
 Contents i

Digital Control and

State Variable Methods
Conventional and Intelligent Control Systems

FOURTH EDITION



ii  Contents

About the Author

M.Gopal, a Professor in Electrical Engineering at Indian Institute of 

Technology Delhi, is at present the Director of School of Engineering, 

Shiv Nadar University, Gautam Budh Nagar (U.P.) India. His teaching and 

research stints span three decades at the IITs.

Dr. Gopal is a globally known academician with excellent credentials as 

author, teacher, researcher, and administrator. He is the author/co-author 

of six books on Control Engineering. His books are used worldwide, and 

some of them have been translated into Chinese and Spanish as well. 

McGraw-Hill, Singapore has published his books for the Asia Pacific 

market and McGraw-Hill, USA for the US market. In India, his books have 

been serving as the major source of learning for more than three decades.

As a teacher, his potential is being used globally through a video course (http://www.youtube.com/iit), 

which is one of the most popular courses on You Tube by the IIT faculty across India. He has been 

conducting Faculty Development Programs on active learning and effective teaching.

A recognized researcher in the area of Machine Learning, Dr. Gopal has been a key-note speaker in many 

international conferences. He periodically runs executive programs as tutorial sessions in conferences, 

and short-term workshops, to empower the participants with the state-of-the-art techniques in pattern 

recognition and machine learning.

He is the author/co-author of over 135 research papers and his key contributions have been published 

in high impact factor journals. He has supervised 16 doctoral research projects. His current research 

interests are in the areas of Machine Learning, Soft-Computing Technologies, Pattern Recognition, and 

Intelligent Control.

In administrative capacity, he contributed to the growth of a large department at IIT Delhi with electrical 

(power), electronics, communications, computer technology, and information technology as the areas 

of activities. The department has acquired a respectable international standing in both teaching and 

research.

M.Gopal holds B.Tech (Electrical), M.Tech (Control Systems), and Ph.D. degrees form BITS, Pilani. 



 Contents iii

Tata McGraw Hill Education Private Limited
NEW DELHI

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal 

San Juan Santiago Singapore Sydney Tokyo Toronto

M GOPAL

Professor 

Department of Electrical Engineering

Indian Institute of Technology Delhi

New Delhi

Digital Control and

State Variable Methods
Conventional and Intelligent Control Systems

FOURTH EDITION



iv  Contents

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

Digital Control and State Variable Methods: Conventional and Intelligent Control Systems, 4e

Copyright © 2012, 2009, by Tata McGraw Hill Education Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, 

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission 

of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they 

may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited.

ISBN (13): 978-0-07-133327-6

ISBN (10): 0-07-133327-4

Vice President and Managing Director—McGraw-Hill Education: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Publishing Manager—SEM & Tech Ed.: Shalini Jha

Editorial Executive: Koyel Ghosh 

Sr Copy Editor: Nimisha Kapoor

Sr Production Manager: Satinder Singh Baveja

Proof Reader: Yukti Sharma

Marketing Manager—Higher Education: Vijay Sarathi 

Sr Product Specialist—SEM & Tech Ed.: Tina Jajoriya

Graphic Designer (Cover): Meenu Raghav

General Manager—Production: Rajender P Ghansela

Production Manager: Reji Kumar

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable. 

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information 

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, 

or damages arising out of use of this information. This work is published with the understanding that Tata 

McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other 

professional services. If such services are required, the assistance of an appropriate professional should be 

sought.

