AG, the Japanese trading powerhouse Sumitomo, and the
giant US insurance company, American International Group (AIG).
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TABLE 1.1 BIS Estimates of World Derivatives Market Size: 2006-2008

Notional Amounts Outstanding Gross Market Values
End 2006 End 2007 End 2008 End 2006 End 2007 End 2008

Total contracts 414.8 596.0 592.0 9.7 14.5 33.9
Foreign exchange contracts 40.3 56.2 49.8 1.3 1.8 3.9
Forwards and forex swaps 19.9 29.1 24.6 0.5 0.7 1.7
Currency swaps 10.8 14.3 14.7 0.6 0.8 1.6
Options 9.6 12.7 10.5 0.2 0.3 0.6
Interest rate contracts 291.6 393.1 418.7 4.8 7.2 18.4
Forward-rate agreements 18.7 26.6 39.3 0.0 0.0 0.2
Interest rate swaps 229.7 309.6 328.1 4.2 6.2 16.6
Options 43.2 57.0 51.3 0.6 1.0 1.7
Equity-linked contracts 7.5 8.5 6.5 0.9 1.1 1.1
Forwards and swaps 1.8 2.2 1.6 0.2 0.2 0.3
Options 5.7 6.3 4.9 0.7 0.9 0.8
Commodity contracts 7.1 9.0 4.4 0.7 0.8 1.0
Gold 0.6 0.6 0.4 0.1 0.1 0.0
Other commodities 6.5 8.4 4.0 0.6 1.8 0.9
Forwards and swaps 2.8 5.6 2.5

Options 3.7 2.8 1.6

Credit default swaps 28.7 57.9 41.9 0.2 0.9 5.7
Single-name instruments 17.9 32.2 25.4 1.6 1.6 3.7
Multi-name instruments 10.8 25.6 16.1 0.0 0.0 2.0
Unallocated 39.7 71.2 70.7 0.0 0.0 3.8

Source: Bank for International Settlements (BIS) website (http://www.bis.org).

What is a derivative? What are the different types of derivatives? What are the benefits
of derivatives that have fueled their growth? The risks that have led to disasters? How is
the value of a derivative determined? How are the risks in a derivative measured? How
can these risks be managed (or hedged)? These and other questions are the focus of this
book. We describe and analyze a wide range of derivative securities. By combining the
analytical descriptions with numerical examples, exercises, and case studies, we present an
introduction to the world of derivatives that is at once formal and rigorous yet accessible
and intuitive. The rest of this chapter elaborates and lays the foundation for the book.

What Are Derivatives?

A derivative security is a financial security whose payoff depends on (or derives from) other,
more fundamental, variables such as a stock price, an exchange rate, a commodity price,
an interest rate—or even the price of another derivative security. The underlying driving
variable is commonly referred to as simply the underlying.

The simplest kind of derivative—and historically the oldest form, dating back thousands
of years—is a forward contract. A forward contract is one in which two parties (commonly
referred to as the counterparties in the transaction) agree to the terms of a trade to be
consummated on a specified date in the future. For example, on December 3, a buyer and
seller may enter into a forward contract to trade in 100 oz of gold in three months (i.c., on
March 3) at a price of $900/0z. In this case, the seller is undertaking to sell 100 oz in three
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TABLE 1.2 BIS Estimates of World Derivatives Market Size: 1998-2008

Notional Amounts Outstanding

Dec. 1998 Dec. 2000 Dec. 2002 Dec. 2004 Dec. 2007 Dec. 2008

Total contracts 80.3 95.2 141.7 257.9 596.0 592.0
Foreign exchange contracts 18.0 15.7 18.4 29.3 56.2 49.8
Forwards and forex swaps 12.1 10.1 10.7 15.0 29.1 24.6
Currency swaps 23 3.2 4.5 8.2 14.3 14.7
Options 3.7 23 3.2 6.1 12.7 10.5

Interest rate contracts 50.0 64.7 101.7 190.5 393.1 418.7
Forward-rate agreements 5.8 6.4 8.8 12.8 26.6 39.3
Interest-rate swaps 36.3 48.8 79.1 150.6 309.6 328.1

Options 8.0 9.5 13.7 27.1 57.0 51.3
Equity-linked contracts 1.5 1.9 23 4.4 8.5 6.5
Forwards and swaps 0.1 0.3 0.4 0.8 2.2 1.6
Options 1.3 1.6 1.9 3.6 6.3 4.9
Commodity contracts 0.4 0.7 0.9 1.4 9.0 4.4
Gold 0.2 0.2 0.3 0.4 0.6 0.4
Other commodities 0.2 0.4 0.6 1.1 8.4 4.0
Forwards and swaps 0.1 0.2 0.4 0.6 5.6 2.5
Options 0.1 0.2 0.2 0.5 2.8 1.6
Credit default swaps 6.4 57.9 41.9
Single-name instruments 5.1 32.2 25.4
Multi-name instruments 1.3 25.6 16.1

Unallocated 10.4 12.3 18.3 259 71.2 71.2

Source: Bank for International Settlements (BIS) website (http://www.bis.org).

months at a price of $900/0z while the buyer is undertaking to buy 100 oz of gold in three
months at $900/0z.

One common motivation for entering into a forward contract is the elimination of cash-
flow uncertainty from a future transaction. In our example, if the buyer anticipates a need
for 100 oz of gold in three months and is worried about price fluctuations over that period,
any uncertainty about the cash outlay required can be removed by entering into a forward
contract. Similarly, if the seller expects to be offloading 100 oz of gold in three months
and is concerned about prices that might prevail at the end of that horizon, entering into a
forward contract locks in the price received for that future sale.

In short, forward contracts may be used to /edge cash-flow risk associated with future
market commitments. Forward contracts are commonly used by importers and exporters
worried about exchange-rate fluctuations, investors and borrowers worried about interest-
rate fluctuations, commodity producers and buyers worried about commodity price fluctu-
ations, and so on.

A slightly more complex example of a derivative is an option. As in a forward, an option
contract too specifies the terms of a future trade, but while a forward commits both parties
to the trade, in an option, one party to the contract retains the right to enforce or opt out of
the contract. If it is the buyer who has this right, the option is called a call option; if the
seller, a put option.

The key difference between a forward and an option is that while a forward contract is
an instrument for hedging, an option provides a form of financial insurance. Consider, for
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example, a call option on gold in which the buyer has the right to buy gold from the seller
at a price of (say) $900/0z in three months’ time. If the price of gold in three months is
greater than $900/0z (for example, it is $930/0z), then the buyer will exercise the right in
the contract and buy the gold for the contract price of $900. However, if the price in three
months is less than $900/0z (e.g., is $880/0z), the buyer can choose to opt out of the contract
and, if necessary, buy the gold directly in the market at the cheaper price of $880/0z.

Thus, holding a call option effectively provides the buyer with protection (or “insurance’)
against an increase in the price above that specified in the contract even while allowing the
buyer to take full advantage of price decreases. Since it is the seller who takes the other side
of the contract whenever the buyer decides to enforce it, it is the seller who provides this
insurance to the buyer. In exchange for providing this protection, the seller will charge the
buyer an up-front fee called the call option premium.

Analogously, a put option provides the seller with insurance against a decrease in the
price. For instance, consider a put option on gold in which the seller has the right to sell
gold to the buyer at $900/0z. If the price of gold falls below $900/0z, the seller can exercise
the right in the put and sell the gold for $900/0z, but if the price of gold rises to more than
$900/0z, then the seller can elect to let the put lapse and sell the gold at the higher market
price. Holding the put insures the seller against a fall in the price below $900/0z. The buyer
provides this insurance and will charge an up-front fee, the put premium, for providing this
service.

Options offer an alternative to forwards for investors concerned about future price fluc-
tuations. Unlike forwards, there is an up-front cost of buying an option (viz., the option
premium) but, compensating for this, there is no compulsion to exercise if doing so would
result in a loss.

Forwards and options are two of the most common and important forms of derivatives.
In many ways, they are the building blocks of the derivatives landscape. Many other forms
of derivatives exist, some which are simple variants of these structures, others much more
complex or “exotic” (a favorite term in the derivatives area for describing something that is
not run-of-the-mill or “plain vanilla”). We elaborate on this later in this chapter and in the
rest of the book. But first, we present a brief discussion on the different criteria that may be
used to classify derivatives.

Classifying Derivatives

A popular way to classify derivatives is to group them according to the underlying. For
example, an equity derivative is one whose underlying is an equity price or stock index
level; a currency or FX (short for foreign-exchange) derivative is one whose underlying is
an exchange rate; and so on. Much of the world’s derivatives trade on just a few common
underlyings. Table 1.1 shows that inferest-rate derivatives (derivatives defined on interest
rates or on interest-rate-sensitive securities such as bonds) account for almost half the gross
market value of the derivatives market, with smaller shares being taken by currency, equity,
commodity, and credit derivatives.

While these are the most common underlyings, derivatives may, in principle, be defined
on just about any underlying variable. Indeed, a substantial chunk of the growth in derivatives
markets in the first years of the 2000s came from credit derivatives (derivatives dependent
on the credit risk of specified underlying entities), a category of derivatives that did not
even exist in 1990. As noted earlier in this chapter, derivatives have also been introduced
on a number of exotic underlying variables including electricity prices, temperature levels,
broadband, newsprint, and market volatility.

Derivatives can differ greatly in the manner in which they depend on the underlying,
ranging from very simple dependencies to very complex ones. Nonetheless, most derivatives
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fall into one of two classes: those that involve a commitment to a given trade or exchange
of cash flows in the future and those in which one party has the option to enforce or opt
out of the trade or exchange. Included in the former class are derivative securities such as
forwards, futures; and swaps; derivatives in the latter class are called options.

Forwards and options have already been defined above. Futures contracts are similar
to forward contracts except that they are traded on organized exchanges; we discuss the
differences more precisely below. Swaps are contracts in which the parties commit to mul-
tiple exchanges of cash flows in the future, with the cash flows to be exchanged calculated
under rules specified in the contract; thus, swaps are like forwards except with multiple
transactions to which the parties commit.

Tables 1.1 and 1.2 use both of these schemes of classification, first breaking down the
world derivatives market by underlying and then into forwards, swaps, and options. The
breakdown reveals some interesting variations. For example, while swaps account for the
great bulk (roughly 80%) of interest-rate derivatives, options constitute over 75% of equity
derivatives.

A third classification of derivatives of interest is into over-the-counter (OTC) or exchange-
traded derivatives. Over-the-counter derivatives contracts are traded bilaterally between two
counterparties who deal directly with each other. In such transactions, each party takes the
credit risk of the other (i.e., the risk that the other counterparty may default on the contract).
In exchange-traded contracts, the parties deal though an organized exchange, and the identity
of the counterparty is usually not known. Forwards and swaps are OTC contracts, while
futures are exchange traded. Options can be both OTC and exchange traded.

1.1 Forward and Futures Contracts

A forward contract is an agreement between two parties to trade in a specified quantity of
a specified good at a specified price on a specified date in the future. The following basic
terminology is used when discussing these contracts:

* The buyer in the forward contract is said to have a long position in the contract; the seller
is said to have a short position.

» The good specified in the contract is called the underlying asset or, simply, the underlying.

» The date specified in the contract on which the trade will take place is called the maturity
date of the contract.

» The price specified in the contract for the trade is called the delivery price in the contract.
This is the price at which delivery will be made by the seller and accepted by the buyer.

We will define the important concept of a forward price shortly. For the moment, we note
that the forward price is related to, but is not the same concept as, the delivery price.

The underlying in a forward contract may be any commodity or financial asset. Forward
contracts may be written on foreign currencies, bonds, equities, or indices, or physical
commodities such as oil, gold, or wheat. Forward contracts also exist on such underlyings
as interest rates or volatility which cannot be delivered physically (see, for example, the
Jforward-rate agreements or FRAs described in Chapter 6, or the forward contracts on market
volatility known as variance and volatility swaps, described in Chaper 14); in such cases,
the contracts are settled in cash with one side making a payment to the other based on rules
specified in the contract. Cash settlement is also commonly used for those underlyings for
which physical delivery is difficult, such as equity indices.

As has been discussed, a primary motive for entering into a forward contract is hedging:
using a forward contract results in locking-in a price today for a future market transaction,
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and this eliminates cash-flow uncertainty from the transaction. Foreign currency forwards,
for example, enable exporters to convert the payments received in foreign currency into
home currency at a fixed rate. Interest-rate forwards such as FRAs enable firms to lock-in
an interest rate today for a future borrowing or investment. Commodity forwards such as
forwards on oil enable users of oil to lock-in prices at which future purchases are made and
refiners of oil to lock-in a price at which future sales are made.

Forward contracts can also be used for speculation, that is, without an underlying expo-
sure already existing. An investor who feels that the price of some underlying is likely to
increase can speculate on this view by entering into a long forward contract on that under-
lying. If prices do go up as anticipated, the investor can buy the asset at the locked-in price
on the forward contract and sell at the higher price, making a profit. Similarly, an investor
wishing to speculate on falling prices can use a short forward contract for this purpose.

Key Characteristics of Forward Contracts

Four characteristics of forward contracts deserve special emphasis because these are exactly
the dimensions along which forwards and futures differ:

» First, a forward contract is a bilateral contract. That is, the terms of the contract are
negotiated directly by the seller and the buyer.

» Second, as a consequence, a forward contract is customizable. That is, the terms of the
contract (maturity date, quality or grade of the underlying asset, etc.) can be “tailored”
to the needs of the buyer and seller.

» Third, there is possible default risk for both parties. Each party takes the risk that the
other may fail to perform on the contract.

» Fourth, neither party can walk away unilaterally from the contract or transfer its rights
and obligations in the contract unilaterally to a third party.

We return to these characteristics when discussing futures contracts.

Payoffs from Forward Contracts

The payoff from a forward contract is the profit or loss made by the two parties to the
contract. Consider an example. Suppose a buyer and seller enter into a forward contract
on a stock with a delivery price of F = 100. Let S denote the price of the stock on the
maturity date 7. Then, on date 7',

» The long position is buying for F = 100 an asset worth S7. So the payoff to the long
position is Sy — 100. The long position makes a profit if Sz > 100, but loses if S7 < 100.

» The short position is selling for £ = 100 an asset worth S7. So the payoff to the short
position is 100 — S7. The short position makes a profitif Sy < 100, but loses if S7 > 100.

For example:

» If S¢ = 110, then the long is buying for 100 an asset worth 110, so gains 10, but the
short is selling for 100 an asset worth 110, so loses 10.

» If S¢ = 90, the long is buying for 100 an asset worth only 90, so loses 10, while the
short is selling for 100 an asset worth only 90, so gains 10.

Table 1.3 describes the payoff to the two sides for some other values of S7. Two points
about these payoffs should be noted. First, forwards (like all derivatives) are zero-sum
instruments: the profits made by the long come at the expense of the short, and vice versa.
The sum of the payoffs of the long and short is always zero. This is unsurprising. Except
when the delivery price F' exactly coincides with the time-7" price Sy of the underlying,
a forward contract involves an off-market trade (i.e., a trade at a different price from the
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This table describes the payoff to the long and short positions
on the maturity date T of a forward contract with a delivery price of 100. Sy
is the price of the underlying asset on date T.

Time-T Price St

70

Payoff to Long

-30

+30

Payoff to Short

80 -20 +20
90 -10 +10
100 - -
110 +10 ~10
120 +20 -20
-30

130

+30
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prevailing market price). In any off-market trade, the benefit to one side is exactly equal to
the loss taken by the other.

Second, as Figure 1.1 illustrates, forwards are “linear” derivatives. Every $1 increase in
the price S7 of the underlying at date T increases the payoff of the long position by $1 and
reduces the payoffs of the short position by $1. Linearity is a consequence of committing to
the trade specified in the contract. In contrast, as we will see, options, which are characterized
by their “optionality” concerning the trade, are fundamentally nonlinear instruments, and
this makes their valuation and risk management much trickier.

What Is the “Forward Price”?

By convention, neither party pays anything to enter into a forward contract. So the delivery
price in the contract is set so that the contract has zero value to both parties. This “breakeven”
delivery price is called the forward price.

The figure shows the payoffs to the long and short positions
on the maturity date 7" of a forward contract with delivery
price F as the time-T price Sy of the underlying asset

varies.

Payoffs

Payoffs from
long forward

Payoffs from
short forward
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Is the forward price a well-defined concept? That is, is it obvious that there is only one
breakeven delivery price? At first glance, it appears not. Certainly, it is true that if the
delivery price is set very high, the short will expect to profit from the contract and the long
to lose; that is, the contract will have positive value to the short and negative value to the
long. Similarly, if the price is set too low, the contract will have positive value to the long
(who will expect to profit from having access to the asset at an excessively low price) and
negative value to the short. But it is not obvious that between these extremes, there is only
one possible breakeven delivery price at which both parties will agree the contract has zero
value. Intuitively, it appears that such idiosyncratic factors as risk-aversion and outlooks
concerning the market ought to matter.

In Chapter 3, we examine this issue. We show that under fairly general conditions, the
forward price is, in fact, a well-defined concept and that regardless of attitudes to risk and
other factors, everyone must agree on the breakeven delivery price. Possible violations of
these conditions and their consequences for the pricing theory are examined in Chapter 4.
The principal assumption we make there, and throughout this book, is that markets do not
permit arbitrage. The no-arbitrage assumption is just the minimal requirement that identical
assets or baskets of assets must trade at identical prices.

Futures Markets

A futures contract is, in essence, a forward contract that is traded on an organized exchange.
But while futures and forwards are functionally similar (i.e., they serve the same economic
purpose), the involvement of the exchange results in some important differences between
them.

First, in a futures contract, buyers and sellers deal through the futures exchange, not
directly. Buyers submit buy orders to the exchange, sellers submit sell orders, and these are
matched via the exchange. The counterparties are unlikely to know each other’s
identities.

Second, because buyers and sellers do not meet, futures contracts must be standardized.
Standardization covers the set of possible delivery dates and delivery locations, the size of
one contract, and the quality or grade of the underlying that may be delivered under the
contract, and is one of the most important functions performed by the exchange.

Third, counterparties are not exposed to each other’s default risk. Rather, the exchange
interposes itself between buyer and seller and guarantees performance on the contracts.
(This is necessary because the counterparties have no way of gauging each other’s credit
risk.) Thus, each party to a futures transaction is exposed only to the default risk of the
exchange. In well-run futures exchanges, this risk is generally very low.

Fourth, an investor may, at any time, close out or reverse a futures position. Closing
out involves taking an opposite position to the original one. For example, if the investor
was initially long 10 futures contracts in gold for delivery in March, closing out involves
taking short positions in 10 futures contracts for delivery in March. These positions are
netted against each other, and, as far as the exchange is concerned, the investor has no net
obligations remaining.

Fifth, having guaranteed performance on the futures contracts, the exchange must put
safeguards in place to ensure it is not called upon to honor its guarantee too often. That
is, it must ensure that the parties to the contract do not default in the first place. For this
purpose, a system based on the use of “margin accounts” (a.k.a. “performance bonds”) are
commonly used.

Table 1.4 summarizes these main differences between futures and forwards. The insti-
tutional features of futures markets are designed to enhance the integrity and liquidity of
the market, thereby making it more attractive to participants. However, they also have eco-
nomic consequences. For example, futures prices—the breakeven delivery prices for futures
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TABLE 1.4

. Criterion Futures Forwards
Differences between
Forwards and Futures Buyer-seller interaction Via exchange Direct
Contract terms Standardized Can be tailored
Unilateral reversal Possible Not possible
Default-risk borne by Exchange Individual parties
Default controlled by Margin accounts Collateral

contracts—are typically close to, but do not quite coincide with, forward prices because of
these differences, as Chapter 3 discusses.

1.2 Options

An option is a financial security that gives the buyer the right (but not the obligation) to buy
or sell a specified asset at a specified price on or before a specified date. In dealing with
options, we adopt the following terminology:

* Buyer = Holder = Long Position: The buyer of the option, also called the Aolder of the
option, is said to have a long position in the option.

e Seller = Writer = Short Position: The seller of the option, also called the writer of the
option, is said to have a short position in the option.

» The asset specified in the option contract is called the underlying asset or simply the
underlying.

» The price specified in the contract is called the strike price or the exercise price of the
option.

» The date specified in the contract is called the maturity date or the expiration date of the
option.

We differentiate between options along two fundamental dimensions:

« Calls vs. Puts If the option provides the holder with the right to buy the underlying asset
at the specified strike price, we call it a call option. If the option provides the holder with
the right to sell the underlying at the specified strike price, it is a put option.

* American vs. European If the right in the option can be exercised at any time on or
before the maturity date, it is called an American-style (or simply, American) option. If
the right can be availed of only on the maturity date, it is called a European-style (or
simply, European) option. American options are generally more valuable than otherwise
identical European ones.

Traditional call and put options, whether European or American, are referred to as plain
vanilla (or just vanilla) options. Options that differ from plain vanilla options in any way are
called exotic options. Bermudan options are an example; in a Bermudan option, exercise is
allowed on any one of a set of specified dates. Not quite as valuable as American options,
which may be exercised at any time, they are more valuable than European options, which
may be exercised only at maturity.

Options can be written on any asset, though financial options are the most common.
Options on equities, equity indices, and foreign currencies are traded both in the over-the-
counter market and on exchanges. Options on interest rates come in many forms. Exchange-
traded interest-rate options include options on bond futures (i.e., the option is written on
a futures contract that, in turn, is written on an underlying bond). In the over-the-counter
market, popular interest-rate options include caps and floors, which are options written
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1.3 Swaps

directly on London Interbank Offered Rates (or “Libor”) rates, and swaptions, which are
options on interest rate swaps.

In addition to options qua options, many financial securities are sold with embedded
options. A common example is a callable bond. A callable bond is a bond issued by a
corporation or other entity that may be purchased back by the issuing entity under specified
conditions at a fixed price. Thus, a callable bond is a combination of a straight bond and a call
option that gives the issuing entity the right to buy back (or “call”’) the bond under specified
conditions at a fixed price. A more complex example is a convertible bond. A convertible
bond is a bond issued by a company that may be converted, at the holder’s option, into shares
of equity of the issuing company. Convertible bonds in the United States are usually also
callable, so both the issuer and the buyer of the bond hold options. Embedded options are
also present in more mundane securities. In the United States, for example, mortgages may
be prepaid at any time, usually without penalty, at the mortgage-holder’s option.

As discussed earlier in this chapter, an option is a form of financial insurance. Since an
option comes with a right but not an obligation, the holder of the option will exercise it only
if it is in his interest to do so. Thus, the option protects the holder against downside risk, but
provides full upside potential. In exchange for providing this insurance, the buyer of the op-
tion makes an up-front payment to the writer, called the option price or the option premium.

A swap is a bilateral contract between two counterparties that calls for periodic exchanges
of cash flows on specified dates and calculated using specified rules. The swap contract
specifies (a) the dates (say, 71, T», ..., I,) on which cash flows will be exchanged and
(b) the rules according to which the cash flows due from each counterparty on these dates
are calculated. Importantly, the frequency of payments for the two counterparties need not be
the same. For example, one counterparty could be required to make semiannual payments,
while the other makes quarterly payments.

Swaps are differentiated by the underlying markets to which payments on one or both
legs are linked. (The “leg” of a swap refers to the cash flows paid by a counterparty. Thus,
each swap has two legs.) The largest chunk of the swaps market is occupied by inferest-rate
swaps, in which each leg of the swap is tied to a specific interest-rate index. For example,
one leg may be tied to a floating interest rate such as Libor, while the other leg may specify
a fixed interest rate (e.g., 8%). Other important categories of swaps include:

» Currency swaps, in which the two legs of the swaps are linked to payments in different
currencies. For example, the swap may require the exchange of US dollar (USD) payments
calculated on the basis of the USD-Libor rate for Euro payments calculated based on a
fixed interest rate.

o Equity swaps, in which one leg (or both legs) of the swap is linked to an equity price or
equity index. For example, the swap may call for the exchange of annual returns on the
S&P 500 equity index for interest payments computed using a fixed interest rate.

*  Commodity swaps, in which one leg of the swap is linked to a commodity price. For
example, the swap may call for an exchange of the price of oil (observed on the payment
dates) against a fixed dollar amount.

* Credit-risk linked swaps (especially credit-default swaps) in which one leg of the swap
is linked to occurrence of a credit event (e.g., default) on a specified reference entity.

Uses of Swaps

Swaps are among the most versatile of financial instruments with new uses being discov-
ered (invented?) almost every day. A principal source of swap utility is that swaps enable
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converting the exposure to one market into exposure to another market. Consider, for ex-
ample, a three-year equity swap in which

* One counterparty pays the returns on the S&P 500 on a given notional principal P.
* The other counterparty pays a fixed rate of interest » on the same principal P.

In such a swap, the first counterparty in this swap is exchanging equity-market returns
for interest-rate returns over this three-year horizon. An equity-fund manager who enters
this swap is converting his equity returns into fixed-income returns through the swap. The
second counterparty is doing the opposite exchange. A fixed-income manager who takes
this side of the swap is converting his fixed-income exposure into equity exposure.

In similar vein, an interest rate swap that involves (say) the exchange of Libor for a
fixed rate of interest enables converting floating-rate interest exposure to fixed rates and
vice versa; a currency swap that requires the exchange of (say) USD payments based on
USD-Libor for Japanese yen (JPY) payments based on JPY-Libor facilitates converting
floating-rate USD exposure to floating-rate JPY exposure; and so on.

A second valuable contribution made by swaps is in providing pricing links between
different financial markets. Consider the equity swap example again. By convention, swaps
do not generally involve up-front payments, so at inception, the fixed rate » in this swap
is set such that the swap has zero value to both parties, i.e., such that the present value of
all cash flows expected from the equity leg is equal to the present value of the cash flows
from the interest-rate leg. This means the interest rate » represents the market’s “fair price”
for converting equity returns into fixed-income returns. Thus, the equity swap not only
enables transferring equity risk into interest-rate risk but also specifies the price at which
this transfer can be done.

Similarly, interest rate swaps provide a link between different interest-rate markets, for
example, between floating-rate markets and fixed-rate markets; currency swaps provide a
link between interest-rate markets in different currencies, for example, between USD float-
ing rates and euro fixed rates, or between euro floating rates and JPY fixed rates, and so on.

1.4 Using Derivatives: Some Comments

Derivatives can be used for both hedging and speculation. Hedging is where the cash
flows from the derivative are used to offset or mitigate the cash flows from a prior market
commitment. For example, an exporter who anticipates receiving foreign currency in a
month can eliminate exchange-rate risk by using a short forward contract on the foreign
currency, or by using a put option that gives the exporter the right to sell the foreign currency
received at a fixed price. Speculation is where the derivative is used without an underlying
prior exposure; the aim is to profit from anticipated market movements.

Derivatives usage in various contexts is discussed throughout this book. Here we present
two examples to make some simple points about the advantages and disadvantages of using
different derivatives to achieve a given end. Ultimately, the examples illustrate that there are
pluses and minuses to all courses of actions—including not using derivatives at all. There is
no one strategy that is dominant.

Derivatives in Hedging

A US-based company learns on December 13 that it will receive 25 million euros (EUR)
in the coming March for goods that it had exported to Europe. The company is exposed
to exchange-rate risk because the USD it receives in March will depend on the USD/EUR
exchange rate at that point. It identifies three possible courses of action:

1. Do nothing. It can wait until March and convert the money received then at the USD/EUR
exchange rate prevailing at that point.
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2. Use futures. It can enter into a short futures contract and commit to selling the euros at
a fixed price.

3. Use options. It can buy a put option contract that gives it the right to sell the euros
received at a specified strike price.

To keep things simple, we ignore “basis risk” issues, i.¢., possible mismatches concerning
the delivery dates of the futures and options contracts, and the date the company will receive
the money.

Ifthe company decides to go with futures, it will use the euro futures contracts available on
the Chicago Mercantile Exchange (CME). Like all futures contracts, these are standardized
contracts. One futures contract calls for the short position to deliver 125,000 euros. To hedge
the entire exposure of 25 million euros, the company must therefore take a short position
in 200 March futures contracts. Finally, suppose that on December 13, the futures price
(USD/EUR) for March expiry is 1.0328; this is the fixed exchange rate the company can
lock in if it decides to use the futures contract.

If the company decides to use options, it will use the euro options contract available on
the Philadelphia Exchange (PHLX). One options contract on the PHLX calls for the delivery
0f 62,500 euros, so to cover the full amount of 25 million euros, a total of 400 contracts with
March expiry must be used. A final decision the company must make concerns the choice
of strike price. Suppose that the company has decided to use a strike price (USD/EUR) of
1.03 and that a put option with a strike of 1.03 and March expiry costs USD1,056.25 per
contract. Then, if the company decides to use options, the total outlay required is

USD (400 x 1,056.25) = USD422,500.00

To illustrate the impact of the different alternatives, we consider two possible exchange
rates (USD/EUR)in March: (a) 0.9928 and (b) 1.0728. The following table summarizes the
USD cash flow in March from each of the three alternatives. Note that the options cash flow
does not include the initial cash outlay of USD 422,500. The payoffs are obtained in the
obvious way. For example, under the do-nothing alternative, if the spot rate of $0.9928/euro
were to prevail, the cash flow that results is 25 million x 0.9928 = $24.82 million.

Alternative $0.9928/euro $1.0728/euro
Do nothing 24.82 million 26.82 million
Futures contract 25.82 million 25.82 million
Put option 25.75 million 26.82 million

There are three important criteria under which we may compare the alternatives:

1. Cash-flow uncertainty. This is maximal for the do-nothing alternative, intermediate for
the option contract, and least for the futures contract.

2. Up-front cost. The do-nothing and futures contract alternatives cost nothing. However,
there is an up-front cost of $422,500 for entering into the option contract.

3. Exercise-time regret. With an option contract, exercise-time outcomes are guaranteed to
be favorable (if the USD/EUR exchange rate is greater than the strike rate, the option is
allowed to lapse; otherwise it is exercised). With the other two alternatives, this is not
the case:

* In the do-nothing case, a “favorable” spot price movement (i.e., the high USD/EUR
exchange rate of 1.0728) is beneficial, but an “unfavorable” spot price movement (the
low USD/EUR exchange rate of 0.9928) hurts.
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USD/EUR USD/EUR Cash-Flow
Alternative Increases Decreases Uncertainty Cost
Do nothing Gain Lose Maximal 0
Futures Lose Gain Minimal 0
Options Gain Protected Intermediate +ve

» In the futures contract, the high spot exchange rate hurts (we cannot take advantage
of it because the delivery price is locked-in); however, the low spot exchange rate
leaves us off for having locked in a higher rate.

Table 1.5 summarizes this comparison. The key point that emerges here is that there
is no outcome that is dominant, i.e., that is better in all circumstances. Doing nothing is
sometimes better than using futures or options but sometimes not. (In a sense, doing nothing
is akin to betting on a favorable movement in prices, in this case, on the USD/EUR rate
increasing. Like all speculation, this bet can go wrong.) Using futures provides cash-flow
control, but the ex post outcome may not always look good. For instance, if the exchange
rate moves to $1.0728/euro, the company is worse off for having hedged using futures—and
it is useful to keep in mind here that regardless of our ex ante intentions, we are almost
always judged in this world on ex post outcomes. Using options provides protection but
involves a substantial up-front cost that may not be recouped by the gains from exercising
the option—and that is fully lost if the option lapses unexercised.

Derivatives in Speculation
The preceding example dealt with hedging: the reduction of cash-flow uncertainty from a
prior market commitment. Derivative securities can also be used to speculate i.e., to make
profits by taking views on market direction.

Suppose, for example, that an investor believes that the Japanese yen (JPY) will appreciate
significantly with respect to the US dollar (USD) over the next three months. The investor
can speculate on this belief using derivatives in at least two ways:

1. By taking a long position in JPY futures deliverable in three months.
2. By buying a call option on JPY with an expiry date in three months.

(There is also the third alternative of buying the JPY in the spot market today and holding
it for three months, but this strategy does not involve the use of derivatives.) In both cases,
the investor makes money if his belief is vindicated, and the yen appreciates as expected.
With the futures contract, the investor has locked-in a price for the future purchase of yen;
any increase in price of yen over this locked-in rate results in a profit. With the call option,
the investor has the right to buy yen at a fixed price, viz., the strike price in the contract. Any
increase in the price of yen above this strike results in exercise-time profits for the investor.

However, there are costs to both strategies. In the case of the futures, the cost is that the
anticipated appreciation may fail to be realized; if the price of JPY instead falls, the futures
contract leads to a loss, since it obligates the investor to buy yen at the higher locked-in
price. In the case of options, the up-front premium paid is lost if the yen depreciates and
the option lapses unexercised; but even if the option is exercised, the profits at exercise time
may not be sufficient to make up the cost of the premium. Thus, once again, there is no one
“best” way to use derivatives to exploit a market view.
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1.5 The Structure of this Book

The main body of this book is divided into five (unequal) parts with a sixth technical part
supplementing the material.

Part 1 of the book (Chapters 2—6) deals with futures and forwards. Chapter 2 discusses
futures markets and their institutional features. Chapters 3 and 4 deal with the pricing of
futures and forward contracts. Chapter 3 develops the pricing theory, while Chapter 4 looks
at the empirical performance of the theory and discuses extensions of the basic theory.
Chapter 5 is concerned with hedging strategies in futures and forward markets, in particular
the development and implementation of minimum-variance hedging strategies in situations
in which a perfect hedge is impossible because of a mismatch between the risk being
hedged and the available futures or forward contracts. Chapter 6 looks at a special class of
futures and forward contracts—those defined on interest rates or bond prices, a category
that includes some of the most successful contracts ever introduced, including eurodollar
futures and Treasury futures.

Part 2, which deals mainly with options, is the longest segment of the book, comprising
Chapters 7-22. Chapters 7 and 8 cover preliminary material, including the role of volatility
and a discussion of commonly used “trading strategies.” Chapters 9—16 are concerned
with option pricing, beginning with no-arbitrage restrictions on these prices (Chapter 9)
and put-call parity and related results (Chapter 10). Chapter 11 then provides a gentle
introduction to option pricing and its key concepts (such as the option delta and risk-neutral
pricing). Building on this foundation, Chapters 12 and 13 develop the binomial model of
option pricing, while Chapters 14 and 15 present the Black-Scholes model. Chapter 16
discusses several generalizations of the basic binomial/Black-Scholes approach including
jump-diffusions, stochastic volatility/GARCH-based models, and local volatility models.

Moving from pricing to the management of option risk, Chapter 17 looks at the “option
greeks,” measures of option sensitivity to changes in market conditions. Chapters 18 and 19
move this discussion beyond the realm of plain vanilla options. Chapter 18 examines a range
of “path-independent” exotic options, while Chapter 19 studies “path-dependent” exotics.

The remainder of Part 2 looks at special topics. The measurement of portfolio risk and the
concepts of Value-at-Risk (or VaR) and risk-budgeting are introduced in Chapter 20. Convert-
ible bonds and their pricing and hedging are the subject of Chapter 21. Finally, Chapter 22
examines the field of “real options,” optionalities embedded within investment projects.

Part 3 of the book (Chapters 23-25) examines swaps. Chapter 23 looks at interest rate
swaps, which constitute the great bulk of the swaps market. The workhorse of the interest
rate swap market, the plain vanilla fixed-for-floating swap, is examined in detail, as are
several others. This chapter also introduces caps, floors, and swaptions, and presents the
so-called “market model” commonly used to value these instruments. Chapter 24 moves
on to equity swaps, their uses, pricing, and hedging, while Chapter 25 completes the swap
material with a discussion of currency and commodity swaps. As we noted in the Preface,
other products that bear the “swaps” moniker are discussed elsewhere in the book: volatility
and variance swaps are discussed in the chapter on the Black-Scholes model, and total return
swaps and credit default swaps are discussed in the chapter on credit derivative products.

Part 4 of the book (Chapters 26-30) deals with interest-rate modeling. Chapters 26
and 27 deal with the yield curve and its construction (i.e., estimation from the data). Chap-
ter 28 provides a gentle introduction to term-structure modeling and its complications and
discusses the different classes of term-structure models. Chapter 29 presents several well-
known “factor models” of interest rates. It begins with a detailed presentation of two well-
known members of the “no-arbitrage” class of term-structure models from the 1980s and
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early 1990s, namely, the models of Ho and Lee (1986) and Black, Derman, and Toy (1992).
Then, it develops one-factor and multi-factor models of interest rates, including, as special
cases, the models of Vasicek and Cox-Ingersoll-Ross, among others. Finally, it presents
the important result of Duffie and Kan (1996) on “affine” term-structure models. Build-
ing on this background, Chapter 30 develops the two classes of models that have formed
the backbone for much of the modeling of interest-rate risk in practice: the framework of
Heath-Jarrow-Morton and that of the Libor and Swap Market models.

Part 5 of the book (Chapters 31-34) deals with credit-risk modeling and credit deriva-
tives. Chapter 31 introduces the many classes of credit derivatives and discusses their uses.
Chapters 32 and 33 deal with credit risk measurement. Chapter 32 details the class of mod-
els that comprise the “structural” approach to credit-risk extraction, while Chapter 33 does
likewise for the “reduced-form” approach. The structural and reduced-form approaches are
concerned with extracting information about the default risk of an individual entity from the
market prices of traded securities issued by that entity. Chapter 34 discusses the modeling
of correlated default, i.e., of modeling default risk at the portfolio level rather than at the
level of the individual entity.

Part 6, the final part of the book, deals with computational methods. Chapter 35 looks
at the method of finite-differencing, and Chapter 36 describes Monte-Carlo methods. An
introduction to the programming language Octave, a freeware version of Matlab that we
use throughout the book for illustrative purposes, may be found in Chapter 37.

Case Studies

The book provides a number of full-length case studies. These studies include the rise and fall
of the GNMA-CDR futures contract, the first interest-rate futures contract to be introduced
on a futures exchange; the Procter & Gamble—Bankers Trust scandal of the 1990s; and
the sagas of Amaranth, Barings, LTCM, and Metallgesellschaft, major derivatives disasters
all. Shorter case studies are also scattered throughout the book, especially to assist in
highlighting specific points. In addition, the website of this book (www.mhhe.com/sd1e)
contains a number of other case studies including the stories of the Ashanti Gold hedge that
failed, Orange County’s 1994 bankruptcy, Sumitomo Corporation’s huge copper losses, the
Son-of-Boss tax schemes, and the AIG debacle of 2008, among others.

1.6 Exercises

—_—

What is a derivative security?
2. Give an example of a security that is not a derivative.

3. Can a derivative security be the underlying for another derivative security? If so, give
an example. If not, explain why not.

4. Derivatives may be used for both hedging and insurance. What is the difference in these
two motives?

5. Define forward contract. Explain at what time cash flows are generated for this contract.
How is settlement determined?

Explain who bears default risk in a forward contract.
What risk is being managed by trading derivatives on exchanges?
Explain the difference between a forward contract and an option.

© g = e

What is the difference between value and payoff in the context of derivative securities?
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10.

11.

12.

13.

14.

15.

16.

17.

What is a short position in a forward contract? Draw the payoff diagram for a short
position at a forward price of $103 if the possible range of the underlying stock price is
$50-150.

Forward prices may be derived using the notion of absence of arbitrage, and market
efficiency is not necessary. What is the difference between these two concepts?
Suppose you are holding a stock position and wish to hedge it. What forward contract
would you use, a long or a short? What option contract might you use? Compare the
forward versus the option on the following three criteria: (a) uncertainty of hedged
position cash flow, (b) up-front cash flow, and (c) maturity time regret.

What derivatives strategy might you implement if you expected a bullish trend in stock
prices? Would your strategy be different if you also forecast that the volatility of stock
prices will drop?

What are the underlyings in the following derivative contracts?

(a) A life insurance contract.

(b) A home mortgage.

(c) Employee stock options.

(d) A rate lock in a home loan.

Assume you have a portfolio that contains stocks that track the market index. You now
want to change this portfolio to be 20% in commodities and only 80% in the market
index. How would you use derivatives to implement your strategy?

In the previous question, how do you implement the same trading idea without using
futures contracts?

You buy a futures contract on the S&P 500. Is the correlation with the S&P 500 index
positive or negative? If the nominal value of the contract is $100,000 and you are required
to post $10,000 as margin, how much leverage do you have?
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Futures Markets

2.1 Introduction

Futures markets offer an excellent platform for the study of several market phenomena
including market design, contract design, market manipulation, and financial crises. The
broad characteristics of futures markets and contracts were described in Chapter 1. This
chapter looks in further detail at these markets. It describes their important common features,
the economic rationale for these features, and their desirable and sometimes not-so-desirable
consequences. Three case studies involving futures markets are used to highlight some of
the chapter’s main points.

While futures markets have been around for quite a while, they have undergone some
dramatic changes in recent years. Hollywood afficionados may recall the image portrayed
in the Eddie Murphy—Dan Ackroyd film Trading Places: frenzied traders in loud jackets
using extraordinary hand signals to trade in commodities such as wheat, corn, or even—as
in the case of Mr. Ackroyd’s and Mr. Murphy’s characters—orange juice. Colorful though
this image is, it is no longer representative of futures markets both in terms of how trading
is done and what is traded. To put the rest of the chapter in prespective, we begin with a
description of the changing face of futures markets.

2.2 The Changing Face of Futures Markets

As economic mechanisms go, forward contracts are very old. The Futures Industry Associ-
ation cites evidence of forward trading going back as many as 4,000 years. (Appendix 2A
reviews the history of futures trading and its regulation.) Organized futures trading is more
recent, but it too is several hundred years old. The world’s first futures market was likely
the Dojima Rice Market set up in Osaka, Japan, in 1730. Active futures trading in the US
began with the establishment of the Chicago Board of Trade (CBoT) in 1848.

Three trends have marked the recent evolution of futures markets and have radically
altered the face of these markets in terms of where trading occurs, how it occurs, and what
is traded.

Fewer and Larger Exchanges

The first trend is one of consolidation. Of the more than thousand commodity exchanges that
existed in the US in the late 19th century, only a small handful survive today. Consolidation
has been the watchword of especially the last two decades. The two largest New York
exchanges, the New York Mercantile Exchange (NYMEX) and the Commodity Exchange
(COMEX), merged in 1994, and the two largest Chicago exchanges, the Chicago Mercantile
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TABLE 2.1 The
Changing Nature
of Futures Trading

Exchange (CME) and the CBoT, in 2007. In 2008, the CME acquired NYMEX too, making
it the world’s largest and most diversified derivatives exchange.

Europe’s largest futures and options exchange, Eurex, was similarly a joint creation of
German and Swiss exchanges. Its principal European rival, Euronext, was formed as a
holding company through the merger of the Amsterdam, Brussels, and Paris exchanges in
2000; the Paris exchange had itself been formed in 1999 through the merger of four French
entities. In 2002, Euronext acquired the London International Financial Futures and Options
Exchange (LIFFE), and, in a cross-Atlantic expansion in 2007, merged with the New York
Stock Exchange (NYSE) to create NYSE Euronext.

Nor has consolidation been limited to the developed economies. In 2008, the integration
of the Brazilian Mercantile and Futures Exchange (BM&F) with the Sao Paolo Stock
Exchange (Bovespa) resulted in the formation of BM&FBovespa, Latin America’s leading
exchange.

Technology and the Trading Platform

The second trend is technological. Until recently, most exchanges worldwide used some
version of a floor-based trading system with traders in the exchange’s “pits” calling out
buy and sell orders and determining futures prices through an open-outcry system. In the
last decade, many trading floors have fallen silent as the use of electronic trading systems
has spread. European exchanges, including Eurex and LIFFE, are now wholly electronic.
While large US exchanges including the CME, CBoT, and NYMEX have maintained some
of their trading pits, they have also introduced electronic trading—and with considerable
success. The CME, for instance, estimated that 61% of its total trading volume in the third

quarter of 2004 was electronic, up from 44% in the first quarter of 2003.

The Rise of Financial Futures

The third, and perhaps the most significant, trend has been the changing product mix in
futures exchanges. Through most of the 4,000 year history of forward and futures trading,
the underlying asset in the contract was a commodity such as wheat or gold. The picture
changed dramatically with the introduction of financial futures—futures contracts written
on a financial security or variable—in the early 1970s.

The first financial futures contracts were currency futures introduced in 1972 by the
CME. Futures contracts on mortgage-backed securities (the GNMA contract discussed in
Section 2.7) were offered in 1975 by the CBoT and were the first interest-rate futures con-
tracts. Treasury bill futures were introduced by the CME in 1976 and Treasury bond futures
on the CBoT in 1977. Futures on stock indices and other products followed soon thereafter.

Although total trading volume has increased significantly since the 1970s, the increase in
volume of financial futures has been far more spectacular. Table 2.1 describes the changing

This table describes the spectacular growth in the trading of financial futures in the first
two decades of their existence. The volume numbers in the table are in terms of the
number of contracts traded at the CBoT and indicate the changing product mix at the
exchange.

Volume
1976 1981 1990
Financial futures 0.13 million 16.36 million 114.39 million
All futures 18.90 million 49.08 million 154.23 million

Financial futures % 0.68% 33% 73%
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This table describes the most widely traded futures contracts in the world during the
first half of 2008 measured by trading volume (in millions of contracts). The figures are
from the Futures Industry Association. NSE is the National Stock Exchange of India. The
remaining exchanges are mentioned in the main text.

Contract Underlying Exchange Volume

Eurodollar Interest-rate CME 356,262,782
E-mini S&P 500 Equity CME 276,146,082
D] EuroStoxx 50 Equity Eurex 194,904,054
10-year US Treasury Note Interest-rate CME 154,732,086
Euro-Bund Interest-rate Eurex 150,263,897
Euribor Interest-rate LIFFE 132,965,091
Euro-Schatz Interest-rate Eurex 101,894,877
5-year US Treasury Note Interest-rate CME 98,689,353
1-day Inter-Bank Deposit Interest-rate BM&F 97,955,779
Euro-Bobl Interest-rate Eurex 87,222,810
S&P CNX Nifty Equity NSE 87,072,050
White Sugar Agricultural ZCE 70,853,581
Light Sweet Crude Oil Energy NYMEX 70,507,281
Short Sterling Interest-rate LIFFE 64,801,289
E-mini Nasdaq 100 Equity CME 53,295,145

product mix at the CBoT in the first two decades since the introduction of financial futures.
In 1976, the volume of financial futures trading at CBoT was negligible, but by 1990, it
accounted for almost three-fourths of the number of contracts traded.

Table 2.2 describes the top 15 futures contracts worldwide based on the volume of trad-
ing (measured in terms of number of contracts) during the first half of 2008. There are no
non-financials in the top 10, and only two in the top 15: the White Sugar futures contract
on China’s Zhengzhou Commodity Exchange (ZCE) at No. 12 and the Light Sweet Crude
Oil futures contract on NYMEX at No. 13. This dominance in terms of number of contracts
is even more impressive when one considers that the typical financial futures contract is
substantially larger in monetary terms than the typical commodity futures contract (see
Table 2.4 further below).

2.3 The Functioning of Futures Exchanges

A futures exchange performs two essential functions. First, it provides a marketplace where
buyers and sellers may interact and arrive at agreements. Second, it provides a mechanism
to protect either party from a possible default by the other. The two organizations central
to the functioning of every futures market, the exchange corporation and the clearinghouse
corporation, perform these tasks.

The exchange corporation provides the marketplace. It determines such matters as the
rules of trading (who may trade? when and how may they trade?); the standardization
of contracts and provision of delivery options (what may be traded? how is settlement
to be effected?); and margin requirements (how much collateral should be required of
participants?). The details of futures trades—quantity, price, time of delivery—must be
agreed to under the rules of the exchange.

After a trade has been agreed to, it must be recorded (“cleared”) by the clearinghouse.
Clearing is the matching of buy and sell records to ensure there are no discrepancies in the
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price and/or quantity. Once the trade is cleared, the clearinghouse corporation guarantees
the trade by assuming ultimate responsibility for contract performance. Effectively, the
clearinghouse becomes the buyer to all sellers and the seller to all buyers.

Of all the features that distinguish futures markets from forward markets, three are of
particular importance:

» The standardization of contracts.
* The ease of reversing positions.
* The use of margin accounts to manage default risk.

Each of these is discussed in a separate section below (see Sections 2.4-2.6).

First, however, it is useful to review briefly several concepts of importance to the func-
tioning of a futures exchange, such as types of orders, prices, how delivery is effected, etc.
The remainder of this section takes us through this material. The presentation is in eight
parts: (a) players in futures markets, (b) kinds of orders, (c) opening, closing, and settlement
prices, (d) price ticks and price limits, (e) delivery and settlement procedures, (f) position
limits, (g) the clearinghouse and contract performance, and (h) reading futures prices in the
financial press.

(A) Players in Futures Markets

Buyers and sellers in futures markets may be divided into three broad categories based on
their motivation for trading: hedgers, speculators, and arbitrageurs.

Hedgers

Hedgers are investors who have a pre-existing commitment to buy or sell and are using the
futures market trade to offset the price risk from this commitment. For example, an exporter
who anticipates receipt of foreign currency in the future might use short curency futures
to lock-in an exchange rate at which the foreign curency can be converted to the home
currency; a jewelry manufacturer who makes regular gold purchases might use long gold
futures to eliminate the risk of fluctuations in the spot price of gold; and a mortgage banker
might use interest-rate futures to offset the sensitivity of the value of her existing portfolio
to changes in interest rates.

Speculators

Speculators are those who take directional bets either on prices or on the difference of two
prices (for instance, that this difference will narrow from existing levels). Unlike hedgers,
speculators have no prior risk that is being offset by the futures trade. To bet on individual
prices (e.g., that silver prices will rise), speculators can simply use the relevant individual
futures contracts (in this example, long silver futures). To bet on the difference of two
prices, strategies known as “spread orders,” that involve the simultaneous use of two futures
contracts, are used. Spread orders are described further below under “(B) Kinds of Orders.”
Exchanges generally treat speculators less generously than hedgers, for example, restricting
their maximum position sizes more severely.

Arbitrageurs

An arbitrage or riskless profit opportunity is one where two equivalent securities or bas-
kets of securities sell for different prices. Arbitrageurs are those who exploit these profit
opportunities. In the context of futures markets, this may simply involve trading the same
futures contract on two different exchanges. For example, futures on the Nikkei 225 in-
dex are traded both in Osaka and in Singapore, and any difference in futures prices in
the two markets creates an arbitrage opportunity that may be exploited by buying in one
market and simultaneously selling in the other. Alternatively, as we describe in Chapters 3
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and 4, futures arbitrage may involve simultaneous trading in futures markets and the un-
derlying spot market if the futures contract becomes over- or under-valued relative to the
spot price.

Intermediaries

Of the intermediaries in futures markets, the most important are futures commission mer-
chants, or FCMs. FCMs are the stockbrokers of the futures world, connecting customers to
exchanges. They provide the facilities to execute customer orders on the exchange and main-
tain records of each customer’s positions and margin deposits. FCMs may be independent
institutions or have a parent institution such as a bank or be affiliated with a national
brokerage.

Other intermediaries include introducing brokers, or IBs, who are individuals or organi-
zations who solicit and accept orders to buy or sell futures contracts and direct the business
to FCMs; commodity pool operators, or CPOs, who, akin to mutual funds, pool funds col-
lected from investors and use them to trade commodity futures or options; and commodity
trading advisers, or CTAs, who offer trading advice in futures in exchange for a fee. Finally,
there are associated persons, or APs, individuals who solicit orders, customers, or customer
funds on behalf of an FCM, IB, CTA, or CPO. APs are effectively salespersons for the other
categories of intermediaries.

Other Participants

Traders on the floor of an exchange are divided into two groups. Floor brokers are those
who execute trades on behalf of others. Locals trade on their own accounts. Locals are
of particular importance in futures markets since they add substantially to the market’s
liquidity. Locals who hold positions for very short periods of time are known as scalpers.

(B) Kinds of Orders

A futures order must specify the particular futures contract (wheat? gold? eurodollars?),
the delivery month for the contract (contracts expiring in June? July?), and whether the
position is a long or short one. If a customer wishes, further contingencies may be specified
in the order. The three most popular kinds of orders are market orders, limit orders, and
stop orders.

Market Orders

Market orders are the simplest kind of orders: they are just buy or sell orders with no
restrictions. Market orders are matched as soon as possible at the best available price. (For
a buyer, “best available price” means the lowest price currently being offered by sellers; for
sellers, it is the highest price currently available from buyers.) In some cases, safeguards
may be applied to the principle of immediate matching. For example, the price at which the
order is executed may be required to lie within a maximum range around the last trade.

Limit Orders

A limit order is one where the customer specifies a limit price. For a buyer, the limit price
represents the maximum price he is willing to pay; for a seller, it is the minimum price she
is willing to accept. For example:

* Alimit order to buy 10 May wheat futures contracts with a limit price of $3.60 per bushel
is an order to take long positions at a price of $3.60 per bushel or lower.

* A limit order to se// 10 May gold futures contracts with a limit price of $350 per ounce
(0z) is an order to sell at a price of $350 per ounce or higher.
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Limit prices are typically below the current futures price for buy orders and above it for sell
orders.

Limit orders may be placed with restrictions regarding the time frame over which the
order remains valid. The popular types are described below. Not all exchanges offer all of
these variations, but virtually all exchanges offer most of them.

* A fill-or-kill (FOK) limit order (also called a complete volume or CV order) is one that
must be filled immediately and completely or not at all.

* An immediate-or-cancel (I0C) limit order is one that must be filled immediately either
partially or completely, or not at all.

* A good-for-day (GFD) limit order is one that is canceled at the end of the trading day if
it has not been filled by then.

* A good-till-canceled (GTC) limit order is one that remains valid until the customer
cancels or a maximum time limit (e.g., one year) is reached.

Limit orders have the advantage that they will never be executed at a price less favorable
than the one the customer wants, but it is also possible that the order may never be executed.
Consider, for example, a limit order to buy May wheat futures with a limit price of $3.60 a
bushel. If the order is executed, the futures price will not exceed $3.60 per bushel. However,
there may be no seller willing to sell at $3.60 or lower, or there may be buyers willing to pay
more than $3.60 per bushel whose offers take precedence, so the order may never be filled.

Stop Orders

A stop order is an order that becomes a market order once the market price for the contract
reaches a specified price limit (the “stop price”). Stop-buy orders are orders to buy as soon
as the stop price is reached; stop-sell orders are orders to sell as soon as this price is reached.

A stop order offers a way of limiting one’s losses in the face of an unfavorable trend in
prices. A prospective buyer who sees prices increasing can wait to see if they come down
before buying. The danger with this is that prices may continue to increase and the price
the buyer finally pays may be very high. A stop-buy order allows the buyer to wait until a
specified point is reached and then have his order executed before prices get too high. The
price limit is typically set above the current price for stop-buy orders.

For example, consider an investor who wishes to go long gold futures but is hesitant to
do so at the current futures price of (say) $365 per oz. By using a stop-buy order with a
price limit of $370 per oz, the investor ensures that if gold prices increase further, he will
at worst be able to get a futures price of around $370 per oz.

Similarly, a prospective seller who sees the price declining can place a stop-sell order to
limit her losses before prices get too low. The price limit in a stop-sell is typically set below
the current price.

Besides market, limit, and stop orders, futures exchanges typically offer several other
types of orders too (though not all exchanges offer all of these). Here is a description of
some of them:

Market-if-Touched Orders

A market-if-touched or MIT order is one that must be executed at the best possible price
once a trade occurs at a price at least as favorable as a specified limit price. The limit price
is typically below the market price for an MIT-buy order and above it for an MIT-sell order.
An MIT order offers a way of locking-in one’s gains in the face of favorable price moves.
A buyer seeing declining prices or a seller seeing increasing prices can lock-in their gains
beyond a point by using MIT-buy and MIT-sell orders, respectively. Thus, an MIT order
serves the opposite function of a stop order.
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Stop-Limit Orders

A stop-limit order is a stop order that becomes a /imit order once the stop price is reached.
The stop price and the limit price may be the same, but they may also differ. For example,
a stop-limit buy order for gold futures may have a stop price of $375/0z and a limit price
of $380/0z. This effectively means that as soon as the futures price reaches $375/0z, the
investor is willing to buy, but only at a price of $380/0z or below.

Spread Orders

A spread order involves simultaneous long and short positions in two futures contracts.
It is typically a bet on the behavior of the price differential (or “spread”) between two
commodities or securities, e.g., that the spread will widen from its present level. Spread
orders can involve different months of the same commodity (e.g., buy May wheat futures,
sell July wheat futures) or can involve futures on two different underlyings (e.g., buy 10-
year US Treasury futures, sell 5-year US Treasury futures). A spread order can be entered
at the current price (like a market order). Alternatively, the investor may specify a price
difference between the commodities that triggers when the order is to be filled (e.g., if the
spread exceeds a given amount).

One-Cancels-the-Other

In a one-cancels-the-other or OCO order, the investor places two simultaneous orders on
the same contract with the understanding that the execution of one cancels the other order.
For example, an investor may submit the following orders on S&P 500 index futures: a
limit-buy order with a limit price of 1,195 and a stop-buy order with a stop price of 1,215,
OCO. In this case, the investor is interested in going long S&P 500 futures; ideally, the order
will be executed at a price of 1,195 or below, but in the event of the market’s sharply trending
up without the limit price being reached, the stop order limits the investor’s downside.

Market-on-Close/Open

A market-on-close or MOC is an order that will be filled during the closing seconds of the
market at whatever price prevails then. Its twin is the market-on-open or MOO order which
is filled at the best available price in the opening range.

As these descriptions indicate, the flexibility offered to customers in placing orders in
futures exchanges is quite substantial.

(C) Opening, Closing, and Settlement Prices

As buy and sell orders are matched, futures prices are determined. This price will fluctuate
over the day and over the life of the contract as the patterns of buy and sell orders vary.
Three daily prices for each futures contract are commonly reported in the financial press:
the opening price, the closing price, and the settlement price.

The opening price is the first price at which the contract is traded at the beginning of a
trading session. The term opening range is used more generally to describe the first bids
and offers that were made. The exchange recognizes an opening range only after the first
trade is made.

The closing price is the last price at which a contract is traded at the close of a trading
session. The closing range is that of the high and low prices or of bids and offers during
the official close, which is usually the final 30 seconds of trading for most contracts and the
final 60 seconds for currencies.

The settlement price is a representative price from the closing range chosen by the
exchange, and is the official closing price of the exchange. The settlement price plays
a major role in futures exchanges since margin accounts gains and losses are calculated
with respect to this price (see Section 2.6). Deliveries are also invoiced at this price. The
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procedure guiding the selection of this price is of obvious importance. As one example, the
Eurex website notes that in the Euro-Bund futures contract on Eurex,

[The daily settlement price is] the closing price determined within the closing auction. If no
price can be determined in the closing auction or if the price so determined does not
reasonably reflect the prevailing market conditions, the daily settlement price will be the
volume-weighted average price of the last five trades of the day, provided these are not older
than 15 minutes; or, if more than five trades have occurred during the final minute of trading,
the volume-weighted average price of all trades that occurred during that period. If such a
price cannot be determined, or if the price so determined does not reasonably reflect the
prevailing market conditions, Eurex will establish the official settlement price.

A related concept is that of the final settlement price, the settlement price on the last
trading day of a contract. The rules for determining the final settlement price may differ
from those for the daily settlement prices. For example, for the Euro-Bund futures contract
on Eurex, the Eurex website states that

The volume-weighted average price of the last ten trades, provided they are not older than

30 minutes—or, if more than ten trades have occurred during the final minute of trading, then
the volume-weighted average price of all the trades during that period—is used to determine
the final settlement price.

(D) Price Ticks and Price Limits

Exchanges place limits on the minimum amount by which prices can move up or down. This
amount is known as the fick. The tick varies from contract to contract. Specification of the
tick is part of the standardization of the contract. Here are some examples, all corresponding
to tick sizes in July 2009.

* On the corn futures contract on the CBoT, the tick is 0.25 cents per bushel. Since one
corn futures contract on the CBoT has a standard size of 5,000 bushels, this means the
minimum futures price move per contract is $(5,000 x 0.0025) = $12.50.

* On the Light Sweet Crude Oil futures contract on NYMEX, the tick is $0.01 per barrel.
Since one futures contract is for 1,000 barrels, this corresponds to a minimum futures
price move of $10 per contract.

e On the S&P futures contract on the CME, the tick is 0.10. Since one contract is for 250
units of the index (i.e., of the basket of stocks that comprise the index), this implies a
minimum futures price move of $25 per contract.

* On the Gilt futures contract on LIFFE, the minimum price move is £10 per contract.

Exchanges also establish maximum limits by which the futures prices can fluctuate in a
day. These are called the daily price limits, and are stated in terms of movements measured
from the previous day’s closing price. The limits vary from contract to contract. For example,
the daily price limit in August 2009 was $1,200 on the Live Cattle futures contract on the
CME, and $10,000 on the Light Sweet Crude futures contract on NYMEX. For some
contracts (e.g., the corn or wheat futures contracts on the CBoT), daily price limits are
eliminated during the spot month (i.e., the month the contract expires).

The operation of the daily price limit varies from contract to contract. In many cases,
once the daily price limits are hit, no trading outside the limits is possible until the next
trading day. In others, the price limits act as “circuit breakers.” For example, as of August
2009, trading in the Light Sweet Crude futures contract on NYMEX halts for five minutes
each time the price limit is reached. When trading resumes, the price limit is expanded
by $10,000 per contract in each direction from the previous limit. However, there is no
maximum price fluctuation during any one trading session. A similar, but more complex,
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set of circuit-breaker rules holds for the equity futures contracts on the CME, though there
is also a maximum amount by which prices may fall in a given trading day.

Daily price limits set by the exchanges are subject to change. They may, for instance, be
increased once the market price has increased or decreased by the existing limit for a given
number of successive days. The presence of such limits implies that it may not always be
possible to close out futures contracts when desired.

(E) Delivery and Settlement Procedures

Each futures contract is associated with a specific maturity month (e.g., the “May 2004
wheat futures contract”). For assets involving physical delivery (see below), delivery can
often take place at any time during the delivery month.

There are three ways in which futures contracts are settled: physical delivery, cash set-
tlement, and exchange-for-physicals. The normal method of settlement on most futures
contracts is physical delivery. The contract specifies a set of locations where delivery may
be made. If alternative locations are permitted, the contract may specify price adjustments
to be made. Commodity futures contracts and many financial futures contracts including
currency futures and Treasury futures are settled by physical delivery.

For some financial futures contracts, settlement by physical delivery is nontrivial. With
stock index futures, for example, delivering an index requires delivering the basket of
stocks in the index in the exact proportions in which they are present in the index. Given the
complexities of physical settlement, such contracts are cash settled, i.e., one side pays the
other cash equal to the change in contract value occurring on account of changes in the index
level. Cash settlement takes place through the margin account described in Section 2.6.

An EFP or exchange-for-physicals is an alternative settlement mechanism for futures
contracts in the US authorized under the Commodity Exchange Act. In an EFP, a long
position and a short position with equal position sizes negotiate a price off-exchange and
communicate their decision to settle their trades with physical delivery at the agreed-upon
price. There are typically no restrictions on the prices at which EFPs may occur, but the
EFPs must involve a trade with physical delivery at that price. EFPs are examples of ex-pit
transactions, transactions done outside the trading framework of the exchange. EFPs are
also known as “cash for futures” or “vs. cash” transactions; the word “cash” here refers to
the cash market (i.e., spot) transaction accompanying the EFP. In the context of interest-rate
futures, EFPs are also called exchange basis facilities, or EBFs.

(F) Position Limits

Exchanges and regulators establish limits on the maximum number of speculative positions
a single investor may hold at a time. These position limits vary over different underlying
assets. Table 2.3 provides examples of position limits on several contracts on the CBoT and
CME. The purpose of these limits is to prevent any one trader from exercising excessive
influence over prices. Limiting any one trader’s positions also acts as a soft curb on the
benefits from market manipulation.

In the US, the Commodity Exchange Act (CEA) authorizes the Commodity Futures
Trading Commission (CFTC) to set limits on the size of speculative positions. The CFTC
may stipulate limits to be imposed by the exchanges, or it may provide guidance on the
limits, which are then implemented by the individual exchanges. In addition, exchanges
may also choose to set limits on nonspeculative positions.

In terms of magnitude, a rough average of the position limit tends to be around 10% of the
open interest up to about 25,000 contracts of open interest with small increases thereafter.
In the spot month (i.e., the delivery month of the contract), position limits may be set lower
to offset the natural increase in price fluctuation from physical trading.
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TABLE 2.3 Position Limits in Futures Contracts

The table lists position limits for various futures contracts as of July 2009. The units in the table are in numbers of
contracts. The “spot month” is the delivery month of the futures contract.

Position Limits (No. of Contracts) in

Underlying Exchange Spot Month Single Month All Months
Agri commodities

Corn CME Group 600 13,500 22,000
Soybean CME Group 600 6,500 10,000
Wheat CME Group 600 5,000 6,500
Oats CME Group 600 1,400 2,000
Livestock

Live cattle CME Group 450 5,400 None
Lean hogs CME Group 950 4,100 None
Forest

Lumber CME Group 435 1,000 None
Interest rate

30-year US T-Bonds CME Group None None None
10-year US T-Notes CME Group None None None
5-year US T-Notes CME Group None None None
us T-Bill CME Group None None 5,000
3-month Eurodollar CME Group None None None
1-month Libor CME Group None None None
Currency

Euro (EUR) CME Group None None None
British pound (GBP) CME Group None None None
Japanese yen (JPY) CME Group None None None
Swiss franc (CHF) CME Group None None None
Canadian dollar (CAD) CME Group None None None
Brazilian real (BRL) CME Group None 24,000 40,000
Israeli shekel (ILS) CME Group 2,000 None None
Stock indices

S&P 500 CME Group None None 20,000
Big Dow CME Group None None 50,000
Nasdaq 100 CME Group None None 10,000
Nikkei 225 (yen) CME Group None None 5,000
Metals

Gold COMEX 3,000 6,000 6,000
Silver COMEX 1,500 6,000 6,000
Energy

Light sweet crude NYMEX 3,000* 10,000 20,000

* Last 3 days of spot month

An important aspect of the limits is that they be set relative to the likely physical supply
of the commodity, decreasing when supply is likely to be short. Thus, there are no position
limits on currency futures contracts at the CME or on Treasury futures contracts at the
CBoT, since supply is not a constraint in these markets.
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Accounts that are under common ownership, even though they are booked as separate
positions, are subject to position limits in aggregate so that the spirit of the regulations is
adhered to. Limits may also be aggregated across time, that is, across expiry months. The
idea here is that since speculation across maturities may also result in unreasonable price
fluctuations, control needs to be exercised for all contracts against a given underlying.

Once a market has been in place for at least 12 months, position limits may be replaced
by accountability rules. This is usually done in liquid markets. Traders that reach a preset
accountability level (and satisfy other stated criteria) are granted exemption from position
limits.

Investors accepted by the exchange as bona fide “hedgers” do not normally face formal
position limits. In practice, this means they may be given much higher limits than those
allowed speculators so that there remains in place some limit that prompts future review if
necessary.

(G) The Clearinghouse and Contract Performance

At the end of the day, all positions must be recorded (“cleared”) by the clearinghouse. In
many futures markets, the clearinghouse corporation is a separate legal entity from the
exchange corporation (though they may share common members). The same clearinghouse
may serve several exchanges simultaneously. For example, in April 2003, some years prior
to their merger, CBoT and CME announced an agreement for CME to provide clearing
and related services for all CBoT products. In some cases, however, the clearinghouse is
organized as an entity within the exchange itself. NYMEX is one such case.

Members of the clearinghouse are called clearing members. Non-members must clear
their transactions through clearing members. Clearing members are responsible to the clear-
inghouse for contract performance. If an investor on an exchange defaults and his margin
balance is inadequate to cover his losses, the clearing member who cleared that investor’s
contracts is first held responsible for the defaulted amount. If the clearing member also
defaults, then the clearinghouse assumes ultimate responsibility for contract performance.

Duffie (1989) describes the incentives used by clearinghouses to provide clearing mem-
bers with an incentive to fulfill their obligations. First, members are required to maintain a
margin with the clearinghouse. Margin accounts are described in Section 2.6 below. Second,
members pay a fee per contract cleared (and sometimes also a monthly fee) that is held in
a surplus fund. Third, members are required to post a performance bond that is held in a
guarantee fund.

Upon any default by a clearing member, the clearinghouse closes out all of that member’s
positions. Any deficit is then met by using in succession the member’s margin account, the
member’s guarantee bond, the surplus fund, and the guarantee fund. If all of this still proves
insufficient, the system collapses. No clearinghouse in US history has yet defaulted on its
obligations.

(H) Futures Prices in the Financial Press

Figure 2.1 describes the presentation of futures prices in The Wall Street Journal and is a
typical example of how futures prices are reported in the financial press. The upper panel
presents the prices as they once appeared in the print edition, the lower panel as they now
appear online on the paper’s website. There are some differences in the details (the online
version does not provide the lifetime highs and lows, and the settlement price in the upper
panel appears as the last price in the lower one), but these are minor and unimportant, so
we focus our description on the upper panel. In this panel, the contract underlying (“Cattle-
Live”), the exchange on which it is traded (“CME?”), the size of each contract (“40,000 1bs.”),
and the units in which prices are quoted (“cents per 1b.”) are listed on the top.
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FIGURE 2.1

Futures Prices in The
Wall Street Journal

Thursday, October 26, 1995
Open Interest Reflects Previous Trading Day

—LIVESTOCK & MEAT—

Lifetime Open
Open  High Low Settle Change High Low Interest

CATTLE—LIVE (CME) 40,000 Ibs.; cents per Ib.
Dec 67.85 6825 67.85 68.17 +.40 68.25 61.75 30,828
Fb96 67.10 67.40 67.05 67.35 +.27 68.30 62.80 15,490
Apr 67.20 6742 6720 67.37 +.17 68.32 63.90 9,324
June 63.37 63.55 63.37 63.50 +.17 63.55 60.95 4,161
Aug 62.00 62.12 6192 62.05 62.90 60.05 1,768
Oct 63.05 63.05 62.87 62.95 +.10 63.05 61.30 531

Est vol 8.888; vol Wed 9.426; open int 62.110. +325

FEEDER CATTLE
Data retrieved at Nov 30 13:48:31 GMT + All quotes are in Greenwich Mean Time + Data provided by eSignal

Contract Month Last Chg Open High Low Volume Openint Exchange Date Time
R FEEDER CATTLE | Jan'10| 92.500s | -0.800 | 92.900| 92.950 | 91.900 436 16548 CME | 11/27/09 | 18:11:13
R FEEDER CATTLE | Mar'10| 93.150s | -1.125| 93.600| 93.925| 93.000 381 6133 CME | 11/27/09 | 18:11:13
A FEEDER CATTLE Apr'10| 94.550s | -1.150 | 94.750 | 95.050 | 94.350 8 979 CME | 11/27/09 | 18:11:13

FEEDER CATTLE | May 10| 95.450s | -0.925| 95.850| 95.900 | 95.200 43 2078 CME | 11/27/09 | 18:11:13

FEEDER CATTLE | Aug'10| 97.350s | -0.850 | 97.350| 97.350| 97.350 2 535 CME | 11/27/09 | 18:11:13

FEEDER CATTLE | Sep'10| 97.950s| -0.100| 97.950| 97.950| 97.950 0 5 CME | 11/27/09 | 18:11:13

FEEDER CATTLE Oct 10 | 97.650s | -0.050 | 97.650| 97.650 | 97.650 0 4 CME | 11/27/09 18:11:13
AA[M)[ES |FEEDER CATTLE | Nov'10| 97.800s| 0.000| 97.800| 97.800| 97.800 0 0 CME | 11/27/09 | 18:11:13
ﬂ-chanﬁAOp!ionsi—?-Ouo(cs Save Quote Board

Each horizontal line corresponds to a particular contract maturity month. All entries in
each line barring the last pertain to price information. The first entry is the opening price
of the contract in the last trading session. For example, the December futures contract in
Figure 2.1 opened at a price of 67.85 cents per Ib. The next two entries give the maximum and
minimum prices on that contract observed in the last trading session. The difference between
these two is one indicator of how volatile trading in the contract was during that session.

The fourth entry is the all-important settlement price while the fifth provides the change
in settlement price from the previous day. A positive sign indicates the settlement price has
increased, while a negative sign indicates it has decreased. The use of settlement prices in
calculating gains and losses is described in Section 2.6 below.

The sixth and seventh entries describe the highest and lowest prices observed on this
contract since it began trading. Observe that the December Live Cattle futures contract
settled at close to its lifetime high.

Finally, the last entry indicates the number of contracts currently held by market partic-
ipants. It is the sum of all the contracts held by long positions or, equivalently, the sum of
all the contracts held by short positions. (As we discuss in Section 2.5, futures positions do
not have to be held to maturity, but may be closed-out or “reversed” before then. The open
interest measures only the number of futures positions that have not yet been reversed.) The
size of the open interest is an important measure of the liquidity of that contract; a high
open interest indicates a large number of participants and so a relatively liquid contract. As
is typical in most futures markets, Figure 2.1 shows that open interest is high in short-dated
futures contracts, but liquidity rapidly dries up as one looks at longer maturities.

2.4 The Standardization of Futures Contracts

The remainder of this chapter focusses on the three features that distinguish futures markets
from forward markets:

» The standardization of contracts.
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* The ease of reversing positions.
* The use of margin accounts to manage default risk.

This section deals with the standardization of futures contracts. The next two examine
reversal and margining, respectively.

The standardization of futures contracts is perhaps the most important task performed
by the exchange. It involves three decisions: specifying the quantity or size of one futures
contract; specifying the minimum acceptable quality that may be delivered; and specifying
the delivery options available to the short position. Successful standardization goes a long
way in promoting contract liquidity; poor standardization, as in the case of GNMA futures
discussed later in this chapter, can lead to the failure of the contract.

The Size of a Futures Contract

Futures contracts are traded in standardized sizes. Table 2.4 summarizes the standard sizes
of several futures contracts and the approximate value of the delivered quantity at spot
market prices observed in July 2009.

As the table shows, commodity futures contracts in general have a value under $50,000.
For example, one corn futures contract on the CBoT calls for the delivery of 5,000 bushels
of corn, worth roughly $17,250 in July 2009 prices. The aluminium futures contract on the
London Metals Exchange (LME) requires the delivery of 25 tonnes, which puts the worth
of the delivered quantity at around $38,250 in July 2009. Of course, with fluctuations in
commodity prices, the values of the assets in these contracts fluctuate too.

Financial futures contracts tend to be larger in size. One Treasury bond futures contract
on the CBoT calls for the delivery of $100,000 in face value of US Treasury bonds; one
S&P 500 Index futures contract on the CME was worth around $225,000 in July 2009, while
the British pound futures contract on the PHLX was worth a little over $100,000 around the
same time.

Many futures exchanges also offer what are called “mini” futures contracts in smaller
standard sizes aimed at attracting smaller investors. Thus, while one wheat futures contract
on the CBoT is for 5,000 bushels of wheat, the exchange also offers a mini-wheat futures
contract of size 1,000 bushels. The Dow Jones Index futures contract on the CBoT is for
10 times the Dow Jones index, but there is also a mini-Dow Jones futures contract that is for
5 times the index. (There is also a “Big Dow” contract for 25 times the index.) Mini-futures
contracts have now become popular and established presences in futures exchanges.

The Standard Grade in a Futures Contract

Every futures contract also specifies the standard deliverable grade or grades of the un-
derlying asset. For example, the LME’s aluminium futures contract requires the delivered
aluminium to have a purity of at least 99.7%; the COMEX gold contract requires the deliv-
ered gold to be of at least 0.995 fineness; and the oat futures contract on the CBoT calls for
the delivery of either No. 2 Heavy or No. 1 grades.

For some financial futures contracts, quality is a non-issue (e.g., currency or index
futures), but for others such as Treasury futures, it is of central importance. The “quality”
of a bond depends on two features: the coupon paid by the bond and the bond’s maturity.
Every Treasury futures contract must spell out the acceptable quality on these two fronts.
The standard coupon in the US Treasury bond and note futures contracts on the CBoT
is 6%. The Treasury bond futures contract requires the delivered instruments to have at
least 15 years to maturity or first call while the Treasury note futures contract calls for the
delivery of Treasury notes with between 6% and 10 years left to maturity. US Treasury bills
are discount instruments that pay no coupons; the Treasury bill futures contract on the CME
requires the delivered instruments to have 13 weeks to maturity.
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TABLE 2.4 Futures Contract Sizes

This table describes the standard sizes of several futures contracts and the approximate value of the asset in one
contract measured using July 2009 prices. For the US Treasury futures contracts, the “contract size” and “market
value” refer to the face value of the instruments that must be delivered, while for the Eurodollar futures contract,
these terms refer to the principal amount on which interest is computed.

Underlying

Agri commodities
Corn

Wheat

Oats

Soybean

Livestock
Live cattle
Lean hogs

Forest
Lumber

Interest rate
30-year US T-Bonds
10-year US T-Notes
5-year US T-Notes
US T-Bill

3-month Eurodollar
1-month Libor

Currency

Euro (EUR)

British pound (GBP)
Japanese yen (JPY)
Swiss franc (CHF)
Canadian dollar (CAD)
Brazilian real (BRL)
Israeli shekel (ILS)

Stock indices
S&P 500

Big Dow
Nasdaqg 100
Nikkei 225

Metals
Aluminium
Copper
Gold

Silver

Energy
Light sweet crude

Exchange

CME Group
CME Group
CME Group
CME Group

CME Group
CME Group

CME Group

CME Group
CME Group
CME Group
CME Group
CME Group
CME Group

CME Group
CME Group
CME Group
CME Group
CME Group
CME Group
CME Group

CME Group
CME Group
CME Group
CME Group

LME
LME
COMEX
COMEX

NYMEX

Contract Size

5,000 bushels
5,000 bushels
5,000 bushels
5,000 bushels

40,000 Ibs
40,000 Ibs

110,000 board feet

uUsD 100,000
usDb 100,000
UsSD 100,000
usD 1,000,000
usD 1,000,000
usD 1,000,000

EUR 125,000
GBP 62,500
JPY 12,500,000
CHF 125,000
CAD 100,000
BRL 100,000
ILS 1,000,000

USD 250 times index
USD 25 times index
USD 100 times index
JPY 500 times index

25 tonnes

25 tonnes
100 Troy oz
5,000 Troy oz

1,000 barrels

Approximate USD
Value (July 2009)

17,250
25,000
10,250
56,000

34,000
24,400

19,800

100,000
100,000
100,000
1,000,000
1,000,000
3,000,000

173,750
101,250
135,000
115,000

86,000

49,000
250,000

225,000
210,000
142,500

46,250

38,250
121,000
91,000
63,000

60,000
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Delivery Options

Specifying the deliverable grade narrowly in a commodity futures contracts may limit
overall supply and facilitate market corners or squeezes. Corners and squeezes are market
manipulation attempts in which the manipulator takes on more long positions in a given
futures contract than the short position has ability to make delivery. This is achieved by
the long either controlling all of the available spot supply (a “corner”) or at least a suffi-
cient quantity so that the short position has difficulty finding adequate deliverable supply
(a “squeeze”). In a successful attempt, the price of the commodity is driven up by the lack
of supply. The short position must buy the required quantity for delivery at a high price and
sell it back to the long position at the fixed price agreed to in the contract (or equivalently
must compensate the long position for the difference in prices).

Partly to reduce the opportunity for such behavior, the short position in a futures contract
is provided with delivery options. Delivery options allow the short position to substitute an
alternative grade or quality for the standard quality at an adjustment in the delivery price.
The specification of the contract lists the alternative deliverable grades to the standard grade
and describes how the price will be adjusted for each grade.

The standard grade in the corn futures contract on the CBoT is No. 2 Yellow. However, at
the time of writing, the contract also allows the short position to deliver No. 1 Yellow or
No. 3 Yellow with the proviso that if No. 1 Yellow is delivered, the delivery price is increased
by 1.5 cents a bushel, while if No. 3 Yellow is delivered, the delivery price is lowered by
1.5 cents a bushel. |

Several delivery options are also offered in US Treasury bond futures contracts on the CBoT.
The most important is the “quality option” (other options are discussed in Chapter 6). The
quality option allows the short position to deliver any coupon rate in place of the standard
6% as long as the delivered instruments meet the maturity requirements. The delivered
cash flows are then discounted at the standard 6% rate to obtain a “conversion factor” for
adjusting the delivery price.

If the delivered bond has a 6% coupon, the conversion factor equals 1, since we are
then discounting 6% coupons at a 6% rate. However, if the delivered bond has a coupon
rate that is higher than the standard 6% (so is of “superior” quality to the standard), the
conversion factor exceeds 1 because we are discounting higher-than-6% coupons at a 6%
rate. Similarly, if the delivered bond is inferior to the standard grade (i.e., it has a coupon
under 6%), the conversion factor is less than 1.

Section 6.5 and Appendix 6C describe the general formula used to calculate Treasury
futures conversion factors, but here is a simple example. Suppose the short position in a
Treasury bond futures contract delivers a 20-year, 8% coupon bond. Assume for simplicity
that the last coupon was just paid. Then, on a face value of $1, the delivered bond will
provide cash flows of $0.04 every six months for 20 years and a cash flow of $1 (the principal)
after 20 years. To obtain the conversion factor, we have to discount these cash flows at a
6% rate. Since the Treasury market follows a semiannual compounding convention, a 6%
discount rate means a semiannual discount rate of 3%. Thus, the conversion factor for this
bond is

0.04 0.04 0.04 1.04
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which is approximately 1.23. This means that the long position must pay the short position
1.23 times the agreed-upon delivery price. Conversion factors for each deliverable bond are
published and updated by the various exchanges. |

The Impact of Delivery Options

As both the corn and US Treasury futures examples indicate, a mechanical rule is often
used to determine the price adjustment in a futures contract for delivering a grade different
from the standard. This means the price adjustment may not equal the actual difference in
market prices between the delivered and standard grades.

This presents the short position with a profit opportunity. The price adjustment specifies
what the short position receives for delivering a particular grade, while the market price is the
cost of that grade. The short can search over the deliverable grades and select the one that is
the most profitable to deliver. This is (somewhat confusingly) called the cheapest-to-deliver
grade.

The profit opportunity presented by delivery options comes at the expense of the long
position and has consequences for both pricing and hedging using futures contracts. From
the standpoint of hedging, delivery options degrade the quality of the hedge for the long
position. One particular case of interest is the GNMA CDR futures contract discussed in
Section 2.7 in which the quality of the hedge was so degraded that the contract itself failed.

Delivery options also affect the pricing of futures contracts. Futures prices depend on not
only the standard grade but also the cheapest-to-deliver grade (since that is, by definition,
the grade that will be delivered). However, the cheapest-to-deliver grade will not be known
with certainty until maturity of the contract, so the price really depends on the market’s
anticipation of the grade that will be the cheapest-to-deliver. This complicates the theoretical
pricing problem substantially.

Nonetheless, one implication of the provision of delivery options is clear: other things
being equal, the futures price will be lower than the forward price for a contract written on
the standard grade. The reason is simple: the forward contract provides no delivery options
to the short position, while the futures contract provides such options. The presence of such
options makes the futures contract more attractive to the short (who cannot lose from having
this extra option) but less attractive to the long. With fewer “buyers” (long positions) and
more “sellers” (short positions), the futures price will be lower than the forward price.

2.5 Closing Out Positions

Unlike forward contracts, the holder ofa futures contract can unilaterally reverse his position
by closing it out or offsetting it. To close out a futures position, the investor must simply
take the opposite position to the original. The investor then has no further obligations to
the exchange. For example, suppose an investor has a long position in 10 COMEX gold
contracts for delivery in May. To get out of this contract, the investor need only take a short
position in 10 COMEX gold contracts for delivery in May. In contrast, if the holder of a
long forward with one counterparty (say, Counterparty A) enters into an offsetting short
forward position with a different counterparty (Counterparty B), she is not freed of her
obligations to Counterparty A. To the contrary, her obligations now extend to both contracts
and counterparties.

Of course, reversal of futures positions may not be costless. The investor can take posi-
tions only at the prevailing futures price at any point, so the initial price and the close-out
price could differ, leading to a profit or loss for the investor. For example, suppose the
long position in the 10 COMEX gold contracts was taken at a futures price of $340 per
ounce. Suppose the price at the time of close-out is $332 per ounce. Then the investor has
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effectively agreed to buy at $340 per ounce and sell at $332 per ounce for a net loss of $8
per ounce. Since one COMEX gold contract is for 100 ounces of gold, this leads to a total
loss on the 10 contracts of 10 x 100 x 8 = $8,000. This loss is settled through the margin
account described in the next section.

Futures exchanges permit reversal of positions for a number of reasons. The most im-
portant is that investors may not desire to make or take delivery from the standard locations
prescribed in the exchange contract (for example, because it would be inconvenient given
their geographical location or because they would rather buy from their usual vendor). By
entering into and closing out the futures contract, investors can obtain the relevant hedge
without delivery.

Consider a bakery that estimates its requirement of wheat in May as 50,000 bushels. The
bakery can hedge its price risk by going long 10 May wheat futures contracts on the CBoT
at the currently prevailing futures price for May delivery (say, $3.25 a bushel) and then
accepting delivery at this price in May. The cost to the bakery is then $(50,000 x 3.25) =
$162,500.

As an alternative to taking delivery, the bakery can adopt the following strategy:

1. Take 10 long May wheat futures contracts at the prevailing futures price of $3.25/bushel.
2. Close out the futures position in May at the futures price F; that prevails then.

3. Buy 50,000 bushels of wheat in the spot market in May at the spot price S prevailing
then.

On the futures market, the bakery buys 50,000 bushels at a price of $3.25 per bushel and
sells them at a price of Fr per bushel for a total gain of 50,000 x (Fr — 3.25). On the spot
market, the bakery incurs a cost of 50,000 x Sr. Thus, the net cost to the company is

50,000 S; — 50,000 (F7 — 3.25) = 162,500 + 50,000 (S; — F7) 2.1

However, the futures contract is already at maturity in May, so it is a contract for immediate
delivery. This means the futures price Fr must equal the spot price Sr at this point. (This is
called the “convergence of futures to spot.”) The last term in (2.1) drops out, so the net cash
outflow for the company is just $162,500. This is the same outcome as accepting delivery
on the futures contract. |

Closing Out Contracts Prior to Maturity

The ability to close out positions means that even in the presence of a delivery mismatch
(i.e., when the investor’s desired date and the delivery date of the futures contract do not
coincide), the investor can still obtain an approximate hedge by opening a futures position
and closing it out.

For instance, suppose that the bakery in Example 2.3 needs the wheat by April 20.
Consider the same strategy as described in the example, except that both the closing out of
the futures position and the spot market purchase take place on April 20. Since April 20 is
“close” to the maturity date of the futures contract, the futures price F7 and the spot price Sy
on that date will be “close” to each other. The last term in (2.1) will be small relative to the
first one, resulting in a cash flow of approximately $162,500. Of course, the hedge is only
approximate now, but a perfect hedge is impossible in the event of a mismatch. Chapter 6
explores “optimal” hedging in such circumstances.

Overwhelmingly, futures positions in the US are closed out prior to maturity. Only a
very small number of contracts (probably under 5%) are actually held open for delivery.
Of course, delivery is still important: it is the possibility of making delivery that forces the
convergence of futures price to spot at maturity and so makes the hedge in (2.1) feasible.
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2.6 Margin Requirements and Default Risk

Example 2.4

Since futures exchanges guarantee performance on the contracts, they are exposed to risk
of default by investors. To control this risk, exchanges require investors to post margins.
Futures margins are collateral against default by the investor and should not be confused
with stock margins, which are a form of down payment. Indeed, the CME calls its margins
“performance bonds.”

The level at which futures margins are set is crucial to providing market liquidity. If
margins are set very high, they can virtually eliminate default risk, but market participation
will be inhibited. If they are set too low, market participation is encouraged, but default risk
increases. Thus, setting the level of margin requirements can be a delicate task.

In practice, margin requirements are set using sophisticated statistical techniques that
take into account the volatility of the price of the underlying asset and other factors. A
methodology known as SPAN (an acronym for Standard Portfolio Analysis of Risk) has
become particularly popular in the industry with many exchanges now using it to determine
their margin levels. An important input into the computations is the volatility of the price of
the underlying: greater price volatility means greater price movements over the course of
a trading day, and this in turn means that a larger “cushion” is needed as collateral to guard
against default.

The Margining Procedure

The margining procedure has three parts. First, an investor opening a futures account is
required to deposit a specified amount of cash into an account called the margin account.
The amount deposited initially is called the initial margin.

Second, at the end of each day, the balance in the margin account is adjusted to re-
flect the investor’s gains and losses from futures price movements over the day. This pro-
cess is called marking-to-market. The changes to the margin account are called variation
margin.

Third, if the balance in the margin account falls below a critical minimum level (called
the maintenance margin), the investor receives a margin call requiring the account to be
topped up back to the level of the initial margin. The maintenance margin is typically set at
around 75% of the level of initial margin. (More accurately, the initial margin is typically
set at 135% of the maintenance margin.) If the account is topped up, the position continues
until the investor decides to close out his contract or the contract is at maturity. If the investor
does not meet the margin call, then the account is closed out immediately.

Suppose that on March 1, a customer takes a long position in 10 May wheat futures contracts
at a futures price of $3.60 per bushel. One futures contract calls for the delivery of 5,000
bushels. Thus, the initial futures price is $18,000 per contract.

Let the initial margin be $878 per contract, and let the maintenance margin be $650 per
contract. Since the position involves 10 contracts, the total initial margin is $8,780, and the
maintenance margin is $6,500. The initial price and margin balance and the remainder of
the example are summarized in Table 2.5.

Suppose that the settlement price at the end of the first day is $3.58 per bushel (or
$17,900 per contract). The customer’s original position called for a delivery price of $18,000
per contract. Thus, she has made an effective loss of $100 per contract, or a total loss of
$1,000. This $1,000 is immediately debited from her margin account, taking the margin
balance to $7,780. Of course, the short position on these contracts has made a gain of
$1,000, so the short’s margin balance would increase by $1,000.
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TABLE 2.5 The Margining Procedure: Example

This table describes the evolution of the margin balance for Example 2.4. The prices are all in terms of prices
per contract and the total gain or loss refers to the gain over loss over the example’s holding of 10 long futures

contracts.

Contract Opening
End of day 1
End of day 2
End of day 3

Initial/Settle- Change in Total Gain Margin Account Margin
ment Price Price or Loss Balance Call?
$18,000 $8,780
17,900 —100 —$1,000 7,780 No
17,800 —-100 —1,000 6,780 No
17,650 —150 —1,500 5,280 Yes

Now suppose the settlement price on the second day is $3.56 per bushel (or $17,800
per contract). The customer has effectively lost an additional $(17,900 — 17,800) = $100
per contract. The total loss over 10 contracts is another $1,000. This amount is removed
from the margin account, reducing the balance to $6,780. Since the balance is still above
the maintenance margin level of $6,500 for 10 contracts, there is no margin call.

On the third day, say the settlement price fixes at $3.53 per bushel (or $17,650 per
contract). This means a further loss to the customer of $(17,800 — 17,650) = $150 per
contract, or a total loss over 10 contracts of $1,500. This amount is removed from the
margin account, reducing the balance to $5,280.

Since the margin account balance is now below the maintenance margin amount of
$6,500, the customer will receive a margin call requiring her to bring the balance back up
to $8,780. If the extra funds are deposited, the situation continues. If not, the customer’s
position is closed out. Of course, the account can be closed out only when trading resumes
by which time prices may have fallen further. Any further loss incurred as a consequence of
the close-out is met by the $5,280 balance in the margin account. |

Margins and Default

As the example shows, the marking-to-market procedure involves (a) rewriting the in-
vestor’s futures contract at the current settlement price, and (b) settling immediately the
gains or losses to the investor from the rewriting. The procedure breaks up the total gain
or loss that occurs over the life of a futures contract into daily gains or losses, and re-
quires the investors to pay as they go along. The economic motivation for daily margining
is obvious: an investor who is unable to meet “small” losses (as occur from daily price
movements) is unlikely to be able to meet larger losses that might result over a longer time
span.

Historically, margining has worked very well in inhibiting default. Defaults have oc-
curred, but these have been few and far between. One of the largest defaults that occurred
was in the now-defunct Maine potato contract on NYMEX in May 1976. The default appears
to have been caused by a classic market squeeze play in which the supply of Maine potatoes
was simply not enough to cover the open long positions, leading to default on thousands of
contracts.

Exchanges can typically alter margin requirements at any time. This right has been
invoked in specific cases to defuse market-threatening situations. One was in the Silver
Crisis in 1980 when COMEX margin requirements were increased dramatically, in some
cases to $60,000 per contract (see Appendix 9B of Duffie, 1989). Another was during the
Metallgesellschaft episode in 1994 when NYMEX doubled the firm’s margin requirements;
we discuss the Metallgesellschaft case in Section 2.7.
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Margin Sizes and Leverage

Table 2.6 summarizes initial and maintenence margin requirements for several futures con-
tracts. As a comparison of Tables 2.4 and 2.6 shows, margins are typically small relative to
the value of assets underlying futures contracts. In many contracts, margins are under 5%
of the value of the contract, and in a comfortable majority of contracts, they are under 10%.

TABLE 2.6 Futures Margin Levels

This table describes initial and maintenance margin levels for several futures contracts as of July 2009. The
margin levels are for nonhedgers. For hedgers, the initial and maintenence margins are typically both equal to
the maintenance margin level given here.

Initial Margin

Initial Maintenance as % of
Underlying Exchange Margin (USD) Margin (USD) Contract Value
Agri commodities
Corn CME Group 1,620 1,200 9.4%
Wheat CME Group 2,700 2,000 10.8%
Oats CME Group 1,080 800 10.5%
Soybean CME Group 4,050 3,000 7.2%
Livestock
Live cattle CME Group 1,080 800 3.2%
Lean hogs CME Group 1,418 1,050 5.8%
Forest
Lumber CME Group 1,650 1,100 8.3%
Interest rate
30-year US T-Bonds CME Group 4,320 3,200 3.6%
10-year US T-Notes CME Group 2,430 1,800 2.1%
5-year US T-Notes CME Group 1,350 1,000 1.2%
us T-Bill CME Group 405 300 0.04%
3-month Eurodollar CME Group 1,148 850 0.11%
1-month Libor CME Group 810 600 0.03%
Currency
Euro (EUR) CME Group 4,725 3,500 2.7%
British pound (GBP) CME Group 2,700 2,000 2.7%
Japanese yen (JPY) CME Group 4,050 3,000 3.0%
Swiss franc (CHF) CME Group 4,185 3,100 3.6%
Canadian dollar (CAD) CME Group 2,430 1,800 2.8%
Brazilian real (BRL) CME Group 4,900 3,500 10.0%
Israeli shekel (ILS) CME Group 8,100 6,000 3.2%
Stock indices
S&P 500 CME Group 28,125 22,500 12.5%
Big Dow CME Group 32,500 26,000 15.5%
Nasdaqg 100 CME Group 17,500 14,000 12.3%
Nikkei 225 (in JPY) CME Group 625,000 500,000 13.5%
Metals
Gold COMEX 5,399 3,999 5.9%
Silver COMEX 8,100 6,000 12.9%
Energy

Light sweet crude NYMEX 7,763 5,750 12.9%
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The size of the margin requirement determines the extent of leverage provided by a
futures contract. A margin requirement of 5% of contract value means that by putting 5%
in cash up front, the customer gets full exposure to movements in futures prices, implying
a leverage ratio of 20:1. Given the small size of margins in practice, it is clear that futures
are highly levered instruments.

Margining and Valuation

From the standpoint of valuation, margining complicates matters because it creates uncertain
interim cash flows. Typically, the initial margin earns interest, but the variation margin does
not. (Investors are, however, free to withdraw any balance in their margin accounts in excess
of the initial margin, so this does not impose an economic cost.) The interest rate could
itself change over the contract life. Thus, the holder of the contract receives uncertain cash
flows that earn interest at possibly uncertain rates. It is not easy to see whether this implies
futures prices will be higher or lower than the corresponding forward prices. We examine
this issue later (see Section 3.8).

Margining and Hedging

Daily marking-to-market also has a subtle effect on hedges using futures contracts. The
purpose of hedging, by definition, is to reduce cash-flow uncertainty from market com-
mitments. If a forward market commitment (say, a commitment to deliver wheat in four
months) is hedged using a futures contract, there is a cash-flow mismatch. On the forward
contract, any gains or losses are realized only at maturity, whereas in a futures, you settle
as you go along. If these interim cash-flow requirements are large, they may complicate—
or even ruin—an otherwise sound hedging strategy. The most spectacular case in which
this occurred was the more than $1 billion in losses taken by Metallgesellschaft in 1994
(see Section 2.7).

Clearinghouse Margins
Just as an investor is required to post margins with clearing members, the latter are required
to post margins with clearinghouses. In this case, the initial and maintenance margins usually
coincide. The clearing member must maintain the account at the original margin times the
number of contracts outstanding.

2.7 Case Studies in Futures Markets

This section presents three case studies in futures markets, each of which provides important
insights into and lessons concerning futures markets operations and trading.

The first concerns the GNMA CDR futures contract on the CBoT, the very first interest-
rate-sensitive futures contract to be introduced on a US exchange. It offers an excellent
look into the intricacies of futures contract design, particularly the specification of delivery
options. A detailed analysis of the rise and fall of this contract is presented in Johnston and
McConnell (1989); our presentation reports their research.

The second case study is that of the Metallgesellschaft episode of 1994, perhaps unique
in the annals of derivatives-related debacles in that many analysts believe it involved not
deliberately speculative positions (as, for example, in the case of Barings Bank) or at-
tempted market manipulation (as in the case of Sumitomo) but rather what appeared to be
a theoretically sound hedging strategy.

The third case study looks at the case of the hedge fund Amaranth whose $4-billion-
plus losses from trading in natural gas futures and related derivatives made it the largest
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hedge fund failure of its time, and, indeed, among the largest losses suffered by a financial
institution prior to the financial crisis of 2008. The Amaranth case highlights, in particular,
the leverage and liquidity risks that can arise in futures market trading.

FIGURE 2.2
GNMA CDR Futures
Trading Volumes

Case Study 1
The GNMA CDR Futures Contract

The Government National Mortgage Association (GNMA) Collateralized Depository
Receipt (CDR) futures contract was introduced in 1975 on the CBoT. It was the first interest-
rate futures contract traded on an exchange. The assets underlying the futures contract are
GNMA mortgage-backed securities. Deliverable securities in the contract were backed by
pools of single-family mortgages with initial maturities of 29-30 years. The mortgages were
insured against default by either the Federal Housing Association (FHA) or the Veterans
Administration (VA). Every mortgage in the pool could be prepaid (“called”) at any time.

Figure 2.2 describes the rise and fall of the contract. The contract enjoyed spectacular
success in its early years with trading volume growing rapidly from 1975 to 1980. It remained
stable for about two years and then began declining rapidly, reaching near-zero trading
volumes by 1987. The spectacular rise and fall of the contract can be traced directly to its
design, notably the delivery options in the contract that made it a bad hedge vehicle.

An important—and intuitive—point in hedging with futures is that for a futures contract
to provide a good hedge vehicle, the futures price must bear a close relationship to the spot
price of the asset being hedged. (Hedging with futures is examined in detail in Chapters 5
and 6 where this point is formalized.) In the case of commodities, the underlying spot risk is
usually well defined (the prices of lumber, corn, crude oil, etc.), but in dealing with interest-
rate securities, one must be careful in identifying precisely which risk it is that investors are
seeking to hedge.

GNMA CDR futures contracts are futures on mortgage-backed securities. The ques-
tion is: which mortgage-backed securities are investors seeking to hedge? It turns out that

This figure describes the growth and decline in trading volumes in the GNMA CDR
futures contract between its introduction in 1975 and 1987.
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hedging demand in mortgage-backed securities is concentrated in current-coupon mort-
gages. Hedging demand comes primarily from mortgage bankers who originate mortgages
and then package and sell them in the secondary market. Mortgage bankers are exposed to
interest-rate risk on mortgages written at current coupon rates between the time the loans
are made and the time they are sold on the secondary market.

Therefore, for the GNMA CDR futures contract to be useful as a hedge vehicle, it is
necessary that the futures price of this contract bear a close relationship to current-coupon
mortgages. In the presence of delivery options, the futures price is determined by the
cheapest-to-deliver grade. Thus, it is the cheapest-to-deliver grade that must bear a close
relationship to current coupon mortgages. Did the specification of the contract meet this
requirement?

Key Features of the GNMA CDR Futures Contract

The “standard” contract called for the delivery of GNMA securities with $100,000 in
remaining principal and an 8% coupon. Several delivery options were also provided. Un-
usually, and perhaps uniquely among futures contracts, one of these was provided to the
long position in the contract: at maturity, the long could elect to receive a Collateralized
Depository Receipt (CDR) entitling him to receive $635 per month in interest payments as
long as he held the CDR and to exchange the CDR for the actual GNMA securities at any
time by giving 15 business days’ notice.

The most important delivery option, however, was the “quality option” provided to
the short. The quality option allowed the short to deliver any interest rate in place of the
standard 8%. In the manner later used in the successful US Treasury bond futures contract,
the contract provided for an adjustment in the price through a “conversion factor” which
was calculated by discounting the cash flows from the delivered mortgage at the standard
8% rate. One problem here, however, lay in the length of time for which these cash flows
could be assumed to last, since the mortgages could be prepaid at any time. The GNMA
CDR futures contract assumed that cash flows from delivered mortgages would continue for
exactly 12 years at the end of which the mortgage would be repaid in full. The conversion
factor was calculated under this assumption, and the principal balance the short was required
to deliver was stated as $100,000 divided by this conversion factor.

The Problem

In practice, mortgage prepayments often occur because mortgage holders are able to re-
finance their mortgages at lower interest rates. Given this motivation, borrowers holding
mortgages with high interest rates are more likely to find lower interest rates and prepay their
existing mortgages than holders of low-coupon mortgages. The quality option in the GNMA
CDR futures contract ignored this propensity for high-coupon mortgages to be prepaid
earlier. By assuming that all mortgages last 12 years, the contract undervalued the prepay-
ment option in high interest-rate mortgages relative to low interest-rate mortgages; equiva-
lently, it overstated the maturity of high interest-rate mortgages relative to low interest-rate
ones.

The Consequence

The impact of this is not hard to see. By overstating the relative maturity of cash flows
from high-coupon mortgages, the conversion factor of high-coupon mortgages is overstated
relative to that of low-coupon securities. (Intuitively, the higher cash flows are assumed to last
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FIGURE 2.3
US 30-Year Mortgage
Rates: 1975-1987
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longer than they really do.) Ceteris paribus, therefore, the short will find it advantageous
to deliver high-coupon mortgages; i.e., high-coupon mortgages will be the cheapest-to-
deliver grade. Reflecting this, the futures price will bear a close relation to the high-coupon
mortgages.

However, we have seen that for the GNMA CDR futures contract to be a good hedge
vehicle, its price has to bear a close relationship to current-coupon mortgages. Thus, as long
as high and current coupons are the same, there is no problem.

Between 1975 and 1982, this was in fact the case. In March 1975, the interest rate was
8.25%. It rose more or less steadily to a peak of 17% in September 1981 and remained at
around 16%—17% through early 1982. (See Figure 2.3.) In late 1982, however, interest rates
began a rapid decline. A low of 11% was reached by 1983, and until 1987, interest rates
remained well below 16%. As a consequence, until 1982, it was the case that the GNMA
CDR futures contract was an effective hedging vehicle for current-coupon mortgages, but
by late 1983, this was no longer the case. Johnston and McConnell show that by this
time, Treasury bond futures contracts had become better hedge vehicles for current-coupon
mortgages than GNMA CDR futures contracts, and the contract died.

Case Study 2
Metallgesellschaft AG

The Metallgesellschaft episode was, as we have mentioned, unusual in the annals of
derivatives-related debacles of the 1990s in that it involved a hedging strategy gone sour.'
The protagonist in this episode was Metallgesellschaft Refining & Marketing (MGRM),
a subsidiary of Metallgesellschaft AG of Germany. Metallgesellschaft was, at this time,

T Several postmortem analyses of the Metallgesellschaft episode are available, some siding with
Metallgesellschaft’s senior management in their terminating the hedge, and others faulting them.
One vigorous presentation of the latter viewpoint is Culp and Miller (1995). Our summary here
draws on their work among others.
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a 112-year-old company mostly owned by institutional investors such as Deutsche Bank,
Dresdner Bank, and Daimler Benz.

Begining in 1992, MGRM began selling contracts to supply gasoline, heating oil, and
diesel fuel at fixed prices over 5- and 10-year periods. The details in the contracts varied
to some extent. Many called for monthly delivery for the period specified in the contract,
while others had lower delivery frequencies. The contracts were marketed aggresively and
very successfully. By November 1993, MGRM had built up long-term supply commitments
of 160 million barrels. This was eight times the commitment of October 1992, and more
than twice the commitment of May 1993.

The fixed-price contracts left MGRM exposed to increases in spot prices. The company
decided to hedge this exposure using gasoline, heating oil, and crude oil futures contracts on
NYMEX. This allowed the company to focus on the storage and marketing of oil products
where it possessed special expertise.

The hedge was complicated by the immensity of MGRM?’s total exposure. Position
limits on NYMEX made it impossible to completely hedge MGRM?’s total commitments
of 160 million barrels using only futures contracts. MGRM used long futures positions
of 55 million barrels on NYMEX. It then entered into bilateral over-the-counter (OTC)
swaps arrangements to hedge the remaining exposure. These large positions also made it
impossible for the company to maintain anonymity in trading, a fact that compounded its
problems when it ran into cash-flow difficulties.

The “Stack-and-Roll” Strategy

The “ideal” hedging strategy would have been to match the maturity of the exposure with the
maturity of the futures contract. For example, if there is a commitment to deliver 1 million
barrels in three months, this particular exposure is hedged using a three-month futures
contract. Although NYMEX offers oil futures contracts several years out, the contracts are
relatively illiquid beyond the first few months. Culp and Miller (1995) note that liquidity was
an important consideration in MGRM’s approach because it lowered the cost of managing
its positions to meet seasonal changes in the demand and supply of heating oil and gasoline.

Asan alternative, MGRM decided to use a “stack-and-roll” hedging strategy using futures
contracts. Such a strategy involves the following steps. The firm takes long positions in
futures contracts to cover its entire exposure. All positions are in the nearby futures contract,
i.e., for delivery at the end of the current month. (This is the “stack” part.) At the end of
each month, the company closes out its position, and opens new long positions to cover its
remaining exposure. (This is the “roll” part.)

As a simple example, suppose the commitment is to supply 1,000 barrels a month for
the next 60 months. In a stack-and-roll hedging strategy, we take long positions in the entire
commitment of 60,000 barrels in one-month futures. At the end of the month, we roll over
the remaining part of the commitment (59,000 barrels) by closing out the existing futures
positions and reopening long positions in 59,000 new one-month futures.

Theoretically, it can be shown that under some assumptions, a stack-and-roll strategy
should provide a good hedge for the forward exposure. A proof is provided in Section 3.2.
Intuitively, hedging using a stack-and-roll strategy is a matter of offsetting losses on the
forward commitments with gains in futures and vice versa. If oil prices rise, there would
be a loss on the forward contracts but a gain on the long futures positions. If oil prices
fall, there would be losses on the long futures positions, but these would be offset by the
increased economic value of the forward commitments.
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Potential Problems with the Hedge

In practice, a number of cash-flow-related problems may arise in implementing such a
strategy. MGRM’s strategy entailed two specific risks: (a) a steep fall in oil prices leading
to margin calls on the long futures positions and (b) a change in the oil market from
backwardation to contango. (The terms backwardation and contango are defined below.)
In addition, MGRM faced basis risk from the futures/forward mismatch, viz., the problem
that the values of short-term futures and long-term forwards react differently to changing
market conditions. We examine each of these in turn.

Problem 1: A Fall in Oil Prices

The first problem MGRM faced had to do with the interim cash-flow pressures potentially
created by the use of futures contracts in general. MGRM had long positions in 55 million
barrels of futures contracts. Thus, every $1 fall in oil prices would lead to a $55 million
cash outflow on the futures margin accounts alone. A steep oil price fall would thus create
an immediate and large cash requirement to meet margin calls and keep the hedge alive. Of
course, the fall in prices would make the forward contracts with their locked-in prices more
attractive, but the corresponding gains on the short forward positions would not translate
into cash inflows until some date in the future. Thus, although the economic value of the
position is unaffected (it remains hedged), a severe short-term cash-flow requirement is
created.

Unfortunately for MGRM, this scenario came true: oil prices plummeted in late 1993.
This led to an immediate cash requirement of around $900 million to meet margin calls (on
the futures positions) and the demand for extra collateral (on the OTC positions).

Problem 2: From Backwardation to Contango

A futures market is said to be in backwardation if futures prices are below spot. It is said to
be in contango if futures prices are above spot. As we will see in Chapters 3 and 4, in a typical
commodity market with a positive cost-of-carry, the theoretical futures is above the spot,
i.e., the market should be in contango. However, in some commodity markets (especially
oil) futures prices are often below spot. This phenomenon is commonly attributed to the
presence of a large “convenience yield” from holding the spot commodity, an issue we
discuss further in Chapter 4.

The “roll” part of MGRM’s strategy meant it faced the risk of a possible shift in the
oil market from backwardation to contango. Why? Rolling over futures positions at the
end of each month involves closing out the existing long futures position by taking a short
futures position in the expiring contract and taking a long futures position in the new nearby
contract. The existing contract is at maturity, so it is being sold at the current spot price. Thus,
rolling the contract over involves effectively selling at the current spot price and buying at
the current one-month futures price. In backwardation, rollover creates cash inflows, but in
contango, rollover creates cash outflows.

Through much of the mid- and late-1980s, the oil futures market was in backwardation.
If this situation had continued, MGRM could have expected to receive cash inflows on the
rollover. Unfortunately for MGRM, in late 1993, the oil market went into contango. As a
consequence, by end-1993, MGRM was incurring a cash outflow of up to $30 million each
month on rollover costs alone.

Basis Risk: A Further Issue?

It has been suggested that a further issue that hurt MGRM is basis risk. MGRM was hedging
long-term forwards with short-term futures. These two prices may not move in lockstep, that



FIGURE 2.4
Crude Oil Prices:
November 1992—July
1994

Chapter 2 Futures Markets 45

is, long-term forward prices may react to movements in the spot price of oil differently from
short-term futures. Thus, perfect offsetting of cash flows is not generally possible, so there
is what is known as basis risk in hedging. In the presence of such risk, a well-developed
theory (see Chapter 5 for details) shows that it is not, in general, optimal to use a hedge
ratio of unity (i.e., to hedge exposures one-for-one with futures). However, MGRM does
appear to have used a hedge ratio of unity, which may have further degraded the quality of
the hedge, adding to losses.

The Denouement

When MGRM’s cash requirements became public information, its problems were com-
pounded. NYMEX first doubled MGRM’s margin requirements. Later, NYMEX also re-
moved MGRM’s hedger’s exception, effectively halving MGRM’s position limits. Counter-
parties on their OTC contracts also demanded increased collateral for rolling over contracts.

In response, Metallgesellschaft AG’s senior management decided to close out the po-
sitions and terminate the hedging strategy in place. A number of arguments were offered
in favor of terminating the hedge. It was suggested that the strategy’s cash requirements
had become excessive; the rollover costs alone were around $30 million a month. It was
also suggested that the long-term forward contracts were not “watertight,” i.e., significant
credit-risk existed. The possibility of basis risk from mismatch in assets underlying forward
and futures contracts was also cited.

Led by Nobel Prize—winning economist Merton Miller and his student Christopher
Culp, counter arguments appeared in the financial press and academic journals suggesting
that the parent company’s actions had been intemperate and unwise. For one, the termination
of the hedge converted paper losses into real ones. Second, if the market went back into
backwardation (which had, after all, been its “normal” state for several years), rollover
profits would arise; removal of the hedge eliminated this possibility. Third, the removal of
hedge left MGRM vulnerable to price increases.

As it happens, MGRM’s positions were unwound near the bottom of the market: oil
prices rebounded during 1994 (see Figure 2.4), though this could not have been foreseen
at the time of closeout. But the eventual consequences were severe. The termination of the
hedge resulted in losses of well over $1 billion, bankrupting the parent company.
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Case Study 3
Amaranth

Amaranth LLC started as a hedge fund specializing primarily in the trading of convertible
bonds. As returns from its conventional areas of strength tapered off in 2004, the fund greatly
expanded its energy-trading book, an area into which it had entered in 2002 following the
collapse of Enron. This expansion coincided with the hiring of Brian Hunter, the principal
author of Amaranth’s spectacular success in 2005 and its even more spectacular implosion
in 2006. What follows is a summary of the Amaranth saga.’

The Natural Gas Market

Natural gas is one of the principal energy sources of the US economy, accounting for nearly
a quarter of the country’s energy consumption. Around half of US homes use natural gas
heating in winter. Natural gas is also used to generate around a fifth of US electricity and
is used in other commercial and industrial activities. Natural gas is commonly measured in
terms of its energy content (British thermal units or Btu). Both cash and futures prices are
usually quoted per million Btu, written MMBtu.

The natural gas market is an unusual one in many ways. Demand is highly seasonal
with winter demand exceeding summer demand, especially if the winters are severe. (As
one might expect, the seasonality is primarily caused by residential heating demand.) The
relatively inelastic nature of winter heating demand means that winter prices tend system-
atically to be higher than summer prices and that winter price spikes are common if there
is a cold snap.

There is a large and active spot (or “cash”) market in natural gas. Traditionally, spot
market pricing referenced spot price indices constructed by industry groups such as Platts;
these indices are based on surveys of spot transactions at key delivery locations or “hubs,”
such as the Henry Hub in Louisiana. In the years preceding the Amaranth episode, the
market moved increasingly towards referencing the near-month NYMEX futures contract
in cash market trades, using the final settlement price for that contract. As a consequence,
by 2006, the index price and NYMEX final settlement price had become virtually the same
thing (see Figure 2.5).

Natural Gas Derivatives: NYMEX Futures
and ICE Swaps

Futures contracts on natural gas are traded on NYMEX. The contracts have monthly ex-
piries running out to several years. Trading ceases on the third business day before the de-
livery month (e.g., the February 2005 futures contract will cease trading on the third-to-last
business day of January 2005.) The “final settlement price” of the contract is based on the
prices observed during the last 30 minutes of trading prior to the contract’s expiry. The con-
tracts are physically settled. One contract calls for the delivery of 10,000 MMBtu of natural
gas. Delivery must be made at a uniform flow (to the extent possible) over the delivery
month.

2 Our presentation of the case draws mainly on the Senate Report (2007).
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Index Prices and
NYMEX Final
Settlement Prices
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This figure appears as Figure 14b in the Senate Report (2007). It shows the difference
between the popular cash market Platt’s index and NYMEX final settlement prices
on the near-month contracts. The difference is very small except for the spike in
September 2005 that followed Hurricane Katrina.
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While NYMEX is a regulated US exchange, futures-like contracts on natural gas also
trade on the InterContinental Exchange or ICE, an unregulated US electronic exchange.
Called natural gas “swaps,” these contracts trade in standardized sizes of 2,500 MMBtu and
have monthly expiries out to several years. Unlike the NYMEX futures contracts, they are
cash settled at maturity but are otherwise designed to mimic the behavior of the NYMEX
futures contracts. Indeed, at the time of the Amaranth episode in 2006, the ICE swap contract
even specified that its final settlement price would be set equal to the final settlement price
of the corresponding NYMEX futures contract, so the two contracts were functionally
identical.

There was, however, one important operational difference. As a regulated exchange,
NYMEX specified position limits and/or “accountability levels” (position levels that trig-
gered disclosure requirements and could lead to mandatory reductions at the exchange’s
discretion) for all its participants, although these limits could be (and, in practice, were)
relaxed for specific participants by NYMEX. In contrast, as an unregulated exchange, ICE
imposed no position limits at all, so participants coming up against trading or position limits
at NYMEX could always shift into equivalent contracts on ICE. We will see the importance
of this shortly in the context of Amaranth.

Finally, reflecting the seasonality of demand for natural gas, natural gas futures prices
also reflect an oscillatory pattern as Figure 2.6 illustrates. Both panels of the figure show
futures prices out to five years; the upper panel presents prices observed on June 1, 2007,
while the lower panel shows prices observed on January 28, 2009.

Amaranth’s Trading Strategies

Amaranth’s problems leading to its collapse in 2006 were largely caused by futures trading,
but its energy-trading book also used a number of other strategies and instruments. One,
for example, that proved a hugely successful bet in 2005 was the purchase of deep out-of-
the-money call options on natural gas futures. These options gave Amaranth the right to
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FIGURE 2.6
Natural Gas Futures
Prices

The upper panel of this figure shows natural gas futures prices as of June 1, 2007, for
a range of maturities, while the lower panel shows the futures prices as of January 28,
2009. The upper panel appears as Figure 17 in the Senate Report (2007). The lower panel
is based on data downloaded from the NYMEX website http://www.nymex. com.
Accessed January 29, 2009.
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enter into long futures contracts at fixed futures prices. (Options on futures are described
in Chapter 14.) When Hurricanes Katrina and Rita hit the US in 2005, natural gas prices
soared and Amaranth recorded handsome returns.

The main strategy followed by Amaranth in 2006 is often described as one that was
long winter—short summer, that is, as based on a view that the difference between futures
prices for winter delivery and those for summer delivery would widen. Broadly speaking,
this is correct, but the actual implementation, using NYMEX futures and ICE swaps, was
more nuanced and involved several different substrategies. Some of the key substrategies
are described below.

Short Summer At the beginning of 2006, based on the relatively warm 2005-06 winter and
the presence of plentiful gas supplies, Amaranth took the view that gas prices would fall
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and so took a large short position of over 30,000 contracts in Mar-06 futures. In February,
this was rolled over into short Apr-06 futures, and the rollover continued through the early
summer as Amaranth continued to bet on falling gas prices through summer and early fall.
The position sizes were also increased so that by end-July 2006, the short position in Sep-06
futures was over 60,000 contracts.

The Jan-07/Nov-06 Spread A second key component of Amaranth’s strategy concerned
the behavior of winter 200607 prices. Amaranth’s view was that winter prices would rise
and particularly that January prices would rise more sharply than November prices, that is,
that the Jan-07/Nov-06 price differential would increase. So, in February 2006, Amaranth
went long around 25,000 Jan-07 contracts and short around 25,000 Nov-06 contracts. These
positions were gradually built up over the following months until, by June 2006, Amaranth
was long around 60,000 Jan-07 futures contracts and short over 50,000 Nov-06 futures
contracts. From mid-July-06 onward, the short Nov-06 position in this strategy was replaced
with a short Oct-06 position.

The Mar-07/Apr-07 Spread Historically, with March signifying the end of the winter
heating period, the March-April price differential has been very volatile. Amaranth bet on
an increase in the Mar-07/Apr-07 differential, going long Mar-07 futures and short Apr-07
futures. In May 2006, Amaranth was long 20,000 Mar-07 and short 20,000 Apr-07 futures.
By end-July, these positions had grown enormously; Amaranth was long around 59,000
Mar-07 futures and short around 80,000 Apr-07 futures.

Besides these, Amaranth had a vast range of other positions in other maturities including
long or short positions in many other months in 2006. By late summer, Amaranth also had
positions in the Mar-08/Apr-08 and Mar-10/Apr-10 spreads.

Unquestionably the most striking feature of Amaranth’s trading book was the size of each
position. These were immense measured in dollar terms and in relation to Amaranth’s capital
base. For example, assuming a price of $8 per MMBtu, each futures contract of size 10,000
MMBtu represents a notional value of $80,000. A futures position of 30,000 contracts then
represents a notional value of $2.4 billion in this one contract alone. As we have seen,
Amaranth held several positions of this size or bigger (much bigger in many cases).

But the sizes of Amaranth’s positions are even more impressive when taken as fractions
of the entire market. Amaranth’s positions in many contracts often exceeded 50% of the
total open positions in that contract on NYMEX. For example, in mid-June 2006, Amaranth
held around 52% of the open interest in the Jan-07 futures on NYMEX and around 57%
of the open interest in the Nov-06 contract. By end-July 2006, the size of Amaranth’s long
position in the Jan-07 futures was nearly equal to the entire actual nationwide consumption
of natural gas by US residential customers during January 2007! These huge position sizes
created severe liquidity issues for Amaranth, as we shall see shortly.

Performance: Early 2006

Through most of early 2006, Amaranth’s strategies did very well. The fund’s year-to-date
returns by end-April exceeded 30% with returns of over $1 billion in April alone. Much of
this success came because prices behaved as Amaranth had bet. For example:

* In April 2006, the price of the Jun-06 futures fell by over $0.80 per MMBtu, or $8,000
per contract. Since Amaranth had a short position in approximately 30,000 of these
contracts, this position alone would have resulted in a marked-to-market profit of around
$240 million.
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* The Jan-07/Nov-06 spread, which had been less than $1 in January 2006, increased
steadily and in April 2006 widened sharply by $0.63, moving from $1.59 to $2.22. This
meant a profit of around $6,300 on each long Jan-07/short Nov-06 position. Amaranth
had, by April 2006, around 30,000 contracts in this spread, implying a marked-to-market
gain of over $180 million on this position.

The First Sign of Trouble: May 2006

In May came a sharp reversal, the “worst month since inception,” as the firm later reported
to its investors. Amaranth looked to lock-in the profits registered on some of its positions
and exit the market but ran into a problem: in many contracts, it held a huge share of
the total open positions, so it was hard for the firm to exit—or even reduce—its positions
without triggering large price effects. In post-mortems of the Amaranth collapse, it has
been suggested that Amaranth’s marked-to-market profits in the year to date were, at least
to some extent, illusory because they had been created by Amaranth’s own trading. That
is, for example, its continued large purchases of the Jan-07/Nov-06 spread themselves
widened the spread, making Amaranth’s previously obtained positions in the spread appear
profitable. Given the huge shares of the open positions Amaranth held in many contracts,
this appears plausible; it is not then surprising that Amaranth was unable to “capture” the
marked-to-market profits by liquidating its holdings.

Compounding this liquidity problem, the market too turned sharply against Amaranth,
particularly in the last week of May. There was widespread sentiment in the market that
spreads had grown too large relative to fundamentals and to historical patterns (perhaps
driven precisely by Amaranth’s trading). The Jan-07/Nov-06 spread fell from $2.15 to
$1.73, resulting in large losses on that position for Amaranth. Overall, the firm lost over
$1.15 billion in May. But thanks to the strong performance in earlier months, it ended May
still comfortably up for the year.

Buildup: June-july 2006

After the liquidity problems it had encountered in May, Amaranth reportedly had internal
discussions concerning reducing its portfolio and liquidating its positions even at a loss.
Ultimately, however, the firm spent most of June and July increasing many of these positions:

* Amaranth continued rolling over its short position for the summer and early fall months.
In June, the firm was short over 40,000 Aug-06 contracts. In July, it rolled these into
Sep-06 positions, ending the month short around 63,000 Sep-06 contracts.

* Amaranth’s long Jan-07 position reached 60,000 contracts in June and nearly 80,000
contracts in end-July. Against this, it had a short position of 51,000 Nov-06 contracts in
June, which it changed to a short position of 42,000 Oct-06 contracts in July.

» The Mar-07/Apr-07 position increased by end-July to a long position in nearly 59,000
Mar-07 contracts and a short position in nearly 80,000 Apr-07 contracts.

The buildup of the Mar-07/Apr-07 spread was particularly sharp. On a few select days
(May 26, June 15, July 31), Amaranth dominated futures trading in these contracts, ac-
counting for between 40% and 60% of the trading volume with a noticeable effect on the
spread on those days (see Figure 2.7). By end-July, Amaranth held around 40% of the total
open interest in the 2006—07 winter months futures contracts on NYMEX.



FIGURE 2.7

The Mar-07/Apr-07
Natural Gas Futures
Price Spread
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This figure shows the behavior of the difference between the futures prices for the
Mar-07 and Apr-07 futures contracts on NYMEX. The figure is taken from the Senate
Report (2007) and appears there as Figure 38.
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More Volatility: August 2006

In early August 2006, concerned by the size of Amaranth’s positions, NYMEX forced
Amaranth to reduce the size of its positions. Amaranth complied but simultaneously opened
or increased its positions on the unregulated ICE with the result that its overall exposure
actually increased.

One particular position it adopted was to increase its short Sep-06 position while buying
back some Oct-06 contracts. In the presence of plentiful supplies that pointed to a downward
trend in prices, this was effectively a bet that September prices would fall faster than October
prices. In the last week of August, the price of Sep-06 futures fell by over $1 (or over $10,000
per contract), possibly aided by Amaranth’s own enormous increase in its short Sep-06
position during this week from under 60,000 contracts to over 100,000. Simultaneously,
the Oct-06/Sep-06 spread widened dramatically to around 35 cents compared to its normal
level of 78 cents.

The sharp departure from historical spread levels despite no obvious change in funda-
mentals led many traders to take the position opposite to Amaranth. The largest of these
was another hedge fund, Centaurus. On the final day of trading in the September contract,
Amaranth ceased its trading activities an hour before trading terminated, mainly at NYMEXs
request. But Centaurus continued trading in enormous quantities, and as a consequence, the
Oct-06/Sep-06 spread fell almost 40 cents in the last hour even as the price of the September
contract rose by 60 cents, or $6,000 per contract. The resulting one-day loss to Amaranth
was a staggering $600 million, over 6% of its total assets under management.

The End: September 2006

Despite the huge loss on August 29, Amaranth still finished the month up over $630 million.
But the size of the firm’s positions and the volatility of its profit and loss (P&L) had started
creating serious concerns in the market. Its margin requirements, which had exceeded
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$2 billion by mid-August, crossed $3 billion in early September. Concomitant with the
increased portfolio size, the firm’s leverage had also increased. Chincarini (2006) reports
that by end-August, the firm’s leverage (the ratio of the value of its futures positions to its
capital base) exceeded 5. This made it especially vulnerable to sharp moves in the market.

Subsequent testimony in the US Senate revealed that while a number of market partic-
ipants had viewed winter/summer spreads as overpriced in summer 2006, they had been
reluctant to take the opposite position, being mindful of the sharp price effect Hurricanes
Katrina and Rita had had the previous year. There was also a general perception that a
large market trader with considerable resources (Amaranth) had been buying these spreads
propping up the price. But Amaranth no longer had the resources to increase its positions.
As hurricane season ended with no major catastrophes and gas supplies heading into winter
appeared plentiful, spreads collapsed.

The end when it came was swift. The Jan-07/Oct-06 spread registered a sharp decline,
tumbling by almost 25% between September 1 and September 15. The Mar-07/Apr-07
spread, which had already fallen almost 25% in the last week of August, continued to slide
precipitously (see Figure 2.7). Amaranth was hemorrhaging money.

In an attempt to shore up its cash position, the firm attempted to sell its Mar-07/Apr-07
spread position to Centaurus, but the offer was rebuffed. Centaurus’ CEO, John Arnold,
noted in his e-mail communication to Brian Hunter at Amaranth? that in his opinion, despite
its tumble in recent days, the spread at $1 was still substantially overpriced. He suggested
a fair price of 45—60 cents for the spread, which Amaranth refused.

Mr. Arnold’s estimates proved prophetic. A week later on September 21, on what would
turn out to be Amaranth’s last trading day, the spread stood at 58 cents. Other spreads had
similarly collapsed. Amaranth sold its energy book to JP Morgan Chase and liquidated the
remainder of its portfolio to meet margin calls. In just three weeks in September, the fund
had lost $4.35 billion, or 45% of its total assets under management of $9.67 billion.

Leverage, Liquidity, and Volatility

A little reflection shows that three factors did Amaranth in, the first two related to Amaranth’s
strategy and the third to market characteristics:

1. Leverage All futures contracts are levered positions in that a small margin payment
supports the entire position value. A margin payment of (for example) 20% implies a 5:1
leverage. Naked futures positions are, thus, very sensitive to changes in the levels of futures
prices. With spread positions, the risk is somewhat different. It is not the level of futures
prices that matters so much as its ferm-structure, that is, the way futures prices change
with maturities. In particular, what matters is how the differences between futures prices at
different maturities change. Speculative trades on seasonal effects are levered bets on the
shape of this term structure.

In either case, it is leverage that creates the possibility of both large returns and large
losses. Chincarini’s (2006) estimate of a leverage of 5.29 for Amaranth by August 2006
means that the firm’s total assets under management of $9.67 billion were supporting futures
positions of over $50 billion! It is easy to see that a sharp change in futures prices (and/or
the shape of the term-structure of futures prices) could cause catastrophic losses. Amaranth
estimated that the probability of such price moves was small, but judging from the reactions
of other participants, this view was not widely shared.

3 See Senate Report (2007), p. 113.
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2. Liquidity. The ill-effects of leverage are compounded by taking on too much of the same
leveraged trade. It is even worse when that trade is a significant part of the entire market.
Amaranth found that the size of its positions just did not allow it to unwind trades profitably,
and in fact, even partial unwinding resulted in immediate adverse price moves, ensuring
that the remaining positions would sell only at a loss. Marked-to-market “profits” in such
situations can be largely illusory.

Leverage amplifies the impact of price moves. The absence of liquidity means that larger
(adverse) price moves result when attempting to trade out of a position. Together, the two
Ls can form a lethal combination as they did in Amaranth’s case and as many financial
institutions learned to their cost in the crisis of 2008—09.

3. Volatility. Commodities markets are characterized by high levels of volatility. Large
price swings and swift changes in the term structure of futures prices are not uncommon.
Around the time of the Amaranth debacle, natural gas options were trading at volatilities in
the 80%—100% range. (By comparison, the volatilities on major equity indices were in the
15%-20% range.) High volatility means larger price swings, so combined with leverage,
you can win big but you can lose just as big too. Certainly, when things began to go badly
for Amaranth, the high volatility did not help.

Amaranth’s case stands out because of its size, not because of the uniqueness of the factors
that led to its collapse. Eight years earlier, another hedge fund had incurred catastrophic
losses and had almost threatened the stability of the financial system. The 1998 failure
of Long-Term Capital Management (see Chapter 23) had also been caused by the lethal
leverage-liquidity combination. There really is not that much new under the sun, at least
not in terms of the behavior of financial market participants.

2.8 Exercises

1. What are “delivery options” in a futures contract? Generally, why are delivery options
provided to the short but not to the long position?

2. How do delivery options affect the relationship of futures prices to forward prices?

3. To what do the following terms refer: initial margin, maintenance margin, and variation
margin?

4. What are price ticks?

Explain price limits and why they exist.

o L

. What are position limits in futures markets? Why do we need these? Are they effective
for the objective you state, or can you think of better ways to achieve the objective?

7. What are the different ways in which futures contracts may be settled? Explain why
these exist.

8. What is meant by open interest?
9. Discuss the liquidity and maturity of futures contracts.
10. Describe the standard bond in the Treasury Bond futures contract on the CBoT and the
delivery option regarding coupons.
11. Suppose the delivered bond in the Treasury Bond futures contract has a remaining
maturity of 20 years and a 7% coupon. Assume the last coupon was just paid. What is
its conversion factor?
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12. Suppose there are two deliverable Bonds in the Treasury Bond futures contract, a
15-year 8% coupon bond and a 22-year 8% coupon bond. Assume the last coupon on
both bonds was just paid. Which bond has the higher conversion factor? (Guess the
answer first, and then verify it by computation.)

13. What is meant by the “delivery grade” in a commodity futures contract? What is the
problem with defining the delivery grade too narrowly?

14. Identify the main institutional differences between futures contracts and forward
contracts.

15. Explain the term “delivery options.” What is the rationale for providing delivery options
to the short position in futures contracts? What disadvantages for hedging are created
by the presence of delivery options? For valuation?

16. What is the “closing out” of a position in futures markets? Why is closing out of
contracts permitted in futures markets? Why is unilateral transfer or sale of the contract
typically not allowed in forward markets?

17. An investor enters into a long position in 10 silver futures contracts at a futures price of
$4.52/0z and closes out the position at a price of $4.46/0z. If one silver futures contract
is for 5,000 ounces, what are the investor’s gains or losses?

18. What is the settlement price? The opening price? The closing price?

19. An investor enters into a short futures position in 10 contracts in gold at a futures price
of $276.50 per oz. The size of one futures contract is 100 oz. The initial margin per
contract is $1,500, and the maintenance margin is $1,100.

(a) What is the initial size of the margin account?

(b) Suppose the futures settlement price on the first day is $278.00 per oz. What is the
new balance in the margin account? Does a margin call occur? If so, assume that
the account is topped back to its original level.

(c) The futures settlement price on the second day is $281.00 per oz. What is the new
balance in the margin account? Does a margin call occur? If so, assume that the
account is topped back to its original level.

(d) On the third day, the investor closes out the short position at a futures price of
$276.00. What is the final balance in his margin account?
(e) Ignoring interest costs, what are his total gains or losses?

20. The current price of gold is $642 per troy ounce. Assume that you initiate a long position
in 10 COMEX gold futures contracts at this price on 7-July-2006. The initial margin
is 5% of the initial price of the futures, and the maintenance margin is 3% of the initial
price. Assume the following evolution of gold futures prices over the next five days,
and compute the margin account assuming that you meet all margin calls.

Date Price per Ounce
7-Jul-06 642
8-Jul-06 640
9-Jul-06 635

10-Jul-06 632
11-Jul-06 620
12-Jul-06 625

21. When is a futures market in “backwardation”? When is it in “contango”?

22. Suppose there are three deliverable bonds in a Treasury Bond futures contract whose
current cash prices (for a face value of $100,000) and conversion factors are as follows:




23.

24.

25.

26.

27.

28.

29.
30.
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(a) Bond 1: Price $98,750. Conversion factor 0.9814.
(b) Bond 2: Price $102,575. Conversion factor 1.018.
(c) Bond 3: Price $101,150. Conversion factor 1.004.
The futures price is $100,625. Which bond is currently the cheapest-to-deliver?

You enter into a short crude oil futures contract at $43 per barrel. The initial margin is
$3,375 and the maintenance margin is $2,500. One contract is for 1,000 barrels of oil.
By how much do oil prices have to change before you receive a margin call?

You take a long futures contract on the S&P 500 when the futures price is 1,107.40,
and close it out three days later at a futures price of 1,131.75. One futures contract is
for 250 x the index. Ignoring interest, what are your losses/gains?

An investor enters into 10 short futures contracts on the Dow Jones Index at a futures
price of 10,106. Each contract is for 10 x the index. The investor closes out five
contracts when the futures price is 10,201, and the remaining five when it is 10,074.
Ignoring interest on the margin account, what are the investor’s net profits or losses?
A bakery enters into 50 long wheat futures contracts on the CBoT at a futures price
of $3.52/bushel. It closes out the contracts at maturity. The spot price at this time is
$3.59/bushel. Ignoring interest, what are the bakery’s gains or losses from its futures
position?

An oil refining company enters into 1,000 long one-month crude oil futures contracts on
NYMEX at a futures price of $43 per barrel. At maturity of the contract, the company
rolls half of its position forward into new one-month futures and closes the remaining
half. At this point, the spot price of oil is $44 per barrel, and the new one-month futures
price is $43.50 per barrel. At maturity of this second contract, the company closes out
its remaining position. Assume the spot price at this point is $46 per barrel. Ignoring
interest, what are the company’s gains or losses from its futures positions?

Define the following terms in the context of futures markets: market orders, limit orders,
spread orders, one-cancels-the-other orders.

Distinguish between market-if-touched orders and stop orders.

You have a commitment to supply 10,000 oz of gold to a customer in three months’

time at some specified price and are considering hedging the price risk that you face.

In each of the following scenarios, describe the kind of order (market, limit, etc.) that

you would use.

(a) You are certain you wish to hedge and want to take up a futures position regardless
of the price.

(b) Gold futures prices have been on an upward trend in recent days and you are not
sure you want to enter the market right now. However, if the trend continues, you
are afraid you will be locked into too high a price. Weighing the pros and cons, you
decide you want to take a futures position if the price continues to trend up and
crosses $370 per oz.

(c) Consider the same scenario as in b, but now suppose also that you expect a news
announcement that you think will drive gold prices sharply lower. If matters turn
out as you anticipate, you want to enter into a futures position at a futures price
of $350/0z or lower. However, you recognize there is a probability the news an-
nouncement may be adverse and gold prices may continue to trend up. In this case,
you want to buy futures and exit if prices touch $370/0z.

(d) You want to institute a hedge only if you can obtain a gold futures price of $365/0z
or less.
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31.

32.

33.

34.

35.

36.

(e) Gold futures prices have been on a downward trend in the last few days. You are
hoping this continues but don’t anticipate prices will fall too much below $362/0z,
so you are willing to take the best price you can get once prices are at $364/0z.

The spot price of oil is $75 a barrel. The volatility of oil prices is extremely high at

present. You think you can take advantage of this by placing a limit order to buy futures

at $70 and a limit order to sell futures at $80 per barrel. Explain when this strategy will
work and when it will not.

The spread between May and September wheat futures is currently $0.06 per bushel.
You expect this spread to widen to at least $0.10 per bushel. How would you use a
spread order to bet on your view?

The spread between one-month and three-month crude oil futures is $3 per barrel. You
expect this spread to narrow sharply. Explain how you would use a spread order given
this outlook.

Suppose you anticipate a need for corn in three months’ time and are using corn futures
to hedge the price risk that you face. How is the value of your position affected by a
strengthening of the basis at maturity?

A short hedger is one who is short futures in order to hedge a spot cash-flow risk. A
long hedger is similarly one who goes long futures to hedge an existing risk. How does
a weakening of the basis affect the positions of short and long hedgers?

Suppose you deliver a grade other than the cheapest-to-deliver grade on a futures
contract. Would the amount you receive (the conversion factor times the futures price)
exceed, equal, or fall short of the spot price of the grade you deliver?
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Futures Trading and US Regulation:
A Brief History

As economic mechanisms go, forward trading is very old.! The Futures Industry Association
traces the origin of forward trading to India around the year 2,000 BC. There is also evidence
of forward markets in Greco-Roman Europe. More recently, there were organized forward
markets in 17th-century Japan and Europe. The world’s first futures exchange was likely
the Dojima Rice Market set up in Osaka, Japan, in 1730.

Nonetheless, it is with 19th-century America, particularly the grain markets of Chicago,
that modern futures markets are most closely associated. Their immediate predecessor in
the US was a contract form called the “to arrive” contract by which buyers and sellers
contracted for the delivery of grain in the future at a fixed price. By the time of the US Civil
War, the “to arrive” contracts had themselves become traded instruments, bought and sold
in anticipation of price movements and used for both speculation and hedging. These were
replaced by standardized “futures contracts” on the Chicago Board of Trade (CBoT), the
first organized futures exchange in the US.

The CBoT was established in 1848 and received a charter from the State of Illinois in
1859. It was swiftly followed by a number of other exchanges. The Milwaukee Chamber
of Commerce was organized in 1858 to serve as a mechanism for trading grain. The New
York Produce Exchange opened for commodity trading in 1861, and the New York Gold
Exchange, New York Cotton Exchange, and New York Butter and Cheese Exchange (later the
New York Mercantile Exchange) followed in 1864, 1870, and 1872, respectively. The Kansas
City Board of Trade was incorporated in 1876, the same year the Merchant Association of
St. Louis was organized. In all, over a thousand exchanges sprang up all over the US by the
late 19th century.

The rapid growth was accompanied by rampant abuses and attempts at market manip-
ulation. “Plungers,” as market manipulators were called, made repeated attempts to corner
or squeeze the market. Such attempts were commonplace. According to Markham (1987),
“it was reported that [at the CBoT in 1868] there were three corners in wheat, two in corn,
one in oats, one attempted corner in rye, and another threatened in pork.”

Many corners were run successfully and made fortunes for the plungers. Others were
spectacular failures leading to huge losses. One such failure was the attempted corner of the
December 1897 wheat futures contract on the CBoT by Joe Leiter, a speculator. The corner
was broken when the “meat king” P. D. Armour, who was the largest short, hired a fleet of
boats to break through the ice and bring grain into Chicago. Another was “Black Friday” in
New York’s gold market in 1869. An attempted corner of the gold market by Jay Gould and
Jim Fisk failed when President Ulysses Grant’s decision to sell gold from the US Treasury
led to a collapse in the price of gold and a suspension of gold dealings for a week.

Instances of market manipulation have come down dramatically in recent years but have
not vanished. A huge default in 1976 on thousands of contracts on the now-defunct Maine
potato contract on the NYMEX appears to have been caused by a classic squeeze play in
which the size of the long positions far exceeded available supply. In 1980, the “Silver Crisis”

T An excellent reference, and the source of much of the historical material in this section, is Markham
(1987).
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occurred when the Hunt brothers of Texas attempted to corner the world silver market. It is
estimated that at one time, between their long spot and long futures positions, they controlled
about 200 million oz of silver, about 50% of the US annual consumption level. The price
of silver rose from about $6/0z in December 1980 to around $50/0z six months later. The
attempted corner was broken by a combination of intervention by regulators and tough
action by the exchanges that forced the Hunt brothers to unwind their positions and take
losses in the billions of dollars.

Futures Regulation in the US

The earliest attempt at US federal regulation of futures markets came in 1861. In the early
years of the US Civil War, the price of gold rose and fell with the fortunes of the Union
army. Congress responded by prohibiting futures trading in gold in an attempt to stabilize its
price. The legislation was repealed after a few weeks when it proved ineffective. By the late
19th century, however, speculative trading in futures markets was widely—and in the eyes
of its supporters, unfairly—blamed for price swings in agricultural commodities. Congress
and the states made numerous attempts to regulate or abolish futures trading.

Federal involvement began in 1914 with the Cotton Futures Act, which established the
use of federal standards for grading cotton. Active regulation came in 1922 with the Grain
Futures Act, which established a licensing system for futures exchanges or “contract mar-
kets” as they were called. The Grain Futures Act was replaced by the Commodity Exchange
Act (CEA) of 1936. The CEA extended regulatory oversight to traders and brokerage firms
and established the Commodity Exchange Administration, the principal regulator of futures
trading in the US for almost four decades. In 1974, Congress enacted the Commodity Fu-
tures Trading Act, giving birth to the Commodity Futures Trading Commission (CFTC) as
the regulatory agency in charge of futures markets.

The birth of the financial futures market in the 1970s (see Section 2.2) was the first
challenge to the regulatory authority of the CFTC. The Securities and Exchange Commission
(SEC) challenged the CFTC’s approval of futures trading on GNMA mortgage-backed
securities. The SEC argued that since the asset underlying the proposed futures contract
was a security rather than a commodity, the SEC, not the CFTC, should have the power to
approve trading in the contract.

The enactment of the Shad-Johnson Accords by Congress in 1982 delineated responsi-
bility between the agencies. (John Shad was then the chairman of the SEC and Phil Johnson
was his counterpart in the CFTC.) The SEC was given jurisdiction over options on securities
and options on indices of securities (e.g., stock indices). The CFTC was given jurisdiction
over all futures contracts including futures on securities, futures on indices of securities,
and options on futures on such indices. But the 1982 legislation gave the SEC effective
veto power over new stock index futures contracts to ensure they were not capable of easy
manipulation.

In 2000, the Commodity Futures Modernization Act (CFMA) was signed into US law
by President Bill Clinton, after very little debate on its provisions in either the House or
the Senate. The CFMA provided for a major overhaul of the CEA as well as regulatory
domains of the SEC and CFTC. It allowed the trading of futures contracts on single stocks
and on “narrowly based” stock indices, futures contracts that had been prohibited under
the Shad-Johnson Accord. The SEC and CFTC were given joint regulatory oversight of
these instruments. The CFMA also explicitly excluded certain over-the-counter derivatives
transactions (mainly swap agreements) from CFTC oversight. Perhaps the most controversial
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part of the CFMA was the “Enron loophole,” which exempted most over-the-counter energy
trades and trading on electronic energy commodity markets from government regulation.

Following the financial crisis of 2008—09 and the heavy losses incurred by AIG and others
from dealing in credit default swaps among other instruments, the CFMA has come in for
substantial criticism for de-emphasizing regulation of the derivatives industry. It seems very
likely at the time of writing this chapter (early 2009) that the CFMA will be repealed or
modified in important ways in the near future.



Chapter

Pricing Forwards and
Futures I: The Basic
Theory

3.1 Introduction

60

This chapter and the next mark the begining of our exploration into the pricing of derivative
securities. This chapter is mainly theoretical: it presents and develops the basic ideas that
drive the pricing of forwards and futures, first in the context of forward contracts, then
futures. Building on this foundation, Chapter 4 then examines how well the theory does in
practice and also a number of other issues of importance.

The pricing of forward contracts—actually, the pricing of all derivatives—is based on a
simple but very powerful concept known as replication. Simply put, replication is the idea
that the price of a derivative should be the cost of creating the same outcome synthetically
(i.e., by using other securities). A maintained assumption in this process is that of no
arbitrage, that is, that markets do not permit the creation of something out of nothing. We
begin by making this assumption precise.

The Main Assumption: No Arbitrage

Throughout the book, we assume that markets do not permit arbitrage opportunities. The
word “arbitrage” has acquired a variety of meanings in the popular finance lexicon, ranging
from its original connotation of a riskless profit opportunity to a more liberal interpretation
as a portfolio that generates a superior risk-adjusted return. In this book, we use the word
only in its narrow classical sense: an arbitrage is a portfolio that guarantees net cash
inflows without any net cash outflows. Such a portfolio is a free lunch, the equivalent of
the metaphorical $10 bill lying on the pavement. It represents an extreme form of market
inefficiency in which two baskets of assets that are essentially identical trade at different
prices.

The no-arbitrage assumption is not to be taken literally as implying that arbitrage oppor-
tunities can never arise in the market, but rather that they cannot persist. That is, while a
misalignment of prices may create such opportunities, market participants take advantage
of them as they arise, and prices adjust to eliminate the arbitrage. (Someone eventually
trousers the $10—it does not continue lying there.) As such, the no-arbitrage condition is a
statement of minimal market rationality.
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The Guiding Principle: Replication

The principle of replication that underlies the pricing and hedging of all derivative securities
is based on a simple idea. The payoffs of a derivative are determined by changes in the price
of the underlying asset. Therefore, it “should” be possible to re-create these payoffs by
directly using the underlying asset and, perhaps, cash (borrowing or lending at the risk-free
rate). If such a portfolio can be constructed, it is called a replicating portfolio; the derivative
is then said to be “synthesized” by the replicating portfolio.

The derivative and its replicating portfolio lead, by definition, to identical outcomes, so,
under the no-arbitrage condition, they must have the same cost. The cost of the replicating
portfolio is readily computed since it consists of only the underlying spot asset and cash.
Thus, the cost of the derivative, its so-called “fair price,” is identified.

The key step in exploiting these ideas is identifying the composition of the replicating
portfolio. For forward contracts, this is a simple task, as we now describe.

3.2 Pricing Forwards by Replication

Some notation first. Let date 0 denote the current date and date 7 the maturity date of a
given forward contract. The length of the contract is thus 7 years. (We always measure time
in years.) Let S denote the current price of the asset underlying the forward contract and let
St denote its price at 7.

Consider an investor with a long position in a forward contract with delivery price F.
At maturity of the contract, the investor receives one unit of the underlying asset and pays
the agreed-upon delivery price. To replicate this final holding, the investor can simply buy
one unit of the underlying asset at date 0 and hold it to date 7. Both strategies result in the
investor’s holding one unit of the asset at time 7'. Therefore, their costs in present value
terms must also coincide.

What are these costs? The forward contract involves no cash flows up to date 7 and a
single cash outflow equal to the delivery price F' on date 7. Viewed from date 0, the cost
of this strategy is PV (F'), the present value of an amount F payable at time 7.

The replicating strategy results in a cash outflow of S at date 0 for purchasing the spot
asset. It may, in addition, involve other cash flows. These could be cash inflows such as
dividends or coupons received as a result of holding the asset (e.g., if the asset is a financial
security like a stock or bond); we call these “holding benefits.” Alternatively, there may be
further cash outflows such as storage or insurance costs (“holding costs”), especially if the
asset is a physical commodity such as wheat or gold. Let M denote the present value of the
net holding costs:

M = PV(Holding Costs) — PV (Holding Benefits) 3.1
The net cost of the replicating strategy is then
S+ M 3.2)
Setting this equal to the cost of the forward contract, we have
PV(F) = S+ M 3.3)

Equation (3.3) is the fundamental theoretical pricing equation for forward contracts. If
it does not hold, an arbitrage opportunity arises:

o If PV(F) > S+ M, the forward is overvalued relative to the cost of replication. We
can sell forward, buy spot, and make a riskless profit. This is called “cash-and-carry”
arbitrage.
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o« If PV(F) < S+ M, the forward is undervalued relative to the cost of replication. We
can buy forward, sell spot, and make a riskless profit. This is “reverse cash-and-carry”
arbitrage.

From (3.3), the unique delivery price F at which arbitrage is not possible may be deter-
mined from knowledge of three things: (i) the current spot price S, (ii) the present value M
of the cost of holding the spot asset to date 7', and (iii) the level of interest rates, which is
needed to calculate present values. This is the central message of this chapter. The argument
leading to (3.3) is called the “cost of carry” method of pricing forwards since it determines
the forward price as a function of the cost of “carrying” the spot asset to maturity.

Some Assumptions

To develop these ideas in a simple and concise manner, we will make use of three assumptions
in addition to the main no-arbitrage condition:

Assumption 1. There are no transactions costs.

Assumption 2. There are no restrictions on short sales. In particular, the full proceeds
of short sales are available immediately for investment to the short seller.

Assumption 3. The (default-)risk-free rate of interest is the same for borrowing and
lending.

These assumptions are imposed in the interests of simplicity and to keep attention focused
on the main ideas. They are not, of course, always realistic (particularly Assumption 2). In
the next chapter (see Sections 4.2—4.4), we show that each assumption can be dropped at the
cost of adding a bit of complication to the analysis. In particular, we obtain an arbitrage-free
“band” of prices rather than a single price, with the size of the band depending on the extent
of violation of the assumptions (e.g., the size of transactions costs).

Interest-Rate Convention

Finally, to compute the present values in expression (3.3), we need the interest rates to be
used for discounting cash flows occurring between dates 0 and 7'. In practice, the convention
for quoting interest rates varies widely across markets and contracts. Appendix 3A describes
different compounding conventions (annual, semiannual, continuous, etc.).

Different compounding and interest-rate conventions are, however, merely different mea-
suring sticks for the same concept, analogous to measuring height in feet and inches instead
of meters and centimeters. As illustrated in Appendix 3A, interest-rate quotes under one
compounding convention may easily be converted to quotes under any other convention. The
exact convention we choose to use to develop the theory is solely a matter of convenience.

We adopt the convention in this chapter that interest rates are quoted in continuously
compounded terms on an annualized basis. Thus, a T-year interest rate of » means that $1
invested for T years at the rate 7 grows by maturity to $¢’”. In the numerical examples,
we further simplify matters by treating each month as 1/12 of a year. Thus, a three-month
interest rate of 10% means that $1 invested at this rate for three months grows to

0100/4 — ¢1.0253

Forward Pricing Formulae with Continuous Compounding

Let r be the rate of interest applicable to a 7-year horizon. Under the continuous com-
pounding convention,

PV(F) = ¢'TF
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Using this in the formula (3.3), we obtain e "7 F = S 4+ M, or
F = T(S+ M) 3.9

Equation (3.4) is the promised forward pricing formula under continuous compounding.
For the special case where there are no holding costs or benefits (M = 0), it becomes

F =¢'s (3.5)

3.3 Examples

Example 3.1

TABLE 3.1 Cash
Flows in Example 3.1
from Arbitraging an
Overvalued Forward

We present two examples in this section to illustrate the mechanics of arbitrage when the
forward pricing formula is violated. The first example keeps matters simple by assum-
ing no holding costs or benefits, while the second example allows for such interim cash
flows.

Suppose the current spot price of gold is So = $350 per oz, the risk-free three-month rate
of interest is 3%, and there are no costs of holding gold. What is the three-month forward
price of gold?

From (3.5), the unique arbitrage-free forward price is

F = 0090/ 350 = 352635 (3.6)

Any other forward price will lead to an arbitrage opportunity as we now show.

(A) Arbitrage from an Overvalued Forward

Suppose F > 352.635, say F = 355. Then, the forward is overvalued relative to spot by
the amount 355 — 352.635 = 2.365. To take advantage, we sell the relatively overvalued
contract (the forward) and buy the relatively undervalued one (the spot asset). The specific
strategy is:

1. Enter into a short forward position to deliver 1 oz of gold in three months at the delivery
price of $355.

2. Buy 1 oz of gold in the spot market and hold it for three months.
3. Borrow $350 for three months at the interest rate of 3%.

Why is borrowing part of this strategy? The short forward position results in a cash inflow
only in three months’ time whereas purchasing the spot asset requires a cash outflow today.
This cash outflow must be funded either explicitly (by borrowing) or implicitly (by utilizing
surplus cash, in which case we are borrowing from ourselves, so the interest represents an
opportunity cost). As a consequence of the borrowing, all net cash flows are moved to the
maturity date of the forward contract.

The resulting set of cash flows is summarized in Table 3.1. There are no net cash flows
at inception since the required cash outflow of $350 to buy the spot asset is matched by

Source of Cash Flow Initial Cash Flow Final Cash Flow
Short forward - +355.000
Long spot —350.000 -
Borrowing +350.000 —352.635

Net cash flows - +2.365
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TABLE 3.2 Cash
Flows in Example 3.1
from Arbitraging an
Undervalued Forward

Example 3.2

Source of Cash Flow Initial Cash Flow Final Cash Flow
Long forward - —351.000
Short spot +350.000 -
Investment —350.000 +352.635
Net cash flows - +1.635

the inflow of $350 from the borrowing, and, of course, there is no up-front cost to enter
a forward contract. Nor are there any interim cash flows between inception and maturity
since there are no costs of holding gold by assumption.

At maturity of the forward contract, the 1 oz of gold is delivered to the long forward
position, resulting in a cash inflow of $355 from the forward. There is also a cash outflow
of e©030/9 » 350 = $352.635 towards repaying the borrowing. Thus, there is a net cash
inflow of $2.365 at this point, representing the arbitrage profits.

(B) Arbitrage from an Undervalued Forward

Now suppose that F < 352.635, say F = 351. Now the forward is undervalued relative
to spot by $1.635, so we buy forward and sell spot to take advantage of the mispricing.
Specifically:

1. Enterinto along forward position to purchase 1 oz of gold in three months at the delivery
price of $351.

2. Short 1 oz of gold in the spot market and hold the short position for three months.

3. Invest the proceeds of $350 from the short sale for three months at the interest rate of
3%.

The investment in this strategy plays the same role as the borrowing in the earlier strategy.
The cash flows are summarized in Table 3.2. Once again, there are no net cash flows at
inception since the cash inflow of $350 from the short sale is matched by the cash outflow
of $350 for the investment. There are no net interim cash flows since gold has no holding
costs.

At maturity, we pay $351 and receive 1 oz of gold from the forward contract that we use
to cover our short position. We also receive a cash inflow of e©0301/4 » 350 = $352.635
from the investment. Thus, there is a net cash inflow of $1.635, representing our arbitrage
profits. |

The assumption that there are no holding costs or benefits is often not a reasonable one.
Holding financial assets such as bonds or equities may result in holding benefits in the
form of coupons or dividends. Holding commodities may involve substantial storage and
insurance costs; the costs of storing oil, for instance, amount, on an annualized basis, to
about 20% of the cost of the oil itself. Such interim costs or benefits affect the cost of the
replication strategy and should be taken into account in calculating the forward price. The
following example deals with such a situation.

Consider a six-month forward contract on a bond. Suppose the current spot price S of
the bond is $95 and that the bond will pay a coupon of $5 in three months’ time. Finally,
suppose the rate of interest is 10% for all maturities. What is the arbitrage-free forward price
of the bond?
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In terms of our notation, we are given § =95, T = 6 months = 1/2 year, and r = 10%.
Since holding the bond involves a cash inflow, M is negative and is given by minus the
present value of $5 receivable in 3 months:

M = —e©10029 5 — 4877
Therefore, from the forward-pricing formula (3.4), we have
F = 0100/2 5 (95 _4877) = 0190/ % (90.123) = 94.74

Any other delivery price leads to an arbitrage opportunity.

(A) Arbitrage from an Overvalued Forward

Suppose F > 94.74, for example, F = 95.25. Then, the forward is overvalued relative to
spot by $0.51, so we should buy spot, sell forward, and borrow. There are many ways to set
up the precise strategy. One is to split the initial borrowing of $95 into two parts with one
part repaid in three months with the $5 coupon and the other part repaid after six months
with the delivery price received from the forward contract. More precisely:

1. Enter into a short forward position to sell the bond in six months’ time for $95.25.
2. Buy 1 unit of the spot asset for $95 and hold itup to T.

3. Borrow PV(5) = e ©100/9 x 5 = $4.877 for repayment in three months and $90.123
for repayment in six months.

The cash flows from this strategy are summarized in Table 3.3. There are no net cash flows
at inception since the cash outflow of $95 required to purchase the bond is matched by the
total inflows from the borrowings (4.877 4+-90.123 = 95). The only interim cash flows occur
in three months. At that point, an amount of $5 is due to repay the three-month borrowing,
but we receive $5 as coupon from the bond we hold. Thus, there are no net cash flows at
this point either.

At maturity of the forward contract, there is a cash inflow of $95.25 from the forward
position when the bond is delivered, and a cash outflow of

010050 5 90.123 = 94.74

towards repaying the six-month borrowing. Thus, there is a net cash inflow of $95.25 —
94.74 = 0.51, representing the arbitrage profits.

(B) Arbitrage from an Undervalued Forward

Now suppose F < 94.74, say F = 94.25. Then the forward is undervalued relative to spot
by $0.49, so we buy forward, sell spot, and invest. In greater detail:

1. Enter into a long forward position to sell the bond in six months’ time for $94.25.

Source of Cash Flow Initial Cash Flow Interim Cash Flow Final Cash Flow
Short forward - - +95.25
Long spot —95.000 +5.000 =
3-month borrowing +4.877 —5.000 -
6-month borrowing +90.123 - —94.74

Net cash flows - - +0.51
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TABLE 3.4 Cash
Flows in Example 3.2
from Arbitraging an
Undervalued Forward

Source of Cash Flow Initial Cash Flow Interim Cash Flow Final Cash Flow
Long forward - - —94.25
Short spot +95.000 —5.000 -
3-month investment —4.877 +5.000 -
6-month investment -90.123 - +94.74

Net cash flows — — +0.49

2. Short 1 unit of the bond for $95 and hold the short position up to T.
3. Invest PV(5) = e @100/ » 5 — $4 877 for three months and $90.123 for six months.

Table 3.4 summarizes the resulting cash flows. There are no net initial cash flows. There
is a cash inflow of $5 after three months from the three-month investment, but there is also
a coupon of $5 due on the short bond. Thus, there is no net cash flow at this point either.
After six months, the contract is at maturity. At this point, we receive

0100050 . 90 123 = $94.74

from the six-month investment. We pay $94.25 on the forward contract and receive the
bond, which we use to close out the short position. This leaves us with a net cash inflow of
$0.49 representing arbitrage profits. |

3.4 Forward Pricing on Currencies and Related Assets

An important difference between a currency and other underlyings such as wheat is that
when we buy and store one bushel of wheat, it remains one bushel of wheat at maturity
(assuming, of course, that the rats don’t get at it!). In contrast, when we buy and store
currency, the currency earns interest at the appropriate rate, so one unit of the currency
grows to more than one unit over time. This means that the fundamental forward pricing
formula (3.3) must be modified for such cases.

As a specific motivation, consider a currency forward contract (say, on British pound
sterling denoted £) maturing in 7" years. An investor taking a long position in this contract
pays the delivery price $ F at time T and receives £1 at that point. To replicate this outcome
using the spot asset, the investor cannot simply buy £1 today and hold it to 7. Why not?
The pound sterling the investor holds earns interest at the rate applicable to T'-year sterling
deposits, so the £1 would grow to more than £1 at 7. For example, if 7 = 3 months and
the three-month interest rate on sterling is 8%, then the initial £1 will grow to

001/4  _ £1 02

in three months, so the investor will end up overreplicating the outcome of the forward
contract.

To correct for this, we must take interest yield into account in constructing the replicating
strategy. We do this by adjusting the number of units of the spot currency we buy at the
outset so that we are left with exactly one unit at maturity. In this example, this may be
accomplished by buying only £(1/1.02) = £0.98 initially. When this amount is invested at
the 8% rate for three months, we will receive £1 at maturity.

We describe the forward pricing formula that results when the replicating strategy is
modified in this way. Then we provide an example to illustrate the arguments.
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The General Pricing Formula for Currency Forwards

For simplicity, we continue referring to the foreign currency as pound sterling (GBP). Denote
the spot price of this currency by S. As usual, S denotes the current price in US dollars
(USD) of one unit of the underlying spot asset. Here, the underlying is pound sterling, so S
refers to the exchange rate USD per GBP. Here, and elsewhere in the book where it helps
to simplify exposition, we shall use the common symbols $ for USD and £ for GBP.

If we take a long forward position with a delivery price of F, then in T years, we pay $F
and receive £1. Viewed from today, the cost of this strategy in USD is PV ($F'), or what is
the same thing,

F-PV($1) (3.7)

(We write the $ sign inside the parentheses to emphasize that present values are computed
using the USD interest rate.)

To replicate the outcome of the forward, we must construct a strategy that leaves us with
£1in T years. But this is a simple task: all we need do is buy the present value of £1 today
and invest it so that it grows to £1 by time 7. Of course, to calculate this present value,
we must use the interest rate on pounds, not on dollars, since we can invest the purchased
pounds only at the pound interest rate. To emphasize this point, we write PV (£1) for the
present value.

The cost of this replicating strategy in dollars is the number of pounds purchased today
(which is PV (£1)) times the current dollar price per pound (which is S):

S PV(£1) 3.8)
Equating the costs of the two strategies, we obtain
F-PV($1) = S-PV(£1) 3.9
so that
PV(£1)
F =S 3.10
PV (81 ( )

Expression (3.10) is the fundamental pricing equation for foreign currency forwards. It
is also referred to as covered interest-rate parity. It expresses the arbitrage-free forward
price as a function of three variables: the spot exchange rate, domestic interest rates, and
interest rates on the foreign currency.

Currency Forward Prices under Continuous Compounding
Suppose we express interest rates on both currencies using a continuous compounding
convention. Let d denote the T-year interest rate on pound sterling, and, as usual, let » be
the 7'-year interest rate on the dollar. Then, from (3.10), we have

- ¢ e—dT
e T
Rearranging this expression, we obtain
F =0Ty (3.11)

Expression (3.11) is the currency forward pricing formula when interest rates are expressed
in continuously compounded terms. This formula has an intuitive interpretation. When we
buy the spot asset, we give up dollars, which has an opportunity cost represented by the
dollar interest rate ». However, we receive pound sterling in exchange, which carries a
holding benefit represented by the sterling interest rate d. The difference » — d represents
the net cost of holding spot that is reflected in forward prices.
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Example 3.3 Consider a forward contract on pound sterling. Suppose the spot exchange rate is $1.60/£.
Suppose also that the three-month interest rate on dollars is 6% while the three-month inter-
estrate on poundsis 8%, both in continuously compounded terms. What is the arbitrage-free
three-month forward price?

In terms of our notation, we are given: S = 1.60, T = 3 months = 1/4 year, r = 0.06,
and d = 0.08. Therefore, from (3.11), the unique arbitrage-free forward price is

F = 006-0081/4(1 60) = 1.592

(A) Arbitrage from an Overvalued Forward

Suppose the delivery price in the forward contract differed from this quantity; for example,
suppose we have F = 1.615. Then, the forward is overvalued relative to spot, so we sell
forward and buy spot to create a riskless profit. The complete strategy is:

1. Enter into a short forward contract to deliver £1 for $1.615 in three months.

2. Buy £e 9T = £0.98 at the spot price of $1.60/£.

3. Invest £0.98 for three months at the interest rate of 8%.

4. Finance the spot purchase by borrowing $(0.98)(1.60) = $1.568 for three months at
6%.

Note that we buy only £¢-97 units at the outset because we want to have only £1 at maturity.

There are clearly no net initial cash flows in this strategy, nor, of course, are there interim
cash flows. At maturity, we receive £1 from the investment, which we deliver on the for-
ward contract and receive $1.615. We must also repay the borrowing. This leads to a cash
outflow of

$1.568 x 0-000/9 — §1.592

Thus, there is a net cash inflow of $0.023 at maturity representing arbitrage profits from the
mispricing.

(B) Arbitrage from an Undervalued Forward

Similarly, suppose the delivery price in the forward contract is less than 1.592, say F = 1.570.
Then, the forward is undervalued relative to spot, so we should buy forward and sell spot.
The complete strategy is:

1. Enter into a long forward contract to buy £1 for $1.57 in three months.
2. Sell £e=97 = £0.98 at the rate of $1.60 per pound and receive $(1.60)(0.98) = $1.568.
3. Borrow £0.98 for three months at the interest rate of 8%.
4. Invest $1.568 for three months at the interest rate of 6%.

Note, once again, that we borrow and sell only £e=9" initially, since this will lead to a
cash outflow of £1 at maturity, which we can meet from the £1 received on the forward
contract.

Once again, there is no net initial cash flow and there are no interim cash flows. At
maturity, we pay $1.57 and receive £1 from the forward contract. We owe

£0.98 x 0990/M = £1
on the borrowing. Finally, we receive
$1.568 x 0090/% = 1,592

from the dollar investment. Summing all this up, we have a net cash inflow at maturity of
$0.022 representing arbitrage profits from the mispricing. |
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Pricing Forwards on Stock Indices

In addition to currency forwards, the formula (3.11) has other uses also. One lies in the
pricing of forwards on stock indices. A stock index is a basket of a number of stocks con-
structed according to specified rules. In the next chapter, we consider stock index forwards
and show that one simple way to price these forwards is to use the formula (3.11) with d
denoting the dividend yield on the index. The details are in Section 4.6.

3.5 Forward-Rate Agreements

The idea of replication can also be used to price forward contracts such as forward-rate
agreements or FRAs—and generalizations of FRAs such as interest rate swaps—that
depend directly on the level of an interest rate rather than on the price of a traded asset
or commodity. FRAs are treated in detail in Chapter 6, so we do not present the ideas
here.

3.6 Concept Check

In recent years, several countries have pegged their currency to a foreign currency, thereby
fixing the exchange rate. Argentina and Hong Kong, for example, have used pegs tying their
currencies to the US dollar.

Consider a currency (call it the “tiger”) that is pegged to the dollar. Suppose for specificity
that it is pegged at 10 tigers per dollar. Suppose that the peg is widely considered credible
in financial markets, i.e., market participants do not believe it is likely to break. What is the
one-month forward price on the tiger? Think carefully before attempting an answer!

A little reflection shows that the forward price cannot be greater than 10 tigers per dollar.
Suppose, for instance, that it is 11 tigers/dollar. Then an arbitrage can be created by buying
tigers forward at 11 tigers/dollar (i.e., roughly at $0.09/tiger), waiting until maturity of the
forward contract, and selling the delivered tigers at the spot price of 10 tigers/dollar (i.e., at
$0.10/tiger).

Similarly, it cannot be less than 10 tigers per dollar. Suppose it were (say) 9 tigers per
dollar. An arbitrage can be created by selling tigers forward at 9 tigers/dollar (i.e., roughly
at $0.11/tiger), waiting until maturity of the forward contract, and buying and delivering
the required tigers at the spot price of 10 tigers/dollar (i.e., at $0.10/tiger).

Thus, the forward price must be 10 tigers/dollar. We have identified this arbitrage-free
forward price without knowledge of the interest rates as required by the formula (3.11) for
currency forwards. Does this mean that (3.11) does not apply to this case?

On the contrary! We have shown that (3.11) must always hold or there is an arbitrage.
So how are these two statements to be reconciled?

The key lies in noting that we derived the forward price of 10 tigers/dollar assuming the
peg was fully credible. But if the peg is fully credible, the dollar interest rate » must be the
same as the tiger interest rate d. If the dollar interest rate is lower, we can create a simple
arbitrage by borrowing in dollars at the dollar interest rate, converting to tigers, investing
at the tiger interest rate, and converting back to dollars at maturity. The reverse strategy
creates an arbitrage if the dollar interest rate is higher. Thus, we must have » = d, so using
the formula (3.11) would have given us the same answer.

All these arguments rely on the peg being credible beyond doubt. If there is some
suspicion that the peg might break, spot and forward prices will not coincide; neither
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will dollar and tiger interest rates. In all cases, however, forward and spot prices must be
linked via (3.11), or an arbitrage opportunity arises.

3.7 The Marked-to-Market Value of a Forward Contract

In dealing with a portfolio of derivatives, we are often faced with the question: how much is
a particular derivative contract, entered into a while ago but not yet at maturity, worth
today? That is, what is its marked-to-market value? This value is used in practice to
settle forward contracts prior to maturity. This section examines the answer for forward
contracts.

An Intuitive Answer

Consider a specific example. Suppose we hold a long position in a forward contract on
copper with a delivery price D = $0.80 per Ib that was entered into earlier and now has one
month left to maturity. Suppose that the current forward price for the same contract (i.e.,
copper of the same grade with one month to maturity) is $ ' per Ib. What is the marked-to-
market value (henceforth, simply “value”) of the contract we hold? That is, how much better
or worse off are we for having locked-in a delivery price of D = $0.80 per Ib compared to
the prevailing forward price of F'?

An intuitive answer to this question is easily given. Suppose F' > D, say F = $0.82.
Then, we are better off by $0.02 per Ib for having locked-in the delivery price of D = $0.80.
This difference of $0.02 in the delivery price is realized only in a month’s time when the
contract is at maturity, so has a present value of P7(0.02). This is the value of the contract
we hold.

Analogously, suppose F' < D, say, F = $0.79 per Ib. Then, we are worse off by $0.01
per 1b for having locked-in a delivery price of $0.80 per Ib, so the contract now has a value
of PV (—0.01).

These arguments suggest that, in either case, the value of the contract to the long position
is PV (F — D). The value to the short position is just the negative of this value and is given
by PV(D — F).If F > D, the contract has positive value to the long position and negative
value to the short. If F < D, the opposite is true.

Valuation by Reversal

We can derive these expressions more formally by examining the question: how much value
would be gained (or lost) if we were to unwind the contract right away and lock-in our
profits or losses?

We cannot unwind a forward contract by selling it unilaterally. Nonetheless, we can
achieve the functional equivalent of a sale by reversal. Reversal simply involves taking the
opposite position to the original in another forward contract with the same maturity date
as the original. Thus, for example, if our original contract was a long position in a forward
contract to buy 100 barrels of oil in April, we enter into a short forward contract to sell 100
barrels of oil in April.

Note that reversal entails some credit risk unlike the closing-out of a futures position.
If the counterparty with whom we signed our original forward agreement defaults, our
obligations still remain on the contract used to reverse the original one.

Ignoring credit risk, reversal achieves the same outcome as a sale of the contract in that
there is no net obligation in the underlying at maturity: the long and short positions are
equal in size and cancel each other out. However, there is a net cash flow: the original long
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position had a delivery price of D while the new contract used for reversal can be entered
into only at the prevailing forward price F. This means we pay D on the original long
forward position but receive ' on the short forward contract used for reversal. The net cash
flow is F — D. The present value of this net cash flow, PV (F — D), is the value of the
original contract to a long position. The negative of this quantity, P V(D — F), is the value
of the original contract to a short position.

A US investor holds a one-month short forward position on pound sterling. The contract
calls for the investor to sell £2 million in one month at a delivery price of $1.61 per pound.
The current forward price for delivery in one month is F = $1.5850 per pound. Suppose
the one-month rate of interest is 6%. What is the value of the investor’s position?

The investor has locked in a delivery price of D = $1.61 per pound compared to the
prevailing forward rate of F = $1.5850 per pound. As the holder of a short forward, the
investor is better off by $0.0250 per pound. This difference will be received in one month’s
time, so its present value is

PV(D —F) = ¢ ©000/12 40,0250 = 0.024875
Since the contract calls for the delivery of £2 million, the value of the investor’s position is
2,000,000 x 0.024875 = $49,750

If the parties to the contract agree to unwind it today, the long position in the contract
would have to pay the investor $49,750. |

Suppose an investor holds a long forward position on 10,000 shares of Microsoft stock with
a delivery price of $25 per share and maturity in two months. Assume no dividends are
expected from Microsoft over the next two months. Suppose the two-month interest rate
is 4% and Microsoft stock is currently trading at $24.50. What is the arbitrage-free forward
price $F on the stock for delivery in two months? Given $F, what is the marked-to-market
value of the investor’s position?

In our notation, we are given D = 25 (the delivery price already locked in) and T =
2 months = 1/6 year. We are not given f, but are asked to calculate it from the given
information. Since no dividends are expected on the stock, the arbitrage-free forward price
can be obtained using the zero holding costs formula (3.5). This results in

F = 090/6) 5 2450 = 24.664

Since the investor has a long forward position, the value per share of having a delivery
price of D =25 is

PV(F — D) = e ©090/® » [24.664 — 25] = —0.3339

Since the forward contract calls for the delivery of 10,000 shares, the total marked-to-market
value of the investor’s position is

10,000 x —0.3339 = —3,339

Thus, if the two sides to the contract agree to unwind it today, the investor would have to
pay the short position in the contract $3,339. |
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3.8 Futures Prices

Valuing a futures contract analytically (i.e., identifying an exact relationship between futures
and spot prices) is difficult for two reasons. The first is the presence of delivery options in
futures contracts, which creates uncertainty about the grade that will actually be delivered
at maturity. The second is the daily marking-to-market procedure in futures markets, which
creates interim cash flows of uncertain size. Either factor raises the difficulty of the pricing
problem considerably.

So rather than focus on the technical issue of valuation, we discuss the qualitative
relationship between otherwise identical futures and forwards. “Otherwise identical” means
(a) that the two contracts have the same maturity date and same delivery price, and (b) that
the grade of the spot asset in the forward contract is the standard grade specified in the
futures contract. The only differences in the contracts are that the futures contract has daily
marking-to-market and perhaps also delivery options.

The Impact of Delivery Options

Aswe have seen, delivery options are provided only to the short position in a futures contract.
The presence of this option makes the futures contract more attractive to the short position
than an otherwise identical forward, while the long position, who is effectively the writer of
this option, finds the futures less attractive. Ceteris paribus, therefore, the price of a futures
contract will be lower than that of a forward contract;' indeed, the difference in prices on
this account will be precisely the value of the delivery option.

How much lower will the futures price be? That is, how valuable is the delivery option?
In general, this depends on the range of alternative deliverable grades and the price adjust-
ment mechanism specified in the futures contract. Economic intuition, however, suggests a
plausible answer.

The delivery option in futures contracts is provided mainly to guard against squeezes
by the long position. The presence of this option, however, degrades the hedge offered by
the contract to the long position since it creates uncertainty about the quality that will be
delivered. The more economically valuable this option to the short position, the more the
hedge is degraded, and the less attractive the contract to the long position. In a successful
contract, then, one would expect that while the range of delivery options is wide enough to
ensure market integrity, the economic value of the option will be low so as to degrade the
hedge minimally.

Empirical studies support this position. Hemler (1990) and Duffie (1989) examine the
value of the delivery option on the Chicago Board of Trade’s Treasury bond futures contract.
They compute the loss to the short position from fixing the grade to be delivered a given
length of time before maturity compared to choosing it at maturity. Duffie finds that if the
bond to be delivered is chosen three months ahead of time, the average loss suffered by the
short position is $270, or 0.27% of the contract’s face value of $100,000. If the choice is
made with six months to go, the average loss is $430, or 0.43%, of the contract’s face value.
(The higher values at longer maturities reflect the fact that interest rates can change more
over longer periods.) Fixing the delivered bond one year ahead of time, Hemler finds the
average loss to be around $660, or 0.66%, of the contract’s face value.

One final point is important. As discussed in Chapter 2, delivery options have eco-
nomic value only when the price adjustment mechanism specifies price differentials between

T Intuitively, short positions represent “sellers” and long positions “buyers” in these markets. If shorts
find futures more attractive and longs have the opposite preference, the futures market has more
sellers and fewer buyers, hence a lower price.
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alternative deliverable grades that differ from the price differentials prevailing in the spot
market at delivery time. The more the price adjustment mechanism reflects actual differences
in spot prices of the different deliverable grades at delivery time, the lower is the value of the
delivery option. The option ceases to have economic value when delivery price adjustments
on the futures contract exactly equal the prevailing spot price differentials at that point.

The Impact of Daily Marking-to-Market

The presence of margining and daily marking-to-market in futures markets creates uncertain
interim cash flows that have no counterpart in forward markets. Two questions of interest
arise as a consequence: (a) Given that the margin account earns interest, is there any reason
to expect futures and forward prices to differ? (b) If so, in what direction is the difference?

The key to answering these questions turns out to lie in the joint behavior of interest rates
and futures prices. It can be shown that:

 If futures price movements and interest rate movements are positively correlated, then
futures prices will be higher than forward prices.

 If futures price movements and interest rate movements are negatively correlated, then
futures prices will be lower than forward prices.

 If futures price movements and interest rate movements are uncorrelated, then futures
and forward prices will coincide.

A formal derivation of these results may be found in Cox, Ingersoll, and Ross (1981) and
Duffie and Stanton (1992).> The proofs are quite technical, so here we limit ourselves to
discussing the intuition behind them. Appendix 3B considers the case of constant interest
rates (a special case of zero correlation) and shows that futures and forward prices are indeed
equal in this case.

Suppose futures price changes are positively correlated with changes in interest rates.
When futures prices increase, the margin account balance of a long position also increases.
The positive correlation implies that this larger balance earns interest at a higher rate. Positive
correlation also means that when margin balances fall on account of falling futures prices,
the losses are financed at lower interest rates. Thus, with positive correlation, long positions
find the daily marking-to-market of futures more attractive than the one-time settlement at
maturity offered by forwards.

For short positions, the opposite preference obtains. The short’s margin balances move
in the opposite direction to futures price movements. When futures prices rise and margin
balances fall, the losses have to be financed at higher interest rates. When futures prices fall
and margin balances rise, the increased balance earns interest at a lower rate.

Thus, with positive correlation, longs prefer futures to forwards while shorts prefer
forwards to futures. This means futures prices will be higher than forward prices.

An analogous argument indicates that with negative correlation, short positions find
futures more attractive and long positions find them less attractive, so futures prices will be
less than forward prices. Combining these arguments suggests that with zero correlation,
futures prices will be equal to forward prices.

Of course, even if futures and forward prices differ, the relevant question from a prac-
tical standpoint is how large these differences can be. Once again, the empirical answer

2 Other relevant papers include Jarrow and Oldfield (1981) and Richard and Sundaresan (1981).
Amerio (2005) provides a description of forward prices in terms of futures prices by means of a
convexity drift adjustment that captures the instantaneous correlation between futures prices and
interest rates.
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appears to be: not very, at least not for short-dated futures contracts. Intuitively, margining
exists to inhibit default. Subject to achieving this end, it is best, from a hedging standpoint,
to minimize the interim cash-flow uncertainty this procedure creates. In practice, margin
requirements are quite small as a percentage of the face value of the contract (see Chap-
ter 2). The impact of interest-rate changes on the changes in margin account is even smaller
relative to the face value of the contract. Typically, therefore, we would expect the differ-
ence between forward and futures prices caused by margining to be small on short-dated
contracts.

Empirical investigations support this expectation. The “best” laboratory for testing the
impact of marking-to-market is in currency markets where delivery options do not exist. A
study of currency markets by Cornell and Reinganum (1981) reported that currency futures
and forward prices typically differ by less than the bid—ask spread in the currency market;
later studies by Chang and Chang (1990) and Dezhbaksh (1994) report similar findings. A
more broad-based study by French (1983) compares futures and forward prices in several
markets and finds the differences to typically be very small.

Over very long horizons, however, the factors that differentiate futures and forwards
can drive a measurable wedge between the prices. For example, Gupta and Subrahmanyam
(1999) compare rates derived from swap and Libor futures markets and find that, for the
period 1987-1996, there were substantial differences that cannot be explained by default
risk effects, term structure effects, or information or liquidity differences between swaps
(forward) and futures markets. They attribute this to a “convexity effect” arising from the
daily marking-to-market in futures markets that is absent in the forward market.

In Summary ...

...empirical studies show that neither delivery options nor daily marking-to-market appear
to be very important from a pricing standpoint, especially for short-dated contracts. Eco-
nomic intuition suggests too that this should be the case. In the sequel, therefore, we often
treat futures and forward prices as if they are the same. This is an assumption of convenience
that works well for short-dated contracts, but some caution should be employed in applying
this to long-term contracts.

3.9 Exercises

—_

. Briefly explain the basic principle underlying the pricing of forward contracts.

2. True or false: The theoretical forward price decreases with maturity. That is, for exam-
ple, the theoretical price of a three-month forward must be greater than the theoretical
price of a six-month forward.

3. List the factors that could cause futures prices to deviate from forward prices. How
important are these factors in general?

4. The forward price of wheat for delivery in three months is $3.90 per bushel, while the
spot price is $3.60. The three-month interest rate in continuously compounded terms is
8% per annum. [s there an arbitrage opportunity in this market if wheat may be stored
costlessly?

5. A security is currently trading at $97. It will pay a coupon of $5 in two months. No

other payouts are expected in the next six months.

(a) Ifthe term structure is flat at 12%, what should be the forward price on the security

for delivery in six months?

(b) If the actual forward price is $92, explain how an arbitrage may be created.



10.

11.

12.

Chapter 3  Pricing Forwards and Futures I: The Basic Theory 75

. Suppose that the current price of gold is $365 per oz and that gold may be stored

costlessly. Suppose also that the term structure is flat with a continuously compounded
rate of interest of 6% for all maturities.

(a) Calculate the forward price of gold for delivery in three months.

(b) Now suppose it costs $1 per 0z per month to store gold (payable monthly in advance).
What is the new forward price?

(c) Assume storage costs are as in part (b). If the forward price is given to be $385
per oz, explain whether there is an arbitrage opportunity and how to exploit it.

. A stock will pay a dividend of $1 in one month and $2 in four months. The risk-free rate

of interest for all maturities is 12%. The current price of the stock is $90.

(a) Calculate the arbitrage-free price of (i) a three-month forward contract on the stock
and (ii) a six-month forward contract on the stock.

(b) Suppose the six-month forward contract is quoted at 100. Identify the arbitrage
opportunities, if any, that exist, and explain how to exploit them.

. A bond will pay a coupon of $4 in two months’ time. The bond’s current price is $99.75.

The two-month interest rate is 5% and the three-month interest rate is 6%, both in

continuously compounded terms.

(a) What is the arbitrage-free three-month forward price for the bond?

(b) Suppose the forward price is given to be $97. Identify if there is an arbitrage oppor-
tunity and, if so, how to exploit it.

Suppose that the three-month interest rates in Norway and the US are, respectively, 8%

and 4%. Suppose that the spot price of the Norwegian kroner is $0.155.

(a) Calculate the forward price for delivery in three months.

(b) If the actual forward price is given to be $0.156, examine if there is an arbitrage
opportunity.

Consider a three-month forward contract on pound sterling. Suppose the spot exchange

rate is $1.40/£, the three-month interest rate on the dollar is 5%, and the three-month

interest rate on the pound is 5.5%. If the forward price is given to be $1.41/£, identify
whether there are any arbitrage opportunities and how you would take advantage of them.

Three months ago, an investor entered into a six-month forward contract to sell a stock.

The delivery price agreed to was $55. Today, the stock is trading at $45. Suppose the

three-month interest rate is 4.80% in continuously compounded terms.

(a) Assuming the stock is not expected to pay any dividends over the next three months,
what is the current forward price of the stock?

(b) What is the value of the contract held by the investor?

(c) Suppose the stock is expected to pay a dividend of $2 in one month, and the one-
month rate of interest is 4.70%. What are the current forward price and the value of
the contract held by the investor?

An investor enters into a forward contract to sell a bond in three months’ time at $100.

After one month, the bond price is $101.50. Suppose the term-structure of interest rates

is flat with interest rates equal to 3% for all maturities.

(a) Assuming no coupons are due on the bond over the next two months, what is now
the forward price on the bond?

(b) What is the marked-to-market value of the investor’s short position?

(c) How would your answers change if the bond will pay a coupon of $3 in one month’s
time?
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A stock is trading at 24.50. The market consensus expectation is that it will pay a dividend
of $0.50 in two months’ time. No other payouts are expected on the stock over the next
three months. Assume interest rates are constant at 6% for all maturities. You enter into
a long position to buy 10,000 shares of stock in three months’ time.

(a) What is the arbitrage-free price of the three-month forward contract?

(b) After one month, the stock is trading at $23.50. What is the marked-to-market value
of your contract?

(c) Now suppose that at this point, the company unexpectedly announces that dividends
will be $1.00 per share due to larger-than-expected earnings. Buoyed by the good
news, the share price jumps up to $24.50. What is now the marked-to-market value
of your position?

Suppose you are given the following information:

* The current price of copper is $83.55 per 100 Ibs.

e Theterm-structure is flat at 5%, i.e., the risk-free interest rate for borrowing/investment
is 5% per year for all maturities in continuously compounded and annualized terms.

* You can take long and short positions in copper costlessly.
e There are no costs of storing or holding copper.

Consider a forward contract in which the short position has to make two deliveries:
10,000 Ibs of copper in one month, and 10,000 1bs in two months. The common delivery
price in the contract for both deliveries is P, that is, the short position receives P upon
making the one-month delivery and P upon making the two-month delivery. What is the
arbitrage-free value of P?
This question generalizes the previous one from two deliveries to many. Consider a con-
tract that requires the short position to make deliveries of one unit of an underlying at
time points #, f,, ..., ty. The common delivery price for all deliveries is F. Assume
the interest rates for these horizons are, respectively, 71, 75, . . ., ry in continuously com-
pounded annualized terms. What is the arbitrage-free value of F given a spot price
of §?
In the absence of interest-rate uncertainty and delivery options, futures and forward
prices must be the same. Does this mean the two contracts have identical cash-flow
implications? (Hint: Suppose you expected a steady increase in prices. Would you
prefer a futures contract with its daily mark-to-market or a forward with its single
mark-to-market at maturity of the contract? What if you expected a steady decrease in
prices?)
Consider a forward contract on a non-dividend-paying stock. If the term-structure of
interest rates is flat (that is, interest rates for all maturities are the same), then the arbitrage-
free forward price is obviously increasing in the maturity of the forward contract (i.e.,
a longer-dated forward contract will have a higher forward price than a shorter-dated
one). Is this statement true even if the term-structure is not flat?
The spot price of copper is $1.47 per Ib, and the forward price for delivery in three
months is $1.51 per Ib. Suppose you can borrow and lend for three months at an interest
rate of 6% (in annualized and continuously compounded terms).
(a) First, suppose there are no holding costs (i.e., no storage costs, no holding benefits).
Is there an arbitrage opportunity for you given these prices? If so, provide details of
the cash flows. If not, explain why not.

(b) Suppose now that the cost of storing copper for three months is $0.03 per Ib, payable
in advance. How would your answer to (a) change? (Note that storage costs are
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asymmetric: you have to pay storage costs if you are long copper, but you do not

receive the storage costs if you short copper.)
The SPX index is currently trading at a value of $1265, and the FESX index (the Dow
Jones EuroSTOXX Index of 50 stocks, subsequently referred to as “STOXX?”) is trading
at €3671. The dollar interest rate is 3% per year, and the Euro interest rate is 5% per
year. The exchange rate is $1.28/euro. The six-month futures on the STOXX is quoted
at €3782. All interest rates are continuously compounded. There are no borrowing costs
for securities. For simplicity, assume there are no dividends on either index.