Typeset at Tej Composers, WZ-391, Madipur, New Delhi 110063, and printed at

The McGraw-Hill Companies

Tata McGraw-Hill



 Contents v

Dedicated  

with all my love to my  

son, Ashwani  

and  

daughter, Anshu



 Contents vii

Preface   xi

Part I Digital Control: Principles and Design in Transform Domain 1

 1. Introduction 3

 1.1 Control System Terminology 3

 1.2 Computer-Based Control:  History and Trends 9

 1.3 Control Theory:  History and Trends 13

 1.4 An Overview of the C lassical  Approach to Analog Controller Design 16

 2. Signal Processing in Digital Control 21

 2.1 Why Use Digital Control? 21

 2.2 Configuration of the Basic  Digital Control Scheme 23

 2.3 Principles of Signal Conversion 25

 2.4 Basic Discrete-Time Signals 31

 2.5 Time-Domain Models for  Discrete-Time Systems 34

 2.6 The z-Transform 43

 2.7 Transfer Function Models 56

 2.8 Frequency Response 63

 2.9 Stability on the z-Plane and  the Jury Stability Criterion 66

 2.10 Sample-and-Hold Systems 76

 2.11 Sampled Spectra and Aliasing 79

 2.12 Reconstruction of Analog Signals 84

 2.13 Practical Aspects of the Choice of  Sampling Rate 87

 2.14 Principles of Discretization 90

  Review Examples 110

  Problems 119

 3. Models of Digital Control Devices and Systems 125

 3.1 Introduction 125

 3.2 z-Domain Description of Sampled  Continuous-Time Plants 127

 3.3 Z-Domain Description of Systems with Dead-Time 135

 3.4 Implementation of Digital Controllers 140

 3.5 Tunable PID Controllers 147

 3.6 Digital Temperature Control System 163

 3.7 Digital Position Control System 167

 3.8 Stepping Motors and Their Control 174

Contents



viii  Contents

 3.9 Programmable Logic Controllers 181

  Review Examples 200

  Problems 204

 4. Design of Digital Control Algorithms 214

 4.1 Introduction 214

 4.2 z-Plane Specifications of Control System Design 217

 4.3 Digital Compensator Design using  Frequency Response Plots 235

 4.4 Digital Compensator Design using Root Locus Plots 249

 4.5 z-Plane Synthesis 263

  Review Examples 268

  Problems 273

Part II State Variable Methods in Automatic Control: Continuous-Time and
 Sampled-Data Systems 281
 5. Control System Analysis Using State Variable Methods 283