(a) Compute the correct six-month futures prices of the SPX, STOXX, and the currency
exchange rate between the dollar and the euro.

(b) Is the futures on the STOXX correctly priced? If not, show how to undertake an
arbitrage strategy assuming you are not allowed to undertake borrowing or lending
transactions in either currency. (Assume that the futures on SPX is correctly priced.)

The current level of a stock index is 450. The dividend yield on the index is 4% per

year (in continuously compounded terms), and the risk-free rate of interest is 8% for

six-month investments. A six-month futures contract on the index is trading for 465.

Identify the arbitrage opportunities in this setting, and explain how you would exploit

them.

In the US, interest rates in the money market are quoted using an “Actual/360” conven-

tion. The word “Actual” refers to the actual number of days in the investment period. For

example, if the interest rate for a three-month period is given to be 7% and the actual
number of calendar days in the three-month period is 91, then the actual interest received
on a principal of $1 is
0.07 ol
~1 7360

Many other countries too (including the Euro zone) use the Actual/360 convention, but

the British money-market convention uses Actual/365. This question and the next four

pertain to calculating forward prices given interest rates in the money-market convention.
Suppose the 90-day interest rate in the US is 3%, the 90-day interest rate in the

UK is 5% (both quoted using the respective money-market conventions), and the spot

exchange rate is £1 = $1.75.

(a) What is the present value of $1 receivable in 90 days?

(b) What is the present value of £1 receivable in 90 days?

(c) What is the 90-day forward price of £1?

The 181-day interest rate in the US is 4.50% and that on euros is 5%, both quoted using
the money-market convention. What is the 181-day forward price of the euro in terms
of the spot exchange rate S?

The three-month interest rate in both the US and the UK is 12% in the respective money-
market conventions. Suppose the three-month period has 92 days. The spot exchange
rate is £1 = $1.80. What is the arbitrage-free three-month forward price of £1?

The spot exchange rate is $1.28/euro. The 270-day interest rate in the US is 3.50%
and that on euros is 4%, both quoted using the money-market convention. What is the
270-day forward price of the euro?

The three-month interest rates in the US and the UK are 3% and 6% in the respec-
tive money-market conventions. Suppose the three-month period has 91 days. The spot

exchange rate is £1 = $1.83. What is the arbitrage-free three-month forward price
of £ 1?
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26. Consider three exchange rates, dollar/euro, yen/euro, and yen/dollar. Provided below
are their spot FX rates and one-year interest rates (assume a continuous-compounding
convention):

Spot exchange rates:
dollar/euro = 1.2822
yen/euro = 146.15
yen/dollar = 113.98

Interest rates:
dollar = 3%
euro = 5%
yen = 1%

(a) Check whether triangular arbitrage exists in the spot FX market.
(b) Check whether triangular arbitrage exists in the one-year forward FX market.
(c) Why does or why does not triangular arbitrage hold in forward markets?
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Compounding Frequency

Interest rates in practice are quoted with a compounding frequency that indicates how often
interest is compounded on an underlying investment. For example, if interest is compounded
annually, then interest is computed once a year. Thus, an interest rate of 12% means that an
investment of $1 will grow in one year’s time to

14012 = 1.12 (3.12)

If the compounding is semiannual, then interest is computed and compounded every six
months. So an interest rate of 12% on a principal of $1 means that the principal grows to

0.12
I+ =5~ = 106 (3.13)

in six months’ time. If the investment lasts a year, then this augmented principal earns
interest for the next six months. Thus, at the end of one year, a principal of $1 grows to

0.12
1.06 x <1+2> = (1.06)> = 1.1236 (3.14)

Similarly, if the compounding takes place three times a year, interest is computed and
compounded every four months (= 1/3 of a year). An interest rate of 12% on a principal
of $1 means that the principal grows to

0.12
I+~ = o4 (3.15)

in four months’ time. If the investment horizon is one year, interest on this augmented
principal is computed for the next four months, and then the procedure is repeated for the
last four months. So the initial investment of $1 grows at the end of one year to

12 12
1.04 x (1+OT> X (1+OT) = (1.04)° = 1.124864 (3.16)

Similarly, we can define interest rates that are compounded four times a year, five times
a year, and so on. By applying the above arguments, if interest is compounded & times a
year, then an interest rate of 12% means that a principal of $1 grows in one year to

<1 + %)k (3.17)

Of course, there is no reason the investment horizon has to be one year. If we take an
investment horizon of # years and are given an interest rate of 7 that is compounded & times
a year, then an investment of $1 grows at the end of 7 years to

7

(1 n %)kt (3.18)

A special case of (3.18) that comes in especially handy in modeling is the case of
continuous compounding k = oo. In this case, it can be shown, by letting £ — o0 in (3.18),
that an investment of $1 at a continuously compounded interest rate of » grows in ¢ years
to the sum

e (3.19)

where e is the exponential constant (given by 2.71828 . ..).
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As these expressions and examples indicate, specifying the compounding frequency is
very important. A principal of $1 invested for a year at an interest rate of 12% will return
» 1.12 if interest is compounded annually (k = 1).

* 1.1236 if interest is compounded semiannually (k = 2).
* 1.1255 if interest rate is compounded quarterly (k = 4).
e 1.1275 if interest is compounded continuously (kK = oo)

Thus, an interest rate of 7 compounded twice a year is evidently not the same as an interest
rate of » compounded four times a year.

Present Values under Different Compounding
Frequencies

Suppose the interest-rate applicable to a ¢-year horizon is #*(¢) expressed in terms of
a compounding frequency of & times a year. What is the present value of $1 receivable at
time ¢?

With a compounding frequency of k times a year, $1 invested for ¢ years at the rate (¥ ()
grows by time # to

}"(k) kt
<l + k) (3.20)
Thus, the present value of $1 receivable at time ¢ is
1

RN
(+7)

With continuous compounding, $1 invested for ¢ years at the rate » grows to €'’ by time ¢.
Thus, the present value of $1 receivable at time ¢ is

(3.21)

et (3.22)

Converting from One Frequency to Another

What is important in carrying out an investment is the amount to which the investment will
grow by maturity, not how interest rates are quoted. So, ideally, no matter what quotation
conventions are used, we would like to convert them to a common convention. How do we
accomplish this? That is, for example, suppose we want to express everything in terms of
continuous compounding. Given an interest rate of ¥ that is compounded & times a year,
what continuously compounded rate r is equivalent to this rate?

An investment of $1 at the rate ¥ for one year would grow to the amount

PON
1 N
(1)

in one year, while an investment of $1 at the continuously compounded rate of » for one
year would grow to
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If the two rates are to be equivalent, these amounts have to be the same, so we must have

RO
U 1 o
o= (%)
MONG 6
(1 +7) = kxIn (1 +7> (3.23)

Expression (3.23) describes how to convert rates under any compounding frequency to
equivalent continuously compounded rates. For example, suppose we are given an inter-
est rate of 12% compounded annually. From (3.23), this is equivalent to a continuously
compounded interest rate of

or

r = In

In(1.12) = 11.334%

In a similar way, we can convert rates under any frequency to equivalent rates under any
other frequency. For example, suppose we are given an interest rate of »*> compounded
k times a year. To what interest rate () that is compounded ¢ times a year is this rate
equivalent? Following the same lines of argument, we have to find the value of ¥ such
that an investment of $1 leads to the same sum under either rate at the end of one year, that

is, the value of #(© such that
PO PO
14+ — = (1+— 3.24
(1+%) = (+%) @29

l"(k) k/t
FO = ¢ x <1+7) _1 (3.25)

For example, suppose we are given an interest rate of 10% compounded semiannually
(k = 2) and we wish to convert this to an equivalent rate »® that is compounded quarterly
(k = 4). From (3.25), this equivalent rate is

0.10\*"*
r® = 4 x (1+2) — 13 = 9.878% (approx)

In summary, knowledge of the compounding frequency is important to be able to compute
accurately the interest due on an investment or borrowing, but it has no significance beyond
that. It does not matter whether we measure the distance from London to Glasgow in miles
or kilometers as long as we know how to convert distances from miles to kilometers and
vice versa. Analogously, what is important is knowing how to convert interest rates from
one compounding convention to another, not the one with which we actually work.

This gives us

Forward and Futures Prices with Constant
Interest Rates

In this appendix, we show that forward and futures prices must coincide if interest rates are
constant. This is a special case of a more general result that forward and futures prices are
equal whenever futures price changes are uncorrelated with interest-rate changes.
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Since futures contracts are marked-to-market on a daily basis, it helps to change notation
and count time in days. So suppose we are looking at futures and forward contracts with 7'
days to maturity. Let day 0 denote the current day, and day 7 the maturity day of the contracts.
Let p denote the constant daily interest rate expressed in simple terms and unannualized.
That s, an investment of $1 grows to $(1+ p) at the end of one day. For notational simplicity,
let R = (1 + p). Finally, let ¥ denote the forward price on date 0 and F' denote the futures
price at this point. We wish to show that /' = F'; we show that if this equality does not hold,
an arbitrage opportunity arises.

Consider first a strategy of taking a long position in RT forward contracts. Each forward
contract has a payoff of Sy — F on date 7', where St is the (currently unknown) spot price
of the underlying on date T. Thus, the total payoff on date 7 from R” forwards is

RT (Sy — F) (3.26)
Now consider the following strategy with futures contracts:

* Onday 0, open R long futures contracts at the futures price F. Close them out on day 1
at whatever futures price F) is prevailing at that point. Carry the net cash flow R(F; — F')
to day T by rolling it over at the rate p up to day 7.

+ On day 1, open R? long futures contracts at the futures price F,. Close them out on
day 2 at whatever futures price F, is prevailing at that point. Carry the net cash flow
R*(F, — F)) to day T by rolling it over at the rate p up to day 7.

+ On day ¢, open R"*! long futures contracts at the futures price F,. Close them out on
day ¢ + 1 at whatever futures price F,, is prevailing at that point. Carry the net cash
flow R'(F,,; — F;) to day T by rolling it over at the rate p up to day 7.

+ Onday T — 1, open R” long futures contracts at the futures price Fr_;. Close them out
on day T at the futures price Fr at that point. Receive the net cash flow RT (Fr — Fr_)).

What are the time-7" cash flows from the futures strategy? The day 1 total net cash flow
of R(F); — F) is invested for 7" — 1 days. Thus, by day T, it grows to

RT™"'x R(F\—F) = R'(F, - F)

The day 2 net cash flow of R*(F, — Fy) is invested for T — 2 days. Thus, by day 7 it has
grown to

RT2 x R¥(F, — F)) = RI(F, — F)

In general, the day ¢ net cash flow of R'(F; — F,_) is invested for T — ¢ days. Thus, by day
T it has grown to

R™ x R'(F,— F,-1) = R'(F,— F,_))
Summing up these cash flows, the total day-7 cash flow from the futures strategy is
RI(F,—F)+ R\ (F,—F)+---+RI(F—F_)+ -+ R'(Fr — Fr_))
which after canceling common terms is just

RT(Fy — F)
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However, on the last day 7', the spot and futures prices must coincide since the futures
contract is now at maturity, so the total cash flow from the futures strategy is given by

RY(Sy — F) (3.27)

Compare (3.26) and (3.27). If the former is larger, we have an arbitrage opportunity in
which we go long the forward strategy and short the futures strategy. If the latter is larger,
there is an arbitrage opportunity in which we go short the forward strategy and long the
futures strategy. There is no arbitrage opportunity only if the two are equal This occurs only
ifF=F , that is, if futures and forward prices coincide.

Rolling Over Futures Contracts

We discussed the mechanics of rolling over futures contracts in Chapter 2. Based on the
pricing formulae derived in this chapter, we demonstrate in this appendix that under constant
interest rates, rolling over a futures contract has the same cash-flow implications as taking
a single long-term contract. This result provides a theoretical justification for the common
practice of hedging long-term exposures with short-term futures contracts and rolling them
over.

For simplicity, we consider only a single rollover. With additional notation, the arguments
easily extend to multiple rollovers. Consider time points 0 (the current time), 7} (the time
of the first rollover), and 7 (the maturity date). It may help to think of 77 and 75 as one and
two months, respectively.

We compare a futures contract with maturity 7> to a futures contract with maturity 7;
that is rolled over at 7} into another contract with maturity 75. Throughout these arguments,
we treat futures contracts as if they are forward contracts. This is justified by the constant
interest rate assumption, but in any event, as pointed out in the text, the empirical differences
between futures and forward prices tend not to be too significant. For simplicity, we also
assume that the underlying asset has no payouts.

Let Sy, S1, and S, denote the current spot price and the spot prices on dates 7} and 73,
respectively, and let 7} and F, denote the current futures prices for contracts of maturities
7| and T, respectively. If » denotes the interest rate, then we must have

F] = S()erTl and F2 = Soe’TZ
The payoff at 75 to a T>-maturity long futures position taken today is
S2 — F2 = S2 — S()e‘rT2 (328)

Consider a long futures position taken today in the 7}-maturity futures contract. At 77,
this contract has a payoff of

Sl — Fl = Sl — Soe’T‘ (329)

The rollover process involves closing out this contract at 7} and opening a new futures
position with maturity 7>. Note that the futures price for this contract (denoted Fi,, say) is
given by

F12 = Sler(TziTl) (330)



84 Part One Futures and Forwards

The rolled-over contract has cash flows at 7, from two sources. First, there is the settle-
ment amount (3.29) on the original futures contract carried over to 75 at the rate ». By date
T, this amounts to

er(Tz—Tl) [Sl _ SoerTl] — erTz—rTlsl _ erTzSO (331)

Second, there are the resettlement profits from the rolled-over futures contract. These
amount to

Sz — F12 = Sz — S] e‘r(Tz_Tl) (3.32)

Combining (3.31) and (3.32) and canceling common terms, the total cash flow from the
rolled-over contract at time 75 is

Sz — €rT2S() (333)

This cash flow is identical to the cash flow (3.28) from the single long-dated futures contract,
completing the proof.



Chapter

Pricing Forwards and
Futures Il: Building on
the Foundations

4.1 Introduction

In the last chapter, we examined the theoretical pricing of forward and futures contracts
based on replication. We now build on this theoretical foundation in several important
directions.

Section 4.2 looks at the empirical performance of the theory. Section 4.3 then develops
the concept of the implied repo rate, the rate at which one can effect synthetic borrowing or
investment using spot and forward (or futures) markets. Section 4.4 examines the impact of
transactions costs, while Section 4.5 discusses the relationship between the forward/future
prices and the expected price of the spot asset at maturity of the contract. Finally, Section 4.6
presents the notion of index arbitrage.

In the course of developing these ideas, this chapter achieves a second important ob-
jective. The theory developed in Chapter 3 utilized three assumptions: (a) short-selling is
costless with the full proceeds of short sales available immediately to the investor, (b) bor-
rowing and lending rates are the same, and (¢) there are no transactions costs. In this chapter,
we show that the violation of any of these assumptions results in a band of possible prices
within which the forward price could lie without giving rise to arbitrage opportunities.
Short-selling costs are discussed in Section 4.2, a wedge between borrowing and lending
rates in Section 4.3, and transactions costs in Section 4.4.

4.2 From Theory to Reality

The pricing formulae derived in Chapter 3 were identified under ideal market conditions
such as the ability to take long and short positions with equal facility. How well do they
fare in the less-than-ideal real world?

In a few special cases, the answer is obvious. The replication argument depends on being
able to buy and hold the spot asset. In some contracts (catastrophe futures, for example), the
underlying is not a traded asset. In others—such as electricity forwards—the spot asset is
traded but cannot be stored except at extraordinarily high cost. In either case, the derivative

85
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TABLE 4.1 Currency Futures Prices

This table describes futures prices on the British pound (dollars/pound) and the euro (dollars/euro) as of Decem-
ber 15, 2003. The data is from PHLX and is the set of settlement prices on that date for the different contracts.
The December 2003 price is the spot price. The theoretical futures prices are computed as described in the text.

Contract British Pound British Pound Euro Euro
Month Settlement Price Theoretical Price Settlement Price Theoretical Price

Dec 2003 1.7470 1.7470 1.2294 1.2294

Jan 2004 1.7423 1.7428 1.2282 1.2283

Feb 2004 1.7385 1.7386 1.2273 1.2274

Mar 2004 1.7342 1.7344 1.2263 1.2263

June 2004 1.7210 1.7218 — —

Sep 2004 1.7083 1.7094 — —

cannot be replicated and so is not a “redundant security” (one whose outcomes can be
synthetically created from the spot asset). The theory simply does not apply. Forward and
futures prices in such markets are determined by demand and supply factors including
expectations of future spot prices and degrees of risk-aversion, and not just by no-arbitrage
arguments.

Now for the good news. The vast majority of assets on which active futures or forward
contracts exist are themselves traded assets that are storable. In such cases, the predictions
of the theory are violated only to the extent that the assumptions fail to hold. The rest of
this section elaborates.

Financial Forwards and Futures

When the underlying asset is a financial asset (e.g., a stock or an interest rate or a currency),
the assumptions we have made are very good approximations of reality. Transactions costs
are quite low, especially for large players, and taking short positions in the spot asset
does not typically pose a problem. Consequently, the theory does very well at predicting
forward/futures prices in these markets.

As an example, Table 4.1 looks at futures settlement prices on the Philadelphia Exchange
of British pounds and euros. The table compares these prices to the theoretical prices that
obtain using the forward pricing formula (3.11) for currencies. In computing the latter, we
use the simple assumption of a constant continuously compounded interest rate in each of
the three currencies (1.2% for the dollar, 4.1% for the pound, and 2.2% for the euro). In
reality, during the period in the table, the dollar Libor rate varied from about 1.15% for one
month to 1.27% for six months. On the pound, the one- to six-month range was from about
3.90% to 4.20%, and on the euro from about 2.15% to 2.25%.

Despite the approximations, the table shows that the cost-of-carry model does remarkably
well in approximating currency futures prices.

Commodity Forwards and Futures

With commodity forwards and futures, the story can be a little different. An important
difference between a commodity and a financial security is that the former is used in
production and gets consumed in the process. Inventories of commodities are held by
producers because this provides them with the flexibility to alter production schedules
or with insurance against a stock-out that could cause business disruptions. The value of
these options to consume the commodity out of storage is referred to as the commodity’s
convenience yield.
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The convenience yield is not an observable quantity but it is nonetheless very real. It
distinguishes commodities from financial securities. Its presence implies that those with
inventories will not be willing to lend the commodity to an arbitrageur without charging a
fee (for example, a lease rate) to compensate them for the loss of this yield. Thus, short-
selling becomes more expensive, and this affects the pricing theory.

To put this in formal terms, let ¢ denote the annualized convenience yield on a commodity
in continuously compounded terms. Suppose, for simplicity, that there are no storage or
other costs. Then, ignoring the convenience yield, the thoretical forward price is Spe’”. In
Appendix 4A, we show that the convenience yield introduces a band in which arbitrage-free
forward prices must lie: there is no arbitrage as long as F satisfies

ST < F < ST 4.1

The intuition leading to (4.1) is simple. F cannot exceed the theoretical price Sye’ T since
an arbitrageur can always then buy spot and sell forward. However, if F lies below the
thoretical price Spe’ T, an arbitrageur looking to short sell the commodity has to compensate
the holder for the loss of convenience yield ¢, so unless the forward price is below the
theoretical level by more than the convenience yield, there is no arbitrage.'

A practical problem with (4.1) is that the convenience yield ¢ is unobservable. This
makes (4.1) of limited use in pricing forwards, but it does enable us to understand observed
deviations from theoretical prices. From (4.1), the range of permissible deviations depends
on the size of c.

If the current supply of a commodity is “large” relative to its consumption demand, its
convenience yield will be low since producers desiring to use the commodity can always
access it via the market. For such commodities, short-selling costs will be low, meaning the
lower and upper bounds in (4.1) are close together. So the observed and theoretical forward
prices will not differ substantially.

The gold market is one such case. Gold’s available supply has generally equaled several
years’ worth of consumption demand. The consequent low convenience yield from gold
is reflected in the low lease rates for gold (about 1% per year) observed empirically. The
theoretical model does well at pricing such futures/forwards.

Table 4.2 provides an example. The table considers gold futures settlement prices taken
from NYMEX and compares them to the theoretical price computed using the simple zero
cost-of-carry model. As in Table 4.1, interest rates are assumed constant at 1.2%. The
theoretical prices are very close to the actual settlement prices.

However, if spot supplies are tight relative to consumption demand, the convenience
yield is large, so theoretical and observed prices may differ considerably. The oil market is,
perhaps, the pre-eminent example of this situation. In this case, forward prices may not just
be substantially less than the theoretical level but (as in the case of oil) less than even the
spot price of the commodity itself.

Table 4.3 illustrates this point. The table describes settlement prices on NYMEX for light
sweet crude oil futures. The settlement prices are obviously inconsistent with the theoretical
pricing formula (3.4) for assets with a positive holding cost. The theoretical formula predicts
that the forward price should be above spot and should also increase with maturity (since
holding costs increase with the horizon). Both conditions are violated in the table.

T The convenience yield accrues only to those such as producers who have a use for the commodity,
and not to arbitrageurs who are long the spot asset. Hence, the convenience yield does not affect the
upper bound in (4.1). Of course, if an active lease market existed for the commodity that reflected
the convenience yield, and if any long investor were in a position to lease out the commodity at this
rate, then the forward price would simply be equal to Soe"~"T where I is the lease rate.



88 Part One Futures and Forwards

TABLE 4.2 Gold

Futures Prices

TABLE 4.3 0il

Futures Prices

This table describes gold futures prices ($/0z) as of December 15, 2003. The data is from
the COMEX division of NYMEX and is the set of settlement prices on that date for the
different contracts. The December 2003 price is the spot price. The theoretical futures
prices are computed as described in the text.

Month Settlement Price Theoretical Price
Dec 2003 409.4 409.4
Jan 2004 409.7 409.8
Feb 2004 410.1 410.2
April 2004 411.0 411.0
June 2004 411.9 411.9
Aug 2004 412.8 412.7

This table describes futures settlement prices ($/bbl) on
light sweet crude oil as of December 15, 2003. The data
is from NYMEX.

Month Settlement Price
Jan 2004 33.04
Feb 2004 32.95
Mar 2004 32.36
April 2004 31.78
May 2004 31.23
June 2004 30.70

Backwardation and Contango

Contango refers to a market situation where forward (or futures) prices exceed spot prices. If
convenience yields are ignored, contango is the “normal” situation predicted for commodity
forward prices by our pricing model: since holding commodities typically involves storage
and other costs, theoretical forward prices exceed the spot price. Moreover, since carry
costs are greater for longer horizons, the predicted forward price increases as 7 increases,
a situation referred to as a normal market.

For commodities with low convenience yields, the predicted structures match observa-
tions well. Gold futures prices, for example, exceed spot prices and increase with maturity
of the futures contract (see Table 4.2). Normal markets are also the predicted and actual
cases for those financials for which the yield d on the underlying asset is less than the
interest rate 7.

However, for commodities with high convenience yields, we have seen that forward
prices may be lower than the theoretical price (a situation called weak backwardation) and
perhaps lower even than the spot price Sy (a case referred to as strong backwardation or
simply backwardation). The oil futures market is one example of a market that has frequently
been in strong backwardation and for large periods of time. Oil futures prices, moreover,
are often observed to decrease as maturity increases, which is called an inverted market.
(Oil futures prices also exhibit other patterns such as a hump shape with futures prices first
increasing and then decreasing with maturity.) Table 4.3 illustrates all of these points.

One plausible source of an inverted market in oil is the volatility of spot prices. The
convenience yield measures the value of the option to consume the asset out of storage,
and as we will see later in this book, the value of an option increases as the volatility of the
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price of the underlying asset increases. The greater volatility of spot oil prices over longer
horizons gives rise to rapidly increasing convenience yields that likely cause futures prices
to decline as maturity increases.

4.3 The Implied Repo Rate

In our development of the pricing theory, we have assumed that borrowing and lending
costs are the same. We now examine how arbitrage opportunities from mispricing may be
identified when this assumption is dropped. A central role in this process is played by the
concept of the implied repo rate.

Intuitively, the implied repo rate is the interest rate embedded in futures or forward prices,
i.e., it is the interest rate that would make observed forward or futures prices equal to the
theoretical prices predicted under no-arbitrage given values for the spot price and other
variables. Suppose, for example, that the forward contract is on an asset that involves no
payouts. Then, the forward and spot prices are related by the expression

F = ST (4.2)
Therefore,

F

I erT

S

so taking natural logs on both sides, we obtain

(5)
In({—= | =rT
S

Rearranging this expression and using the fact that In(F'/S) = In F —In S, the implied repo
rate given F, S, and T works out to:

ro= %(mF—lnS) (4.3)

Similarly, if we consider an asset that has a continuous dividend yield of d, the forward
and spot prices are linked via

F o= Ser-OT (4.4)

Manipulation of (4.4) along similar lines as above shows that the implied repo rate in this
case is given by

1
ro= d—l—? (InF —InS) (4.5)

The Implied Repo Rate as a Synthetic Borrowing/Lending Rate
A numerical example will help illustrate how implied repo rates are interpreted. Let the
underlying asset be a stock on which no dividends are expected over the next three months.
Suppose the current spot price of the stock is Sp = $25 and the forward price for delivery
in three months is F = $26. Note that the implied repo rate in this case is

ro= RS [In26 —1In25] = 15.69%
1/4
Consider a strategy in which you simultaneously go short the stock and long the forward
(as, for instance, you would in an arbitrage strategy where the forward was undervalued).
Then, you have sold the spot asset today for $25 and have agreed to buy it back at 7 for $26.
From a cash-flow standpoint, this means a cash inflow at time 0 of $25 and a cash outflow
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at time 7" of $26. Effectively, it is as if you have borrowed $25 at time 0 and agreed to repay
$26 at time 7. Thus, this strategy represents just a synthetic borrowing using the spot and
forward markets.

The implicit interest rate in this synthetic borrowing is the rate of interest that would
make $25 at time 0 grow to $26 by time 7'. That is, it is the interest rate » that solves

26 = 25¢7

But this expression is just (4.2) with /' = 26 and S = 25, so the required rate » is just the
implied repo rate (in this case, 15.69%)! Thus:

o The implied repo rate represents the rate at which an investor can borrow synthetically
by simultaneously going short spot and long forward.

Consider the opposite situation now where you go long spot and short forward. Then
you have bought the spot asset for $25 today and agreed to sell it for $26 at time 7. From a
cash-flow standpoint, this means a cash outflow of $25 at time 0 and a cash inflow of $26 at
time 7. This is effectively a synthetic investment using the spot and forward markets. The
rate at which this investment occurs is, once again, the implied repo rate (here, 15.69%).
Therefore:

o The implied repo rate also represents the rate at which an investor can effect a synthetic
investment by simultaneously going long spot and short forward.

These interpretations of the implied repo rate do not depend on the no-dividends as-
sumption. Consider, for example, a currency forward in which the current forward price is
F, the spot exchange rate is Sy, and the foreign currency yield is d. Suppose we go long
e~“T units of the spot foreign currency and short one forward contract (as we would in
an arbitrage strategy where the forward was overvalued). Assume, as usual, that the spot
holdings are invested at the rate d and grow to one unit of the foreign currency by 7'.

From a cash-flow standpoint, this strategy implies a cash outflow at time 0 of e =47 S, and
a cash inflow at time 7" of F', with no interim or other cash flows. This is just a synthetic
investment of =7 S, at time 0, which grows to F by time 7. The implicit interest rate on
this investment is the interest rate » that solves

F =T xe s, = /=975, (4.6)

Thus, 7 is just the implied repo rate given by (4.5). That is, the implied repo rate » in (4.5)
represents the rate at which investors can invest synthetically by simultaneously going long
spot and short forward in the currency market. By reversing the strategy, it also represents
the rate at which investors can borrow synthetically by going short spot and long forward
in the currency market.

The Implied Repo Rate and Arbitrage

The identification of the implied repo rate with a synthetic borrowing/lending rate makes it
easy to see how the implied repo rate may be used to identify arbitrage opportunities:

» Suppose the implied repo rate in a given market is 7, and you can borrow atarate r, < r.
Then you can create an arbitrage by borrowing at the rate r, and investing synthetically
at the rate r, i.e., by borrowing at the rate r,, buying spot, and selling forward.

» Suppose the implied repo rate is 7 and you can lend at a rate 7, > r. Then you can create
an arbitrage by synthetically borrowing at the rate » and lending at r, i.e., by buying
forward, selling spot, and lending.
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Arbitrage is precluded as long as the implied repo rate lies above the best interest rate
available to lenders who can short the asset and below the best rate available to borrowers,
i.e., we have r;, < r < r,. This means that there is an interval of forward prices that is
consistent with no-arbitrage when borrowing and lending rates differ. For example, on an
asset with zero costs of carry, the forward price can vary from

F = S() e T
to
F = Sye? T

without there being arbitrage opportunities. The closer r, and r; are to each other, the
narrower is this permissible interval of forward prices, and, of course, when r; = r,, we
obtain a unique forward price consistent with no-arbitrage.

Suppose the current spot price of gold is $330 per oz, and the forward price for delivery in
one month is $331.35. Suppose also that the one-month borrowing and lending rates you
face are 5% and 4.85%, respectively. Finally, suppose that it costs nothing to store gold. Is
there an arbitrage opportunity?

In our notation, we have So = 330, T = 1/12, and F = 331.35. Since there are no costs
of carry, the implied repo rate given these prices may be calculated using (4.3):

1
— _ — 4.99
r = 1/12[In331.35 In330] = 4.9%
Since the implied repo rate lies between the lending and borrowing rates, there is no arbi-
trage opportunity here. |

This second example is based on the formula for pricing stock index futures developed below
in Section 4.6 on index arbitrage. It should be read subsequent to reading that section.

Consider a futures contract on a stock index. Suppose that the current index level is 1400,
the three-month index futures level is 1425, the dividend yield on the index is 2%, and you
can borrow for three months at 8%. Is there an arbitrage opportunity present here?

Since we are given only the borrowing rate, we use the implied repo rate to check if there
is an arbitrage. Treating the index as an asset with a continuous dividend yield, the implied
repo rate is given by expression (4.5):

r = d+1? [INF —1InS$]
We are given § = 1400, F = 1425, d =0.02, and T = 1/4. Thus:
r = 0.02+ 117 [INn1425 —In1400] = 0.0908

or 9.08%. Since you can borrow cheaper than this rate, there is an arbitrage opportunity in
which you borrow, buy spot, and sell forward. The complete strategy is:

1. Enter into a short forward position.

2. Buy e97 = 0.995 units of the index.

3. Borrow Se%7 = 1393.02 for three months at 8%.
4. Invest all dividends into buying more of the index.
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Note that we buy only e~9T units of the index initially since the reinvested dividends make
our holding grow to one unit by date T.

At inception, there are no net cash inflows from this strategy: the cash outflow of
$1393.02 towards the spot purchase is matched by the cash inflow of $1393.02 from the
borrowing. There are no net interim cash flows either since all dividends are reinvested in
purchasing more of the index. At maturity, there is a cash inflow of $1425 from the forward.
There is also a cash outflow of

1393.02 x 00®0/4 — 1421.16

towards repaying the borrowing. This leaves a net cash inflow of +3.84, representing arbi-
trage profits. |

4.4 Transactions Costs

Transactions costs are costs that create a wedge between what one obtains for selling a
commodity or a security and what one has to pay to buy it. Since brokers and market
makers charge a fee for their services, the “ask” price (the price at which one can buy) is
larger in practice than the “bid” price (the price at which one can sell). Suppose there is
such a bid-ask spread. Let S¢ denote the ask price and S5 denote the bid price on the spot
asset; define F and F* analogously. Note that we have S > S? and F¢ > F°.

How do these bid-ask spreads affect our pricing results? The answer is simple: exactly
as the wedge between borrowing and lending rates did, this spread creates an interval of
forward prices at which arbitrage is not possible. Outside this interval, there is an arbitrage
opportunity.

To see this, note that arbitrage involves one of two strategies: either we buy spot and sell
forward, or we sell spot and buy forward. Assuming for simplicity that there are no costs of
carry, the former strategy involves a cash outflow of S¢ at time 0 and a cash inflow of F? at
time 7'. In present value terms, the net cash inflow from this strategy is

PV(F") —§° (4.7)

The latter strategy—selling spot and buying forward—involves a cash inflow of S? at time
0 and a cash outflow of F* at time 7. Thus, the present value of the net cash inflow from
this strategy is

St — PV(F%) (4.8)

For there to be no arbitrage opportunities, each of these net cash inflows must be nonpositive.
Any spot and forward prices outside this set leads to a riskless profit opportunity.

4.5 Forward Prices and Future Spot Prices

A commonly held belief regarding forward prices is that they reflect the market’s expec-
tations of future spot prices. This is called the unbiased expectations hypothesis. Yet the
central point of the preceding sections is that for many assets, the price of a forward contract
can be identified solely from knowledge of interest rates and the cost of buying and holding
spot. To what extent are these statements mutually consistent?

For financial assets, the answer is easily seen. Consider, for example, a forward contract
on a stock that is not expected to pay dividends over the life of the contract. If Sy denotes
the current price of the stock, then the arbitrage-free forward price of the stock is

F = T8, (4.9)
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Suppose the forward price is also the expected spot price at 7'
F = E[S7] (4.10)
From (4.9) and (4.10), we then have
E[S7] = €78, 4.11)

Equation (4.11) states that the expected rate of growth in the stock price between dates
0 and T is the risk-free rate ». But the stock is a risky asset and—unless its risk is fully
diversifiable—investors in a risk-averse world will demand a risk-premium to hold it. That
is, the expected return z on the stock will strictly exceed r. This means F cannot be the
expected time-7 stock price. Indeed, F systematically underpredicts the expected future
stock price since z > r implies

E[Sr] = SoeT > ST = F

Thus, the unbiased expectations hypothesis fails to hold for financial assets. More generally,
it fails for any underlying for which the smoothness conditions of Chapter 3 hold at least
approximately. There is no more information in the forward price concerning the future
spot price than is already available in the current spot price and interest rate information.

For commodities with large convenience yields, however, the cost-of-carry model pre-
dicts only a range (4.1) within which forward prices may lie. Where in this region forward
prices actually lie may be influenced both by expectations of future spot prices and factors
such as risk-aversion. In such markets, therefore, forward prices may contain some infor-
mation concerning the market’s expectations about the future. This is also evidently true
of markets where the cost-of-carry model does poorly because of very large storage costs,
such as electricity.

4.6 Index Arbitrage

A stock index is simply a basket of stocks weighted according to specific rules. The level
of the index represents the price of this basket. As such, we can specify a forward or futures
contract on a stock index in the same way we do for other financial assets.

There are many actively traded futures contracts on stock indices. As just a few examples:
in the US, there are futures on the Dow Jones Industrial Average traded on the CBoT; on
the S&P 500 index traded on the CME; and on the Nasdaq 100 also on the CME. In Asia,
futures on Japan’s Nikkei 225 index trade in Osaka as well as in Singapore on SGX (formerly
SIMEX), and futures on the Korean KOSPI 200 trade on the Korean Stock Exchange. In
Europe, futures on the British FTSE 100 index trade on NYSE Liffe, while futures on the
Dow Jones STOXX 50, the Swiss SMI, the Finnish HEX 25, and the German DAX all trade
on Eurex.

Index futures contract sizes are standardized in size, with the standard size specified
as a multiple of the index (i.e., as multiples of the basket of stocks underlying the index).
Thus, one Dow Jones Industrial Average futures contract on the CBoT is for 10 times the
Dow Jones index, meaning that at maturity of the contract, the short position has to deliver
10 units of the basket of stocks that go into defining the Dow Jones index. Similarly, one
S&P 500 futures contract is for 250 times the S&P 500 index, while one Nasdaq 100 futures
contract is for 100 times the Nasdaq 100 index.

Unlike many other financial assets, however, the physical delivery of an index (i.e.,
the actual basket of stocks underlying the index in the correct proportions) is difficult,
particularly so in the case of broad-based indices consisting of a large number of stocks. As
a consequence, index futures are cash settled, not by physical delivery of the actual index.
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Contracts are marked-to-market at the end of the last trading day, and positions are declared
closed.

Index futures contracts have a wide variety of uses. Equity portfolio managers can use
them to change the nature of risk in the managed portfolio in a relatively costless manner.
Consider, for example, an equity fund manager whose portfolio tracks the S&P 500 index.
Since S&P 500 index futures must move in lockstep with the spot level of the index, the
manager can eliminate equity risk in the portfolio by shorting an appropriate amount of
S&P 500 index futures. By going long Treasury bond futures in addition, the manager can
change the exposure of the portfolio from equity risk to interest-rate risk. More generally,
as we discuss in the next chapter, index futures can be used to change (increase or decrease)
the beta of an equity portfolio.

Pricing Forwards on Stock Indices

A stock index may be viewed as an asset that pays dividends, so forwards/futures on the
index may be priced accordingly. Operationalizing this idea, however, involves some tricky
issues. There are two ways of proceeding, each of which has its supporters.

One method is to use the known cash holding costs formula

F = &T(S+ M) (4.12)

with S denoting the current level of the index, and M the dollar value of dividends that will
be received over the 7-year horizon of the contract. Computationally, one issue with this
method is that with a large number of stocks, we have to predict the dollar value and timing
of dividends from each of the stocks and sum up their present values to obtain M.

An alternative procedure is to use the dividend yield on the index. The dividend yield on
a stock index is expressed in annualized terms and refers to the value of dividends received
over a year from the stocks in the index expressed as a percentage of the cost of the index.
Put differently, a dividend yield of 2% means that if we reinvest the dividends received in
buying more units of the index, then the number of units in our holding of the index will
grow at a 2% annualized rate.

This points to an analogy between holding a foreign currency and holding a stock index.
If we hold one unit of a foreign currency and invest it at the applicable interest rate for that
currency (say, d) for T years, our holding of the foreign currency at maturity is e?” units. If
we hold one unit of a stock index that has a dividend yield of d (expressed in continuously
compounded terms) and we reinvest all the dividends in buying more units of the index,
then in T years, we will have e?” units of the index.

This means we can use the formula (3.11) developed for currency forwards to also price
forward contracts on a stock index. If Sy denotes the initial level of the index and d the
dividend yield expressed in continuously compounded terms, the forward price is

F = 97, (4.13)

Treating forward and futures prices as the same thing, (4.13) also represents the futures
price on an index whose current level is S.

It should be recognized, however, that this is an approximation. There is no problem in
using this formula to price currency forwards since we can lock in the interest rate earned on
investing the foreign currency when making the investment. With stock indices, one cannot
be certain of the dividends that will be received at the time of investing in the index. The
dividend yield d used in the formula represents an estimate, and the accuracy of the forward
price depends on the accuracy of this estimate. Put differently, (4.13) should be interpreted
as the correct forward price given the anticipated dividend level d.
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Of course, analogous comments are also true if we use the formula (4.12). In that case,
the computation of M is based on forecast dividends over the life of the futures contract, so
the formula is accurate only to the extent the forecast is.

Index Arbitrage

Index arbitrage is the exploitation of differences between this theoretical price for the
futures contract and the actual level of stock index futures. An example will help illustrate
the concept. The example is based on the dividend yield formula (4.13).

Consider a three-month futures contract on the S&P 500 index. Suppose that the present
level of the index is 1020, the dividend yield on the index is 1.4%, and the three-month
rate of interest is 3%. To keep the exposition simple, we treat the futures contract as if it is
a forward contract with a single marking-to-market once at the end of the contract. In our
notation, we have: So = 1020, r = 0.03, d = 0.014, and T = 1/4. Therefore, the index
futures price should be:

F o= er=dT 5y — 003-0019(1/4(1020) = 1,024.80

Suppose the observed level of the index futuresis 1,027.40. Then, the futures is overvalued
relative to spot, so we should sell futures, buy spot, and borrow. The specific strategy is:

1. Enter into a short futures position to deliver the index at a futures price of 1,027.40.
2. Buy e = 0.9965 units of the index for $(1020)(0.9965) = $1,016.43.

3. Borrow $1,016.43 for three months at 3%.

4. Reinvest all dividends into buying more of the index.

Note that, analogous to the currency forwards situation, we buy only e=9" units of the
index initially. When dividends from the index are reinvested in buying more of the index,
our holding of the index grows at the rate d, so we are left with one unit of the index at
maturity.

There are no net initial cash flows from this strategy, and since all dividends are reinvested
in the index, there are no net interim cash flows either. At maturity, there is a cash inflow of
1,027.40 from the futures position. There is also a cash outflow of

e0000/9(1,016.43) = 1,024.80

to repay the borrowing. The net result is a cash inflow of 2.90 representing arbitrage profits
from the mispricing. u

Comments and Caveats

Index-arbitrage strategies have grown considerably in popularity since their introduction.
For example, Shalen (2002) reports that in July 2002, over 8% of trading volume at the
NYSE was related to index-arbitrage programs.

Of course, in reality, implementing index-arbitrage strategies is not as simple as the
example above suggests. Several problems may arise. One that we have already mentioned
is that the dividend level used in the calculations represents only a forecast. If we use the
cash dividend formula (4.12), we must estimate M, the present value of dividends expected
over the life of the futures contract. This must be done by using estimates of cash dividends
expected from each of the companies in the index and summing these up.

The alternative procedure of using a dividend yield is computationally simpler but con-
ceptually requires a bit more care. Since dividends tend to be bunched, there are seasonal
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FIGURE 4.1
Mispricing in the
Dow Jones Industial
Average Futures
Contract

effects to be taken into account. That is, the average dividend yield over a year may be higher
or lower than the yield over a specific shorter period. The dividend yield d used as an input
into the formula must be the appropriate one given the maturity of the futures contract.

In either case, it is possible that the realized dividend rate will differ from the estimate.
Thus, the profits from the strategy are uncertain and could even be negative. The use of the
word “arbitrage” in this context is somewhat liberal.

A second problem is that index-arbitrage strategies require buying or selling the spot
asset, which is the underlying index. Literally buying or selling the index (i.e., the basket of
stocks comprising the index) will entail substantial transactions costs among other problems.
In some cases, one can use traded instruments that track specific indices (for example,
Standard and Poor Depository Receipts, or SPDRs, which track the S&P 500 index). If no
such instruments are available, one can use a smaller basket of stocks that tracks the index
closely. In many countries, the emergence of exhange-traded funds (ETFs), which track
broad-market and sectoral indices, has also helped diminish the severity of this problem. Of
course, a tracking error may still remain between the exact performance of the index and
that of the tracking portfolio.

Other issues too may arise that are common to most derivatives arbitrage strategies. One
is execution risk. In the ideal case, the two legs of the arbitrage strategy should be executed
simultaneously at the observed respective prices. While electronic trading has facilitated
simultaneity considerably, some room for slippage exists. For example, the uptick rule
restricts when short-selling may be possible. Second, transactions costs (bid-offer spreads)
and differences in borrowing and lending rates must be taken into account in calculating
whether or not arbitrage opportunities exist.

Collectively, all of these factors suggest that while large deviations from the theoretical
fair price cannot persist, small deviations may not represent genuine arbitrage opportunities.
The data bears this out: index futures often deviate by small amounts from their theoretical
levels but rarely by substantial levels (see, for example, Figure 4.1 on the percentage mis-
pricing in the CBoT futures contract on the Dow Jones Industrial Average). Shalen (2002)

This figure, taken from Shalen (2002), shows the percentage mispricing in the clos-
ing level of the CBoT futures contract on the Dow Jones Industrial Average. The
mispricing is relative to the theoretically fair price.
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reports that, for example, the mean absolute mispricing in the DJIA futures contract on the
CBoT has been less than 0.20% since 2000 and less than 0.15% since 2001. Mispricing
tends to be highly correlated with volatility of the underlying index, perhaps because higher
volatility levels increase execution and implementation risk in the arbitrage strategy.

4.7 Exercises

—_

10.

11.

What is meant by the term “convenience yield”? How does it affect futures prices?
True or false: An arbitrage-free forward market can be in backwardation only if the
benefits of carrying spot (dividends, convenience yields, etc.) exceed the costs (storage,
insurance, etc.).

. Suppose an active lease market exists for a commodity with a lease rate £ expressed

in annualized continuously compounded terms. Short-sellers can borrow the asset at
this rate and investors who are long the asset can lend it out at this rate. Assume the
commodity has no other cost of carry. Modify the arguments in the appendix to the
chapter to show that the theoretical futures price is F = e’ ~97§.

. What is the “implied repo rate”? Explain why it may be interpreted as a synthetic

borrowing or lending rate.

. Does the presence of a convenience yield necessarily imply the forward market will be

in backwardation? Why or why not?
How do transactions costs affect the arbitrage-free price of a forward contract?

Explain each of the following terms: (a) normal market, (b) inverted market, (c) weak
backwardation, (d) backwardation, and (e) contango.

Suppose that oil is currently trading at $38 a barrel. Assume that the interest rate is 3%
for all maturities and that oil has a convenience yield of c. If there are no other carry
costs, for what values of ¢ can the oil market be in backwardation?

. The spot price of silver is currently $7.125/0z, while the two- and five-month forward

prices are $7.160/0z and $7.220/0z, respectively.
(a) If silver has no convenience yield, what are the implied repo rates?

(b) Suppose silver has an active lease market with lease rate £ = 0.5% for all matu-
rities expressed in annualized continously compounded terms. Using the formula
developed in Question 3, identify the implied repo rate for maturities of two months
and five months.

Copper is currently trading at $1.28/1b. Suppose three-month interest rates are 4% and

the convenience yield on copper is ¢ = 3%.

(a) What is the range of arbitrage-free forward prices possible using
See" T < F < ST (4.14)
(b) What is the lowest value of ¢ that will create the possibility of the market being in

backwardation?

You are given the following information on forward prices (gold and silver prices are
per oz, copper prices are per 1b):

Commodities Spot One Month Two Month Three Month Six Month

Gold 436.4 437.3 438.8 440.0 444.5
Silver 7.096 7.125 7.077 7.160 7.220
Copper 1.610 1.600 1.587 1.565 1.492
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

(a) Which of these markets are normal? inverted? neither?

(b) Which are in backwardation? in contango?

(c) Which market appears prima facie to have the greatest convenience yield?

Suppose the convenience yield is close to zero for maturities up to six months, then

spikes up for the forward period between six and nine months, and then drops back to

zero thereafter. What does the oil market seem to be saying about political conditions

in the oil-producing countries?

Suppose there is an active lease market for gold in which arbitrageurs can short or lend

out gold at a lease rate of £ = 1%. Assume gold has no other costs/benefits of carry.

Consider a three-month forward contract on gold.

(a) Ifthe spot price of gold is $360/0z and the three-month interest rate is 4%, what is
the arbitrage-free forward price of gold?

(b) Suppose the actual forward price is given to be $366/0z. Is there an arbitrage
opportunity? If so, how can it be exploited?

A three-month forward contract on a non-dividend-paying asset is trading at 90, while

the spot price is 84.

(a) Calculate the implied repo rate.

(b) Suppose it is possible for you to borrow at 8% for three months. Does this give rise
to any arbitrage opportunities? Why or why not?

If the spot price of IBM today is $75 and the six-month forward price is $76.89, then

what is the implied repo rate assuming there are no dividends? Suppose the six-month

borrowing rate in the money market is 4% p.a on a semiannual basis. Is there a repo

arbitrage, and how would you construct a strategy to exploit it?

The current value of an index is 585, while three-month futures on the index are quoted

at 600. Suppose the (continuous) dividend yield on the index is 3% per year.

(a) What is the implied repo rate?

(b) Suppose it is possible for you to borrow at 6% for three months. Does this create
any arbitrage openings for you? Why or why not?

A three-month forward contract on an index is trading at 756, while the index itself is

at 750. The three-month interest rate is 6%.

(a) What is the implied dividend yield on the index?

(b) You estimate the dividend yield to be 1% over the next three months. Is there an
arbitrage opportunity from your perspective?

The spot US dollar-euro exchange rate is $1.10/euro. The one-year forward exchange

rate is $1.0782/euro. If the one-year dollar interest rate is 3%, then what must be the

one-year rate on the euro?

You are given information that the spot price of an asset is trading at a bid-ask quote

of 80 — 80.5, and the six-month interest rate is 6%. What is the bid-ask quote for the

six-month forward on the asset if there are no dividends?

Redo the previous question if the interest rates for borrowing and lending are not equal,

i.e. there is a bid-ask spread for the interest rates, which is 6 — 6.25%.

In the previous question, what is the maximum bid-ask spread in the interest rate market

that is permissible to give acceptable forward prices?

Stock ABC is trading spot at a price of 40. The one-year forward quote for the stock is

also 40. If the one-year interest rate is 4%. and the borrowing cost for the stock is 2%,

show how to construct a riskless arbitrage in this stock.
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23. You are given two stocks, A and B. Stock A has a beta of 1.5, and stock B has a beta of
—0.25. The one-year risk-free rate is 2%. Both stocks currently trade at $10. Assume
a CAPM model where the expected return on the stock market portfolio is 10% p.a.
Stock A has an annual dividend yield of 1%, and stock B does not pay a dividend.
(a) What is the expected return on both stocks?
(b) What is the one-year forward price for the two stocks?
(c) Is there an arbitrage? Explain.
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Forward Prices with Convenience Yields

The presence of a convenience yield makes short-selling commodities more complex and
costly than short-selling financial securities. To see the impact of this on our theory, consider,
for simplicity, a commodity with zero storage costs. The theoretical forward price is F' =
Se'T. Let F°* denote the observed forward price.

If F°* > F (i.e., the forward is seen as overpriced), a price correction can always be
forced by arbitrageurs who buy spot and sell forward. Thus, forward prices cannot exceed
the theoretical price we have identified and we must have

Fob < ST (4.15)

If F° < F (i.e., the forward is perceived as underpriced), a similar price correction
requires that arbitrageurs who do not own the spot asset be able to short sell the commodity
by borrowing it costlessly. Such borrowing has to be done from producers and others who
hold inventories of the commodity and are in a position to lend it to the arbitrageur. In the
presence of a convenience yield, however, those with inventories will not agree to lend the
commodity out costlessly; rather, they will charge a fee as compensation for the loss of this
yield.

Let ¢ denote the annualized convenience yield on the commodity expressed in contin-
uously compounded terms. Then, an arbitrageur short-selling the asset will have to repay
SoeT units of the commodity for every unit borrowed today. Equivalently, for every unit to
be repaid at maturity, the arbitrageur receives e 7 units today.

Now consider the position of an arbitrageur who finds the forward undervalued at >
The arbitrageur

 enters into a long forward position,

C

* borrows and sells e=*7 units of the commodity in exchange for returning one unit at

maturity, and
* invests the proceeds of the short sales, Spe~7, for maturity at T'.

At T, the arbitrageur pays F°* on the forward contract and receives one unit of the com-
modity, which is used to close out the short position. He also receives e =97 S, from the
investment. Thus, the net time-7" cash flow is

Soe(r—c)T _ Fobs

This is positive (i.e., arbitrage profits exist) only if Spe" =97 > F°b*_ Therefore, there is no
arbitrage possible from short-selling the spot commodity if

Fos > Spel o7 (4.16)
Combining (4.15) and (4.16), there is no arbitrage as long as
Spe" T < Fobs < Spe'T 4.17)

Thus, the presence of a convenience yield on commodities results in a range of possible
values for the forward price; in particular, forward prices may be less than not just the
theoretical level, but even the spot price of the commodity itself.



Chapter

5.1

Hedging with Futures
and Forwards

Introduction

Example 5.1

The most important economic function played by a futures or forward contract is enabling
investors to hedge exposures, i.e., to reduce the riskiness of cash flows associated with
market commitments. In principle, hedging with a forward or futures contract is simple: if
an investor has a commitment to buy or sell a quantity O of an asset 7' years from now,
cash-flow risk can be eliminated by locking in a price for this purchase or sale through a
forward or futures contract. We begin with a simple example to illustrate this point, and
then explain why matters are not quite as simple as the example suggests.

Suppose a gold-wire manufacturer estimates its requirement of gold in three months’ time
to be 10,000 oz. The manufacturer can eliminate price uncertainty by entering into a long
futures (or forward) contract to buy 10,000 oz of gold in three months. Ignoring interest
on the margin account, the cost of gold to the company in three months is then 10, 000 F,
where F is the current three-month futures price of gold.

Of course, the manufacturer can also obtain the required hedge without actually making
or accepting delivery on the futures position by using the following strategy:

1. Take long positions of size 10,000 oz in three-month gold futures contracts at the current
futures price F.

2. Close out the futures positions in three months’ time at the futures price F; prevailing
then.

3. Buy 10,000 oz in the spot market in three months’ time at the spot price Sr prevailing
then.

Ignoring interest, the gain on the futures margin accountis 10,000 (F; — F), while the cost
of buying 10,000 oz spot is 10,000 Sy. Thus, the total cash outflow is

10,000 (Fr — F) 4+ 10,000 S; = 10,000 F — 10,000 (F7 — Sr) (5.1

At time T, however, the futures contract is at maturity, so we must have fr = Sr. Thus,
the last term in (5.1) drops out and the net cash flow is just the certainty amount
10,000 F. [ ]

In practice, as mentioned in Chapter 2, the vast majority of hedges are implemented in
this way, i.e., by closing out the futures position prior to delivery and covering the market

101
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commitment through spot market purchases or sales. Only a very small percentage of futures
contracts are held open until delivery.

Nonetheless, implementing a hedge using futures contracts is not as simple an affair as
this discussion suggests. The sections below explain.

The Problem: Basis Risk

The basis in a futures contract refers to the difference F — S between futures and spot
prices. (Sometimes the basis is defined as S — F'.) As (5.1) shows, for a hedge to be perfect,
the basis Fr — Sy must be riskless on date 7 when the hedge is terminated—only this will
ensure a certainty cash flow from the hedge.

Market practitioners often comment that the only perfect hedge is in a Japanese garden.
This may be an overstatement, but there are at least two reasons why the basis Fr — Sy may
fail to be riskless on date 7.

The first is a possible commodity mismatch. Futures contracts have standard grades (see
Chapter 2), and the standard grade underlying the futures contract may not be the same
as the grade of the asset being hedged. As a consequence, the futures price Fr may not
coincide with Sz, the time-T" spot price of the asset being hedged. The basis Fr — Sr in
(5.1) is nonzero and of uncertain size. This is commodity basis risk, basis risk caused by a
commodity or grade mismatch.

The second is a possible delivery date mismatch. Futures contracts have standardized
delivery periods, and the available maturity dates contracts may not coincide with the
investor’s date of market commitment. (The wheat futures contract on the CBoT, for example,
has only five delivery months.) In this case, the futures position used for hedging must be
closed out on the date 7 of the hedger’s market commitment, before the contract is at
maturity. At this point, even if there is no commodity mismatch, the futures price F will
not typically equal the spot price S7, so the basis Fr — Sy in (5.1) will be nonzero and of
uncertain size. This is delivery basis risk.

Basis risk may also arise in hedging with forward contracts. An instance is cross-hedging,
that is, when exposure on one asset is hedged with a forward contract on another asset (e.g.,
when exposure to fluctuations in the Norwegian kroner/US dollar exchange rate is hedged
with a euro/US dollar forward contract). Cross-hedging obviously implies commodity basis
risk. Itis typically used because there is no actively traded forward contract on the underlying
asset (Norwegian kroner in this example), so a forward contract on a “closely related” asset
(here, the euro) is used instead.

In this chapter, we develop a theory of optimal hedging in the presence of basis risk
that is equally applicable to both forwards and futures. For expositional simplicity, we use
the term “futures contracts” throughout in referring to the instruments used for hedging. The
only material in this chapter specific to futures contracts is Section 5.8, which considers
the impact of daily marking-to-market.

Handling Basis Risk: The Questions

The presence of basis risk implies that cash flows cannot be made entirely riskless by
hedging. What then is the best we can do in terms of reducing risk? This is the issue that
concerns us in this chapter.

The first thing we need is a measure of risk. As is usual in finance, we measure the risk
of a cash flow by its variance. To be sure, the variance does not completely capture all that
is meant by the word “risk,” but it is certainly a good first approximation. Thus, the task is
to identify the hedge that leads to the least cash-flow variance among all possible hedges.
We refer to this as the minimum-variance hedge. 1dentifying the minimum-variance hedge
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involves the answers to three questions:

1. What is the best choice of futures contract to be used for hedging?
2. What is the size of the futures position to be opened today?
3. Should this be a long position or a short position?

These questions form the focus of this chapter. Some comments outlining the intuition
of the results to come will be helpful.

5.2 A Guide to the Main Results

Hedging is an offsetting of risks. In hedging a spot exposure with futures (or forwards), we
are trying to offset the effects of spot price movements with futures price movements so
that the resulting net cash flow has minimum risk. For such offsetting to work well, futures
and spot prices must move “together” so that the effects of one can be canceled by the
other. That is, futures and spot price changes must be correlated. The higher the degree of
correlation, the greater the co-movement and the easier is the offsetting of risk. In the limit,
when correlation is perfect, the offsetting is also perfect, and we obtain a riskless hedge.

These observations suggest that in selecting a futures contract for hedging purposes, we
should choose one whose price changes are maximally correlated with changes in the spot
price of the asset being hedged. We show that this intuition is on the mark; indeed, we show
exactly how cash-flow uncertainty declines as a function of this correlation.

The Hedge Ratio

A central role in this process is played by the hedge ratio, denoted 4. The hedge ratio is
the variable used to implement the optimal hedging strategy once the futures contract has
been chosen. It measures the number of futures positions taken per unit of spot exposure.
In notational terms, suppose the investor has a spot market commitment of O units on date
T and hedges this with a futures position of size H. The hedge ratio / is then defined by

H
= — 5.2
! o :2)

For example, if the gold-wire manufacturer of Section 5.1 hedges his exposure of 10,000 oz
using futures contracts for 8,000 oz, he is using a hedge ratio of 2 = 8,000/10,000 = 0.80.

The Main Result

The most important lesson that will be derived in this chapter is the following:

In the presence of basis risk, it is not generally optimal to hedge exposures one-for-
one, i.e., to use a hedge ratio of unity. The variance-minimizing hedge ratio h*
depends on the correlation between spot and futures price changes and increases as
this correlation increases.

Specifically, in the central result of this chapter, we show that the minimum-variance
hedge ratio is given by
o (As)

"= a (5.3)

where:

* o0(Ag) is the standard deviation of spot price changes over the hedging horizon.
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* o (Ap) is the standard deviation of futures price changes over the hedging horizon.
» p is the correlation of spot and futures price changes.

That is, the minimum-variance hedge ratio is the correlation p multiplied by a “scaling
factor” o (Ag)/o(AF).

The Intuition

To see the intuition behind (5.3), consider the correlation first. With zero correlation between
spot and futures price changes, there is no offsetting of risks at all from hedging using futures.
Any hedging activity only increases overall cash-flow risk by creating cash-flow uncertainty
from a second source (the futures position). Thus, the optimal hedge ratio becomes zero.
As correlation increases, however, greater offsetting of risks is facilitated, so we want to
use a higher hedge ratio to take advantage.

Why scale the correlation by the ratio of standard deviations? The aim of hedging is to
offset the effect of spot price changes with futures price changes. Suppose a “typical” move
in futures prices is twice the size of a “typical” move in spot prices. Then, other things
being equal, the size of the futures position used for hedging should be only half the size
of the spot exposure. With the size of “typical” price moves measured by their respective
standard deviations, it is this adjustment that the scaling factor provides.

Layout of this Chapter

The next three sections of this chapter are devoted to deriving this optimal hedge ratio /#*
and identifying various properties of the optimally hedged position. Readers not interested
in the derivation of #* can skip ahead to the numerical examples we present in Section 5.6.
Sections 5.7 and 5.8 discuss implementation of the hedging strategy. The final sections of
this chapter discuss extensions of the minimum-variance hedging idea to hedging equity
portfolios and fixed-income portfolios, respectively.

Some Mathematical Preliminaries

We recall some basic definitions and properties of random variables. Let X and Y be random
variables with variances o2 and o7, respectively. Let E(-) denote expectation. Then, the
covariance of X and Y is defined as

cov(X,Y) = E(XY)— E(X)E(Y)
The correlation p(X, ¥) between X and Y and cov (X, ¥) are related via
cov(X,Y)

OxOy

p(X,Y) =
If a is any constant, then
Variance (aX) = a*Variance (X) = a’o}
Finally, if @ and b are any constants, then

Variance (aX — bY) = a*Variance (X) + b*Variance (¥) — 2ab cov (X, Y)

5.3 The Cash Flow from a Hedged Position

Suppose that a specific futures contract has been chosen for hedging purposes. (We formalize
later the criterion that should guide this choice.) Let F* denote the current price of the contract
and S the current spot price of the asset being hedged. Let Fr and Sy denote, respectively,
the time-7" values of these quantities.
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We stress that one or both kinds of basis risk may be present: the asset underlying the
futures contract may not be the same as the asset being hedged, and the date 7 may not be
the maturity date of the futures contract. Thus, we may not have Sy = F7r.

We treat the futures contract as if it is a forward contract that is marked-to-market
once at termination. That is, the resettlement profits (or losses) from taking a long futures
position at inception and closing it out at time 7 are given by Fr — F. The impact of daily
marking-to-market on the optimal hedge position is considered in Section 5.8 (see “Tailing
the Hedge”).

Consider first an investor with a commitment to buy Q units of the asset on date 7. To
hedge this position, the investor

1. Takes a long futures position of size H at inception at the futures price F.
2. Closes out the futures position at time 7" by taking a short futures position of size H.
3. Buys the required quantity Q on the spot market at time 7'.

To handle the possibility that the initial futures position may be a short one, we will allow
H to take on negative values also and interpret a long position of (say) — 10 units as a short
position of 10 units. Under this strategy, there is a cash outflow of Q Sy at time 7' towards
the spot purchase. There are also resettlement profits from the futures position at this time
of H(Fr — F). Thus, the net cash outflow is

OSr — H(Fr — F) (5.4)

The investor must choose H to minimize the variance of the cash flow (5.4).
Now consider an investor with a commitment to sell Q units of the asset on date 7'. To
hedge this, the investor

1. Takes a short futures position of size H at inception at the futures price F'.
2. Closes out the futures position at time 7" by taking a long futures position of size H.
3. Sells the quantity Q on the spot market at time 7.

Once again, we allow H to be negative to allow for the possibility that the initial futures
position is a long one. Under this strategy, there is a cash inflow of O Sy at time 7' from the
spot market sale. There are also resettlement profits from the futures position of H(F — Fr).
Thus, the net cash inflow is

0Sy + H(F — Fy) (5.5)

which is identical to (5.4). Thus, both a long and short investor want to choose H to minimize
the variance of the cash flow (5.4).

5.4 The Case of No Basis Risk

If there is no basis risk, identifying the minimum variance hedge ratio is a simple matter.
In this case, we must have S; = Fr, so (5.4) becomes

OSr —H(Fr —F)=0Sr — H(Sr — F)
=(Q—-H)Sr+ HF (5.6)

At the time the hedging strategy is initiated, Q and F are known quantities, so the only
unknown here is S7. If we set H = Q, the term involving S drops out of (5.6) and the
cash flow reduces to the known quantity H F' = QF. The variance of this cash flow is zero.
Since variance cannot be negative, we cannot improve upon this situation. Thus, if there is
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no basis risk, it is optimal to hedge completely, i.e., the minimum-variance hedge ratio is
h* = 1, and this eliminates all risk.

The important question is, of course, what if basis risk is present? The next section
provides the answer.

5.5 The Minimum-Variance Hedge Ratio

To identify the minimum-variance hedge ratio, we first rewrite the cash flow (5.4) from a
hedged futures position in terms of price changes. Let Ag = Sy — Sand Ap = Fr — F
denote the changes in spot and futures prices, respectively, over the hedging horizon. Add
and subtract the quantity QS to (5.4) to obtain

08y = O0S+ 08— H(Fr = F) = O(Sr = 8) — H(Fr = F) + 0§
= QA5 — HAp+ 0S (5.7)

Now, let 7 = H/Q denote the hedge ratio. The cash flow (5.7) can be expressed in terms
of the hedge ratio as

O[As —hAp]+ OS (5.8)

We want to pick /# to minimize the variance of this quantity. Note that the last term QS is a
known quantity at the time the hedge is put on, so contributes nothing to the variance. From
(5.8), the variance of hedged cash flows comes from three sources:

+ The variance of spot price changes A . Denote this quantity by o2(Ag).

+ The variance of futures price changes A ». Denote this quantity by o2(Af).

» The covariance between these quantities, denoted cov (Ag, Ar).

Using this notation, the variance of hedged cash flows (5.8) is
Var[Q (As — hAfp)] = Q® Var(As — hAp)
= 0° [0%(As) + h* 0> (Ar) —2hcov (As, Ap)]  (5.9)

The presence of the 4% term ensures that the last term is U-shaped as a function of / (see
Figure 5.1). To identify the point of minimum variance, we take the derivative of (5.9) with
respect to 4 and set it equal to zero. This yields

2h0*(Ap) —2cov(Ag, Ap) = 0
or ho?(Arp) = cov(Ag, Ar). Thus, the variance-minimizing value of /4 is
COV(ASa AF)

2
OF

h = (5.10)

To express ~2* in terms of the correlation p between Ag and A, note that by definition

_ COV(As, AF) (5.11)
o(As)o(AF)
Thus, cov (Ag, Ar) = po(As)o(Ar), so h* can also be written as
A
LA C) (5.12)
o(Ar)

Expression (5.12) is the main result of this chapter. In words, as mentioned earlier, it
says that the optimal hedge ratio is the correlation p between price changes adjusted by a
“scaling factor” o (Ag)/o(AF).
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Hedge Ratio

The minimum-variance hedge ratio is illustrated graphically in Figure 5.1. The figure
considers a low level of correlation, a high level of correlation, and the limiting case of perfect
correlation. It highlights two points. First, the minimum-variance hedge ratio increases as
correlation increases. Second, the minimized cash-flow variance (i.e., the variance of cash
flows under the minimum-variance hedge ratio) is lower as correlation is higher, which is
intuitive: higher correlation implies a superior ability to offset cash-flow risk by hedging.
In the limit, when correlation is perfect, the minimized cash-flow variance is also zero.

Long or Short Futures Position?

The sign of the optimal hedge ratio is determined by the sign of the correlation p. If p > 0,
the hedge ratio is positive, meaning that if the hedger has a long spot exposure (i.e., a
commitment to buy on date 7'), he must take a long initial futures position, and if he has a
short spot exposure (a commitment to sell on date 7'), he must take a short initial futures
position. If p < 0, the hedge ratio is negative, meaning that a long spot exposure is hedged
with a short initial futures position while a short spot exposure is hedged with a long futures
position.

These sign implications are easily understood if one keeps in mind that hedging is
basically an offsetting of risks. Suppose, for example, that the investor has a long spot
exposure. Then, as a buyer, the investor “loses” on the spot position if spot prices increase.
Under the hedge, these losses must be offset with gains on the futures position. With positive
correlation, futures prices also increase when spot prices increase, so we must gain on the
futures position when futures prices increase. This mandates a long futures position. With
negative correlation, futures prices decrease when spot prices increase, so making a gain
on futures requires a short futures position.

The Minimized Cash-Flow Variance

What is the variance of cash flows from the hedged position under 4#*? To identify the
answer, we substitute the value of #* into the cash-flow variance (5.9). Using the identity
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cov(Ag, Ap) = po(As)o(Ap), this gives us

2 GZ(AS) UZ(AF) —2p o(As)

o2(Ap) o(Ar) po(As)o(Ar) (5.13)

0* 6% (As) +p

Canceling common terms and simplifying, this is just the quantity

0% o*(As) (1 - p?) (5.14)

Note that this minimized variance will not be zero except in the trivial case where
p = =1, 1i.e., when the futures and spot price changes are perfectly (positively or negatively)
correlated. But futures and spot prices are perfectly correlated (i.e., move in lockstep) only
when there is no basis risk, so (5.14) says that if basis risk is present, there is always some
residual uncertainty even after hedging.

Which Futures Contract?

The minimized variance (5.14) decreases as p? increases, or, equivalently, as |p| increases.
This makes the choice of futures contract simple: as a general rule of thumb, pick the contract
whose price changes have the highest correlation (in absolute value) with changes in the
spot price of the asset being hedged. This will result in the maximum possible reduction in
cash-flow volatility.

Minimum-Variance Hedging Compared to Alternatives
There are two questions about the minimum-variance hedge ratio that are of interest:

1. Byhow much does optimal hedging reduce uncertainty over the alternative of not hedging
(i.e., using & = 0)?

2. How much larger is the variance of cash flows if we hedge one-for-one (i.e., set 4 = 1)
rather than using #*?

(A) The Alternative of Not Hedging

If we do not put on a hedge, then # = 0. Substituting 2 = 0 in (5.9), the variance of the
unhedged cash flow is

0 0?(As) (5.15)

Comparing (5.14) and (5.15), we see that optimal hedging reduces cash-flow variance by
a factor of p?. For instance, if p = 0.90, then p? = 0.81, so optimal hedging removes 81%
of the unhedged cash-flow variance, i.e., the variance of the hedged position is only 19% of
the variance of the unhedged position. On the other hand, if p = 0.30, then p? = 0.09, so
even optimal hedging removes only 9% of the unhedged cash-flow variance.

(B) The Alternative of Hedging One-for-One
If we use a hedge ratio of # = 1, the cash-flow variance in (5.9) becomes
0? [UZ(AS) +0%(Ap) — 2cov(Ag, AF)] (5.16)
which can be rewritten as
Q* [0%(As) (1 = pH)] + Q% [0(AF) — po(Ag)T (5.17)

Comparing this to the variance (5.14) under 4*, we see that using a hedge ratio of unity
increases the variance by the amount (6 (A ) — po(As))?. The lower is p, the greater this
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quantity. This is intuitive: a lower correlation implies a lower minimum-variance hedge
ratio i4*, so the greater is the error we are making by using a hedge ratio of unity.

Indeed, hedging one-for-one may even be worse than not hedging at all! Compare (5.17)
and (5.15). The difference between these quantities is

Q* [0%(AF) —2cov(As, Ap)] = Q% [0%(Ar) —2po(As)a(Ap)]  (5.18)

If o > 2poyg, this difference is positive, which means the variance of the cash flow with a
hedge ratio of unity is higher than the variance of the unhedged cash flow.

5.6 Examples

Example 5.2

In this section, we present two examples to illustrate minimum-variance hedging. Both
examples involve basis risk arising from commodity mismatches. The first example looks
at cross-hedging in currencies. The second example concerns hedging an equity portfolio
using futures on another portfolio.

Cross-Hedging with Currencies

Suppose that a US exporter will receive 25 million Norwegian kroner (NOK) in three months
and wishes to hedge against fluctuations in the US dollar (USD)-NOK exchange rate. Assume
there is no active forward market in NOK, so the company decides to use a forward contract
on the euro (EUR) instead. The company has gathered the following data:

1. The standard deviation of quarterly changes in the USD/NOK exchange rate is 0.005.
2. The standard deviation of quarterly changes in the USD/EUR forward rate is 0.025.
3. The correlation between these changes is 0.85.

What should be the company’s minimum-variance hedging strategy?

The spot asset in this example is the NOK, so one “unit” of the spot asset is one NOK.
The company will receive 25 million NOK in three months, which must be converted to
USD. Thus, it is effectively as if the company has a commitment to sell Q = 25 million NOK
in three montbhs, i.e., it has a short spot exposure.

The forward contract used to hedge this exposure has the euro as its underlying asset, so
one “unit” of the forward contract is a forward calling for delivery of one euro at maturity.
There is commodity basis risk since the asset underlying the forward contract and the asset
being hedged are not the same.

We are given o (As) = 0.005, o (Af) = 0.025, and p = 0.85. From (5.12), the variance-
minimizing hedge ratio is given by

b o(As) 0.85 0.005

_ — 0. 2 047
LTINS * 0025 = °

In words, the optimal hedge position is to take 0.17 units of forwards per unit of spot
exposure. Why only 0.17, i.e., why is the hedge position so “small”? Loosely speaking, the
euro trades roughly on par with the dollar (at the time of writing, around USD 1.45/EUR),
while the Norwegian kroner costs only a fraction of that (at the time of writing in September
2009, around USD 0.17/NOK). Reflecting these price differentials, the quarterly standard
deviation of the USD/EUR forward rate in the example is five times larger than the 0.005
quarterly standard deviation of the USD/NOK exchange rate.

In hedging NOK price risk with the euro, we are trying to compensate for losses from
NOK price movements with gains from euro price movements and vice versa. Since the
typical euro price move is five times as large as the typical NOK price move, we want to use
far fewer euros in the hedge position than the number of NOK in the spot exposure.
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Example 5.3

Returning to the computations, since Q is given to be 25 million and we have estimated
h* = 0.17, the optimal forward position calls for the delivery of

H* = h* Q = 4.25 million euros

Finally, note that since the hedge ratio is positive and the company has a short spot exposure,
this forward position must be a short one.

To summarize: the company’s optimal hedge is to take a short forward position calling
for the delivery of 4.25 million euros in three months. If the company’s data is correct, this
optimal hedge will remove p? = (0.85)? = 0.7225, or about 72% of the variance associated
with the unhedged position. |

Cross-Hedging with Equities
Consider the problem of hedging a portfolio consisting of S&P 100 stocks using S&P 500
index futures.! Suppose that:

1. The value of the portfolio is $80,000,000.

2. The current level of the S&P 100 index is 800.

3. The current level of the S&P 500 index futures is 960.

4. One S&P 500 index futures contract is for 250 times the index.

The underlying asset in this problem is the S&P 100 index. That is, one “unit” of the
underlying asset is the basket of stocks used to construct the S&P 100 index. The current
price per unit S of this asset is simply the current level of the index, so S = 800. Since
the portfolio value is given to be $80 million, the number of “units” in the portfolio is
[80,000,000/800] = 100,000. Therefore, Q = 100,000.

The asset underlying the futures contract is the S&P 500 index, i.e., one “unit” of the
asset underlying the futures contract is the basket of securities used to construct the S&P 500
index. The current futures price per unit is simply the current level of the S&P 500 index
futures, which gives us F = 960. Note that the futures contracts are standardized in size:
one futures contract calls for delivery of 250 units of the S&P 500 index.

There is evidently basis risk in this problem since we are hedging one asset (the S&P 100
index) with futures written on another asset (the S&P 500 index). To determine the optimal
hedging scheme, therefore, we need information on variances of spot and futures price
changes over the hedging horizon, and the covariance of these price changes. Suppose we
are given the following information:

1. o(As) = 60.
2. o(Af) = 75.
3. p=0.90.

Then, the optimal hedge ratio is

40
o= pZ = 090 x =5 = 072

OF

i.e., to take 0.72 units of futures positions per unit of spot exposure. Since Q = 100,000,
the size of the optimal futures position is

H* = h*-Q = (0.72)(100,000) = 72,000

T This example is adapted from the class notes of Menachem Brenner at NYU.



Chapter 5 Hedging with Futures and Forwards 111

That is, the optimal futures position calls for the delivery of 72,000 units of the S&P 500
index. One unit of the futures contract is for 250 units of the index. Therefore, we should
take a futures position in (72,000)/250 = 288 contracts.

Should this be a long or short futures position? By hedging, we are trying to protect the
value over the hedging horizon of the S&P 100 portfolio that we hold. Thus, it is as if we
have a short spot exposure in three months and want to lock-in a value for this. Since the
hedge ratio is positive, our futures position should also be a short one. |

5.7 Implementation

To implement a minimum-variance hedging scheme in practice we must identify #*. There
are two equivalent ways in which this may be accomplished, both using historical data on
spot and futures price changes. The first is to estimate each of the three parameters (o (Ay),
o(Ar), and p) that go into the computation of #*. The second, and easier, method is to
estimate #* directly from the data using regression analysis. We describe both approaches
below.

In each case, we rely on the use of data on spot and futures prices at specified sampling
intervals. For specificity, we take the sampling interval to be daily, though, of course, data
of different frequency could also be used.

So, suppose that we have data on daily spot and futures price changes. Assume that price
changes across different days are independent and identically distributed. Let §5 denote the
random daily spot price change and §# the random daily futures price change. Further, let

+ 0%(8s) denote the variance of daily spot price changes §5.

+ 02(8r) denote the variance of daily futures price changes 8.
* cov(dg, 8r) denote the covariance of §g and 5.

* p(8s, 6p) denote the correlation of 5 and 8.

Each of these quantities may be estimated easily from historical time-series data on daily
spot and futures prices.

A First Method

Suppose there are K days in the hedging horizon. Since price changes over successive days
are independent, the total spot price change Ag over the hedging horizon is just the sum of
K independent daily changes, each with a variance of o-2(8g). Thus,

o} (As) = K a*(8s) (5.19)

Similarly, the total futures price change is just the sum of K independent daily futures price
changes, each with a variance of o2(8). Thus,

02(AF) = KGz(ap) (520)
Similarly, we also have
COV(AS, AF) = KCOV(S_S‘, 51:) (521)

From (5.19)—(5.21), the minimum-variance hedge ratio (5.10) can be written in terms of
the daily price changes as

cov (s, Or)
o%(8r)

* —

(5.22)
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Of course, we can also express this hedge ratio in terms of the correlation rather than the
covariance. From (5.19)—(5.21), the covariance p(8s, 85) of daily price changes is equal to
the correlation p between Ag and A since

_ cov(As, Ap) Kcov (8s, 8r) B
P= Uz(AS)(IZ(AF) - \/KGZ((SS) KO'2(81:) - p(SS» 8F) (523)

Thus, we can also write

o (3s)
o(8r)

In either case, #* depends only on the properties of daily price changes and may be estimated
from historical data.

A Second Method

The second method estimates #* directly without first estimating daily variances and co-
variances. Suppose we have data on daily spot price changes (denoted §s) and daily futures
price changes (denoted §r). Consider the regression

h* = 10(657 (SF)

(5.24)

(SS = a+b(§F+€

Let @ and b denote the estimates of @ and b. Then, the regression estimate bis precisely
the hedge ratio /*!

Why is this the case? The regression estimates are, by definition, chosen to be unbiased
(i.e., to satisfy a + b 6 = &5 on average) and to minimize the variance of the error term €.
Now, since a is a constant, the variance of € is

Var(e) = Var(§s —a —bdr) = Var(Ss — bér)

Thus, the estimate » minimizes the variance of (85 — b §r), the difference between daily
spot price changes and b times the daily futures price changes. The optimal hedge ratio /#*
was chosen to minimize the variance of (Ag — hAF), the difference between spot price
change over the hedging horizon and % times the futures price change over this horizon.
Since total spot and future price changes over the hedging horizon are simply the sum of
daily price changes, the problems are the same and must have the same solution.

This gives us a quicker and more direct way of obtaining an estimate of 2* from the data,
but, of course, the two methods are equivalent.

5.8 Further Issues in Implementation

In this section, we complete the discussion on implementation by focusing on three ques-
tions:

1. Thus far, the analysis has focused on using a single futures contract for hedging. Can we
extend this to the use of multiple futures contracts?

2. What about hedging multiple risks simultaneously?

3. How do we account for the effect of daily resettlement and marking-to-market in futures
contracts?

Hedging with Multiple Futures Contracts

In the presence of basis risk, there is no a priori reason why only a single futures contract
should be used in setting up the hedge. In hedging a single stock or a portfolio of stocks with
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index futures, for instance, it is plausible that using two different index futures contracts
simultaneously may result in a better performance than using just one. Similarly, high-yield
or “junk” bond returns tend to be highly correlated with equity returns. In hedging a portfolio
of high-yield bonds, using a combination of equity index futures and interest-rate futures
may be superior to using just one of the two.

When there are multiple futures contracts used for hedging, there are multiple hedge
ratios (one for each futures contract) to be determined in the optimal hedging strategy.
Determining these hedge ratios is simple. As earlier, let §5 denote daily spot price changes.
Letdp, ..., 6, denote the daily price changes in the » futures contracts chosen for hedging.
Consider the regression:

as=a+b181~‘l+"'+bn$1~‘n+6 (525)

Then, the regression estimates 31, e, 3,, are precisely the hedge ratios of the n contracts.
The reasoning is the same as in the case of a single contract.

Should we use more than one contract? It is not possible to give an unambiguous answer
to this question. Much depends on the specifics of the problem. Statistically, one can always
improve the performance of a hedge by using more than one contract for exactly the same
reason that one can reduce the standard error of a linear regression by adding more explana-
tory variables. However, one should proceed with caution here. It is well known that the
improved standard error in a regression may be illusory if the added explanatory variables
are unrelated ones. Analogously, there may be no real improvement in the hedge perfor-
mance from using additional contracts; indeed, including a poorly related futures contract
in the hedge may actually worsen the hedge.

There are statistical tests (such as the F' test) for comparing the fit of two regressions
that we can use to gauge the improvement. At a minimum, we should check to see if the
regression estimates are statistically significant and eliminate those futures that are not
significant. Ultimately, common sense is the best guide here.

Hedging Multiple Risks Simultaneously

So far we have considered hedging a single spot commitment (i.e., a single “risk”) with
futures. What if a firm faced several simultaneous risks, e.g., a firm that exports to many
countries and faces simultaneous foreign exchange risk in all the currencies? What is the
optimal hedging rule in such a situation?

The answer is a simple additive rule: identify the optimal size of the futures hedge for
each risk separately, and then add them all up. The optimality of this rule is easily checked
using the same approach as in deriving the optimal hedge ratio for a single risk. The details
are left as an exercise.

Tailing the Hedge
Thus far, we have treated the futures contract as if it is a forward contract that is marked-
to-market once at the end of the contract. Now we examine the impact of daily marking-to-
market on the size of the optimal hedge.
From (5.8), in determining the optimal hedge ratio, we are looking for the value of / that
minimizes
Var(As — hAF) (526)

The term Ag, which represents spot price changes over the hedging horizon, is unaffected
by daily marking-to-market, but the term A , which measures resettlement profits from the
futures position, depends on interest payments on the margin account. Suppose, as earlier,
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that there are K days in the hedging horizon. Let R denote one plus the daily interest rate
paid on margin accounts, i.e., $1 grows to $R at the end of one day. When daily marking-
to-market is ignored, we showed that the optimal hedge ratio is

cov(Ag, Ar)

h* =
a?(Ar)

(5.27)

If we take daily marking-to-market into account, it can be shown that the optimal hedge
ratio, denoted 42", is simply ~2* multiplied by a “tail factor” g(R, K):

n* = g(R, K)h* (5.28)
where the tail factor g(R, K) is given by

K
I+ R+ R*+ -+ RE-!

g(R,K) = (5.29)
A proof of this result is given in Appendix SA.

The tail factor g measures the impact of daily marking-to-market. This factor is equal to
1 if R =1 (i.e., net interest rates are zero) but is strictly less than 1 if R > 1 (i.e., interest
rates are positive). However, it is very close to 1 if R and K are small. For example, if the
interest rate on margin accounts is 5% (annualized), then the tail factor is

* 09994 if K = 10.
* 0.9967if K = 50.
+ 0.993if K = 100.
+ 0.93if K = 1000.

Thus, daily marking-to-market does not make a big difference for relatively short horizons.
However, over very long hedging horizons (such as the multiyear horizon of Metallge-
sellschaft in the case discussed in Chapter 2), tailing can make a substantial difference.
Ignoring tailing in such situations will result in “overhedging,” i.e., in the hedge ratio being
larger than optimal, and this can increase cash-flow risk substantially.

5.9 Index Futures and Changing Equity Risk

In the second example in Section 5.6, we saw that futures on the S&P 500 index could be
used to provide a hedge for an equity portfolio. We now examine a more general question:
how we can change the nature of risk in an equity portfolio (more specifically, the beta of
the portfolio) by using index futures. For this purpose, we assume that there is an index
that represents the “market portfolio” and that there is a futures contract that trades on this
index. In the US, the S&P 500 index futures contract plays this role; the S&P 500 index is
widely viewed in practice as a proxy for the market portfolio and is used as the performance
benchmark for managers of mutual funds and hedge funds.

Let P denote the value of the equity portfolio and let 8° denote its current beta. Suppose
that the portfolio manager’s objective is to alter this beta to a new value g". Let F' denote
the current futures price per contract and suppose that the portfolio manager takes a futures
position of size H contracts. We allow H to be positive or negative; H > 0 indicates a long
futures position and H < 0 a short one.
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Then, the question we are interested in is: what is the value of H that will produce the
required change in the portfolio beta? The required number of futures contracts is

*__5 o __ pn
H' = 2 (8 =B (530)

In particular, if the objective is to make the portfolio riskless (i.e., a zero-beta portfolio),
the number of futures contracts required is

. _ P,
H = —— 8 (5.31)

5.10 Fixed-Income Futures and Duration-Based Hedging

All hedging strategies using futures contracts are based on the same idea: that by choosing
the size of the futures position appropriately, it is possible to offest losses arising from spot
price movements with gains on futures positions and vice versa. Hedging fixed-income
instruments (e.g., a portfolio of bonds) with interest-rate futures is no different in this
regard. However, fixed-income instruments have one feature that distinguishes them from
other assets: both the spot price of such an instrument and the futures price of a contract
written on a fixed-income instrument depend on a common underlying variable—the level
of interest rates. This makes it possible to devise a special hedging strategy called duration-
based hedging.

Duration-based hedging is explored in the next chapter. Intuitively, duration-based hedg-
ing looks at how much a change in interest rates would affect (a) the value of the portfolio
we are looking to hedge and (b) the price of the interest-rate futures contract we are using
for hedging. We then choose the number of futures contracts to be used in the hedge so that
these value changes offset each other.

5.11 Exercises

—_

What is meant by basis risk?

2. What is the minimum-variance hedge ratio? What are the variables that determine this?

3. How does one obtain the optimal hedge ratio from knowledge of daily price changes
in spot and futures markets?

4. What is tailing the hedge in the context of minimum-variance hedging? Why does one
tail the hedge?

5. In the presence of basis risk, is a one-for-one hedge, i.e., a hedge ratio of 1, always
better than not hedging at all?

6. If the correlation between spot and futures price changes is p = 0.8, what fraction of
cash-flow uncertainty is removed by minimum-variance hedging?

7. The correlation between changes in the price of the underlying and a futures contract is
+80%. The same underlying is correlated with another futures contract with a (negative)
correlation of —85%. Which of the two contracts would you prefer for the minimum-
variance hedge?

8. Given the following information on the statistical properties of the spot and futures,
compute the minimum-variance hedge ratio: oy = 0.2, o = 0.25, p = 0.96.

9. Assume that the spot position comprises 1,000,000 units in the stock index. If the hedge

ratio is 1.09, how many units of the futures contract are required to hedge this position?
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10.

11.

12.

You have a position in 200 shares of a technology stock with an annualized standard
deviation of changes in the price of the stock being 30. Say that you want to hedge this
position with the tech stock index that has an annual standard deviation of changes in
value of 20. The correlation between the two is 0.8. How many units of the index should
you hold to have the best hedge?

You are a portfolio manager looking to hedge a portfolio daily over a 30-day horizon.
Here are the values of the spot portfolio and a hedging futures for 30 days.

Day Spot Futures

80.000 81.000
79.635 80.869
77.880 79.092
76.400 77.716
75.567 77.074
77.287 78.841
77.599 79.315
78.147 80.067
77.041 79.216
76.853 79.204
77.034 79.638
75.960 78.659
75.599 78.549
77.225 80.512
77119 80.405
77.762 81.224
77.082 80.654
76.497 80.233
75.691 79.605
75.264 79.278
76.504 80.767
76.835 81.280
78.031 82.580
79.185 84.030
77.524 82.337
76.982 82.045
76.216 81.252

WINNNRNNNNNNRN = — = 2 0o oo
SVRVONLTRANN-OOVIVNNNDAEWN 2O ORXNANULNAWN—=O

76.764 81.882
79.293 84.623
78.861 84.205
76.192 81.429

Carry out the following analyses:

(a) Compute o(Ay), 0(Ar), and p.

(b) Using the results from (a), compute the hedge ratio you would use.

(c) Using this hedge ratio, calculate the daily change in value of the hedged portfolio.

(d) Whatis the standard deviation of changes in value of the hedged portfolio? How does
this compare to the standard deviation of changes in the unhedged spot position?

Use the same data as presented above to compute the hedge ratio using regression
analysis. Explain why the values are different from what you obtained above.
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14.

15.

16.

17.

18.
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A US-based corporation has decided to make an investment in Sweden, for which it
will require a sum of 100 million Swedish kronor (SEK) in three-months’ time. The
company wishes to hedge changes in the US dollar (USD)-SEK exchange rate using
forward contracts on either the euro (EUR) or the Swiss franc (CHF) and has made the
following estimates:

* IfEUR forwards are used: The standard deviation of quarterly changes in the USD/SEK
spot exchange rate is 0.007, the standard deviation of quarterly changes in the
USD/EUR forward rate is 0.018, and the correlation between the changes is 0.90.

» If CHF forwards are used: The standard deviation of quarterly changes in the USD/SEK
spot exchange rate is 0.007, the standard deviation of quarterly changes in the
USD/CHF forward rate is 0.023, and the correlation between the changes is 0.85.

Finally, the current USD/SEK spot rate is 0.104, the current three-month USD/EUR

forward rate is 0.471, and the current three-month USD/CHF forward rate is 0.602.

(a) Which currency should the company use for hedging purposes?

(b) What is the minimum-variance hedge position? Indicate if this is to be a long or
short position.

You use silver wire in manufacturing, looking to buy 100,000 oz of silver in three months’

time and need to hedge silver price changes in three months. One COMEX silver futures

contract is for 5,000 oz. You run a regression of daily silver spot price changes on silver

futures price changes and find that

0y = 0.03 +0.895 + €
What should be the size (number of contracts) of your optimal futures position. Should
this be long or short?
Suppose you have the following information: p = 0.95, o5 = 24, o = 26, K = 90,
R = 1.00018. What is the minimum-variance tailed hedge?

Using the equation for tailing the hedge, can you explain why the tailed hedge ratio is
always less than the ratio for untailed (static) hedge?

You manage a portfolio of GM bonds and run a regression of your bond’s price changes
on the changes in the S&P 500 index futures and changes in the 10-year Treasury note
futures. The regression result is as follows:

8p = 0.02 — 0.2854p + 0.587zy, R*=0.7

where the regression above is in changes in index values for all the right-hand side
variables. What positions in the two index futures will you take? What proportion of the
risk remains unhedged? What implicit assumption might you be making in this case?

You are asked to hedge the forward price of a security S over a maturity 7. The corre-
lations of S, and futures contracts Fi, F, are given by the following correlation matrix:

S Fq F,
S 1.00000 0.98757 0.82923
Fq 0.98757 1.00000 0.84939
F, 0.82923 0.84939 1.00000

If the standard deviations of the returns on the three assets are given by
o(S) =0.30
o(F) =0.25
o(F,) =0.15
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19.

20.

then, find the minimum-variance hedge for S using both futures contracts F; and F5.
Express your solution in terms of the number of dollars you will place in positions in
F| and F, to hedge a $1 position in S. What can you say about the solution(s) you have
arrived at?

Our firm receives foreign exchange remittances in several different currencies. We are
interested in hedging two remittances in six months time from Europe (200 in EUR) and
from Japan (400,000 in JPY). If the sales were made today, we would receive the USD
equivalent of these remittances at today’s spot exchange rates. However, there may be a
big change in spot FX rates by the end of the six-month period. In order to ensure that
there are no surprises, we want to hedge the risk of changes in FX rates from now to six
months ahead. The following tables give the correlations and covariances of changes in
spot FX and forward FX rates. The notation below is such that S(usd, eur) stands for
dollars per euro.

CORRMAT AS(usd, eur)  AS(usd, jpy) AF(usd, eur) AF (usd, jpy)

AS(usd, eur) 1

AS(usd, jpy) 0.1480 1

AF (usd, eur) 0.7099 0.0914 1

AF (usd, jpy) 0.1441 0.7419 0.1008 1

COVMAT AS(usd, eur)  AS(usd, jpy) AF(usd, eur) AF (usd, jpy)

AS(usd, eur) 0.000107 0.000015 0.000106 0.000021
AS(usd, jpy) 0.000015 0.000096 0.000013 0.000103
AF (usd, eur) 0.000106 0.000013 0.000206 0.000020
AF (usd, jpy) 0.000021 0.000103 0.000020 0.000200

Note that the matrices of changes above reflect the change in USD amounts per unit of
the foreign currency. This follows from the fact that the exchange rates are expressed as
dollars per unit of foreign currency. If we want to hedge an inflow of EUR 200 and JPY
400,000, how many units of foreign currency must we hold in forward FX contracts to
get the best hedge? Note that the best hedge is one that minimizes the variance of changes
in the total remitted amount. Carry out your analysis in the following three steps:
(1) Compute what the variance of changes in remitted USD amount is if we do no
hedging.
(i1)) Compute what the variance of changes in remitted USD amount is if we do one-
for-one hedging.
(i) Compute what the variance of changes in remitted USD amount is if we do minimum-
variance hedging.
HoleSale Inc. USA exports manhole covers to Japan and Germany. Over the next six
months, the company anticipates sales of 1,000 units to Japan and 500 units to Germany.
The price of manhole covers is set at JPY 10,000 and EUR 80 in Japan and Germany,
respectively. The following information is given:

e The standard deviation of the JPY/USD exchange rate is 5.

* The standard deviation of the EUR/USD exchange rate is 0.05.

e The correlation of the JPY/USD and EUR/USD exchange rates is —0.4.
* The standard deviation of the EUR/USD six-month forward rate is 0.06.
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HoleSale Inc. is going to use the EUR/USD forward FX market to hedge all currency risk

across countries to which it sells its product by booking a single forward contract that

minimizes the company’s risk. How many units of this contract should the firm buy/sell?

You are attempting to cover a short forward position of S with a long futures contract

for the same maturity. Which do you prefer as a hedge: futures contract F or F,, where

o(Fy) > o(F3), and given that the correlation of both futures contracts with S is the
same? Explain your reasoning.

You are planning to enter into a long forward hedge to offset a short forward posi-

tion. If you choose a futures contract over a forward contract, which of the following

circumstances do you want?