 5.1 Introduction 283

 5.2 Vectors and Matrices 284

 5.3 State Variable Representation 297

 5.4 Conversion of State Variable  Models to Transfer Functions 308

 5.5 Conversion of Transfer Functions to Canonical State Variable Models 315

 5.6 Eigenvalues and Eigenvectors 327

 5.7 Solution of State Equations 338

 5.8 Concepts of Controllability and Observability 350

 5.9 Equivalence Between Transfer Function and State Variable Representations 362

 5.10 Multivariable Systems 367

  Review Examples 372

  Problems 380

 6. State Variable Analysis of Digital Control Systems 391

 6.1 Introduction 391

 6.2 State Descriptions of Digital Processors 392

 6.3 State Description of Sampled  Continuous-Time Plants 399

 6.4 State Description of Systems with Dead-Time 405

 6.5 Solution of State Difference Equations 408

 6.6 Controllability and Observability 414

 6.7 Multivariable Systems 419

  Review Examples 422

  Problems 429

 7. Pole-Placement Design and State Observers 436

 7.1 Introduction 436

 7.2 Stability Improvement by State Feedback 437

 7.3 Necessary and Sufficient Conditions for Arbitrary Pole-Placement 441

 7.4 State Regulator Design 444

 7.5 Design of State Observers 448

 7.6 Compensator Design by the Separation Principle 458

 7.7 Servo Design: Introduction of the  Reference Input by Feedfor ward Control 463

 7.8 State Feedback with Integral Control 466

 7.9 Digital Control Systems with State Feedback 469



 Contents ix

 7.10 Deadbeat Control by State Feedback and Deadbeat Observers 480

  Review Examples 483

  Problems 490

 8. Linear Quadratic Optimal Control through Lyapunov Synthesis 502

 8.1 Introduction 502

 8.2 The Concept of Lyapunov Stability 503

 8.3 Lyapunov Functions for Linear Systems 505

 8.4 Parameter Optimization and Optimal Control Problems 510

 8.5 Quadratic Performance Index 513

 8.6 Control Configurations 520

 8.7 Optimal State Regulator 523

 8.8 Optimal Digital Control Systems 534

 8.9 Constrained State Feedback Control 539

  Review Examples 545

  Problems 552

Part III Nonlinear Control Systems: Conventional and Intelligent 559

 9. Nonlinear Systems Analysis 563

 9.1 Introduction 563

 9.2 Some Common Nonlinear System Behaviors 565

 9.3 Common Nonlinearities in Control Systems 567

 9.4 Describing Function Fundamentals 569

 9.5 Describing Functions of Common Nonlinearities 573

 9.6 Stability Analysis by the Describing Function Method 580

 9.7 Concepts of Phase-Plane Analysis 587

 9.8 Construction of Phase Portraits 590

 9.9 System Analysis on the Phase Plane 597

 9.10 Simple Variable Structure Systems 605

 9.11 Lyapunov Stability Definitions 609

 9.12 Lyapunov Stability Theorems 613

 9.13 Lyapunov Functions for Nonlinear Systems 621

 9.14 Lypunov’s Linearization Method and  Local Stability 627

  Review Examples 628

  Problems 634

 10. Nonlinear Control Structures 642

 10.1 Introduction 642

 10.2 Feedback Linearization 644

 10.3 Model Reference Adaptive Control 649

 10.4 System Identification and Generalized Predictive Control in Self-Tuning Mode 657

 10.5 Sliding Mode Control 672

  Problems 681

 11. Intelligent Control with Neural Networks/Support Vector Machines 686

 11.1 Towards Intelligent Systems 686

 11.2 Introduction to Soft Computing and  Intelligent Control Systems 687

 11.3 Basics of Machine Learning 690

 11.4 A Brief History of Neural Networks 696



x  Contents

 11.5 Neuron Models 698

 11.6 Network Architectures 707

 11.7 Function Approximation with Neural Networks 714

 11.8 Linear Learning Machines 716

 11.9 Training The Multilayer Perceptron Network–Backpropagation Algorithm 722

 11.10 Radial Basis Function Networks 727

 11.11 System Identification with  Neural Networks 730

 11.12 Control with Neural Networks 735

 11.13 Support Vector Machines 741

  Review Examples 757

  Problems 763

 12. Fuzzy Logic and Neuro-Fuzzy Systems 767

 12.1 Introduction 767

 12.2 Fuzzy Rules-Based Learning 770

 12.3 Fuzzy Quantification of Knowledge 778

 12.4 Fuzzy Inference 790

 12.5 Designing A Fuzzy Logic Controller (Mamdani Architecture) 794

 12.6 Data Based Fuzzy Modeling  (Sugeno Architecture) 805

 12.7 System Identification and Control with  Neuro-Fuzzy Systems 809

  Review Examples 813

  Problems 817

 13. Optimization with Genetic Algorithms 827

 13.1 Evolutionary Algorithms 827

 13.2 Genetic Algorithms 828

 13.3 Genetic-Fuzzy Systems 839

 13.4 Genetic-Neural Systems 842

  Review Examples 843

  Problems 846

 14. Intelligent Control with Reinforcement Learning 849

 14.1 Introduction 849

 14.2 Elements of Reinforcement Learning Control 850

 14.3 Methods for Solving the Reinforcement Learning Problem 853

 14.4 Basics of Dynamic Programming 855

 14.5 Temporal Difference Learning 861

 14.6 Q-Learning 863

 14.7 Sarsa-Learning 866

  References 868

  Answers to Problems 876

  Appendix A: MATLAB Aided Control System Design: Conventional Control

    URL: http://www.mhhe.com/gopal/dc4e

  Appendix B: MATLAB Aided Control System Design: Intelligent Control

    URL: http://www.mhhe.com/gopal/dc4e

  Index 900 



 Contents xi

 Control Engineering is an active field of research and hence there is a steady influx of new concepts, 

ideas and techniques. In time, some of these elements develop to the point where they join the list of 

things every control engineer must know. To grasp the significance of modern developments, a strong 

foundation is necessary in analysis, design and stability procedures applied to continuous-time linear and 

nonlinear feedback control systems. Simultaneously, knowledge of the corresponding methods in the 

digital version of control systems is also required because of the use of microprocessors, programmable 

logic devices and DSP chips as controllers in modern systems. This book aims at presenting the vital 

theories required for appreciating the past and present status of control engineering.

 When compiling the material for the first edition of the book, decisions had to be made as to what should 

be included and what should not. It was decided to place the emphasis on the control of continuous-time 

and discrete-time linear systems, based on frequency-domain and state-space methods of design. In the 

subsequent editions, we continue to emphasize solid mastery of the underlying techniques for linear 

systems; in addition, the subject of nonlinear control has occupied an important place in our presentation. 

The availability of powerful low-cost microprocessors has spurred great interest in nonlinear control. 