(a) Do you want the term structure of interest rates (i.e., the plot of interest rates against
maturities) to be sloped up or down?

(b) Do you want the volatility of interest rates to be increasing or decreasing?

(c) Do you want the volatility of the futures price change to be higher or lower than that
of the forward price?

(d) Do you want the correlation of the spot to futures to be higher or lower than that of
the spot to forwards?

You are trying to hedge the sale of a forward contract on a security 4. Suggest a framework

you might use for making a choice between the following two hedging schemes:

(a) Buy a futures contract B that is highly correlated with security 4 but trades very
infrequently. Hence, the hedge may not be immediately available.

(b) Buy a futures contract C that is poorly correlated with 4 but trades more frequently.

Download data from the web as instructed below and answer the questions below:

(a) Extract one year’s data on the S&P 500 index from finance.yahoo.com. Also
download corresponding period data for the S&P 100 index.

(b) Download, for the same period, data on the three-month Treasury bill rate (constant
maturity) from the Federal Reserve’s web page on historical data:

www.federalreserve.gov/releases/h15/data.htm.

(c) Create a data series of three-month forwards on the S&P 500 index using the index
data and the interest rates you have already extracted. Call this synthetic forward
data series F.

(d) How would you use this synthetic forwards data to determine the tracking error of
a hedge of three-month maturity positions in the S&P 100 index? You need to think
(a) about how to set up the time lags of the data and (b) how to represent tracking
error.

Explain the relationship between regression R? and tracking error of a hedge. Use the data

collected in the previous question to obtain a best tracking error hedge using regression.
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Derivation of the Optimal Tailed Hedge
Ratio A**

Recall that to identify the minimum-variance hedge, we must find the value of / that
minimizes
As—hAr (5.32)

where Ag is the change in spot prices over the hedging horizon and A represents the
resettlement profits on the futures position. When we ignored interest payments on the
margin account, we took the futures resettlement profits to be

Ap = (Fi=F)+(FH—-F) 4+ (Fx — Fx-1) (5.33)

With an interest rate of R, the first day’s profit or loss, (F; — Fj), will accumulate interest
at the rate R for K — 1 days and so will amount to RX~!(F, — Fy)) by maturity. The second
day’s profit or loss, (F, — F}), will accumulate interest for K — 2 days and so grow to
RX-2(F, — F)) by maturity. Doing the same thing for the profits or losses on each of the K
days shows that the total resettlement profits from the futures position amount to

Ap = REV(F — F) + RN (B — F) 4+ 4 (Fx — Fx_1) (5.34)

Assume daily price changes are independent and identically distributed (i.i.d.) Let 6 - denote
the random daily futures price change with variance o-(85). Then, viewed from time-0, the
overall resettlement profits amount to

Ap = [RETH RSP+ 4 R+ 1] 8 (5.35)
For notational simplicity, let f(R, K) =1+ R + --- RK~!_ Then,
Ar = f(R,K)Sr (5.36)
The total spot price change Ay remains, as earlier, the sum of daily price changes
Asg = (S1—80) + (S —81) + -+ (Sk — Sk-1) (5.37)
If 85 denotes the random daily spot price change (with variance o%(8s)), then
As = K s (5.38)

Therefore, with daily marking-to-market, the total cash flow (5.32) from the hedged position
can be expressed in terms of daily price changes as

As—hAr = K8s—h f(R, K)dr (5.39)
The variance of this total cash flow is
K?0?(85) + I*[f(R, K)I’0*(8r) — 2h Kf (R, K) cov(8s, 8F) (5.40)

The h? term once again ensures that this variance is U-shaped as a function of /. To find
the point of minimum-variance, we take the derivative of (5.40) with respect to /# and set it
equal to zero. After simplifying and eliminating common terms, this gives us

h f(R, K)o?(8r) = K cov(8s, 85) (5.41)
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from which we finally obtain the optimal hedge ratio as
_ K cov(ds, 6r)
f(R,K) o*(8F)

The last term on the right-hand side of (5.42) is exactly the optimal hedge ratio #* that
obtains when daily marking-to-market is ignored. Thus, if we define

K
1+ R+ R>+---+ RK!
the optimal hedge ratio with daily marking-to-market is simply the old hedge ratio #*
multiplied by the “tail” factor g(R, K):

W = o(R,K)h* (5.43)

Kok

(5.42)




Chapter

Interest-Rate Forwards
and Futures

6.1 Introduction

Interest-rate forwards and futures are contracts where the underlying is an interest rate or
depends on the level of interest rates. Two of the most widely used contracts of this form
are forward-rate agreements, which are over-the-counter (OTC) products, and eurodollar
futures, which are exchange-traded. In both contracts, payoffs depend directly on specified
interest rates. There are also other popular contracts, such as futures contracts on US trea-
suries, German government bonds or “bunds,” UK gilts, and Japanese government bonds,
in which the underlying asset is a bond. This chapter describes each of these products and
their characteristics.

Following these descriptions, this chapter looks at the notion of hedging fixed-income
risk. All strategies that aim to hedge spot price exposure with futures contracts are based
on the same idea, that of offsetting the effects of spot price changes with futures price
movements. Hedging fixed-income instruments (e.g., hedging a portfolio of bonds with
bond futures) is no different in this regard. However, fixed-income instruments have one
feature that distinguishes them from other assets: both the spot price of such an instrument
and the futures price of a contract written on a fixed-income instrument depend on a common
underlying variable—the level of interest rates. This makes it possible to devise a special
hedging strategy called duration-based hedging. The final section of this chapter examines
duration-based hedging.

Some of the most important products described in this chapter depend on the London
Interbank Offered Rate or Libor. We begin this chapter with an introduction to Libor rates
and the convention used to compute interest in this market.

6.2 Eurodollars and Libor Rates

122

US dollar deposits maintained in banks outside the US (including foreign branches of US
banks) are called eurodollar deposits. The term eurocurrency deposits or eurodeposits is
used more generally to refer to deposits in a currency maintained offshore relative to the
country of origination. For the most part, the eurodeposit market operates outside the control
of central banks. The euromarket operations of US banks are, for example, exempt from
reserve requirements and no FDIC premia are imposed against their eurodollar deposits.
Thus, every eurodollar received can be invested.
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The interest rate on eurodollar deposits in interbank transactions is called the London
Interbank Offered Rate or Libor. The spot Libor market is huge with especially great depth
in the three- and six-month segments. Libor is now the benchmark rate for several other
markets; swaps, commercial paper, and floating-rate eurodollar loans are, for example, all
indexed to Libor.

Libor rates are quoted using the money market day-count convention. In the US, a “year”
in this convention is treated as 360 days. The interest payable per dollar of principal is then
computed as

Libor x ~2- 61
360
where d is the actual number of days in the investment horizon. This is the “Actual/360
convention.” The euro money market similarly uses an Actual/360 day-count convention,
but the money market convention for pound sterling is Actual/365.

For example, suppose the Libor rate for the three-month period begining March 16
and ending June 15 is 4%. Consider the interest payable at maturity on an investment of
$1 million. The number of days in this investment horizon is 15 in March, 30 in April, 31
in May, and 15 in June for a total of 91 days. The interest due at maturity is

91
0.04 x — x 1,000,000 = 10,111.11 (6.2)
360
We denote by B(T) the present value of $1 receivable in 7 months’ time computed using

Libor rates for discounting. If £7 denotes the 7-month Libor rate and d the number of days
in this horizon, a dollar invested at Libor for 7 months grows to

d
1+4r — 6.3
+Lr 360 (6.3)
Thus, the present value of a dollar due in 7 months is
1
B(T) = ——— (6.4)
1+ 07 3%

For example, suppose the current three-month Libor rate is 9%. Suppose there are 91
days in these three months. Then, $1 invested today will grow to

91
1+ (0.09) — = 1.02275 6.5
+(0.09) 7 (6.5)
in three months. Thus, the present value of $1 receivable after three months is

B(3) =

= 0.9778 (6.6)
1.02275

6.3 Forward-Rate Agreements

Forward-rate agreements or FRAs are forward contracts written on interest rates rather than
on the price of a traded security or commodity. Hugely popular in their own right, they are
also the bulding blocks of other popular interest-rate derivatives such as swaps.

FRAs enable investors to lock in an interest rate & for borrowing or lending a specified
principal amount P over a specified investment period [77, 73] in the future, i.e., a period
beginning in 7} years and ending in 75 years. Such an FRA is referred to as a 77 x 7> FRA.
By market convention, the investment period is stated in terms of months; for example, a
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4 x 7 FRA refers to the three-month investment period beginning in four months and ending
in seven months. We adopt this convention in this chapter.

Payoffs from an FRA

An FRA is very similar to a commitment in which the long position agrees to borrow from
the short position the amount P at the fixed interest rate k for the period [7}, 7>]. However,
there are some important differences. In an actual borrowing/lending of this form, the long
position would receive the principal amount P from the short position on date 7} and would
return the principal plus interest at the fixed rate k£ on date 75. The FRA modifies these cash
flows in two directions.

First, no actual exchange of the principal P takes place in an FRA. Rather, the long
position in the FRA receives from the short position the difference between a reference
interest rate ¢ and the agreed-upon fixed rate & applied to the principal P for the period
[T}, T»]. Of course, if the difference ¢ — k is negative, then this is interpreted as a payment
from the long position to the short position.

Second, in an actual borrowing or lending, the interest payment is due only at the maturity
date 75. Rather than wait until 7>, however, the difference £ — k in an FRA is settled on date
T; itself by discounting the cash flows due on date 75 back to 77.

The reference interest rate in an FRA is commonly the Libor rate applicable to a period of
length [T}, T]. For example, if the period [T}, 73] is three months long, then £ is taken to be
three-month Libor. Throughout this section, we take the reference rate to be the appropriate
Libor rate.

The following example illustrates FRA payoffs. FRAs are money market instruments, so
the money market day-count convention is used to compute interest payments. In the US,
this is the Actual/360 convention described in the previous section.

FRA Payoffs
Suppose today is March 15 and an investor enters into a long 4 x 7 FRA where the floating
rate is three-month Libor, the principal amount is P = $5,000,000, and the fixed rate is
k = 5.00%. The investment period in this FRA begins on July 15 (four months from today)
and ends on October 15 (seven months from today), which is 92 days.

Suppose the actual three-month Libor rate that prevails on July 15 is ¢ = 5.40%. The
difference ¢ — k is +0.40%. Applying this difference to the principal amount of $5,000,000
for 92 days results in

92
0.004 x 2= x 5,000,000 = 5,111.11 (6.7)

This amount must be brought back to July 15. To do so, we discount it at the three-month
Libor rate prevailing on July 15. This gives us:

511111

1+ (0.054) 2%

= 5,041.54 (6.8)

This is the amount the investor receives from the short position on July 15.

Alternatively, suppose the three-month Libor rate on July 15 is £ = 4.70%. The difference
¢ — kin interest rates is now 4.70 — 5.00 = —0.30%. Applying this to the principal amount
of $5,000,000, the difference in interest rates amounts to

92

—0.003 x 360 © 5,000,000 = -3,833.33 (6.9)
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Discounting this payoff back to July 15 at the three-month Libor rate ¢, we obtain

(283333 3 78783 (6.10)
14-(0.047) 55
The investor must now make this payment to the short position on July 15. |

Figure 6.1 plots the payoffs that result to the long FRA position in Example 6.1 for
various possible values of the Libor rate £ on July 15. The formula used to compute these
payoffs is

£ —0.05) x 22
w x 5,000,000 (6.11)
I+455

360

Payoff to long position =

Note that although the payoffs in Figure 6.1 appear to be linear in ¢, there is actually a very
slight curvature present since the quantity £ appears in both the numerator and denominator
of (6.11).
More generally, in an FRA with an investment period of d days, a principal amount of
P, and a fixed rate of k, we have
(0 —k) x L

Payoff to long position = —————3% » p (6.12)

1+¢5%

where ¢ is the realized floating rate on the settlement date.

Pricing a New FRA

At the inception of an FRA, the fixed rate £ is chosen so that the contract has zero value
to both parties. This rate is referred to as the “price” of a new FRA. In Appendix 6A, we
describe how this rate may be determined by replication, i.e., by constructing a portfolio
that mimics the cash-flow structure of the FRA. We show that the arbitrage-free price of a
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new T; x T, FRA must be

. _ B(M)—B(;) _ 360
b= S (6.13)

where

* B(T) denotes the present value of $1 receivable at date 7 computed using Libor rates
for discounting.

* d is the number of days between 7} and 75.

Pricing a New FRA
Suppose the current three-month Libor rate is 4.00% and the six-month Libor rate is 4.50%.
Assume that there are 92 days in the first three-month period and 91 days in the second
three-month period. What is the price of a new 3 x 6 FRA?

We must first calculate the discount factors applicable to three- and six-month horizons.
Since the three-month Libor rate is 4%, $1 invested for three months will grow to

92
14(0.04) == = 1.01022

360
Thus, the three-month discount factor is
1

Similarly, $1 invested for six months grows to
183
1 0.045) — = 1.02288
+( ) 360
so the six-month discount factor is

B(6) = — 0.97763 (6.15)

1.02288

Now, using these discount factors in (6.13), the arbitrage-free price of a 3 x 6 FRA is seen
to be

0.98988 —0.97763 360
= —_— = . 9 .
k* = 097763 X 57 4.96% (6.16)

Valuing an Existing FRA

Consider an FRA with notional principal amount P entered into some time ago with a fixed

rate of k. Let date 0 denote the current time and suppose that the FRA period is [T}, T5], i.e.,

the FRA begins in 77 months and ends in 7, months. How much is the FRA worth today?
Let d denote the number of days between 7} and 7. With B(T') defined as above, we

show in Appendix 6A (see expression (6.66)) that the value of the FRA is then given by

P x {B(Tl) — B(T») (1 +k;éo)} (6.17)
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Indeed, the price (6.13) of a new FRA is obtained just by setting this value to zero and
solving for k.

Valuing an Existing FRA

Consider the 3 x 6 FRA from Example 6.2 above. The FRA is entered into at the fixed rate
of 4.96%. Suppose the principal amount is $25,000,000. After one month, the FRA has
become a 2 x 5 FRA. Suppose that at this time, the two- and five-month Libor rates are
5.50% and 6%, respectively. How much is the FRA worth today? Assume that there are 61
days in the first two-month period from today, and, as in the original example, that there
are 91 days in the three-month period of the FRA.

An investment of $1 for two months at the Libor rate of 5.50% grows to

:
1+ (0.055) % — 1.00932

by maturity. Thus, the two-month discount factor is

1
B(2) = T00932 = 0.99077 (6.18)

Similarly, the five-month discount factor is
B(5) = 0.97529 (6.19)

Substituting these values in (6.17), the current value of the FRA is seen to be

1
25,000,000 x {0.99077 —(0.97529) (1 +(0.0496) %) } = +81,150.40
(6.20)

The positive value of the original FRA reflects the fact that interest rates have gone up since
the FRA was entered into. |

Hedging with FRAs

If an FRA involves only an exchange of the difference in interest rates, how does it allow
borrowers and lenders to hedge interest-rate risk, i.e., to lock-in rates for borrowing/lending
in the future?

Consider a corporation that can borrow at Libor and that anticipates a borrowing need
for the period [ 77, 7»]. Suppose the corporation (a) enters into a long FRA today with a fixed
rate k&, and then (b) borrows the required amount at time 7; at the then-prevailing Libor rate
£. Under this strategy, the corporation pays the interest rate £ on the borrowed amount but
receives the difference ¢ — k from the FRA. The net rate paid is £ — (¢ — k) = k, which is
the fixed rate in the FRA.

Similarly, consider an investor who wishes to lock in an interest rate for lending over the
period [T7, T5] in the future. The investor can enter into a short FRA today and then lend
at T) at the then-prevailing Libor rate £. The investor receives £ from the lending but pays
£ — k on the FRA, so receives a net rate of k, the fixed rate in the FRA.

Thus, by combining a position in an FRA with borrowing or lending at the Libor rate £ at
time 7y, borrowers and investors effectively lock in the fixed rate in the FRA. The following
example provides an illustration.

Hedging with FRAs
We build on Example 6.1 above. On March 15, a corporation anticipates a need to borrow
$5,000,000 for the three-month period from July 15 to October 15. The corporation enters
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into a long 4 x 7 FRA on March 15 and borrows the $5 million at Libor on July 15. The fixed
rate in the FRA is k = 5.00%.

We consider two possibilities for the Libor rate on July 15, £ = 5.40% and ¢ = 4.70%,
and show that the corporation’s net cash flows are the same in either case. Of course, these
two Libor rates are only illustrative; as the reader may check, the net cash flows are the same
whatever the Libor rate on July 15. For the calculations, note that there are 92 days in the
three-month period between July 15 and October 15.

Case 1: Libor on July 15 Is 5.40%

In this case, as we saw in Example 6.1, the long position (here, the corporation) receives
$5,041.54 on July 15 in settlement from the FRA. Investing these receipts at the prevailing
Libor rate of 5.40% for three months, the corporation receives the following cash inflow on
October 15:

5,041.54 x (1 +(0.054) %) = 5111.11 (6.21)

The corporation must also pay interest on the $5,000,000 loan taken on July 15 at Libor.
This interest amounts to

5,000,000 x (0.054) % = 69,000.00 (6.22)

Thus, the net cash outflow facing the corporation is

69,000 —5,111.11 = 63,888.89 (6.23)

Case 2: Libor on July 15 Is 4.70%

As we saw in Example 6.1, the long position must now pay the short position an amount
of 3,787.83 on July 15. Suppose the corporation borrows this amount on July 15 for three
months at the Libor rate of 4.70%. The resulting cash outflow in three months is

92
3,787.83 x (1 +(0.047) %> = 3,833.33 (6.24)
In addition, the corporation also owes interest on the $5,000,000 loan taken at Libor on
July 15. This interest is

92
5,000,000 x (0.047) 360 = 60,055.56 (6.25)

Thus, the net interest cost the corporation incurs is
60,055.56 + 3,833.33 = 63,888.89 (6.26)
which is identical to (6.23).

Remark

In practice, such perfect hedges are infeasible since companies may not be able to borrow
or invest at Libor flat for odd cash flows. The actual hedge will be very good but involve
some slippage. This raises an interesting question: why are FRAs settled in discounted form
rather than at maturity, when the latter would allow companies to obtain better hedges?
One reason, suggested by Flavell (2002), is that discounted settlement is preferred by banks
because it reduces the bank’s credit exposure to the holder of the FRA. |



Chapter 6 Interest-Rate Forwards and Futures 129

6.4 Eurodollar Futures

Eurodollar futures are the exchange-traded counterparts of FRAs in that they too are instru-
ments designed to enable investors to lock-in Libor rates for future investment or borrowing.
But while they are similar to FRAs in many ways, there are also important differences that
stem from their standardization.

For practical purposes, a eurodollar futures contract may be thought of as an instrument
that enables investors to lock in a Libor rate for a three-month period beginning on the expiry
date of the contract. (Precise definitions of the contract and its payoffs are offered further
below.) So, for example, for a futures contract expiring in September, the locked-in Libor
rate applies to the three-month period from September to December. At any point in time,
the CME and SGX (the two dominant exchanges in eurodollar futures trading) offer 44
expiry dates on eurodollar futures contracts: contracts expiring in March, June, September,
and December for each of the next 10 years plus contracts in the four nearest serial expiry
months outside the quarterly cycle. This means investors can lock in three-month rates as
much as 10 years out in the future.

Note the contrast with FRAs here. In an FRA, the investment/borrowing period can
be specified as the counterparties wish; for example, a 4 x 10 FRA locks in an invest-
ment/borrowing rate for a six-month period beginning in four months. In the eurodollar
futures contract, this period is standardized both in terms of length (three months) and in
terms of its starting date (one of the 44 standard expiry dates of the futures contract). Other
differences with FRAs will be pointed out as we go along.

A more detailed description of the contract and its use in hedging interest-rate risk
follows. But first, some remarks to put the contract into perspective.

A Historical Note

Eurodollar futures were not the first interest-rate futures contracts. The Treasury bill and
Treasury bond futures contracts launched in 1976 and 1977, respectively, had come earlier,
and the short-lived GNMA CDR futures contract discussed in Chapter 2 preceded both of
these.! But while Treasury futures were useful in managing interest-rate risk on US Treasury
obligations, the volatile nature of the spread between Treasury borrowing rates and rates
on private money market instruments meant that they did not do nearly as well in hedging
private short-term liabilities.

In the late 1970s, the Chicago exchanges introduced futures contracts on private debt
instruments such as commercial paper (CP) and certificates of deposit (CDs). These efforts
ultimately floundered because there was a lack of homogeneity in the instruments deliverable
at the contract’s maturity. The troubles of such large banks as Continental Illinois and
Chase Manhattan during this period showed that CDs issued by even large banks could have
dissimilar credit risk, while Chrysler’s near-bankruptcy experience in 1980 highlighted the
same problem for issuers of CP.

The eurodollar futures contract was introduced against this backdrop in December 1981.
In a short period of five years, the contract overhauled CD futures and other competitors to
become easily the money-market futures contract of choice, indeed to become one of the
largest traded futures contracts in the world. So how did it handle the settlement obstacle that
earlier contracts had tripped over? The answer is simplicity itself. Unlike its predecessors that

T Burghardt (2003) presents a detailed analysis of eurodollar futures including a discussion of their
evolution. The historical description here is based on his work.
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had required physical settlement of the contract (so homogeneity of the delivered instrument
became a matter of concern), eurodollar futures contracts proposed cash settlement of
the contract. The acceptance of this then-novel proposal by the CFTC had far-reaching
consequences. Among other things, it paved the way for other cash-settled futures contracts
such as stock-index futures that have subsequently enjoyed great popularity.

Trading Volume and Liquidity

Eurodollar futures contracts are consistently among the largest traded futures contracts in
the world. Open interest in all contract months combined exceeded 3 million contracts in
June 2000 and 4.5 million contracts in June 2002. Since each contract has a face value of
$1,000,000, these figures represent a total notional outstanding of several trillions of dollars.

A noteworthy feature of eurodollar futures contracts, and one that distinguishes them
from virtually all other futures contracts, is the high trading volume and liquidity along the
entire maturity spectrum. In particular, there is substantial volume and open interest even
in back-month contracts. In contrast, for example, almost all the open interest in Treasury
futures contracts is concentrated in the first two expiry months.

Contract Specification

As we have seen, the payoffs of an FRA are specified directly in terms of the difference
between a fixed interest rate and the actual realized Libor rate at maturity. Eurodollar futures
payoffs are specified somewhat differently, but the net effect works out to be roughly the
same. This segment describes the formal specification of the eurodollar futures contract.
The following segments then discuss how eurodollar futures may be used to lock in interest
rates and so to hedge borrowing or investment exposure.

The underlying unit in the eurodollar futures contract is a $1,000,000 three-month (or,
more precisely, 90-day) eurodollar time deposit (TD). Time deposits, unlike CDs, cannot be
transferred or traded, so cash settlement is the only option in the eurodollar futures contract.

The price of a eurodollar futures contract is not quoted in terms of the interest rate directly
but rather as 100 minus a three-month Libor rate expressed as a percentage. For example,
a price of 95.50 corresponds to a Libor rate of 100 — 95.50 = 4.50%. It is this interest
rate that gets locked-in via the futures contract as we explain below. Note that an increase
of 1 basis point (one-hundredth of a percentage point) in the interest rate corresponds to a
decrease of 0.01 in the price and vice versa.

As in any futures contract, long positions lose and short positions gain from a price
decrease. In the case of eurodollar futures, the contract specifies that every 0.01 decrease
in the price leads to a loss of $25 for the long position in the contract and a corresponding
gain of $25 for the short position. Why $25? Because that is the impact of a 1 basis point
change in interest rates on a 90-day $1,000,000 time deposit. That is, from (6.1), an increase
of 1 basis point in the interest rate increases the interest payable on a 90-day $1,000,000
deposit by

1,000,000 x [0.0001 %0 $25
000,000 [ 0001 360] -

The price tick in the eurodollar futures contract is 1 basis point (i.e., a price move of
0.01), which has a dollar value of $25. The minimum price move on the expiring eurodollar
futures contract (the one currently nearest to maturity) is 1/4 tick or a dollar value of $6.25.
On all other eurodollar futures contracts, it is 1/2 tick (or $12.50).

Trading on a eurodollar futures contract halts at 11:00 am London time on the second
London bank business day immediately preceding the third Wednesday of the contract
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month. When trading in the contract ceases, the exchange sets the final settlement price of
the contractto 100 minus the spot three-month Libor rate, or, more precisely, to 100 minus the
British Bankers Association Interest Settlement Rate (BBAISR) for three-month interbank
eurodollar TDs rounded to the nearest 1/10,000th of a percentage point. Thus, for example,
if the spot three-month rate is 4.60%, the final settlement price is just 100 — 4.60 = 95.40.
To compute the BBAISR, the BBA polls a given number of major banks in London (at least
8; for the eurodollar at the time of writing, 16 banks are polled) and asks them for rates
at which they could borrow in the interbank market. After rank-ordering the results, the
arithmetic average of the middle two quartiles forms the BBAISR. This fixing is done at
11:00 am London time.

Hedging Interest-Rate Risk Using Eurodollar Futures

Suppose it is currently December and you anticipate a three-month borrowing need for
$1,000,000 begining in June. Suppose also that you can borrow at Libor flat, and you wish
to hedge the risk of interest-rate changes between now and June. One option is to take a
long position in a 6 x 9 FRA with a principal of $1,000,000 and use this to lock in a Libor
rate for that period.

An alternative is to use eurodollar futures. You can then adopt the following strategy:

» Take a short eurodollar futures position today that expires in June.

* Borrow the required amount at whatever Libor rate prevails in June at expiry of the
futures contract.

To see the cash flows that result from this strategy, let P be the current contract price
and £ = (100 — P)/100 the Libor rate (expressed, as usual, as a decimal) implied by the
current price. Let £ denote the Libor rate prevailing in June at contract maturity. Then, the
change in interest rates in basis points is 10,000 (k — £). So the cash outflow on the futures
contract is

25 x 10,0000k — £) = 250,000 (k — ) (6.27)

If d denotes the number of days in the three-month borrowing horizon, then the cash outflow
on account of the interest costs of borrowing is

d
1,000,000 x £ x — (6.28)
360
Adding (6.27) and (6.28), the total outflow is
d
250,000 (k — €) + [I,OO0,000 £ x 360} (6.29)
rearranging which, we get
d 1
250,000k + ( 1,000,000£ x | — — — (6.30)
360 4

In particular, when d = 90, the net cash flow from the hedging strategy is just
250,000 & (6.31)

This depends on only the fixed rate & locked in through the eurodollar contract and not on
the Libor rate that happens to prevail in June. Thus, we have a perfect hedge.
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Matters Are Not Quite That Simple ...

There are two reasons why the hedge from this strategy will not be as perfect as expression
(6.31) suggests. One is that in practice, the three-month hedging horizon will typically have
91 or 92 days in it, not 90. In this case, the second term of (6.30) will be small (since
d/360 ~ 1/4), but it will not be zero, so the hedge will be only approximate. We ignore
this problem to keep notation simple; that is, we treat the borrowing as a 90-day borrowing
from now on.

The second reason has to do with cash-flow timing. The cash flow (6.27) occurs at expiry
of the futures contract, which is the beginning of the loan period. The cash flow (6.28) is
interest on the borrowed amount, which occurs at the end of the loan period. Clearly, we
cannot ignore this and just add up these cash flows. Rather, we must evaluate both cash
flows at the same point in time.

So suppose we move the former cash flow also to the end of the loan period by reinvesting
the quantity (6.27) for 90 days at the rate £. The cash outflow from futures resettlement
(6.27) then becomes

90
250,000 (k — ¢ 1+¢— 6.32
(=0 (14050 (6:32)
With d = 90, the total interest cost on the borrowing (6.28) becomes 250,000 £. Summing
these up, we see that the net cash flow at the end of the 90-day borrowing horizon is now

90
250,000 k + {250,000 (k—10)x ¢ 360} (6.33)

This cash flow has a term dependent on £, so the hedge is no longer perfect.

... but “Tailing” the Hedge Helps

In principle, there is a way to restore the perfect hedge: rather than use one full futures
contract in the hedging strategy, we use only « futures contracts, where « is given by

P (6.34)

1+¢2%

This is called “tailing” the hedge. If we tail the hedge in this way, then the cash outflow from
futures resettlement is given by « times the quantity (6.32), which is simply 250,000 (k — ¢).
This restores a perfect hedge, since, from (6.28), the cost of a 90-day borrowing at the rate
£ 1s 250,000 ¢.

Unfortunately, we cannot do this in practice because the rate ¢ is known only in June at
expiry of the futures contract and not in December when we are setting up the hedge.? In
practice, therefore, we must rely on approximations. One way to proceed is to use & futures
contracts where

o= | (6.35)

1+k5

Here, k is the eurodollar futures rate at the time we enter into the contract. Loosely speaking,
(6.35) treats the observed eurodollar futures rate as a good predictor of the eurodollar futures
rate that will prevail at maturity of the contract. Of course, & cannot ensure a perfect hedge,
but it usually provides a good approximation. The example below illustrates.

2 Note that the payoffs from FRAs are tailed using the factor (6.34)—this is the discount factor used to
bring FRA payoffs back to the maturity date of the FRA contracts. See expression (6.12).
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Suppose it is currently December and you anticipate a three-month borrowing need for
$100,000,000 begining in June. Suppose also that you can borrow at Libor flat, and you
wish to hedge the risk of interest-rate changes between now and June using eurodollar
futures. Finally, suppose that the eurodollar price of the June contract is currently 92, so
the implied eurodollar rate is k = 8% = 0.08. We continue assuming that the three-month
borrowing horizon has 90 days.

From (6.35), the hedge ratio should be

a = 71 = 0.9804

1+ (0.08) 2%

so the hedging strategy you will follow is:

e Take a short eurodollar futures position in 98.04 contracts today that expire in June.

e Borrow the required amount at whatever Libor rate ¢ prevails in June at expiry of the
futures contract.

(For purposes of illustration, we assume that one can take positions in fractional contracts.)
To see how well this hedge works, consider two possible values for the three-month Libor
rate £ in June.

Case 1: £ = 8.25%

From (6.28), the cash outflow in September on the three-month borrowing made in June is
$250,000 ¢ per $1,000,000 of borrowing. (Recall that we are assuming d = 90.) Thus, the
total cash outflow in September on account of the borrowing is

100 x 250,000¢ = 2,062,500 (6.36)
In addition, there are the cash flows from the eurodollar futures positions. From (6.27), there
is a cash inflow in June per contract of 250,000 (¢ — k) = 250,000 x 0.0025 = 625. Moving

this amount to September by investing it at the Libor rate of 8.25% results in a cash inflow
in September per futures contract of

90
625 x <1 +(0.0825) %> = 637.8906

Since we have a position in 98.04 futures contracts in all, the net cash inflow in September
on account of the futures contracts is

637.891 x 98.04 = 62,538.30 (6.37)

Subtracting (6.37) from (6.36), the net cash outflow in September is 1,999,961.70.

Case2: £ =7.75%
In this case, the cash outflow in September on account of the June borrowing is

100 x 250,000¢ = 1,937,500 (6.38)
However, there is now a cash outflow on the futures position: per futures contract, this

outflow in June is 250,000 (k — £) = 625. Moving this amount to September at the Libor
rate of 7.75%, there is a cash outflow in September per futures contract of

90
625 x (1 +(0.0775)360> — 637.11
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Since there is a position of 98.04 futures contracts in all, the total cash outflow on account
of the futures positions is

637.11 x 98.04 = 62,461.70 (6.39)

Summing (6.38) and (6.39), the total cash outflow in September is 1,999,961.70, the same
as the cash flow in Case 1. |

Remark: Daily Marking-to-Market and PVBP Analysis

In the analysis above, we have implicitly assumed that the gains/losses on the futures
positions are realized only at the maturity of the contracts (in the example, for instance,
these cash flows occur in June). In reality, gains and losses in futures markets are realized
on a daily basis. In Appendix 6B, we examine how to design a hedging strategy that takes
this into account. The analysis is based on looking at the present value of the effect of a one-
basis-point change in interest rates on (a) the eurodollar futures position used for hedging
and (b) the borrowing that is being hedged. The objective is to choose the number of futures
contracts so that these effects cancel out, leaving the value of the position unchanged. This
is called PVBP analysis, short for the present value of a basis point.

FRAs vs. Eurodollar Futures: The “Convexity Bias”

While FRAs and eurodollar futures are very similar instruments, there are some important
differences between them. One is the so-called “convexity bias,” which we describe in this
segment.

Consider the following setting. Suppose we anticipate today that in six months, we will
need to borrow $100 million for a three-month period. Suppose too that we can borrow at
Libor flat. We consider the cash flows from two situations: (i) we hedge the borrowing with
a position in a long (6 x 9) FRA with a principal value of $100 million, and (ii) we hedge
the borrowing with a short position in 100 & six-month eurodollar futures contracts, where
@ is given by (6.35). Suppose that in both cases, the locked-in rate is k.

Consider the FRA first. If the actual three-month interest rate in six-months’ time is £ and
d is the actual number of days in the three-month borrowing horizon, then expression (6.12)
shows that the FRA leads to a cash inflow in six months of

+0x L

{—k d_
100,000,000 x <ﬂ> (6.40)
1 360

If we take d = 90 as the eurodollar futures contract implicitly assumes, this becomes

14+2x X

0 —k) x 22
100,000,000 x (M) (6.41)
360

Now consider the eurodollar futures contract. Ifthe actual three-month rate in six-months’
time is ¢, the difference between the locked-in rate k£ and the actual rate £ expressed in basis
points is

(€ — k) x 10,000

Per basis point change, each short futures contract provides a cash inflow of $25. Therefore,
the total cash inflow received from the short eurodollar positions is

100& x [(€£ — k) x 10,000 x 25] (6.42)
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Substituting for & from (6.35) and rearranging and rewriting the resulting expression, this
is exactly the same thing as

90
k 360

100,000,000 x (M) (6.43)

For any value of £, the amount (6.43) under eurodollar futures exceeds the amount (6.41)
under the FRA, i.e., either the eurodollar futures leads to a greater cash inflow or it leads
to a smaller cash outflow. This is the so-called “convexity bias.”

Before we show that the difference between (6.43) and (6.41) is positive in general, we
illustrate it with numbers for two cases. In both cases, we take the locked-in rate to be
k = 0.08.

Case1: £ = 11%
In this case, the cash flow from the FRA is given by

(O 11 —0.08) x %

100,000,000 x = +4729,927.01
The cash flow from the eurodollar futures position is
(0.11 — 0.08) x %

100,000,000 x = +735,294.12

The difference between the two is $5,367.11 in favor of the eurodollar futures.
Case 2: £ = 5%

Now, the cash flow from the FRA is given by

(0.05 —0.08) x %

1+(0.05) x 2

100,000,000 x ( ) = —740,740.74

while the cash flow from the eurodollar futures position is

0.05 — 0.08) x 2
( ) x 360) — —735294.12

1 +(0.08) x 2

100,000,000 x (
360

The difference between the two is $5,446.62, again in favor of the eurodollar futures.

It is not hard to show directly from (6.41)—(6.43) that the cash flows are always biased
in favor of eurodollar futures. Subtracting (6.41) from (6.43), we obtain

100,000,000 x <(£_k)x% _(E_k)xm>

90 90
k 360 1+¢ 360

Taking a common denominator for the terms inside the parentheses, some algebra shows

that this difference is
(€ —k)? x &
100,000,000 x
(I+¢ 360)(l +k 360

which is, of course, always positive regardless of £.

Remark

The convexity bias has a simple mathematical source. The payoff (6.42) from eurodollar
futures is a linear function of the actual Libor rate ¢ that prevails at maturity of the contract.
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On the other hand, the term £ appears in both the numerator and denominator of the FRA
payoft (6.40), so the FRA payoff is not linear in £. In fact, this FRA payoff is concave in £,
so the difference between eurodollar and FRA payoffs is convex in £.?

The convexity bias shows that eurodollar futures rates cannot be the same as the FRA rates
for the corresponding period. This convexity bias is typically small at short maturities (in
the example above, it is of the order of about $5,000 on a $100 million borrowing), but it can
be substantial at longer maturities. For a more detailed treatment of this topic, see Burghardt
and Hoskins (1995a), Burghardt and Hoskins (1995b), Pozdnyakov and Steele (2001), or
Burghardt (2003).

6.5 Treasury Bond Futures

The US Treasury is charged with the responsibility of borrowing money from capital markets
to meet government expenditures. Acting on behalf of the Treasury, the Federal Reserve
Board regularly auctions fixed-income securities of various maturities. Treasury securities
with less than a year to maturity are known as Treasury bills; those with maturities between 2
and 10 years are called Treasury notes. The term Treasury bonds refers to the longest-dated
of Treasury securities, those with a maturity of 30 years.

Begining in 1976, futures contracts have been introduced in US exchanges on many of
these instruments. In this section, we look at one of the most popular of these contracts—the
Treasury bond futures contract. The two sections following look at Treasury note futures
and Treasury bill futures, respectively.

Treasury bond futures were introduced by the CBoT in 1977 and enjoyed great success
almost immediately. For most of the period since then, they have been the instrument of
choice for hedging long-term interest-rate risk. However, the decision of the US Treasury
to de-emphasize issuance of 30-year bonds has led to a fall-off in the importance of this
contract (although this may change if and when the Treasury reintroduces the 30-year bond).

US Treasury bonds are 30-year fixed-income obligations of the US government that bear
a semiannual coupon. Treasury bond prices are quoted for a face value of $100 and are
measured in dollars and 32nds of a dollar rather than dollars and cents. That is, a quote
of 99-05 means the quoted price is 99% for a bond with a face value of $100. The actual
cash price paid for the bond is the quoted price plus the accrued interest on the bond. The
accrued interest is calculated using an Actual/Actual day-count convention.

To illustrate, suppose, for example, that the quoted price for a 7% coupon US Treasury
bond on October 13 is 100-05. Suppose that the last coupon was paid on June 5 and the next
coupon is due on December 5. There are 130 days between June 5 and October 13, and 183
days between June 5 and December 5. Since each coupon is of size $3.50 (per face value
of $100), the accrued interest is

130 3.50 2.48

183 N T T
Thus, the cash price of the bond is 100% + 2.48 = 102.64. For a bond of face value
$100,000, this translates to a cash price of $102,640.

3 Afunction f(x) is concave in x if the second derivative of f with respect to x is negative for all x; it
is convex in x if this second derivative is positive for all x. If f is a concave function of x, then the
negative of f is a convex function of x. (For example, the function f(x) = —x2? is a concave function
of x, and the function g(x) = x? is a convex function of x.) Visually speaking, convex functions are
bowl-shaped (they can “hold water”), while concave functions are like inverted bowls.
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TABLE 6.1 Futures Contract Specifications

This table compares the specifications of five futures contracts: the US Treasury bond futures contract, the US
Treasury note futures contract, the bund futures contract, the long gilt futures contract, and the Japanese gov-
ernment bond (JGB) futures contract. The numbers 3, 6, 9, and 12 in the Expiry months row stand for March,
June, September, and December, respectively.

Treasury Bond Treasury Note Long Gilt Bund JGB
Face value $100,000 $100,000 £100,000 €100,000 ¥100 million
Standard coupon 6% 6% 7% 6% 6%
Minimum maturity 15 years 61 years 83 years 81 years 7 years
Maximum maturity 30 years 10 years 13 years 10% years 11 years
Expiry months 3,6,9,12 3,6,9,12 3,6,9,12 3,6,9,12 3,6,9,12

Specification of the Futures Contract

The success of the Treasury bond futures contract is often attributed to its specification.
The contract has been copied widely. The Treasury note futures contract on the CBoT, the
UK gilt futures contract on Euronext.liffe, the German government bond or “bund” futures
contract on Eurex and Euronext.liffe and the Japanese government bond futures contract on
the Tokyo Stock Exchange and Euronext.liffe all have designs based on the Treasury bond
futures contract. In particular, each defines a standard coupon and conversion factors in a
similar manner to the Treasury bond futures contract. Table 6.1 lists some other features of
these contracts.

The “standard” bond in the Treasury bond futures contract is one with a face value of
$100,000, at least 15 years to maturity or first call, and a coupon of 6%. (Prior to March
2000, the standard coupon was 8%.) The quoted price for the futures contract uses the same
convention as the cash market: prices are quoted in dollars and 32nds of a dollar per face
value of $100. Since the contract provides for a number of delivery options, the actual price
the long position has to pay depends on the delivered bond as well as the quoted price.

The Quality Option

The most important of the delivery options in the contract is the “quality option” that
allows the short position to substitute any coupon for the standard 6%. The price that the
long position has to pay is the quoted futures price times a conversion factor that depends
on the bond that is actually delivered. The conversion factor is calculated by discounting
the cash flows from the delivered bond at the standard 6% rate. The discounting process
uses semiannual compounding (i.e., we discount at 3% per six months) since coupons on
Treasury bonds are paid semiannually.

For example, suppose the bond that is delivered is an 8% 20-year bond. On a face value of
$100, this bond will result in cash flows of $4 every six months for 20 years and a repayment
of the principal amount of $100 after 20 years. For simplicity, suppose the last coupon was
just paid. Then, the conversion factor is

1 4 4 4 100

S T 210311 6.44
100 [1.03 T 103 T T o3 T 103 (6.44)

Thus, the long position has to pay the short position 1.2311 times the quoted price.
It is easy to see that if the delivered bond:

* has a coupon equal to the standard 6%, the conversion factor will be equal to 1 since we
are then discounting 6% cash flows at a 6% rate.
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» has a coupon higher than the standard 6% (so is of “superior” quality to the standard),
the conversion factor will be greater than 1.

* has a coupon less than the standard 6% (so is of “inferior” quality to the standard), the
conversion factor will be less than 1.

In practice, delivered bonds may have a wide range of maturities. The CBoT uses a
method of calculating the conversion factor that involves rounding off the maturity of the
bonds to the nearest quarter (i.e., three months). If after the rounding off the bond has a
maturity that is an integer multiple of six months, then the bond is treated as if the last
coupon was just paid and the next coupon is due in six-months’ time. The calculations
then proceed as in the above example. If after the rounding off the bond’s maturity leaves a
three-month remainder when divided by six months, then the next coupon is assumed to be
paid in three-months’ time, so accrued interest for the first three months must be subtracted
from the price. The details and a general formula for calculating the conversion factor are
provided in Appendix 6C.

Other Options

Besides the quality option, the Treasury bond futures contract also provides the short position
with other delivery options. One of these is the “wild card” option. Treasury bond futures
trading on the CBoT halts at 2 pm, and the settlement price is determined at this point.
However, the clearinghouse accepts delivery from the short position until 8 pm. So the
short position has time from 2 pm to 8 pm to decide whether to deliver that day at the fixed
settlement price, and if so, which of the deliverable bonds to deliver. This is the wild card
option. Ifthe cash prices of the deliverable bonds experience a significant decline after 2 pm
and before 8 pm, the option becomes valuable to the short position.

If the wild card option is not exercised on a particular day, the short position again has
a wild card option the next day based on the next day’s settlement price. Delivery in the
Treasury bond futures contract can take place on any day during the delivery month. There
are roughly 15 trading days during this month, so the contract provides the short with about
15 of these options in all.

A third option, and one similar to the wild card option, is the end-of-month option.
Trading in the Treasury bond futures contract closes seven business days prior to the last
business day of the delivery month, and the final settlement price is fixed at this point.
However, the clearinghouse accepts delivery until the end of the month, so any decline in
bond prices during this period accrues to the short’s advantage. Of course, the price of the
futures contract will reflect the short’s holding of these options and will be lower than if
these options were not present.

Implications for Delivery

The presence of these options gives the short position a powerful incentive to delay delivery
until the end of the contract period. Broadie and Sundaresan (1992) look at the empirical
patterns of delivery on this contract. In accordance with intuition, they find that when the
yield curve is normal (long-term rates are higher than short-term rates), 90% of deliveries
take place in the last five days of the delivery month. However, with inverted yield curves,
there is negative carry and this militates against late delivery. In this case, deliveries tend
to take place earlier in the delivery month.

Pricing Futures on Treasury Bonds

It is mathematically very complex to take the delivery options into account in pricing a
Treasury bond futures contract. If we ignore the delivery options and assume there is only
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one deliverable bond (or we know which bond it is that will be delivered), then matters are
simplified considerably. Treasury bond futures may then be priced using the known cash
cost of carry formula F = "7 (S + M) where S denotes the current price of the underlying
bond and — M is the present value of the coupons that will be received from the bond during
the life of the futures contract.

6.6 Treasury Note Futures

US Treasury notes are fixed-income obligations of the US government with maturities
between 2 and 10 years and with a semiannual coupon. Futures on 10-year US Treasury
notes were introduced by the CBoT in 1982. More recently, futures on 5-year US Treasury
notes were also introduced by the CBoT. Both contracts have been received well (see
Table 2.2 on their trading volumes). The former, in particular, has overtaken the Treasury
bond futures contract as the Treasury futures contract of choice on long-maturity Treasury
instruments (although this may change if and when the Treasury reintroduces the 30-year
bond).

Treasury note futures are similar in their design and specification to Treasury bond
futures, so the analysis above applies to Treasury notes futures too. The main difference
between the bond futures contract and the notes futures contracts is in the admissible
maturities of the deliverable instruments. In the case of the 10-year Treasury notes futures
contracts, deliverable instruments are US Treasury notes with remaining maturities between
6% and 10 years. In the case of the 5-year Treasury notes futures contract, US Treasury notes
with remaining maturities between 4 years 2 months and 5 years 3 months may be delivered.

6.7 Treasury Bill Futures

Treasury bill futures were introduced by the CME in 1976 and were the first futures con-
tract on Treasury securities. Popular at one time, their importance has waned since the
introduction of eurodollar futures.

Treasury bills are obligations of the US government and are issued with maturities of
91, 182, or 364 days (13, 26, or 52 weeks). Treasury bills bear no coupon; rather, they are
issued at a discount to their face value and accrete to par at maturity.

Prices on Treasury bills are quoted on a face value of $100. The quoted price is not the
cash price (i.e., how much it costs to buy the Treasury bill) but rather what is called the
discount rate on the Treasury bill. To motivate this convention, suppose the cash price of a
Treasury bill with maturity in d days and a face value of $100 is P. Then, the cash return
from investing in this Treasury bill is $(100 — P). This cash return is “annualized” in the
money market day-count convention by multiplying it by 360/d. This annualized return is
the quoted price Q:

0 = (100 - P) ? (6.45)

Q is referred to as the discount rate on the Treasury bill. From (6.45), given a quoted price
of O, the cash price P of a Treasury bill is

d
P = 100-0 (6.46)
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For example, suppose a 91-day Treasury bill has a quoted price of 4.00. Then the cash
price of the Treasury bill is

91
P = 100 —(4.00) — = 98.989
(4.00) 360

Specification of the Futures Contract

The Treasury bill futures contract on the CME requires the short position to deliver bills
with a face value of $1,000,000 and 90 days to maturity. The delivery options in the contract
allow for the delivery of bills with 90, 91, or 92 days to maturity.

The Treasury bill futures price quote convention is similar to the cash market convention
in its use of a discount rate. However, the quoted price here is 100 minus the discount rate,
not the discount rate itself. Given a quoted price of (say) 100 — Q, the invoice price on the
futures (the amount the short position will receive) is determined by expression (6.46) with
d being the days left to maturity on the delivered instrument.

For example, suppose the quoted price is 94.60. Then, the discount rate is 100 — 94.60 =
5.40. If a 90-day Treasury bill is delivered, the short receives

90
100 — (5.40) 7o = 98.65 (6.47)

per $100 of face value delivered. Since the delivered face value must be $1,000,000, the
short position receives $986,500.

Pricing Futures on Treasury Bills

Since Treasury bills are zero-coupon instruments, we can price futures/forward contracts
on them using the zero cost-of-carry formula. Let 7 denote the maturity of the futures
contract and 7* denote the maturity of the underlying Treasury bill. (We must obviously
have 7* > T.) Let » and r* denote the interest rates applicable to horizons of length T
and T*, respectively, expressed in continuously-compounded terms. Finally, let P be the
current price of the 7*-maturity Treasury bill. Assume the bill has a face value of $100.

The futures price F is given by

F=¢€Tp (6.48)

We can make (6.48) sharper. Since P is itself a zero-coupon instrument with a face value
of $100, we must have P = 100 e~ 7" Therefore, the futures price can be expressed as

F = T x100e™ T = 10077 (6.49)

6.8 Duration-Based Hedging

The purpose of this section is to describe a special hedging strategy called duration-based
hedging used to hedge portfolios of fixed-income instruments (e.g., bonds) with fixed-
income futures. Duration-based hedging exploits the observation that both spot and futures
prices in this case depend on a common underlying variable—the level of interest rates.
Intuitively, duration-based hedging looks at how much a change in interest rates would affect
(a) the value of the portfolio we are looking to hedge, and (b) the price of the interest-rate
futures contract we are using for hedging. We then choose the number of futures contracts
to be used in the hedge so that these value changes offset each other.

To implement a scheme of this sort, we need to be able to measure the sensitivity of
portfolio values and futures prices to changes in interest rates. We address these issues
first. Duration is most naturally presented in the context of a continuous-compounding
convention for interest rates, so we adopt that convention in the remainder of this chapter.
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The Notion of Duration

Let a portfolio of bonds be given. Suppose that the portfolio will result in a cash flow of ¢;
int; years, i = 1, ...n. Suppose also that the interest rate applicable to a period of length
t; years is r; in continuously-compounded terms. Then, the present value of the i-th cash
flow is e"i"i¢;, so the current value P of the portfolio is

P = cle"" ... 4 e (6.50)
The weight w; contributed by the i-th cash flow to the overall portfolio value is

cie il
;= 6.51
w o= (6.51)

The duration of the portfolio, denoted Dp, is defined to be its weighted maturity:
DP = wity + -+ wyt, (652)

The duration is a measure of the portfolio’s sensitivity to interest-rate changes. Namely,
a small parallel shift dr in the yield curve results in a change of approximately Ap in the
portfolio value given by

Ap = —Dde}" (6.53)

Appendix 6D explains why this is the case.

Thus, for example, suppose the portfolio consists solely of a zero-coupon bond. Then, the
duration of the portfolio is just the maturity # of the zero-coupon bond. In other words, every
basis point increase in interest rates will decrease the value of the portfolio by —z P (0.01).

Two points should be stressed here. First, the accuracy of duration as a measure of
sensitivity is only approximate. It is very accurate for small changes in the interest rate (say,
a few basis points) but becomes progressively less accurate as the size of the interest-rate
change increases. Second, it is an important part of the definition that all interest rates shift
by the same amount dr, i.e., that the yield curve experiences a parallel shift.

The Duration of a Futures Contract

Consider a futures contract written on a specific underlying bond. Let F be the current
futures price. How does F' change when interest rates change by a small amount dr?

If we could define a duration measure for the bond futures price (denoted, say, D), then,
analogous to (6.53), the change A in futures price would be

AF = —DFFdV (6.54)

Canwe, in fact, define such ameasure Dy ? The answer, it turns out, is yes! It can be shown
that the duration of a bond futures contract is simply the duration of the bond underlying
the futures contract but measured from the date of maturity of the futures contract. A proof
of this result may be found in Appendix 6E.

For example, consider the Treasury bill futures contract on the CME. At maturity of
the contract, the short position is required to deliver to the long position US Treasury bills
with a face value of $1 million and with 90 days left to maturity. Thus, the underlying in
this contract is a zero-coupon bond maturing three months after the futures contract. When
measured from the maturity date of the futures contract, the duration of this underlying
asset is simply the duration of a three-month zero-coupon bond, which, from (6.52), is 1 /4.
Thus, the duration Dy of the Treasury bill futures contract is 1/4.
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Example 6.6

Duration-Based Hedging
Suppose we have a portfolio of bonds worth P with duration Dp. Suppose that we wish
to protect ourselves from changes in the value of this portfolio over some given horizon.
Finally, suppose that we have chosen for hedging an interest-rate futures contract whose
current price is F. For specificity, assume this is a futures contract written on a bond.
How many futures contracts should we use? Consider a position of H contracts where
H > 0 denotes a long position in the futures and H < 0 a short position. Suppose that
interest rates shift by a small amount dr, and that, as a consequence, (a) the futures price
changes by an amount A , while (b) the portfolio value changes by an amount A p. The net
change in the value of our position is then

A, +HAp (6.55)
Thus, for H to be a good hedge, we would like it to satisfy
Ap+HAp =0 (6.56)
or, what is the same thing,
Ap
H=— 6.57
A 6:57)

Equation (6.57) states that to identify the optimal size of the futures position, we need
to know the changes A p and A in portfolio value and futures prices, respectively, that are
caused by the interest-rate change dr. But these quantities are easily calculated. If Dp and
Dp denote the respective durations of the portfolio and the futures, then we have

AP = —DPP dr (658)
AF = —DFF dr (6.59)
Combining equations (6.57)—(6.59), we have
A DpPd DpP
o= 2P o _Zetdr P (6.60)
AF DFF dr DFF

The hedging strategy given by expression (6.60) is called a duration-based hedging
strategy. In words, the strategy states that the optimal size of the futures position can be
determined from four variables:

1. The current value of the portfolio P.

2. The duration of the portfolio Dp.

3. The current futures price F.

4. The duration of the futures contract Dy.

Suppose we are managing a portfolio of bonds whose current value is P = $5,000,000
and whose duration is Ap = 1. Suppose also that we wish to hedge this portfolio using
Treasury bill futures. Finally, suppose that the current futures price is F = $990,000. How
many futures contracts should we use?
From what we have seen in Section 6.8, the duration of the Treasury bill futures contract
is 1/4. Therefore, from (6.60), the optimal hedge size is
(1)(5,000,000)

= 7 (0.25)(990,000) —20.20 6.61)

which is, approximately, a short position in 20 contracts. |
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Potential Problems in Duration-Based Hedging

There are some problems that could result in duration-based hedging not working well in
practice. We review some of these potential pitfalls here.

First, duration as a sensitivity measure has two shortcomings. It works well only for
small interest-rate changes and it presumes parallel shifts in the yield curve. Duration-based
hedging implicitly involves the same assumptions. To the extent that these assumptions are
violated, duration-based hedging schemes will not perform well.

Careful choice of the futures contract can mitigate some of these problems. For instance,
suppose the portfolio being hedged consists of bonds with roughly the same maturity. If
we use a futures contract whose duration is “close” to the duration of these bonds, this will
ensure that the portfolio value and the futures price depend on similar interest rates. If the
portfolio consists of a large number of disparate bonds, we can separate it into blocks of
roughly similar maturity and hedge each block separately with a futures contract matching
it in duration.

Another problem in implementing a duration-based hedging scheme with a bond futures
contract is that the duration Dy of the futures contract may be hard to identify on account of
delivery options in the futures contract. For instance, in the Treasury bond futures contract
on the CBoT, the short position may deliver any bond with at least 15 years to maturity (or
first call) and any coupon. Using the duration of the standard bond in the contract is also
problematic since the standard bond specifies only a coupon rate; its set of possible maturities
remains large. One alternative in such a situation is to estimate the likely cheapest-to-deliver
bond and use its duration.

6.9 Exercises

—_

Explain the difference between the following terms:
(a) Payoffto an FRA.

(b) Price of an FRA.

(c) Value of an FRA.

2. What characteristic of the eurodollar futures contract enabled it to overcome the settle-
ment obstacles with its predecessors?

3. How are eurodollar futures quoted?

4. Tt is currently May. What is the relation between the observed eurodollar futures price
of 96.32 for the November maturity and the rate of interest that is locked-in using the
contract? Over what period does this rate apply?

5. What is the price tick in the eurodollar futures contract? To what price move does this
correspond?

6. What are the gains or losses to a short position in a eurodollar futures contract from a
0.01 increase in the futures price?

7. You enter into a long eurodollar futures contract at a price of 94.59 and exit the contract
a week later at a price of 94.23. What is your dollar gain or loss on this position?

8. What is the cheapest to deliver in a Treasury bond futures contract? Are there other
delivery options in this contract?

9. Describe the standard bond in each of the following contracts: (a) Treasury bond futures,
(b) 10-year Treasury note futures, (c) 5-year Treasury note futures, and (d) Treasury
bill futures.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Describe the conversion factor that applies if the delivered bond in a Treasury bond
futures contract is different from the standard bond.

Explain the notion of duration of a bond. Under what conditions is this measure reason-
ably accurate?

How does one measure the duration of a futures contract? That is, how is the duration
of a futures contract related to the duration of the underlying bond?

Explain the principles involved in duration-based hedging. How does the computation
of the hedge ratio here differ from that of the minimum-variance hedge computation?
On a $1,000,000 principal, 91-day investment, what is the interest payable if we use an
Actual/365 basis? What is the interest if the basis is Actual/360?

If the six-month interest rate is 6% and the one-year interest rate is 8%, what is the rate
for an FRA over the period from six months to one year? Assume that the number of
days up to six months is 182 and from six months to one year is 183.

If the three-month (91 days) Libor rate is 4% and the six-month (183 days) rate is 5%,
what should be the 3 x 6 FRA rate? If, at the end of the contract, the three-month Libor
rate turns out to be 5%, what should the settlement amount be?

In Japan, if the three-month (91 days) interbank rate is 1% and the six-month (183 days)
interbank rate is 0.25%, what is the 3 x 6 FRA rate? Is this an acceptable rate? Why or
why not?

If you expect interest rates to rise over the next three months and then fall over the three
months succeeding that, what positions in FRAs would be appropriate to take? Would
your answer change depending on the current shape of the forward curve?

A firm plans to borrow money over the next two half-year periods and is able to obtain a
fixed-rate loan at 6% per annum. It can also borrow money at the floating rate of Libor
+0.5%. Libor is currently at 4%. If the 6 x 12 FRA is at a rate of 6%, find the cheapest
financing cost for the firm.

You enter into an FRA of notional 6 million to borrow on the three-month underlying
Libor rate six months from now and lock in the rate of 6%. At the end of six months, if
the underlying three-month rate is 6.6% over an actual period of 91 days, what is your
payoff given that the payment is made right away? Recall that the ACT/360 convention
applies.

You have entered into the 6 x 9 FRA above at the rate of 6%. After three months, the
FRA is now a 3 x 6 FRA. If the three-month Libor rate is 5%, and the nine-month Libor
rate is 7%, what is the current value of the FRA? Assume that the number of days from
three to six months is 92.

Given a 3 x 6 FRA with a rate of 10% and a time interval between three and six months
of 92 days, plot the settlement amount if the three-month rate after three months ends
up anywhere from 1% to 20%. Is your plot linear, convex, or concave? Why? If you are
using FRAs to hedge your borrowing risk, does the shape of the payoff function cause
you concern and why?

You anticipate a need to borrow USD 10 million in six-months’ time for a period of
three months. You decide to hedge the risk of interest-rate changes using eurodollar
futures contracts (=90 days). Describe the hedging strategy you would follow. What if
you decided to use an FRA instead?

In the question above, suppose that the underlying Libor rate for three months after
six months (as implied by the eurodollar futures contract price) is currently at 4%. Say



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
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the underlying period is 91 days. Using the same numbers from the previous question
and adjusting for tailing the hedge, how many futures contracts are needed? Assume
fractional contracts are permitted.

Using the same numbers as in the previous two questions, compute the payoff after six
months (i.e., at maturity) under (a) an FRA and (b) a eurodollar futures contract if the
Libor rate at maturity is 5%. Also compute the payoffs if the Libor rate ends up at 3%.
Comment on the difference in payoffs of the FRA versus the eurodollar futures.

The “standard bond” in the Treasury bond futures contract has a coupon of 6%. If,
instead, delivery is made of a 5% bond of maturity 18 years, what is the conversion
factor for settlement of the contract?

Suppose we have a flat yield curve of 3%. What is the price of a Treasury bond of remain-
ing maturity seven years that pays a coupon of 4%? (Coupons are paid semiannually.)
What is the price of a six-month Treasury bond futures contract?

What is the price of a Treasury bill with a discount rate of 6% and maturity of 182 days?
What is the price of a 91-day futures contract on the 91-day Treasury bill if the 91-day
Treasury bill is trading at 957

In the previous question, write down an expression for the payoff of the futures contract
if after 91 days the discount rate of the remaining 91-day Treasury bill varies from 1%
to 8%. Is the payoff function linear, convex, or concave? Why?

Suppose you own a zero-coupon bond with face value $3 million that matures in one year.
The bond is priced off the continuously compounded zero-coupon rate that is currently at
r = 7%. Suppose you want to hedge the price of the bond six months from now using the
three-month eurodollar futures contract that expires in six-months’ time, assuming that
the rate at that time remains unchanged for the shorter maturity. How many contracts will
you need to trade to construct this hedge? Can you explain intuitively why this number
is in the ballpark expected?

If we wish to hedge a bond that pays a cash flow of 2 million after six months and another
cash flow of 102 million after twelve months, suggest a hedging scheme using eurodollar
futures contracts. Assume that the bond is priced on a semiannual compounding basis
and has a current yield to maturity of 4% per annum.

Qualitatively discuss how you would hedge a portfolio of bonds using eurodollar futures
contracts.

(Difficult) Assume that the yield curve is flat at 6%. All bonds pay semiannually. Bond
A has a coupon of 5.5% and a maturity of seven years. Bond B has a coupon of 6.2%
and a maturity of five years. We wish to short bond B to offset the risk (duration-based
hedging) of a long position in bond A. How many units of bond B do we need to short
for every unit of bond A to achieve this?

Refer to the previous question. A futures contract on bond B trades as well. What is
the price of the one-year bond futures contract on bond B? How many units of this
contract do we need to short to offset a one-unit long position in bond A over the next
year?

We are given a portfolio of bonds with value P = 100 and duration Dp = 1. The
six-month Treasury bill future trades at price F; = 95 and duration DF; = 0.4. Also,
the twelve-month Treasury bill future trades at price />, = 92 and duration DF, = 0.9.
Suggest a duration-based hedging strategy for portfolio P. State clearly the assumptions
for your choice.
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36. The following market-based FRA rates are provided.

Period (months) Forward Rates (%)
0-6 3.00
6-12 4.00
12-18 5.00
18-24 6.00

Answer the following questions:

(a) Find the price of a two-year maturity security with a coupon of 4.5%.
(b) Find the price of a six-month bond future on this bond.

(c) What is the price of a twelve-month bond future on this bond?

(d) Find the durations of all the three instruments above.

(e) If we invest $100 in the two-year bond, then how many units of the two futures
contracts should we buy such that we have equal numbers of units in each contract,
and we optimize our duration-based hedge?

(f) After setting up the hedge, the next instant, the entire forward curve shifts up by 1%
at all maturities. What is the change in the value of the hedged portfolio? Is it zero?
If not, explain the sign of the change.
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Deriving the Arbitrage-Free FRA Rate

Let the current time be date 0. Consider a 77 x 75 FRA entered into today. We are to identify
the value of the fixed rate & in the FRA that will make the contract have zero value to both
parties.

From expression (6.12), the payoff to the long position in an FRA at time 7} is

y (L —k) x 35
Payoff to long position = ————= x P (6.62)
1+¢€55
where ¢ is the realized floating rate on date 77 for the period [T}, 7]. For any given k, we
identify the present value at time 0 of these payoffs to the long position, and then choose &
so that the present value is zero.

To this end, for any 7', let B(T) denote the present value at date T of $1 receivable at
time 7T'. As the first step, add and subtract the principal amount P to the numerator of (6.62)
to obtain

P+ Pt — P — Pk%

Payoff to long position = S 360 (6.63)
1+ €55

Expression (6.63) can be separated into two parts:

d d d
P+PLyG  PHPhsg 1tk 6.64)
d d - d .
1+ 055 1+ €55 1+¢5%

The first part of this cash flow, P, represents a certainty cash inflow at time 77. The second
part is an outflow of uncertain amount viewed from time O since the floating rate ¢ is not
known until 77. However, regardless of the realized value of ¢, if this amount is invested at
rate £ at time 77, it grows to the certainty amount

1+ kL d d
PMX<1+E—> = P(l—i—k—) (6.65)

1+¢5% 360 360

Thus, the uncertain cash outflow at time 77 in (6.64) is equivalent to the certainty outflow at
time 7, of the amount on the right-hand side of (6.65). This means that, viewed from time 0,
the cash flow (6.62) from the FRA is equivalent to the sum of the following two quantities:

1. A certainty inflow of P at time 77.
2. A certainty outflow of P (1 + k(d/360)) at time 7.

The time-0 present value of these outflows is just

d
B(T)P—B(T)P (1 +k— (6.66)
360
Expression (6.66) is the value of a general FRA with fixed rate £ and an investment period
beginning in 77 months and ending in 75 months. At inception of a 7} x T, FRA, this value
is zero. Setting it equal to zero and solving for k£ gives us the arbitrage-free FRA price as

B(T) — B(Iy) _ 360

k=
BT . d

(6.67)
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PVBP-Based Hedging Using Eurodollar
Futures

The analysis of hedging using eurodollar futures in Section 6.4—in particular, the analy-
sis leading to expression (6.35) and the example following—assumed implicitly that the
gains/losses on the futures positions are realized only at the maturity of the contracts (in
the example, for instance, that these cash flows occur in June). In reality, gains and losses
in futures markets are realized on a daily basis. We examine here how to design a hedging
strategy that takes this into account.

For specificity, continue assuming as in the hedging example from Section 6.4 that it
is currently December and we are looking to lock-in a borrowing rate for a three-month
borrowing of $100,000,000 to be made next June, i.e., in six-months’ time. Our hedging
strategy is to take a short position in & futures contracts today, close it out next June, and
borrow then for three months at whatever Libor rate happens to prevail at that point. What
should & be if we wish to take daily marking-to-market into account?

To motivate the answer, consider the impact of a 1-basis-point increase in interest rates.
This has two effects. On the one hand, it leads to a cash inflow on the futures position.
On the other, it leads to a larger cash outflow on our borrowing. However, the cash inflow
on the futures position takes place immediately, while the cash outflow on the borrowing
takes place only at maturity of the borrowing, that is, in nine-months’ time. Our challenge
in designing a hedge is to choose & so that the present value of these effects cancel out,
leaving the value of our position unchanged. This is called PVBP analysis since we are
using the present value of a basis point to identify the optimal hedge.

Applying PVBP analysis to the current example, an increase of 1 basis point in interest
rates results in an immediate cash inflow of $25 per contract, so over & contracts, there is
an inflow of 25 &. On the borrowing, suppose the three-month borrowing period consists
of d days. Then the increase in borrowing costs occasioned by a one-basis-point increase

in interest rates is
0.01 d
I = 1,000,000 x [ — x —
100 360

For example, if d = 90, then the increase in borrowing cost is / = 25. However, this
extra outflow takes place only at maturity of the borrowing, i.e., in nine-months’ time. If £
denotes the current one-year Libor rate and D the number of days in the nine-month period,
the present value of this outflow is

I
PV{l) = ———— 6.68
0 1+ (b7 x 25 ( )
Thus, we want to choose & so that 25& = PV ([), or
PV(I)
= 6.69
s (6.69)

Expression (6.69) idenitifies the hedge ratio to be used if we take daily marking-to-
market into account. Of course, hedging using this ratio must be dynamic since the ratio
itself changes as time progresses. For a discussion of this and other practical aspects of
hedging using eurodollar futures, see Chapter 5 of Burghardt (2003).
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Calculating the Conversion Factor

To calculate the conversion factor on a given bond in the Treasury bond futures contract, the
CBoT rounds off the maturity of the bonds to the nearest quarter (i.e., three months). If after
the rounding off the bond has a maturity that is an integer multiple of six months, then the
bond is treated as if the last coupon was just paid and the next coupon is due in six-months’
time. If after the rounding off the bond’s maturity leaves a three-month remainder when
divided by six months, then the next coupon is assumed to be paid in three-months’ time,
so accrued interest for the first three months must be subtracted from the price.

For example, suppose the delivered bond is an 8% bond with a maturity of 20 years and
one month. Rounding off this maturity to the nearest three months, we obtain a maturity
of 20 years. Since 20 years is an integer multiple of six months (it contains exactly 40
six-month periods), the bond is treated as if its last coupon was just paid and its next coupon
will be in six-months’ time. Thus, its conversion factor is precisely as obtained in expression
(6.44) in the text, i.e., it is 1.2311.

Now suppose that the delivered bond instead has a maturity of 20 years and four months.
Rounding off this maturity to the nearest three months, we obtain a maturity of 20 years and
three months. This maturity is no longer an exact multiple of six months, so we treat the
bond as if the next coupon will be in three-months’ time. In three-months’ time, we receive a
coupon of 0.04 per $1 face value. The remaining portion of the bond is a 20-year 8% coupon
bond on which the last coupon was just paid. We have just seen that the conversion factor
for this remaining portion of the bond is 1.2311. Adding this to the coupon of 0.04 that
will be received in three months, we see that the delivered bond has an overall conversion
factor of 1.2711 in three months. We first discount this to bring it back to the present. Since
the discount factor for six months is 3%, the present value of 1.2711 receivable in three
months is

1.2711

— = 1.2525
+/1.03

Next, we deduct accrued interest. Of the coupon of 0.04 receivable in three months, the
accrued interest component is 0.02. Subtracting this from the discounted conversion factor,
we obtain the final conversion factor 1.2525 — 0.02 = 1.2325.

A General Formula

In general, the conversion factor may be computed using the following formula. Let N be
the number of whole years left to the bond’s maturity or first call (whichever is earlier),
let ¢ denote the coupon on the delivered bond, and let x denote the number of months by
which the maturity of the delivered bond exceeds N years rounded down to the nearest three
months. Note that we must have x = 0, 3, 6, or 9 months. The conversion factor is then
given by the formula

6—x

(1.03)~%/¢ {§+ (L [1—(1.03)72Y] +(1.03)—2N>} _% <

0.06 ) (6.70)
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Duration as a Sensitivity Measure

In this appendix, we derive (6.53); that is, we explain why the weighted maturity of a
portfolio (i.e., its duration) measures the sensitivity of the portfolio value to changes in
interest rates.

Consider first a zero-coupon bond with a maturity of 7 years and a face value of B. The
duration of this bond is simply ¢. If the z-year interest rate is », the current price of the

bond is
P =¢"B (6.71)
If interest rates change by a small amount dr, then the price of the bond becomes
P = ¢ UTiNIp = e drip (6.72)
Thus, the change A p in the bond value is
Ap = e""e ™' B—e"B = e""Ble " —1] (6.73)

Now, for small values of x, the exponential function e* is approximately* equal to 1 + x.
Since e™"' B = P, we can rewrite (6.73) as

Ap = P[(1—drt)—1] = —tPdr (6.74)

which is precisely (6.53).
An analogous, if notationally more complex, argument establishes that (6.53) holds for
coupon bonds and, more generally, for portfolios of bonds. Consider a bond (or a portfolio

of bonds) with cash flows ¢; at times #;,i = 1, ..., n. If the interest rate for a period of
length ¢; years is r;, the current price of this bond is
P =c¢ e+ e e, (6.75)

Suppose all interest rates change by an amount dr. Then, the change in the present value
of the first cash flow is

Ay = e nFIe il (6.76)
The same arguments as used above show that this quantity is approximately
A = e Me((1—drt) —1) = —e Mt dr (6.77)
Similarly, the change in the present value of the k-th cash flow is
Ap = —e et dr (6.78)
The total change in the value of the bond A p is the sum of all these changes and so is
given by
Ap = — [e"‘"cltl +--- +e_r”t"cntn] dr (6.79)
Now define w; to be the contribution of the k-th cash flow to portfolio value:
e ke
Wi = —p (6.80)
Note that the duration of the portfolio (its weighted maturity) is given by
Dp = wit; + -+ +wyt, (6.81)

4 More precisely, e is defined as the infinite sum 1+ x 4 x2/2! + x3/3! + - .. For small x, terms of the
order of x?> and higher become tiny and can be ignored as a first approximation.
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Moreover, w; P = e~ "¢, for each k. Substituting this into (6.79), we obtain
Ap = —[wityP + - +w,t,Pldr
= —Pwit; + - +wyt,]dr
= —PDpdr (6.82)
Expression (6.82) is exactly the relationship (6.53) that we wanted to prove.

The Duration of a Futures Contract

We show here that the duration of a bond futures contract is just the duration of the underlying
bond measured from the expiry of the futures contract. We consider only the case where
the underlying in the futures contract is a zero-coupon bond (such as the CME’s Treasury
bill futures contract). The arguments may be easily extended to coupon bonds, but, as in the
previous section, this gets notationally messy.

Let T and T* denote, respectively, the maturity dates of the futures contract and the
underlying zero-coupon bond. Let  and * denote, respectively, the interest rates applicable
to these maturities. Finally, let B denote the face value of the zero and P its current price.

By treating the futures contract as a forward contract, the current price of the futures
contract may be determined from the zero cost-of-carry formula developed in Chapter 3.
This futures price is:

F =¢€TP (6.83)
But P itself is simply the price of a #*-maturity zero, so its current price is simply
P =¢""B (6.84)
Combining (6.83) and (6.84), we have
F =T 7T"B (6.85)

Now suppose interest rates change by an amount dr. The change in the futures price A »
is then

Ap = QU HANT—("+dn)T* g yT—r"T" p (6.86)
Pulling out the common terms, this is
Ap = TR (ed’ T=dr ™ _ 1) (6.87)
Using the approximation ¢* = 1 + x (which, as mentioned above, is a very good

approximation for small x), we have

Ar = T T"B(U=[14+(T =T*dr]) = &7 T"B[—(T — T*)dr]
(6.88)
Now, ¢’77""T" B is just the initial futures price . Moreover, T — T* is the maturity of
the underlying zero measured from the expiry date of the futures contract, which is Dy as
defined in Section 6.8. Thus,

AF = —DFFdV (6.89)

which is exactly the result we are to prove.
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Options Markets

7.1 Introduction

Options are often perceived as “new” financial instruments compared to, say, forwards
or futures, but they too have been around for a very long time. Luenberger (1997) cites
an early story involving successful speculation with options by the Greek scientist and
philosopher Thales of Miletus (624547 BCE). It is likely that, like forwards, options
too were used in other ancient civilizations. Certainly, there is considerable evidence of
organized options trading dating back several hundred years. Joseph de la Vega, in his
delightful book “Confusion des Confusiones” published in 1688, discusses the trading of
call and put options in 17th century Amsterdam. Options also played a role in the Dutch
“Tulipmania” in the early 17th century. Options on common stocks were offered over a
hundred years ago on the London Stock Exchange. In the US, too, options were trading on
the CBoT in the 1930s although they were called “privilleges” rather than “options.”

To be sure, the options market has changed dramatically over the past few decades.
Volume has exploded; the Bank for International Settlements (BIS) estimates that in end-
2008, the notional outstanding on options worldwide exceeded $100 trillion. The nature
of the options traded has also changed. Options on equities and currencies continue to be
traded in large amounts, but as with forwards and futures, a substantial chunk of the market
is now occupied by interest-rate options, options written directly or indirectly on interest
rates. Innovation has continued apace with the introduction of several new products in recent
years such as credit-spread, energy, electricity, and bandwidth options.

In this first chapter on options, we begin with a review of the basic definitions and termi-
nology, and introduce the important notion of options as a form of financial insurance. Then,
in the centerpiece of this chapter, we examine “naked” options positions (options positions
viewed in isolation) and how each naked option position corresponds to a unique combi-
nation of views on market direction and volatility. Chapter 8 builds on this material and
describes various commonly-employed trading strategies that use options to reflect specific
directional and/or volatility views. The appendix to this chapter describes options markets
worldwide, their breakdown by marketplace (exchange-traded versus over-the-counter) and
their compositions in terms of the underlying instrument (equities, currencies, etc.).

7.2 Definitions and Terminology

Options were defined in Chapter 1. We review the definitions here. Table 7.1 summarizes
the basic terminology.

An option is a financial security that gives its holder the right to buy or sell a specified
quantity of a specified asset (the “underlying asset” or simply the “underlying”) at a specified
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TABLE 7.1 Basic
Options Terminology

Term Meaning

Call option Right to buy the underlying asset

Put option Right to sell the underlying asset
Expiration/Maturity date Date on which the right expires

Strike/Exercise price Price at which right may be exercised
American-style option Right may be exercised at any point before maturity
European-style option Right may be exercised only at maturity

Long position/Holder/Buyer Party that holds the right in the contract

Short position/Writer/Seller Party with a contingent obligation in the contract

price on or before a specified date. The defining characteristic of an option is its “optionality”:
the holder has the right to participate in the specified trade but is not obligated to do so.

The underlying asset in a financial options contract is commonly one whose value depends
on equity prices (“equity options”), exchange rates (“currency options”), or interest rates
(“interest-rate options”) but may also be a commodity (such as gold or crude oil) or other
type of asset or financial variable (e.g., electricity or credit spreads).

There are two basic types of options. A call option gives its holder the right to buy the
specified asset at the price specified in the contract. A put option gives its holder the right
to sell the asset at the specified price. The specified price is itself referred to as the “strike
price” or “exercise price” of the option.

The date by which the right must be exercised is called the “maturity” or “expiration”
date of the contract. If the right is not exercised by this date, it expires. Options with infinite
life spans (“perpetual options™) are rare but do exist.

Options are also distinguished by when the right in the contract may be exercised. In an
American-style option, the right may be exercised at any time before expiry of the contract.
In a European-style option, the right may be exercised on only one date: the maturity date of
the contract. Options that may be exercised before maturity but only on certain pre-specified
dates are called Bermudan-style options; in this part of the book, we are concerned mainly
with only European- and American-style options.

There is an important difference in terminology between forwards and options. In a
forward contract, “long” and “short” refer, respectively, to the buyer and seller in the trade
underlying the contract. In an option, “long” refers to the party holding the right in the
contract; this right could be either the right to buy (if the option is a call) or the right to sell
(if a put). The terms “holder” and “buyer” are used interchangeably with long position.

The party on the other side of the option contract is said to have a “short position” in
the option and is also referred to as the “seller” or “writer” of the option. The option writer
has a contingent obligation in the contract: the writer must take part in the specified trade
if the option holder elects to exercise his right in the contract. (If I sell you the right to buy
Microsoft shares from me at a price of $25 a share, I am obligated to sell you the shares at
that price if you want to buy.)

7.3 Options as Financial Insurance

Insurance, in general, offers us protection from unpleasant surprises. Health insurance
protects us from financial consequences of shocks to our physical well-being. Earthquake
or fire insurance protects us from financial consequences of home damage due to earthquakes
or fires. Options can protect us from the financial consequences of unfavorable changes in
market prices.



Example 7.1

Example 7.2

Chapter 7 Options Markets 157

The holder of an option has the right to participate in the trade specified in the contract
but can elect not to do so. Two simple examples will illustrate how this translates into
insurance.

Puts as Insurance for Sellers

Consider an investor who plans to sell Widget Corp stock in @ month’s time. Suppose Widget
Corp's stock price is currently 95. The investor is exposed to the risk of a fall in the stock
price over the month. If the investor buys a put option on Widget Corp stock with a strike
of 95, then she is protected against this exposure:

e If Widget Corp’s price falls below 95, she can exercise the put and sell the stock for 95.

e If Widget Corp'’s price rises above 95, she can let the put lapse and sell the stock at the
higher price.

This one-sided protection is exactly what we think of as “insurance.” Thus, a put option offers
a seller insurance against a price decrease while allowing the seller to take full advantage of
a price increase. |

Calls as Insurance for Buyers

Now consider an investor who is planning to buy Widget Corp stock in a month’s time.
The investor faces the risk that Widget Corp’s stock price could rise over this month. If
the investor buys a call option on Widget Corp with a strike of 95, he is protected from
this risk:

e |If Widget Corp’s price rises above 95, he can exercise the call and buy the stock for 95.

e If Widget Corp’s price falls below 95, he can let the call lapse and buy the stock at the
cheaper price.

Thus, a call option offers a buyer one-sided protection against a price increase; that is, it
insures the buyer against a price increase while allowing the buyer to take advantage of a
price decrease. |

The Option Price/Premium

The protection, in either case, is provided to the option holder by the option writer. In
exchange for this protection, the holder pays the writer an up-front fee that is called the
option price or the option premium. As with all insurance, the premium will depend on
many factors including the likelihood that the insurer will have to make a payout and the
size of the anticipated payout. The determination of the “fair” value of the option premium
is one of the central issues we will examine in this book.

Remark

One should not get carried away with the options-insurance analogy. If an investor has an
underlying exposure (is planning to buy IBM stock or to sell Japanese yen), then using op-
tions does indeed provide insurance-style protection on this exposure. But, unlike insurance,
which always presumes an underlying insurable risk, options may be used even by investors
who do not have any underlying exposure; that is, options can also be used to speculate. It is
also relevant to note that unlike most conventional forms of insurance, the risks underlying
options contracts typically correspond to traded securities with observable prices (e.g., IBM
stock prices or yen-dollar exchange rates). The properties of these underlying prices are key
to identifying the fair prices of financial options.



158 Part Two Options

7.4 Naked Option Positions

As the first step in our analysis, we begin with a study of “naked” options positions, i.e.,
options positions viewed in isolation. The material that follows forms the foundation for
both the trading and risk-management strategies using options discussed in the next chapter,
as well as the pricing material that follows in the succeeding several chapters.

The most important lesson that comes out of this analysis can be summarized in four
words: options react to volatility. That is, a fundamental determinant of option payoffs and
option values is the amount of uncertainty anticipated in the future price of the underlying
asset. This simple observation has profound implications. From a pricing standpoint, it
means that any attempt to value options must include a central role for the volatility of the
underlying asset. From a risk-management standpoint, it means that options may not only
be used to hedge against (or bet on) directional views concerning the market—for which
purpose one can also use “linear” derivatives such as futures or forwards—but uniquely
also on views regarding market volatility.

There are four basic naked option positions: (a) long call, (b) short call, (c) long put, and
(d) short put. We analyze these positions in this section and show that each position can be
associated with a unique combination of views on market direction and volatility. We use
the following notation:

» S: current price of the asset underlying the options contract.
* T: maturity date of option.

» S7:asset price at date 7.

* K: strike price of option.

» C: current call price.

* P: current put price.

For specificity, we refer throughout to the asset underlying the contract as a “stock,” although
the analysis is unchanged if it is a bond, index, commodity, or foreign currency. We treat the
option as if it is European in style, so exercise occurs at date 7'. By reinterpreting 7" as the
exercise date of the option, much of the analysis may also be extended to American-style
options.

Payoffs from Long and Short Call Positions

Consider an example. Suppose you have a call option to buy the stock of XY Z corporation
at a strike price of K = 100. What will you do on date 7'?

o Ifthe price S7 of XY Z is less than 100, it is obviously best to let the option lapse: there
is no point paying K = 100 for a stock that is worth less than that amount. The call is
said to be out-of-the-money in this case.

» If Sy = 100, then you are indifferent between exercising the option and not exercising
the option (although transactions costs, which we ignore, may push you towards not
exercising). The call is said to be at-the-money in this case.

» Finally, if S; > 100, it is very much in your interest to exercise the call: the call allows
you to buy for 100 an asset that is worth S; > 100. The call is said to be in-the-money
in this case. The profit from exercising the call is S7 — 100; the higher is S7, the greater
the profits.

What about the short position who sold you the option? The short position has only
a contingent obligation in the contract; the decision on exercise is made by you as the
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Payoffs to Long and
Short Call Positions

FIGURE 7.1
Payoffs to a Long Call
Position
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St Long Call Payoffs Short Call Payoffs
70 0 0
Out-of-the-money 80 0 0
90 0 0
At-the-money 100 0 0
110 10 —10
In-the-money 120 20 -20
130 30 -30

long position. So to identify the payoffs to the short, we must see when the option will be
exercised by the long position and calculate the consequences to the short.

» If Sy < 100, then the option finishes out-of-the-money and lapses unexercised. Thus,
there are no payoffs to the short either in this case.

» The same is, of course, true at-the-money.

* If S; > 100, the option finishes in-the-money and is exercised. This means the short
position sells for 100 an asset worth Sy > 100, so the short loses Sy — 100.

These payoffs to both long and short positions are described in Table 7.2. Of course, all
these are gross payoffs. To obtain the net payoffs, the cost of the call C must be subtracted
from the payoffs of the long position and added to the payoffs of the short position.

We can also represent these payoffs in a graph. In general, when you exercise a long
call with a strike of K, you receive for K an asset worth S7. Thus, the payoffs to the long
position from exercise are

Sr— K, if S > K

max{Sy — K, 0} = { 0 ISy < K 7.1

which means the payoffs to the short call are

—~(S;—K), ifS;>K

0, if Sy < K (7.2)

—max{Syr — K, 0} = {

Figures 7.1 and 7.2 represent these payoffs. The payoffs are nonlinear. The long call has
a payoff of zero when the option is out-of-the-money (i.e., Sy < K) and a slope of 41 when

Long call
payoff

Gross payoff

Net payoff

0 K/ St
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FIGURE 7.2
Payoffs to a Short Call
Position

¢ Yet payoff
0
K St
Short call
payoffs

Gross payoff

the option is in-the-money (i.e., every increase of $1 in the price above K translates to an
extra $1 of profit for the long position). The payoffs of the short position are the mirror
image of the long call’s payoffs: zero when the option is out-of-the-money and decreasing
with a slope of —1 when the option is in-the-money.

Payoffs from Long and Short Put Positions

The payoffs to long and short put positions are computed in an analogous fashion. Consider,
for example, the payoffs to a long position in a put on XY Z stock with a strike of K = 100.

» If the price Sy < 100, it is in the long position’s interest to exercise the put: the put
enables the long to sell for K = 100 an asset that is worth Sy < 100. The put is in-the-
money in this case. The payoff from exercise is 100 — S7. The lower is Sz, the greater
the profit from exercising the put.

» If Sy = 100, the long is indifferent between exercising and not exercising the put: either
action leads to a payoff of zero. The put is said to be at-the-money in this case.

« If Sy > 100, it is obviously best to let the option lapse: there is no point in selling for
K = 100 a stock that is worth more than 100. The put is said to be out-of-the-money in
this case.

The payoffs to the short position are the reverse of the payoffs to the long:

» If S; < 100, the short position buys for K = 100 an asset that is worth Sz < 100. The
short Joses 100 — S7. For example, if Sz = 90, the short is buying for 100 a stock worth
only 90, so loses 10. At Sy = 80, the loss climbs to 20. And so on.

e If S7 = 100, the payoff to the short is zero.

« If S¢ > 100, the put lapses unexercised, and the payoff to the short is once again zero.

These payoffs are summarized in Table 7.3. Once again, it must be stressed that these
are gross payoffs. To identify the net payoffs, the cost P of the put must be subtracted from
the long position’s payoffs and added to the short position’s payoffs.

To graph these payoffs, note that, in general, when a put is exercised, the long position
sells for K an asset worth S7. The payoffs received by the long put from exercise are

(K — Sp), ifSr <K

0, if Sy > K (7.3)

max{K — S7, 0} = {
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FIGURE 7.3
Payoffs from a Long
Put Position

FIGURE 7.4
Payoffs from a Short
Put Position
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Sr Long Put Payoffs Short Put Payoffs
70 30 -30
In-the-money 80 20 —20
90 10 —10
At-the-money 100 0 0
110 0 0
Out-of-the-money 120 0 0
130 0 0

Long put
payoff
K

K-P

Gross payoff

0 \K ST
_p Net payoff

Net payof/

0 K Sr

Short put

payoff Gross payoff

Thus, the payoffs to the short position are
—max{K — S7,0} = min{S; — K, 0} (7.4)

Figures 7.3 and 7.4 illustrate these payoffs. The payoff to a long put has a slope of —1
for Sy < K (i.e., it decreases by $1 for every $1 increase in Sr) and is flat for Sy > K.
The payoff of the short put has a slope of +1 for Sy < K (i.e., the short’s losses decrease
by $1 for every $1 increase in the price) and are flat for S7 > K.
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7.5 Options as Views on Market Direction and Volatility

TABLE 7.4 Naked
Options and Views on
Direction

Each naked option position embodies a unique combination of views on market direction
and market volatility. Market direction refers to the direction of prices (are prices going up
or down?). Market volatility is a more nebulous concept; we define it formally later in the
book. For the time being, it suffices to think of volatility as a measure of uncertainty in price
movements; roughly, more volatility means that larger price swings may occur.

Options and Directional Views

When you buy a call with a strike of (say) K, you pay the premium when the call is purchased
and receive cash inflows later only if the price of the underlying increases above K. Thus,
a long call position is bullish on direction, i.e., it implies a view that prices are going up
(in this case, above K). Of course, the strategy is not a sensible one if you anticipate price
decreases since you will then lose your premium.

But if you are bullish on price increases, you can also write a put with a strike of K. In
this case, you receive the option premium today, and if prices behave as expected, you get
to keep the premium as your profit. However, you face the risk of cash outflows if the price
of the underlying decreases and the put is exercised. Thus, writing a put too makes sense if
you anticipate an increase in prices (or, at least, anticipate prices remaining flat) but not if
you believe prices are going to decrease.

Similarly, short calls and long puts are both bearish on direction. If you buy a put, you
pay cash today and receive cash inflows later only if the price of the underlying decreases
and the put finishes in-the-money. If you write a call, you receive the option premium today
and keep the premium as long as prices do not decrease. Both strategies are profitable if you
anticipate a price decrease, but neither is appropriate if you believe prices are going up.

These points are summarized in Table 7.4. The table simplifies matters a little by not
considering flat markets as a third alternative. If you anticipate a flat market, writing an
option may be a profitable strategy (you get to keep the premium as your profit), but buying
an option will not be.

Of course, it should be noted that while long calls and short puts are both bullish strategies,
there are important differences in the cash flows they generate. A long call is akin to buying
insurance: cash outflows are of a definite amount and paid up-front, but inflows are of
uncertain size and occur, if at all, at maturity or exercise time. A short put is like selling
insurance: cash inflows are known and definite, but outflows are of uncertain size and occur,
if at all, at the time of option maturity or exercise. A similar comparison can be drawn
between the cash flows from short calls and long puts. The reader can easily fill in the
details.

Options and Volatility

The presence of “optionality” in options leads to a very powerful property: options react to
volatility. That is, option values depend on how much uncertainty one expects in the price
of the underlying over the life of the option.

This table summarizes the implied market view on direction
of the four basic naked option positions.

Bullish on Direction Bearish on Direction

Long call Long put
Short put Short call
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A simple example will help illustrate this point. Suppose we have a call option on a stock
with a strike of K = 100. We compare option payoffs under two possible distributions for
St. First, suppose that the distribution of S7 is given by

_ J 110,  with probability 1/2
51 = { 90,  with probability 1/2 (7.5)
Then, the call payoffs at time 7" are
_J 10,  with probability 1/2
Cr = { 0,  with probability 1/2 (7.6)

Now suppose the distribution (7.5) is modified to one with the same mean but more
spread-out prices (i.e., with greater “volatility”):

_ ] 120,  with probability 1/2
S5r = { 80,  with probability 1/2 7.7)
The option payoffs at time 7 are then
] 20,  with probability 1/2
Cr = { 0,  with probability 1,2 (7.8)

It is clear from comparing (7.6) and (7.8) that the greater volatility in the second dis-
tribution has been beneficial: the payoffs in (7.8) are unambiguously superior to those in
(7.6). A call buyer would clearly be willing to pay more for the option if the uncertainty
anticipated is given by the more volatile distribution (7.7) rather than the distribution (7.5).
That is, higher volatility leads to higher call values.

Intuitively, when volatility increases, prices become more spread out; higher and lower
prices both become more likely. For the holder of a call, the higher prices are good news: they
result in larger payoffs when the call is exercised. But there is no corresponding downside
from the lower prices since the call holder can simply elect not to exercise the call. Thus,
the call holder benefits from the increased volatility.

Long put options also benefit from volatility. Continuing the same example, the payoffs
to the holder of a put option with a strike of 100 are given by

{ 0,  with probability 1/2
Pr =

10,  with probability 1/2 7.9)

if the distribution of S7 is given by (7.5). Whereas if the distribution of S7 has the more
volatile form (7.7), the payoffs to the put holder are

{ 0,  with probability 1/2
Pr =

20,  with probability 1/2 (7.10)

Once again, the more volatile distribution translates to a superior payoff profile for the option
holder. A put buyer would be willing to pay more for the put if the uncertainty anticipated
was given by the distribution (7.7) rather than (7.5).

Optionality is, of course, crucial in this link. Without optionality, one cannot avoid the
downside cost of increased volatility. In our example, the holder of a long forward position
will enjoy the larger benefit from the price increase to 120, but will also have a larger loss
from the fall to 80.

Just as increased volatility benefits the holder of an option, it makes the wrifer of an
option worse off. The larger price swings imply that the option writer loses more in the
event that the option is exercised but gains nothing from price moves in the other direction
since the option will not be exercised. Thus, an option writer prefers low volatility.
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TABLE 7.5 Naked

Options and Views on
Volatility

TABLE 7.6 Naked
Options and Views on
Direction and
Volatility

This table summarizes the view on volatility embodied by
each of the four basic naked option positions.

Bullish on Volatility Bearish on Volatility
Long call Short call
Long put Short put

This table summarizes the view on direction and volatility embodied by each of the four
basic naked option positions.

Bullish on Direction Bearish on Direction
Bullish on Volatility Long Call Long Put
Bearish on Volatility Short Put Short Call

Options as Views on Volatility

These observations show that every naked option position embodies a view on volatility.
A long option position, whether a long call or a long put, is necessarily a bullish view
on volatility. Such a position increases in value when volatility increases and decreases
in value when volatility decreases. Long option positions are consequently referred to as
“long volatility” positions. Similarly, a short option position—whether a short call or a short
put—is bearish on volatility: such a position increases in value when volatility decreases and
vice versa. Short option positions are consequently referred to as short volatility positions.
Table 7.5 summarizes these observations.

Combining the information in Tables 7.4 and 7.5, we can separate the role of each naked
option position from a risk standpoint. Table 7.6 presents this overall picture. It shows that
each naked option position corresponds to a unique combination of views on volatility
and direction. For example, while both long calls and short puts are bullish positions on
direction, only one—the long call—will benefit from an increase in the volatility of the
underlying. The short put loses value when volatility increases. Thus, a bullish view on
both volatility and direction indicates a long call position, while a view that is bullish on
direction but bearish on volatility indicates a short put. Similarly, if we are bearish on both
direction and volatility, a short call position is indicated, but if we are bearish on direction
but bullish on volatility, a long put position is indicated.

Options versus Forwards/Futures/Spot

The options-volatility relationship also highlights a fundamental difference between options
and positions in spot or futures. We can take advantage of views on direction with spot or
futures also; there is nothing unique about options in this context. If we are bullish on
direction, we can use a long position in spot or futures or forwards; all three will make
money if prices increase. If we are bearish on direction, we can take short positions in spot
or futures or forwards; all three will be profitable if prices decline.

However, there is no obvious way to incorporate views on volatility using spot, futures,
or forwards. All three are instruments with linear payoffs. It is the nonlinearity of options
payoffs that allow options to react to volatility. Indeed, options also permit pure volatility
plays where we are neutral on direction but have a view on volatility. Portfolios such as
straddles (described in Chapter 8) are examples of such strategies.
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What is the difference between an American option and a European option?

2. Explain the following terms in the context of options: long, short, call, put, American,

SR =

10.

11.

12.

13.

14.

15.
16.
17.

18.

19.

European, in-the-money, out-of-the-money, at-the-money, strike, holder, buyer, writer,
seller, expiry, premium, over-the-counter, and exchange-traded.

What is a “Bermudan” option?
Why is being long a put option somewhat analogous to being in a short stock position?
What is the main difference between a forward and an option?

What is the difference between over-the-counter (OTC) contracts and exchange-traded
contracts?

Make a list of securities that you can think of that contain embedded options. For each
embedded option, state the underlying source of risk.

Give an example of an option contract that is both exchange-traded and provided over-
the-counter. Which of these forms is more widely in use? Explain?

Explain why an option is like an insurance contract. How is it different from a futures
contract? Can an option, like a future, be used for hedging?

What position in naked options would you adopt if you believe that the price of the
stock is going to drop and the volatility of the stock is going to decrease?

Why do options usually increase in value with volatility? What essential feature of the
payoff diagram leads to this result?

Explain the difference between the payoff and price of an option. Write down the payoff
formula for a call option and for a put option. What is the difference between the “gross”
and “net” payoffs of an option (as widely applied in common usage)? Which concept
do you think is the more useful one for valuing an option? Why?

Draw a gross payoff diagram for a short position in a call at strike 100. Also draw the
gross payoff diagram for a long position in a put option at the same strike and maturity
as the call. Overlay these plots on the same axis to get an aggregate payoft diagram for
the portfolio of call and put. What other security do you know of with the same payoff
diagram as this portfolio?

Why does a callable bond contain embedded options? Explain what kind of option this
bond has. Who benefits from this option? Based on your answer, is a callable bond
priced higher or lower than a noncallable bond?

Explain what options exist in a convertible-callable corporate bond.

If you hold a callable bond and the volatility of interest rates increases, what do you
think usually happens to the value of your bond?

If you hold a convertible bond and the volatility of equity prices declines, what is the
effect on bond value, assuming nothing else changes?

A quanto (quantity) option is one in which the option contains price risk from two
sources. Quantos are discussed in the chapter on exotic options. An example is where
you buy a put option on the Nikkei stock index (which is yen denominated), but the
strike price of the option is stated in dollars. Explain what the different sources of risk
in such an option might be. For each source of risk, state in which direction it must
move for the value of the option to increase.

A European investor in the US equity markets wants to buy a quanto call on the S&P 500
index, where the strike is written in euros. (See the previous question for the definition
of a quanto). Can you explain why the investor wants such an option? Also explain
what risks the investor is hedging by buying a quanto call on the equity index rather
than a plain call on the S&P 500.
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20.

21.

22.

If you are manufacturing consumer products that use oil-based chemicals as inputs,
then you are subject to oil price risk. Suppose you order your oil from Saudi Arabia
and usually pay for it in Saudi rials. You are now concerned that the appreciation in the
rial will affect your profitability.

(a) How would you use forward contracts to hedge the risk of your oil purchases?

(b) What type of quanto option would you like to buy to hedge this risk? (See Ques-
tion 18 for the definition of a quanto.)

Employee stock options have additional risk over and above standard call options in

that the employee may not be able (or allowed) to cash in the option in the event of

termination of the employee’s job with the firm if the option is not vested. But if the

option is vested, so immediate exercise in the event of termination is possible, should

it be worth as much as the usual American option trading on the firm? Explain.

Market timers are traders who vary their allocation between equity and bonds so as to
optimize the performance of their portfolios by trading off one market versus the other.
Rather than physically trade in the two markets, you want to avail yourself of the best
return from the bond or stock markets over the next year using an option. Suggest an
option that will provide you this result. (Feel free to define the option’s terms.) What
factors drive the value of this option?
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TABLE 7.7
Derivatives and
Options Markets
Worldwide

Options Markets

This appendix provides a brief discussion of options markets worldwide and their charac-
teristics. Like forwards and futures, options may be divided into two broad groups. First,
there are options that are traded on organized exchanges. These are the analogs of futures
contracts, and like futures contracts, come with standardized contract terms (expiration
dates, strike prices, etc.) and margining requirements. Second, there are over-the-counter
(OTC) options. These are the counterparts of forward contracts and are bilateral agreements
that can be customized to the counterparties’ requirements.

Options Markets: Size and Composition

A snapshot picture of worldwide options and derivatives markets as of end-2008 is provided
in Table 7.7. Three features of particular interest are highlighted by this table:

» The exchange-traded and OTC options markets are both large markets, but the OTC
options market with a notional outstanding of $68 trillion is about 80% larger than the
exchange-traded options market with its notional outstanding of $38 trillion.

» Virtually all options are written on one of three categories of underlying instruments:
currencies, equities (including equity indices), and interest rates/interest-rate sensitive
securities like bonds.

— Equity options are of comparable dollar sizes in the two markets, accounting for about
11% of the exchange-traded options market and 7% of the OTC options market.

— Currency options account for a negligible fraction of exchange-traded options but are
around 15% of the OTC options market. Put differently, most currency options traded
in this world are OTC.

This table describes the breakdown of worldwide derivatives and options markets in
terms of the underlying security (currency, interest rate, equities, commodities, other) as
reported in Tables 19-23 of the BIS Quarterly Review, June 2009. Blank entries indicate no
data was provided. The numbers are in billions of US dollars and represent the notional
outstandings worldwide on the respective contracts as of December 2008.

Category Exchange-Traded Over-the-Counter
All currency derivatives 220 49,753
of which: Currency options 125 10,466
All equity-linked derivatives 4,929 6,494
of which: Equity-linked options 4,273 4,862
All interest-rate derivatives 52,711 418,678
of which: Interest-rate options 33,979 51,301
All commodity derivatives — 4,427
of which: Commodity options — 1,561
Other derivatives — 112,610
Total: All derivatives 57,860 591,963

of which: Options 38,377 68,190
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— Interest-rate options take the lion’s share in both markets, amounting to almost 90%
of the exchange-traded options market and about 75% of the OTC options markets.
» Exchange-traded options constitute a substantial chunk (over 65%) of the notional out-
standing on all exchange-traded derivatives. In contrast, OTC options account for only
about 12% of the OTC derivatives markets. The most popular OTC derivatives by far are
interest rate swaps, which account for over half the notional outstanding.

The remainder of this appendix discusses exchange-traded and OTC options markets in
more detail, highlighting some important features and points of differences.

Exchange-Traded Options

Options are traded on several exchanges worldwide. Some of the biggest exchanges trading
options include the Chicago Board Options Exchange (CBOE), the International Securities
Exchange (ISE), CME, and CBoT in the US; Eurex and Liffe in Europe; and Tokyo, Osaka,
and SGX (the Singapore Exchange, formerly Simex) in Asia. Exchange-traded options are
written on a variety of underlying assets including equities, currencies, and futures contracts.

Options on Equities

Exchange-traded options on equities come in three forms. The first is options on individual
stocks. For example, the CBOE offers options on over 1,500 US stocks and American
depository receipts (ADRs), while Liffe offers options on over 100 British equities, and
Eurex offers options on a range of individual European stocks. Options on individual stocks
are almost invariably American in style.

The second is options on equity indices. Options on the S&P 100 index, the S&P 500
index, and several other indices are offered by the CBOE. Options on the FTSE-100 are
traded on Liffe. Eurex has options on the Swiss, Finnish, and German stock market indices.
Options on the Nikkei-225 are traded in Osaka and elsewhere. One of the world’s most
heavily traded derivatives contracts (in terms of number of contracts traded) is the KOSPI-
200 options contract on the Korea Stock Exchange. Options on indices can be both American
and European in style. For instance, the CBOE’s S&P 500 index options contract is European
while its S&P 100 index options contract is offered in both European and American styles.

Third, option-exposure to equities can also be taken via options on index futures. These
are discussed under “Options on Futures” below.

Options on Currencies

A number of exchanges offer options on foreign currencies. In the US, the CME offers
options on a number of different currencies including the Australian dollar, the Brazilian
real, the British pound, the euro, the Israeli shekel, the Swiss franc, and the Japanese yen.
Options on currencies may be both European and American in style.

Options on Futures

Options on futures have futures contracts as their underlying security and are almost invari-
ably American in style. The holder of a call option on futures has the right to enter into a
long position in the futures contract at the strike price specified in the options contract. If the
right is exercised, the holder of the call receives (a) a long position in the specified futures
contract and (b) a cash settlement (paid into the futures margin account) of the amount by
which the current futures price exceeds the option strike price.

Similarly, the holder of a put has the right to take a short position in the futures contract
at the strike price specified in the options contract. If the right is exercised, the holder of the
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Microsoft (MSFT) Underlying stock price*: 27.25
Call Put

Expiration Strike Last Volume Open Interest Last Volume Open Interest
Apr 5.00 22.30 46 484 — — —

Apr 22.50 4.83 14 13154 — — 35087
Oct 22.50 5.40 160 4348 — — 13500
Apr 25.00 2.35 256 38786 0.05 5 53804

Jul 25.00 2.70 21 20680 0.20 436 9302
Apr 27.50 0.20 3686 154002 0.35 2894 54901
May 27.50 0.50 14870 29471 0.65 7340 21191

Jul 27.50 0.90 954 96304 0.85 140 64638
Oct 27.50 1.43 46 29839 1.05 355 22473
Apr 30.00 0.05 4 122309 2.70 364 743

Jul 30.00 0.20 265 94110 2.70 981 7498
May 4250 — — — 15.20 602 300
May 4550 — — — 17.70 602 300

*Underlying stock price represents listed exchange price only. It may not match the composite closing price.

put receives (a) a short position in the specified futures contract and (b) a cash settlement
(paid into the futures margin account) of the amount by which the strike price exceeds the
current futures price.

While any futures contract can have an option contract defined on it, most options on fu-
tures contracts in practice have as the underlying either an interest-rate/bond futures contract
or an equity-index futures contract. The former are categorized and counted as interest-rate
options, while the latter are included in equity-linked options. Almost all interest-rate options
traded on exchanges are in the form of options on interest-rate futures or options on bond
futures.

Exchange-traded options prices are routinely reported in the financial press. Table 7.8
shows the typical style of reporting of options prices. The numbers in the table are taken
from the The Wall Street Journal website and report prices of options on Miscrosoft on
April 7, 2006.

» The first and second columns report the combination of expiration months and strike
prices in which options are available. For example, there were calls and puts available
on Microsoft with a strike of $27.50 and expirations in April, May, July, and October.

* The third column shows the prices of calls for those strikes and expirations, while the
sixth column shows the prices of the corresponding puts. For example, a call expiring in
October with a strike of $27.50 has a cost of $1.43, while the price of the corresponding
put is $1.05. Since each options contract is for the right to buy or sell 100 shares of
Microsoft stock, this means one October call option contract with a strike of $27.50
costs $143 while one October put option contract with a strike of $27.50 costs $105.

» The fourth and seventh columns show the volume of contracts traded on that particular
day. The May $27.50-strike contract has the greatest trading volume for both calls and
puts with 14,870 call contracts and 7,340 put contracts. Observe that the $27.50 strike is
the closest strike to the $27.25 closing share price of Microsoft that day. It is very typical
for option volumes to be highest for the nearest-the-money strike at the short end of the
maturity spectrum.

* Finally, the fifth and eighth columns show the total outstanding volume of contracts in
each maturity-strike category.
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Over-the-Counter Options

Table 7.7 showed that OTC options account for a worldwide notional outstanding that is
roughly 80% larger than the notional outstanding of exchange-traded options. OTC options
too may have equities, equity indices, currencies, or interest-rate sensitive instruments as
their underlyings, but there are some differences.

First, while most exchange-traded options involve “plain vanilla” calls and puts (calls
and puts as we have defined above), in the OTC market, there is also a vast range of “exotic”
options. Simply put, an exotic option is any option that is nof a vanilla option. Such options
may differ from vanilla options in terms of when they can be exercised and how payoffs are
defined. Some exotics are significantly more complex than vanilla options; others actually
have simpler forms. Exotic options are described and analyzed in Chapters 18 and 19.

Second, while interest-rate-linked options in the exchange-traded context mostly take
on the form of options on interest-rate futures or bond futures, OTC interest-rate options
are mostly written directly on specific interest rates such as Libor. Caps, for example, are
packages of interest-rate options that protect the holder from rises in interest rates beyond
the strike rate specified in the contract; they provide insurance to borrowers against rising
interest rates. Floors similarly protect holders from declines in interest rates below the strike
rate; they provide insurance to investors against falling interest rates. Swaptions are options
to enter into swaps at a fixed rate. Of course, there are also a number of exotic interest-rate
options.

Embedded Options

Any discussion of options markets would be incomplete if it did not also mention the vast
number of financial securities that come with “embedded” options. A typical example is a
callable bond, a bond that gives its issuer the right to buy the bond back from the holder at a
price specified in the contract. Callable bonds are used by corporations and other borrowers
who wish to retain the flexibility to refinance at cheaper rates if interest rates should fall.

US mortgages offer an example of callable bonds at the household, rather than corporate,
level. US home owners have the right to prepay their mortgages at any time without penalty.
This right becomes valuable, and is often exercised, in a time of falling interest rates: home
owners can pay back the original mortgages and take out new ones at the current cheaper
rates. This means borrowers—who are the issuers of the mortgages—effectively hold call
options that give them the right to buy back the loan at any time at par.

A somewhat more complex example is a convertible bond, a bond that gives its holder
the right to convert the bond into a fixed number of shares of stock in the underlying
company. Convertible bonds are very often also callable by the issuer. Thus, each side holds
an option—the buyer a convert option and the issuer a call option—and the exercise of one
option extinguishes the other. In addition, convertibles may also be puttable; that is, under
specified circumstances, the bond holder may have the right to sell the bond back to the issuer
ata given price. Convertible bonds and other hybrid instruments are discussed in Chapter 21.

Instruments with embedded optionalities have become increasingly common in recent
years. For the most part, they can be analyzed using standard techniques drawn from option
theory. A callable bond, for example, may be viewed as a package of two securities, a straight
bond and a call option on the bond. The buyer of the callable bond is long the straight bond
but is short the call option on the bond; the issuer of the callable bond has the opposite
positions. As such, the properties of the callable bond such as its price may be ascertained
from the properties of the straight bond and the option.
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Options: Payofts and
Trading Strategies

8.1 Introduction

The last chapter defined the basic terminology of options contracts, provided a brief de-
scription of options as “financial insurance,” and highlighted the centrality of volatility to
the study of options. Building on that foundation, the current chapter describes the role that
options can play in incorporating views on the market into a portfolio.

In a nutshell, the contents of this chapter may be described as illustrating what is special
about options from a risk-management standpoint, i.e., what can be achieved with options
that cannot be (or at least cannot easily be) accomplished without options. Sections 8.2—8.5
look at several standard portfolios (or “trading strategies”) that illustrate how options may
be added or combined into portfolios to reflect specific outlooks on the market. Rounding
off this material, we discuss the case of Barings Bank, the protagonist in one of the leading
financial scandals of the 1990s.

8.2 Trading Strategies I: Covered Calls and Protective Puts

A “trading strategy,” as the term is used in this chapter, refers to a portfolio consisting of
options on a given underlying asset, possibly combined with positions in the asset itself
and perhaps cash (risk-free investment/borrowing). There are a large number of standard
trading strategies that use options. We examine a number of these over this section and the
next two:

. Covered calls and protective puts.
. Spreads: bullish, bearish, butterfly, and horizontal.
. Combinations: straddles, strangles, strips, and straps.

AW N =

. Others: collars, box spreads, ratio spreads, and condors.

This section focuses on covered calls and protective put strategies. Section 8.3 looks at
spreads and Section 8.4 looks at combinations. In all cases, a central issue is how options
may be incorporated into a portfolio to reflect specific market views. Put differently, the
material here highlights what one can do with options that one cannot do without options.

We illustrate the use of all the trading strategies discussed in this chapter using a common
example. The example concerns a hypothetical stock (XY Z stock) that is currently trading
at 100. There are one-month put and call options available on this stock with strike prices

171
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TABLE 8.1 XYz
Options: Illustrative
Example for Options
Trading Strategies

FIGURE 8.1
Covered Call Payoffs

The numbers in this table are used to illustrate the various trading strategies
described in this chapter. The table concerns a hypothetical stock (XY Z
stock) that is assumed to be currently trading at 100. There are one-month
calls and puts available on the stock with strike prices of 95, 100, and 105.
The prices of these options are described in the table.

Strike Call Price Put Price
95 6.29 0.89

100 3.09 2.67

105 1.21 5.77

of 95, 100, and 105. The prices of these options are taken to be as given in Table 8.1. Note
that the price of the call decreases as the strike price increases (the right to buy at 95 is
worth more than the right to buy at 100) while the price of the put increases as the strike
increases (the right to sell at 100 is more valuable than the right to sell for 95).

Covered Calls

A covered call is a portfolio consisting of a long position in the underlying and a short

position in a call option on the underlying. The terminology derives from the observation

that the long underlying position “covers” the writer of the call if the option is exercised.
To determine the payoffs from a covered call portfolio at maturity, consider two scenarios:

1. S7 < K: In this case, the call is worthless. The long position in the underlying is, of
course, worth Sy. Therefore, the value of the covered call portfolio is just S7.

2. St > K: Now the call will be exercised. The short call is worth —(S7 — K). Since the
long position in the underlying is worth Sz, the value of the covered call portfolio is
Sr—(Sr — K) =K.

More briefly, the value of a covered call portfolio at maturity may be expressed as
min{S7, K} 8.1

Figure 8.1 graphs these payoffs. These are gross payoffs, i.e., they do not take into account
the cost of the option. To obtain the net payoffs, we must add back the initial option cost C
received for writing the option.

Covered call
payoffs
Gross payoff
C
0
K St
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Why use a covered call portfolio? Suppose you hold the underlying and you expect
the market to be flat, i.e., to remain at its current level. Then your anticipated standstill
return is zero. If you write a call in this market, you receive the option premium, so the
standstill return becomes positive and equal to the option premium. If your view of the
market holds and the market does remain flat, you have “upped” your returns by the amount
of the premium.

Nor does the portfolio do badly for small changes in price in either direction. For small
falls in price, the decline in value of the long underlying position is offset by the option
premium received. For small increases in price, you lose on the short call, but as long as
this loss is covered by the option premium, you are better off.

However, a covered call is explicitly a short volatility position (indeed, its payoff is
essentially similar to that of a short put position). The risk in the position is that volatility
may turn out to be larger than anticipated, i.e., there may be large price swings in either
direction. If prices rise by more than the amount of the premium, the portfolio is worse off for
incorporating the option. If prices tumble sharply, the option premium may be insufficient
to offset the loss on the long underlying position.

As an example of all of these points, consider XY Z stock from Table 8.1. Suppose you
hold the stock and expect it to be flat at its current price of 100 over the next month. Based
on this expectation, you write a call on XY Z with a strike of 100. From Table 8.1, you
receive an option premium of 3.09. This premium represents your profit if your view proves
correct and prices remain flat. Moreover, as long as prices move by /ess than 3.09, you are
better off for having written the call. If prices fall, but by less than 3.09, the option premium
makes up for the losses you suffer on the long stock position. If they rise by less than 3.09,
whatever you lose by the call being exercised is made up by the premium.

However, if the price swings turn out to be substantial—that is, your view of low volatility
is proved incorrect—you may lose. If prices rise sharply (say, by 6), then your premium is
insufficient to cover your losses on the call (your net loss would now be 6 — 3.09 = 2.91).
Thus, you would have been better off not writing the option. If prices fall sharply (again, say
by 6), the loss on the long stock position will lead to a net fall in the value of your portfolio
(once again, of 2.91); in this case, you would have been better off selling the stock.

Protective Puts

A protective put portfolio (PPP) is a portfolio consisting of a long position in the under-
lying and a long position in a put option on the underlying. Protective puts are the classic
“insurance” use of options.

To determine the payoffs from a PPP at the time of exercise, consider two scenarios:

1. S7 < K: In this case, the put is in-the-money and pays (K — Sr). The long underlying
position is worth S7. Therefore, the PPP is worth (K — S7) + Sr = K.

2. Sy > K: Now, the put is worthless. The long stock position is worth S7. Therefore, the
PPP is worth Sr.

More briefly, the payoffs from a PPP at maturity can be expressed as
max{K, St} (8.2)

Figure 8.2 graphs these payoffs. As usual, these are gross payoffs. To obtain the net
payoffs, we must subtract the cost P of the option from these payoffs.

As the figure indicates, the protective put in the portfolio ensures a floor value for the
portfolio. Intuitively, we hold the underlying, but we also hold the right to sell the underlying
for K. If the price of the underlying is above K, we keep these upside gains. But if the price
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FIGURE 8.2
Payoffs from a
Protective Put

Protective
put payoff
Gross payoff
K Net payoff
K—-P

K Sy

of the underlying falls below K, we exercise our rights in the option and receive K. This is
the classical insurance use of options. The level of insurance obtained is the strike price K
of the put since this determines the floor value of the portfolio.

Of course, this insurance does not come for free since there is an up-front fee for the put.
The price of the put will be higher as the strike price is larger. Consider, for instance, the
XY Z example from Table 8.1. If you want to ensure a floor value of 100 for XY Z stock in
one month’s time, you need to buy a put with a strike of 100, which costs 2.67. If you are
willing to accept a lower floor value of 95, the cost of the protection is only 0.89.

8.3 Trading Strategies Il: Spreads

A spread is a portfolio consisting of options of the same type (either all calls or all puts).
There are two basic kinds of spreads.

1. Vertical spreads are spreads in which the options have the same expiry date and differ in
their strike prices.

2. Horizontal or calendar spreads are those in which the options have the same strike price
but differ in their expiry dates.

The terminology comes from the way option prices were once reported in the finan-
cial press. The prices were presented in a grid with maturity dates listed horizontally and
strike prices listed vertically. Thus, fixing a maturity and combining options of different
strike prices involved moving vertically along a column on the grid while fixing a strike and
combining different maturities involved moving horizontally across a row of the grid.

We first examine the three basic kinds of vertical spreads in this section: bull spreads, bear
spreads, and butterfly spreads. Then we look at horizontal spreads. Each of these spreads
may be set up using either calls or puts. We discuss both call spreads and put spreads in
each case below.

Bullish Vertical Spreads: The Motivation

Suppose you are bullish on XY Z stock; you expect the price to increase over the next month
from its current level of 100. There are two things you could do to implement this view
using options:

1. You could buy a call with a strike of K = 100.

2. You could write a put with a strike of K = 100.



FIGURE 8.3
Payoffs from a Bullish
Vertical Spread Using
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Either strategy will make money if prices go up as expected, but each also comes with
the risk of losses. The first requires, from Table 8.1, an up-front cash payment of 3.09 that
is lost if prices go down. The second has the problem of all written option strategies of
substantial losses if prices move in the wrong direction, in this case if the price of XY Z
stock falls sharply below 100.

In each case, you can limit these costs by combining the given option with another option
to set up a strategy called a bullish vertical spread or simply a bull spread. Of course, you
have to give up a part of the upside to achieve this. We examine how this may be done for
call options first and then for put options.

Bullish Vertical Spreads Using Calls

Consider combining your long position in the 100-strike call with a short position in the
105-strike call. This has two effects:

1. It reduces your up-front cost from 3.09 to 3.09 — 1.21 = 1.88. This is the maximum
loss in case your view proves wrong and prices go down.

2. It caps your maximum upside. If prices increase beyond 105, whatever you gain by
holding the 100-strike call, you lose on the 105-strike call you have written.

If you estimate that a price increase above 105 is not very likely, this is a trade-off you will
probably find acceptable.

The portfolio you have created is a bullish vertical spread using calls, or simply just a
call bull spread. In general, in a call bull spread, you buy a call with one strike price K;
and simultaneously sell another call with a higher strike price K,. The lower strike K is
typically chosen at or close to the current stock price. This makes the portfolio bullish (you
make money when the stock price goes up from its current level).

Including the K,-strike call in the portfolio reflects a cost-benefit trade-off. On the one
hand, the cost of the portfolio is reduced by the premium received for this call. On the other
hand, the upside of the portfolio is now capped: any increase in the price of the underlying
above K, means that whatever you gain on the K-strike call, you lose on the K,-strike call.

Figure 8.3 graphs the payoffs from a call bull spread at maturity. The net payoffs are
obtained from the gross payoffs by subtracting the cost C(K;) — C(K3) of the portfolio.
The payoff structure is intuitive:

» Until a price of K is reached, neither call will be exercised, so the gross payoff is zero.

» Between K and K, only the K -strike call is exercised, so the payoffs from the portfolio
are just St — K. At Sy = K, these payoffs are K, — K;.

K27K1

Call bull
spread
payoff

Gross payoff

Net payoff

K, K, Sy
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FIGURE 8.4
Payoffs from a Bullish
Vertical Spread Using
Puts

* Beyond K, both calls are exercised. Whatever is gained on the K-strike call is lost on
the K,-strike call, so payoffs are flat at the level K, — K.

Bullish Vertical Spreads Using Puts

Now consider the strategy of writing a 100-strike put to incorporate a bullish view on
XY Z stock. As we saw, the danger with this strategy is that if prices move sharply down,
substantial losses may be incurred on the short put position.

One way to cap this risk is to buy a put with a strike of (say) 95. If you do this, then your
maximum danger is a price fall to 95. Beyond that, whatever you lose on the put you have
written, you make up on the put you have bought. Of course, there is a cost to obtaining this
cap—your initial cash inflow has been reduced from 2.67 to 2.67 — 0.89 = 1.78.

The portfolio you have created here is a bullish vertical spread using puts or, simply, a
put bull spread. In general, a put bull spread involves selling a put with a strike price K,
and simultaneously buying another put with a lower strike price K. The initial cash inflow
is P(K,) — P(K;). The strike price K, is chosen to be at or near the current stock price,
making the position bullish; the long K;-put offers protection on the downside in case this
view is wrong.

Figure 8.4 graphs the gross payoffs from a put bull spread. The payoffs are obtained
using the same arguments as the call bull spread:

* If St > K,, neither put is exercised. The gross payoffs are zero.

o If Sy lies between K| and K, only the K,-strike put is exercised, so the portfolio payoff
is —(K,; — S7). When Sy = K, the loss is K, — K.

» Below aprice of K, both puts are exercised. Additional losses from the K;-strike put are
now canceled out by gains on the K -strike put, so payoffs are flat at the level —( K, — K).

To obtain the net payoffs from a put bull spread, we must add back the initial cash flow of
P(K>) — P(K}).

Bearish Vertical Spreads: The Motivation

Bearish vertical spreads are just the bearish-outlook analog of the bullish vertical spreads.
Suppose you are bearish about XY Z stock. Once again, there are two strategies open to you.

Put bull
spread
payoff Net payoff
Ky Ky
0

Gross payoff

—(Ky — Ky)
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Payoffs from a Bearish
Vertical Spread Using
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1. You could write a call with a strike of 100.
2. You could buy a put with a strike of 100.

Both strategies make money if the price decreases from the current level of 100, but each
strategy comes with potential disadvantages. The first has the risk that if prices increase,
the losses from writing a call could be very large, even unlimited. The second requires an
up-front cash payment of 2.67 (from Table 8.1), which is lost entirely if prices go up; this
is a nontrivial concern especially if you believe that the likelihood of prices going down
below some level (say, 95) is low, so you expect only a limited upside.

Once again, in both cases, the solution is to soften these potential negative effects by
combining the given options with another option to create a spread. We examine the call
spread first and then the put spread.

Bearish Vertical Spreads Using Calls

Consider combining your short position in the 100-strike call with a Jong position in a call
with a higher strike price (say, 105). This reduces your initial cash inflow from 3.09 to
3.09 — 1.21 = 1.88, but also limits your maximum loss: if prices rise above 105, whatever
you lose on the 100-strike call you have sold, you make up on the 105-strike call that you hold.

This is a call bear spread or a bearish vertical spread using calls. In general, it involves
selling a call with some strike K (typically at- or near-the-money) and buying a call with a
higher strike K,. The short position in the K-call implies the position is essentially bearish.
When combined with the long K;-strike call, the initial cash inflow is reduced from C(K)
to C(K;) — C(K>), but potential losses are capped: any loss on the short K -strike call from
a price greater than K, is offset by gains on the long K;-strike call.

Figure 8.5 graphs the payoffs from a call bear spread. The net payoffs are obtained by
adding the initial cash inflow C(K;) — C(K>) to the gross payoffs.

Bearish Vertical Spreads Using Puts

As we have seen, the risk in buying a put to reflect a bearish view on direction is that the
entire premium may be lost if prices increase. One way to reduce your up-front cost is to sel/
a put with a lower strike price, e.g., 95. This reduces your initial cost to 2.67 — 0.89 = 1.78.
In exchange, you receive no benefit for price falls below 95: whatever you gain on the
100-strike put you hold, you lose on the 95-strike put you have written.

Call bear
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FIGURE 8.6

Payoffs from a Bearish
Vertical Spread Using
Puts
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You have created a put bear spread or a bearish vertical spread using puts. This is a
portfolio with a long position in a put at some strike K, and a short position in a put with a
lower strike K. The strike K is usually close to the money, which ensures that the position
is essentially bearish. Selling the K-strike put reduces the set-up cost for the portfolio, but
it also caps the upside benefit; the maximum benefit is reached when the stock price reaches
K. Any gains on the K,-strike put at lower stock prices are canceled by the losses on the
K -strike put.

Figure 8.6 graphs the payoffs from a put bear spread.

Butterfly Spreads

A butterfly spread using calls involves taking positions in calls with three strike prices
K, < K, < Kj3. The extreme strike prices K and K3 are called the “wings” of the spread.
We first discuss butterfly spreads in the “symmetric” case, i.e., where the three strike prices
are equally spaced so K, is the mid-point of K and K3. This is the case most commonly
associated with butterfly spreads in practice. However, butterfly spreads can be set up for
any three strike prices. We discuss the general case in Appendix 8A. Butterfly spreads too
can be set up using either calls or puts. We discuss call butterfly spreads first.

Butterfly Spreads Using Calls

When the strike prices are equally spaced, a butterfly spread is a portfolio consisting of
(a) one long position each in the K- and K;-strike calls, and (b) two short positions in the
K;-strike call. The gross payoffs from the symmetric butterfly call spread at 7" (graphed in
Figure 8.7) can be determined by considering four scenarios for Sr:

» For Sy < K, none of the options is in-the-money. The portfolio payoff is zero.

» For Sy between K, and K>, only the K-strike call is in-the-money. Since we are long
one such call, the portfolio payoff increases by $1 for every $1 increase in Sy in this
range.

* For S7 between K, and K3, the K- and K,-strike calls are both in-the-money. For every
$1 increase in St in this range, we gain $1 on the K-call but lose $2 on the two K,-calls,
for a net loss of $1. Since K, K, and K3 are equally spaced, the entire gains between
K, and K, are given up between K, and K3, so the gross payoff from the portfolio is
zero when Sy = Kj.



FIGURE 8.7
Payoffs from a Call
Butterfly Spread
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» For St > Kj, all three options are in the money. For each $1 increase in Sy in this range,
we gain $1 each on the K- and K3-calls but lose $2 on the two short K,-calls, for a net
gain of zero. Thus, the payoff remains flat at zero in this range.

The Cost of a Call Butterfly Spread
The cost of setting up the butterfly spread is

C(K1) + C(K3) —2C(K>) (8.3)

Is this cost positive, negative, or zero? Arbitrage provides an easy answer. Figure 8.7
shows that the gross time-7" payoffs to a symmetric butterfly spread are always non-negative,
and are strictly positive if S7 lies between K| and K3. That is, there is never a cash outflow
at T, but there is a cash inflow whenever Sy lies between K, and K3. To avoid arbitrage, it
must cost something to set up the portfolio:

C(K))+ C(K3) —2C(K5) > 0 (8.4)

For instance, in the XY Z example, the cost of the butterfly spread is positive: from
Table 8.1, the cost is

6.294+1.21 —(2x3.09) = 1.32

Expression (8.4) offers a very powerful restriction on call prices for any three equally-
spaced strike prices. This result is actually a special case of a general result known as
convexity of option prices in the strike price that holds even when strike prices are not
equally spaced. We state the general result in Appendix 8A.

Why Use Butterfly Spreads?

The most common use of the butterfly spread is as a directional/volatility bet. The spread
pays off maximally if Sy is at K,. Moreover, it decreases rapidly as Sy moves away from
K in either direction, that is, it is a short volatility portfolio. Thus, the butterfly spread is
a bet that the price will be around K, with very little volatility.

As an illustration, consider the XY Z example again. Suppose you anticipate prices being
flat at the current price of 100. If you set up a butterfly spread using the 95-, 100-, and 105-
strike calls, the up-front cost, as we have seen, is 1.32. If the price does in fact remain flat,
the payoff from the option will be 5 for a net profit of 3.68.
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Traders sometimes use rules of thumb for gauging the acceptability of risky strategies.
One sometimes used in the context of butterfly spreads is the “rule of 3” that requires the
maximum payoff of the spread (i.e., the payoff at S = K,) to be at least three times the
cost of the spread. It should be noted that there are no formal bases for such rules.

Of course, butterfly spreads may also be employed to take advantage of arbitrage op-
portunities involving three options. For example, suppose for K; = 90, K, = 100, and
K3 = 110, we observed call prices of C(K;) = 13, C(K;) = 8, and C(K3) = 2. A riskless
profit can be made by setting up a butterfly spread involving the three options. Arbitrage
opportunities like this are not common.

Butterfly Spreads Using Puts

Symmetric butterfly spreads using puts are defined in exactly the same way as butterfly
spreads using calls: We take

» along position in one put each with strikes K; and K3; and
+ ashort position in two puts with strike K.

The payoffs of the put butterfly spread are identical to those of the call butterfly spread:
That is, Figure 8.7 also represents the gross payoffs from a symmetric put butterfly spread.
This may be checked directly:

» For Sy < K;: All three puts are in-the-money. The portfolio’s payoff is
(Ky —87) —2(K; —S7)+ (K3 —S87) = K1 —2K,+ K3 =0

» For Sy lying between K and K;: The K,- and Kj;-strike puts are in-the-money, so the
portfolio payoff is

—2(Ky = Sr)+(Kzs—=8r) = Sr +K3—-2K,

This is identical to the call payoff in this interval since —(K3; — 2K;) = K;.

» For Sy lying between K, and K3: Only the K;3-strike put is in-the-money. The portfolio
payoff in this case is K3 — S7. This is identical to the call payoff in this interval since
2K, — K| = K;.

* For S; > Kj3: All the puts are out-of-the-money, so the portfolio payoff is zero.

As a consequence, the cost of a put butterfly spread must also be strictly positive, i.e.,
we must have

P(K)) 4 P(K;) =2 P(K;) > 0 (8.5)

Horizontal Spreads Using Calls

Horizontal spreads use options with the same strike K and two different maturities, 77 and
75, where Ty < 1. In a long horizontal call spread, the investor takes a long position in the
T>-maturity call (the “distant” call) and a short position in the 7}-maturity call (the “nearby”
call). A short horizontal call spread is the opposite portfolio: long the nearby call and short
the distant call. Long and short horizontal put spreads are defined analogously with “put”
replacing “call” in the preceding definitions.

Payoff at Ty of a Horizontal Call Spread

Figure 8.8 shows the value of a horizontal call spread at 7}, the date of maturity of the
nearby call, for different values of the stock price Sy, on this date. The payoff looks similar
to a butterfly spread—it is highest at the common strike price of the options and tails off in
either direction. As with a butterfly spread, the payoff of a horizontal call spread is always
non-negative.
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A formal derivation of the graph requires knowledge of option pricing that will be
developed only over the next several chapters, but the three broad features of the graph—
why it is increasing up to K, decreasing beyond that, and positive everywhere—are not hard
to understand intuitively.

Consider S;; < K. The nearby call expires worthless in this case, so the value of the
portfolio is just the value of the distant call, which is positive. Moreover, other things being
equal, the higher is Sy, today, the better the chances of the 7,-maturity call eventually
finishing in-the-money. So, the value of the horizontal call spread increases as Sy, increases
in this range.

When Sy, > K, the nearby call comes into the money and will be exercised. Thus, the
value of the spread is now the value of the distant call (denoted, say, C(K; 7)) minus the
value of the expiring call:

C(K; 1) — (S, — K) (8.6)

Now, a long-dated call is always worth more than a short-dated call (under almost all
circumstances) for two reasons that we explore in greater detail in the coming chapters.
First, the longer time to maturity gives volatility a greater time to have an impact. Second,
the calls involve paying K to buy the stock. The longer one has to pay this K, the greater
the interest savings. Thus, the difference (8.6) is positive, explaining why the horizontal call
spread has a positive payoff everywhere.

Finally, as the call gets deeper in-the-money at 77, the more likely it is that it will finish
in-the-money, so the less optionality (hence, volatility) matters. Since volatility is one of
the reasons the longer-dated option costs more, the diminishing impact of volatility means
the difference (8.6) in option values also gets smaller, explaining why the portfolio value
declines beyond K.

Why Use Horizontal Call Spreads?

The value of a horizontal call spread is influenced by two factors: time and volatility.
As mentioned above, a shorter-maturity call is worth less than a longer-maturity one. Put
differently, this says that, ceteris paribus, the value of a call will decrease as maturity
approaches. This is called time-decay in a call. The rate of decay is relatively small when
an option has a long time left to maturity (the passage of one day doesn’t matter that much
if we still have three months left). But closer to maturity, time-decay increases rapidly (a
day makes a huge difference if we have only a week to maturity).
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FIGURE 8.9
Payoffs from a
Horizontal Put Spread

Horizontal
put spread
payoff

In a long horizontal call spread, we own the distant call but are short the nearby call.
Other things being the same, the value of the portfolio will increase over time since the
shorter-dated call will lose value faster than the long-dated one. Thus, the horizontal call
spread is an attempt to profit from time-decay. However, the ceteris paribus qualification is
important here. As the payoff diagram makes clear, the horizontal call spread is also a bet
that the price will be at or in a small neighborhood of K.

The horizontal call spread can also be a play on the stock’s implied volatility. Implied
volatility is defined formally later in the book, but intuitively, it is just the level of volatility
reflected in current option prices. If you have a view that the stock’s implied volatility will
go up but the stock price will not immediately change very much, then buying an at-the-
money horizontal call spread may be appropriate. When implied volatility goes up, the
prices of both the nearby and distant calls will increase. However, because the latter has
greater maturity than the former, it will increase by more (there is more time for volatility
to matter). So the value of your portfolio will go up.

Horizontal Spreads Using Puts

Asnoted above, horizontal put spreads are defined in the same way as horizontal call spreads.
Figure 8.9 shows the value of a horizontal put spread at time 7). There is one important
difference between puts and calls that is reflected in the graph. American puts, like European
and American calls, increase in value with maturity. That is, a longer-dated American put
must cost more than a short-dated one (if you don’t want the extra time, you can always
exercise early). However, this is not necessarily true for European puts, especially when
they are deep in-the-money. Intuitively, if you have a deep in-the-money put and are sure
to exercise it, you would rather receive the strike price K earlier than later. In a long-dated
European put, you are forced to wait longer for the money, and this hurts you. Thus, when
the puts in the horizontal spread are both deep in-the-money, the value of the spread may
become negative, as happens in the graph.

8.4 Trading Strategies lll: Combinations

A combination is used to refer to a portfolio that involves positions in both puts and calls
on a given underlying asset. It has become increasingly common, however, to refer to such
portfolios too as “spreads.” We retain the old-fashioned terminology in this section.
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We look at four popular combination strategies: straddles, strangles, strips, and straps.
Straddles and strangles are the most important of these and are among the most important
of all strategies discussed in this chapter. They are quintessential options strategies in that
they incorporate a view on volatility but not on direction as we explain below.

Straddles

A straddle is one of the simplest and most popular of options-based trading strategies. It
is a portfolio consisting of long positions in a call and a put with the same strike price and
maturity. The strike is usually chosen to be at or near the current stock price. Letting K
denote the common strike price, the payoffs from a straddle at maturity are:

* If S7 < K: Only the put is in-the-money. The payoff of the straddle is (K — S7).
o If S > K: Only the call is in-the-money. The payoff of the straddle is (Sy — K).

These payoffs are graphed in Figure 8.10.

Straddles result in a positive gross payoff at maturity regardless of the direction in which
the market moves. Thus, they are neutral on market direction. Intuitively, the directional
bullishness of the call is canceled by the directional bearishness of the put. However, strad-
dles are clearly very bullish on volatility. The greater the price swings, the better off is the
holder of a straddle.

Volatility is key here. Straddles involve purchasing multiple options, so large movements
in prices are required for them to be profitable. In the XY Z example, for instance, buying
an at-the-money straddle with a strike of 100 costs 3.09 +2.67 = 5.76. Thus, the price has
to move below 94.24 or above 105.76 from its current level of 100 for the strategy to be
profitable. More generally, option prices reflect the market’s expectation of volatility over
the option’s life. If high volatility is anticipated, the price of the call and put will both rise,
making straddles even more expensive.

Short Straddles

A short straddle is a short position in a straddle. Writing naked straddles (i.e., writing
straddles and then not hedging oneself) is a bet on low volatility and is neutral on direction.
This can be profitable in flat markets but is also quite obviously a very risky strategy since
the potential losses from price swings (in either direction!) can be very large. This point
may seem uncomplicated and obvious. Yet the massive use of naked short straddles lay
behind one of the major financial scandals of the 1990s, the downfall of Barings Bank, that
is described later in this chapter.
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FIGURE 8.11
Payoffs from a Strangle
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A strangle is essentially the poor cousin of a straddle. Like the straddle, it aims to be neutral
on direction but bullish on volatility. The difference is that, rather than using the same strike
price for the call and the put, the strangle uses a higher strike price for the call and a lower
one for the put. This makes the strangle cheaper than a straddle, but it also means much
larger price moves are required for the strangle to make money.

As an example, consider the prices for XY Z options from Table 8.1. As we saw, the cost
of a 100-strike straddle is 5.76. One inexpensive alternative is to set up a 95-105 strangle,
i.e., buy a put with a strike of 95 and a call with a strike of 105. From the prices in the table,
the strangle would cost only 1.21 4+ 0.89 = 2.10. However, for the strangle to turn a profit
after taking into account the cost of the options, the price has to be above 107.10 or below
92.90, a wider range than the corresponding one for the straddle.

The gross payoffs from a strangle are graphed in Figure 8.11. The put and call strikes
are, respectively, K, and K, with K, < K;. The payoff of the strangle is

* equal to the put payoff if Sy < K;;
o zero if Sy lies between K and K,; and
» equal to the call payoff if S; > K.

The net payoffs from a strangle are obtained by subtracting the cost of the strangle from
these values.

Strips

A strip is a portfolio consisting of long puts and calls with the same strike and maturity but
it has more puts than calls (e.g., two puts for every call). Like a straddle, a strip is a bet on
volatility, but now the bet is asymmetric: by using more puts than calls, it is biased towards
price decreases. Thus, a strip makes sense if one anticipates high volatility but believes that
price decreases are more likely than price increases.

Figure 8.12 graphs the payoffs from a strip assuming a ratio of two puts per call and
with K denoting the common strike price. If Sy < K, only the puts are in-the-money, so
the strip’s payoffs are 2 (K — S7). If Sy > K, only the call is in-the-money, so the strip’s
payoffis (S; — K).
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FIGURE 8.13
Payoffs from a Strap
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Straps
A strap is the other side of a strip: it is a portfolio consisting of long positions in more
calls than puts. A strap is an asymmetric bet on volatility, one that is biased towards price
increases. Thus, a strap makes sense if one anticipates high volatility but believes that price
increases are more likely than price decreases.

Figure 8.13 graphs the payoffs from a strap assuming a ratio of two calls per put. Letting
K denote the common strike price in the strap, the payoffs from a strap at 7" are (K — S7)
if St < K and 2(Sr — K) if Sy > K.

Strategies IV: Other Strategies

In this section, we discuss four further classes of trading strategies: collars, box spreads,
ratio spreads, and condors. Box spreads and ratio spreads are related to the bull and bear
spreads discussed earlier, while condors have a close resemblance to butterfly spreads.
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FIGURE 8.14
Payoffs from a Collar

FIGURE 8.15
Payoffs from a Stock +
Collar
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A collar is a widely-used options strategy. It uses two strike prices K; and K, where
K, < K5, and involves a long position in a put with strike K| and a short position in a call
with strike K;. Figure 8.14 describes the payoff from this portfolio.

When a long position in a stock is combined with a collar, the value of the portfolio at
maturity of the options will lie between K; and K. (Hence, the word “collar” to describe
the strategy.) This payoff is illustrated in Figure 8.15. To see why the payoff has this form,
note that:

* If Sy < K, we can exercise the put and sell the stock for K. The portfolio value is thus
K.

 If K| < 8t < K,, the put and call both finish out-of-the-money. Thus, the value of the
portfolio is just the value of the stock, which is S7.

* If K, < Sr, the call will be exercised, which means we give up the stock and receive K.
Thus, the portfolio value is K.

Thus, collars are simply strategies that limit the risk in a long stock position. A collar is
like a protective put in that it protects the holder of the stock from a fall in prices. However,
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the collar also caps the upside benefit from holding the stock at K. In exchange, the up-front
cost of the strategy is reduced: while the cost of a protective put would be the price P(K)
of the K-strike put, that of the collar is

P(Ky) — C(K»)

This cost can be positive or negative depending on the option premia. Consider the XY Z
example of Table 8.1. If we set up a collar with the 95-strike put and the 105-strike call, the
cost of the collar is

0.89 —1.21 = —0.32,

that is, there is an initial cash inflow of 0.32 from the collar.

A cashless collar is one in which the strike prices K; and K, are chosen so that the
premia cancel each other out and the collar has a zero net initial cost. Also called zero-
cost collars, cashless collars have become especially popular with corporate executives and
other investors who hold large blocks of shares in a single company and want to limit the
riskiness of their exposures. Paul Allen, billionaire co-founder of Microsoft, is reputed to
have protected a substantial chunk of his Microsoft holdings using cashless collars. Since
the strategy involves capping the upside benefit in exchange for the downside protection,
such strategies are not prohibited for executives under SEC rules and have not (or at least
not yet) been the subject of lawsuits or media attacks.

Box Spreads

Consider a portfolio in the XY Z example of Table 8.1 in which you hold a 95/100 call
bull spread and a 95/100 put bear spread. That is, you are long a 95-strike call and short a
100-strike call as well as long a 100-strike put and short a 95-strike put. This portfolio is
called a box spread.

What is the payoff from this portfolio? The long 95-strike call and short 95-strike put
together create a synthetic forward contract to buy the stock at 95. The short 100-strike call
and the long 100-strike put together create a synthetic forward contract to sell the stock at
100. This means you are buying at 95 and selling at 100 for a flat payoff of 5 at maturity.
Thus, a box spread creates a synthetic zero-coupon bond using options.

In general, a box spread involves a position in four options with two strike prices K,
and K, with K| < K;: (a) long the K-strike call, (b) short the K,-strike call, (¢) long the
K,-strike put, and (d) short the K-strike put. The payoff of the spread at maturity is just
K, — K, regardless of Sr.

Ratio Spreads

Ratio spreads are like the bull and bear spreads described above except that the number
of calls bought and sold at the different strikes are not equal. A ratio call spread may, for
example, involve buying one call with strike K and selling two calls with a higher strike
K. In this case, the payoff looks as in Figure 8.16. Ratio put spreads are defined similarly.

The cost of a ratio spread may be positive, negative, or zero, depending on the ratio in
which the two options are combined. Consider, for instance, a ratio spread in the example
of Table 8.1 using the 100- and 105-strike calls. If we use two short 105-strike calls for
every long 100-strike call, the cost of the spread is

3.09— (2 x 1.21) = 0.67

which is positive. If we use three short 105-strike calls for every long 100-strike call, the
cost is

3.09— (3 x 1.21) = —0.54
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FIGURE 8.16
Payoffs from a Ratio
Spread

FIGURE 8.17
Payoffs from a Condor
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which is negative. Thus, ratio spreads may involve cash outflows or cash inflows when they
are set up.

As the payoff diagram indicates, the ratio spread is essentially a bet that prices will rise
but not to more than K,. We can also set up bearish ratio spreads, which are bets that
prices will fall to, but not beyond, a specified price. Consider, for instance, a portfolio in
the example of Table 8.1 that is long a 100-strike put and is short two 95-strike puts. This
portfolio has a payoff that is highest when S7 = 95 and declines on either side of this price.

Condors

Condors are essentially like butterfly spreads except that the peak payoff occurs over an
interval of prices rather than at a single price. A condor consists of options with four strike
prices K, K,, K3, and K. We buy calls at the two extreme strike prices K; and K, and
sell calls at the two intermediate strike prices K, and K3. Put condor spreads are defined
analogously.

The resulting payoff is, as Figure 8.17 shows, akin to a butterfly payoff except that the
payoff is flat between K, and K3. Thus, condors are bets on the price being in the band
[K2, K3].

Condor
payoff

Gross payoff

K> K3 \—

Net payoff
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8.6 Which Strategies Are the Most Widely Used?

We have described a large (but not quite exhaustive) list of standard trading strategies using
options. How much of options trading is accounted for by these strategies? A study by
Chaput and Ederington (2003), the first of its type, offers an answer. The authors consider
eurodollar options, which is one of the largest options markets in the world. They find that
spreads and combinations collectively account for over 55% of large trades (those of 100
contracts or more) and are responsible for 75% of the trading volume generated by large
trades.

In terms of total volume, the four most heavily used strategies are (in order) straddles,
ratio spreads, vertical spreads, and strangles. Collectively, these account for two-thirds of
all spread/combination trades. Strategies such as butterflies and collars are lightly traded,
while trading in condors, horizontal spreads, and box spreads is rare. Overall, the authors
conclude that popular trading strategies appear driven more by volatility considerations
than directional ones. This finding backs the point that while there are many ways (spot,
forwards, options) to take advantage of directional views, there is only one (options) to
incorporate views on volatility.

8.7 The Barings Case

On February 27, 1995, Barings, a small but venerable British bank with a rich history, came
to an ignominious end when it filed for receivership. The bank’s capital of around $618
million had been comprehensively eroded by losses well in excess of $1 billion that had
been incurred from trading in derivatives by a single individual, Nick Leeson, operating out
of Barings’ Singapore office. There were several remarkable aspects to this episode that bear
highlighting, none more so than the fact that only the simplest kinds of derivatives—long
futures and short straddles—whose risks are easily understood, were involved. This is a
summary of the Barings saga.!

What Leeson Was Supposed to Be Doing

Leeson’s mandate from Barings was to do arbitrage trades that exploited short-lived dif-
ferences in Nikkei 225 futures prices on the Osaka and Singapore Exchanges (OSE and
SIMEX, respectively; SIMEX is now SGX) by buying the cheaper contract and simultane-
ously selling the more expensive one. These trades (“switching” trades in Barings’ lexicon)
involve very low risk: since the arbitrageur is long Nikkei futures on one exchange and short
the futures on the other, there is no directional exposure. Leeson also put through trades on
client orders but was not otherwise allowed to take on proprietary positions that exposed
Barings to market risk.

What He Was Actually Doing

What Leeson was actually doing bore little resemblance to his mandate. Evidence uncovered
after the collapse of Barings shows that he engaged in unauthorized trading almost from
the day he began in Singapore in 1992, taking on proprietary positions in both futures and
options. The evidence also shows that he ran up large losses almost from the beginning.
But, incredibly, his supervisors in London believed that he was making money hand over
fist for them and that he had single-handedly accounted for almost 20% of the entire firm’s

T The presentation below draws especially from the analysis provided by the International Financial
Risk Institute on its website http://riskinstitute.ch/137550.htm.
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TABLE 8.2 The
Reported and Actual
Profits Generated by
Nick Leeson

TABLE 8.3 The
Reported and Actual
Holdings of Nick
Leeson

The table below describes the profits Barings’ London office thought
Leeson had made and the actual losses he was running up.The figures
are in US dollars.

Year Reported Actual

1993 +14 million —33 million
1994 +46 million —296 million
1995 +30 million —1 billion

The table below describes the actual and reported holdings of Nick Leeson at the time
of Barings’ bankruptcy. The figures are in terms of number of SIMEX contracts. Long
positions are indicated by a + and short positions by a — sign.

Contract Reported Actual

Nikkei 225 futures +30,112 +61,039
Japanese government bond futures +15,940 —28,034
Euroyen futures +601 —6,845
Nikkei 225 calls 0 —37,925
Nikkei 225 puts 0 —32,967

profits in 1993 and almost 50% in 1994. Table 8.2 describes the reported and actual profits
from Leeson’s trading activity.

These numbers are astonishing but no less so than the magnitude of the positions he
held. In end-February 1995, against Barings’ capital of a little over $615 million, Leeson’s
notional positions in derivatives amounted to over $33 billion, including over $6.50 billion
in unhedged short options positions on the Nikkei 225 index. Once again, the gap between
his actual and reported holdings is remarkable. Table 8.3 summarizes this information.

How Did He Get Away with It?

The information gaps highlighted in the previous paragraphs suggest that Barings’ opera-
tional controls must have been exceptionally poor. They were. One extraordinary feature of
Barings’ Singapore operations was that Leeson was not only the trader but also the back-
office responsible for settling the trades. This is essentially what enabled him to withhold
important information from London.

The British Board of Banking Supervision, in its postmortem of the Barings affair,
highlights the “cross trade” as the single main vehicle Leeson employed to carry through
the fraud. In a cross trade, a single member on the floor of the exchange is both the buyer
and the seller; it is usually used to match buy and sell orders from two separate clients.
There are some regulations cross trades must follow. For example, SIMEX required the
transaction to be at the current market price; moreover, the member was required to declare
the price at least three times and was allowed to carry out the cross trade only if no other
member took the price.

In Leeson’s cross trades, Barings was the counterparty to itself. The trades were entered
into several accounts including an “error account” numbered 88888. After the cross trades,
Leeson’s staff, acting on his instructions, entered the profits into the legitimate trading
accounts and the losses into account 88888.

Also under Leeson’s instructions, information on account 88888 was never transmitted
to London. Thus, Leeson’s supervisors had no idea of the real size of his positions. As



FIGURE 8.18
Nikkei Index:
January—March 1995

Chapter 8 Options: Payoffs and Trading Strategies 191

one example, in late February 1995, they believed he was short 30,000 Nikkei 225 futures
contracts on SIMEX; in fact, he was long 22,000 contracts.

Options Trading and the End of Barings

Leeson’s mandate did not allow him to trade in options, but he did so anyway. He effectively
sold straddles on the Nikkei 225. As we have seen earlier in this chapter, naked short
straddles are extraordinarily risky positions that lose money for the writer no matter which
direction prices move in. They are bets on flat prices (i.e., low volatility). Through much of
the early months of Leeson’s straddle positions, the Nikkei was quite flat, and he earned a
substantial premium income from the positions.

In November and December of 1994, Leeson ratcheted up his options positions con-
siderably, selling over 34,000 contracts in those two months alone. The strike prices of
his options positions ranged from about 18,500 to 20,000, and the trades would have been
profitable if the Nikkei had remained in a range of about 19,000-20,000. Unfortuantely for
Leeson and Barings, it did not (see Figure 8.18).

On January 17, 1995, the Nikkei was at around 19,350. That day, the Kobe earthquake
struck, market sentiment took a downturn, and the index closed the week at a little below
19,000. Yet, on Friday, January 20, Leeson bought an additional 10,800 Nikkei futures
contracts expiring in March 1995. This may have been an attempt to profit from what he
perceived as market overreaction to the earthquake or may have simply been an attempt to
shore up the market.

The next week proved disastrous for Leeson and Barings. By Monday, January 23, the
Nikkei had lost over 1,000 points and closed below 18,000 (see the downward spike on that
date in Figure 8.18). Huge losses were incurred on both the long futures positions as well as
the written puts. At this point, Leeson could not close out his positions and take his losses
without disclosing the unauthorized trading. Moving into “double-or-nothing” mode, he
increased his long futures positions massively, winding up by February 22 with over 55,000
long March 1995 futures contracts and over 5,600 June 1995 futures contracts.

None of this buying restored confidence in the markets. When the Nikkei continued its
resolute downward march (Figure 8.18), margin calls on the derivatives positions revealed
Barings’ insolvency. The once-proud bank was finally bought by ING, a Dutch bank, for
all of £1.
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Who Was to Blame?

Leeson was obviously a central party, and in the press, he (and “derivatives” generally)
were adjudged to be the villains of the piece. More sober analysis carried out by the British
Board of Banking Supervision pointed out that operational risk played a significant role in
the debacle, and, therefore, that Barings management shared a substantial portion of the
blame.

To begin, management ignored a fundamental banking rule in making Leeson also re-
sponsible for settling his own trades. Management were also frequently negligent; they
ignored a number of queries and warnings from third parties that all was not well. Indeed,
they even wired huge amounts of cash to Barings Singapore (that enabled Leeson to meet
his trading losses and margin calls) without asking him for an explanation.

In the final analysis, more than anything else, the Barings episode highlights the impor-
tance of operational controls. Used sensibly and with the proper controls, derivatives can
do considerable good. Used irresponsibly and in a manner that ignores their risks, they have
the potential to create considerable damage.

8.8 Exercises

1. Draw the payoff diagram for the following portfolio of options, all with the same
maturity: (a) long a call at strike 75, (b) long two calls at strike 80, and (c) long three
calls at strike 85. What is the view of the stock price change consistent with this
portfolio?

2. You are interested in creating the following gross payoff profile using an options
portfolio:

Stock price 60 70 80 90 100 110 120 130 140 150
Payoff 10 30 20 10 0 10 30 10 0 -10

What options, at what strikes, would you hold in your portfolio? Assume that the desired
payoffs are zero for any stock price less than 50 or greater than 160.

3. (Difficult) Using the principles of the previous question, create a spreadsheet-based
algorithm to generate an option portfolio for any target gross payoff profile, such as the
one in the previous question. Assume, as in the previous question, that option payoffs
are provided for stock prices taken at regular intervals (e.g., intervals of $10). Create a
table for the given problem on a spreadsheet and then use solver to find the solution.

4. You are managing a separate portfolio dedicated to your retirement income. You do
not wish to take excessive risk, and would prefer to limit the downside. What common
option structure would suffice?

5. What gross payoff profile do you get if you short a covered call position and go long a
protective put position? Would you pay or receive net premiums on this position? What
is the view taken on the movement of the stock price if you hold this position? What
other options strategy does your portfolio remind you of? Assume a common strike for
all options of $100.

6. Ifyouhad a view opposite to that taken in the previous question, what portfolio structure
of options would you choose?

7. Microsoft is currently trading at $26. You expect that prices will increase but not rise
above $28 per share. Options on Microsoft with strikes of $22.50, $25.00, $27.50, and
$30.00 are available. What options portfolio would you construct from these options
to incorporate your views?
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Suppose your view in the previous question were instead that Microsoft’s shares will fall
but a fall below $22 is unlikely. Now what strategy will you use?

Calls are available on IBM at strikes of 95, 100, and 105. Which should cost more, the
95-100 bullish vertical spread, or the 95—100—105 butterfly spread?

A bullish call spread is bullish on direction. Is it also bullish on volatility?

What is the directional view in a long put butterfly spread?

How would your answer to the previous question change if this butterfly spread were
constructed using calls instead?

How does a horizontal spread exploit time-decay of options?

What is the volatility view implied by a long horizontal call spread? What about a short
horizontal put spread?

Assume the current volatility of oil is high. What options portfolio offers you a gain
from the high volatility if you do not have a view on direction?

You are planning to trade on the fortunes of a biotech firm that has a drug patent pending
FDA approval. If the patent is approved, the stock price is expected to go up sharply. If
it is not approved, the stock will drop sharply, In your view, it is unlikely to move more
than 20% in either direction. Describe a portfolio combining straddles and strangles that
takes advantage of your view.

Firm A is likely to be the target in a takeover attempt by Firm B. The stock price is likely
to rise over the next few weeks as the takeover progresses, but if it fails, the stock price
of A is likely to fall even more than the rise. What option strategy might exploit this
information?

The options for Microsoft (stock price $25.84) are trading at the following prices:

Strike Calls Puts

22.50 3.40 0.10
25.00 1.25 0.30
27.50 0.15 1.80

State the trading ranges at maturity in which the net payoff of the following option
positions is positive: (a) 25.00 straddle, (b) 22.50 strip, (c) 27.50 strap, and (d) 22.50—
27.50 strangle.

What are collars? What is the investor’s objective when using a collar?
Is the price of a collar positive, zero, or negative?

Suppose options trade at two strikes: K; < K,. You notice that whereas C(K;) —
P(K;) =S — PV(K;) (put-call parity) holds for the K, strike option, it does not hold
for the K strike option, specifically C(K;) — P(K;) = S — PV (K,) + 8, where 6 > 0.
Show how you would use a box spread to take advantage of this situation by constructing
a riskless arbitrage strategy. Assume there are no dividends.

What is a ratio spread? Construct one to take advantage of the fact that you expect stock
prices S to rise by about $10 from the current price but are not sure of the appreciation
of more than $10.

Can the cost of a ratio spread be negative?

What is more expensive to buy: (a) a 100—110-120 butterfly spread using calls or (b) a
90-100-110-120 condor? Can you decompose condors in any useful way?
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25.
26.
27.

28.

29.

If you are long futures and long a straddle, what is your view on direction? On volatility?

How would your answer to the previous question change if you were short futures instead?

If you take the view that volatility will drop over the next three months and then increase

thereafter, what options strategy would you like to execute? Would the value of this

portfolio today be positive or negative?

Compute the gross payoffs for the following two portfolios in separate tables:

e Calls (strikes in parentheses): C(90) — 2C(100) + C(110).

* Puts (strikes in parentheses): P(90) — 2P(100) + P(110).

What is the relationship between the two portfolios? Can you explain why?

Draw the payoff diagrams at maturity for the following two portfolios:

* A: Long a call at strike K and short a put at strike K, both options for the same
maturity.

* B: Long the stock plus a borrowing of the present value of the strike K. The payoff of
this portfolio is the cash flow received at maturity from an unwinding of the positions
in the portfolio.

Compare your two payoff diagrams and explain what you see.
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Asymmetric Butterfly Spreads

Suppose we have three strike prices K; < K, < Kj that are not necessarily equally-
spaced. To set up a call butterfly spread with these strikes, we combine the calls in the ratio
w: —1:(1 —w), where w is a fraction defined by

WK1+(1—W)K3 = K2 (8.7)
or, equivalently,
Kq—
w= KoK (8.8)
K; — K,

In other words, for every short position in the K,-strike call, we use (a) w long positions in
the K-strike call and (b) 1 —w long positions in the K3-strike call. The use of this particular
value for w is dictated by a simple consideration: under this value, the payoffs from the
butterfly spread at 7' will always be:

» zero, if St < K or S; > Kj;

* strictly positive and increasing for S; between K| and K,; and

» strictly positive and decreasing towards zero for Sy between K, and K.

That is, the payoffs at 7 will look just like Figure 8.7, although they need not, of course, be

symmetric. We leave it as an exercise for the reader to draw the time-7 payoffs and verify
these statements.

Convexity of Option Prices in K

Since the payoffs of the general butterfly spread are always non-negative (and are strictly
positive for St between K| and K3), the cost of the spread must be positive, i.e., we must have
K3 — K
wC(K) + (1 —w)C(K3) > C(K,), wherew = —— 2> (8.9)
K3 - K,
Expression (8.9) is called convexity of the call price in the strike price. It is a very powerful
restriction on call prices for any three strike prices. Expression (8.4) is, of course, a special
case of this, corresponding to the weight w = 1/2.

Put Butterfly Spreads

Asymmetric butterfly spreads using puts are defined in exactly the same way as butterfly
spreads using calls. Given any three strike prices K, K,, and K3, we define w as in (8.8).
A put butterfly spread then involves

» along position in w puts with strike K,
+ along position in (1 — w) puts with strike K3, and
 ashort position in one put with strike XK.

The payoff from a put butterfly spread in the general case too is identical to the payoff from
a call butterfly spread. Thus, the convexity restriction (8.9) holds for puts too:
K; — K,

wP(K)+(1—w)P(K3) > P(K,), wherew = ———— (8.10)
K;s— K,
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9.1 Introduction

We have seen in Chapter 7 that volatility is a major source of option value. This means we
cannot “price” options without first modeling volatility, that is, without a model of how the
underlying asset’s price evolves over time. In Chapters 11-16, we examine how this may be
done. But since any particular model of volatility and price evolution is necessarily limited,
the question arises: is there anything interesting we can say about option prices without
making any assumptions concerning the price behavior of the underlying?

It turns out that yes, there is quite a lot. Over this chapter and the next, we describe a
number of conditions option prices must satisfy independent of how the underlying’s prices
may evolve over time. Such conditions are called “no-arbitrage restrictions” since they rely
only on the minimal assumption that the market does not permit arbitrage.'

This chapter focuses on deriving no-arbitrage restrictions on the prices of individual op-
tions. We examine two main issues: maximum and minimum prices for options (Section 9.4)
and the nature of dependence of option prices on the two key contract parameters, strike
price and maturity (Section 9.6). Along the way, we use one of the results to motivate an
intuitive definition of the insurance value of an option, a concept that we appeal to repeat-
edly in later chapters. Chapter 10 then looks at the implications of no-arbitrage on two key
relationships: the relationship between the prices of otherwise identical calls and puts, and
that between otherwise identical American and European options. The results derived over
these two chapters will play a major role in later chapters in deriving and understanding
properties of options.

9.2 Motivating Examples

196

To get a flavor of the kind of results we shall derive in this chapter and their usefulness,
consider the following examples.

T “Only” is an exaggeration. We also make the usual smooth market assumptions: no taxes, transactions
costs, restrictions on short sales, execution risk, and so on. Merton (1973) was the first paper to derive
no-arbitrage restrictions on option prices and is the source of most of the results of this chapter.
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A stock is currently trading at $55. A European call with a strike of 50 and maturity of two
montbhs is trading for $3. The stock is expected to pay a dividend of $2 in one month. The
yield curve is flat at 12% for all maturities (in continuously-compounded annualized terms).
Is there an arbitrage?

The call is trading for $3, but its current depth-in-the-money is $5. So if this were an
American option, the answer would be “yes”: buy the call, exercise it immediately, and sell
the stock. But since the call is European, this cannot be done. Indeed, since it cannot be
exercised for two months, the call does not even look particularly underpriced since the
dividend of $2 will be removed from the stock price before maturity. |

A stock is currently trading at $45. A European put with a strike of 50 and maturity of two
montbhs is trading for $3. The stock is expected to pay a dividend of $1 in one month. The
yield curve is flat at 12% for all maturities (in continuously-compounded annualized terms).
Is there an arbitrage?

Not obvious. If the option were American, then there is a simple arbitrage opportunity:
purchase the stock and the put, and exercise the put immediately. But since it is European,
this will not work. |

The current price of a given stock is $100. A three-month American call option on the stock
with a strike of 95 is trading for a price of $6. The three-month rate of interest is 12%
(expressed in annualized, continuously-compounded terms). No dividends are expected on
the stock over this period. Is there an arbitrage?

Again, not obvious. At least, there doesn’t seem to be any simple opportunity. For ex-
ample, immediate exercise of the call will bring in $(100 — 95) = $5, but the call costs $6,
which is greater than the profit from immediate exercise. |

A stock is trading at $100. A one-month European put with a strike of 100 costs $3.25, and
a one-month European put with a strike of 110 costs $14. The one-month rate of interest
(in simple terms) is 1%. Is there an arbitrage?

The ordering of put prices in this question appears correct: the right to sell at 110 should
clearly be worth more than the right to sell at 100. But is the difference of 14—3.25 = 10.75
in put prices “too much”? How large can differences be before an arbitrage opportunity
arises? |

A stock is trading at $40. There are three-month European calls on the stock with strikes of
35, 40, and 45. The prices of the calls are, respectively, 5.50, 3.85, and 1.50. Is there an
arbitrage?

Again, the ordering of call prices seems correct with the 35-strike call costing the most
and the 45-strike call the least. Is there a deeper relationship that should link the three call
prices? |

None of these examples has anything “obviously” wrong with it. Yet, the results we derive
in this chapter show that each of them admits an arbitrage opportunity. In Section 9.7, we
revisit these examples, derive the arbitrage opportunity in each of them, and explain how
it may be exploited. But before this can be done, we first have to derive the no-arbitrage
restrictions. We turn to this now.
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9.3 Notation and Other Preliminaries

The properties of option prices will depend on several factors:

»  Whether the option is a call or a put.
*  Whether the option is American or European.

» The size of the dividend payments (if any) that are expected from the underlying asset
over the life of the option.

The importance of option type (puts vs. calls) and option style (American vs. European) is
evident. Dividends become important because options are typically not “payout-protected”
instruments, i.e., the terms of the option (such as the strike price) are usually not adjusted
when a dividend is paid on the underlying.? Dividend payments cause a fall in the price of
the underlying asset. This hurts the holder of a call option since the call becomes “less”
in-the-money, but benefits the holder of a put option since the put becomes “more” in-
the-money. The absence of payout protection means that the size of the expected dividend
payment will affect the amount investors are willing to pay for calls and puts: other things
being equal, an increase in the expected dividend size will lower the value of a call and
increase the value of a put.

From a conceptual standpoint, it helps to distinguish between the case where the under-
lying asset is not expected to pay any dividends over the life of the option, and where it is
expected to pay dividends. We refer to the former case as one of a non-dividend-paying or
NDP asset, and the latter as a dividend-paying or DP asset. Note that NDP and DP refer
only to dividends that may occur during the option s life; any dividends that may occur after
the option’s expiry do not affect the option’s value and so do not concern us here. Finally,
when dealing with DP assets, we assume, as we did in the context of forward pricing, that
the timing and size of the dividend payments are known. This is not entirely an innocuous
assumption, but it is a reasonable one, especially for short-dated options.

Notation

The notation used in this chapter is summarized in Table 9.1. We retain the notation in-
troduced in earlier chapters for the price of the underlying and for the option’s strike and
maturity. Also as earlier, C and P will denote call and put option prices, but now we shall add
subscripts 4 and £ where necessary to denote American and European styles, respectively.
Thus, C 4 will denote the price of an American call, while Py is the price of a European put.
If a pricing property holds for both American and European styles of an option, we shall
drop the subscripts and simply use C and P.

Two other pieces of notation will come in handy. Let P V(D) denote the present value
(viewed from today) of the dividends receivable over the life of the option. And let PV (K)
denote the present value of an amount K receivable at the maturity time 7" of the option.

One final observation. Since we can always choose to hold an American option to matu-
rity, such an option can never cost less than its European counterpart, so we must have:

C, >Cr and P4, > Pg (91)

2 This is true for normal dividend payments. If dividend payments are extraordinarily high (a threshold
of 10% of the stock price is commonly used), then exchanges often respond by reducing the strike
price by the amount of the dividend. This was done, for example, in the case of the large Microsoft
dividend in late 2004.
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Notation Meaning

S Current price of underlying

K Strike price of option

T Maturity date of option

St Time-T price of underlying

C Call option (can be American or European)

P Put option (can be American or European)

Ca, Ce American and European calls, respectively

P4, Pe American and European puts, respectively

PV(D) Present value of dividends receivable over option life
PV(K) Present value of an amount K receivable at time T

9.4 Maximum and Minimum Prices for Options

We begin with call prices first, and then look at the corresponding results for puts.

Bounds on Call Option Prices

An upper bound on call prices is easy to derive: the price of a call option can never exceed
the current price S of the underlying asset.

cC<S§ (9.2)

The reasoning behind (9.2) is simple: when the asset can be purchased directly today for S,
why pay more than S for the call which provides you only the right to buy the underlying
asset by making a further payment of K?

Lower bounds are just a little bit trickier. We derive two simple lower bounds first and
then a third one that involves a tad more work.

A call confers a right without an obligation. Therefore, the price of a call cannot be
negative—that is, you cannot be paid to take on a right that you can throw away for free.
This gives us the first lower bound:

C >0 (9.3)

Note that (9.3) need not hold for derivatives such as forward that involve an obligation rather
than a right. For example, if you hold a long forward contract and prices have dropped sharply
since you entered into the contract, the contract will have negative value for you. This means
you cannot get out of the contract except at a cost.

Our second lower bound is one that holds for American calls. Such a call can be exercised
at any time. If it is exercised immediately, the investor pays K and receives an asset worth
S; thus, the value of immediate exercise is S — K. In the absence of arbitrage, the price C 4
of the call must be at least the value of immediate exercise:

Cy > S-K (9.4)

If (9.4) did not hold (that is, if C, < § — K), an investor could make arbitrage profits
by buying the call and exercising it immediately. Note that this argument will not hold for
European calls, which can be exercised only at maturity. Thus, (9.4) may or may not hold
for European calls.

The third lower bound holds both for European and American calls, but it helps to
break up the derivation into a series of steps. We consider first the case of a European call
on an NDP asset; then we bring in dividends; and finally we allow for early exercise. So
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TABLE 9.2
Portfolios A and B:
Costs and Payoffs

FIGURE 9.1
Payoffs of Portfolios
Aand B

Cash Flows at T When

Initial Cost St < K Sr> K
Portfolio A Ce 0 St —K
Portfolio B S—PV(K) St — K St—K

suppose we are given a European call option on an NDP asset. Consider the following two
portfolios:

Portfolio A Long one call with strike K and maturity 7

Portfolio B Long one unit of the underlying
Borrowing of PV (K) for repayment at 7

The cost and time-T payoffs of each portfolio are summarized in Table 9.2. (There are
no interim cash flows to worry about since the call cannot be exercised until maturity and
there are no dividends.) The initial cost of Portfolio A is just the current price Cg of the
call, while that of Portfolio B is S — PV (K). The time-7 values of both portfolios depend
on Sr:

» Portfolio A, the call, expires worthless if S7 < K and is worth Sy — K if Sz > K.

» InPortfolio B, the long underlying position is worth S7 while repayment of the borrowing
leads to a cash outflow of K. Thus, the value of Portfolio B at maturity is Sy — K.

These payoffs are graphed in Figure 9.1. At maturity, Portfolio A does exactly as well as
Portfolio B when S7 > K and does strictly better when S7 < K. Portfolio A must therefore

cost at least as much as Portfolio B. That is, we must have
Cr > S—PV(K) (9.5)

Expression (9.5) is the desired third lower bound. In Section 9.5, we give a simple
interpretation of Portfolio B that makes this lower bound seem almost obvious.

How should (9.5) be modified to account for dividend payments and early exercise?
Consider dividends first. If the underlying is a DP asset, then there will be an intermediate

Payoff of
Payoffs Portfolio A
0
St
K P Payoff of
Portfolio B
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Call
values

Region of possible
call values

C=S-PV(K)

0 PV(K) S

cash inflow in Portfolio B at the time the dividend is paid, but there is no corresponding cash
flow in Portfolio A. To restore the comparability, all we need do is create a corresponding
cash outflow in Portfolio B that cancels out the dividend cash flow. That is, consider the
following modification to Portfolio B:

Portfolio B Long one unit of the underlying
Borrowing of PV (K) for repayment at 7
Borrowing of P V(D) for repayment on the dividend date

The initial cost of Portfolio B changes; it is now S — PV(K) — PV (D). But there are no
net interim cash flows in this portfolio, and its time-7" value remains exactly as in Table 9.2.
Therefore, the same comparison we made earlier between the portfolios is valid: Portfolio A
does as well or strictly better than Portfolio B at maturity. Since neither portfolio has interim
cash flows, Portfolio A must cost at least as much as Portfolio B:

Cy > S—PV(K)— PV(D) (9.6)

Expression (9.6) is the general version of (9.5) when dividends may be nonzero.

This leaves early exercise. But this is easily brought into the mix. Since we must always
have C4 > Cg, the lower bound (9.6) must also hold for American calls! Thus, we obtain
the third and last lower bound for calls:

C > S—PV(K)— PV(D) 9.7)

Figure 9.2 illustrates the bounds on call prices when there are no dividends (D = 0). In
this case, the lower bound C > § — PV(K), which holds for both American and European
options, is “tighter” than the bound C4 > § — K, so this last lower bound is ignored in the
figure. Only simple changes are required to the figure when D is positive; the details are
left as an exercise.

Bounds on Call Prices: Summary
To summarize the bounds on call option prices:

1. The current price of the underlying is an upper bound on the price of any call:
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TABLE 9.3
Portfolios C and D:
Costs and Payoffs

2. For European calls, there are two possible lower bounds:

We may combine these into the single expression Cr > max{0, S— PV (K)— PV (D)}.
3. For American calls, we have three lower bounds:

C,>0, C4,>S—K, and C,>S—PV(K)— PV(D)

These may be combined into the single expression C 4 > max{0, S— K, S— PV (K)—
PV (D)}.

Bounds on Put Option Prices

Maximum and minimum prices for put options may be derived in a similar way to call
options. Our presentation in this section is correspondingly brief.

The upper bound first. Assuming the price of the underlying cannot become negative,
the maximum payoff from holding a put option is the strike price K (which happens when
the price of the underlying goes to zero). Thus, K is an upper bound on the price of the put:

P <K 9.9)

Expression (9.9) can be strengthened a little for European puts. In this case, even the
maximum profit of K can occur only at time 7', so is worth only PV (K) today. Thus, we
must have Py < PV(K). But for American puts, (9.9) is the best upper bound we can get
in general.

Two lower bounds for puts are easily derived. First, as options, puts have rights but no
obligations, so their value must always be non-negative:

P >0 (9.10)

Second, the holder of an American put can always receive the payoff K — S from
immediate exercise. To prevent arbitrage, the put must cost at least this much:

P, > K-S 9.11)

Analogous to the procedure we used for calls, the third lower bound is best derived in
several steps. So consider first the case of a European put on an NDP asset. Consider the
following two portfolios:

Portfolio C Long one put with strike K and maturity 7’

Portfolio D Short one unit of the underlying
Investment of PV (K) for maturity at 7

Section 9.5 gives a simple interpretation of Portfolio D when discussing this comparison
further. The cost and time-7 payoffs of each portfolio are summarized in Table 9.3. (There
are no interim cash flows to worry about since the put cannot be exercised until maturity
and there are no dividends.) The initial cost of Portfolio C is just the current price Pr of the

Cash Flows at T When

Initial Cost St < K Sr> K

Portfolio C Pe K — St 0
Portfolio D PV(K)—S K — St K — St




FIGURE 9.3
Bounds on Put Prices
When D =0

Chapter 9  No-Arbitrage Restrictions on Option Prices 203

call, while that of Portfolio D is PV (K) — S. The time-T values of both portfolios depend
on Sr:

» Portfolio C, the put, is worth K — Sy if S7 < K and expires worthless otherwise.

* In Portfolio D, the investment leads to a cash inflow of K while covering the short
underlying position costs Sz, so the value of Portfolio D at maturity is K — Sr.

So Portfolio C does exactly as well as Portfolio D at maturity when S; < K and does
strictly better when Sy > K. Thus, it must cost more, and we have

Py > PV(K)—S 9.12)

Extending (9.12) to the case of dividend-paying assets is straighforward. If there are
dividends on the underlying, this will lead to cash outflows at dividend times in Portfolio D
since the short position is responsible for dividend payments. To cancel out this cash out-
flow, we must have a corresponding cash inflow. To this end, we modify the definition of
Portfolio D to

Portfolio D Short one unit of the underlying
Investment of P V(K) for maturity at T
Investment of P V(D) for maturity on the dividend date

The initial cost of Portfolio D changes to PV (K) + PV (D) — S. Nothing else changes:
there are no net interim cash flows now, and the cash flows at 7' are exactly as described
in Table 9.3. Thus, Portfolio C continues to dominate this modified Portfolio D, which means
it must cost more:

Pz > PV(K)+ PV(D)—S (9.13)

Expression (9.13) is simply the generalization of (9.12) to the case where dividends may be
nonzero.

Finally, since we must always have P, > P, this lower bound (9.13) must also hold for
American puts, so we finally have the general form of the third lower bound that holds for
both American and European puts:

P > PV(K)+ PV(D)—S (9.14)

Figure 9.3 illustrates the bounds on put prices when there are no dividends (D = 0). For
simplicity, the figure does not present the additional lower bound P, > K — S that holds

Put Region of possible
values put values P=K

) AN v
PV(K) \

P=PV(K)-S

0 PV(K) S
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for American options. (Note that this omitted bound is actually a tighter lower bound when
there are no dividends.) Once again, only simple changes are required to the figure when D
is positive, and the details are left as an exercise.

Bounds on Put Prices: Summary

Summarizing the bounds on put option prices:

1. The strike price of the option is an upper bound on the price of a put:
P <K

For European puts, this bound can be improved to Py < PV (K).
2. For European puts, there are two lower bounds, which can be combined to yield

Pr > max{0, PV(K)+ PV (D) — S}
3. For American puts, there are three lower bounds, which can be be combined to yield:

P, > max{0, K — S, PV(K)+ PV(D) — S}

9.5 The Insurance Value of an Option

Holding an option provides an investor with protection against unfavorable price movements.
The value of this protection is called the insurance value of the option. In this section, we
describe a measure of an option’s insurance value motivated by the comparisons of the
previous section.

Consider again the Portfolios A and B from Section 9.4 that were used to derive the
third and last lower bound on call option values. By construction, the only difference in the
portfolios’ cash flows occurs at time 7. Moreover:

* If S7 > K, then the two portfolios have the same payoff, namely, S7 — K.

* If Sy < K, then Portfolio A has a payoff of 0, but Portfolio B’s payoff continues to be
given by Sy — K, which is now negative. That is, Portfolio A is protected against a fall
in the asset price below K, while Portfolio B is not.

Indeed, what exactly is Portfolio B? By construction, this portfolio has no net cash flows
up to 7 and has a cash flow of Sy — K at time 7. These are exactly the cash flows one
would receive from holding a long forward position maturing at 7 with a delivery price of
K. This means Portfolio B is simply a synthetic long forward with a delivery price of K
and maturity of 7'! (See the payoffs in Figure 9.1.)

Compare Portfolios A and B again in this light. Portfolio A, the option, gives us the right
to buy the underlying at K. Portfolio B, the synthetic forward, obligates us to buy at K. The
difference between having a right and having an obligation is precisely what we intuitively
think of as downside protection or “insurance.” Thus, the difference in the costs of the two
portfolios is a measure of the insurance value of the call: writing / V' (C) for the insurance
value of the call, we have

IV(C) = C—[S— PV(K)— PV(D)] (9.15)

In an analogous manner, we can define the insurance value of a put by comparing
Portfolios C and D of Section 9.4. Portfolio C gives us the right to sell the underlying at
K. Portfolio D, on the other hand, is identical to a short forward position with a delivery
price of K and maturity of 7': the portfolio has no net cash flows up to 7" and a cash flow
of K — Sy at T'. Thus, the difference in the prices of the two portfolios provides us with a
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natural measure of the insurance value of the put:
I1V(P) = P—[PV(K)+ PV(D)—S] (9.16)

In the next chapter, we build further on this material to provide a decomposition of option
values that is useful in understanding option risk from an intuitive standpoint and that we
appeal to at several points in this book. The decompositions, as well as the definitions (9.15)—
(9.16) of the options’ insurance values, appear in Figlewski, Silber, and Subrahmanyam
(1992).

Remark

European options, like the synthetic forward, can be exercised only at maturity. However,
American options can also be exercised prior to maturity, so the insurance values (9.15) and
(9.16) of these options include not only the insurance value of the corresponding European
option but also the early-exercise premium, i.e., the extra amount over the European price
one pays for the right to exercise early. (Of course, the right to exercise early is itself a
form of insurance protection.) Thus, the insurance value of an American option will typi-
cally be larger than that of its European counterpart, and the difference will increase as early
exercise becomes more important. In Chapter 10, we discuss conditions that make early
exercise more or less important.

9.6 Option Prices and Contract Parameters

The manner in which option prices depend on the contract parameters—that is, on the
strike price K for a fixed maturity 7', or on the maturity 7" for a fixed strike price K—are
issues of some interest. In this section, we look at the implications of no-arbitrage for these
relationships. We begin with the strike price K.

Call Prices and the Strike Price

Our first result is a simple one: as the strike price rises, call values must fall. That is:
If K; < K, then C(K]) > C(Kz) (917)

where C(K) is the price of call with strike K. Intuitively this is obvious—the right to
buy at K, must be worth less than the right to buy at the cheaper price K;—but here’s
a formal proof. Suppose we instead had C(K;) < C(K3;). Set up a bull spread: go long
the K-strike call, short the K,-strike call. The initial cash flow from this spread is then
C(K;,)—C(Ky) > 0. And, of course, as Figure 8.3 shows, the cash flows from a bull spread
at maturity are never negative, so this is an arbitrage opportunity.

Expression (9.17) tells us only that a call with a lower strike must be more expensive. But
how much more expensive can it be? That is, what is the maximum value of the difference
C(Ky) — C(Ky)?

To judge the answer, consider European calls first. The maximum additional payoff that
can be realized by using the K-strike call instead of the K,-strike call is evidently K, — K.
(Compare the payoffs of calls with strikes K, and K, and look at the maximum difference
in the payoffs.) However, this maximum profit can be realized only at date 7" because the
options cannot be exercised until that point. Therefore:

If K; < K5, then CE(KI) — CE(KQ) < PV(K2 — K]) (918)

Now consider American calls. Once again, the maximum additional advantage that can
be realized by using the call with strike K instead of the call with strike K, is (K; — K).
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In this case, however, the calls can be exercised at any time. Therefore, this maximum
additional profit may be realizable immediately in some cases, so:

Ile < Kz, then CA(KI) — CA(KQ) < K2 — Kl (9.19)

Expressions (9.18) and (9.19) place upper limits on how large the price differences can
be between two calls that differ only in their strike price. Thus, they are in the nature of
“slope” restrictions on call prices. In calculus terms, (9.19) is equivalent to the condition that
the first derivative dC /d K of the call price with respect to the strike satisfy dC/dK > —1.

Our final restriction relates any three calls that differ only in their strike prices. Let any
three strike prices K| < K, < K3 be given. Define

w= Sk (9.20)
K; — K,
Consider a portfolio consisting of w long positions in the K;-strike call, (1 — w) long
positions in the Kj-strike call, and one short position in the K;-strike call. This is just the
butterfly spread described in Appendix 8A. As we saw there, the payoff of the butterfly
spread is strictly positive or zero, so it must have a positive cost. That is, we must have

wC(Ky) + (1 =w)C(K3) = C(K3) (9.21)

Expression (9.21) was also described in Appendix 8A (see (8.9)). Mathematically, this is the
condition that the call price be convex in the strike price. Convexity is a curvature restriction
on the call price: it is equivalent to having d>C/dK?* > 0.

To sum up, there are three restrictions on the relationship between call prices and the
strike price:
1. If Ky < K;, then C(K;) > C(K>).
2. If K1 < KQ, then

Cp(K1) — Ce(Ky) = PV(Kx—Ky), Cu(Ki)—Cu(Kr) = Kr— Ky
3. If Ky < K, < K3, then, defining w = (K3 — K3) /(K3 — Ky),
wC(K) + (1 —=w)C(K3) = C(K>)
Put Prices and the Strike Price

The corresponding relationships for put options are easily obtained using similar arguments.
First,

IfK1 < Kz, then P(Kl) < P(Kz) (9.22)

that is, put prices must be increasing in the strike price. Intuitively, the right to sell at K,
must be worth more than the right to sell at the lower price K. For a formal proof, suppose
this inequality fails and we have P(K;) > P(K3). Set up a bear spread using puts (sell
the K-strike put, buy the K,-strike put). This portfolio has an initial cash inflow, and, as
Figure 8.6 shows, it involves non-negative cash inflows at maturity. This is an arbitrage.

Second, the maximum difference between holding the K,-strike put and the K-strike
put is K, — K (compare the payoff diagrams of the two puts). For European puts, this
payoff can be realized only at maturity, so:

If Ky < K,, then Pg(K,) — Pe(Ky) < PV (K, —Ky) (9.23)
For American puts, however, the difference may be realized at any time, so

If K; < K, then PA(Kz) — PA(Kl) <K, —K; (924)
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Finally, given any three strike prices K| < K, < K3 and defining w by (9.20), we can
always set up a butterfly spread using puts as described in Section 8.9. As shown there,
the payoff from the spread is non-negative at maturity and is strictly positive for Sy lying
between K, and K3, so the initial cost of the butterfly spread must be positive, i.e.,

wP(K) + (1 - w)P(K3) = P(K>) (9.25)
Expression (9.25) was also described in Appendix 8A (see (8.10)).

Call Prices and the Time to Maturity

Consider two call options that differ in their time to maturity but are otherwise identical.
Let 77 and 75 denote the maturity dates of the two options, where 7} < T,. Our aim is to
examine how the values of such options are related.

If the calls in question are American, then the answer is easy to see: since the call with
maturity 7 can always be exercised at the same time as the call with maturity 77, the former
must also cost more. That is:

If7, < D, thenCA(Tl) < CA(Tz) (926)

If the calls are European, however, the arguments leading to (9.26) do not work since the
call with the longer maturity cannot be exercised at the same time as the call with shorter
maturity. Nonetheless, with some work, we can show that this result holds for European
call options also, provided the underlying asset does not pay a dividend between T| and
T,. We start by recalling that the price of a European call on an NDP asset satisfies (see
Section 9.4)

Cy > S—PV(K)

Now consider two European calls, one with maturity 7} and the other with maturity 7, > 7;.
On date 77:

» The call with expiry 7; is worth max{0, S, — K}.
» The call with expiry 75 is worth at least max{0, S;, — PV(K)}, where PV (K) denotes
the present value at time 7} of an amount K receivable at 75.

Since PV (K) < K always, it is the case that on date 7;, the call with expiry 7, is always
worth at least as much as the call with expiry 7). Therefore, the current price of the call
with maturity 75 must also be larger, i.e., we must have

Ce(h) = Cpe(T) T < T (9.27)

However, if there is a dividend between 7} and 75, it lowers the value of the 75-maturity
call without affecting the value of the 7;-maturity call, so the call with the longer maturity
could cost less. So (9.27) need not hold for European options on dividend-paying stocks.

Put Prices and the Time to Maturity

The same reasoning as for American calls shows that for American puts too we must have
Py(T) < P ifTh < Th (9.28)

However, (9.28) may fail for European puts even if there are no dividends. Here is a
short indirect proof. We have seen that an upper bound on the value of a European put is
PV (K), the present value of an amount K receivable at the put’s maturity. For a perpetual
(T = o0o) European put, this upper bound is the present value of an amount K receivable
in the infinitely distant future, which must be zero under any reasonable scenario. Thus, the
price of a perpetual European put must be zero. Now, suppose (9.28) did hold for European
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puts. Then, European put values would increase as maturity increases, so the price of the
perpetual put is an upper bound on the price of any finite-maturity put. But this implies,
absurdly, that the price of any finite-maturity put must also be zero! Thus, (9.28) cannot
hold for European options even if there are no dividends.

This points to a fundamental asymmetry between call and put options. In Section 10.2
in the next chapter, we explain intuitively why European put prices may drop as maturity
increases and when this is likely to happen. Several numerical examples in later chapters
then provide concrete instances of situations where European put prices do, in fact, decrease
as maturity increases. See, for example, the section “A Comment: The Impact of Maturity”
in Chapter 12 or Section 17.5 of Chapter 17.

9.7 Numerical Examples

Example 9.1
Revisited

Example 9.2
Revisited

This section returns to the five examples presented in Section 9.2. We work through each
example to illustrate the exploitation of the no-arbitrage restrictions on option prices derived
in the previous sections.

In Example 9.1, we are given the following data: S = 55, K =50, T =1/6, D = 2 in one
month, r = 0.12, and C¢ = 3. Is there an arbitrage?

Clearly, C¢ < Sand C; > 0, so it remains to be checked that C; > S— PV(K)— P V(D).
We have

PV(K) = e (/901250 — 4901 PV(D) = e (/12x012 5 — 1 98

This means S — PV(K) — PV(D) = 4.01, and the no-arbitrage bound is violated. This
tells us the call is undervalued; that is, in the notation of Section 9.4, Portfolio A costs less
than Portfolio B. To take advantage, we buy Portfolio A and sell Portfolio B. That is:

e Buy the call. Cash outflow = 3.

e Short the stock. Cash inflow = 55.

e Invest P V(D) for one month. Cash outflow = 1.98.

e Invest PV(K) for two months. Cash outflow = 49.01.

The initial cash flow from this strategy is —3 +55 — 49.01 — 1.98 = +1.01. At the end of
one month, we receive $2 from the investment of P V(D) and use this to pay the dividend
due on the shorted stock. Thus, there is no net cash flow at this interim time point. At the
end of two months, there are two possibilities:

e S; < 50. In this case, we let the call lapse, buy the stock for Sy and use it to close out
the short position, and receive K = 50 from the two-month investment. Net cash flow:
50 - Sy > 0.

e S; > 50. Now, we exercise the call, buy the stock for 50, use it to cover the short position,
and receive K = 50 from the investment. Net cash flow: 0.