Many practical nonlinear control systems based on conventional nonlinear control theory have been 

developed. The emerging trends are to employ intelligent control technology for nonlinear systems. As a 

result, the subject of nonlinear control (based on conventional as well as intelligent control methodologies) 

has become a necessary part of the fundamental background of control engineers.

 The vast array of systems to which feedback control is applied and the growing variety of techniques 

available for the solution of control problems means that today’s student of control engineering needs 

to manage a great deal of information. To help the students in this task and to keep their perspective as 

they plow through a variety of techniques, a user-friendly format has been devised for the book. We have 

divided the contents in three parts. Part I deals with digital control principles and design in transform 

domain, assuming that the reader has had an introductory course in control engineering concentrating 

on the basic principles of feedback control and covering the various classical analog methods of control 

system design. The material presented in this part of the book is closely related to the material a student 

may already be familiar with, but towards the end a direction to wider horizons is indicated. Basic 

principles of feedback control and classical analog methods of design have been elaborately covered in 

another book: M Gopal, Control Systems: Principles and Design, 4th edition, Tata McGraw-Hill, 2012.

Part II of the book deals with state variable methods in automatic control. State variable analysis and 

design methods are usually not covered in an introductory course. It is assumed that the reader is not 

exposed to the so-called modern control theory. Our approach is to first discuss the state variable methods 

Preface
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for continuous-time systems and then give a compact presentation for discrete-time systems using the 

analogy with the continuous-time systems. This formatting is a little different from the conventional one. 

Typically, a book on digital control systems starts with transform-domain design and then carries over 

to state space. These books give a detailed account of state variable methods for discrete-time systems. 

Since the state variable methods for discrete-time systems run quite parallel to those for continuous-time 

systems, a full-blown repetition is not appreciated by readers conversant with state variable methods for 

continuous-time systems. And for readers with no background of this type, a natural way of introducing 

state variable methods is to give the treatment for continuous-time systems, followed by a brief parallel 

presentation for discrete-time systems. This sequence of presentation is natural because it evolves from 

the sequence of steps in a design procedure. The systems to be controlled (plants) are continuous-

time systems; we, therefore, investigate the properties of these systems using continuous-time models. 

Sampling is introduced only to insert a microprocessor in the feedback loop.

Part III of the book deals with nonlinear control schemes. The choice and emphasis of the schemes is 

guided by the basic objective of making an engineer or a student gain insights into the current nonlinear 

techniques in use for the solution of practical control problems in the industry. Some results of mostly 

theoretical interest are not included. Instead, emerging trends in nonlinear control are introduced. The 

conventional nonlinear control structures like Feedback Linearization, Model-Reference Adaptive 

Control, Self-Tuning Control, Generalized Model Predictive Control, Sliding Mode Control, etc., fall 

well short of the requirements of modern complex systems. While extensions and modifications to these 

conventional methods of control design based on mathematical models continue to be made, intelligent 

control technology is emerging as an alternative to solve complex control problems. This technology is 

slowly gaining wider acceptance in both academics and industry. The scientific community and industry 

are converging to the fact that there is something fundamentally significant about this technology. 

Rigorous characterization of theoretical properties of intelligent control methodology is not our aim; 

rather we focus on the development of systematic design procedures, which will guide the design of a 

controller for a specific problem.

The fundamental aim in preparing the book has been to work from basic principles and to present control 

theory in a way that can be easily understood and applied. Solved examples are provided as and when 

a new concept is introduced. The section on review examples briefly reiterates the key concepts of 

the chapter. A supplement of problems, with final answers, is also made available for pen-and-paper 

practice. MATLAB/Simulink tools are introduced in appendices to train the students in computer-aided-

design. All the solved examples, review examples and problems can be done using software tools. Some 

problems specifically designed with a focus on MATLAB solutions, are given in appendices. A rich 

collection of references, classified to topics, has been given for more enthusiastic readers.

ORGANIZATION OF THE BOOK

 The contents of the book are organized into fourteen chapters and two appendices. The appendices 

are given in the web supplements of the book. Appendix A deals with MATLAB/Simulink support for 

Conventional Control (Chapters 1−10) and Appendix B deals with MATLAB/Simulink support for 

Intelligent Control (Chapters 11−14).