With all cash flows being zero or positive, we have identified the desired arbitrage. MW

Example 9.2 describes the following data: S =45, K =50, T =1/6, D =1 in one month,
r = 0.12 for all maturities, and Pr = 3. Is there an arbitrage?
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Revisited

Example 9.4
Revisited
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Since Pr < K and P¢ > 0, it only remains to be checked that P > PV(K)+ PV(D)—S.
An easy computation shows that P V(K) = 49.01 and P V(D) = 0.99.So PV(K)+PV(D)—
§ = 5.00, and the no-arbitrage bound is violated. This tells us the put is undervalued; that
is, in the notation of Section 9.4, that Portfolio C costs less than Portfolio D when it should
cost more. So, we buy Portfolio C and sell Portfolio D, that is, we

e Buy the put. Cash outflow = 3.

e Buy the stock. Cash outflow = 45.

e Borrow P V(D) for one month. Cash inflow = 0.99.

e Borrow PV(K) for two months. Cash inflow = 49.01.

The initial cash flow from this strategy is —3 — 45 4+ 49.01 4+ 0.99 = +2.00. At the end
of one month, we pay $1 on the borrowing of P V(D) and receive $1 in dividend from the
stock for a net interim cash flow of zero. At the end of two months, there are two possibilities:

e S; < 50. In this case, we exercise the put, sell the stock for 50, and repay K = 50 on the
borrowing. Net cash flow: 50 — 50 = 0.

e S; > 50. Now, we let the put lapse, sell the stock for Sr, and repay K on the borrowing.
Net cash flow: St — 50 > 0.

With all cash flows being positive or zero, this is an arbitrage opportunity. |

In notational terms, in Example 9.3, we are given that S =100, K =95, T =1/4,r =0.12,
and C4 = 6. Is there an arbitrage?

Clearly, C4 < S. The lower bounds C4 > 0 and C, > S— K are also clearly satisfied. Thus,
it remains only to be checked if the third no-arbitrage lower bound holds. Since D = 0, we
must check if C4, > S — PV(K). We have

PV(K) = e (1/x01295 ~ 9220

Therefore, S — PV(K) = 7.80, and the third no-arbitrage bound is violated.

This means the call is undervalued. The arbitrage bound says it should be worth at least
7.80, whereas it is trading for only 6. To take advantage of this opportunity, we must (in the
notation of Section 9.4) buy Portfolio A and sell Portfolio B, i.e.,

e Buy the call.
e Short the stock.
e Invest PV (K).

This results in an initial cash inflow of —6 + 100 — 92.20 = +1.80. At time T, there are
two possibilities:

e S; < 95.In this case, we let the call lapse, buy the stock from the market to cover the
short position, and receive K from our investment. Net cash flow: —S$; +95 > 0.

e S; > 95. Now, we exercise the call and buy the stock for K, use the stock to close out
the short position, and receive K from the investment. Net cash flow: —95 + 95 = 0.

Since the strategy has cash inflows with no net cash outflows, we have derived an arbi-
trage opportunity. |

In Example 9.4, we are given K1 = 100 and K, = 110. Since the one-month rate of interest
is given to be 1% in simple terms,

PV(Ky — K1) = —1131 — 9.90
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Example 9.5
Revisited

On the other hand, we are also given P;(100) = 3.25 and P¢(110) = 14, so P¢(110) —
P£(100) = 10.75. This means the no-arbitrage condition (9.23) is violated.

To take advantage of the opportunity, we buy the relatively overvalued right-hand side
of (9.23) and sell the relatively undervalued left-hand side. That is, we

e Invest PV(K, — Kq) = $9.90 for one month.
e Sell the K;-strike put for $14.
e Buy the K;-strike put for $3.25.

This creates an initial cash inflow of $0.85. At maturity, the investment grows to $10. If the
stock price at this time is

e Sr < 100, both options are in-the-money. We gain 100 — Sy on the put we hold and
lose 110 — S7 on the put we have sold for a net loss of 10. Combined with the receipt
from the investment, this results in a net payoff of zero.

e 100 < St < 110, the option we hold is out-of-the-money, but the one we sold finishes
in-the-money. We lose 110 — Sr on the latter. Since this is less than the $10 receipt from
the investment, there is a net positive cash inflow.

e S; > 110, both options are out-of-the-money. Thus, the net cash flow is the receipt from
the investment, which is +$10.

Since all cash flows are positive or zero, this is an arbitrage. |

In Example 9.5, we are given three strike prices—K; = 35, K, = 40, and K3 = 45—
with respective call prices C(35) = 5.50, C(40) = 3.85, and C(45) = 1.50. Consider the
convexity restriction (9.21). A simple calculation shows that w = 1/2 and that

1 1
5 C(35) + 5 C(45) < C(40)

So the convexity condition (9.21) is violated. To take advantage of the resulting arbitrage
opportunity, buy the butterfly spread; this creates a cash inflow today and a possible cash
inflow at maturity. u

9.8 Exercises

—_

What is meant by payout protection? Are options payout protected?

2. How does the payment of an unexpected dividend affect (a) call prices and (b) put
prices?

3. As we have seen, options always have non-negative value. Give an example of a deriva-

tive whose value may become negative.

What are the upper and lower bounds on call option prices?

What are the upper and lower bounds on put option prices?

What is meant by the insurance value of an option? Describe how it may be measured.

What does the early-exercise premium measure?

What is meant by convexity of option prices in the strike price?

There are call and put options on a stock with strike 40, 50, and 55. Which of the
following inequalities must hold?

(a) 0.5C(40) + 0.5C(55) > C(50)
(b) (1/3)C(40) + (2/3)C(55) > C(50)

© T = e e
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(c) (2/3)C(40) + (1/3)C(55) > C(50)

(d) 0.5P(40) + 0.5P(55) > P(50)

(e) (1/3)P(40) + (2/3)P(55) > P(50)

) (2/3)P(40) + (1/3)P(55) > P(50)

Note: This question uses the general form of convexity in the strike for options:

wC(Ky) + (1 —w)C(K3) = C(K3)

and
wP(Ky) + (1 —w)P(K3) > P(K>)
where
K; — K,
W= ——"
K; — K,

There are call and put options on ABC stock with strikes of 40 and 50. The 40-strike
call is priced at $13, while the 50-strike put is at $12.8. What are the best bounds you
can find for (a) the 40-strike put and (b) the 50-strike call?

The following three call option prices are observed in the market, for XYZ stock:

Type Strike Option Price

Call 50 10
Call 60 7
Call 70 2

Are these prices free from arbitrage? How would you determine this? If they are incorrect,
suggest a strategy that you might employ to make sure profits.

The current price of a stock is $60. The one-year call option on the stock at a strike of
$60 is trading at $10. If the one-year rate of interest is 10%, is the call price free from
arbitrage, assuming that the stock pays no dividends? What if the stock pays a dividend
of $5 one day before the maturity of the option?

The current price of ABC stock is $50. The term structure of interest rates (continuously
compounded) is flat at 10%. What is the six-month forward price of the stock? Denote
this as F'. The six-month call price at strike F is equal to $8. The six-month put price at
strike F is equal to $7. Explain why there is arbitrage opportunity given these prices.

The prices of the following puts P(K) at strike K are given to you:
P(40) =2, P(45) =6, P(60)=14

The current stock price is $50. What is inconsistent about these prices? How would you
create arbitrage profits?

The price of a three-month at-the-money call option on a stock at a price of $80 is
currently $5. What is the maximum possible continuously compounded interest rate in
the market for three-month maturity that is consistent with the absence of arbitrage?
The six-month continuously compounded rate of interest is 4%. The six-month forward
price of stock KLM is 58. The stock pays no dividends. You are given that the price of a
put option P(K) is $3. What is the maximum possible strike price K that is consistent
with the absence of arbitrage?
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17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

(Difficult) Suppose there are five call options C(K), i.e., {C(80), C(90), C(100), C(110),
C(120)}. The prices of two of these are C(110) = 4, C(120) = 2. Find the best possible
lower bound for the call option C(80).

In the previous problem, also find the minimum prices of C(90) and C(100).

The following are one-year put option prices: the put at strike 90 is trading at $12, and
the put at strike 80 is trading at $2.50. The rate of interest (continuously compounded)
for one year is 10%. Show how you would construct an arbitrage strategy in this market.
The one-year European put option at strike 100 (current stock price = 100) is quoted at
$10. The two-year European put at the same strike is quoted at $4: The term structure
of interest rates is flat at 10% (continuously compounded). Is this an arbitrage?

Given the following data, construct an arbitrage strategy: S = 100, K =95, 7 = 1/2
year, D = 3 in three months, » = 0.05, and Cy = 4.

Given the following data, construct an arbitrage strategy: S = 95, K = 100, 7 = 1/2
year, D = 3 in three months, » = 0.05, and Py = 4.

We are given that S = 100, K = 100, T = 1/4, r = 0.06, and C4 = 1. Is there an
arbitrage opportunity?

Given that there are two put options with strikes at 40 and 50, with prices 3 and 14,
respectively, show the arbitrage opportunity if the option maturity is 7 and interest rates
are r for this maturity.

Given the price of three calls, construct an arbitrage strategy: C(10) = 13, C(15) = 8,
C(20) = 2.

A call option on a stock is trading for $1.80. The option matures in two months. The stock
is currently trading for $52 and will pay a dividend of $2 in one month. The risk-free rate
of interest (on investments of all maturities) is 12%. Finally, suppose that the strike price
of the option is $50. Examine whether there is an arbitrage opportunity in this problem.
If so, show how it may be exploited to make a riskless profit.

ABC stock is currently trading at 100. There are three-month American options on ABC
stock with strike prices 90, 100, and 110. The risk-free interest rate is 12% per year for
all maturities in continuously compounded terms. Which of the following sets of prices
offers an arbitrage opportunity? How can the opportunity be exploited?

(a) The 90 call is selling for 10 1/4.

(b) The 90 put is at 4, and the 100 put is at 3.

(c) The 100 call is at 12, and the 110 call is at 1.

(d) The 90 call is 13, the 100 call is 8, and the 110 call is 1.
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Early Exercise and
Put-Call Parity

10.1 Introduction

The previous chapter examined no-arbitrage restrictions on individual option prices. Build-
ing on this material, this chapter examines two questions: what does no-arbitrage tell us
about the relationship between

1. the prices of otherwise identical European and American options?
2. the prices of otherwise identical call and put options?

Regarding the first question, any wedge between the prices of American and otherwise
identical European options must be solely on account of the right to exercise early. Thus,
our analysis of this issue focuses on identifying when the right to early exercise may be
valuable and when it is definitely not of value.

Regarding the second question, calls and puts appear, at least at a superficial level
(for instance, judging from their payoff diagrams), to be very different financial instru-
ments. Nonetheless, it is possible to relate their prices using no-arbitrage considerations. For
European calls and puts, this relationship is an exact one, and is called put-call parity. Put-
call parity is one of the most important pricing relationships in all of option pricing theory.
For American options, the relationship is an inexact one; it takes on the form of inequalities,
viz., upper and lower bounds on American put prices in terms of American call prices.

10.2 A Decomposition of Option Prices

We begin this chapter’s analysis by describing a “decomposition” of option values, first
for calls and then for puts. This decomposition makes intuitive our results concerning the
optimality of early exercise, which is discussed next in Section 10.3. We also appeal to
this decomposition at several points in later chapters, notably in Chapter 17 in discussing
the behavior of the various option “greeks.” The idea of such a decomposition appears
in Figlewski, Silber, and Subrahmanyam (1992).

We retain the notation of Chapter 9 (see Table 9.1). As earlier, we refer to the asset
underlying the options as a “stock,” although the same arguments hold for other underlying
assets too.

213
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A Decomposition of Call Prices
In Chapter 9, we showed that call prices must satisfy

C > S—PV(K)— PV(D) (10.1)

As we noted in Section 9.5, the right-hand side of (10.1) corresponds to the value of a long
forward position that obligates the holder to buy the underlying for K, while the left-hand
side, of course, gives the holder the right to buy the underlying for K . The difference between
these two values provides a natural measure of the insurance value (IV) of an option:

1V({C) = C—[S—PV(K)— PV(D)] (10.2)
Equivalently, we may write
C =S8S—-PV(K)—PV(D)+1V(C) (10.3)

Now, add and subtract K to the right-hand side of this expression, and rearrange the
terms to obtain:

C = (S—K)+ (K — PV(K))+ IV(C) — PV(D) (10.4)

Expression (10.4) motivates a simple decomposition of call prices. The expression breaks
the call value into four parts.

» The first part (S — K) is called the intrinsic value of the call and measures how deep
in-the-money the call is at present. The intrinsic value can be positive, zero, or negative.
Ceteris paribus, the higher is the intrinsic value (i.e., the deeper we are in-the-money
today), the deeper we are likely to finish in-the-money, so the higher is call value.

» The second term (K — PV(K)) is what we shall call the time value of the call. The
time value of a call is always positive (or at least non-negative). The call gives us the
right to buy the underlying at a price of K at time 7. In present value terms, the strike
price we pay is worth only P V' (K) today; the longer is the call’s maturity or the higher
are interest rates, the lower is this present value. The time value of the call measures the
interest savings we obtain from this deferred purchase.

* The third term / V' (C) is the insurance value of the call. It measures the value of “op-
tionality” and is always positive. The call gives us the right to buy the underlying at K,
but we are not obligated to buy at that price. By waiting, it is possible that the price of
the underlying may fall below K, so we are able to buy at a cheaper price. The insurance
value measures the value of this downside protection.

* The last term — P V(D) represents the impact of payouts on the underlying during the
life of the call. Since payouts lower the price of the underlying, they hurt the holders of
calls, so the impact of payouts on calls is always negative.

In words, we may represent this decomposition as
Call Price = Intrinsic Value + Time Value + Insurance Value + Impact of Payouts

Before discussing this decomposition and its use in greater detail, we present the corre-
sponding decomposition of put values.
A Decomposition of Put Prices
In Chapter 9, we showed that put prices must satisfy

P > PV(K)+ PV(D)—S (10.5)
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As we noted in Section 9.5, the right-hand side of (10.5) is the value of a short forward
position that obligates the holder to sell the underlying for K, while the left-hand side is an
option that gives the holder the right to sell the underlying for K. The difference between
the two sides provides a natural measure of the insurance value of the put:

I1V(P) = P—[PV(K)+ PV(D)—S] (10.6)
Rewriting (10.6), we obtain
P = PV(K)+ PV(D)—S+1V(P) (10.7)

Adding and subtracting K to the right-hand side, we finally arrive at a decomposition similar
to that of the call:

P = (K —S)—(K—PV(K))+ IV(P)+ PV(D) (10.8)

Expression (10.8) breaks the value of a put into four components:

o The intrinsic value of the put K — S.

» The time value of the put —(K — PV (K)).
* The insurance value of the put I V(P).

» The impact of payouts PV (D).

In words, we can express the put decomposition as:
Put Price = Intrinsic Value 4 Time Value + Insurance Value + Impact of Payouts
Two differences between calls and puts should be highlighted:

1. In a call, we pay the strike price upon exercise, but in a put, we receive the strike price
upon exercise. So while the time value of a call is positive (there are interest savings from
deferred purchase), that of a put is negative (there are interest losses from the deferred
sale).

2. Payouts depress the price of the underlying, thereby hurting calls and benefiting puts.
So the impact of payouts is negative for a call and positive for a put.

Comments on the Decompositions

The intrinsic and time values of an option have simple structures. Aside from the fixed strike
price K, intrinsic value depends on only one variable: the current price S of the stock. An
increase in S increases the intrinsic value of a call and decreases that of a put. Time value is
a function of only two factors: interest rates and the remaining time to maturity. An increase
in interest rates or an increase in the option’s time to maturity increases the time value of a
call since it results in larger interest savings from deferred exercise; conversely, it decreases
(makes more negative) the time value of a put.

Insurance value is more complex; as a measure of the impact of optionality, it is, in
principle, affected by all the parameters that could affect option value. For instance, an
increase in S makes it less likely that a call will finish out-of-the-money. This reduces
the value of optionality and so the call’s insurance value. (This is why an increase of
$1 in S increases the call value by less than the dollar increase in intrinsic value, or the
payment of a dividend affects option values by less than P V' (D).) Similarly, the time value
K — PV(K) overstates the impact of interest rates on an option; the likelihood that the
interest costs/savings may not be realized because the option lapses unexercised is folded
into and reflected in the option’s insurance value.
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But the insurance value is especially affected by volatility and time. In the absence of
volatility, insurance value—the right to do something without the obligation to do it—is
trivial: the option will either be exercised for sure or not be exercised for sure. As volatility
increases, larger price swings become more likely, so the importance of downside protection
increases. This increases the insurance value for both calls and puts. Time also matters; for
a given level of volatility, a greater time to maturity allows for greater price swings and so
makes insurance value more important.

Depth-in-the-Money and the Decomposition

As option depth-in-the-money (or “moneyness”) changes, the components of option value
also change in relative importance. For an option that is deep in-the-money, intrinsic value is
by far the most important component of option value (by definition, such options have large
intrinsic values). Time value is the next most important since there is a high probability of
garnering the interest savings reflected in time value. But insurance value matters relatively
little. Insurance value matters primarily to the extent that optionality is important, and for a
deep in-the-money option, the chances of going out-of-the-money are slight, so optionality
is not very important.

Conversely, for deep out-of-the-money options, insurance value is the most important
component of option value and intrinsic value the least. With negative intrinsic value, the
only reason such options have positive value at all is the hope that volatility will push the
option into-the-money. For options that are at- or near-the-money, time value and insurance
value are both important, though, loosely speaking, insurance value will dominate since it
is the likelihood of volatility pushing the option into-the-money that gives the option value
in the first place.

Using the Decomposition: A Simple lllustration

As an example of how these ideas may be used to obtain an intuitive feel for option risk,
consider how the passage of time affects European option values. Suppose, for simplicity,
that the options are written on a non-dividend-paying stock.

The passage of time reduces the time to maturity of the option. This affects the insurance
value and time value of the option. For calls, a lower time to maturity means a lower
insurance value and a lower time value. Ceteris paribus, this means call values decline as
time passes, i.e., calls exhibit “time-decay.” In the language of Chapter 17, the theta of the
call (its reaction to the passage of time) is negative.

But for puts, the effect is ambiguous: a lower time to maturity reduces insurance value
but increases time value. If the time value effect dominates (as will generally be the case for
deep in-the-money puts), the put value will increase. If the insurance value effect dominates
(as will typically be the case for near-the-money and out-of-the-money puts), put values will
decrease. Thus, while the theta of a European put is generally negative, it can be positive
for deep in-the-money puts.

10.3 The Optimality of Early Exercise

Any difference in the prices of American options and their European counterparts must
come from the right to exercise the option early. We examine when this right is of value and
what factors give it value. We show that under some conditions, the right to early exercise
is of no value; in such cases, the prices of American and European options must coincide.
We examine calls first.
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The Early Exercise of American Calls

When a call is exercised, the holder receives the intrinsic value of the call at that point: the
holder pays K and receives a stock worth S for a net gain of S — K. Thus, the holder of an
American call has three possible courses of action open to him at any point:

* he can exercise the call immediately and receive its intrinsic value S — K
* he can sell the call and realize its market price C ; or
* he can do nothing and retain a call worth C in his portfolio.

The second and third alternatives have the same value at any given point in time, so we
shall not treat them separately. The optimality of early exercise may be judged by comparing
the first alternative to the others. Note that we always have C4 > S — K since an American
call can never trade for less than its intrinsic value. Thus, the question more precisely is
whether we have (a) C4, > S — K, in which case early exercise is strictly suboptimal, or
(b) C4, = S — K, in which case early exercise becomes optimal. We examine this question
in two stages, first when there are no dividends on the underlying (during the option’s life)
and then when dividends may exist.

American Calls on Non-Dividend-Paying Assets
When there are no dividends, the call value is given by

Ci = S—K)+(K—-PV(K)+1V(C) (10.9)
So, the difference between selling the call and exercising it immediately is
Ci—(S—K) = (K—=PV(K)+1V(C) (10.10)

This difference is strictly positive since each term on the right-hand side is positive. This
means an American call on a non-dividend-paying asset should never be exercised early.
An option holder who wishes to convert the option to cash is strictly better off selling the
call than exercising it.

Intuitively speaking, what drives this result? The call gives you the right to buy the
underlying stock for the fixed amount K at any time over the option’s life. When you
exercise early, you are giving up two things. One is time value, the interest lost because you
could have always bought the stock for the same price K later. (This is the first term on the
right-hand side of (10.10).) The other is insurance value, the possibility that by waiting, the
stock price may fall and you may be able to buy the stock at a cheaper price than K. (This
is the second term on the right-hand side of (10.10).) If there are no dividends on the stock
during the call’s remaining life, you receive no compensating benefits. This means the call
is worth more “alive” than “dead,” and makes early exercise suboptimal.

Note that it is not important for these arguments that the holder of the call wishes to buy
the stock to hold on to it (at least up to the option maturity date). As long as there is some
investor in the market who desires to hold the stock—a necessary condition if the stock
price is to be above zero—such an investor would be willing to pay strictly more for the call
than its intrinsic value because of the time value and insurance value the call provides.

American Calls on Dividend-Paying Assets
When dividends are nonzero, the call value takes the form

Cy = (S—K)+(K—-PV(K)+1IV(C)— PV (D) (10.11)
Thus, the difference between the value of the call and the value of immediate exercise is

Ci—(S—K) = (K- PV(K))+ IV(C) — PV(D) (10.12)
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The first two terms on the right-hand side of this expression are positive, but the third
term is negative. Thus, we cannot assert that the call is worth strictly more “alive” than
“dead.” That is, early exercise of a call on a dividend-paying asset could be optimal.

It is easy to see why. Dividends offer a countervailing benefit to the loss of time and
insurance value from early exercise. By exercising prior to the ex-dividend date, the holder
of the option can receive the dividends, but delaying exercise past the ex-dividend date
causes the dividends to be lost. Thus, there is now a trade-off between retaining time and
insurance value—the first two terms on the right-hand side of (10.12)—and receiving the
dividends—the last term on the right-hand side of (10.12). If the former dominates, early
exercise will remain suboptimal; if the latter, it is optimal to exercise immediately.

We can further sharpen this conclusion. The on/y motive for exercising the call early is
to obtain the dividends. So, if at all it is optimal to exercise early, the investor is best off
by exercising the call just before the stock goes ex-dividend. Such a strategy would result
in the investor’s retaining the time value and insurance value as long as possible while still
obtaining the dividends. This point simplifies the pricing of American calls: the optimality
of early exercise does not have to be checked at every point but only at points just before
the ex-dividend dates.

These observations are useful at more than just an abstract level. In Section 10.4 (“Put-
Call Parity, Insurance Value, and Rules of Thumb for Early Exercise”), we explain how
rules of thumb commonly used in practice to gauge the optimality of early exercise can be
understood precisely in terms of the trade-off described here.

The nature of the trade-off also makes it easy to see the conditions that make early
exercise more likely. For example, early exercise becomes more likely to be optimal if

 dividends are high (this increases the benefits from early exercise).

 volatility is low (this results in a low insurance value, reducing the loss from early
exercise).

 interest rates are low (this results in a low time value, reducing the loss from early
exercise).

For examples that illustrate the optimality of early exercise of American calls in the presence
of dividends, see Chapter 12, particularly Section 12.6 and the Exercises.

The Early Exercise of American Puts

The early-exercise analysis for puts follows similar lines to that for calls, but the results, as
we shall see, are quite different. When a put is exercised, the holder receives the intrinsic
value of the put at that point: the holder gives up a stock worth .S and receives K in exchange
for a net gain of K — S. Thus, the holder of an American put has three possible courses of
action open to her at any point:

 she can exercise the put immediately and receive its intrinsic value K — S;
* she can sell the put and realize its market price Py; or
 she can do nothing and retain a put worth P, in her portfolio.

The second and third alternatives have the same value at any given point in time, so we
shall not treat them separately. The optimality of early exercise may be judged by comparing
the first alternative to the others. Note that we always have P, > K — S since an American put
can never trade for less than its intrinsic value. Thus, the question more precisely is whether
we have (a) P4 > K — S, in which case early exercise is strictly suboptimal, or (b) P, =
K — S, in which case early exercise becomes optimal. Once again, we proceed in two stages,
first when there are no dividends on the underlying, and then when dividends may exist.
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American Puts on Non-Dividend-Paying Assets
When there are no dividends, the value P, of the put has the decomposition

Py = (K—5)— (K —PV(K))+1V(P) (10.13)

Exercising the put early gives the holder its intrinsic value K — S. Thus, the difference
between the put value and the value of immediate exercise is

P,—(K—-S8) = —(K — PV(K))+ IV(P) (10.14)

The second term on the right-hand side, the insurance value of the put, is positive, but the
first term on the right-hand side, the time value of the put, is negative. Thus, the right-hand
side may not be strictly positive, so we cannot rule out the optimality of early exercise for
the put. (Note the contrast with calls here: as we have seen, early exercise can never be
optimal for calls on a non-dividend-paying asset.)

The intuition behind this result is itself captured in the right-hand side of (10.14). Delaying
exercise of the put means receiving the strike price later, so results in a loss of interest that
could otherwise have been earned on the strike price received. This negative time-value
effect is the first term on the right-hand side of (10.14). On the other hand, delaying exercise
results in retaining the insurance value of the put (here, retaining the possibility that the
stock could be sold for a higher price later); this is the second term in (10.14). The trade-off
between these effects determines whether early exercise is optimal or not. Anything that
reduces the insurance value or increases time value makes early exercise more likely to be
optimal. For instance, early exercise is more likely to be optimal if

* volatility is low (this reduces the insurance value lost from early exercise).
* interest rates are high (this increases the time value gained by early exercise).

For examples that illustrate the optimality of early exercise of puts on non-dividend-
paying assets, see Section 12.7 and the exercises in Chapter 12. See also the discussion on
the option theta in Chapter 17.

American Puts on Dividend-Paying Assets
With nonzero dividends, the decomposition of the put price is

Py, = (K-8 —(K—-PV(K)+IV(P)+ PV(D) (10.15)
The difference between the put value and the value K — S of immediate exercise is
Py —(K—-S8) = —(K—-PV(K))+1IV(P)+ PV (D) (10.16)

The first term on the right-hand side is negative, but the second and third terms are
positive. Thus, we cannot assert that the difference must be positive; that is, it may be
optimal to exercise the put early.

The intuitive underpinnings of the result are clear. Delaying exercise of the put means
receiving the strike price later, so there is a negative time-value effect. However, by delaying
exercise, the put holder retains insurance value (the possibility that the stock can be sold
for a higher price later) and obtains the dividends. The trade-off between these costs and
benefits of early exercise determines the optimality of exercise. For example, early exercise
is more likely to be optimal if

 volatility is low (this lowers insurance value, reducing the losses from early exercise).
* interest rates are high (this results in larger time value gains from early exercise).
+ dividends are low (cost of early exercise is reduced).
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In the next section, these results on early exercise will be used to identify the pricing
relationship between American calls and otherwise identical American puts.

10.4 Put-Call Parity

We now turn our attention to the relationship between calls and otherwise identical (same
underlying, strike, and maturity) put options. The common strike and maturity of the options
are denoted K and T, respectively. The analysis proceeds in four steps. We look first at Euro-
pean options on non-dividend-paying assets; then at European options on dividend-paying
assets; then at American options on non-dividend-paying assets; and finally at American
options on dividend-paying assets.

European Options on Non-Dividend-Paying Assets
Let a call and put be given. As usual, denote by P V' (K) the present value of an amount K
receivable at 7. Consider the following portfolios:

Portfolio A Long one call
Investment of PV (K) for maturity at T

Portfolio B Long one put
Long one unit of stock

The cost and payoff information from these portfolios is summarized in Table 10.1. The
initial cost of Portfolio A is the cost of the call plus the amount of the investment, which is
Cg + PV(K). That of Portfolio B is the sum of the prices of the put and the stock, which
is P + S. The time-T values of the two portfolios are determined in the usual way:

e IfS7 < K:
— The call in Portfolio A is worthless, while the investment is worth K. Total value of
Portfolio A: K.
— The put in Portfolio B is worth K — S7 and the stock is worth S7. Total value of
Portfolio B: K.
e IfSy > K:
— The call in Portfolio A is worth S7 — K and the investment is worth K. Total value
of Portfolio A: S7.

— The putin Portfolio B is worthless, while the stock is worth S7. Total value of Portfolio
B: S T

Thus, the portfolios have identical values in all circumstances at time 7. Moreover,
neither portfolio has interim cash flows since there are no dividends on the stock and the
options cannot be exercised early. Therefore, the initial cost of the two portfolios must also
be the same. That is, we must have

Cr+PV(K) = P+ S (10.17)

Expression (10.17) is called put-call parity. It provides an exact relationship between
the prices of European calls and puts that are otherwise identical. Before exploring the

TABLE 10.1 . .
Portfolios A and B: Portfolio Value at T in the Event
Costs and Payoffs Initial Cost Sr<K Sr> K

Portfolio A Ce+ PV(K) 0+K =K St— K+ K =57
Portfolio B Pe+ S K—Sr+Sr=K 0+ St =57
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extension of this relationship to dividends and early exercise, we first take a detour through
some of the uses of this result.

Uses of Put-Call Parity

One of the most well-known results in option pricing, put-call parity is also one of the most
useful. The first and most obvious use of the result is in the valuation problem. Once we
can price European calls on non-dividend-paying assets, we can derive the prices of the
corresponding put options using (10.17).

Second, as an immediate consequence, put-call parity can be used to check for arbi-
trage opportunities resulting from relative mispricing of calls and puts. For example, if
we find Cp + PV(K) > Pg + S, then the call is overvalued relative to the put. We can
buy Portfolio B, sell Portfolio A, and make an arbitrage profit. Conversely, if we find
Crg+ PV(K) < Pg+ S, the put is overvalued relative to the call. Arbitrage profits can be
made by selling Portfolio B and buying Portfolio A.

Third, rearranging the put-call parity expression tells us how to create synthetic instru-
ments from traded ones. For example, since put-call parity tellsusthat P = C + PV (K) — S,
we can create a synthetic long put by buying a call, investing P V' (K), and shorting one unit
of the underlying. Similarly, we can create a

 synthetic long call by buying the put and the stock and borrowing P V' (K).

 synthetic long position in the stock by buying the call, investing P }V'(K), and shorting
the put.

 synthetic long forward position by buying the call and shorting the put.

 synthetic long zero-coupon bond with face value K and maturity 7 by buying the put
and the stock and shorting the call.

Of course, synthetic short positions in each of these instruments can be created simply by
reversing the above portfolios.

Fourth, put-call parity may be used to judge relative sensitivity to parameter changes, i.e.,
the difference in the reactions of calls and puts to changes in parameter values. Rearranging
put-call parity, we have

Cr— Py = S— PV(K) (10.18)

Since (10.18) is an identity, the difference in the changes in call and put values caused
by a parameter change must be the same as the change in the right-hand side of (10.18). So,
for example, suppose S changes by $1. Denote the change this causes in call and put values
by dC and d P, respectively. The change in the left-hand side of (10.18) is then dC — d P,
so we must have

dC —dP =1

That is, the change in call value is a dollar more than the change in put value.

A similar procedure can be used to identify the difference in call and put sensitivities
to changes in other parameters such as the maturity 7" or the interest rate ». In Chapter 17
where we discuss the option greeks, we repeatedly appeal to put-call parity to explain the
responses of calls and puts to changes in key parameter values.

European Options on Dividend-Paying Assets

Modifying the put-call parity arguments to allow for dividends is easy. The only difference
that dividends create is that in Portfolio B, there will be an interim cash flow when the
underlying pays a dividend. There is no corresponding interim cash flow in A. Thus, if we
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modify the definition of Portfolio A to create an additional interim cash flow of D, we can
use the same arguments again.
So consider the following modification in the definition of the portfolios:

Portfolio A Long one call
Investment of PV (K) for maturity at 7
Investment of P V(D) for maturity on the dividend date

Portfolio B Long one put
Long one unit of stock

This changes the initial cost of Portfolio A to Cx + PV(K) + PV (D); the initial cost
of Portfolio B remains the same. The portfolios have the same value at 7. By construction,
they also have the same interim cash flows. Therefore, the initial costs of the two portfolios
must be the same, so:

Cp+ PV(K)+PV(D) = Pp+ S (10.19)

Expression (10.19) is the put-call parity relationship between the prices of European
calls and puts on dividend-paying assets.

American Options on Non-Dividend-Paying Assets

When the options concerned are American in style, it does not suffice to compare the
portfolio values at maturity alone since one or both options may be exercised prior to
maturity. Indeed, it becomes impossible to derive a “parity” (i.e., exact) relationship between
the prices of calls and puts. However, an inequality-based relationship can still be derived,
viz., that

C,+PV(K) < Py+S§ < Cqi+K (10.20)

To derive (10.20), consider again the following two portfolios (in the no-dividends set-
ting), and suppose that the options are American in style:

Portfolio A Long one call
Investment of PV (K) for maturity at 7

Portfolio B Long one put
Long one unit of stock

The initial cost of Portfolio A is C4 + P V(K) while that of Portfolio B is P4 + S. Now
note the following:

* An American call on a non-dividend-paying asset will never be exercised early (Sec-
tion 10.3), so we must have C4 = Cg.

» Early exercise could be optimal for puts even on non-dividend-paying assets (Sec-
tion 10.3), so in general we have Py > Pp.

Therefore, we have
Cys+PV(K) = Cg+PV(K), and Py +S > Pp+ S (10.21)
Moreover, from European put-call parity,
Cp+ PV(K) = Pg+ S (10.22)
Putting (10.22) and (10.21) together, we obtain the first inequality in (10.20):
Ci+PV(K) < Py+S (10.23)
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We now derive the second inequality:
Consider the following portfolios:

Portfolio A’ Long one call
Investment of K rolled over at the money-market rate

Portfolio B’ Long one put
Long one unit of stock

The initial cost of Portfolio A’ is C 4 + K, while that of Portfolio B" is P4 + S. Suppose
we buy Portfolio A" and sell Portfolio B’. Since we hold the call, we can always choose to
not exercise it until 7" (this is anyway optimal since there are no dividends). However, the
put may be exercised in the interim, so there are two possibilities concerning cash flows
from this strategy:

1. The put is exercised early. In this case, we pay K and receive one unit of the stock. We
use the stock received to close out the short stock position. The net effect: we are left
with the call (and whatever interest we earned on the strike price so far) for a positive
net cash flow.

2. The put is held until maturity. In this case, mimicking the arguments leading to the
payoffs derived in Table 10.1 shows that the net value of our position is just the interest
earned on rolling over K to maturity.

Thus, the strategy outlined leaves us with a positive cash flow at maturity. To avoid
arbitrage, it must have a positive cost, which is precisely the statement that (10.24) holds.

Combining (10.23) and (10.24), we obtain (10.20), the closest we can get to a parity
relationship for American options.

American Options on Dividend-Paying Assets

In the presence of dividends, early exercise of the call may also become optimal, so we
cannot assume that C, = Cg as we did in the no-dividends case. So, we adopt a different
tack, one that exploits the motive for early exercise of American calls. Consider a choice
between the following portfolios: (a) an American call with strike K and maturity 7T, or
(b) a European call with strike K and maturity 7', plus an investment of P V(D). We claim
that the second portfolio must cost at least as much as the first, that is, we must have

C, < Cp+ PV(D) (10.25)

A simple intuition underlies (10.25). As we have seen, the only motive for exercising an
American call early is to receive the dividends on the stock, but early exercise also means
giving up the call’s insurance and time values. In the first portfolio, the investor faces this
trade-off between exercising to capture the dividends and retaining the call to preserve its
insurance and time values. In the second portfolio, the investor gets to receive the dividends
even while retaining the call’s time and insurance value up to maturity. It follows that the
second portfolio must be more valuable.

If we add PV (K) to both sides of expression (10.25), we obtain

Ci+PV(K) < Cg+PV(K)+ PV(D) (10.26)
Now, European put-call parity on dividend-paying stocks tells us that

Cp+ PV(K)+ PV(D) = Pp+ 8 (10.27)
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Combining the information in (10.26) and (10.27), we obtain
Cys+PV(K) < Pe+S (10.28)

Further, we must always have P, > Py. Using this on the right-hand side of (10.28), we
finally get

Expression (10.29) is the closest we can get to a put-call parity relationship for American
options on dividend-paying assets. This expression is identical to the lower bound derived
for American options on non-dividend-paying assets. In particular, the dividends D do not
enter the expression explicitly because they have been subsumed in the value of the call;
see (10.25).

As we did in the non-dividends case, we can also find an upper bound for the American
put in terms of the call, namely,

Pi+5S < Cy+ K+ PV(D) (10.30)

The derivation of (10.30) uses similar arguments to the derivation of the no-dividends
upper bound (10.24). The construction of the portfolios to support this inequality should
by now be familiar to the reader. The details are left as an exercise.

Put-Call Parity, Insurance Value, and Rules
of Thumb for Early Exercise

Traders in practice often use rules of thumb for determining early exercise of American
options. A typical rule for American calls, for example, runs along the following lines:

Exercise the call on the day before the stock goes ex-dividend if the dividend on the stock is
greater than the price of an otherwise identical put plus forgone interest on the strike price;
otherwise do not exercise.

The first part of this rule—exercising the day before the stock goes ex-dividend—is easily
justified: as we have seen in Section 10.3, if at all American calls are exercised early, they
should be exercised just before the stock goes ex-dividend. A rationale for the second part
of the rule—exercise if the dividend on the stock is greater than the price of an otherwise
identical put plus forgone interest on the strike price—is obtained by combining put-call
parity and the analysis in Section 10.3.

Recall from Section 10.3 that early exercise is optimal on a call if the value of dividends
received exceeds the time value plus insurance value of the call. The time value of the call
is proxied by the forgone interest on the strike price from early exercise. What about the
insurance value? For the answer, compare expression (10.3) and the statement of European
put-call parity (10.19). The comparison reveals that for European calls, the insurance value
of the call is just the value of the corresponding European put! This is both intuitive and
logical. The insurance value is the difference between the value of the call and the value of
the corresponding forward. This difference is exactly the European put as a glance at their
payoff diagrams reveals (see Figure 10.1). Similarly, the insurance value of a European put
is the value of the corresponding European call.

Now, this identification of insurance value with the corresponding put or call does not hold
exactly for American options since we do not have a parity expression for American options,
but the upper and lower bounds (10.29) and (10.30) suggest it is not a bad approximation
in general. If we accept it as an approximation, then the rule that early exercise is optimal
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whenever dividends exceed insurance value and time value is just the rule of thumb described
above.

Put-Call Parity with a Continuous Dividend Yield

In the analysis above, we have assumed that dividend payments, if they exist, are discrete. As
we have seen earlier in the book, in many cases (such as currencies or stock indices), payouts
on the underlying are more naturally described as continuous yields at a rate ¢. The put-call
parity expression (10.19) for European options is easily modified to handle this case.

The key step in the modification is to note the following: to end up with one unit of the
underlying at date T, we need to buy only e~¢7 units of it today. We have seen this earlier
in the book, but we repeat the arguments here:

» Suppose the underlying is a foreign currency paying a continuously-compounded interest
rate of ¢. Then, one unit of the foreign currency invested at the rate ¢ will grow to e?”
units by maturity. So e~¢7 units of the foreign currency invested today at the rate g will
provide us with 47 x 9" = | unit of the foreign currency by date T.

» Suppose the underlying is a stock index with a dividend yield of ¢. Then, reinvesting all
the dividends received into buying more of the index will cause our holding of the index
to grow at the rate ¢. Thus, if we start with e =47 units of the index today, we will end up
with one unit at date 7.

Letr denote the (domestic) interest rate in continuously-compounded terms, so PV (K) =
e”"T K. Now consider the following portfolios:

Portfolio A Long one European call
Investment of e "7 K for maturity at T

Portfolio B Long one European put
Long e~ units of the underlying

The cost of Portfolio A is Cr + e "7 K, while that of Portfolio B is Pg + ¢~97'S, where
S is the current price of the underlying (current price of one unit of the foreign currency
or current level of the index). Neither portfolio has any net interim cash flows. By time 7,
Portfolio B has one unit of the underlying. The same arguments used to derive the payoffs
in Table 10.1 show that the two portfolios have identical values at time 7. Thus, their initial
costs must be the same:

Cot+eTK = Pp+e TS (10.31)

Equation (10.31) is the modified form of put-call parity for European options when the
underlying has a continuous yield at rate g.
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10.5 Exercises

A stock is trading at $100. The interest rate for one year is 5% continuously com-
pounded. If a European call option on this stock at a strike of $99 is priced at $8.50,
break down the call option value into

(a) Instrinsic value.
(b) Time value.
(c) Insurance value.

2. In the question above, what is the insurance value of the corresponding put option?

10.

11.

12.

13.

. Explain why a European call on a stock that pays no dividends is never exercised early.

What would you do instead to eliminate the call option position?

Stock ABC pays no dividends. The current price of an American call on the stock at
a strike of 41 is $4. The current stock price is $40. Compute the time value of the
European put option if it is trading at a price of $3.

. Stock ABC is trading at a price of $50. At a strike price of 55, there is a traded six-month

American put. There are no dividends on the stock, and maturity of the option is a half
year. If the half-year rate of interest is 5%, what must the minimum insurance value of
the put be for the put not to be exercised?

Stock XYZ is trading at a price of $105. The American-style call option on XYZ with
maturity one year and strike 100 is traded in the market. The term structure of interest
rates is flat at 1% and there is a dividend payment in six months of $8. What is the
maximum insurance value for the call at which it still makes sense to exercise it?
Assume that the true formula for pricing options is unknown, e.g., Black-Scholes is not
applicable. Hence, you are asked to use the following approximation for the insurance
value of a put option:

T
where S is the current price of the stock, K is the strike price, o is the volatility of the
stock return, and 7 is option maturity.

You are given that S = 100, K = 105, and the interest rate 7 = 1%. Option maturity
is T = 1 year, and there are no dividends.

1V (P) =exp (%0—2>

What is the maximum volatility for which early exercise of the option is induced?

If a stock does not pay dividends, what is the relationship between call prices and
interest rates for early exercise of a put to occur?

You are given the following data about options: S = 60, K = 60,7 = 2%, T = 0.5,
D = 0 (dividends). If the American call is trading at a price of $5, what is the minimum
price of the American put?

In the preceding question, refine the lower bound on the American put if there is a
dividend to be received after three months of an amount of $2. Assume that the term
structure is flat and the American call with dividends is worth $6.

Company WHY pays no dividends. Its stock price is $30. The three-month European
call at strike 29 is trading at $3. The three-month interest rate is 1%. What is the price
of the European put?

Stock ABC is trading at $43 and pays no dividends. If the six-month 50-strike call and
put are equal in price, what is the six-month risk-free interest rate?

Stock XYZ is currently priced at $50. It pays no dividends. The one-year maturity
60-strike European call and put are trading at $10 and $12, respectively. What is the
one-year forward price on the stock?



14.

15.

16.

17.

18.

19.

20.

21.

22.
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You observe the following European option prices in the OTC market on stock QWY,
which does not pay dividends:

T (years) Call Puts Strike
0.5 7 5 100
1.0 19 12 100

However, the firm you work for does not subscribe to price quote services for the equity
and interest rate markets. All you know is that the term structure of interest rates is flat.

You receive a call from a client wishing to buy a forward on the stock QWY for two
years. What price should you quote for this contract?

You are working on an option trading desk in charge of arbitrage trading. The following
data is presented to you on screen, and you immediately see an arbitrage. What is it,
and how much money can you make risk free?

S =60 T =0.25 Cg =5
K =60 D=0 P; =3
r =3%
Stock DEF is trading at $100 and is expected to pay a dividend of $3 in three months.
The European call at strike 95 with half-year maturity is priced at $7. If the flat term
structure of interest rates is 5%, find a lower bound on the price of the American put
option.
Stock CBA is trading at price $50 and is not expected to pay any dividends. The
following puts are traded at maturity in three months:
P(K =50)=3
P(K =60) =15
The three-month interest rate is 2%. What is the price of a (50,60) bullish call spread?

Stock KLM trades at $100 and pays no dividends. The one-year straddle struck at $102
is trading at a price of $10. The one-year interest rate is 2%. Find the price of the
one-year European call and put.

An investor buys a call on ABC stock with a strike price of K and writes a put with
the same strike price and maturity. Assuming the options are European and that there
are no dividends expected during the life of the underlying, how much should such a
portfolio cost?

Use put-call parity to show that the cost of a butterfly spread created using European
puts is identical to the cost of a butterfly spread using European calls.

A stock is trading at S = 50. There are one-month European calls and puts on the stock

with a strike of 50. The call is trading at a price of Cr = 3. Assume that the one-month

rate of interest (annualized) is 2% and that no dividends are expected on the stock over

the next month.

(a) What should be the arbitrage-free price of the put?

(b) Suppose the put is trading at a price of Py = 2.70. Are there any arbitrage oppor-
tunities?

A stock is trading at S = 60. There are one-month American calls and puts on the

stock with a strike of 60. The call costs 2.50 while the put costs 1.90. No dividends

are expected on the stock during the options’ lives. If the one-month rate of interest

(annualized) is 3%, show that there is an arbitrage opportunity available and explain

how to take advantage of it.
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11.1

Option Pricing:
An Introduction

Overview

228

The previous chapters examined option prices from two standpoints: restrictions imposed
by no-arbitrage conditions (e.g., minimum and maximum prices for options) and “relative”
pricing (e.g., how are call and put prices related?). Beginning with this chapter and over the
next several, we move to a more difficult problem: the determination of individual option
prices from information about the underlying.

The aim of this chapter is to build a strong foundation for the material to follow. A
number of important concepts pertaining to option pricing and hedging are introduced and
discussed here. This chapter:

 introduces the binomial model, which is one of the two canonical models of option
pricing (the other being the Black-Scholes model);

» uses a one-period binomial model to illustrate the two general methods of identifying
arbitrage-free option prices, namely replication and risk-neutral pricing;

+ discusses dynamic replication strategies at an intuitive level, focusing especially on the
concept of the option delta, its behavior, properties, and uses; and

* illustrates the idea of dynamic replication of options by presenting a case study of the
dynamic hedging strategy known as portfolio insurance, which was immensely popular
in the 1980s.

A good starting point for this material is the contrast between forward pricing and option
pricing. We begin with this.

Option Pricing Compared to Forward Pricing

As with forward, the basic idea behind pricing options is replication: we look to create
identical payoffs to the options using positions in the underlying and investment/borrowing
at the risk-free rate. However, replicating options involves complications that do not arise
with forward.

With forward, there is a commitment to taking part in the trade underlying the contract.
As we have seen, this makes it possible to replicate the outcome at maturity without regard
to how the price of the underlying evolves over time.

With options, exercise occurs only if this is in the holder’s interest. For European options,
this depends on the underlying asset’s price at maturity. For American options, it depends
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on the entire pattern of evolution of the asset’s price since exercise may occur at any time.
Thus, it is impossible to identify a “fair” price for options without first positing a model of
how the price of the underlying evolves over time.

But we already knew this! As we observed in Chapter 8, option payoff diagrams show
that volatility—the uncertainty anticipated in the price of the underlying—is a primary
determinant of how much investors expect to make from options. This means one cannot
value options without accounting for and modeling this uncertainty. This is called model
dependence: our estimated option prices and hedging strategies will be only as good as our
model of price evolution.

Over the years, a number of alternative models have been proposed in the option pricing
literature. Two particularly popular ones are the binomial model and the Black-Scholes
model. Both are used widely in practice for pricing options on equities, indices, exchange
rates, and other underlyings. The Black-Scholes model is very well known and, indeed, is
almost synonymous with option pricing, but it is somewhat technical and does not offer
much intuition about option pricing and hedging. It also has some limitations; for example,
it cannot easily handle early exercise.

The binomial model, in contrast, is an ideal starting point for understanding option
pricing. The next section describes this model. Throughout this chapter, we refer to the
underlying security as a “stock,” although it could equally be an index level, exchange rate,
or other price.

11.2 The Binomial Model

FIGURE 11.1
A One-Period
Binomial Model

Look at the evolution of stock prices described in Figure 11.1. The current stock price is
58. After one period, the price takes on one of two values: it either moves up to 63 or down
to 54. This is an example of a binomial model, more specifically, a one-period binomial
model.

The general binomial model extends this to allow for several price changes. Price changes
in the model occur at specified time points = 0, 1, 2, .. .. The calendar time between two
time points is 4 years, where %, a parameter of our choosing, can be very small (one day or
less). The main assumption of the model is that given the price S; at time ¢, the price S,
at time ¢ 4 1 takes on one of two possible values:

S, = {uS,, with probability p 1.1

dS;, with probability 1 — p

63
Possible
Current prices
stock 58 after
price one
period

54




230 Part Two Options

where u > d. The number u, called the “up” move, denotes the gross return on the stock
over period ¢ if the price moves from S; to uS,, while d, the “down” move, is the gross
return if the stock price moves from S, to d.S,. In Figure 11.1, these are given, respectively,
by 63/58 ~ 1.0862 and 54/58 ~ 0.9310.

Is This a Bit Too Simple?

At first sight, the binomial model looks too simplistic to be taken seriously as a model
of real-world price changes with price changes occurring only at specified times and only
two (two!) possible prices when a change occurs. But the apparent simplicity of the model
masks a rich and versatile analytical framework.

For example, the Black-Scholes model with its continuous price changes appears much
more sophisticated, complex, and realistic than the binomial. Yet, as we show in Chapter 13,
it is simple to choose the parameter values so that the binomial model resembles the Black-
Scholes model arbitrarily closely. Thus, the binomial may be thought of as just a discrete
version of the Black-Scholes model.

But this is only part of the story. The influential work of Dupire (1994), Derman and Kani
(1994), and Rubinstein (1994) has shown that we can also go well beyond Black-Scholes
with nonstandard binomial models. We elaborate further on this in Chapter 16.

Volatility in the Binomial Model

Intuitively, volatility in the binomial model is related to the ratio u /d: the larger is this ratio,
the wider are the “jaws” of the binomial model and the greater the variability of stock prices.
This is made more formal in Chapter 13. In one common formulation of the binomial model
we describe there, the parameters u# and d are defined by

u = Vi d = eV (11.2)

where o is the annualized volatility of the stock and / the length in years of one period in
the binomial tree. (The notion of annualized volatility is also made precise in Chapter 13.)
From (11.2), the annualized volatility o is related to the ratio u/d by

o = {ﬁ] ln(%) (11.3)

Interest Rates

To keep notation simple, we depart in two ways from our usual convention for interest rates.
First, interest rates will not be in annualized terms; rather, we denote by R the rate of interest
applicable to the time period represented by each step of the binomial tree. Second, R will
denote the gross rate of interest (i.e., 1 plus the net rate of interest) expressed in simple
terms. Thus, a dollar invested at the beginning of period ¢ will grow to R dollars by period
t+ 1.

A Restriction on the Parameters
For the binomial tree to be meaningful, we must have

d <R <u (11.4)

If R > u, then the risk-free interest rate is higher than the stock return in state d and at least
as high as the stock return in state . This means the stock is dominated by the risk-free
rate, so arbitrage profits can be created by shorting the stock and investing the proceeds at
the risk-free rate. If R < d, the stock dominates risk-free returns, and the reverse strategy
creates an arbitrage. We assume henceforth that (11.4) holds.
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What This Chapter Does

In practice, binomial models used to price options and other derivatives use at least 100 time
steps (and very often more). In this first chapter on option pricing, we examine valuation
and hedging in a one-period model. The main point of this exercise is to get an intuitive
feel for the option pricing problem and for key concepts such as the option delta. Following
this, Chapter 12 discusses the general multiperiod problem including considerations such
as dividends and early exercise.

In both the current chapter and Chapter 12, the numbers u, d, and p are taken to be
known. In Chapter 13, we discuss how these values are determined.

11.3 Pricing by Replication in a One-Period Binomial Model

FIGURE 11.2
Pricing the One-Period
Call

We work through a pair of examples that illustrate the mechanics of pricing by replication
in the binomial setting. In both examples, we use the following parameter values:

* The initial stock price is S = 100.

» The price moves up by a factor of # = 1.10 with probability p = 0.75 or down by a
factor of d = 0.90 with probability 1 — p = 0.25.

» The risk-free rate of interest is R = 1.02. That is, a dollar invested at the beginning of
the period grows with certainty to $1.02 at the end of the period.

Given this information, what are the prices of (a) a one-period call option with strike
K =100 and (b) a one-period put option with strike K = 100?

Pricing the Call

The value of the call today is the present value of the payoffs it provides at maturity, so
the first step is to identify these payoffs at maturity. If the up state occurs, the stock price
is uS = 110 while the call gives us the right to buy the stock for 100; thus, the value of
the stock, denoted C,, is 10. In the down state, the stock price is only dS = 90, so the call
lapses unexercised; its value Cy is zero. This information is summarized in Figure 11.2.

What is the initial value C of a call with these payoffs? Replication provides the answer.
Consider a portfolio consisting of

* A, units of stock.
e An amount B, invested at the risk-free rate R.

110 1.02 10
100 1 C
90 1.02 0
Stock Cash Call
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Example 11.1

Example 11.2

We want to choose A, and B, so that the portfolio mimics the call. Both A, and B, may
be positive or negative. If A. > 0, we are buying or taking a long position in the stock; if
A. < 0, we are selling or taking a short position in the stock. Similarly, B. > 0 means we
are investing at the rate R, while B, < 0 means we are borrowing at the rate R.

For the portfolio to replicate the call, it must yield exactly the same payoffs as the call
in each state. The call is worth 10 in the state «.S. The portfolio value in this state is

110A, +1.02 B,

since each unit of the stock is worth 110 in this state, and the risk-free rate on the bor-
rowing/investment is R = 1.02. Similarly, the call is worth zero in the state d.S, while the
portfolio value in this state is

90 A, +1.02 B,
So, for the portfolio to replicate the call, two conditions must be satisfied:
110A.+1.02B. =10 (11.5)
90A, +1.02B. =0 (11.6)

This is a simple two-equation/two-unknown system. Subtracting the second equation
from the first, we obtain 20 A, = 10, so

A, = = (11.7)
Substituting A, = 1/2 into the first equation and rearranging gives us 1.02 B, = —45, so

B, = —44.12 (11.8)

In words, the following portfolio perfectly replicates the call option: (a) a long position in
1/2 unit of the stock, and (b) borrowing of 44.12. Since S = 100, the initial cost of setting
up this replicating portfolio is

1
51004412 = 588 (11.9)

Thus, the price of the call must be C = 5.88! Any other price leads to arbitrage profits. We
illustrate this by considering two scenarios.

Arbitrage from an Undervalued Call

Suppose, for instance, that C = 5.50. Then the call is undervalued relative to the replicating
portfolio. Ariskless profit may be made by buying the call and selling the replicating portfolio.
That is, we (a) buy the call, (b) short 1/2 unit of the stock, and (c) invest 44.12 for one period
at the rate R = 1.02.

This leads to an initial cash inflow of +0.38 (this is the difference between the proceeds
of selling the replicating portfolio and the cost of the call). And, of course, there is no cash
outflow at maturity since the replicating portfolio mimics (by construction) the payoffs of
the call. These cash flow details are summarized in Table 11.1. |

Arbitrage from an Overvalued Call
Now suppose that C = 6.25. Then the call is overvalued relative to the cost of replicating
it. Arbitrage profits may be made by selling the call and selling the replicating portfolio: we
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Arbitrage from an
Undervalued Call

TABLE 11.2
Arbitrage from an
Overvalued Call
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Cash Flow at Maturity

Initial
Source Cash Flow State u State d
Long call —5.50 +10.00 0
Short 1/2 stock +50.00 —55.00 —45.00
Investment —44.12 +45.00 +45.00
Net +0.38 0 0

Initial Cash Flow at Maturity
Source Cash Flow State u State d
Short call +6.25 —10.00 0
Long 1/2 stock —50.00 +55.00 +45.00
Borrowing +44.12 —45.00 —45.00
Net +0.37 0 0

(a) sell the call, (b) buy 1/2 unit of the stock, and (c) borrow 44.12 for one period at the
rate R =1.02.

This leads to an initial cash inflow of +0.37 (the difference between the proceeds of
selling the call and the cost of setting up the replicating portfolio). And, of course, there is
no cash outflow at maturity once again since the replicating portfolio mimics the payoffs of
the call. These cash flow details are summarized in Table 11.2. |

What Happened to the Probability p?

Now for a question that has probably already struck the reader: why did the probability p
play no role in identifying the call’s arbitrage-free price? The mechanical reason is that when
we are replicating the option, we are re-creating its payoffs state by state. The probabilities
of these states do not matter since we are not replicating “on average” (for example, by
weighting each state by its likelihood).

A more subtle point is that information about p is already embedded into the current
stock price and, therefore, into the returns « and d on the stock. The price process represented
by the binomial set-up implicitly assumes a market equilibrium that incorporates investors’
degrees of risk-aversion and other factors. If we change the likelihoods of the two states, the
equilibrium is upset, and the current price of the stock will change to reflect the changed
equilibrium; this will, in turn, change u and d. As an extreme example, consider what would
happen if p = 1, that is, the stock were sure to fetch a price of 110 in one period. It is easy
to see that its current price cannot then be 100; rather, it must be 110/1.02 = 107.85. This
alters u (which is now equal to R) while d becomes irrelevant.

Pricing the Put Option

The arguments are essentially the same as the call. We begin by identifying the payoffs of
the put at maturity. There are two possible prices of the security after one period: «S = 110
and dS = 90. In the state u, the put is valueless: you have the right to sell for 100 a security
that is worth 110. In the state d, the put is worth P; = 10. This information is summarized
in Figure 11.3.

To replicate the put, consider a portfolio consisting of (a) A, units of stock and (b)
an investment of B,. Once again, A, and B, may be positive or negative with negative
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FIGURE 11.3
Pricing the One-Period
Put

Example 11.3

110 1.02 0

100 1 P

90 1.02 10
Stock Cash Put

investment levels corresponding to borrowing. For the portfolio to replicate the put, it must
produce the same outcome as the put in each state. By the same arguments used for the call,
the portfolio is worth

110A, +1.02 B,
in the state u, and
90A,+1.02B),

in the state d. Thus, for the portfolio to replicate the put, we must have

110A,+1.02B, =0 (11.10)
90A,+1.028,=10 (11.11)
Subtracting the second equation from the first, we get 20 A, = —10, or
A — 1
)
Substituting this into the first equation and rearranging, we obtain 1.02 B, = 55, so
B, = +53.92

In words, to replicate the put, we set up a portfolio consisting of (a) a short position
in 1/2 unit of the stock and (b) an investment of 53.92. The initial cost of setting up this
portfolio is

1
—5 (100) +53.92 = 3.92

Thus, the unique arbitrage-free price of the put is P = 3.92. The following two examples
illustrate how any departures from this price result in arbitrage opportunities.

Arbitrage from an Undervalued Put
Suppose P = 3.75. Then the put is undervalued relative to the cost of replicating it. To
create arbitrage profits, we buy the put and sell the replicating portfolio, i.e., we (a) buy
the put, (b) buy 1/2 unit of the stock, and (c) borrow 53.92 for one period at the rate
R =1.02.

This leads to an initial cash inflow of +-0.17 (the difference between the proceeds of selling
the replicating portfolio and the cost of the put). There are no net cash flows at maturity
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Arbitrage from an
Undervalued Put

TABLE 11.4
Arbitrage from an
Overvalued Put

Example 11.4
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Cash Flow at Maturity

Initial
Source Cash Flow State u State d
Long put —3.75 0 +10.00
Long 1/2 stock —50.00 +55.00 +45.00
Borrowing +53.92 —55.00 —55.00
Net +0.17 0 0

Initial Cash Flow at Maturity
Source Cash Flow State u State d
Short put +4.10 0 —10.00
Short 1/2 stock +50.00 —55.00 —45.00
Investment —53.92 +55.00 +55.00
Net +0.18 0 0

since the replicating portfolio mimics the outcome of the put. These cash flow details are
summarized in Table 11.3. |

Arbitrage from an Overvalued Put
Now suppose that P = 4.10. Then, the put is overvalued relative to the cost of replicat-
ing it. To make arbitrage profits, we sell the put and buy the replicating portfolio: (a) sell
the put, (b) sell 1/2 unit of the stock, and (c) invest 53.92 for one period at the rate
R =1.02.

This leads to an initial cash inflow of +0.18 (the difference between the proceeds of
selling the put and the cost of setting up the replicating portfolio), and there is, once again,
no net cash flow at maturity. These cash flow details are summarized in Table 11.4. |

11.4 Comments

The examples above illustrate the broad mechanics of pricing options by replication. Several
comments are in order here.

1. Pricing Options through a CAPM Approach

Once we assume a price process for the underlying stock, we can derive the payoff process
for any given derivative written on that stock. Thus, it appears that an alternative way to value
derivatives is to look at the cash flows generated by the derivative and discount them at an
appropriate risk-adjusted rate. This is correct, although the process is a bit more complex
than replication. Operationalizing this idea requires us to choose a model (such as the
CAPM) for converting uncertain future cash flows into present values. Then, to implement
the model, we need to identify the appropriate inputs such as the option betas.

The beauty of replication is that it does not rely on the validity of the CAPM or any
such model for determining stock values. Nonetheless, options may indeed be priced in
this manner; indeed, Black and Scholes (1973) provide an alternative derivation of their
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celebrated formula using this approach. In Chapter 15, we describe the derivation of the
Black-Scholes formula using both replication and CAPM.

2. Leverage and Expected Returns from Options

If we look at the payoff distributions of the options in the binomial example, their arbitrage-
free prices seem out of line with—or, at least, odd compared to—these distributions. The
payoffs from the call and put are:

10, w.p.0.75
0, wp.0.25

0, wp.0.75

Call Payoffs = { 10, w.p.0.25

Put Payoffs = {
Thus, the call’s expected payoff in the example is 7.50, and the put’s expected payoff is
2.50. Yet the arbitrage-free price of the call is only 5.88, which implies a large positive
expected return of over 27% (compared to the 5% expected return on the stock and the
2% risk-free rate). On the other hand, the price of the put is 3.92, which vastly exceeds its
expected payoff and implies a negative expected return of around —36%. These numbers
appear both inflated and odd—why, for instance, would anyone buy a put with such a huge
negative expected return?—but they are easily understood intuitively.

First, the expected returns are large in absolute value because of /everage. The replicating
portfolio for the call is a levered long position in the call: the portfolio is long 0.50 units
of the stock, which costs 50, but 44.12 of the total cost of 50 is borrowed. Put differently,
the call has a price of just 5.88, or under 6% of the value of the stock, yet its holder gets
full exposure to increases in the price of the stock. Similarly, the put costs 3.92, less than
4% of the value of the stock, but gives the investor full exposure to decreases in the price
of the stock. In a nutshell, calls are levered bets on price increases and puts are levered bets
on price decreases. The expected returns are correspondingly large.

Second, “on average,” stock prices go up; loosely, the stock returns at least as much as
the risk-free asset. Thus, the call, which is a bet on price increases, has a positive expected
return. But the put, which is a bet on a price decrease, loses money on average. In CAPM
terms, the call has a positive beta, the put a negative one.

Of course, all this is only in a cooked-up example with assumed probabilities for the
up and down moves. Do options prices in reality exhibit such characteristics? The answer
is “yes.” A study of empirical options returns by Coval and Shumway (2001) finds that
at-the-money calls on the S&P 500 index have positive expected returns of between 1.8%
and 2% per week while at-the-money puts tend to /ose between 7.7% and 9.5% per week.
These returns reflect the options’ betas, which are large and positive for the calls (between
421 and +55) and large and negative for the puts (between —37 and —27). They also find
similar numbers for options on the S&P 100 index: here, on average, at-the-money calls
gain 0.6% to 0.8% daily, while at-the-money puts lose 1.4% to 1.8% per day.

3. The Importance of Replicability
The importance of “replicability” should be stressed. A number of options in practice are not
capable of being replicated because of limitations on the strategies that may be employed.
Two important examples are employee stock options and real options. In the former case,
employees receiving the options as compensation may neither trade in the option nor short
the underlying stock. Since the validity of the replication-based price depends on being
able to sell an overvalued call or short stock against an undervalued one, the theory is
inapplicable. In the latter case, the underlying is not typically a traded variable.

In such cases, using option-pricing models or formulae (including the Black-Scholes
formula) may be inappropriate and even misleading. There is no easy “out” here. Depending
on the particular situation, prices obtained via the standard techniques may still be useful
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as a benchmark. It may also be possible to modify the model to obtain a more appropriate
price. Rubinstein (1995) discusses the ways in which employee stock options deviate from
standard option-pricing models and suggests potential ways to correct for these.

4. More Complex Models and Dynamic Replication

In the one-period binomial model, the stock price makes just a single move before the option
is at maturity. Thus, replication involved a static strategy where we set up a portfolio at the
beginning of the period and unwind it at the end of the period. In a more realistic setting,
the stock price will move several times before maturity and there will be many more than
just two possible prices at maturity. This means a static strategy will not suffice for option
replication: with only two assets (the stock and risk-free investment) at our disposal, a static
strategy can match option outcomes in two states but not in three or more states.

Rather, replication requires a dynamic strategy that adapts the composition of the repli-
cating portfolio to changing stock prices and other factors so that the portfolio value matches
the option’s final outcome. For example, if a call moves deep into-the-money and is almost
sure to be exercised eventually, it resembles a portfolio that is long one unit of the stock and
has a borrowing with a face value of K. If the call moves deep out-of-the-money and so
is almost sure to lapse unexercised, its replicating portfolio resembles the “null” portfolio
that contains neither stock nor cash.

Dynamic replication is described in the chapters on binomial option pricing and the
Black-Scholes model later in this book. To set the foundation for this material, the current
chapter provides a detailed, but informal, discussion of replication and the option delta in
Section 11.8. These arguments are illustrated in Section 11.9 with a case study of “portfolio
insurance,” a specific dynamic replication strategy that was widely blamed for exacerbating
the October 1987 stock market crash.

11.5 Riskless Hedge Portfolios

Replication shows that we can combine the underlying stock with an appropriate amount
of borrowing to create a call: we can write

A Units of Stock + Borrowing = Long Call (11.12)

If we rearrange this expression (and use the fact that a negative borrowing is an investment),
we see that we can create a synthetic investment by combining the stock and the call:

A Units of Stock 4 Short Call = Investment (11.13)

Expression (11.13) suggests an alternative pricing procedure for identifying the call’s
fair value. We first choose A so that the stock and call combine to create a synthetic risk-
free investment. Since a risk-free portfolio must earn only the risk-free rate of return, the
portfolio may be valued. Finally, since the portfolio consists of only the stock and the option,
we can identify the option’s value from knowledge of the portfolio value and the current
stock price.

This method of pricing is called using a “riskless hedge portfolio” since the riskless
portfolio is created by hedging the option risk with the stock. The riskless hedge portfolio
method has been used frequently to derive option prices, including in the seminal Black
and Scholes (1973) and Merton (1973) papers.

Of course, this method is completely equivalent to the replication procedure described
earlier since (11.12) and (11.13) express exactly the same thing. In particular, the value of A
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that will create a riskless hedge portfolio is the same as the value that is used in replication.
And, like replication, maintaining a riskless hedge portfolio is a dynamic task.

In Appendix 11A, we illustrate the riskless hedge portfolio procedure on the same bino-
mial example presented above and derive option values using this procedure.

11.6 Pricing Using Risk-Neutral Probabilities

Pricing via replication is the economically “correct” way of identifying the arbitrage-
free price of an option. However, the actual computations can be quite cumbersome. The
composition of the replicating portfolio depends on the precise characteristics of the option
in question: what kind of option it is, what maturity and strike it has, and so on—and,
of course, this composition alters as stock prices and other features of the environment
change. This procedure can get especially difficult when we look at exotic options with
more complex features than straightforward calls and puts.

So, we arrive at the question: is there an easier way to arrive at option prices? Note that
this question is primarily computational. Replication is already guaranteed to give us the
unique arbitrage-free price. The only issue is whether we can arrive at this same price in a
quicker way.

The answer, happily, is “yes.” There is a method called risk-neutral pricing that is guar-
anteed to result in the same option prices as replication but is computationally very much
simpler. Risk-neutral pricing reduces the pricing problem to one of taking expectations
of discounted option payoffs. The discounting is done at the risk-free rate and the expec-
tations are taken with respect to a particular probability measure called the risk-neutral
probability. Unlike the replicating portfolio, the risk-neutral probability does not depend on
which derivative is being valued; it is a fixed probability that depends only on the model’s
“primitive” assets (e.g., the stock and the risk-free rate in the binomial model). We describe
risk-neutral pricing in this section.

A Brief Historical Note

The intellectual underpinnings of risk-neutral pricing can be traced back to a 1953 paper by
Nobel Laureate Kenneth Arrow, but the first formal development of the ideas, especially in
the context of option pricing, came some two decades later in Cox and Ross (1976). The ideas
were then developed in great depth in a series of papers by Kreps (1982), Harrison and Kreps
(1979), and Harrison and Pliska (1981), where it was also shown that risk-neutral probabil-
ities have important applications that go well beyond just pricing. Subsequently, a number
of authors have clarified and extended these applications. Collectively, the ideas in these
papers have had an impact on the development of derivative-pricing theory as great as—and
perhaps even greater than—the work of Black and Scholes (1973) and Merton (1973).

Outline of Discussion

In this section, we outline the steps involved in risk-neutral pricing and illustrate the method
in the context of a one-period binomial model. We also provide an intuitive explanation of
why the method “works.” The risk-neutral probability has two other important uses. It can
be used to identify whether a model is internally consistent, i.e., whether a model admits
arbitrage opportunities in its very specification. It can also be used to identify whether a
given model is complete, that is, whether all contingent claims in the model are replicable.
These two uses of risk-neutral probabilities are described in Appendix 11C. An intuitive and
relatively non-technical explanation of the properties and uses of risk-neutral probabilities
may be found in Sundaram (1997).
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The Steps Involved in Risk-Neutral Pricing

Risk-neutral pricing in the binomial model involves a very simple three-step procedure:

» Step 1: Compute the “probabilities” g and 1 — ¢ of the states u and d that make the
expected return on the stock equal to the risk-free rate R.

» Step 2: Compute the expected payoff from the option at maturity under the probabilities
qgand1 —gq.

» Step 3: Discount these expected payoffs back to the current period using the risk-free
rate R.

The final result will be precisely the arbitrage-free price of the option that is obtained by
replication!

The risk-neutral pricing procedure in any general model is the same as in the binomial
model but with one slight modification possibly needed. In the binomial model, we have
assumed interest rates are constant. Thus, it does not matter if Steps 2 and 3 are reversed; that
is, we can first discount the option’s payoffs at the risk-free rate and then take expectations
under ¢. In a general multiasset model—and especially if we are considering interest-rate
derivatives—we might want to allow for the risk-free interest rate itself to be stochastic and
to change over time depending on the “state of the world.” In this case, the risk-free discount
factor to be applied to each option payoff will be different since both the path of interest
rates and the option payoff are stochastic and depend on the state. Thus, we discount the
payoffs before taking the expectation under the risk-neutral probability.

Risk-Neutral Pricing: Terminology

The probabilities ¢ and 1 — ¢ are commonly referred to as the model’s risk-neutral proba-
bilities, but they are also called by other names such as pseudo-probabilities, risk-adjusted
probabilities, or martingale probabilities. The term “pseudo-probabilities” is perhaps the
most descriptive of all of these: it emphasizes the fact that these probabilities are syn-
thetic constructs, distinct from the “true” probabilities p and 1 — p. The remaining three
appellations need explanations.

First, “risk-neutral” probabilities. An investor who is neutral to risk cares only about the
expected return on an asset, and not on its other characteristics. Such an investor, therefore,
would be indifferent between the stock and the risk-free rate R only when faced with the
probabilities ¢ and 1 —g; at all other probabilities, the investor would strictly prefer the stock
or the risk-free rate. Given this unique association with risk-neutrality, these probabilities
are called risk-neutral probabilities.

Why “risk-adjusted” probabilities? In the usual approach to valuation in finance, to
identify the value of an uncertain cash flow, we calculate its present value (under the true
probabilities) and discount this at a risk-adjusted rate. Here we are discounting at the risk-free
rate, but we are calculating the expectation under the constructed probabilities rather than
the true probabilities. Thus, it is as if we are applying the risk-adjustment to the probabilities
instead of the discount factor.

The reason these probabilities are called “martingale probabilities” is more technical
and is explained in Appendix 11D.

Examples
We illustrate risk-neutral pricing in a one-period binomial model. We continue with the

parameters employed in the earlier examples: S = 100, u = 1.10,d = 0.90, p = 0.75, and
R =1.02.
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Example 11.5

Example 11.6

Example 11.7

As the first step, we compute the risk-neutral probability. The stock returns u in the up
state and d in the down state, while the riskless rate is a constant R. Thus, the risk-neutral
probabilities ¢ and 1 — ¢ must satisfy

q-u+(1—-g)-d =R (11.14)
or g(u —d) = R — d. This identifies the risk-neutral probability uniquely as
R—d
= 11.15
¢ = _— ( )
In the present case, u = 1.10, d = 0.90, and R = 1.02, so we obtain g = 0.60.

First, consider pricing a call with a strike of K = 100. As we have seen, the call pays 10 in
state u and 0 in state d. Therefore, its expected payoff under g is

(0.60)-10+(0.40)-0 = 6
Discounting this expected payoff at the risk-free rate, we obtain

6 _ sgg

This is the same as the call price we derived earlier using replication techniques! |

Now, consider a put with a strike of 100. The put pays 0 in state u and 10 in state d.
Therefore, its expected payoff under g is

(0.60) -0+ (0.40)-10 = 4
Discounting this expected payoff at the risk-free rate, we obtain

439

Once again, this is the same put price derived using replication. |

Consider one final example. Suppose we wish to price a call with a strike of 105.

First, consider pricing this call by replication. The call pays 5 in the state u and nothing
in the state d. If the replicating portfolio holds A, units of stock and has B invested at the
risk-free rate, then A. and B, must satisfy

1M0A.+1.02B. =5
90A,+1.02B,=0

Solving this pair of equations gives us A = 0.25 and B, = —22.06. Thus, the initial cost of
the replicating portfolio is

(100 x 0.25) — 22.06 = 2.94

This means the arbitrage-free price of the call is also 2.94.

Now consider pricing the same call by risk-neutral probabilities. As we have already
seen, the risk-neutral probabilities of the states u and d are 0.60 and 0.40, respectively. The
expected payoff of the call under these probabilities is

(0.60)(5) + (0.40)(0) = 3
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Discounting this payoff at the risk-free rate gives us the price of the call as

3
> =294
1.02 ? ]

These examples show just how much easier it is to compute arbitrage-free prices using
risk-neutral probabilities than replication even in the simple one-period binomial model.
In more complex models, the computational advantage of risk-neutral pricing only gets
enhanced.

Why Does Risk-Neutral Pricing “Work”?

Risk-neutral pricing is one of finance’s “beautifully unexpected” results, unexpected because
there seems no obvious connection between replication and the risk-neutral probabilities.
Why does the procedure work?

An intuitive explanation provided by Cox and Ross (1976) involves the following thought
experiment. Imagine two worlds in which all securities have the same current price and
the same set of possible future prices. The only difference between the two worlds is the
probabilities of these different future prices. Suppose one of these worlds is risk-neutral,
so the probabilities are such that all expected returns are the same. The other world is
our own in which investors are generally risk averse so prices of risky assets carry a risk
premium.

Consider a call option in this setting and suppose that the call can be replicated using the
other securities. Since the composition and cost of the replicating portfolio do not depend on
the probabilities of the different future states (as we noted earlier in this chapter), the option
must have the same price in both worlds. But, as with any security in the risk-neutral world,
the option’s price in the risk-neutral world is just its discounted expected value.

This says precisely that we can identify the value of the option in our original, risk-averse,
world by considering a risk-neutral world with the same set of future prices and seeing how
much the option would cost there. This is exactly what the risk-neutral pricing procedure
does!

A more technical explanation has to do with the relationship between risk-neutral proba-
bilities and the prices of the model’s “Arrow securities” (so-called after Arrow’s description
of'them in his 1953 paper; what are sometimes also called “Arrow-Debreu securities”). This
is outlined in Appendix 11B.

Other Uses of the Risk-Neutral Probability

The risk-neutral probability is very useful as a computational tool in pricing derivatives,
but its uses stretch well beyond this. Two of particular importance are in identifying
inconsistently-specified models and ensuring market completeness.

Suppose we have a model with a large number of primitive assets (e.g., many stocks
and/or bonds). How can we be sure that the stochastic processes we specify for each of
these are consistent with no arbitrage, i.e., that it is not possible to form some complex
trading strategy using these different securities that creates riskless profits? Obviously, such
internal consistency is a minimal condition we want satisfied in our model.

One way to ensure this is, of course, to check through all possible trading strategies, but
this is likely to be infeasible in complex models. A simpler solution, however, is available:
a model is internally consistent if and only if it has at least one risk-neutral probability, that
is, there is at least one set of probabilities on the different states of the world under which
all assets in the model have the same expected returns.

A second use of risk-neutral probabilities is equally unexpected and powerful. How
can we know if derivatives in a given model are capable of being replicated? In simple
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models (such as a one-period binomial model), we can verify this by exhausting all possible
derivatives, but in a richer setting, this is impractical. Here’s the answer: all derivatives in
a model are capable of being replicated if and only if the model has a unique risk-neutral
probability.

These two remarkable properties of risk-neutral probabilities—model consistency and
market completeness—are discussed further in Appendix 11C.

11.7 The One-Period Model in General Notation

Consider a one-period binomial model in which the current stock price is S; the price goes
up to uS with probability p and down to d.S with probability 1 — p; the risk-free rate is R;
and we are looking to price a derivative that has the value X, in state # and X, in state d.
What is the initial value of the derivative?

The risk-neutral probability ¢ of the up move in this setting is, as we have seen in (11.15)
above, given by

R—d
u—d
Thus, using the risk-neutral pricing approach, the initial price of the claim is

1 1 r—d u—R
¥ = glaxora-oxd = ¢ |(S29) o (U50) x| arae

q:

Of course, we can also derive (11.16) by replication. Suppose the replicating portfolio
consists of A units of the stock and an amount B of investment. The initial cost of the
replicating portfolio is then

AS+B (11.17)
For the portfolio to replicate the derivative’s outcomes, A and B must satisfy

AuS+ RB = X,

(11.18)
AdS+RB =X,
Subtracing the second equation from the first shows us that
Xu - Xd
= —— 11.19
uS—ds ( )
Substituting this value of A in (11.18) and rearranging, we obtain
1 uXd — qu
B=—-|—7---— 11.20
R < u—d ) ( )

Finally, substituting these values of A and B into (11.17) and doing some algebraic manip-
ulation, we can see that the option price is precisely the expression given in (11.16).

11.8 The Delta of an Option

One of the most important concepts in dealing with options is that of the option delza.
The delta is defined as the number of units of the underlying security that must be held
in a portfolio that replicates (a long position in) the option. In the binomial examples for
instance, the call delta was +0.50 and the put delta was —0.50. The delta is central to the
pricing, hedging, and risk-management of options. Given its importance, it is helpful to have
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an intuitive feel for this concept before examining its role more formally. In this section,
we provide such an informal description of the delta’s properties and its uses.

An observation first. Recall that, as discussed in Section 11.4, replication requires a
dynamic strategy that adapts the composition of the replicating portfolio—in particular,
the option delta—to changing stock prices and other factors. Thus, the delta of an option
represents a “snapshot” view: it is the number of units of the underlying required to replicate
the option at a point in time. As information changes, the delta too will typically change
with it. This point should be kept in mind throughout.

Properties of the Delta

There are three properties call and put deltas must have.

Property 1

The delta of a call is positive and that of a put is negative. That is, replicating a long call
position requires holding a long position in the underlying; replicating a long put position
requires a short position in the underlying.

It is not hard to see why. A call is a bullish instrument; it increases in value when the stock
price increases. Thus, the replicating portfolio must also increase in value when the stock
price increases. This is possible only if the portfolio has a long position in the underlying.
Conversely, a put is a bearish instrument that gains value when the stock price decreases.
The portfolio replicating the put must also then move in the opposite direction to the stock
price, and this mandates a short position in the stock.

Property 2

The delta of a call must lie between 0 and 1, while that of a put must lie between —1 and
0. Intuitively, the maximum benefit to the holder of a call from a $1 increase in the stock
price is $1; typically, the benefit will be lower since the change may be reversed with some
likelihood. So the maximum number of units of the stock that need be held in the replicating
portfolio is 1. Similarly, the maximum gain to the holder of a put from a $1 fall in the stock
price is $1, so the replicating portfolio will need to be short at most one unit of the stock.

Property 3

The delta of an option depends on its depth in-the-money. Options that are deep in-the-
money (i.e., that are very likely to finish in-the-money) have deltas that are close to unity in
absolute value. Those that are deep out-of-the-money (i.e., are very unlikely to eventually
move into-the-money) have deltas close to zero. In general, as an option moves further
into-the-money, the higher is its delta in absolute terms.

To see this, suppose a call is very deep in-the-money, so the call holder is very likely
to exercise the option eventually. Effectively, the call holder is then looking at paying the
strike price at maturity and receiving one unit of the stock. Holding the call is therefore
almost equivalent to holding a portfolio consisting of one unit of the stock and a borrowing
with face value K. (“Almost” because there is some probability that the call might go back
out-of-the-money.) This says precisely that the delta of the call is almost 4-1. An analogous
argument shows that the delta of a deep in-the-money put is close to —1.

On the other hand, suppose a call is deep out-of-the-money, i.e., there is a very low
likelihood of its being exercised. Then the replicating portfolio for the call is almost the
“null” portfolio, the one that contains neither the stock nor cash. (Once again, only “almost”
because there is some probability that the option might wind up in-the-money at maturity.)
Thus, the delta of the call is now close to zero. The delta of a deep out-of-the-money put is
similarly close to zero.
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FIGURE 11.4
Option Deltas as Depth
in-the-Money Varies
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Figure 11.4 summarizes all three properties in a single picture. The figure was generated
using the Black-Scholes model for European options and assumes a strike price of K = 100.
Note that at any given stock price, the difference in the call and put deltas in the figure is
exactly +1. We will explain later why this must hold for European options; itis a consequence
of—what else?—put-call parity. The figure also shows why option replication must be
dynamic: the replicating portfolio requires us to hold delta units of the underlying asset, but
the delta changes when the price of the underlying stock changes.

Uses of the Delta

The delta is perhaps the single most important number characterizing an option. First and
foremost, it enables us to express option risk in terms of units of the underlying asset. For
example, suppose the delta of a given call is +-0.60. This means that the portfolio replicating
the call has a long position in 0.60 units of the underlying. Since the replicating portfolio
mimics the call, it is as if the call embeds 0.60 units of the underlying. That is, the risk in
the option on account of the underlying is akin to the risk in a long position of 0.60 units of
the underlying. This simple observation has several important implications.

1. Hedging Option Positions

First, the delta enables us to hedge option positions using the underlying. Say that we have
written a call whose delta is currently 4-0.70. Then the risk in the call is the same as the
risk in a long position in 0.70 units of the underlying. Since we are short the call, it is as if
we are short 0.70 units of the underlying. Thus, to hedge the position, we simply buy 0.70
units of the underlying asset. This is called delta hedging. Of course, like replication, delta
hedging too is a dynamic strategy in general: as changes in the price of the underlying cause
option risk to change, we need to rebalance the delta hedge.

2. Aggregating Risk

The delta also enables us to aggregate risk across different options written on the same
underlying security. As a simple example, suppose we have written 100 calls on a given
stock, each with a delta of 4-0.35, and are long 100 puts on the same stock, each with a
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delta of —0.32. Suppose we also have 100 shares of stock. Then:

* A long position in each of the calls is akin to a long position in 0.35 units of the stock.
We are short 100 of these calls. Thus, it is as if we are short 0.35 x 100 = 35 units of
the stock.

* A long position in each of the puts is akin to being short 0.32 units of the stock. Since
we are long 100 of these puts, it is as if we are short 0.32 x 100 = 32 units of the stock.

*  We are also long 100 units of the stock.

Thus, in aggregate, the portfolio has a risk equivalent to —35 — 32 + 100 = 33 units of
the underlying. (This aggregate is called the “portfolio delta.”) Of course, we can offset this
risk by delta-hedging at the portfolio level: to do this, we sell 33 units of the underlying
stock.

3. As a Sensitivity Measure

Third, the delta is also a sensitivity measure: it predicts the dollar change in the value of
a call for a given change in the price of the underlying. For example, suppose the delta of
a call is 40.50. Then, holding the call is “like” holding +0.50 units of the stock. Thus, a
change of $1 in the price of the stock will lead to a change of 4+-0.50 in the value of the call.
Of course, the sensitivity measure can be applied at the portfolio level also. If the delta of
a given portfolio is (say) +315, then the portfolio increases in value by $315 for each $1
increase in the share price.

Equivalent Ways of Defining the Delta

These three uses of the delta—in replication, in (delta-)hedging, and as a sensitivity
measure—are equivalent. They are merely different ways of looking at the same concept.
Knowing any of them is the same as knowing all of them. For example, if we know the
sensitivity of the option to changes in S (say, an option changes value by $0.56 for every
$1 change in S), then we know its delta (in this example, it must be 4-0.56). Thus, we could
have equivalently defined the delta as the number of units of the stock required to hedge
a short option position; or we could have defined it as the change in option value for a $1
increase in the stock price. In the sequel, when we refer to the delta, we will appeal to any
of these definitions.

The Delta as a Probability?

It is often suggested that the (absolute value of the) delta is “like” the probability that the
option will finish in-the-money. Figure 11.4 shows an intuitive basis for this: deep in-the-
money options that are very likely to finish in-the-money have deltas close to 1 (in absolute
value), and deep out-of-the-money options that are unlikely to finish in-the-money have
deltas close to zero. Strictly speaking, this interpretation is inaccurate: despite the apparent
similarity between the two concepts, there is a difference, sometimes stark, between the
likelihood of an option finishing in-the-money and its delta. Nonetheless, there is also
intuitive insight to be gained sometimes from viewing the delta in this way so we shall
occasionally appeal to this interpretation.

An Important Cautionary Note

The delta is clearly valuable from a number of viewpoints, but a cautionary note is relevant
here. The equivalence between holding a call and holding delta units of the underlying is
only “local,” that is, it is valid only for small changes in S. This is because the delta itself
changes as the stock price changes. A substantial change in the stock price will change
call values differently from delta units of the stock. For example, consider the following
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hypothetical information on a call on XYZ stock with a strike of $30:

Current stock price 30 31 32 33 34 35
Call A 0.59 0.67 0.72 0.78 0.83 0.86

By how much does the call value change if the stock price jumps from $30 to $35? The
delta at § = 30 is 0.59, suggesting that at a stock price of $30, the call value changes by
$0.59 for every $1 change in S. If we naively applied this to a $5 change, we would guess
that the call price would change by 5 x 0.59 = 2.45.

To see why this is wrong, note from the given deltas that a move in the stock price from
30 to 31 changes the call value by around $0.59; a move from 31 to 32 changes the call
value by around $0.67; a move from 32 to 33 by about $0.72; and so on. Thus, a move in
the stock price from 30 to 35 changes the call value by around

0.59+4+0.67+0.724+0.78 +0.83 = 3.59

which is substantially larger than the $2.45 change predicted by naive use of the delta at
S = 30.

The same example also shows that delta-hedging works only for small stock price
changes. Suppose we had written this call and delta-hedged by buying 0.59 units of the
stock. If the price jumps to $35, the value of our short option position decreases by around
$3.59 (as we have just seen) while the value of the 0.59 units of the stock we hold increases
only by $2.45, which does not fully offset the lost value on the call.

Thus, we should exercise some care in interpreting the delta and working with it. However,
we should not also exaggerate this shortcoming of the delta. In practice, most of the time
and in most markets, prices move only by small increments, and the delta works very well
in providing a hedge on option positions or in predicting sensitivity. It remains the first line
of defense in managing option risk. In Chapter 17, we examine how to augment the delta
with a measure called the option gamma and how to use the delta and gamma together for
gauging the impact on option prices of large price moves as well as for hedging option risk.

11.9 An Application: Portfolio Insurance

Portfolio insurance' is a dynamic trading strategy that was devised in the late 1970s by two
Berkeley professors, Hayne Leland and Mark Rubinstein. At its core, it involves a simple
idea. If we want to obtain protection against a decline in the value of a portfolio we hold, we
can buy a put option on the portfolio. In the late 1970s, there were few exchange-traded put
options and no exchange-traded index options. Even had the latter existed, they might have
been unsuitable for those managers whose portfolios did not closely resemble the index. A
demand for protection nonetheless existed: with insurance, portfolio managers are protected
against stock market downturns but are able to participate in upswings. Without it, many
pension fund managers had withdrawn from the stock market after the decline of 1973-74
only to miss the rally of 1974-75.

Leland and Rubinstein proposed creating the required put synthetically by dynamic repli-
cation using a model of option pricing. This makes it possible to “customize” the synthetic
option in terms of the maturity, strike price, and composition of the underlying portfolio.

T There are many sources of information on the history of portfolio insurance and its alleged role in
the stock market crash of 1987. The presentation here draws especially on Leland and Rubinstein
(1988) and McKenzie (2004).
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Now, as we have seen, replicating a put involves taking a short position in the underlying.
Here, since we are creating a put on a portfolio we already hold, we simply have to sell the
appropriate number of units of the underlying portfolio. As the delta of the put changes, we
either sell more of the portfolio or buy back some of it to reflect the changing delta.

Note the dynamics of this strategy. As prices decline, the delta of a put moves towards
—1, so more of the portfolio has to be sold to stay replicated. As prices increase, the delta
moves towards zero, so some of the portfolio has to be bought back. No, this is not a buy-
high/sell-low strategy! Rather, the objective is to move from stocks to cash as prices go
down and to move back into stocks as prices increase.

Implementing this strategy involves repeated trading in the underlying portfolio, and
this may involve substantial transactions costs. The introduction of index futures in the
early 1980s helped alleviate this problem. For those managers whose broadly diversified
portfolios resembled the market index, index futures could be used in place of the spot
asset. Since the futures and index levels move in lockstep under no-arbitrage, this gave rise
to virtually the same hedge as long as arbitrageurs ensured the futures-spot link was not
broken.

By 1987, portfolio insurance was a hugely popular strategy. It is estimated that the total
size of the portfolios managed using portfolio insurance strategies at this time was perhaps
of the order of around $90 billion, with around $50 billion under the management of LOR
Associates and its licensees alone. (LOR Associates was the firm co-founded by Leland and
Rubinstein with John O’Brien, an investment professional.) A large fraction of portfolio
insurance strategies were being implemented using index futures contracts.

In October of that year came the stock market crash. On Friday, October 16, the Dow
Jones index fell by 4.6%, a very large figure for a one-day move. But this was only a small
indication of things to come. On Monday, October 19, the Dow experienced its largest ever
single-day decline of 22.6%, a figure that was almost twice the size of the largest one-day
decline during the 1929 crash. Many stocks, even some of the largest, simply stopped trading
during the day as the NYSE’s specialists were overwhelmed by the volume of sell orders.
The lack of liquidity in the cash market snapped the futures-spot link. While the S&P 500
index fell around 20% that day, the S&P 500 index futures fell around 29%.

The Role of Portfolio Insurance?

A Presidential Task Force chaired by Nicholas Brady, later Secretary of the Treasury under
Presidents Reagan and George H. W. Bush, was appointed to investigate the causes for
the crash. The Task Force noted that a substantial fraction of the trading volume that day
(about 10% of the NYSE volume and about 40% of the S&P 500 index futures volume)
was attributable to portfolio insurance strategies. Since portfolio insurance involves selling
(either spot or futures) in the event of a price decrease, the Task Force concluded that such
strategies had exacerbated the price decline and, if not responsible for the crash, had at least
to share a substantial amount of blame for it.

Atan intuitive level, this appears plausible. Following the price decline on Friday, October
16, portfolio insurance strategies had to sell to stay rebalanced (they sold mainly futures
but also some spot). This selling put downward pressure on futures prices (so the argument
goes). The falling futures prices created downward pressure on the spot as well. And, of
course, as prices fell, further selling pressure resulted from these strategies, leading to
further falls.

Yet reflection and subsequent study have cast much doubt on these conclusions. Port-
folio insurance strategies are reactive strategies rather than informed ones—they respond
to a price decline post facto but do not carry any information about anticipated future de-
clines. Thus, investors ought not to read bad news in selling dictated by portfolio insurance
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considerations. Moreover, if market fundamentals had not changed but prices had declined
excessively because of the selling pressures of portfolio insurance strategies, markets ought
to have recovered in short order. They did not. Roll (1988) also pointed out that the crash
of 1987 was an almost worldwide phenomenon with all developed markets’ equity indices
experiencing steep declines on the same day. Yet in most of these other markets, portfolio
insurance strategies were not present or were used in a very small way.

Regardless of their role in the 1987 crash, the popularity of portfolio insurance strategies
has subsequently faded. Poor performance during the crash was not likely a factor. It is
estimated, for example, that over 60% of LOR’s clients obtained the floor value the synthetic
put was supposed to create, and most of the rest were off by only 5-7% from their floors.
Rather, one reason may have been portfolio managers’ reluctance to use a tainted strategy.
But more generally, synthetic options strategies appear to have been replaced by exchange-
traded index options and customized over-the-counter options in hedges.

11.10 Exercises 1. Explain intuitively why the delta of a call will lie between zero and unity. When will it

be close to zero? When will it be close to unity?

2. Give an example of a derivative whose delta is positive for some ranges of the stock
price and negative for others. (Use your imagination here.)

3. A stock is currently trading at 80. You hold a portfolio consisting of the following:

(a) Long 100 units of stock.

(b) Short 100 calls, each with a strike of 90.

(c) Long 100 puts, each with a strike of 70.

Suppose the delta of the 90-strike call is 0.45 while the delta of the 70-strike put is
—0.60. What is the aggregate delta of your portfolio?

4. (Difficult) Compare the replication of an option in a binomial model versus replication
in a trinomial model by answering the following questions:

(a) How many securities do we need to carry out replication in each model?
(b) Is the risk-neutral probability defined in each model unique?

5. In a binomial-tree framework, if the risk-neutral probability on the up branch is given
as p = 0.8956, the risk-free rate per period is 2%, and the down move is the reciprocal
of the up move, then, given a current stock price of $100, what are the two prices a
period from now?

6. In the question above, suppose we have a one-period call option with a strike price of
$100; what is the delta of the call? If the up-shift parameter u is increased to 1.5, then
what is the delta of the call? Is it higher or lower? Why?

7. A stock is currenly trading at 80. There are one-month calls and puts on the stock with
strike prices of 70, 75, 80, 85, and 90. The price and delta of each of these options are

given below:
Strike 70 75 80 85 90
Call price 10.60 6.47 3.39 1.50 0.56
Put price 0.30 1.15 3.05 6.14 10.18
Call A 0.92 0.77 0.54 0.31 0.14

Put A —0.08 —0.23 —0.46 —0.69 —0.86
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For each of the following portfolios, identify (i) the current value of the portfolio, and
(ii) the approximate value of the portfolio following a $1 decrease in the stock price.

(a) Long 100 units of stock, short 100 units of the 80-strike call.
(b) Long 1000 units of the 80-strike call and 1174 units of the 80-strike put.

(c) Long 100 units of stock, long 100 units of the 75-strike put, and short 100 units of
the 85-strike call.

(d) Long 100 units of the 70-strike call, long 100 units of the 90-strike call, and short
200 units of the 80-strike call.

(e) Long 100 units of the 85-strike put and short 100 units of the 75-strike put.

. ABC stock is currently trading at 100. In the next period, the price will either go up by

10% or down by 10%. The risk-free rate of interest over the period is 5%.

(a) Construct a replicating portfolio to value a call option written today with a strike
price of 100. What is the hedge ratio?

(b) Calculate the risk-neutral probabilities in the model. Value the same call option using
the risk-neutral probabilities. Check that you get the same answer as in part (a).

(c) Using the risk-neutral probabilities, find the value of a put option written today,
lasting one period and with an exercise price of 100.

(d) Verify that the same price for the put results from put-call parity.

. ABC stock is currently at 100. In the next period, the price will either increase by 10%

or decrease by 10%. The risk-free rate of return per period is 2%. Consider a call option

on ABC stock with strike K = 100.

(a) Setup a replicating portfolio to value the call.

(b) Suppose the call is trading for $7. Explain how you would exploit the resulting
arbitrage opportunity.

ABC stock is currently at 100. In the next period, the price will either increase by 5% or

decrease by 5%. The risk-free rate of return per period is 3%. Consider a put option on

ABC stock with strike K = 100.

(a) Setup a replicating portfolio to value the put.

(b) Suppose the put is trading for $2. Explain how you would exploit the resulting
arbitrage opportunity.

Consider a one-period binomial model with the parameters © = 1.05, d = 0.95, and

r = 1.01. Let the initial stock price be S = 100.

(a) Identify the price and delta of a call with strike K = 100.

(b) Repeat this exercise for K = 96, K =98, K = 102, and K = 104.

(c) Use put-call parity to identify the value of the corresponding put options and the put
deltas.

There are two stocks, A and B, both trading at price $20. Consider a one-period bi-

nomial model in which stock A’s price can go to either of {35, 5}. Stock B’s price can

take one of the following values after one period: {36, 18}. An investment in $1.00

of bonds at the start of the period delivers a risk-free value at the end of the period

of $1.10.

(a) Using replication, find the prices of call options on both stocks A and B if the calls
have a strike of $20.

(b) Which call is worth more, that on stock A or on stock B? Why?

In a one-period setting, suppose there are three states of the world at the end of the

period. Suppose there are three securities, stocks A and C, and a risk-free bond B. The
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14.

15.

16.

17.

18.

19.

initial prices of securities A, B, and C are, respectively, 20, 1, and 10. The prices after
one period are as given in the table below:

Security State 1 State 2 State 3
A 50 20 5
B 1.10 1.10 1.10
C 20 30 2

(a) Using replication, find the price of a call option on stock A at a strike price of
K =15.

(b) Using replication, find the price of a call option on stock B at a strike price of
K =15.

(c) What are state prices? Compute these for the three states in the model. (State prices
are defined in Appendix 11B.)

(d) Show how you would price the two call options above using state prices.

The price of XYZ stock is currently at $100. After one period, the price will move to
one of the following two values: {130, 80}. A $1.00 investment in the risk-free asset will
return $1.05 at the end of the period.

(a) Find the risk-neutral probabilities governing the movement of the stock price.
(b) Find the state prices for each of the states in the following period.
(c) Calculate the price of a $102-strike put directly using the state prices.

The price of ABC stock is currently at S = $100. After one period, the price will move to
one of'the following two values: {uS, d S}, where {u = 1.2, d = 0.9}. A $1.00 investment
in the risk-free asset will return $1.10 at the end of the period.

(a) Find the risk-neutral probabilities governing the movement of the stock price.
(b) For a strike-100 call, find the delta of the call.
(c) For a strike-100 put, find the delta of the put.

(d) Compute the difference between the call delta and the put delta and explain the
answer you get.

In the previous question, if the stock price rises to $110, then

(a) Recompute A, A,,.

(b) Explain why the deltas moved in their respective directions.

(c) Confirm that the difference in the deltas is still equal to +1.

The current price of a stock is $50. The one-period rate of interest is 10%. The up-move
parameter for the stock movement over one period is ¥ = 1.5, and the down-move
parameter is d = 0.5.

(a) If the delta of the call at strike K is 0.5, what is the strike of this option?

(b) What is the delta of the put at the same strike?

(c) What is the price of this put?

(Difficult) The current price of a stock is $100. After one period, this stock may move to
three possible values: {150, 110, 60}. The value of $1.00 invested in the risk-free asset
compounds to a value of $1.05 in one period. Find the upper and lower bounds of the
call price if its strike is $100.

Portfolio insurance: The current price of the stock we are holding is $100. We want to
continue to hold the stock position but modify it so that the portfolio value never drops
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below $90. If the stock may move up to $130 or down to $80 after one period, how do
we modify our holding of $100 so as to make sure that it is at least of $90 value at the
end of the period? The rate of simple interest for the period is 10%.

What is a martingale measure? What is the role of the martingale measure in finance?
Does the delta of the option in the binomial tree depend on the risk-neutral probabilities?

In the binomial model, the up move of the stock is set by parameter u, i.e., the stock goes
from S at the start of the period to « S at the end of the period if it moves up. Likewise, the
down-move parameter for the stock is d. The value of 1 plus the interest rate is specified
as R. What is the no-arbitrage relationship between u, d, R? Explain what happens if
this relationship is violated.

You are given the following one-period-ahead binomial outcomes for a stock, trading at
a current price of S (% is the length of one period measured in years):

Sexp(o+/h)  with prob ¢
Sexp(—o~/h) withprob 1 —g¢
The continuously compounded interest rate is ». Answer the following questions:
(a) What is a martingale?
(b) If the normalized price of the stock is a martingale, then what is the probability ¢?

(c) What is the variance of the continuously compounded return on the stock in this
scenario?
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Riskless Hedge Portfolios and Option Pricing

The basic ideas underlying pricing by constructing a riskless hedge portfolio are easily
described. Since the option derives its value from the underlying, it “should” be possible
to combine the option and the underlying in such a way as to cancel out uncertainty and
create a riskless portfolio. Such a riskless portfolio must earn only the risk-free rate of
return. Therefore, the present value of the riskless portfolio is simply its value at maturity
discounted at the risk-free rate. Since the portfolio consists of only the option and the
underlying, the price of the option is determined from the present value of the portfolio and
the price of the underlying.

Of course, the first step in this procedure is just delta hedging—the creation of a riskless
position by hedging the risk in the option with the underlying! Thus, just like replication, the
identification of the option delta is also central to this method, and indeed, as we mentioned
above, the two methods are virtually the same.

In particular, suppose we know the composition of the replicating portfolio for a given
call (say, it involves a long position in A units of the underlying and borrowing of B, at the
risk-free rate). We describe how to construct a riskless hedge portfolio from this, i.e., how
to combine appropriate quantities of the stock and the option into a portfolio that makes the
portfolio riskless.

First, note that the replication can be written as:

Long Call = A, - Stock — B,
Rearranging this expression:

A, - Stock — Long Call = B,
or, since the negative of a long position is a short position:

A, - Stock + Short Call = B,

In words, this says that if we combine a short position in the call with A, units of the stock,
we effectively create a riskless investment of B..

Thus, the riskless hedge portfolio can be computed from the replicating portfolio. Note,
in particular, that the deltas are the same, and the value of the riskless hedge portfolio is
identical to the size of the borrowing B, in the replicating portfolio.

Similarly, from knowledge of the riskless hedge portfolio, we can construct the replicating
portfolio.

A Numerical Example

An example will illustrate the close relationship between replication and riskless hedge
portfolios. Consider the same parameters as earlier: S = 100, u = 1.10, d = 0.90,
q = 0.75,and R = 1.02. Suppose we wish to price a call with a strike of K = 100.

We will construct a riskless hedge portfolio (without referring to the replicating portfolio)
to price this call. It will be seen that the portfolio values coincide with the numbers obtained
earlier from the replication arguments.

The first step in the argument is to identify the composition of the riskless hedge portfolio.
So, let the hedge portfolio consist of a short position in one call option and A, units of the
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underlying. Of course, A, can be positive or negative: A, > 0 indicates a Jong position in
the underlying while A. < 0 indicates a short position in the underlying.

The key question: for what value of A, is this portfolio riskless? There are two possible
values for this portfolio after one period:

1. If uS occurs, the portfolio is worth
uS-A.—C, = 110- A, - 10
2. If dS occurs, the portfolio is worth
ds-A,—Cq; = 90- A,
For the portfolio to be riskless, these values must be equal:
110- A, — 10 = 90A,

This gives us A. = 0.50, completing the first step of the pricing argument.

The second step is to identify the present value of the riskless portfolio we have con-
structed. If A. = 0.50, the portfolio is always worth 45 after one period regardless of
which state occurs. Therefore, the present value of the portfolio is 45/1.02 = 44.12. This
completes the second step.

Finally, in the third step, we identify the fair price of the option from knowledge of the
portfolio’s present value and the current price of the underlying. To this end, note that the
portfolio consists of 0.50 units of the underlying and a short call option. Therefore, if C
denotes the price of the option, the cost of this portfolio is

A-S—C = 100-(0.50)—C = 50—C

Since the cost of the portfolio must equal its present value, we must have 50 — C = 44.12,
or

C =50—-44.12 =5.88

This completes step 3.
Any other price for the call leads to arbitrage:

1. If C < 5.88, then the portfolio costs more than its present value, so an arbitrage can be
made by selling the riskless hedge portfolio and borrowing.

2. If C > 5.88, then the portfolio costs less than its present value, so an arbitrage can be
made by buying the riskless hedge portfolio and investing.

Note that the price of 5.88 obtained using a riskless hedge portfolio is the same value as
obtained using replication. Indeed, so are the other quantities. The delta value A, is equal to
0.50 under both methods. The present value of the riskless hedge portfolio is 44.12, which
is exactly the value of the borrowing under replication.

Price a put with K = 100 using a riskless hedge portfolio and verify that the answer is
P =3.92.
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Risk-Neutral Probabilities
and Arrow Security Prices

In Section 11.6 where risk-neutral probabilities were defined, we offered an intuitive ex-
planation of why risk-neutral pricing identifies the correct arbitrage-free price. Here we
describe a more formal mathematical link between risk-neutral probabilities and the prices
of a class of claims called Arrow securities. Arrow securities are named after Economics
Nobel Laureate Kenneth Arrow who first described the use of such securities in a 1953 paper.

Arrow securities are the fundamental building blocks of all contingent claims (claims,
like derivatives, whose payoffs may be contingent on future states of the world). An Arrow
security is defined as a security that pays $1 in a given state and nothing otherwise. For
example, in a one-period binomial model, there are two future states of the world, so there
are two Arrow securities: one associated with state # and one associated with state d. The
price of an Arrow security is called a state price. We denote the state prices in the one-period
binomial model by 7, and 7., respectively.

Given a model, any contingent claim in that model can obviously be written as a portfolio
of Arrow securities. For instance, consider a call option in a one-period binomial model
that pays $10 in the state u and nothing in the state d. The call is equivalent to a portfolio
consisting of (i) 10 state-u Arrow securities and (ii) zero state-d Arrow securities. Thus, the
price of any contingent claim is simply the value of the corresponding portfolio of Arrow
securities, so any claim can be priced from knowledge of the state prices.

Now here is the fundamental mathematical connection: it turns out that in any model,
the model’s state prices are equal to the discounted risk-neutral probabilities! This result is
not hard to verify in the binomial model. Consider, for instance, the state-u Arrow security.
A portfolio consisting of @ units of the stock and an investment of b at the risk-free rate will
replicate this Arrow security if @ and b are chosen to satisfy

auS+ Rb =1
adS+Rb=0
Some simple calculation shows that the solutions to this pair of equations are:
1 1 —d
R b = —
¢ uS—ds R (u - d>
Thus, the cost of the replicating portfolio is
1 /R—d
S+b = — 11.21
@t R (u —d ) ( )

But (R — d)/(u — d) is the risk-neutral probability ¢ of the state  in this model, so (11.21)
states precisely that the state price 7, is

nll = 1
R
An analogous set of calculations shows that the state price d associated with the state d is
l1—g¢
Ty = R

This relationship between risk-neutral probabilities and state prices explains why risk-
neutral pricing works. When we take a derivative’s expected payoff under the risk-neutral
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measure and discount the result at the risk-free rate, the payoff associated with each state
gets multiplied by the risk-neutral probability of that state and discounted at the rate R,
i.e., the payoff associated with each state is multiplied by the state price! Thus, risk-neutral
pricing is just pricing using state prices. Harrison and Kreps (1979) present a complete
exposition of the relationship between risk-neutral probabilities and state prices.

The Risk-Neutral Probability, No-Arbitrage,
and Market Completeness

In some models, the risk-neutral probability is uniquely defined; the binomial model is
an example of this. In general, however, it is possible that a model may admit more than
one risk-neutral probability, or it may admit none at all. In either case, there are important
implications. A risk-neutral probability can fail to exist in a model if and only if the model is
internally inconsistent, i.e., if it admits arbitrage opportunities in its very specification. And
a model admits more than one risk-neutral probability if and only if there are contingent
claims in the model that cannot be replicated. We elaborate on these two points in this
section. The material of this section, as of Appendix 11D, is taken from Sundaram (1997).

Arbitrage and the Nonexistence
of Risk-Neutral Probabilities

Recall the connection between risk-neutral probabilities and state prices mentioned in the
previous section. A risk-neutral probability then fails to exist if and only if it is not possible
to define a set of state prices. Intuitively, the only way no vector of state prices results in an
equilibrium is if the model itself is inconsistently specified, i.e., it admits an arbitrage.

In the binomial model, the connection between the existence of a risk-neutral probability
and the internal consistency of the model is easy to see. The risk-neutral probabilities are
defined here as

_R—d ) _u—R
q = q_u—d

These are “probabilities” (i.e., lie between 0 and 1) ifand only ifd < R < u. And, of course,
d < R < u is exactly the condition for the binomial model to be internally consistent (i.e.,
for the bond not to dominate the stock or vice versa).

Here is a simple example of a model that does not admit any risk-neutral probability,
and therefore, permits arbitrage. Consider a binomial model with fwo risky assets and the
risk-free rate. Let S} and S, denote the initial prices of the risky assets, and let their possible
prices after one period be denoted by u;S; and &, S;,i = 1, 2. Finally, suppose that the asset
prices are perfectly correlated so that there are only two possible sets of prices after one
period: (R, u Sy, u,S;) and (R, d1 Sy, d»,Sy).

For g to be a risk-neutral probability in this setting, the expected return of both risky
assets under ¢ must equal R, i.e., we must have

qui+(1—¢g)d; = R
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as well as
qu +(1—q)d, = R
Therefore, ¢ must satisfy
R —d, R—d,

= = 11.22
1 uy —d uy —d ( )

However, it is obviously possible to choose R, u;, and d; so that the fractions in (11.22) are
unequal; no risk-neutral probability can then exist.

We will now show that the model admits an arbitrage opportunity if and only if the two
fractions in (11.22) are unequal. Consider a portfolio that invests $a in the bond, and $b
and $c¢, respectively, in the two risky assets. The current cost of this portfolio is

a+b+c (11.23)

while its possible values at maturity are

{ ar + bu, + cu, if (uy, u) occurs (11.24)

ar + bd, + cd, if (d,, d>) occurs

For this portfolio to generate a free lunch, there must exist a value of (a, b, ¢) such that
(11.23) is strictly negative and both values in (11.24) are zero. Such a solution exists when,
and only when, the two fractions in (11.22) are unequal. This can be seen by setting the
two quantities in (11.24) to zero, using them to solve for a and b in terms of ¢, and then
substituting these solutions into (11.23). Thus, the conditions in this model that lead to the
nonexistence of a risk-neutral probability are also identically the conditions that lead to the
existence of an arbitrage opportunity.

Completeness and the Uniqueness
of Risk-Neutral Probabilities

A model is said to be complete if all contingent claims in the model may be replicated using
the primitive assets. A simple test for market completeness is uniqueness of the risk-neutral
probability. Intuitively, multiple risk-neutral probabilities can exist if and only if there are
multiple state-price vectors. This means that at least one Arrow security has many possible
prices consistent with no-arbitrage, and this, in turn, is possible only if the Arrow security
in question is not replicable. Thus, the market must be incomplete.

This equivalence is easy to see in the binomial model. As we have seen, any claim paying
X, in state u and X in state d may be replicated, so the model is complete. And, of course,
the risk-neutral probability in this model is unique.

Here is a simple example of a model that admits more than one risk-neutral probability
and is therefore not complete. Consider a trinomial model in which there are three possible
values for the stock price S after one period, viz.,

: uS,  with probability p,
S = ¢ mS, with probability p, (11.25)
dS,  with probability p,

where u > m > d and p; > 0 fori = u, m, d. Suppose also that the bond continues to
return » with certainty. For the vector (q,, ¢, g4) to be a risk-neutral probability in this
model, it must satisfy ¢; > 0 fori = u, m, d, as well as

quit +qad +gnm = r and g, +qut+qs = 1 (11.26)
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Expressions (11.26) give us two equations in three unknowns. There are infinitely many
solutions that satisfy both equations as well as g; > 0 for i = u, m, d. Thus, there are
infinitely many risk-neutral probabilities in this model.

To see that the trinomial model is also not complete, observe that a contingent claim
with payoffs (X,, X,,, X;) can be replicated by a portfolio consisting of the stock and
investment at the risk-free rate if and only if there is a solution (a*, b*) to the following
system of equations:

a'uS+b*R = X, (11.27)
a*mS+b*R = X, (11.28)
a*dS+b*R = X, (11.29)
From (11.27) and (11.28), any such solution must satisfy
Xu - Xm
af = ——— (11.30)
uS—mS
while from (11.28) and (11.29), we must also have
X, — Xy
* 11.31
mS —dS ( )

It is an elementary matter to choose values of (X,, X,,, X,;) such that (11.30) and (11.31)
are inconsistent (for example, let X, = X,, = 1 and X, = 0).

Equivalent Martingale Measures

Risk-neutral probabilities are frequently referred to as “martingale measures,” or more
elaborately, as “equivalent martingale measures.” This section provides a brief explanation
of this terminology.

The definition of a risk-neutral probability actually involves two conditions:

1. The prices that occur with positive probability under the risk-neutral probability should
be identical to the prices that occur with positive probability in the original model.

2. Under the risk-neutral probability, the expected return on all assets in the model should
be the same.

The first of these conditions is almost obvious, which is why we have focused on only the
second one so far. As we explain below, the first condition is an “equivalence” condition
and the second one a “martingale” condition.

In mathematical terminology, two probability measures are said to be equivalent if the
set of events having positive probability under one is identical to the set having positive
probability under the other. Thus, the first condition is simply the requirement that the
risk-neutral probability be equivalent to the original probability. Although the requirement
of equivalence is often not stated explicitly, it is an important part of the definition of a
risk-neutral probability.

Second, a stochastic process is said to be a martingale if the expected change in the value
of the process is always zero. Suppose, for example, you start with a wealth level of $100
and toss a fair coin repeatedly; each time the coin lands heads, you receive $1 and each time
it lands tails, you lose $1. Then, in each round, you gain $1 with probability 1/2, and lose
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$1 with probability 1/2, so the expected change in your wealth level is zero. Your wealth
process in this case follows a martingale.

To see where martingales enter the discussion here, consider a “money-market account”
that involves an initial investment of $1 that is rolled over at the risk-free rate. (In the
binomial mode, this will grow to R after one period, R? after two periods, and so on. In
general, if interest rates are stochastic, the returns on the money-market account can depend
on the state of the world at that point.) Consider the “discounted” asset prices that arise
when asset prices at each point are divided by the price of the money-market account at that
point.?

Since the money-market account grows at the risk-free rate, this operation simply results
in the growth in all asset prices being discounted at the risk-free rate. By Condition 2 in the
definition of a risk-neutral probability, the expected rate of growth in asset prices under the
risk-neutral probability is equal to the risk-free rate. Therefore, the expected rate of growth
in discounted prices under the risk-neutral probability is zero. This means Condition 2
is just the requirement that discounted asset prices be martingales under the risk-neutral
probability.

2n other words, the money-market account serves as a “numeraire” asset. The choice of the
money-market account as numeraire asset is customary, but not really necessary. Any asset in the
model could serve as numeraire.
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12.1

Binomial Option
Pricing

Introduction

The last chapter described the mechanics of pricing options in the context of one-period
binomial models. Building on that foundation, this chapter examines the pricing of options in
multiperiod binomial models. We begin with the simplest case, namely, two-period binomial
models. Then we show how the arguments are easily extended to n-period binomial models.
Completing this discussion, Chapter 13 describes the implementation of binomial models.

We present the analysis in this chapter in three steps. First, we look at European options
on non-dividend-paying stock (i.e., there are no dividends on the stock during the life of
the option). Then, we look at American options on non-dividend-paying stock. Finally, we
describe the modeling of dividends in the binomial tree and the pricing of both European
and American options in this case.

Because of their inherent simplicity, binomial models offer a transparent platform to see
formally several characteristics of options prices and exercise policies. Dynamic replica-
tion is easily illustrated in this setting. The present chapter illustrates this and many other
characteristics, including that

+ It can be optimal to exercise American puts early even on non-dividend-paying stock.

+ It can be optimal to exercise American calls early in the presence of dividends, though
early exercise is never optimal without dividends.

» European put options can fa/l in value as maturity increases owing to the time value/
insurance value trade-off. This can never happen for American options or for European
calls on non-dividend-paying stock.

* In the presence of dividends, an increase in maturity can reduce European call values.

e Dividends hurt call values but benefit put values. Both American and European call
values are hurt, but the former is hurt less because of the ability to exercise the option
before the stock goes ex-dividend.

Several other characteristics are highlighted through the exercises at the end of this chapter.
Notation

We retain the notation introduced in the last chapter:

* S denotes the initial stock price.
* u denotes an up move in the stock price, d a down move.

259
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» p is the (“true”) probability of an up move, (1 — p) that of a down move.
* n is the number of steps in the binomial tree.

* R is the (gross) risk-free rate of interest per period.

» K denotes the strike price of the option under consideration.

Review of the One-Period Model

The last chapter described two equivalent methods for pricing options: pricing by replication
and pricing by using risk-neutral probabilities. It is useful to briefly review the main ideas
in each approach in the context of a one-period binomial model.

(A) Replication and the Option Delta
Replication looks to identify option prices by creating a portfolio of the underlying and
borrowing/investment at the risk-free rate that mimics the option outcome. The option
delta—the number of units of the underlying that must be held in the replicating portfolio—
is a key component of option pricing and risk management; the delta’s properties and uses
were highlighted in the last chapter.

Consider a derivative in the one-period model that has a value of X, after an up move
and X, after a down move. To replicate this derivative, we set up a portfolio consisting of
A, units of the underlying and an investment of B, at the risk-free rate, where

X, — X

N 12.1)
uS —ds
1 Xy, —dX,

B, — L [uKa—dXy (12.2)
R u—d

(A negative A, indicates a short position in the underlying and a negative B, is a borrowing.)
The initial value of the derivative is

X = A S+ B,

Substituting for A, and B, from (12.1)—(12.2) and simplifying, we obtain the derivative’s

price as
1 R—d u—R

(B) Risk-Neutral Pricing
In risk-neutral pricing, we identify the fair price of an option by taking expectations of its
payoffs under a particular probability called the risk-neutral probability and discounting
these expectations at the risk-free rate. This “risk-neutral price” of the option is guaranteed
to coincide with its replication-based price for any option that can be priced by replication.

The risk-neutral probability is the probability under which all assets in the model have the
same expected rate of return. It is a hypothetical construct and should not be confused with
the “true” probabilities in the model; nor does it involve any assumptions about investors’
attitudes to risk.

In the one-period binomial model, the risk-neutral probability g of an up move satisfies
the condition qu + (1 — g)d = R. Therefore, g is given by

R—d

¢ = _— (12.4)
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Now, suppose we have a derivative in this model that pays X, in the state # and X, in the
state d. Then, the initial value of the derivative is given by

X = 2l (- g) X (12.5)

This is, of course, the same as (12.3), the price obtained by replication.

12.2 The Two-Period Binomial Tree

FIGURE 12.1
The Two-Period
Binomial Tree

To specify a two-period binomial tree, we must specify the up and down moves in each
period. In general, the up and down moves may differ across the two periods and may even
vary depending on whether the price went up in the first period or down. Consider, for the
time being, the simple scenario in which the price in each period moves up or down by
the same factors u and d with the same probabilities. Since the ratio u/d is a measure of
volatility, this says that volatility remains constant over the tree.

After one period, there are two possible prices for the stock, namely .S and dS. In the
second period, each of these two prices can itself go up by « or down by d. Therefore, there
are four possible paths that prices can take over two periods: (i) u followed by u, (ii) u
followed by d, (iii) d followed by u, and (iv) d followed by d.

The path uu results in the stock price u (uS) = u*S, and the path dd results in the
stock price d (dS) = d*S. However, the paths ud and du result in the same terminal price,
namely udS. Thus, even though there are four distinct price paths, there are only three
distinct terminal prices at the end of two periods, namely, #2S, ud S, and d*S. Figure 12.1
summarizes this information.

Recombination
The feature that the paths ud and du lead to the same price is known as recombination
of the binomial tree. Recombination reduces the number of distinct terminal prices in the
binomial tree while retaining the complexity of a large number of possible paths that lead
to these prices.

In an n-period binomial tree, there will be 2" possible price paths since the number of
possible paths doubles at each stage. Without recombination, each path could result in a

u2s

uS

S uds

das

azs
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TABLE 12.1
Terminal Prices in an
n-Period Binomial
Model

Terminal Price Results From

u's nup moves

u™'ds (n— 1) up moves and 1 down move
u"2d?s (n— 2) up moves and 2 down moves
ud's 1 up move and (n— 1) down moves
d"s n down moves

different terminal price. With recombination, however, there will be only (n + 1) distinct
terminal prices; these are listed in Table 12.1. Even for small values of n (say, n = 30), the
difference between these numbers is significant.

Binomial models in practice routinely use a hundred or more time steps. This means the
models have considerable richness in describing the pattern of evolution of asset prices (for
example, with 100 time steps, there are roughly 10°° different possible time paths). However,
there are only n + 1 distinct nodes after n periods, and this eases the computational process
considerably. Recombination is particularly significant for European options; since they can
be exercised only at maturity, all that really matters is the set of possible terminal prices and
their distribution.

A Comment: Allowing « and d to Vary

In Chapter 13, we show that the lognormal price distribution of the Black-Scholes model
may be approximated arbitrarily closely by a binomial tree with constant values for u and d.
Thus, the binomial tree with constant parameters may be regarded as just a discrete version
of the Black-Scholes model. Given the widespread use of the lognormal distribution in
practice, this is a strong point in favor of using constant parameters. From an expositional
standpoint too, the constant-parameter model suffices: however one draws the tree, the
procedure for pricing options within the tree remains the same.

On the other hand, the lognormal distribution is inadequate in some ways in describing
price evolution in many markets, a feature reflected through the model’s inability to simul-
taneously match market prices of options of differing maturities and strikes. This point is
discussed more fully in the chapter on Black-Scholes. Motivated by this, Rubinstein (1994),
Derman and Kani (1994), and Dupire (1994) have shown that it is possible to generalize
the binomial tree to address this problem. The tree under their construction has up and
down values that differ from node to node. These values are chosen endogenously to match
observed option prices. We describe their approach in Chapter 16.

12.3 Pricing Two-Period European Options

We illustrate the pricing process with an example. Consider a two-period binomial tree with
the following parameters:

* §=100.
e u=1.10and d = 0.90.
* R=1.02

These parameters are held fixed in the examples throughout this chapter. We first look at

pricing a call with strike K = 100 and then a put with the same strike price.
Parenthetically, note that these are the same parameters and strike price used in the

previous chapter to price calls and puts in a one-period binomial tree. Thus, the options we



FIGURE 12.2
Pricing Example: The
Two-Period Binomial
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FIGURE 12.3
The Call Payoffs
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90
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21
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are pricing here differ from those priced earlier purely on account of maturity: they have
twice the maturity of the options in the last chapter. For later reference, recall that with these
parameters,

» The price of a one-period call is 5.88.
* The price of a one-period put is 3.92.

Figure 12.2 describes the two-period stock price tree for the given parameters. Note that
the risk-neutral probability ¢ of an up move at any node is given by
R—d
= = 0.60
7 d

u —

Pricing the Call: General Comments
Let C denote the initial value of the call. After one period, the stock price moves to either
uS = 110 ordS = 90. In either case, the call price will change from its initial value. Denote
the value of the call at the node uS by C,, and that at the node dS by C,. The payoffs from
the call and these unknown values C, C,,, and C, are described in Figure 12.3.

To recover the values C, C,, and C,, we use a mathematical technique called backwards
induction. Backwards induction is a procedure for solving general multiperiod problems in
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FIGURE 12.4

Backwards Induction
at the Node u S

which we begin in the last period of the problem and work backward to the beginning. In
the option-pricing context, we use the last period payoffs to solve for the option values one
period before maturity. Then we use the option values one period before maturity to solve
for option values two periods before maturity. And so on until we reach the beginning of the
tree. The procedure effectively reduces the solving of a multiperiod problem to a family of
one-period problems. Here’s how backwards induction works in our two-period example.

The Payoffs at Maturity

The first step is to identify the call’s payoffs at maturity. This is straightforward. As shown
in Figure 12.2, there are three possible values for the stock price at maturity. From these,
we obtain the call’s possible payoffs at maturity:

Cp. = max{121 —100,0} = 21
Cos = max{99 — 100,0} = 0
Cye = max{81 — 100,0} = 0

This information is described in Figure 12.3.

Moving Back One Period

Using the payoffs at maturity, we now identify the option values one period before maturity.
There are two values to be identified: C,, and Cj,.

Consider C, first, i.e., the call value at the node uS = 110. One period from this point,
the option is worth

21, if the price goes up to u>S = 121
0, ifthe price goes down to udS = 99

The risk-free interest rate over this period is, of course, R = 1.02. We want to know the value
of the option C, at the beginning of this period. Figure 12.4 summarizes this information.

But this is just a one-period binomial problem! We can solve for the initial price C, of
the call in this problem using risk-neutral pricing. Since the risk-neutral probability of an
up move is ¢ = 0.60, we have

1
C, = To [(0.60) - (21) +(0.40) - 0] = 12.35 (12.6)
In a similar manner, we identify the value C, of the call at the node d.S. In this example,
this is trivial: regardless of whether the stock price moves up to udS = 99 or down to
d*S = 81, the call expires worthless. Thus, we must also have C; = 0.

121 1.02 21

110 1 Cy

99 1.02 0
Stock Cash Call
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Backwards Induction:

The Last Step

FIGURE 12.6
Evolution of Call
Values
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One More Step Back

Having identified all the prices one period from maturity, we move back one more period
and idenitfy the call price C at the initial node S = 100. We have just shown that one period
from the initial node, the call will be worth

12.35, if the price goes up to uS = 110
0, if the price goes down to dS = 90

Thus, finding the initial value C of'the call is the one-period problem described in Figure 12.5.
Invoking the risk-neutral probability, we obtain

1
C = 103 [(0.60) - (12.35) + (0.40) - 0] = 7.27 (12.7)
The complete evolution of call prices in this tree is shown in Figure 12.6.

Pricing the Call by Dynamic Replication
Rather than use the risk-neutral probabilities, we could have used replicating portfolios in
the backwards induction argument. We illustrate this here.

Consider the node uS first. At this point, the option holder faces the one-period problem
described in Figure 12.4. From (12.1)—(12.2), the replicating portfolio at this node is

21—-0 1 —(0.90)(21
AY = ——— = 0.9545 B" = —w = —92.65 (12.8)

121 — 99 1.02 1.10 — 0.90

110 1.02 12.35
100< 1< c<

99 1.02 0
Stock Cash Call

21

7-27 <
0
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Since the stock costs 110 at this node, the cost of this replicating portfolio is
(0.9545)(110) — 92.65 = 12.35

So the call is worth 12.35 at this node. This is, of course, the same value obtained above
using risk-neutral pricing.

At the node dS, the option is worthless—it finishes out-of-the-money regardless of
whether the price goes up or down the next period. Thus, the replicating portfolio at this
node is the null portfolio:

A =0 B! =0 (12.9)

Finally, at the initial node S, the option holder faces the one-period problem described
in Figure 12.5. From (12.1)—(12.2), the replicating portfolio at this node is

12.35-0 1 —(0.90)(12.35
_ 123520 615 pr o L Z090U235) e 1210
110 — 90 102 1.10—090

Thus, the initial cost of the option is
(0.6175)(100) — 54.48 = 7.27

which is the same value obtained using risk-neutral pricing.

In words, the replicating strategy has the following structure. Initially, we set up a portfolio
consisting of a long position in 0.6175 units of the stock and borrowing of 54.48 for one
period at the risk-free rate. At the end of one period, this portfolio is worth

12.35, if the price moves to uS = 110
0,  ifthe price moves to dS = 90

If the node S is reached, we must alter the composition of the replicating portfolio to the
numbers given by (12.8). If the node d S is reached, we alter the composition to (12.9). This
portfolio rebalancing is the dynamic aspect of option replication.

Note that the replication strategy is self-financing. That is, the rebalancing at a node
never requires the injection or withdrawal of funds: the value of the rebalanced portfolio
at a node is always equal to the value of the portfolio entering that node. For example, the
portfolio (12.10) set up at the initial node has a value at the node uS of

(0.6175 x 110) — (54.48 x 1.02) = 12.35

which is exactly the cost of the rebalanced portfolio (12.8) set up at this node. Replication
strategies are always required to be self-financing in this way. If they are not, the initial cost
of the strategy does not reflect the true cost of synthesizing the derivative since the present
value of future injections and withdrawals of funds also needs to be taken into account.

Pricing the Put Option

The put option may similarly be priced using backwards induction. As the first step, we
identify the value of the put at the terminal nodes:

P,, = max{100 — 121,0} = 0
P,;, = max{100 — 99,0} = 1 (12.11)
P;; = max{100 — 81,0} =19

Next, we identify the values of the put one period before maturity. Consider the node
uS = 110 first. At this node, the put is worth

. : 2¢ _
{ 0, if the price moves up to #>S = 121 (12.12)

I,  if'the price moves down to udS = 99



FIGURE 12.7

Evolution of Put Prices

Chapter 12 Binomial Option Pricing 267

0.39

3.38

8.04

19

Thus, using risk-neutral pricing, the arbitrage-free price P, of the put at the node u S is

P, = ﬁ[(0.60)(0)+(0.40)(1)] = 0.39 (12.13)

Next, consider the node dS = 90. Here, the put is worth

1, ifthe price moves up to udS = 99 (12.14)
19, if the price moves down to d*S = 81 )
Thus, the arbitrage-free price P, of the put at this node is
1
P; = —[(0.60)(1) + (0.40)(19)] = 8.04 (12.15)

1.02
Finally, consider the initial node S = 100. As we have just seen, if the price goes up to
uS, the put is worth P, = 0.39; while if the price goes down to dS = 90, the put is worth
P, = 8.04. Invoking the risk-neutral probability again, the initial price P of the put is

1
P = —1(0.60)(0.39) 4+ (0.40)(8.04)] = 3.38 (12.16)
r
Figure 12.7 summarizes the evolution of put prices in this example.

The Put Deltas

How do the put deltas change over the binomial tree? Consider the node .S = 110 first.
The put values one period hence are given by (12.12). Therefore, using (12.1), the put delta
at this point is
0—-1
AP = —— = —0.0455 (12.17)
" 121 —99
Now consider the node dS = 90. Here, the put values one period hence are given by (12.14).
Thus, from (12.1), the put delta at this point is
1—-18
Al = = —1 12.18
4799 81 ( )
Finally, consider the initial node S. At this point, the stock price can go up to 110 or down
to 90. The put value is 0.39 if the stock price goes up, and 8.04 if the stock price goes down.
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Therefore, using (12.1), the put delta at this point is

0.39 —8.04
AP = m = —0.3825 (12.19)

To summarize: the initial put delta is —0.3825. If the stock price declines and the put
moves into-the-money, the put delta moves to —1. (In this example, at d.S, the put is so deep
in-the-money it has no chance of finishing out-of-the-money.) If the stock price increases
and the put moves out-of-the-money, the put delta moves to —0.0455.

A Comment: The Impact of Maturity

With the same parameters as used here but with a maturity of one period, we saw in the
last chapter that the call and put were worth 5.88 and 3.92, respectively. The increase in
maturity to two periods raises the call price to 7.27 but lowers the put value to 3.38. The
impact on the call is easily understood. Increasing the time to maturity increases both the
time value and the insurance value of the call, resulting in a larger call value.

Why does the value of the put decline? As we have seen, increasing maturity in general
has two effects on puts—it increases the put’s insurance value but reduces its time value.
Whether the put value increases or decreases depends on which of these factors dominates. In
the current example, once the node d.S = 90 is reached, the two-period put is guaranteed to
finish in-the-money. Thus, there is no insurance value left in the put at this node—insurance
value matters only if optionality matters. However, there is negative time value since the
put cannot be exercised for one more period. (Of course, there is some insurance value left
in period 1 at the node S, but the contribution of this node to the put value is relatively
small.) As a consequence, the time-value effect dominates and the put value declines.

An End-of-Tree Approach to European Option Pricing

The backwards induction procedure is an intuitive one, and it is one we shall need to price
American-style options in binomial trees. For European options, however, there is a more
direct procedure that exploits the fact that these options cannot be exercised until maturity.
Specifically, we (a) find the risk-neutral probability of each terminal node, (b) multiply the
option payoff at each terminal node by its risk-neutral probability, and (c) discount the result
back to the beginning of the tree.

We illustrate this by applying it to our two-period example. In the example, the risk-
neutral probability of an up move at any node is ¢ = 0.60. There are three terminal stock
prices: u?S = 121, udS = 99, and d>S = 81. The risk-neutral probability of 1>S is the
risk-neutral probability of two up moves, which is

0.60 x 0.60 = 0.36

The node ud S can be reached in two ways: by an up move followed by a down move or by
a down move followed by an up move. Each of these has a risk-neutral probability of

0.60 x 0.40 = 0.24

Thus, the risk-neutral probability of udS is 2 x 0.24 = 0.48. Finally, the node d>S arises
after two down moves, so its risk-neutral probability is

0.40 x 0.40 = 0.16

Table 12.2 summarizes the information on the set of possible terminal stock prices, their
risk-neutral probabilities, and the payoffs of the call and put options at each of these nodes.
The expected payoff of the call under the risk-neutral probabilities is

(21 x 0.36) + (0 x 0.48) + (0 x 0.16) = 7.56
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Terminal Risk-Neutral Terminal Payoffs
Stock Prices Probability Call Put
121 0.36 21 0
99 0.48 0 1
81 0.16 0 19

Since the payoffs occur at the end of two periods and the risk-free interest rate per period is
1.02, the payoffs should be discounted back using the two-period risk-free rate of (1.02).
This results in the initial call price
7.56

T (1027
The put may be priced similarly; its initial price P is
_(0x0.36) + (1 x 0.48) + (19 x 0.16)

(1.02)?

Of course, these are the same prices recovered for the call and put earlier using backwards

induction. This method of identifying the option prices is much quicker, but it cannot,
unfortunately, be used for American-style options since it assumes there is no early exercise.

= 7.27

P = 3.38

12.4 European Option Pricing in General n-Period Trees

European option prices in a general n-period tree may be found by either method described
above: we can either use backwards induction or work directly with end-of-tree prices.
The backwards induction procedure in a general n-period tree follows the same steps.
First, we identify all the option payoffs at maturity. Then we solve the one-period problem
repeatedly to identify all the option values one period before maturity. Using these values,
we “fold” the tree back one more step and identify all the option values two periods before
maturity. We repeat this procedure until we reach the initial node. Of course, the process is
easy to implement using a program or even a spreadsheet since it involves calling the same
function (the one-period pricing function) repeatedly; for details, see Chapter 13.
Alternatively, we can use the end-of-tree prices approach. Using this procedure, it is
possible to derive a general representation of European option prices in n-period binomial
trees. The representation is of particular value because it bears considerable similarity to
the Black-Scholes option pricing formula and can be used as a motivation for that formula.
Of course, this resemblance is not accidental since the binomial model with a large number
of periods starts resembling the Black-Scholes model. The representation is conceptually
simple but involves some additional notation; we describe the details in Appendix 12A.

12.5 Pricing American Options: Preliminary Comments

The pricing of American options in binomial trees involves one extra degree of complication
over the pricing of European options: it is necessary, in the backwards induction procedure, to
allow for early exercise of the options. Some comments on the general procedure are useful.

To identify the value of an American-style option, we need to know when the cash
flows are going to occur so that we can discount them back appropriately. This means we
must know the optimal early-exercise policy, i.e., the conditions under which it is optimal
to exercise the option early. Now, it is optimal to exercise at a node only if the value of
immediate exercise exceeds the value of not exercising, i.e., of continuing. But the value
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of continuing depends on the option value at future nodes, which, in turn, depends on the
value of stopping at those nodes or continuing further. Put differently, to identify the optimal
exercise policy at a node, we need to know the optimal exercise policy at all future nodes.

This suggests a simple procedure for valuing the American option. We begin at a set
of nodes where continuation is no longer an option, i.e., at the terminal nodes. The option
values at these nodes can be ascertained unambiguously. Then we go back one period before
maturity. If we exercise early at this stage, the value received is the intrinsic value of the
option at that node. If we wait, we will be at maturity, and we know the option values that
will result then. Comparing the two alternatives tells us (a) whether it is optimal to exercise
early, and (b) the option value at this point.

Having identified all the option values one period before maturity, we now fold the tree
back one more period. At each of the nodes that is two periods before maturity, we compare
the value of exercising immediately to waiting. If we exercise immediately, we get the depth
in-the-money of the option at that node. If we wait, we reach nodes that are one period from
maturity, and we know the option value at each of these nodes. The higher of the two values
again determines (a) whether and at which nodes it is optimal to exercise early and (b) the
option value at each of these nodes.

This procedure is repeated until the initial time point of the tree is reached. The next
section illustrates this using a two-period binomial example.

12.6 American Puts on Non-Dividend-Paying Stocks

Consider the two-period binomial tree used earlier in this chapter: S = 100, u = 1.10,
d =0.90, and R = 1.02. We look at pricing an American put in this example. The strike
price is taken to be K = 100.

As an aside, recall that in an earlier chapter, we argued that early exercise could be
optimal for an American put option even when there are no dividends. Exercising the put
early results in a gain in time value but a loss in insurance value. The trade-off between
these values determines the optimality of early exercise. We show that in this two-period
example, the trade-off goes in favor of the time-value gain, so early exercise is optimal.

We begin, as the backwards induction procedure requires, at the end of the tree. At the
terminal nodes, the payoffs from the put are the same as identified earlier in (12.11) for the
European put:

Py =0
P =1
P, =19

Now we move back one period to the nodes S = 110 and d§ = 90.
At the Node uS = 110
If the option is left unexercised at this node, then after one step, it pays

0, if the price moves to u>S = 121
1, if'the price moves to udS = 99

Since the risk-neutral probability of an up move in this model is ¢ = 0.60, the value of
leaving the option unexercised is

1
Toz [(0.60)(0) + (0.40)(1)] = 0.392
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The value of immediate exercise is negative: the option gives us the right to sell the stock for
100, but at this node, the stock is worth 110. Comparing these two values easily establishes
that at the node u S:

* The value P, of the option is 0.392.

» Early exercise is not optimal at uS.

At the Node 4§ = 90
If the option is left unexercised at dS, it pays:

1, if'the price moves to udS = 99
19, if the price moves to d>S = 81

Thus, the value of leaving the option unexercised is
1
103 [(0.60)(1) + (0.40)(19)] = 8.04

The value of immediate exercise at this node is +10 since the put gives us the right to sell
for 100 a stock that is worth only 90. Comparing the two values, it is easy to see that at the
node dS:

* The value P, of the option is 10.
» Early exercise is optimal at this node.

At the Initial Node S = 100
We now move back a further period to the initial node S. If the option is not exercised
immediately, it has a value after one step of, as we have just shown,

0.39, if the price moves to uS = 110
10, if the price moves to dS = 90
Thus, the value of the option from not exercising immediately is
1
1.02

The value of immediate exercise at the node S is zero since the option is at-the-money at
this point. Comparing these values, we finally obtain

[(0.60)(0.39) + (0.40)(10)] = 4.15

» The initial value of the putis P = 4.15.
It is not optimal to exercise the put at the node S.

What Drives Early Exercise?

Why is early exercise optimal at d.S in this example? A look at the option’s payoffs provides
the answer. As noted earlier, the put is very deep in-the-money at this node, so deep, in
fact, that it is guaranteed to finish in-the-money at expiry. Under these conditions, there is
no insurance value left in the put; insurance value arises only if optionality—the right to
exercise (or not)—is important. However, there is still negative time value, which may be
captured by exercising the option early.

The Early-Exercise Premium

Recall that the price of the European-style put in this same example was 3.38. The American
put costs significantly more at 4.15. The early-exercise premium (the excess price of the
American put over the European) is given by 4.15 — 3.38 = 0.77, which is over 18% of the
value of the American put! The significant early-exercise premium reflects the American
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put holder’s ability to avoid time-value loss by exercising early, while the European put
holder is unable to do so.

The Impact of Maturity

As we have seen, European put options can fall in value as maturity increases: the one-
period put in this model costs 3.92, but the two-period European put costs 3.38. With
American options, this is impossible since the put holder can always exercise early and
avoid the negative effects of extra time. Thus, American puts will generally increase in
value (or at least not decrease in value) with maturity. The present example illustrates this:
while the one-period put costs 3.92, the two-period American put costs about 6% more
at 4.15.

Finally, some notes about the option delta in this example. A simple calculation shows
that the initial delta of the option (at the node S) is

0.39 -10

— = —048
110 —90

After an up move in the stock price the delta moves to

0—-1

—— = —0.045
121 —99

After a down move in the stock price, early exercise is optimal; however, if the holder does
not exercise at this stage, the delta becomes —1.

Pricing American Calls
We argued in an earlier chapter that American calls on non-dividend-paying stock should
never be exercised early. Thus, the price of an American call in this world must be equal
to the European call. We have already seen how to price a European call in this model, so
there is nothing to be added here.

It is a useful exercise for the reader to verify the non-optimality of early exercise for this
example. That is, repeat the same steps we followed for the American put and show that
early exercise is never optimal at any node.

12.7 Cash Dividends in the Binomial Tree

So far, we have ignored the possibility of dividends on the underlying asset during the life
of the option. Now, we discuss how to extend the analysis to incorporate this feature.

In considering dividends on the underlying in the binomial tree, there are two possibilities
to consider. The first is discrete “fixed cash” (or just “cash’) dividends such as dividends on
common stock. The second is a continuous dividend yield such as the yield on currencies
or an index. The two have different implications for modeling. We examine cash dividends
in this section and dividend yields later in this chapter.

The payment of discrete cash dividends causes a discontinuity in the stock price. Dividend
announcements come with an ex-dividend date. The stockholder of record on the ex-dividend
date is the one entitled to receive the dividends on the stock although the dividends are
typically paid some time later. Thus, the stock price before the ex-dividend date (the “cum-
dividend stock price”) incorporates the dividend that will be paid on the stock, but this is
not true of the stock price after the ex-dividend date (the “ex-dividend stock price”).
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Modifying the Binomial Tree to Incorporate Dividends

We first describe how to modify the binomial tree to incorporate the payment of dividends.
Consider the same two-period model studied above: u = 1.10, d = 0.90, R = 1.02, and
S = 100. Suppose now, however, that a dividend of $5 is paid after one period (i.e., period 1
is the ex-dividend date of the stock).

Then, the cum-dividend price following an up move in the stock price is 110. However,
the ex-dividend price at this node is 110 — 5 = 105. Similarly, the cum-dividend price at
the node d 5§ is 90, but the ex-dividend price at dS is 90 — 5 = 85.

Since only the ex-dividend prices are relevant for further evolution of the prices, we have
the following.

» The stock price following two up moves in the price is 105 x 1.10 = 115.5.

» The stock price after an up move followed by a down move is 105 x 0.90 = 94.5.
» The stock price after a down move followed by an up move is 85 x 1.10 = 93.5.
* The stock price following two down moves in the price is 85 x 0.90 = 76.5.

The resulting stock price tree is shown in Figure 12.8.

Note that in the presence of dividends, an up move followed by a down move does not
lead to the same price as a down move followed by an up move: the tree fails to recombine.
Recombination is, as we mentioned earlier, a desirable property from a computational
standpoint; its failure makes the pricing more computationally complex. However, this
added computational complexity is the only serious effect of introducing dividends; from
a conceptual standpoint, the pricing of options remains quite simple, as we now see. In the
next section, we see an alternative approach to modeling cash dividends that avoids the
no-recombination problem.

American Calls on Dividend-Paying Stocks
We saw in an earlier chapter that the optimality of early exercise could not be ruled out for
calls on a dividend-paying stock. By exercising early, the holder of the call gives up the time
value of the call and the insurance value of the call but gains the dividends on the underlying
stock. The trade-off between these factors determines the optimality of early exercise; in
particular, early exercise is optimal whenever the dividends are large enough to overwhelm
the loss in insurance and time value.

The two-period tree described above illustrates this point. Consider an American call
option with a strike of 100. We solve for the call value and the early exercise policy by
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backwards induction. At maturity, the payoff of the call is

15.5,  if the stock price is 115.5
, if the stock price is 94.5
, if the stock price is 93.5

, if the stock price is 76.5

(12.20)

S o oW

Now consider the node .S. There are two parts to this node, the cum-dividend price and
the ex-dividend price. Thus, the option holder faces three choices: (a) exercise when the
stock is still cum-dividend, (b) exercise after it has gone ex-dividend, and (c) do not exercise
at this point. The values of these alternatives are as follows:

» If the stock is exercised when it is cum-dividend, the option holder pays the strike price
of 100 for a stock worth 110; thus, the value of exercising cum-dividend is +10.

» Ifthe stock is exercised after it has gone ex-dividend, the option holder receives a stock
worth 105 for the strike price of 100. Thus, exercising the call ex-dividend is worth +35.

 Finally, if the option is left unexercised, it has a value of 15.5 if the price goes up to 115.5
and a value of 0 if the price goes down to 94.5. Since the risk-neutral probability of an
up move is 0.60, the value of leaving the option unexercised is

1
T2 [(0.60)(15.5) + (0.40)(0)] = 9.12

A comparison of these three values establishes that it is optimal to exercise the call early
at the node .S when the stock is still cum-dividend (i.e., just before it goes ex-dividend).
Thus, the value of the option at the node «S is +10.

Thenode d S'is easier to handle in this example. There are again the same three alternatives
to consider. At the cum-dividend point, the stock price is 90, so exercising early results in
a value of —10. At the ex-dividend point, the stock price is 85, so early exercise leads to a
payoff of —15. If the option is not exercised early at this node, it results in a payoff of zero
one period later. Thus, early exercise is not optimal at 4.5 and the value of the option here
is zero.

Finally, consider the initial node S. Exercising the option at this node leads to a payoff
of zero since the option is at-the-money. If it is left unexercised, it leads to a value in one
period of

+10, if the stock price goes up
0, ifthe stock price goes down

Using the risk-neutral probability, the value of leaving the option unexercised is
1
m[(0.60)(10) +(0.40)(0)] = 5.88

Thus, the initial value of the American call option is 5.88.

What is the value of the corresponding European-style call? To identify the answer, we
can use the end-of-tree payoffs in expression (12.20). The end-of-tree risk-neutral proba-
bility of the path

uu is (0.6)(0.6) = 0.36
ud is (0.6)(0.4) = 0.24
du is (0.4)(0.6) = 0.24
dd is (0.4)(0.4) = 0.16

(12.21)
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So the initial value of the European call option works out to

(Tozy: [(036)(15:5) + (024)(0) + (0:24)(0) +(0.16)(0)] = 5.37

The early-exercise premium is now 5.88 — 5.37 = 0.51.

Comments

The example above highlights three valuable points. The first is that dividends may make
early exercise of calls optimal. In this example, this is because the dividends are high enough
to make worthwhile giving up the call’s time value and insurance value. In the exercises at
the end of this chapter, we consider a similar setting but with lower dividends and higher
volatility, and show that early exercise is no longer optimal.

Second, dividends on the stock always reduce option values. Without dividends, the
American and European calls in this example are both worth 7.27. The presence of dividends
hurts both: the American call falls in value to 5.88, while the European call falls to 5.37.
The American call falls in value because the option holder is forced to choose between
receiving the dividends and retaining the option’s time and insurance value. The European
call falls by even more because early exercise is not an option; the call holder takes the full
brunt of the fall in stock prices on account of the dividend payment.

Third, greater time to maturity may not increase call values if there are interim dividends.
The one-period call was worth 5.88, but the two-period European call is worth only 5.37:
the dividend between the two periods lowers the payoffs to the holder of the longer-dated
option. American calls cannot decline in value even if there are dividends since one can
always exercise early, but they may not increase in value either: in the current example, the
two-period American call is worth exactly the same as a one-period call.

American Puts on Dividend-Paying Stocks

This is carried out exactly as in the case of an American call on a dividend-paying stock
with the obvious changes. The details are left as an exercise to the reader.

1. The price of the American put is 7.15.
2. Early exercise is optimal at the node d S after the stock goes ex-dividend.

3. The price of the corresponding European put is 6.38; thus, the early-exercise premium
is 0.77.

12.8 An Alternative Approach to Cash Dividends

If we assume stock prices follow the Black-Scholes process but that there are cash dividends
at discrete points in time, then the “correct” discrete-time representation of this is the
binomial model described in the last section. Unfortunately, the lack of recombination
of the binomial tree makes this model computationally harder to work with, especially
if multiple dividend payments are involved. It is common in practice to use one of two
alternatives. One is to use a different cash dividends model, described in this section, that
assumes that the net-of-dividends stock price (rather than the cum-dividend stock price)
is lognormal and may be represented by a recombining binomial tree. The other popular
alternative is to represent the dividend as a yield (i.e., as a proportion of the stock price), in
which case the tree is naturally recombining. Dividend yield models are the subject of the
next section.

The first of these alternatives is introduced in Schroder (1988). In Schroder’s approach,
the stock price is viewed as being composed of two components: a riskless part equal to
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the present value of all the dividends that will be received over the option’s lifetime, and a
risky part representing the remainder of the stock price. The risky part is then modeled as a
lognormal process (in this discrete setting, as a binomial tree). Since the risky component
contains no dividend payments, the tree is recombining. We describe pricing options in
this setting first in general notational terms in a binomial setting and then work through a
numerical example.

Dividends and the Stock Price Tree

Let S; denote the time-¢ stock price, D, the cash dividend paid at time ¢, and PV;(D) the
present value (viewed from time ¢ and including D;) of the dividends that will be received
over the option’s remaining life. Note that, if # denotes the time between binomial periods,
then by definition,

1
PV:(D) = D+ E PVt+h(D) (12-22)

On the maturity date T of the option, P V(D) is just the dividends Dy receivable on that
date.!

Let S,™' = S, — PV,(D) denote the net-of-dividends component of the stock price. The
main assumption in this approach is that this net-of-dividends component (the “net stock
price”) evolves according to a binomial process:

(12.23)

gt _ uS™,  with probability p
rth =\ dS™,  with probability 1 — p

The definition (12.23) ensures that the net stock price tree will be a recombining one.
Now to obtain the total stock price tree, we simply add back the “escrowed” dividends at
that point, i.e., the present value of the dividends receivable from that date to the option’s
maturity. For example, viewed from time 7, the two possible values of the total stock price
att + h are

Sk, = uS™ + PV,y(D) and St =dS™ + PV, (D) (12.24)

The resulting total stock price tree will also be recombining since we are changing only the

numbers at the various nodes but not the structure of the tree itself. See the example below
for an illustration.

The Risk-Neutral Probability

The risk-neutral likelihood ¢ of an up move in this setting is obtained as

R—d
qu+(1—¢g)d = R — 9= _— (12.25)
To see that the risk-neutral probability has the form (12.25), note the following. If we buy
the stock at time # and hold it for one period, we receive D, at time ¢, so the net expenditure
is only S; — D;. For this net outlay, we receive either S, or S¢_, in one period. Under ¢,

the expected return on the investment must be the risk-free rate R, i.e., ¢ must satisfy

qSt, + (1— q)Std+h
S — D,

=R

or what is the same thing,

g8ty + (1 —q)S%, = R(S, — D,) (12.26)

1 This notation allows for a dividend payment D, in each period of the binomial tree, but, of course,
many of these payments may be zero.
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Now, S, = S 4+ PV,(D), so, from (12.22),

1
S —D, = Stnet + — PVH—h(D)

R
This means the right-hand side of (12.26) is
RS + PV, 1(D) (12.27)
Combining (12.23) and (12.24), the left-hand side of (12.26) works out to be
g8t + (1= @)Shy, = [qu+ (1= q)d]S™ + PV,.4(D) (12.28)

Expressions (12.27) and (12.28) are equal if and only if the risk-neutral probability ¢ is
given by (12.25).

Pricing Options: The General Procedure
Given the stock price tree, options may be priced by backwards induction. Consider a call,

for example. Let C, denote the value of the call at time 7, and let C_, and C?,, denote its
possible values one period hence. If the option is European, then we have
1 u d
C = & laCh +( - 9)CL)] (12.29)

while, at maturity 7, the call is worth C; = max{S; — K, 0}. Using (12.29), we can use
backwards induction on the stock price tree to identify the initial value of the option.

If the call is American, immediate exercise at ¢ is also possible. We must distinguish
between exercising the call cum-dividend and ex-dividend at this node. If the call is exercised
cum-dividend, the amount received by the call holder is

S,—K = S"™ 4+ PV,(D)—-K
If it is exercised ex-dividend, the amount received is
S,—D,—K = S"™ 4+ PV(D)—D,— K

Putting these together, the call value is the maximum of the continuation value and the value
of immediate exercise:
1
C, = max {St —K,S,—D,—K, < [qCly+ (1 —q)CL] } (12.30)
Expression (12.30) can be used to obtain the option price through backwards induction
along the stock price tree. We illustrate these pricing arguments in an example.

Consider a two-period binomial example. Let the initial price of the stock be S = 100.
Suppose that there is only a single cash dividend over the two periods; assume this dividend
is 5 in period 1. For the remaining parameters, we take R = 1.02, u = 1.05, and d = 0.95.
Suppose that we wish to price two-period American and European calls with a strike of 100
in this setting.

In the notation introduced above, we have Dy = 0, D; = 5, and D, = 0. This means
PVo(D) = 5/1.02 = 4.90, PV;(D) = 5, and PV,(D) = 0. The initial net-of-dividends
price is

5
net __ —
$M = 100 — PVo(D) = 100 102
The evolution of the net stock price from this level is determined by u and d as described in
(12.23). The two-period net stock price tree is depicted in Figure 12.9.

95.098
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FIGURE 12.9
Evolution of
Net-of-Dividend
Stock Prices

FIGURE 12.10

Evolution of Total
Stock Price

104.85
99.85 <
95.10 94.86
90.34 <
85.83
104.85
104.85 <
100 94.86
95.34 <
85.83

To obtain the total stock price tree from this, we simply add back P V(D) at each date.
The resulting evolution of total stock prices is depicted in Figure 12.10. Note that both the
net-of-dividends tree and the total stock price tree are recombining trees.

Consider first the pricing of an American call on this tree. If the call is held to maturity, it
pays max{Sr — K, 0}; thus, the call values at the three terminal nodes are

C% = 4.85, cuv = c¥ =0

Using this and (12.30), we can identify the value of the option at earlier nodes. Consider
the node S/ ;. At this point, the stock price is 104.85, while the dividend on this date is 5.
Therefore, if the option is exercised cum-dividend, the holder receives

max{104.85 - 100, 0} = 4.85

Exercising ex-dividend is not profitable since the ex-dividend stock price of 104.85 — 5 =
99.85 is less than the strike price of 100. If the option is not exercised at this node, it is worth
either 4.85 or zero next period, depending on whether the stock registers an up or a down
move. So, using the risk-neutral probabilities, the value of not exercising is

:
705 [(0.70)(4.85) +(0.30)(0)] = 2.28
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FIGURE 12.12
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4.85
485<
3.33 0
0

485
333<
2.28 0
0

Comparing these three values establishes that the optimal action at this node is to exercise
the call early and that the value of the call is 4.85. Working similarly, the rest of the tree can
be filled up. Figure 12.11 describes the evolution of these prices.

The corresponding prices for the European call are similar but are easier to derive since
there is no early exercise decision at each node. Figure 12.12 describes the evolution of
European call values in this case. Note that there is a substantial early exercise premium of
the American call in this example of 3.33 — 2.28 = 1.05. |

12.9 Dividend Yields in Binomial Trees

The notion of discrete dividends is okay for individual stocks, but payouts for some under-
lying assets, such as currencies and stock indices, are more naturally modeled as yields,
i.e., as proportions of the current asset price. In this section, we describe binomial option
pricing in this case. As we shall see, only minor adjustments to the theory are required.
The first step is describing the evolution of asset prices and the dividend process. We take
cum-dividend prices to evolve on the binomial tree in the usual way as in Figure 12.1. But now
we add the condition that holding the asset results in a cash flow of [§ x the price of the asset]
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Example 12.2

ateachnode. Thus, the asset pays a cash dividend of § S if the current stock price is S; its price
next period is either uS or d S, at which point it pays a dividend of either § uS or § d S, etc.
Chapter 13 describes how we identify the values of §, u, and d for a stock paying a
continuous dividend yield. For the present, we assume these values are given to us. Note
that the presence of the dividend yield also requires us to modify the condition (11.4) for
consistency of the binomial tree; rather than d < R < u, the condition now becomes

d < R1-38) < u (12.31)

Valuing Derivatives in This Model

The impact of the dividend yield on the valuation procedure is a remarkably simple one:
the only change we make is to the risk-neutral probability, which now becomes
g = RA-8)—d (12.32)
u—d

(If § = 0, we are back to the usual formula.) To see why the risk-neutral probability takes the
form (12.32), recall that under ¢, the expected return on the asset has to equal the risk-free
rate. Equivalently, the expected returns on the asset under ¢ discounted at the risk-free rate
should result in the current price. Here, the return on the asset has two components, the
dividend § S received right away and the capital gain (or loss) from the stock price movement
received next period. Thus, ¢ should now satisfy

1
§ = 85+ - [quS+(1-¢)ds]

This results precisely in (12.32).

We present two examples below. The first considers a one-period binomial tree and shows
that the value of an option obtained using the risk-neutral probability (12.32) coincides with
the value obtained using replication. The second considers a two-period binomial tree and
solves for American and European call option prices. The presence of the dividend yield in
the example causes early exercise to become optimal for the American option.

Let S = 100 and suppose the remaining parameters are given by u = 1.05, d = 0.95,
8 =0.05, and R = 1.01. Consider pricing a one-period call option with a strike of K = 100.
The payoffs from the call after one period are

5, if the asset price moves to 105
0, if the asset price moves to 95

We first price the call by risk-neutral valuation. From (12.32), the risk-neutral probability
of an up move in the price is given by

RO —8)—d _ 0.0095
9= "u=d T o0 0

Therefore, the value of the call obtained from risk-neutral valuation is

C = % [(0.095)(5) + (0.905)(0)] = 0.4703 (12.33)

We will show that the same call value results from replication. Consider a portfolio con-
sisting of A units of the stock and B in cash invested or borrowed at the rate R. Since the
dividend on the call returns § S, the net cost of the portfolio is

A(1—-8)S+B =95A+8B (12.34)
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After one period, the portfolio is worth A uS+ R B if the asset price goes up and A dS+R B
if it goes down. Substituting the values for u, d, and 3§, replication requires that the following
equations be satisfied:

105A+1.01B =5
95A+1.01B=0

Solving this, we obtain A = 1/2 and B = —47.0297. Substituting these values in (12.34),
the initial cost of the replicating portfolio (and so the price of the call option) is

[95 « 12] —47.0297 = 04703 (12.35)

This is, of course, the same value obtained using risk-neutral pricing. |

Let a binomial tree be given with the following parameters: S = 100, u = 1.10, d = 0.90,
R =1.02, and § = 0.05. The cum-dividend stock price tree is the same as in earlier examples
in this chapter (see Figure 12.2) and so is the interest rate. However, because of the dividend
yield, the risk-neutral probability of an up move in any period is

RO —8)—d 0069
q= =i = g5 = 0345 (12.36)

Suppose we wish to price a two-period call with a strike of 100. Consider a European
call first. The payoffs from the call at maturity are exactly as described in Figure 12.3; in
particular, the call has a positive payoff only if the path uu occurs. Since the risk-neutral
probability of two up moves is (0.345)?, the price of the European call is

Ce = 057 [(0.345)2 x 21] = 2.4025 (12.37)

Now suppose the call is American. Its payoffs if left unexercised until maturity are exactly
as described in Figure 12.3. We now apply backwards induction. At the node uS§, the stock
price is uS = 110, so early exercise of the call is worth 10. Not exercising early brings a
payoff in the next period of either 21 (if the stock price moves up) or 0 (if it moves down).
So the value of not exercising at uS is

1
705 [0:345 % 21] = 7.103 (12.38)

Comparing these values, it is clear that early exercise is optimal at u$, so the option value at
this node is 10. The option value at the node dS is evidently zero. Continuing the backwards
induction, the value of the American call at the initial node is

Ch = 1%[(0.345)(10)+(o.655)(0)] ~ 338 (12.39)

As the comparison of (12.37) and (12.39) shows, the dividend yield leads to early exercise
of the American call and to a substantial early-exercise premium. |
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12.10 Exercises 1.

10.

11.

Keeping all other parameters the same, if the dividend rate on the stock increases, which
option depreciates less, the American call or the European call? Why?

. What condition is required on the movement of stock prices for the binomial tree to be

recombining?

. Why does the payment of dividends usually render the binomial tree into a nonrecom-

bining one? What type of dividends causes the failure of recombination? What type of
dividends does not?

. Holding all else constant, if dividends increase, does the difference between American

calls and puts increase or decrease? Why? What about the difference between European
calls and puts?

. How would you know from examining the risk-neutral probabilities on a binomial tree

if the model is free from arbitrage?

. Explain briefly in a heuristic manner why option replication on a binomial tree is a

“dynamic” strategy.

. Explain what is meant by a “self-financing” replicating strategy.

Suppose we used a trinomial tree with three replicating securities instead of a binomial
tree with two securities. Would the dynamic replication be “self-financing”?

Suppose you have two states of the world and two assets. The prices of both assets in
each of the two states are known. What conditions are needed for a derivative security
that is a function of the two assets to be replicable?

(Difficult) In a two-period binomial tree, let the volatility at a given node (this is called
the “local volatility” at that node) be given by

o = In(u/d)

where u and d are the up and down moves, respectively, at that node. Given a starting
stock price of $50, suggest one way to draw a two-period recombining stock tree when
the volatility of the first period is ¢ = 0.20 and in the second period o is 0.25.

You are given the following tree of stock prices. In addition, the rate of interest per
period is constant at 2%. Find the risk-neutral probabilities of the stock movements
from each node on the tree. Are these probabilities the same? If not, explain whether
the tree is a valid one.

80
60

45 50
30

20




12.

13.

14.

15.

16.

17.

18.

19.
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On the tree given in the previous problem, price the American call and the American
put. Both options are assumed to be at strike $45.

Again, using the same tree as in the previous two questions, what is the delta of the call
and the put at times 0 and 1?

The initial stock price is $100. The stock moves up each period by a factor of 1.3
and down by a factor of 0.8. If the simple interest rate per period is 1%, what is the
risk-neutral probability of an up move in the stock price?

Draw the stock price tree for three periods and price a European call option for three
periods at strike $105.

The initial stock price is $100. The stock moves up each period by a factor of 1.3 and
down by a factor of 0.8. If the simple interest rate per period is 1%, find the prices
of three-period European and American puts, and state the early exercise premium
amount.

When there are no dividends, the early exercise of an American put depends on a trade-
off between insurance value (which comes from volatility) and time value (a function
of interest rates). Thus, for example, for a given level of volatility, early exercise of the
put becomes more likely if interest rates are higher. This question provides a numerical
illustration.

Consider a two-period binomial model withu = 1.10 and d = 0.90. Suppose the initial
stock price is 100, and we are looking to price a two-period American put option with
a strike of K = 95.

(a) First, consider a “low” interest rate of » = 1.02. Show that early exercise of the
American put is never optimal in this case.

(b) Now consider a “high” interest rate of » = 1.05. Show that it now becomes optimal
to exercise the put early in some circumstances. What is the early exercise premium
in this case?

Consider a two-period example with S = 100, # = 1.10, d = 0.90, » = 1.02,

and a dividend of $5 after one period. Is early exercise of a call optimal given these

parameters?

We repeat the previous question with higher volatility and interest rates and with lower

dividends. Consider a two-period binomial tree with the following parameters: S = 100,

u = 1.20,d = 0.80, and » = 1.10. Suppose also that a dividend of $2 is expected after

one period.

(a) Compute the risk-neutral probability in this world.

(b) Find the tree of prices of an American call option with a strike of 100 expiring in
two periods.

(c) What is the early-exercise premium?

The payment of a dividend on the underlying stock increases the value of a put option

since it “lowers” the stock price distribution at maturity. This question provides a

numerical illustration.

Let a two-period binomial tree be given with the following parameters: S = 100,

u =1.10,d = 0.90, and » = 1.05. Consider a two-period American put option with a

strike of 90. Note that this put is quite deep out-of-the-money at inception.

(a) What is the value of the American put given these parameters?

(b) Now suppose a dividend of $4 is paid at the end of the first period. What is the new
price of the put?
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20.

21.

22.

23.

24.

25.

In the absence of dividends, the holder of a European call always benefits from an
increase in maturity since the insurance value and time value of the call both increase.
However, for the holder of a European put in this case, insurance value increases but
time value decreases, so the put value could increase or decrease. In general, for a given
level of volatility, if interest rates are “high,” the time-value effect will outweigh the
insurance-value effect, so European put values will decrease as maturity increases; but
if interest rates are “low,” the insurance-value effect will dominate, so the put value will
increase. This question illustrates these arguments.

Consider a binomial model with parameters S = 100, # = 1.10, and d = 0.90, and a

European put with a strike of K = 100.

(a) First, consider a “high” interest rate environment where » = 1.02 (1 plus the
interest rate). We can see that with these parameter values, a one-period put is
worth 3.92, but a two-period European put is worth only 3.38. The increase in
maturity hurts the put holder because the insurance-value effect is outweighed by
the time-value effect.

(b) Now consider a “low” interest-rate environment where » = 1.00. Show that in this
case, the one-period put is worth less than the two-period put.

Consider a binomial tree model with # = 1.05 and d = 0.90. Suppose the per-period
interest rate is 7 = 1.02. Suppose the initial stock price is 100.

(a) What is the risk-neutral probability?

(b) Calculate the value of an American put option on the stock with a maturity of two
periods and a strike of 95.

(c) Compute the early-exercise premium.

The initial stock price is $50. The up move in the stock price is modulated by factor

u = 1.2, and the down move is d = 0.9. One dollar invested at the beginning of a

period returns $1.05 at the end of the period.

Draw a two-period stock price tree for this stock. Then price the European call for two
periods with a strike price of 50.

Find the replicating portfolio at the initial node on the tree. Show that this replicating
portfolio does mimic the price of the call at both subsequent nodes at time 1 on the
option tree.

Suppose the initial price of the stock is $100. The binomial process has an upshift
u = 1.5 and a downshift d = 0.6 per period. The interest rate per period is assumed
to be zero. What is the risk-neutral probability that the stock finishes above a price of
$200 after six periods? What is the price of the six-period call at a strike of $200?
(Difficult) Using values for u = 1.03 and d = 0.98 and an initial stock price of $50,
compute and plot the final risk-neutral probability distribution of the stock price after
100 periods. The interest rate is zero. What distribution does this remind you of?

The price today of stock XYZ is $100. Each period on a stock binomial tree is of length
two months, i.e., 0.1667 of a year. The annualized risk-free rate on a continuously
compounded basis is 5%. The annualized dividend rate on the stock is 2% continuously
compounded. The dividend is paid as a percentage of the stock value at the end of period.

The up move (after adjusting for downward drift from the dividends) in the stock
is driven by the factor u = 1.167618, and the down move (also after the effect of
dividends) is modulated by d = 0.842289.

(a) What is the risk-neutral probability of an up move in the price?
(b) Compute the stock tree for three periods (i.e., for a six-month horizon).
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(c) Based on this stock tree, compute the value of the dividends paid at the end of each
period.

(d) Now compute the present value, as of time zero, of the terminal prices of the stock
tree. Weight each value by its probability of occurring. What is the present value
you get? Does this strike you as strange? Why or why not?

(e) Price the European call option at a strike of 100 for a maturity of six months.

(f) Pricethe American call option ata strike of 100 for a maturity of six months. Assume
that if you exercise at a given node on the tree, you do not get the dividends for that
period, but only for subsequent periods.

(g) Price the European put. Same terms as the calls.
(h) Price the American put. Same terms as the calls.
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A General Representation of European
Option Prices

As mentioned in the text, we can derive a general n-period representation of European
option prices in the binomial model that resembles the Black-Scholes formula in its structure.
Consider an n-period binomial model with up and down moves given by # and d, respectively.
Let S denote the initial stock price and 7 the risk-free rate of interest per time step. Finally,
let K be the strike price of the options.

After n periods, there are n + 1 possible distinct terminal prices as we noted at the
beginning of this chapter (see Table 12.1):

* 1 up moves, resulting in the price u"S.

+ (n — 1) up moves and one down move, resulting in the price " ~'dS.
e eftc.

» n down moves resulting in the price d"S.

Denote by C(m) and P(m) the call and put payoffs at maturity if there have been m up
moves and n — m down moves:

C(m) = max{u"d"™S — K, 0} (12.40)
P(m) = max{K —u"d"™"S, 0} (12.41)

What are the risk-neutral probabilities of the various terminal nodes? A standard com-
binatoric exercise shows that the number of different combinations of m up moves and
n — m down moves (i.e., of different ways in which m up moves and n — m down moves
can happen) is

n!

m!(n —m)!
where k! represents “factorial £,” the product of all integers from 1 through k. (By conven-
tion, we take 0! = 1.) Now, the risk-neutral probability of an up move in any period is given
by
R—d
u—d
This means a specific combination of m up moves and n — m down moves has a risk-neutral
probability of

q:

"1 —g)"™"

Thus, the total risk-neutral likelihood of m up moves and n — m down moves, which we
denote Q(m), is

O(m) = g"(L—q)"™"

n!
m!(n —m)!

Table 12.3 summarizes this notation. The expected payoff of the call at maturity under
the risk-neutral probability is

0(0)C(0) +---+ O(n)C(n) (12.42)
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TABLE 12.3 . . -
Terminal Node Stock Prices Risk-Neutral Probability Call Payoffs Put Payoffs
Information: General u"s Q(n) C(n) P(n)
n-Period Tree u"'ds Q(n—1) C(n—=1) P(n—1)
ud™''s Q) c(1) P(1)
d's Q(0) C(0) P(0)

Discounting this back for n periods using the risk-free rate , we obtain the initial prices of
the call and the put:

1
C = & [QOCO) +--+ 0 C(n)] (12.43)

1
P = 2= [OO)P(0) + -+ O(m) P(m)] (12.44)

These expressions can be rewritten in a form similar to the Black-Scholes formula.
Consider the call first. Since more up moves result in a higher stock price at maturity, there
is a critical number of up moves m™* such that the call finishes in-the-money if and only if
the number of up moves m satisfies m > m*. That is:

0, ifm < m*

Cm) = {u,nd,,_ms_ o mem (12.45)

Therefore, we can rewrite (12.43) as
C = % [Om*)C(m™) + O(m* + 1)C(m™* + 1)+ ---+ O(n)C(n)] (12.46)

Substituting for C(m) from (12.45), we have

C = % > om)[u"d""S — K] (12.47)

m=m*

Breaking the right-hand side into two terms, we finally obtain

C=3S- (% Z [Q(m)u’"d”'"]) — (%K Z [Q(m)]) (12.48)
The second term on the right-hand side has a very simple interpretation. The first part of
this term, K/R", is simply the present value of K viewed from time 0. The second part
of the term, Y _ . Q(m), is, by definition of m*, the risk-neutral probability that the call
option will finish in-the-money. Thus, the second term measures the anticipated “cost” of
exercising the option: the present value of K times the probability of exercise. Similarly,
the first term measures the anticipated benefit from the option (what one is going to receive
times the likelihood of receiving it). The difference between the two terms must, of course,
be the option value.

As we see later in this book, the Black-Scholes option pricing formula has a very similar
structure to (12.48): the Black-Scholes call price too is of the form

[Sxterm 1] —[PV(K) x term 2 ]

where “term 2” in the Black-Scholes model is again the risk-neutral probability of the option
finishing in-the-money.
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The put price in the binomial model has a similar representation. The put finishes in-the-

money if and only if m < m*:

K —um"d" ™S, ifm <m*
P(m) = { 0, itm > m*

So, the initial price of the put may be written as

1 m*71 m gjgn—m
P= ;Q(m)[K—u d""S)

Breaking up the last term into two parts, we obtain

K m*_l 1 m*_l n _ggn—m
P= (; Q(m)) -5 (Rn r;u d

(12.49)

(12.50)

) (12.51)

The first term is the present value of K times the risk-neutral probability that the put finishes
in-the-money; it represents what one expects to get from the put. The second term represents
the value of what one expects to give up in the put (i.e., the value of the stock given up by
exercise). The difference between the terms is the value of the put.

As with the call, the Black-Scholes formula for the price of a European put has a very

similar structure to (12.51); it is of the form

P = [PV(K)x term1]—[S x term 2 ]

(12.52)

with “term 1” being the risk-neutral probability that the put finishes in-the-money.
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13.1

Implementing the
Binomial Model

Introduction

The last two chapters have examined the pricing of options using binomial trees, taking
the parameters of the tree as given. Rounding off this material, this chapter discusses two
key issues: (a) how these parameters are determined, and (b) computer implementation of
binomial trees. In the process, we introduce one of the most useful distributions in option
pricing, the lognormal distribution.

The idea behind identifying the parameters of the binomial model is a simple one. Given a
horizon 7', we choose a distribution of prices that “best” represents the possible prices of the
underlying at 7. Then we choose the parameters of the binomial tree so that the distribution
of prices on the terminal nodes of the binomial tree resembles the chosen distribution as
closely as possible.

For the time-T distribution, we choose the lognormal distribution. The lognormal dis-
tribution is widely used in practice to represent returns on a variety of underlying assets
such as equities, indices, and currencies. The lognormal is also the distribution underlying
the Black-Scholes model, which we examine in the next chapter. However, there are some
assets (such as bonds) for which the lognormal is not always suitable. Given its widespread
use and importance, we begin with a discussion of this distribution.

13.2 The Lognormal Distribution

In expressing the evolution of prices on an asset, what we are describing is the process of
returns on that asset. The lognormal distribution assumes that the log of these returns has
a normal distribution. o

Let Sy denote the current price of the asset and Sy denote its price in 7 years. In simple
terms, the gross return on the asset over this horizon is S7/S,. Let N(m, v) denote the
normal distribution with mean m and variance v (i.e., with standard deviation /v). The
lognormal distribution assumes that for any 7

In (ﬁ) ~ N(uT,o*T) (13.1)
So

289
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FIGURE 13.1
The Lognormal
Density Function

where 1 and o are the two parameters of the distribution. From (13.1), the expected log-
return and variance of log-returns over the T-year horizon are, respectively, u7 and 02T

b))
()] -

In particular, by taking 7' = 1 year, we see that u is the expected annual log-return and o
is the variance of the annual log-returns.

Figure 13.1 provides plots of the lognormal returns for various parameter values. (The
plots are of the lognormal probability density function. Thus, the probability of gross returns
less than or equal to x is the area under the curve to the left of x.) The horizon in the figure is

wT (13.2)
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fixed at one year. As is evident from the plots, the lognormal is a skewed distribution. Unlike
the normal distribution, which can take both positive and negative values, the logarithmic
function Inx is defined only for positive x, so the lognormal distribution is defined over
only the positive part of the axis.

Log-Returns = Continuously-Compounded Returns
Suppose the realized log-return on an asset over a horizon [0, 7] is x:

St
In(—) = 13.4
n(3) =+ (13.9)
Then, this implies
St
— = 13.5
g = (13.5)

(We have used the fact thatifIn y = z,then y = e°.) Expression (13.5) says precisely that the
continuously-compounded return on the asset over the period [0, 7] is also x. That is, log-
returns and continuously-compounded returns are two names for exactly the same concept.

The Notion of “Volatility”

The parameter o has a special name: it is called the asset’s volatility. Thus, the term volatility
refers to the standard deviation of log-returns expressed in annualized terms.

It is common in practice to express volatility in percentage terms, for example, to refer
to a volatility of 35%. A volatility of 35% means that o = 0.35. In general, while o
must be positive, there are no natural upper bounds on how large it can be. Individual
stock volatilities in the US are usually of the order of 30%—-50%, although much higher
volatilities (70%—-100% and even more) may obtain on occasion, particularly on small-cap
or technology/new economy stocks. Stock index and currency volatilities tend to be much
lower, typically 20% or less.

In Appendix 13A, we discuss how to compute the volatility of an asset from information
on past price observations. This is called Aistorical volatility. A related but distinct notion
is that of implied volatility, which we discuss in the chapter on Black-Scholes.

Log-Returns and the Simple Returns S7/S,

What does the lognormal distribution imply for the simple expected returns S7/Sy?
Appealing to standard properties of the lognormal distribution, it can be shown that the
mean and variance of simple returns are given by

S 1.2
E {S—Z] = etTt+3o°T (13.6)

Var [i‘} _ QTR0 _ uThetT (13.7)
0

For one special case, (13.6) is easily verified. When o = 0 (there is no volatility), the
lognormal assumption implies that

In (&> = ul (13.8)
So
so that
& = et (13.9)
So

which is precisely (13.6) for this case.
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Example 13.1

While they are related, log-returns and simple returns are distinct concepts and should
not be confused with each other. An example will help make this point.

Suppose the returns on XYZ stock are distributed lognormally with a mean of 10% and a
volatility of 40%. Then, using (13.6), the expected simple return from holding the stock for
a period of one year is

e(o410)(1)+% 0160 _ 1197

so the net return is 19.7%, almost twice the expected log-return of 10%. The variance of
simple returns over a one-year holding period is

220.10(1M)+2(0.16)(1) _ 52010)(D+©.16)XD) _ () 249
or 24.9%, compared to the variance of log-returns of (0.40)? = 16%. |

Here is one other difference. Suppose simple returns were normal, i.e.,

5t N@mT,s*T)

So

for some m and s > 0. Then, since the outcomes of a normal distribution can assume any
value between —oo and +00, simple returns may be less than 100%, meaning that the time-7'
price S7 may be negative. This is obviously undesirable since equity prices or exchange rates
cannot turn negative. With a lognormal distribution, this is never a problem: for any real-
ization z of log-returns, Sy /Sy is, from (13.1), given by €*, and this must always be positive.

The Assumption of i.i.d. Returns

The term “independently and identically distributed” (abbreviated i.i.d.) refers to a stochastic
process in which

* the probability distribution of outcomes at any time is identical to that at any other time,
and

» outcomes are independent over time, i.e., outcomes at time ¢ do not depend on outcomes
at any point before 7.

The assumption (13.1) of lognormal returns also involves an assumption that log-returns
are i.i.d. The log-returns over any period of length 7 years depend only on 7 and the
parameters u and o of the normal distribution. Thus, the expected log-return over a two-
month period is twice the expected log-return over a one-month period, etc. And, of course,
returns at any point do not depend on past returns.

The assumption of i.i.d. returns makes the model technically easy to handle, but is it
a good assumption from an economic standpoint? That is, are returns in practice (at least
approximately)i.i.d.? Available data suggests perhaps not. In stock markets, sharply negative
returns are often followed by increased volatility, while high returns are often succeeded by
low volatility, a pattern that is sometimes called the “leverage effect.” We discuss this issue
further at the end of the Black-Scholes chapter.

Working with the Lognormal Distribution

The normal distribution is mathematically one of the easiest distributions to work with. It
has a number of powerful properties. For example, every normal distribution is symmetric
about the mean, and in any normal distribution, the mean + 1.96 standard deviations covers
95% of'the area. This makes it very easy to construct confidence intervals and such financial
measures as Value-at-Risk.
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Almost all of the properties of the normal are preserved in the lognormal. For example,
to construct confidence intervals for a lognormal distribution, all we need do is construct
confidence intervals using the underlying normal distribution for log-returns and then ex-
ponentiate. The following example illustrates.

Consider a horizon of three months (T = 1/4), and suppose a stock has lognormal returns
with © = 0.10 and o = 0.30. Suppose also that the current price of the stock is § = 100.
What is a 95% confidence interval for the stock price in three months?

Since T = 1/4, we have

uT = 0.10x 0.25 = 0.025, o?T = 0.30° x 0.25 = 0.0225

That is, In(S7/S) is distributed normally with a mean of 0.025 and a standard deviation
of +/0.0225 = 0.15. For a normally distributed random variable, 95% of observations lie
within 1.96 standard deviations of the mean. Thus, with probability 0.95, In($7/5) will lie
between

[0.025 — (1.96)(0.15)] = —0.269 and [0.025 + (1.96)(0.15)] = +0.319
Exponentiating both sides, it is the case that with probability 0.95, S7/S lies between
e 02 = 0.7641 and ¢'%3" = 1.3758
Therefore, with probability 0.95, Sy lies between
$x(0.7641) = 76.41 and S x (1.3758) = 137.58

This identifies the 95% confidence interval for Sr. [ |

The Lognormal as a Model of Bond Returns?

For at least two reasons, the lognormal is inadequate as a model of bond price evolution. First,
in a lognormal distribution, the uncertainty regarding future prices increases as the horizon
increases—the larger is T, the greater is the variance of returns o27. However, absent
default risk, the bond price at maturity—its face value—is known with certainty today;
thus, uncertainty regarding future bond prices must go to zero as maturity approaches.
Even with default risk, the bond price at maturity can vary only between zero and its face
value, so the lognormal is still inappropriate. Second, a lognormal distribution of bond
prices implies a normal distribution of bond yields. This means bond yields and interest
rates can be negative.

The Actual and Risk-Neutral Distributions

Since derivative prices depend only on the risk-neutral distribution of asset prices, we can
use the binomial tree to approximate either the actual distribution of asset prices or the risk-
neutral distribution. If we use the former, u and o represent the actual annualized mean
and variance of log-returns on the underlying asset. If we use the risk-neutral distribution,
the asset’s volatility is unaffected but its expected return must equal the risk-free rate. The
expected return is, as we have seen in (13.6) above, given by

E {%] = etT+2o’T (13.10)
0
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Let » be the risk-free rate for a horizon of 7" years expressed in annualized continuously-
compounded terms. Then, $1 invested for T years at the rate » grows to $¢’” in T years.
So, for the expected return in (13.10) to equal the risk-free rate, we must have

1,
MT—{—EUT:rT

or

1
w=r——o’ (13.11)
2
Thus, if the lognormal is to represent the risk-neutral distribution of asset returns, u is given

by (13.11).

13.3 Binomial Approximations of the Lognormal

Suppose we are given an asset whose returns follow a lognormal distribution with parameters
w1 and o. Given a horizon of 7 years, how do we choose binomial parameters so that the
binomial tree approximates the given distribution?

In principle, we have four free binomial-tree parameters we can choose:

* u and d, the up and down move sizes, respectively.
* p, the probability of an up move.
* n, the number of steps in the binomial tree.

Of these parameters, n is usually fixed in advance. Ideally, we would like to choose n as
large as possible, but we would also like computational tractability of the model. The choice
of n reflects a compromise between these conflicting objectives. Typically, # is taken to be
at least 100, although far larger trees are commonly used in practice.

So, suppose n is fixed at some level. Let 7 = T'/n denote the length (in years) of each step
ofthe binomial tree. This leaves us with three parameters whose values are to be determined:
u,d,and p. Our objective is to choose these parameters so that the distribution of prices after
n steps of the binomial tree resembles a lognormal distribution with parameters T and 0% T
In particular, we want the expected log-return after # steps of the tree to be approximately
wT, and the variance of log-returns to be approximately ¢>T, with the approximations
improving as n increases.

Now, the returns on each step of the binomial tree are identical to the returns on any
other step of the tree. Moreover, returns across different time steps are independent—the
return realized in any step does not affect the likelihood of « or d in any other time step.
Thus:

» The expected return over n steps of the binomial tree is simply » times the expected
return over each step of the tree.

» The variance of returns over n steps of the tree is n times the variance of returns over
each step.

So our first step has to be an understanding of the returns per step of the binomial tree.
Over each step, the asset returns « with probability p and d with probability 1 — p. Thus,
the log-returns in each step are

Inu, with probability p
Ind, with probability | — p
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This gives us:

Expected log-return per step =plnu+(1-p)Ind
Variance of log-returns per step = p(1 — p) [Inu — Ind]?

Summing these returns over n steps,

Expected log-return over n steps =n[p Inu+ (1 — p) Ind]
Variance of log-returns over n steps = np(1 — p) [Inu — Ind7]?

To match this mean and variance with those of the lognormal, we must choose u, d, and
p so that the following equalities hold at least approximately:

n[plnu+ (1 — p)Ind] = uT (13.12)
np(1 — p)[lnu —Ind> = oT (13.13)
Equivalently, dividing through by # in both equations, we want
phnu+(1—p)lnd = ph (13.14)
p(1 = p)[lnu —Ind)* = o’h (13.15)

Expressions (13.14) and (13.15) give us two equations in three unknowns. Obviously,
there are multiple solutions to these equations. Two of particular interest are highlighted
below.

The Cox-Ross-Rubinstein Solution
The Cox-Ross-Rubinstein (CRR) solution to parametrizing the binomial model is to take

u = eVt (13.16)
d =1 oo (13.17)
u
1 1 /n
P=3+5 (;)ﬁ (13.18)

A simple calculation shows that under (13.16)—(13.18), we obtain
plnu+(1—p)lnd = uh (13.19)
so the requirement (13.14) is met exactly. Moreover,
p(1 = p)[Inu —ndP’ = o’h —pu’h’ (13.20)

For large values of n, h becomes a small fraction, so terms of the order of 4% become
smaller still. This means the variance requirement (13.15) is approximately met, and the
approximation becomes more accurate the larger is the value of n. Indeed, as n — oo, the
entire binomial distribution with parameters given by the CRR solution (13.16)—(13.18)
converges to a lognormal distribution with mean w7 and variance o> 7.

The CRR solution has some properties worth emphasizing. First, the CRR tree is “cen-
tered” on S. Since ud = 1 in the CRR solution, an up move followed by a down move
always brings us back to the initial price. Second, in the CRR solution, u and d depend only
on a single parameter o . This is important because the probability p plays no role in pricing
derivatives in a binomial model; only # and d (and the risk-free rate) matter. Thus, the CRR
tree can be implemented and options priced based on knowledge of o alone.
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The Jarrow-Rudd Solution
The Jarrow-Rudd (JR) solution to parametrizing the binomial model is to take

u = ethtovh (13.21)

d = eMovh (13.22)
1

p=; (13.23)

It is easy to check that under the JR solution, the requirements (13.14) and (13.15) are
met exactly. And, indeed, once again, as n — 00, the entire binomial distribution with
parameters given by the JR solution (13.21)—(13.23) converges to a lognormal distribution
with mean T and variance 027

A seeming disadvantage of the JR solution is that the parameters # and d depend on
both 1 and o, so the mean expected log-return is also required to implement the tree. One
way around this problem, commonly adopted in using this solution, is to approximate the
risk-neutral distribution of the asset returns rather than the actual distribution. In this case,
as we have seen in (13.11) above, u depends on only the risk-free rate and o.

Other Possibilities?