 The fourteen chapters of the book are classified into three parts, with each part serving a clearly defined 

objective. Part I (Chapters 1−4) deals with digital control principles and classical digital methods of 

design, paralleling and extending considerably the similar topics in analog control.
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In Chapter 1, introduction to the digital control problem is given. A rich variety of practical problems are 

placed as examples. A rapid review of the classical procedures used for analog control is also provided.

For the study of classical procedures for digital control, the required mathematical background includes 

z-transforms. A review of z-transformation is presented in Chapter 2. With this background, the concepts 

of transfer function models and frequency-response models are introduced; and then dynamic response, 

steady-state response and stability issues are covered. After taking the student gradually through 

mathematical domain of digital control systems, Chapter 2 introduces the sampling theorem and the 

phenomenon of aliasing. Methods to generate discrete-time models which approximate continuous-time 

dynamics are also introduced in this chapter.

Chapter 3 briefly describes the digital control hardware including microprocessors, shaft-angle encoders, 

stepping motors, programmable logic controllers, etc. Transform-domain models of digital control loops 

are developed, with examples of some of the widely used digital control systems. Digital PID controllers, 

their implementation and tuning are also included in this chapter.

Chapter 4 establishes a toolkit of design-oriented techniques. It puts forward alternative design methods 

based on root locus and Bode plots. Design of digital controllers using z-plane synthesis is also included 

in this chapter.

Part II (Chapters 5−8) of the book deals with state variable methods in automatic control. The manner 

of presentation followed here is to first discuss state variable methods for continuous-time systems and 

then give a compact presentation of the methods for discrete-time systems, using the analogy with the 

continuous-time case.

Chapter 5 is on state variable analysis. It exposes the problems of state variable representation, 

diagonalization, solution, controllability and observability. The relationship between transfer function 

and state variable models is also given. Although it is assumed that the reader has the necessary 

background on vector-matrix analysis, a reasonably detailed account of vector-matrix analysis is provided 

in this chapter for convenient reference.

State variable analysis concepts, developed in continuous-time format in Chapter 5, are extended to 

digital control systems in Chapter 6.

The techniques of achieving desired system characteristics by pole-placement using complete state 

variable feedback are developed in Chapter 7. Also included is the method of using the system output 

to form estimates of the states for use in state feedback. Results are given for both continuous-time and 

discrete-time systems.

Lyapunov stability analysis is introduced in Chapter 8. In addition to stability analysis, Lyapunov 

functions are useful in solving some optimization problems. We discuss in this chapter, the solution 

of linear quadratic optimal control problem through Lyapunov synthesis. Results are given for both 

continuous-time and discrete-time systems.

Parts I and II exclusivelydeal with linear systems. In Part III (Chapters 9−14), the focus is on nonlinear 

systems. We begin with conventional methods of analysis and design (Chapters 9−10) which are of 

current importance in terms of industrial practice. Results of mostly theoretical interest are not included. 

Instead, the emerging trends in nonlinear control based on intelligent control technology are presented in 

reasonable details (Chapters 11−14).

In Chapter 9, considerable attention is paid to describing function and phase plane methods, which 

have demonstrated great utility in analysis of nonlinear systems. Also included is stability analysis of 

nonlinear systems using Lyapunov functions.
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Chapter 10 introduces the concepts of feedback linearization, model reference adaptive control, system 

identification and self-tuning control and variable structure control. In terms of theory, major strides have 

been made in these areas. In terms of applications, many practical nonlinear control systems have been 

developed.

Neural networks are widely used in intelligent control systems. An informative description of neural 

networks is presented in Chapter 11. This chapter contains architectures and algorithms associated 

with multi-layer perceptron networks, radial basis function networks and support vector machines. 

Application examples from the perspectives of system identification and control are given. 

Chapter 12 introduces the concepts of fuzzy sets and knowledge representation using fuzzy rules-

based learning. Conceptual paradigms of fuzzy controllers are presented, with a discussion on Mamdani 

architecture for design. The approach to system identification as linguistic rules using the popular Takagi-

Sugeno fuzzy representation is discussed. A brief description of system identification and control using 

neuro-fuzzy systems is also included in this chapter.

The focus in Chapter 13 is on genetic algorithm for optimization. The applications of this algorithm to 

the learning of neural networks, as well as to the structural and parameter adaptations of fuzzy systems 

are also described. 