Since we have two equations in three unknowns, many other solutions are, of course,
possible. For example, we could choose the parameters of the tree so that the risk-neutral
probability implied by the parameters is equal to 1/2. Recall that the risk-neutral probability
is given by
g = R4 (13.24)
u—d

where R is the gross rate of interest per step of the binomial tree. The parameter R may be
readily computed from knowledge of the T'-year interest rate. For example, if the 7'-year
interest rate in continuously compounded terms is 7 (i.e., an investment of $1 grows to e'”
in T years), then R is given by

R = exp{rh} (13.25)

Using the approximation ¢* &~ 1 + x (which is a good approximation for small values of
x), it is easily seen that the risk-neutral probabilities under the CRR and JR solutions are,
respectively,

1 1r
= — — —/h
qCRR 2+20\/_

and
- v
QR = 5T 40

In each case, these probabilities converge to 1/2 as # — 0. But if we want ¢ to be exactly
equal to 1/2 for a given value of /, then we must have

R—d 1
u—d 2
which is the same thing as
u+d=2R (13.26)

Expression (13.26) gives us a third equation in the unknowns « and d. In conjunction with
(13.14) and (13.15), this gives us a three-equation system in the three unknowns u, d, and
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p- In the solution to this three-equation system, the risk-neutral probability is guaranteed
to be 1/2.

Does It Matter Which Solution We Use?

To an extent, no. As long as all the solutions converge to the lognormal distribution, they also
resemble each other for large values of n. However, the pace and manner of the convergence
can be quite different.

Figure 13.2 illustrates this point. The upper panel of the figure considers a call option
priced on a binomial tree using the CRR approximation of the lognormal. The lower panel
uses the JR approximation. In either case, the lognormal distribution has a volatility of
40%, the maturity of the option is taken to be one year, the risk-free rate is 5% per year in
continuously compounded terms, the initial stock price is 100, and the call is taken to be
at-the-money. In both panels, the horizontal axis is the number of steps used in the binomial
tree, and the vertical axis is the option price obtained from the tree.
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The option price in both panels converges to the Black-Scholes price, which for the
given parameters, works out to marginally under 18.023. However, as the figure shows, the
manner of convergence is quite different. The CRR solution oscillates between over- and
under-approximations of the limit price with the oscillations gradually dampening as the
number of steps in the binomial tree increases. The over- and under-approximations are
almost symmetric, so their average converges very rapidly to the Black-Scholes price. For
example, with n = 21 and n = 22, the option prices on the tree are 18.199 and 17.847,
which represent significant over- and under-estimates of the Black-Scholes price. However,
the average of the two is 18.023, almost exactly the limit price. The JR convergence pattern
is more complex.

13.4 Computer Implementation of the Binomial Model

Implementing the binomial model involves repeated discounting of expected cash flows of
the option from maturity to the present on a discrete time binomial tree. This process, which
we described in the last chapter, is called “backward recursion” or “backward (or backwards)
induction.” In general notation and in any discrete model (binomial or other), it requires the
following calculation for a European option, repeated from the terminal nodes on the tree,
backward in time, until we reach the present time (time zero).

C, = E[e"Cps] (13.27)

where ¢ denotes time, % is the discrete time interval (in years) between periods on the
binomial tree, r is the risk-free interest rate expressed in continuously-compounded and
annualized terms, and E-] denotes expectations under the risk-neutral probability. We put
the interest rate inside the expectation to allow for the possibility that it may be changing
over time. Specialized to the binomial case, expression (13.27) may be rewritten as

1
Cr=—=[gCl, +(1 =) Cy] (13.28)

Here, g is the risk-neutral probability of an up move, C},, is the option value at # + 4 if the
tree branches upward, C¢, , is the option value at 7 + 4 if the tree branches downward, and
R is the constant per-period gross rate of interest.

Recursion

In mathematics, recursion refers to a function that is defined in terms of itself. More pre-
cisely, in a recursion, the function’s value for some initial state is specified exogenously. The
function then calls itself, defining successive values from previous ones, until a specified
terminal point is reached.

A simple example of a recursion is the factorial function, f(n) =n! =1x2x--- X n.
The initial value, (1) is specified by f(1) = 1, and successive values are defined by
f(k) =k x f(k— 1) until we reach f(n).

The process of identifying the initial price of an option also involves a recursion. We
begin with its terminal payoffs

Cr = g(8r)
where the exact form of g(-) depends on the option in question. For example, if the security
is a call with strike K, then g(S7) = max{S; — K, 0}; if it is a put with strike K, then
2(Sr) = max{K — Sr, 0}; or if it is a long forward with delivery price F, then g(Sr) =
S7 — F. Then, we work backwards through the tree using (13.28), which defines the time-¢
price of the option in terms of its time-(# + /) prices. The procedure terminates when we
reach the current time ¢ = 0.
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Implementing the Recursion

Implementing this recursion on a computer is not hard. Let the initial stock price be S, the
annualized stock volatility be o, the option strike price be K, and the number of periods
on the tree be n. Suppose we use the CRR solution to parametrizing the binomial tree. The
entire system of equations is:

T
h=—
n
u = exp(ov'h)
1
d = exp(—ovh) = —
u
Rze—rh
_R-d
1= u—d
So=S8
in = USi
Sﬂw =ds,

Cr— max[0, S — K] for calls
=\ max[0, K — S;] for puts

1
Co=gla Cly +(1-q) Cly)

Here is Octave code to implement this recursion:

%Recursive program to price options
function w = crr_rec(s,k,t,v,r,pc,n);
if n==0;
if pc==1; optval=max(0,s-k); end;
if pc==0; optval=max(0,k-s); end;
else
= t/n;
exp (vksqrt(h));
= exp(-v*sqrt(h));
exp (r*h) ;
(R-d)/ (u-d);
optval = (g*crr_rec(s*u,k,t-h,v,r,pc,n-1) + ...
(1-q)*crr_rec(s*d,k,t-h,v,r,pc,n-1))/R;

QL X ae &
I

end;
w = optval;

The tree underlying the option is represented as a recursion on the third- and fourth-last lines
of the program. This line where optval is computed contains, therefore, a recursion over
the option price and embeds another recursion in the underlying stock price as well. Note
carefully how the boundary condition is implemented in this model. Within the recursion
line is yet another (trivial) recursion in time where we count down to maturity. When there
are no remaining periods (n==0), the program ignores the recursion and implements the
terminal payoff conditions in lines 4-5 of the program.
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As an example, we can run the program and do three things: (a) price a call, (b) price
a put, and (c) check whether put-call parity holds so that we can assure ourselves that the
model works. Here is the Octave output:

octave:1> callopt = crr_rec(50,52,0.5,0.3,0.03,1,10)
callopt = 3.7553

octave:2> putopt = crr_rec(50,52,0.5,0.3,0.03,0,10)
putopt = 4.9812

octave:3> callopt - putopt

ans = -1.2258

octave:4> 50 - 52*exp(-0.03*0.5)

ans = -1.2258

We used an initial stock price of $50, strike of $52, maturity of a half year, o = 0.3,
r = 0.03, and n = 10 (10 periods in the tree). Note that put-call parity holds exactly.

The implementation remains exactly the same if we choose to adopt the JR form of the
binomial model. Only the definitions for # and d in the program would require modification.

The Problem with Recursion

While recursion is easy to implement, it is not the most efficient way to implement the
binomial tree because the recursion does not take advantage of the fact that the CRR tree is
a recombining one. Think for a moment about what happens when we start the recursion.
The initial node calls upon the two succeeding nodes, which in turn call upon two nodes
each, and so on. Hence, after two steps, four nodes are called, even though there are only
three distinct nodes after two periods in the recombining binomial tree. In a recursion, since
the computational effort is proportional to the number of nodes generated in the calculation
(which is 2" for an n-period model), the computational effort can blow up. Also, from
a technical point of view, recursions within a computer are held in memory (informally
speaking) on a recursion stack, and there are sheer physical limitations on the size of the
stack, resulting in further slowdowns.

Motivated by this, we next look at writing a program to implement binomial option
pricing on a tree using a two-dimensional array representation instead of a recursion. But
note that recursion is still quite an efficient approach when working with models that do not
result in recombining trees.

Recombining Tree Models
Recall that a binomial tree is said to be recombining if an up move followed by a down move
leads to the same price as a down move followed by an up move. If # and d are constant and
do not change over the tree, then the binomial tree will always be recombining, as we noted
in Chapter 12 (see Section 12.2). Both the CRR and JR solutions lead to recombining trees.
With a recombining tree, the entire tree can be represented in a two-dimensional
(n+ 1) x (n + 1) lattice. We describe how to create the lattice for the evolution of stock
prices, and then overlay on this another lattice for the option values.
A typical cell in the stock price lattice is denoted S(/, 7). The index ¢ keeps track of time.
From S(J, t) come two nodes at time ¢ + 1:

SUt+1)  =uxS80,1)
SU+Lt+1)=dxS(j,1)

Thus, for example:

» Atthe initial node, there is only one possible price, so we have a single price S(1, 1) = S.
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S(1,1) S(1,2) \: S(1,3) > S(1,4)

S(2,2) > S(2,3) > S(2,4)

\

AAAA

S(3,3) S(3,4)

S(4, 4)

» After one period, there are two possible prices S(1,2) = uS(1,1) and S(2,2) =
dS(1,1).
» After two periods, there are three possible prices, S(1, 3), S(2, 3), and S(3, 3), with

S(1,3) =uS(1,2)  S(2,3) =dS(1,2) =uS(2,2)  S(3,3) = dS(2,2)

The tree is pictured in Figure 13.3. Note that the tree uses only the upper triangle of the
lattice.

Programming this tree is not difficult. The Octave code for it is shown below. The
equations of motion of the model are exactly as we had in the recursion section except that
in the program, we replace the forward propagation of the recursion system with backward
recursion on the tree.

%CRR BINOMIAL TREE WITH DIVIDENDS
%s: stock price

%k: strike

%t: maturity

%v: volatility

%rf: risk free rate

%div: proportional dividend yield
%pc: call=1, put=0

%ae: american=1, european=0

%n: no of steps in the tree

function crrval = crr_div(s,k,t,v,rf,div,pc,ae,n);

%BASIC SET UP

h = t/n;

= exp(v*sqrt(h));

= exp(-vxsqrt(h));
exp(rf*h);

= exp(div*h)-1;

= (exp((rf-div)*h)-d)/(u-d);

Q< KR Qs
]
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%PREPARE STOCK TREE

stktree = zeros(n+1,n+1);

divtree = zeros(n+1,n+1);

stktree(1,1) = s;

divtree(1,1) = 0;

for t=2:n+1;

stktree(1,t) = stktree(l,t-1)*u;
divtree(1,t) stktree(1,t)*y;
for j=2:t;
stktree(j,t) stktree(j-1,t-1)*d;
divtree(j,t) = stktree(j,t)*y;
end;

end;

%TERMINAL PAYOFFS

optval = zeros(n+l,n+1);

pvdiv = zeros(n+l,n+1);

for j=1:n+1;

if pc==1; optval(j,n+1)=max(0,stktree(j,n+1)-k); end;
if pc==0; optval(j,n+1)=max(0,k-stktree(j,n+1)); end;
pvdiv(j,n+1) = divtree(j,n+1);

end;

%PRICE OPTION BY BACKWARD RECURSION

for t=n:-1:1;

for j=1:t;
pvdiv(j,t) = (1/r)*(g*xpvdiv(j,t+1)+(1-q)*pvdiv(j+1,t+1));
optval(j,t) = (1/r)*(g*optval(j,t+1)+(1-q)*optval(j+1,t+1));
if ae==1;

if pc==1;
optval(j,t) = max(optval(j,t),stktree(j,t)+pvdiv(j,t)-k);
else
optval(j,t) = max(optval(j,t),k-stktree(j,t)-pvdiv(j,t));
end;
end;
pvdiv(j,t) = pvdiv(j,t) + divtree(j,t);
end;
end;

crrval = optval(1l,1);

The program is compact and easy to decipher. If we use the same parameters as we did
in the recursion example, we get precisely the same values for option prices (as indeed, we
must):

octave:5> callopt = crr_div(50,52,0.5,0.3,0.03,0,1,0,10)
callopt = 3.7553

octave:6> putopt = crr_div(50,52,0.5,0.3,0.03,0,0,0,10)
putopt = 4.9812

octave:7> callopt - putopt

ans = -1.2258

octave:8> 50 - 52*xexp(-0.03%0.5)

ans = -1.2258
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American Options

Both schemes described above, recursion and trees, look at European options. To extend the
analysis to American options, we need to add just one additional line to the programs. In the
line below the optval calculation, we need to check whether the value from early exercise
of the option is higher than the continuation value. The following program statement in the
recursion model does the trick (for calls):

optval = max(s-k,optval)
In the binomial tree, we add
optval(j,t) = max(s(j,t)-k,optval(j,t))

Analogous changes for puts are straightforward.

Convergence
It is also easy to use the functions to examine how the model converges. As we increase

n, the price should converge to the Black-Scholes model value. Here is a simple snippet of
program code to see this.

for k=1:3;
fprintf (°%7.0f %8.3f \n’,107k,crr(50,52,0.5,0.3,0.03,1,107k));
end;

The code takes n in powers of 10 up to 1,000 periods on the tree and prints out the results
in a formatted way. Note the formatting commands; they may be useful in your working
with Octave. We get

10 3.755
100 3.685
1000 3.690

The Black-Scholes option pricing formula gives the value of the option as $3.690.

13.5 Exercises

1. Suppose the distribution of S; is given to be lognormal:

log (%) ~ N (ut, 0’t)

where 1 = 0.10 and o = 0.20. Given that S = 60, calculate 95% confidence intervals
for the price of S, three months from today.

2. Repeat Question 1 with © = 0.10 and o = 0.10.

3. Suppose you wish to approximate the distribution of a stock price three months from
now using a binomial tree with 100 steps. Suppose also that the stock price distribution
is given to be lognormal with u = 0.04 and o = 0.40. What values would you use for
the parameters of the binomial model?

4. Repeat Question 3 but with © = 0.20 and o = 0.20.

5. Suppose the price S; of a stock follows a lognormal distribution with © = 0.07 and
o = 0.30. What are the expected simple returns on the stock over a three-month
horizon?

6. Assume the S&P 500 index follows a lognormal distribution with a volatility of 25%.
Suppose the expected simple returns on the index over a one-year horizon are 8%. What
is the value w of the annual expected log-return?
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

. If the continuously compounded return on a stock is normal, then why is the stock price

distribution lognormal?

. Ifthe continuously compounded return on a stock worth $1 currently for a preset interval

of time is distributed normally as follows: » ~ N(u, %) = N(0.1, 0.2%), then what are
(a) the expected price of the stock after one interval and (b) the variance of the stock
price?

. (Technical) Suppose that the continuously compounded returns in each period are normal

but are not always independent from period to period. Will the final stock price after all
periods be lognormal?

(Technical) In binomial tree models, as we shrink the time interval on the tree, will the
final return distribution of the stock price always converge to the normal distribution?

For a binomial tree with the probability of 0.01 of an outcome of 1 and a probability of
0.99 of an outcome of 0, what are the mean and variance of the payoff? Intuitively, what
do you learn from this analysis?

For a binomial tree with equity returns continuously compounded with ¢ = 0.2 and
interest rates quarterly compounded at annual rate » = 0.03, what is the upshift in stock
price, downshift, and the risk-neutral probability of the upshift if the interval on the tree
is quarterly?

Suppose the annualized volatility of a stock is o = 0.30. The mean return is & = 0.10.
The risk-free rate is constant for all maturities at 2%. Letting the time interval / increase
in monthly increments (1/12 of a year), how does the risk-neutral probability of an up
move in the stock price change when using the CRR model? Why do we see this pattern?

If the standard deviation of daily stock returns is 2%, what is the volatility of annual
stock returns?

What is the key assumption that supports converting weekly standard deviation into an
annual standard deviation by multiplying it by /52?2

You are constructing a 100-period binomial tree to represent a 91-day (& 0.2493-year)
horizon. The risk-free rate for the given horizon is 4% in annualized continuously com-
pounded terms. The underlying asset has a volatility of 38%. What are the parameters
of the binomial tree if you use the JR solution? What is the risk-neutral probability in
the constructed tree?

Rederive the risk-neutral probability in the JR model using general algebra. Is the prob-
ability always exactly 3?

This problem will require a spreadsheet or programming effort. The initial stock price is
given to be $100. We wish to price European calls and puts with strike price $100. The
option maturity is 7 = 1 year, and the risk-free rate of interest is 5% per annum. If the
volatility is ¢ = 0.40, then price the call and the put using the JR model. Assume you
use a binomial tree comprising #n = 30 periods.

Using the same parameters as in the problem above and the same JR tree, what are the
prices of American calls and puts?

In Problem 18, check that your solution satisfies put-call parity exactly.

Rework Problem 18 with exactly the same parameters but use the CRR model instead.
Compare your European put and call prices with those from the JR model. Also price
the options using the Black-Scholes model and compare those prices as well.

You are given the following parameter values and are required to price calls using both
the JR model and the CRR model for different values of 7, the number of periods on
the tree. The given values are S = 100, K = 100, 7 = 1, 0 = 0.4, and » = 0.05. For



23.

24.

25.
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varying values of n, running from 5 to 100, plot the values of the call option obtained
from the two models. How different are the convergence rates?

Repeat the previous question for the CRR model only, but change the strike price to $90,
i.e., the call option is deep in-the-money. What happens to the plot? Then repeat this
with the strike equal to $110, i.e., when the option is out-of-the-money. What happens
to the plot?

(Technical) Prepare program code in Visual Basic for Applications (VBA) in Excel
(i.e., macro programming) to price options using a recursive implementation of the
binomial tree. This exercise is meant to give you some experience with recursive pro-
gramming structure.

Is it possible to build a recombining tree if the interest rate is not constant, nor stochastic,
but a deterministic function of time, i.e., (#)?
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TABLE 13.1 Daily
Closing Prices and
Log-Returns

Estimating Historical Volatility

Under the assumptions of the lognormal distribution, the variance of log-returns over 7" years
is simply 7 times the variance over one year. So, one way to estimate volatility (which is the
standard deviation of annual log-returns) is to estimate the standard deviation of daily log-
returns and then multiply this by the appropriate factor to convert it into an annualized form.

So, the first step in the process is to gather information on daily returns. Suppose we are
given the information in Table 13.1. Let £[¢] and E[£2] denote, respectively, the expectation
of daily log-return and the expectation of (daily log-return)?, and let V'[£] and o (£) be the
variance and standard deviation, respectively, of daily log-returns. We compute:

1 N
Elf] = ;zi
E[¢*] = E XN:E

N i=1 l
Vie] = E[€*] - (E[€])’

olf] = VI

From o [£], we can obtain the annualized volatility o. If one day denotes a fraction € of
a year, then, by definition we have o [£] = o \/€, so finally,

1
o = o[l] x NG (13.29)

One last question is important before we can take this to the data: what exactly is €?
The question is a tricky one. If trading took place continuously throughout the year, then
we could gather closing price information for every single day and simply use € = 1/365.
However, in practice, we do have weekends and other holidays during which exchanges
are closed, and we have no closing prices for those days. Moreover, empirical evidence
gathered by Fama (1965), French (1980), and others suggests that markets are less volatile
over holidays than over trading days (so that, for example, the variance of returns from
Friday’s close to Monday’s close is much less than three times the volatility observed from
close to close when there are no intervening holidays).

What is commonly done in practice, therefore, is to measure time in trading days rather
than calendar days and to ignore holidays in the calculation. Thus, the gap from Friday to
Monday is treated as just one day. Since there are typically around 252 trading days in a year,
we estimate daily volatility and multiply this figure by +/252 to get annualized volatility.
An alternative would be to use weekly rather than daily data and to multiply the estimated
weekly standard deviation by +/52 to get annualized volatility, but this does not use all of
the available data.

Day Closing Price Daily Log-Return

0 So -

1 $ £ =1In($1/5)
2 S5 £ =In(S2/51)
3 —

S3 03 =1In(S$3/52)

N SN Ly = In(Sn/Sn=1)




Example 13.3

FIGURE 13.4

Estimating Historical
Volatility: Data
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Consider the information on closing stock prices of Cisco stock in Figure 13.4. The first seven
columns represent data downloaded from http://finance.yahoo.com. (The full data set
goes back to 1990; only the last two months are shown here.) The last column is the daily
log-returns calculated from the adjusted closing prices (column 7).

Using 60 trading days’ worth of data (roughly three months, so one earnings cycle will
be covered), we can estimate the historical volatility of Cisco’s returns. From (13.29) and
setting ¢ = 1/252, we obtain:

60-Day Historical Volatility = 27.08%

Of course, we can also use longer periods for the estimation. This would be particularly
useful if we wish to check the “representativeness” of the 60-day period. Using other horizons
results in the following numbers:

120-Day Historical Volatility = 30.10%
1-Year Historical Volatility = 27.99%
4-Year Historical Volatility = 28.57%

In light of these numbers, the figure of 27.08% estimated from 60 days of data looks

slightly low from a longer historical perspective but not excessively so. [ |
Date Open High Low Close Volume Adj Close Log Returns
01/26/07 26.16 26.54 25.76 26.35 64449600 26.35 0.00495
01/25/07 26.93 26.95 26.16 26.22 55317400 26.22 —0.02523
01/24/07 26.23 26.95 26.19 26.89 63817000 26.89 0.03212
01/23/07 26.37 26.72 26.03 26.04 67695900 26.04 —0.01864
01/22/07 26.75 26.8 26.15 26.53 69421400 26.53 —0.00639
01/19/07 26.45 26.85 26.42 26.7 62266800 26.7 0.00941
01/18/07 27.13 27.15 26.27 26.45 80498300 26.45 —0.01984
01/17/07 27.86 28 26.89 26.98 108858000 26.98 —0.03854
01/16/07 28.59 28.59 28 28.04 75551500 28.04 —0.03090
01/12/07 28.54 28.97 28.45 28.92 54588000 28.92 0.00798
01/11/07 28.77 28.99 28.61 28.69 54602200 28.69 0.00035
01/10/07 28.27 28.73 28.21 28.68 50632400 28.68 0.00735
01/09/07 28.72 28.75 28.31 28.47 50488300 28.47 —0.00560
01/08/07 28.54 28.74 28.32 28.63 47936500 28.63 0.00560
01/05/07 28.44 28.57 28.05 28.47 62647800 28.47 0.00035
01/04/07 27.68 28.49 27.54 28.46 73012100 28.46 0.02598
01/03/07 27.46 27.98 27.33 27.73 64226000 27.73 0.01453
12/29/06 27.33 27.63 27.29 27.33 27125900 27.33 —0.00329
12/28/06 27.29 27.58 27.25 27.42 34817800 27.42 0.00439
12/27/06 27.3 27.5 26.83 27.3 25675600 27.3 0.00404
12/26/06 27.04 27.33 26.85 27.19 18185700 27.19 0.00961
12/22/06 27.34 27.42 26.93 26.93 27400500 26.93 —0.01328
12/21/06 27.5 27.6 27.22 27.29 32398900 27.29 —~0.00366
12/20/06 27.68 27.7 27.38 27.39 31825400 27.39 —0.00872
12/19/06 27.47 27.76 27.3 27.63 38603100 27.63 0.00072
12/18/06 27.6 27.96 27.43 27.61 46255800 27.61 0.00181
12/15/06 27.43 27.77 27.33 27.56 66987100 27.56 0.00911
12/14/06 27.22 27.44 27.18 27.31 39441600 27.31 0.00220
12/13/06 27.34 27.35 26.93 27.25 43170100 27.25 0.00626
12/12/06 27.12 27.4 26.76 27.08 43065500 27.08 —0.00111
12/11/06 26.9 27.48 26.85 27.11 43035200 27.11 0.00481
12/08/06 26.88 27.15 26.75 26.98 29495600 26.98 0.00371
12/07/06 27.2 27.3 26.88 26.88 31417900 26.88 —0.00778
12/06/06 27.12 27.27 26.95 27.09 34092600 27.09 0.00185
12/05/06 27.4 27.44 27 27.04 43080300 27.04 —0.00774
12/04/06 26.94 27.57 26.86 27.25 68450100 27.25 0.02076
12/01/06 26.95 27.08 26.45 26.69 47014700 26.69 —0.00821
11/30/06 27.02 27.05 26.8 26.91 45935300 26.91 —0.00630
11/29/06 27.05 27.3 26.9 27.08 68137400 27.08 0.00185
11/28/06 25.62 27.13 25.59 27.03 108606500 27.03 0.04657

11/27/06 26.76 26.89 25.73 25.8 63803200 25.8 —0.03952
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The Black-Scholes
Model
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Easily the best known model of option pricing, the Black-Scholes model is also one of the
most widely used models in practice. It forms the benchmark model for pricing options
on a variety of underlying assets including equities, equity indices, currencies, and futures.
While not designed as a model of interest rates, a variant of the Black-Scholes model, the
Black model, is nonetheless commonly used in practice to price certain interest-rate options
like caps and floors.

Technically, the Black-Scholes model is more complex than the binomial or other discrete
models because it is set in continuous time, 1.e., prices in the model may change continuously
rather than only at discrete points in time. Modeling continuous-time uncertainty requires
the use of much more sophisticated mathematics than we have employed so far. A first
question we should ask ourselves is: why bother? The binomial model is a flexible one
and is transparent and easy to work with. What do we gain from the additional fancy
mathematical footwork?

It turns out that there is a point. The Black-Scholes model provides something almost
unique at the output level: option prices in the model can be expressed in closed-form, i.e.,
as particular explicit functions of the parameters. There are many advantages to having
closed-forms. Most importantly, closed-forms simplify computation of option prices and
option sensitivities and facilitate developing and verifying intuition about option pricing
and hedging behavior.

In the initial segment of this chapter, we focus on options on equities, the context in
which the Black-Scholes model was first developed. In later sections, we examine how the
model may be modified to accommodate options on indices, currencies, and futures.

The Main Assumption: Geometric Brownian Motion

The main assumption of the Black-Scholes model concerns the evolution of the price of the
underlying stock.

Assumption 1. The stock price evolves according to geometric Brownian motion.

What is a “geometric Brownian motion”? A formal definition is given in Chapter 15
(see Section 15.2), but shorn of technical details, it simply requires that two conditions be
satisfied:

1. Returns on the stock over any holding period have a lognormal distribution with mean
w and constant volatility o: if Sy denotes the current stock price and Sy the price in T’



Chapter 14 The Black-Scholes Model 309

years for some arbitrary 7', then

In (?) ~ N(uT,o*T)

0

2. Stock prices must evolve continuously; they cannot jump (the market cannot “gap”).

Is this a good assumption? From an analytical standpoint, undoubtedly. As we have seen in
the last chapter, the lognormal inherits many of the properties of the normal distribution that
make the latter easy to work with. But from an economic standpoint, the evidence is mixed.
Casual observation suggests—and formal analysis confirms—that the volatility of stocks
and markets is typically not constant over time. Markets do also “gap,” most often in response
to unexpected good or bad news. More generally, empirical return distributions appear to
deviate in systematic ways from the lognormal assumption. Of course, how important these
deviations are for option prices is ultimately an empirical question. We revisit and discuss
these issues further in Section 14.8 below.

Other Assumptions

The second assumption of the Black-Scholes model concerns interest rates. In keeping with
the continuous-time setting, interest rates are quoted in continuously-compounded terms.
As with the binomial model, the Black-Scholes model assumes that

Assumption 2. The risk-free rate of interest, denoted r, is constant.

The assumption that stock prices must evolve continuously rules out discrete dividend
payments on the stock: such dividends drive a wedge between cum-dividend and ex-dividend
stock prices, and so create discontinuous stock prices. For emphasis, we state this as an
explicit assumption:

Assumption 3. There are no dividends on the underlying stock during the life of the option.

The zero-dividend requirement is obviously a very restrictive one; it places a severe
limitation on the stocks to which the model may be applied. Fortunately, it turns out that it
is not too hard to modify the model to handle “predictable” discontinuities such as those
caused by dividends. (Random jumps are another matter.) We describe the extension in
Section 14.6.

Finally, the technical complication of working in continuous time makes it impossible
to solve for option prices in closed-form if early exercise is permitted. Thus, the analysis in
the rest of this chapter applies only to European options. Even though this is a restriction
on the kinds of options that may be priced in closed-form and not a restriction on the model
itself, we state it separately as an assumption to highlight its importance:

Assumption 4. All options are European in style with maturity date 7" and strike price K.

Besides these, the model makes the usual smoothness assumptions concerning the mar-
ket: no taxes, no transactions costs, no restrictions on short sales, borrowing or lending, etc.

Notation

Table 14.1 summarizes the notation we use. Note that we denote current time by ¢ and the
horizon of the model (i.e., the maturity date of the option) by 7. Thus, the time left to
maturity is 7 — ¢. The stock price is denoted S with a time subscript; thus, S; denotes the
current price and Sy the price at maturity. The remaining notation is that defined above. C
and P will denote the prices of the call and put option, respectively.
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TABLE 14.1
Black-Scholes
Notation

Notation Meaning

t Current time
T Maturity date of option
St Current stock price
St Stock price at T
K Strike price of option
r Riskless interest rate
i Expected log-return on stock (annualized)
o Volatility of stock returns (annualized)
C Price of call
P Price of put

Order of Analysis

Through the first part of this chapter, we focus on the theoretical side of the Black-Scholes
setting. We begin with the Black-Scholes formulae under the assumptions listed above.
Then we discuss generalizing the formula to allow for payouts in the form of either discrete
dividends (as on a single stock) or a continuous yield (as on a stock index). Using these
generalizations, we describe Black-Scholes formulae for pricing options on dividend-paying
stocks, stock indices, currencies, and futures.

The second part of the chapter examines empirical performance of the model. We define
the important notion of implied volatility and describe the implied volatility skew that is
typically observed in most financial markets. As we shall see, the skew should not exist
under the Black-Scholes assumptions, so its presence raises questions about the model’s
empirical fit. We relate the skew to shortcomings in the model’s assumptions and discuss
possible resolutions and extensions.

We conclude the chapter with a discussion of the VIX and derivatives on the VIX.
The VIX is an index of implied volatilities extracted from options on the S&P 500 index.
The VIX has become well known as the US market’s “fear index.” There are futures and
options available on the VIX that enable one to trade market volatility “directly” rather than
indirectly using (for example) straddles on the S&P 500 index. Appendix 14B discusses
two related over-the-counter products, volatility swaps and variance swaps. Volatility and
variance swaps are cash-settled forward contracts on the realized volatility and the realized
variance of returns, respectively.

14.2 Option Pricing in the Black-Scholes Setting

We can recover option prices in the Black-Scholes model by either replication or risk-neutral
pricing, methods which were outlined in earlier chapters. There are also other, more exotic,
approaches we could adopt. Since the lognormal model is the limit as n goes to infinity
of an n-period binomial model, we could look at the behavior of option prices obtained
from n-period binomial models and see their limiting behavior as n gets large. A fourth
possibility (and one used in the original paper of Black and Scholes (1973) as an alternative
derivation of their formula) is to use a CAPM-based approach.

All of these approaches are mathematically much more sophisticated than option pricing
in the binomial model. The additional work is mainly technical in nature, so there is not
much insight to be gained by it. Therefore, we present the details of the derivations in a
separate chapter (Chapter 15, Sections 15.3—15.5). Here, we focus on the structure of the
formulae and their intuitive content. We begin with a description of the formulae.
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The Black-Scholes Formulae
The arbitrage-free prices of the call and put in the Black-Scholes world are given respectively
by

C = S N(d,) — PV(K)N(d) (14.1)
= PV(K)N(—dy) — S; N(—d,) (14.2)
where
d = S [ln (§> +(r + l02)(T —1) (14.3)
oJT —t K 2
d =d—oJT—1t (14.4)

PV(K) = e "T7DK is the present value of K receivable at T (14.5)

and N(-) is the cumulative standard normal distribution, i.e., for any x, N(x) is the proba-
bility under a standard normal distribution of an observation less than or equal to x.

These expressions appear menacing the first time one sees them, but their structure and
composition can be intuitively understood by relating them to the replication and risk-neutral
pricing approaches. The price of an option, in general, is the difference between the present
value of what one expects to receive from exercise of the option and the present value of
what one expects to pay on account of exercise. The price of the call in the Black-Scholes
model has the form

C = {S; x [Term involving d,]} — {PV(K) x [Term involving d,]}

» The first term in braces represents the present value of the stock the call holder expects
to receive upon exercise. In the Black-Scholes model, this component happens to have
an attractive decomposition: the replication approach shows us that N(d,) is the delta
of the call option in the Black-Scholes model, so the entire term is just the value of the
stock currently embedded in the call (the current price of the stock times the call delta).

» The second term in braces represents the present value of what the call holder expects to
pay upon exercise. It too has an attractive decomposition. Exercise of the call results in
a cash outflow of K, which viewed from today has a present value of PV (K). The risk-
neutral pricing approach tells us that N(d,) is the risk-neutral probability of the option
finishing in-the-money, so the entire term is simply the present value of an outflow of K
at date 7 times the risk-neutral probability of this outflow.

The difference between these values (what you expect to receive and what you expect to
pay) is the Black-Scholes value of the call. Analogous statements hold for the put.

The material below elaborates on this by relating the Black-Scholes formula first to the
replication approach and then to the risk-neutral pricing approach.

Replication and the Black-Scholes Formula

We have seen in earlier chapters that replicating a call in general involves a long position
in the underlying (of size, say, A.) and borrowing at the risk-free rate (an amount, say, B.).
Since each unit of the stock costs S; currently, the replicating portfolio costs S, A. — B..
Since this must equal the cost of the call, we can write

C = S,A.—B. (14.6)
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The structure of this general representation (14.6) is identical to that of the Black-Scholes
call price (14.1). This is not a coincidence! As the comparison suggests, we do indeed have

A, = N(d)) and B. = PV(K) N(d>) (14.7)

In words, N(d)) is the delta of the call, and PV (K) N(d,) is the amount of borrowing
required in a replicating portfolio.

Analogous statements are true for the put. In general, to replicate a put, we take a short
position in the underlying and invest at the risk-free rate. Denoting the position in the
underlying by A, and the investment by B,,, we may write

P = B,+5A, (14.8)

Note that A, is a negative number since the stock position is a short one. Comparing this
general representation to the Black-Scholes formula (14.2) suggests that

A, = —N(—d,) and B, = PV(K)N(—d) (14.9)

This is exactly correct. The Black-Scholes formula for the put is just the replicating portfolio
(14.9) substituted into the general pricing expression (14.8).

The full implication of these observations is worth restating for emphasis: the Black-
Scholes formula gives us a great deal more than just the option prices—it gives us the
complete replicating portfolios for the call and the put.

Black-Scholes via Risk-Neutral Probabilities

Further insight into the Black-Scholes formula can be obtained by considering the risk-
neutral pricing approach. The payoffs of the call at maturity are

max(Sr — K, 0)
To identify the call value, we must take expectation of these payoffs under the risk-neutral
probability measure and discount at the risk-free rate. Let £, denote expectations under the
risk-neutral probability of time-7" cash flows. (The subscript ¢ emphasizes dependence of

these expectations on the current stock price S;.) Then, the arbitrage-free price of the call
is

C = e’") E, [max(Sy — K, 0)]
Since the call pays nothing if S7 < K, we can write the call price as
C = e’ " E (St — K) x Iis;=x)]
where /5, > k) is the indicator function that takes on the value 1 if S; > K and zero otherwise:
Iis,=xy = { (1) if 57 = K
, otherwise

For notational simplicity, we write just / for /;s,>x}. Now, (S; — K) x I = (Sr x I) —
(K x I), and the expectation of the difference of two terms is just the difference of the
expectations, so

C =e"TVE[S; xI1—e T DE [K x I (14.10)

The second term on the right-hand side can be simplified. Intuitively, if you have to pay out
K whenever Sy > K, your expected payout is simply K times the likelihood that Sy > K.
So we can write

E;[K x I] = K Prob, (S; > K) (14.11)
Thus, using e 7"~ K = PV(K), the call price (14.10) may be written as
C = e "D E,[S; x I]— PV(K)Prob,(Sy > K) (14.12)
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From this to the Black-Scholes formula is simply a matter of grinding through the
expectations, which are tedious but not otherwise difficult (see Section 15.3). Specifically,
it can be shown that under the Black-Scholes assumptions,

e"TDE,[S; x I = S,N(d)) (14.13)
Prob,(S; > K) = N(d,) (14.14)

Equation (14.13) states that the present value of the stock that will be received from the
call upon exercise is equal to S; N(d;). Equation (14.14) states that the probability that the
call finishes in-the-money is N(d,); it follows that the present value of the cash outflow that
is paid upon exercise of the call is equal to PV (K) N(d,).

Analogous statements hold for the put option. In particular, N(—d,) works out to just
the risk-neutral probability of the put finishing in-the-money.

Warning

It must be emphasized that these are risk-neutral probabilities, not the actual probabilities.
That is, they are the probabilities taking the expected return on the stock to be the risk-free
rate. If the expected return on the stock exceeds the risk-free rate, then the actual probability
of the call finishing in-the-money will be Aigher than the risk-neutral probability (the stock
price grows faster than under the risk-neutral probability). Similarly, the actual probability
of the put finishing in-the-money will be lower than the risk-neutral probability.

14.3 Remarks on the Formula

The Black-Scholes formulae have two remarkable features that facilitate easy implementa-
tion:

1. Option prices depend on only five variables: S, K,», T —t,and o.

2. Of these five variables, two are contract variables (strike and maturity), and two are
market variables (stock price and interest rates). Only one—the volatility o—is not
directly observable.

In particular, option prices do not depend on the stock’s expected returns, which are noto-
riously difficult to estimate reliably. That the option price does not depend on the stock’s
expected return is one of the unexpected surprises of the Black-Scholes model. Note that
this should not be taken to mean that the expected returns on the option are independent
of the expected returns on the stock; indeed, since the option is in many ways akin to a
leveraged position in the stock (see Section 11.4), its expected returns are affected directly
by the stock’s expected returns.

The Black-Scholes formulae represent arbitrage-free option prices under the model’s
assumptions. Thus, they can be used to take advantage of mispricing. They can also be used
to delta-hedge option positions. For example, suppose we have written a call option whose
current delta, using the Black-Scholes formula, is N(d;). To hedge this position, we take
a long position in N(d,) units of the underlying. Of course, dynamic hedging is required,
i.e., the hedge will have to be adjusted each time the delta of the underlying has changed.

Finally, it must be stressed again that closed-form expressions of this sort for option prices
are rare. Nonetheless, such closed-form expressions exist in the Black-Scholes framework
only for European-style options. For example, closed-forms do not exist for American put
options. However, as we see later in the book, it is possible to obtain closed-form solutions
in the Black-Scholes setting for certain classes of exotic options, such as compound options,
digital options, and barrier options.
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14.4 Working with the Formulae I: Plotting Option Prices

FIGURE 14.1
Black-Scholes Option
Prices

The best way to gain familiarity with the formal and intuitive content of the Black-Scholes
formula is to work with it. This section describes how to use the Black-Scholes formula
to plot option prices. Such plots are particularly useful to get a feel for how option values
(or the option delta) react to changes in the model’s parameters. The next section discusses
working with the formula algebraically.

The existence of closed-forms makes it a simple matter to plot option prices in the
Black-Scholes model using a spreadsheet. Six easy steps are involved:

Input values for S;, K,r, T—t,and o.

Compute d; = [In(S,/K) + (r + 0%/2)(T — 1)]/[o /T —1].
Compute d, =d, — o /T —t.

Compute N(d,) and N(—d,).

Compute N(d>) and N(—d,).

Compute option prices.

C = S,N(dy) —e"TDK N(d>)
P = " K N(—d,) — S,N(—d))

A S o

In Excel, cumulative standard normal distribution values may be computed using the
NORMSDIST function. For any x, N(x) is given by NORMSDIST(x). One can also use
the more elaborate NORMDIST function that applies to any normal distribution (not just
the standard normal). In this case, N(x) is given by NORMDIST(x, 0, 1, 1).

Figure 14.1 illustrates a plot of Black-Scholes option prices. Four parameters are held
fixed in the exercise:

» The strike price is K = 100.
* The time-to-maturity is 7 — ¢ = 6 months.

This figure plots call and put prices as the underlying stock price ranges between
72 and 128. The strike price of the options is 100, the time-to-maturity is six
months, the risk-free interest rate is 5%, and the volatility is 20%.

25

20

Call
15 7 Put

Option Values

10 A

0 I I I I 1
70 80 90 100 110 120 130

Stock Prices




Chapter 14 The Black-Scholes Model 315

» The annualized volatility of the stock price is 20% (o = 0.20).
* The risk-free interest rate is 5%.

The figure plots call and put prices as the fifth parameter, the current price of the stock,
varies from 72 to 128. At a price of 72, the call is deep out-of-the-money, while the put is
deep in-the-money. At a price of 128, the call is deep in-the-money, while the put is deep
out-of-the-money.

Observe the nonlinear reaction of option prices to changes in the stock price. This is
evident visually in the curvature of the option prices as § varies. For example, when the
call is deep out-of-the-money, it reacts very little to a dollar change in the stock price—the
call pricing function is almost flat. When the call is deep in-the-money, it reacts almost
one-for-one to a change in the stock price—the slope of the call pricing function is almost
+1. (Of course, this slope of the call pricing function is just the option delta!) In the next
chapter, we will examine the implications of this nonlinearity in greater detail when we look
at the option “greeks.”

14.5 Working with the Formulae II: Algebraic Manipulation

To gain a theoretical understanding of how the Black-Scholes model’s parameters interact
with each other and how they influence option prices and the option delta, it is necessary to
work directly with the formulae. This section and Appendix 14A go through a number of
exercises with this objective in mind. Some of the exercises are simple ones; others (notably
those in Appendix 14A) are a bit more complex. In all cases, the aim is to improve the
reader’s “feel” for manipulating the Black-Scholes formula algebraically.

In principle, this material can be skipped without too much loss of continuity (or at least,
skimming through it should suffice for the sequel). Nonetheless, we strongly encourage read-
ers to take the effort to go through it carefully, since doing so will enhance general intuition
for working with options as well as theoretical understanding of the Black-Scholes formula.

The Functions In and N(-)

Despite its apparent complexity, the Black-Scholes formula is not hard to work with al-
gebraically since it involves only two main functions: the natural log function In and the
cumulative normal distribution N(-). (As one might guess, this is a consequence of our
assumption of lognormality of the returns distribution.) To understand the working of the
formulae, it is useful to keep the following properties of these functions in mind.

First, the natural log function In. The function In x is defined only for positive values of
x, and increases as x increases. At x = 0, we have Inx = —oo; atx = 1, we have Inx = 0;
and as x goes to 4+00, Inx also goes to +oc:

In0 = —o0 Inl =0 Inx - coasx — o0

Figure 14.2 displays a plot of the natural log function.

Next, N(-). N(x) is the probability under a standard normal distribution of an observation
less than or equal to x. The standard normal distribution is the normal distribution with a
mean of zero and variance of 1. Figure 14.3 displays N(x) with its familiar bell-shaped
curve.

Observations under a normal distribution can range from —oo to 400, so N(x) is defined
for all values of x. Since the standard normal is symmetric around its mean of zero, we have

1
NO) = 3
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FIGURE 14.2
The Natural Log
Function

FIGURE 14.3
The Standard Normal
Distribution

Inx\/

The figure below displays the density function of the standard normal
distribution. The density is symmetric around zero. The area under
the curve to the left of a point x, denoted N(x), is the likelihood of
observing an outcome less than or equal to x. The total area under
the curve is 1.

As x goes to —oo, the probability of an observation smaller than x goes to zero, so N(x)
goes to zero. As x goes to +00, we are looking at the probability of an observation less than
~+00, so N(x) goes to +1:

N(—o0) = 0 N(4+o0) =1
Here is one final and useful property of N(-). For any x, we have
NXx)+N(—x) =1 (14.15)

To see this, note that the standard normal is symmetric around its mean zero. Pick any x.
Since x and —x are symmetric around the mean, the area to the right of x (whichis 1 — N(x))
must be the same as the area to the /eft of —x (which is N(—x)). (See Figure 14.3.) This
means 1 — N(x) = N(—x), which is (14.15).
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Put-Call Parity and the Black-Scholes Formulae

Since the Black-Scholes formulae concern European options, the Black-Scholes put price
can be derived from the call price using put-call parity. Put-call parity tells us that

P =C+PV(K)-S

Substituting for C from the Black-Scholes formula (14.1) and rearranging, we obtain

P = §/[N(d)—1]+ PV(K)[l — N(d>)] (14.16)
Using (14.15) in (14.16) gives us
P = =S N(—d\) + PV(K) N(—d,)

which is precisely the Black-Scholes put price (14.2).

Call Behavior and Depth in-the-Money

Consider a call. Intuitively speaking:

* As S; becomes very small relative to K (i.e., “as S, — 07), the call becomes very likely
to lapse unexercised, so its replicating portfolio should go to the null portfolio, the one
that holds neither stock nor cash. In particular, the delta of the call should go to zero.

* As S, becomesvery largerelative to K (“S, — 00”), the call is almost sure to be exercised,
so the call holder is looking at paying K and receving one unit of the stock at maturity.
Thus, the replicating portfolio should now resemble a portfolio containing one unit of the
stock and a borrowing of P V(K). In particular, the delta of the call should approach +1.

Does the Black-Scholes call formula exhibit this behavior? First, consider what happens
as S; goes to zero. In this event, the ratio (S, /K) also goes to zero. This means

(%)
In{— ] — —0oc0
K

From the definition of d; (see (14.3)), this means d; also goes to —oo. If d; goes to —oo,
so must d,. And this finally implies that both N(d,) and N(d,) go to zero. Put into a single
line, we have:

S S
E[ -0 = In (E’) — —00 = dy,dy > —00 = N(d,), N(dy) = 0
Since N(d,) goes to zero, the call delta goes to zero as required. Since N(d,) also goes to
zero, the replicating portfolio indeed converges to the null portfolio.
Now consider what happens as S; — co. We obtain the following chain of effects:
Sy

S,
E’—>oo = ln<z) — 00 = di,dy — 00 = N(d)), N(d») — +1

Since N(d)) goes to +1, the delta goes to +1, as required. Since N(d>) also goes to +1, the
amount of borrowing converges to just PV (K). Thus, the replicating portfolio converges
to a long position of one unit of the stock and borrowing of PV (K).

Put Behavior and Depth in-the-Money
What is the corresponding behavior of the put?
* As S, becomes large relative to K, the put becomes increasingly likely to lapse unex-

ercised, so the replicating portfolio should resemble the null portfolio. In particular, the
put delta should go to zero.
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* As S, becomes very small relative to K, the put is almost sure to be exercised, so the
put holder is looking at giving up the stock and receiving K at time 7. The replicating
portfolio thus resembles one that has an investment of PV (K) and a short position in
the stock. In particular, the put delta goes to —1.

From what we have already worked out for the call, we can show that the put too meets
these requirements. As S, becomes very large, we have seen that d, and d, go to +00, so
—d, and —d, must each go to —oo. This means N(—d;) and N(—d,) both go to zero, so
(a) the delta of the put (which is —N(—d})) goes to zero, and (b) the replicating portfolio
converges to the null portfolio. Put into a single line of notation:

S,
EI — 00 = —d,, —d, > —00 = —N(—d;) = 0, N(—d>) = 0

Similarly, as S; goes to zero, d, and d, go to —o0, so —d; and —d, go to +oo. This
means the delta of the put, —N(—d,), goes towards —1. Moreover, N(—d,) goes to +1,
so the replicating portfolio resembles an investment of P V'(K) and a short position of one
unit in the stock. In notational terms:

S
Et -0 = —dy, —d, > +00 = —N(—d,) » —1, N(=dy) — +1
Thus, the Black-Scholes put formula behaves as intuition suggests.

Option Values as Maturity Approaches

As maturity approaches (7 — ¢t — 0), the call value should converge to Sy — K if S7 > K,

or to zero if St < K. We show that the Black-Scholes call formula meets these properties.
The term d; can be written as

d, = ém(i +l +l 2 VT 1
T ovT=1 \k) T \'T2°
The second component on the right-hand side always goes to zero as 7 — ¢ — 0. What
about the first component? As maturity approaches, S; gets closer to Sy (remember, there
are no jumps in the price), so In(S;/K) converges to In(S7/K). Since this is divided by
/T —t, the entire term goes to either +00 or —oo depending on whether In(S7/K) is
positive or negative. Thus:

e IfS7y > K, thenIn(S7/K) > 0,s0d; —> +ooasT —¢t — 0.
o IfS7y < K, thenIn(S7/K) <0,s0d; - —ooasT —¢t — 0.
Now, the difference between d; and d, is o+/T — t, which goes to zero as maturity

approaches. So d; has the same limiting values as d;. Finally, note that PV (K) converges
to K as we approach maturity. Putting these together, we have the following:

o If St > K, then N(d,), N(d,) — +1. So the call value converges to Sy — K.
* If St < K, then N(d)), N(dy) — 0. So the call value converges to 0.

When Is the Black-Scholes Call Delta Equal to 1/2?

This is a commonly encountered question: when is an option delta equal to 1/2 (i.e., +1/2
foracall or —1/2 for a put)? The first instinct is to say “when the option is at-the-money,” but
this is easily seen to be incorrect. If a call is at-the-money, we have S; = K, soIn(S;/K) = 0.
This means

_ ! Looyr—nl = 1 Loy T =7
dl_aJT——t 0+(r+2c7)(T t)]_o[(r+2a) T—t

so d, is strictly positive. Since N(0) = 1/2, this means the call delta is N(d;) > 1/2.
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For example, suppose we take S = K = 50,7 = 0.05, 7 —¢ = 1/4,and o = 0.25. Then,
N(d,) works out to about 0.565, substantially different from 1/2. Intuitively, the stock price
in the risk-neutral world grows at the risk-free rate, so if the option starts out at-the-money,
there is a greater-than-even chance of its finishing in-the-money.

What if we take the option to be at-the-money-forward, i.e., such that S, = PV (K)? This
cancels out the interest-rate effect, so works somewhat better. Since PV (K) = e "T-DK,

S, = PV(K) implies
S,
In <K’> = —r(T —1)

[—r(T—t)—l—(r—i— %az)(T—t) = %o\/T—t

SO we obtain
1

oT —t
This is still positive, though smaller than the corresponding value for the at-the-money delta.
For example, with K = 50,7 = 0.05, 7 = 1/4,0 = 0.25,and S = PV(K) = 49.38, we
obtain N(d;) = 0.525.

So for what values of S; (relative to K and the other parameters) is the call delta equal
to 1/2 in the Black-Scholes model? That is, what must d; be for delta to be equal to 1/2?

d =

The Delta and Other Parameters

Exercises such as the ones above enhance understanding of both general option behavior
as well as the Black-Scholes formula. As further examples of such exercises, the reader is
invited to check that the call delta satisfies the following properties. Appendix 14A describes
the intuition for why these properties should hold in general, and shows that they do hold
in the Black-Scholes setting.

1. Volatility. For deep in-the-money call options, the delta decreases as volatility increases.
For deep out-of-the-money call options, the delta increases as volatility increases. Thus,
delta depends on volatility through depth-in-the-money.

2. Time-to-Maturity. For deep in-the-money call options, the delta decreases as time-to-
maturity increases. For deep out-of-the-money call options, the delta increases as time-
to-maturity increases. Thus, delta depends on time-to-maturity also through depth-in-
the-money.

3. Interest Rates. The call delta increases with an increase in the riskless interest rate.

As an aside, these properties indicate that the components of the replicating portfolio
depend in complex and nonlinear ways on the underlying parameters, which is one reason
closed-form expressions for option prices are rare.

14.6 Dividends in the Black-Scholes Model

The assumption that the underlying asset does not pay dividends is evidently very restrictive.
In this section, we see how this condition may be removed. There are two cases to consider.
The first is that of discrete or cash dividends such as dividends paid on individual stocks.
The second is a continuous dividend yield, as is appropriate when the underlying asset is a
broad equity index or a currency. We examine both possibilities here. Mathematically, the
difference between the two is that cash dividends cause discontinuities in the stock price
whereas continuous dividend yields do not.

In either case, we show how the “non-dividend” Black-Scholes formulae presented earlier
in this chapter (expressions (14.1) and (14.2)) may be amended to incorporate the presence
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of dividends. For expositional simplicity, we refer to the underlying security throughout as
a “stock,” though the continuous dividend yield setting is more naturally applied to an index
or a currency.

Cash Dividends in the Black-Scholes Model

Suppose the underlying stock has a cash dividend (or several cash dividends) over the life
of the option. A dividend is counted as falling within the option’s life if the ex-dividend
date occurs before date 7. Let PV (D) denote the present value (viewed from the current
time ¢) of all the dividends that are expected over the option’s life. Then, the stock price S;
at time ¢ can be regarded as being comprised of two components:

1. A riskless “fixed income” component of PV (D).
2. A risky component of S, — PV (D).

Since the ex-dividend dates occur before date 7, the dividends are removed from the
stock price before 7. Only the risky component of the stock price (i.e., the stock price net
of anticipated dividend payouts) survives to date 7', so it is the time-7" distribution of this
component that determines option payoffs.

These observations suggest that the option may be priced by simply replacing the term
S; in the Black-Scholes formula with (S; — PV(D))! That is, the Black-Scholes formulae
become

C = (S, — PV(D)) N(d,) — PV(K) N(d>) (14.17)
P = PV(K)N(—d>) — (S, — PV(D)) N(—d,) (14.18)

where
.1 S, — PV (D) 1o,
dy = T [m( < )+(r+2<7 T —1) (14.19)
dy=dy—o T —1 (14.20)

More precisely, (14.17)—(14.18) are the option prices if the stock price net of anticipated
dividend payouts is assumed to meet the Black-Scholes conditions, i.e., to follow a lognormal
price process with volatility o and to have no jumps.!' Implicitly, this means the only reason
the stock price process may be discontinuous is on account of dividends.

Note that o here refers to the volatility of the net-of-dividends stock price, not of the
stock price itself. The two are not quite identical; the stock price, which is larger than the
net-of-dividends price, has a lower volatility. If oy denotes the volatility of the stock price
and o the volatility of the net-of-dividends price, the two are related approximately by

S

0 = 0gX —————
S; — PV(D)

Figure 14.4 illustrates the impact of dividends on Black-Scholes prices. It considers the
same parameter values as the earlier plot (K = 100, » = 0.05, ¢ = 0.20, maturity =
1/2 year, and current stock price S; ranging from 72 to 128). The figure plots call and put
values under three scenarios: (i) zero dividends (D = 0), (ii) low dividends (D = 2), and
(ii1) high dividends (D = 5). The ex-dividend date is assumed to be three months (i.e., the
halfway point of the option life).

T This is the assumption underlying the Schroder (1988) binomial model, which we discussed in
Section 12.8.



FIGURE 14.4
Cash Dividends in the
Black-Scholes Model
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This figure plots call and put values for the same parameter values as in
Figure 14.1 but with three possible values for dividends: D = 0 (which
corresponds to Figure 14.1), D = 2, and D = 5. The ex-dividend date is
at the halfway point of the option’s life.
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The figure shows that dividends lower call values and raise put values. This is expected.
Dividends lower the price of the underlying. Thus, they push out-of-the-money calls further
out-of-the-money and make in-the-money calls less in-the-money. Similarly, they push puts
“more” into-the-money.

Of course, the effect is not uniform. Among calls, the impact of dividends is maximal
for ones that are deep in-the-money. Such calls have a high likelihood of finishing in the
money and are affected almost one-for-one by the dividend. At-the-money calls are affected
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less, and deep out-of-the-money calls are affected the least: such calls are anyway nearly
worthless, so getting pushed further out of the money cannot have a large dollar impact.
Similarly, deep in-the-money puts benefit almost one-for-one from the dividend payment,
but deep out-of-the-money puts see very little dollar benefit.

Continuous Dividend Yields in the Black-Scholes Model

Some underlying assets such as currencies and stock indices are naturally modeled as
securities with a continuous dividend yield. The zero-dividend option pricing formulae
(14.1) and (14.2) are easily modified to incorporate this case.

Suppose we are given a stock that pays a continuous dividend yield at rate §, and we
wish to price an option on this stock with strike K and maturity date 7. Consider a second,
hypothetical, stock that is equivalent to the first in all respects except that it pays no dividends.
Since this stock pays no dividends, its price must grow at a rate § faster than the first stock.
This means that by time 7', the price of the second stock would have grown by an extra
factor of %71,

Now suppose the following conditions hold:

* The time-f price of the first stock is ;.
+ The time-¢ price of the second stock is e (71,

By time 7', the faster growth rate of the second stock cancels out this initial price difference,
so the two stocks will have the same price S7. An option maturing at date 7 will, therefore,
have the same payoff whether it is written on the first or the second stock. That is, the
following two options must have the same price:

1. A European option with strike K and maturity 7 written on Stock 1 when its date-# price
is S;.

2. The same option written on Stock 2 when its date-f price is e *(7 =05,
But the second stock pays no dividends, so we can price options on it using the Black-

Scholes formulae (14.1) and (14.2)! Indeed, the only change we need make to those formulae
is to use e*(I=1 S, for the time- stock price. This gives us

C* = T8, N(d) — e TVK N(d}) (14.21)
P* = e TK N(—=dy) — e ® TS, N(—d}) (14.22)
where
1 edT-0g, 1
di = 1 —o’)(T —-1)| (14.23
1 O'\/T——l‘|:n< K >+(7+20)( ) ( )
df = df —oJT —1t (14.24)

Expressions (14.21)—(14.24) are the Black-Scholes pricing formulae for options written
on a security with a time-# price of S; and that pays a continuous dividend yield of §.
Remark
For any y and z, we have In(yz) = In y + Inz. Therefore, we can write

() () et n(3)

Using this, the expression (14.23) for d} can be rewritten as
1 S, 1,
di = ——=|In|—= |+ -84+ -0 )NT —1¢
= s [ () e s e )

In the sequel, we use the representation (14.25) for d.

(14.25)
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FIGURE 14.5 This figure plots call and put values for the same parameter values as in

Dividend Yields in the ~ Figure 14.1 but with three possible values for the annualized dividend yield

Black-Scholes Model  on the underlying: § = 0 (which corresponds to Figure 14.1), § = 0.025,
and § = 0.10.
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Figure 14.5 illustrates the impact of a continuous dividend yield on Black-Scholes option
values. It considers the same range of parameter values as in Figure 14.1 but allows for
three possible values for the annualized dividend yield on the underlying: (i) zero (which
corresponds to Figure 14.1), (ii) 2.50%, and (iii) 10%.
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The higher the dividend yield, the lower the growth rate of the stock price. Thus, a higher
dividend yield § implies lower call prices and higher put prices. As with cash dividends, the
impact is once again maximal for deep in-the-money options and least for deep out-of-the-
money options.

14.7 Options on Indices, Currencies, and Futures

By appealing to the continuous-dividends formulae (14.21)—(14.25), we can obtain closed-
form expressions for pricing options on equity indices, currencies, and futures. The material
below explains.

Options on Indices

Many exchange-traded options exist on stock indices. Both European- and American-style
index options exist. For example, the S&P 500 index options contract in the US is European
in style, while the S&P 100 index options contract is American in style. Like index futures,
index options are also cash settled. If Sy is the index level at close of the last trading day, then

 the holder of a call receives max{Sr — K, 0}.
* the holder of a put receives max{K — S, 0}.

As we have seen earlier in the chapter on forward pricing, a stock index can be treated
as an asset paying a continuous dividend yield. Therefore, the formulae (14.21) and (14.22)
can be used to price index options.

That is, suppose that index returns follow a geometric Brownian motion with constant
volatility o. Suppose also that the index pays a continuous dividend yield at rate 8. If S;
denotes the current index level, the prices of European options on the index with maturity
T and strike K are given by

C* = e?T708, N(d}) — e T"K N(d3) (14.26)
P* = e " TK N(—d;) — e TS, N(—d}) (14.27)

where
1 S, 1,
& = —— |2t S+ -0 —t
! am{“@)“” T30 =0
dy = di —oNT —t

Options on Currencies

Options on foreign currencies are traded on the OTC market as well as on exchanges such as
the CME or PHLX. The underlying asset in this contract is the foreign currency in question.
Let 7, denote the (continuously-compounded) interest rate on the foreign currency.

Note an important symmetry in currency options: a call option to purchase British pounds
with US dollars at a given exchange rate is a put option to sell US dollars for British pounds
at that same rate. Thus, it is common to refer to both currencies in identifying the option
(e.g., dollar-call/yen-put or euro-call/dollar-put).

The formulae (14.21)—(14.22) can be used to price options on currencies with the foreign
interest rate r » playing the role of the dividend yield §. For specificity, suppose that the US
dollar is the domestic currency. Suppose further that:

» S, denotes the current exchange rate (dollars per unit of foreign currency).
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» The exchange rate follows a geometric Brownian motion with constant volatility o.
* 7 and r; denote the risk-free rates in, respectively, dollars and the foreign currency.

Then, the prices of call and put options on the foreign currency with a strike price of K
(i.e., K dollars per unit of the foreign currency) and maturity date of 7" are given by

C* = eI, N(d}) — e "D K N(d3) (14.28)
P* = e’ " OK N(—d;) — e T708, N(—d) (14.29)

where
4= [ln(s’)+( +1 (T —1)
= — r—r — 0 —
VT oJT =1 K )
dy = df —oNT —1t

Options on Futures

Options on futures are defined somewhat differently from options on spot. A call option on
futures with a strike of K gives the holder the right to take a long position in the futures
contract at a futures price of K. A put option on futures with a strike of K gives the holder
the right to take a short position in the futures contract at a futures price of K.

Clearly, one can take a futures position only at the prevailing futures price. Therefore,
upon exercise of a call, the holder receives a long position in the futures contract with the
difference between the prevailing futures price and the strike price of the contract credited
to the margin account. The exercise of a put is handled similarly.

The key to pricing futures options lies in the relationship between spot and futures prices.
Suppose the current (time-#) spot price of the asset underlying the futures contract is ;.
Suppose too that the underlying asset does not pay any dividends. (We will examine the
consequences of dropping this assumption shortly.) Let 7' denote the maturity date of the
futures contract. Then, the arbitrage-free futures price at ¢ is

F, = s, (14.30)
On date 7'y, spot and futures prices coincide:

Fr,

= S, (14.31)

Equations (14.30) and (14.31) show that the relation between the futures price F, and
the spot price S; is analogous to that between Stock 1 and Stock 2 in the discussion on
continuous dividend yields in Section 14.6: the futures price starts at a higher level at date
t, but the prices coincide by date 7. Thus, the futures price grows at a rate r slower than
the spot price, so it is “as if”” the futures pays a continuous dividend yield of r.

Using this observation, the price of a European option on futures can be found using the
formulae (14.21) and (14.22) with S, replaced by the futures price F;, and with  playing the
role of the continuous dividend yield 8. Specifically, suppose that the futures price follows
a geometric Brownian motion with constant volatility o. Then, the price of call and put
options on the futures contract with maturity date 7' (7 < Ty) and strike K are given by

C* = e"TD[F, N(d}) — K N(d})] (14.32)
P* = e T D[K N(—d}) — F N(—d})] (14.33)
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where

d¥ ! [1 <F’>+1 Xr t)}
= B — n —_— _O' —_

! o T —t K 2

dy = di —oNT —1t

The assumption that the asset underlying the futures pays no dividends is not always
reasonable (e.g., for futures on stock indices). But it turns out this assumption is irrelevant!
The formulae (14.32)—(14.33) remain valid even if the asset has a continuous dividend yield
at rate §. To see this, note that in this case, the time-# futures price is related to the time-¢
spot price S; via

F, = "0Ir=0g, (14.34)
On the maturity date 7' of the futures contract, spot and futures prices must still coincide:

Fr, = Sy, (14.35)

f

Thus, it is “as if” the futures contract pays a continuous dividend yield at the rate r — §
relative to the underlying spot asset. But the spot asset itself pays dividends at rate §, so
relative to a non-dividend-paying equivalent, it is as if the futures pays dividends at rate r.
So formulae (14.32)—(14.33) remain valid in this case too.

An alternative way to see this is to consider the behavior of futures prices under the
risk-neutral measure. Futures contracts are marked-to-market every day, so the value of
the contract is reset to zero each day. Let F; denote the date-# futures price, and let ;.
be the futures price on date # + 1. Let /# denote the length of time between ¢ and 7 + 1
(so cash flows occurring at time ¢ + 1 are discounted by e~ to get time-¢ present val-
ues). If E,[-] denotes time-¢ expectations under the risk-neutral measure, then we must
have

E [e™(Fu—F)] =0 (14.36)

The quantity (F,.; — F;) is just the cash flow that results on date # + 1 from resettlement
of the futures contract. By definition, the discounted expectation (under the risk-neutral
measure) of this cash flow must equal the present value of the futures contract. But this
present value is zero, since the value of the futures contract is reset to zero every day. This
gives us (14.36). Note that this holds regardless of the dividend yield rate on the asset
underlying the futures contract (we have made no assumption about this).

Now, the discount factor e ™" is a known quantity at time #, so can be taken out of the
expectation, which results in e E[F1 —F]=0,s0 E,[F,4; — F,] =0.But F, is also
known at time 7 and can be taken out of the expectation, which finally yields

El(Ful = F (14.37)

Expression (14.37) states the fundamental result that the futures price follows a martin-
gale under the risk-neutral measure: its expected value tomorrow (under the risk-neutral
measure) is equal to today’s price. Equivalently, this says that the futures price has zero drift
under the risk-neutral measure. (Note again that this is true regardless of the dividend yield
rate on the asset underlying the futures contract.) But, in general, the drift of a security’s
price under the risk-neutral measure is equal to » — § where 7 is the risk-free rate (with
respect to which the risk-neutral measure is defined) and § is the dividend yield on the
security. Thus, a zero drift for the futures price implies an implicit dividend yield at rate 7.
And this results in the prices (14.32)—(14.33) for options on the futures contract.
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14.8 Testing the Black-Scholes Model: Implied Volatility

The Black-Scholes formula tells us how to identify option prices given the volatility of the
underlying. However, volatility is unobservable, while we often observe prices of options.
This motivates the reverse question: given an option price, what level of volatility is implied
by the observed price? This level is called the implied volatility. Formally, implied volatility
is the level of volatility that would make observed option prices consistent with the Black-
Scholes formula given values for the other parameters.

For example, suppose we are looking at a call on a non-dividend-paying stock. Let K
and 7 — ¢ denote the call’s strike and time-to-maturity, and let C be the observed call price.
Let S; be the stock price and r the interest rate. Then, the implied volatility is the level o
for which

C»(S,K,T—t,r,0) = C

where C? is the Black-Scholes call option pricing formula. R

Implied volatility is always uniquely defined. That is, given an observed call price C,
there is at most one value of o such that the Black-Scholes formula will give rise to the
observed value C. This is a consequence of the fact that the Black-Scholes price is increasing
ino.

In a general sense, implied volatility represents the market-wide average perception of
volatility anticipated over the option’s lifetime. As such, it is a forward looking concept. In
contrast, historical volatility is backward looking; it describes the uncertainty in the stock
price evolution that was experienced in the past.

The Volatility Smile/Skew

Fix an underlying asset. If the Black-Scholes model were an accurate description of the
returns process for that asset, the arbitrage-free price of any option on the asset (i.e., any
strike K and maturity date 7') must be determined by the Black-Scholes formula. This
means implied volatility inferred from any option on the asset should be the same as
implied volatility inferred from any other option—they should all be equal to the “true”
underlying volatility. The requirement that implied volatilities should be constant across
different strikes and maturities offers an indirect test of the Black-Scholes model.

In practice, in virtually every market, the Black-Scholes model fails this test. When
maturity is held constant and implied volatilities are plotted against strikes, two patterns
are commonly witnessed. In equity index markets, implied volatilities for “low” strikes
(corresponding to out-of-the-money puts) tend to be higher than implied volatilities for at-
the-money or in-the-money puts. This is called the volatility skew. In currency markets, the
graph is more symmetric: implied volatilities for out-of-the-money and in-the-money puts
tend to be roughly identical and higher than implied volatilities of at-the-money options,
so we obtain what is called a volatility smile. Implied volatilities on individual equities too
tend to exhibit greater symmetry than implied volatilities on indices.

Figures 14.6 and 14.7 provide examples of implied volatility skews on the S&P 500 index
options and on US dollar/British pound currency options. Each figure is a screenshot taken
from the website www. pmpublishing. com. All the screenshots pertain to data on April 7,
2004. The two panels of Figure 14.6 describe implied volatility skews on the S&P 500
index options expiring in June and September, respectively. The two panels of Figure 14.7
represent implied volatility smiles on the USD/GBP options expiring in May and June,
respectively.
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The Source of the Volatility Skew

The existence of the skew is evidence that something is wrong with the Black-Scholes
model. The first question to ask, therefore, is: what? Once we identify where the problem
lies, we can think about ways of adjusting the model and its assumptions so that we get a
better match with observations.

Deviations from Normality

The Black-Scholes model assumes log-returns are normally distributed. However, in virtu-
ally every financial market, empirical plots and estimates from historical returns and options
markets suggest this is not an accurate description of reality.

Two deviations from normality are particularly visible. First, the normal distribution
is symmetric around its mean. Empirically estimated return distributions, especially from
equities markets, often exhibit skewness. Second, of fundamental importance, extreme ob-
servations occur far more often than they should under normality. For example, in any
normal distribution, there is only a 5% probability of observing an outcome that is more
than 1.645 standard deviations below the mean, which means that on average only 1 outcome
in 20 should fall into this category. Similarly, there is only a 0.50% probability (1 outcome
in 200) of an observation more than 2.58 standard deviations below the mean.

In practice, such extreme price moves tend to take place far more frequently than predicted
by normality. A particularly egregious example was the stock market crash of October 19,
1987, when the S&P 500 index fell by over 20% in a single day while S&P 500 index
futures declined by 29%. Assuming index returns are lognormally distributed and taking
the volatility of the index to be 20% (historically, a good approximation), Rubinstein (1998)
points out that the likelihood of a 29% move in a single day is a microscopic 107!, an
outcome so improbable that he observes, “it would not be anticipated to occur even if the
stock market were to last for 20 billion years.” Less dramatically, but no less tellingly,
Jackwerth and Rubinstein (1996) point out that on October 13, 1989, the S&P 500 index
experienced a move of —5 standard deviations, a move that should be expected only once
every 14,756 years.

Okay, so if returns are not normal, how do we measure deviations from normality and how
do we gauge the effects of these deviations on option prices? We address these questions now.

Measuring Deviations from Normality: Skewness and Kurtosis

The degree of asymmetry in a distribution is measured by its skewness. Skewness is related
to the third moment of the distribution. Given a random variable X with mean m and
standard deviation s, its skewness is defined to be

1 3
Skewness(X) = = E [(X —m)’]

Extreme observations are referred to as observations in the tail of a distribution. The tail-
fatness of the distribution is measured by its kurtosis, which comes from the distribution’s
fourth moment. Kurtosis is defined as

Kurtosis(X) = S1—4E (X —m)*]

Normal distributions always have a skewness of zero and a kurtosis of 3 regardless
of their mean and standard deviation. Thus, any nonzero skewness or kurtosis different
from 3 involves a departure from normality. A distribution is said to have “fat tails” or
to exhibit leptokurtosis if its kurtosis exceeds 3; conversely, it is said to have thin tails
or to exhibit platykurtosis if its kurtosis is less than 3. Empirical returns distributions are
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typically fat-tailed or leptokurtic. The “excess kurtosis” in a distribution is the amount by
which its kurtosis exceeds 3. The larger is the excess kurtosis, the more likely are extreme
observations compared to the normal’s predictions.

Skewness, Kurtosis, and the Volatility Skew

To undestand the impact of leptokurtosis on implied volatilities, suppose that you are writing
an out-of-the-money put option on the S&P 500 index. For specificity, suppose that the
index is currently at 1140 and the put has a strike of 1075. You estimate implied volatility
from at-the-money options. Using this volatility, you then find that under lognormality, the
probability of a 65-point fall in the index level (which is needed for the put to come into
the money) is so unlikely, the Black-Scholes model assigns a near-zero value to this put.
Should you accept this value?

Clearly not. Lognormality understates the likelihood of extreme moves, so the probability
of the put coming into the money is larger than that predicted by the Black-Scholes model.
This means the Black-Scholes model underprices the out-of-the-money put relative to those
at-the-money. You would, therefore, charge a higher price than the Black-Scholes model sug-
gests. But this means the implied volatility inferred from your price for the out-of-the-money
put would be higher than the at-the-money implied volatility, so a volatility skew results!

Thus, volatility skews are a natural and rational consequence of leptokurtosis in the
returns distributions. If, further, returns are negatively skewed and left tails are fatter than
right tails, we expect an asymmetric volatility skew. This is typically the case in equity
index markets. However, if the return distribution is more symmetric and left and right tails
tend to matter more equally, we would expect to see a more symmetric smile, which is the
typical case in currency markets and markets for many individual equities.

Potential Sources of Skewness and Kurtosis

Several potential (and nonexclusive) hypotheses have been advanced to explain the presence
of negative skewness and kurtosis in equity returns distributions, and, thereby, the shape of
the implied volatility skew. We mention two here.

In a hypothesis termed “crash-o-phobia,” Rubinstein (1994) suggests that fears of a
major stock market crash akin to that of October 1987 are taken into account by traders
pricing out-of-the-money puts. The possibility of a crash creates leptokurtosis in the returns
distribution since the crash is, by definition, a tail event. Moreover, since a crash is a left-tail
event, its incorporation in the returns distribution also creates negative skewness. Thus,
crash-o-phobia offers a potential explanation of both the presence and shape of the implied
volatility curve in equity markets.

Empirical investigation has found some support for this hypothesis. Its plausibility is
also enhanced by the observation that in the electricity options market, where the fear is
that of a sudden spike in electricity prices, the implied volatility skew is reversed (i.e., out-
of-the-money calls have higher implied volatilities than at- or in-the-money calls) exactly
as crash-o-phobia would suggest.

An alternative source of negative skewness and leptokurtosis in equity markets is the
relationship between equity returns and equity volatility. Negative returns in equity markets
are often accompanied by increased volatility, while positive returns are accompanied by
lower volatility. This pattern has itself been attributed to a possible “leverage” effect. The
story goes that declining equity prices raise the debt-equity ratio, making equity riskier
and leading to higher equity volatility; while conversely, positive equity returns lower the
debt-equity ratio, making equity less risky and reducing its volatility. Whatever the driver,
this returns-volatility relationship leads both to leptokurtosis and to negative skewness in
returns, and offers another potential explanation of the typical implied volatility skew.
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These hypotheses have been adduced in the context of equity markets, but they have
analogs for other markets too. The fear of sharp exchange-rate moves (perhaps on account
of intervention) creates leptokurtosis analogous to crash-o-phobia. Similarly, randomly
changing volatility can create tail-fatness in exchange-rate or other returns distributions.

Other Explanations for the Skew

It is often suggested that the volatility skew or smile is caused by the effects of demand for
protection. Investors are net long equities, so the demand for cheap protection (out-of-the-
money puts on the equities) raises the demand for these puts relative to those at-the-money,
resulting in the volatility skew. In currency markets, the implied volatility plot is more
symmetric because investors are net long both currencies. Since a put on one currency is a
call on the other, demand for protection on the currencies raises the implied volatility levels
in either direction away from-the-money, resulting in the volatility smile.

These explanations appear plausible, but they are incomplete. They cannot, in isolation,
explain observed skews; rather, they must be combined with some market friction(s). In
a smooth environment such as that assumed by Black-Scholes, replicating an out-of-the-
money option is as easy as replicating an at-the-money option, so merely the fact that there
is a demand for out-of-the-money puts cannot create a volatility skew. In contrast, non-
normality in returns such as excess kurtosis will result in a volatility skew regardless of the
presence of market frictions.

Generalizing or Replacing Black-Scholes

If the Black-Scholes model exhibits systematic departures from the market, why not gener-
alize it or replace it with distributions that allow for skewness and leptokurtosis? There may
even be a “natural” generalization. The Black-Scholes model makes two uncomfortable
assumptions:

1. There are no jumps in the returns process.
2. The volatility of the returns process is constant over time.

Empirical observation suggests there is a strong case for dropping both these assump-
tions. Indeed, the explanations discussed above implicitly indicate this. The “leverage ef-
fect” suggests that constant volatility should be replaced with a model in which volatility
is stochastic and negatively correlated with the returns process. “Crash-o-phobia” assumes
large negative jumps may occur in the returns distribution. If jumps are added to the log-
normal model or if volatility is allowed to be stochastic, the model can be made to exhibit
both fat tails and skewness.

Over the last several years, a vast number of models have been proposed as generalizations
or alternatives to Black-Scholes. These models typically involve a substantially greater
degree of complexity than the Black-Scholes model; Chapter 16 reviews several of them.
Despite its empirical shortcomings, however, the Black-Scholes model has continued to
retain immense popularity and remains the benchmark model for pricing options. This may
partly be a recognition that any model is likely to be fallible. But it is also likely a reflection
of a preference for working with simple and elegant models whose shortcomings are readily
understood and, therefore, more easily compensated for.

14.9 The VIX and Its Derivatives

US investors have become accustomed to hearing about the “fear index,” or the VIX, the
market’s proxy for the degree of risk borne in the equity markets. The VIX is the Chicago

9 €

Board Option Exchange’s “near-term” volatility index. It is a forward-looking estimate of the
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annualized volatility of the S&P500 over the next 30 calendar days. There are VIX futures
(inception May 2004, traded on the CBOE Futures Exchange) as well as exchange-traded
VIX options (inception February 2006, traded on the CBOE). Figure 14.8 shows the evolu-
tion of the VIX since 1990. The mean level of the VIX is around 20% with a standard devi-
ation of about 8%—9%. The time series is characterized by quiet periods interjected by spo-
radic epochs of high volatility when the VIX spikes to as much as three times its normal value.

The VIX is computed on a real-time basis throughout the day. It was introduced and
developed by Whaley (1993). (The notion of a volatility index had also been proposed
earlier in Brenner and Galai (1989); see also Brenner and Galai (1993).) The underlying
index for the VIX is the S&P 500 index (SPX). This was not always the case. When the
VIX was first introduced, the S&P 100 index (OEX) was used as the volume in options was
limited to the top few names in the S&P. Today SPX options volume far surpasses that of
the OEX and the VIX is based on the volatility of the former index. Moreover, SPX options
are European style whereas OEX ones are American, making valuation of the SPX options
easier. In any event, the SPX and OEX indexes are close substitutes, and from 1986 to 2008,
the correlation between the two index returns was 99% (see Whaley, 2008).

Since September 2003, the VIX has been a measure of SPX 30-day volatility. It is implied
from options of various strikes on the SPX, so incorporates the skew. The VIX uses nearby
and second nearby options with at least 8 days left to expiration and then weights them
to yield a constant, 30-day measure of the expected volatility of the S&P 500 index. The
options used are the ones that are at-the-money (ATM) and OTM, both puts and calls. The
procedure is as follows:

1. For each maturity (next-term and near-term), the ATM forward strike is first identified.
This is done by choosing the strike at which the difference in price between the call and
put options is the least. Denote this strike K.

2. For puts: All options for ATM/OTM strikes (K; < Kj) are selected for which the bid
price is nonzero. The process stops selecting further strikes when two consecutive zero
bid prices are encountered as one goes more out-of-the-money.

3. For calls: All options for ATM/OTM strikes (K; > K) are selected for which the bid
price is nonzero. The process stops selecting further strikes when two consecutive zero
bid prices are encountered.
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4. The VIX is then computed using all these selected options. Note that at K, a put and a
call are used. At the other strikes, either a call or put is used because only OTM options
are considered. Using the option mid-prices for each maturity, we define VIX = o x 100,
where o2 is given by

2 AK; 1 [F 2
ol = - > % efTO(K;) — T {?0 — 1} (14.38)

i

where

» T is the time to expiration.

» F is the forward index level derived from option prices.

* K is the highest strike below F'.

* AK; = (K;;1 — K;_1)/2 is the interval between strike prices.

* R is the risk-free rate to expiration.

*  Q(K;) is the mid-point of the bid-ask spread for each option with strike K;.

The connection between the formula and volatility is not obvious, but it turns out that
this formula describes the expected realized variance of the stock over the horizon [0, T']
as implied by option prices. A derivation of this result is presented in Appendix 14B in
the context of describing volatility and variance swaps (see the discussion towards the
end of the material on variance swaps).

5. Since this calculation is undertaken for the near-term and next-term maturities, we get
two values, denoted o7 and o?. These are then combined to get the 30-day weighted
average as follows:

Np, — N N3y — N, N-
VIX = 100 x Tio? | =220 4 1o | 2 1Y)« 365 (q14.30)
Nz, — Np, Nz, — Np, N3

where N7 is the number of minutes to time 7'

As is evident from this description, the VIX is calculated using transparent rules. Further
details and examples are available at the CBOE website.

Volatility indexes have been developed for other broad equity markets. We have the Dow
Jones volatility index (VXD), the NASDAQ 100 volatility index (VXN), the Russell 2000
volatility index (RVX), and the S&P 500 three-month volatility index (VXV). Volatility
indexes are being developed for many European indexes such as the DAX, FTSE 100, and
the CAC 40.

Trading Volatility via the VIX

There are various ways in which volatility may be traded. One is to purchase options and
delta-hedge them, leaving only amplitude risk. A second is to buy a straddle (and delta-hedge
it, if necessary). Finally, there is the trading of pure volatility using the VIX.

Trades may be made on volatility direction by using the futures on VIX (ticker: VX).
The contract size is $1000 times the VIX. The CBOE may list futures for trading up to nine
near-term serial months and five months on the February quarterly cycle for the VIX futures
contract. So it is easy to inject volatility positions into standard portfolios using VIX futures.

VIX futures may be a good way to enhance returns on a portfolio as well as manage its
risk. What makes adding a position in volatility to an equity portfolio particularly attractive
is that volatility moves are generally negatively correlated with equity returns. Indeed, the
return on VIX futures in 2008 was a massive 81%, even as equity markets suffered sharp
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declines. The CBOE estimated that a 15% allocation to VIX in a well-diversified portfolio
would have resulted in a —13.08% return in 2008 (or +5.07% four-year average, standard
deviation 1.93%) versus the same portfolio earning —20.99% in 2008 (—3.87% four-year
average, standard deviation 3.03%) without any VIX component.

VIX options (ticker: VRO) may be used to trade the volatility of volatility. However,
options on the VIX are generally quite expensive because the volatility of volatility is very
high, usually much more than the volatility of equity. In 2007, for example, the volatility of
the VIX was 132% whereas that of the SPX was only 16%.

Since July 2008, it has also been possible to trade in binary options on the VIX (ticker:
BVZ). Offered by the CBOE first in the form of binary calls and later as binary puts, these
options are structured so that if the options are in-the-money at expiration, the payoffis $100.

14.10 Exercises 1. Explain why the Black-Scholes model is inappropriate if the stock can gap.

2. Is assuming a constant (nonstochastic) interest rate in the Black-Scholes model a major
deficiency of the model?

3. The Black-Scholes model assumes constant volatility. How serious a shortcoming is
this?

4. Compute the three-month (7 = 1/4) forward price F of a stock currently trading at $40
when the risk-free rate for this period is » = 4%. Then, set the strike price K = F and
calculate call and put values from the Black-Scholes model if the volatility is 0 = 0.4,
assuming the stock pays no dividends. What can you say about the call and put prices
you just computed?

5. (We repeat the previous question allowing for nonzero dividends). Assume a stock has
a dividend yield of d = 2%. Compute the three-month (7 = 1/4) forward price F' of a
stock currently trading at $40 when the risk-free rate for this period is » = 4%. Then,
set the strike price K = F and calculate call and put values from the Black-Scholes
model if the volatility is o = 0.4. What can you say about the call and put prices you
just computed?

6. Plot the price of a Black-Scholes call for a range of volatility from 5% to 40%. Use
the following parameters: S = 30, K =33, T = 1/3,r = 0.03, and d = 0. Does the
function appear concave or convex?

7. Plot the price of a Black-Scholes call for declining maturity from three years to zero
years. Does the function appear concave or convex? Use the following parameters:
§=30,K =33,0 =03, =0.03,and d = 0.

8. Plot the price of a Black-Scholes call for a range of interest rates from 1% to 20%. Use
the following parameters: S = 30, K =33, 7 =3,0 =0.3,and d = 0.

9. On December 1, the S&P 500 index (SPX) is trading at 1396.71. The prices of call
options on the index expiring on March 16 (i.e., in a bit over three months) are as
follows:

Strike K Call Prices

1300 116.80
1350 73.70
1400 41.00
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10.

11.

12.

13.

14.

15.

16.

17.

Assuming the interest rate for that period is 4.88% and the annual dividend rate on
the SPX is 1.5%, compute the implied volatility for each of the SPX options using the
Black-Scholes formula. Are these volatilities the same? Explain.

(Repeat for puts) On December 1, the S&P 500 index (SPX) is trading at 1396.71. The
prices of put options on the index expiring on March 16 (i.e., a little over three months)
are as follows:

Strike K Put Prices
1300 11.20
1350 17.30
1400 30.50

Assuming the interest rate for that period is 4.88%, and the annual dividend rate on the
SPX is 1.5%, compute the implied volatility for each of the options using the Black-
Scholes formula. Are these volatilities the same? Explain. Also, are these volatilities the
same as that obtained from the previous question? Should they be? Explain.

Show that the delta of an at-the-money European call option in the Black-Scholes model
is at least 1/2. What about the delta of an at-the-money put?

What happens to the delta of an at-the-money call as the time-to-maturity declines? What
about a put?

Let S = K =100, 0 = 0.25,and 7 — ¢ = 1 month. Create a spreadsheet to value a call
and a put for the following values of 7:

(a) r = 0.08.
(b) r = 0.06.
(c) r = 0.04.

Microsoft stock is currently trading at $24.35. Consider call and put options with a strike

of $25.00 expiring in 12 days (= 0.0476 years). Suppose that the volatility of Microsoft

stock is 40% and that the interest rate is 3%. What are the Black-Scholes prices of the

call and the put? What are the option deltas?

GE stock is currently trading at $26.15. A call option with a strike of $25.00 and 12

days (= 0.0476 years) to expiry costs $1.56. Assuming an interest rate of 3%, what is the

implied volatility?

The S&P 500 index is currently at 1101. A call option with a strike of 1075 and 17 days

(= 0.067 years) to maturity costs 36.20. Assume an interest rate of 3%. For simplicity,

assume also that the dividend yield on the index is zero.

(a) What is the implied volatility?

(b) If implied volatility went up to 20%, what would happen to the call’s value?

(c) Ifthe other parameters remained the same, what would the option value be after one
week (i.e., with 12 trading days or 0.0476 years left to maturity)?

(d) Finally, how would your answer to part (a) change if the dividend yield were taken
to be 2% instead of zero?

The spot USD-EUR exchange rate is USD1.24/EUR. Consider a one-month (= 0.083

years) put option on the EUR with a strike of USD1.25/EUR. Assume that the volatility

of the exchange rate is 12%, the one-month interest rate on the USD is 3.1%, and the

one-month interest rate on the EUR is 3.7%, both in continuously-compounded terms.

(a) What is the Black-Scholes price of the put?

(b) If you had written this put on EUR 10 million, what would you do to delta-hedge
your position?



18.

19.

20.

21.

22.

23.

24.
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The spot USD-EUR exchange rate is USD1.50/EUR. Consider a six-month (= 0.5 years)

call option on the EUR with a strike of USD1.50/EUR. Suppose the volatility of the

exchange rate is 20%, the six-month interest rate on the USD is 1.5%, and the six-month

interest rate on the EUR is 2.5%, both in continuously-compounded terms.

(a) What is the Black-Scholes price of the call?

(b) If you had written this call on EUR 100 million, what would you do to delta-hedge
your position?

The spot USD-EUR exchange rate is USD1.50/EUR. Price a one-month straddle with

an at-the-money-forward (ATMF) strike. The ATMF strike price is defined to be that

value of K which equals the forward exchange rate for that maturity, i.e., for which

Ke™'T = Se~9T. Assume that the volatility of the exchange rate is 20%, the six-month

interest rate on the USD is 1.5%, and the six-month interest rate on the EUR is 2.5%,

both in continuously-compounded terms.

An option on a stock is said to be at-the-money-forward (ATMF) if the strike price equals

the forward price on the stock for that maturity. Assume there are no dividends, so the

ATMF strike K satisfies S, = PV(K) = e """~ K. Show that the value of an ATMF

call in the Black-Scholes world is given by

S, [2N(d) — 1] (14.40)
where d| = [0 /T — t]/2.

Show that the at-the-money-forward call price (14.40) is approximately equal to

1
S, ——oT —1 14.41
OV ( )

Remark: Expression (14.41) gives us a quick method for calculating the prices of ATMF
calls. Two interesting points about expression (14.41):

(a) Itdepends on only three parameters (S;, o, and T'—¢) and the constant 7 ; in particular,
the cumulative normal distribution function N(-) is not involved.

(b) It shows that the prices of at-the-money-forward calls are approximately /inear in o.

These features make the formula above very easy to use in practice not only to obtain
prices of ATMF options, but also to obtain quick estimates of implied volatility of such
options. The next two questions illustrate these points.

Using (14.41), identify the approximate price of an at-the-money-forward call with the
following parameters:

(@) §=50,T —t = 1 month, and o = 0.15.

(b) S=70,T —t = 2 months, and o = 0.25.

Suppose an at-the-money-forward call with one month to maturity is trading at a price
of C = 0.946 when the stock price is S; = 54.77.

(a) Using the approximation (14.41), what is the implied volatility on the call?

(b) What if the call were trading at C = 1.576 instead?

A stock index is currently at 858. A call option with a strike of 850 and 17 days (= 0.047
years) to maturity costs 23.50. Assume an interest rate of 3%. For simplicity, assume
also that the dividend yield on the index is zero.

(a) What is the implied volatility?
(b) If implied volatility went up to 28%, what would happen to the call’s value?

(c) If all the other parameters remained the same, what would the option value be after
one week (i.e., with 10 days or 0.027 years left to maturity)?
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Further Properties of the Black-Scholes Delta

In Section 14.5, we outlined a number of properties satisfied by call deltas. This appendix
provides both the general intuition for these properties and the confirmation that they hold
in the Black-Scholes setting.

Behavior of Option Deltas in o

In general, how would one expect the delta of a call to change as o increases? By using the
analogy between the call delta and its likelihood of finishing in-the-money (see Section 11.8),
we can get some intuition for the anticipated behavior. (The analogy is not quite pristine,
but as we mentioned there, it is very useful from an intuitive standpoint.)

Consider a situation where S, is very large relative to K, so the call is deep in-the-money.
With very low volatility, the call is almost sure to finish in-the-money, so the delta will be
close to +1. With high volatility, on the other hand, there is a greater likelihood of being
thrown out-of-the-money (the depth-in-the-money measured in terms of standard deviation
is smaller now). Thus, the delta will be smaller.

Conversely, suppose S, is very small relative to K, so the call is deep out-of-the-money.
With low volatility, the chances of moving back into-the-money are low, so the delta of
the call will be close to zero. With higher volatility, there is a greater chance of being
thrown into-the-money (the number of standard deviation moves required of the stock price
is smaller), which raises the option delta.

Taken together, these arguments indicate that the behavior of the delta should depend on
depth in-the-money of the call:

*  When S, is large relative to K, the delta should decrease as o increases.
* When S, is small relative to K, the delta should increase as o increases.

The Black-Scholes formula exhibits this behavior. The term d; in the call price can be
rewritten as

1 S 1
dl = ﬁ\/—_t |:1H<K>+F(T—Z):|+2O’\/T—f

For small values of S;, the term In(S;/K) is negative, so an increase in o raises d, as
required. If S; > K, then In(S,/K) is positive, so the first term above decreases when o
increases. The second term always increases with o. If S; is large relative to K, the first
effect dominates, so d; decreases. All of this may be seen more formally by differentiating

d; with respect to o, which results in

1 S[ 1
———— |In{ = | +r(T —t)| + VT —t
o2JT —t { (K> ( )] 2
If S; is sufficiently smaller than K, the negative term In(S;/K’) outweighs the positive term
r(T — t), so the entire expression above becomes positive. Thus, if the call is sufficiently
deep out-of-the-money, the delta increases as volatility increases. If S; is suitably large

relative to K, the last term above, which is positive, is dominated by the earlier expression,
which is negative, so delta decreases as volatility increases.
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Behavior of Option Deltas in T — ¢

The intuitive behavior of the delta in time-to-maturity is very similar to that in volatility.
For a deep in-the-money call, a short time-to-maturity implies the option is almost sure to
finish in-the-money, so the delta is close to +1. A longer time-to-maturity increases the
odds of the option finishing out-of-the-money, so reduces the delta. Conversely, for a deep
out-of-the-money call, a short time to maturity makes it virtually certain the option finishes
out-of-the-money, so the delta is close to zero. Increasing the time-to-maturity improves the
prospects for finishing in-the-money, raising the delta. Thus, we have:

* When S is large relative to K, the delta should decrease as T — ¢t increases.
* When S, is small relative to K, the delta should increase as T — t increases.

Verifying that the Black-Scholes formula meets these conditions is analogous to the
process for o above. The term d; can be rewritten as

p 1 1 S; n 1 n 1, T3
: oT —t K o 2
The second term always increases when 7' — ¢ increases. If S; > K, the first term decreases

when 7 — ¢ increases, but if S; < K, then In(S,/K) is negative, so it increases when 7' — ¢
increases. Formally, differentiating d; with respect to 7' — ¢, we obtain

1 1 S; n 1 n 1,
————— |In| — ———— |r+=-o
20(T — )37 K 20T —t 2
This term is positive if S; is smaller than K, and is negative if S; is sufficiently larger than
K, as required.

Behavior of Option Deltas in r

An increase in interest rates increases the risk-neutral drift of the stock and so makes it
more likely that a call will finish in-the-money and a put will finish out-of-the-money. This
raises call deltas and reduces put deltas in absolute value (i.e., the put delta becomes less
negative). It is not hard to see these effects in the Black-Scholes setting. We have

1 S, 1,

so d; clearly increases as  increases. This means N(d,), the call delta, increases (it becomes
more positive) while —N(—d,), the put delta, also increases (towards zero, i.e., it becomes
less negative).

d =

Variance and Volatility Swaps

Variance and volatility swaps are forward contracts on the realized variance and volatility,
respectively, of an underlying security. Introduced in the 1990s in over-the-counter markets,
they offer an alternative to futures on the VIX for trading volatility. We begin our discussio