Chapter 14 presents a new control architecture that is based on reinforcement learning. Several recent 

developments in reinforcement learning have substantially increased its viability as a general approach 

to intelligent control.

WEB SUPPLEMENTS

The book includes a wealth of supplements available in the dedicated website:

http://www.mhhe.com/gopal/dc4e

It includes:

For Students

For Instructors

This part of the website is password protected and will be available to the instructors who adopt 

this text. This request can be sent to a local TMH sales representative.

READERSHIP

The book is intended to be a comprehensive treatment of advanced control engineering for courses at 

senior undergraduate level and postgraduate (Masters degrees) level. It is also intended to be a reference 

source for PhD research students and practicing engineers.
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 For the purpose of organizing different courses for students with different backgrounds, the sequencing 

of chapters and dependence of each chapter on previous chapters has been properly designed in the text. 

A typical engineering curriculum at the second-degree level includes core courses on ‘digital control 

systems’ and ‘linear system theory’. Parts I and II of the book have been designed to fully meet the 

requirements of the two courses. In Part III of the book, a reasonably detailed account of nonlinear 

control schemes, both the conventional and the intelligent, is given. The requirements of elective courses 

on ‘nonlinear control systems’ and ‘intelligent control’, will be partially or fully (depending on the depth 

of coverage of the courses) served by Part III of the book.

 A typical engineering curriculum at the first-degree level includes a core course on feedback control 

systems, with one or two elective courses on the subject. This book meets the requirements of elective 

courses at the first-degree level.
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Part I
Digital Control: Principles and Design in  
Transform Domain

Automatic control systems play a vital role in the (technological) progress of human civilization. These 

control systems range from the very simple to the fairly complex in nature. Automatic washing machines, 

refrigerators, and ovens are examples of some of the simpler systems used in homes. Aircraft automatic 

pilots, robots used in manufacturing, and electric power generation and distribution systems represent 

complex control systems. Even such problems as inventory control, and socio-economic systems control, 

may be approached from the theory of feedback control.

Our world is one of continuous-time variables type. Quantities like flow, temperature, voltage, 

position, and velocity are not discrete-time variables but continuous-time ones. If we look back at the 

development of automatic control, we find that mass-produced analog (electronic) controllers have 

been available since about the 1940s. A first-level introduction to control engineering, provided in the  

companion book ‘Control Systems: Principles and Design’, deals with the basics of control, and 

covers sufficient material to enable us to design analog (op amp based) controllers for many simple 

control loops found in the industry.

From the 1980s onwards, we find microprocessor digital technology to be a dominant industrial 

phenomenon. Today, the most complex industrial processes are under computer control. A microprocessor 

determines the input to manipulate the physical system, or plant; and this requires facilities to apply this 

input to the physical world. In addition, the control strategy typically relies on measured values of the 

plant behavior; and this requires a mechanism to make these measured values available to the computing 

resources. The plant can be viewed as changing continuously with time. The controller, however, has 

a discrete clock that governs its behavior and so its values change only at discrete points in time. To 

obtain deterministic behavior and ensure data integrity, the sensor must include a mechanism to sample 

continuous data at discrete points in time, while the actuators need to produce a continuous value between 

the time points with discrete-time data.

Computer interfacing for data acquisition, consists of analog-to-digital (A/D) conversion of the input 

(to controller) analog signals. Prior to the conversion, the analog signal has to be conditioned to meet 

the input requirements of the A/D converter. Signal conditioning consists of amplification (for sensors 

generating very low power signals), filtering (to limit the amount of noise on the signal), and isolation 

(to protect the sensors from interacting with one another and/or to protect the signals from possibly 

damaging inputs). Conversion of a digital signal to an analog signal (D/A) at the output (of controller), 

is to be carried out to send this signal to an actuator which requires an analog signal. The signal has to 

be amplified by a transistor or solid state relay or power amplifier. Most manufacturers of electronic 

instrumentation devices are producing signal conditioners as modules.
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The immersion of computing power into the physical world has changed the scene of control system 

design. A comprehensive theory of digital ‘sampled’ control has been developed. This theory requires a 

sophisticated use of new concepts such as z-transform. It is, however, quite straightforward to translate 

analog design concepts into digital equivalents. After taking a guided tour through the analog design 

concepts and op amp technology, the reader will find in Part I of this book sufficient material to enable 

him/her to design digital controllers for many simple control loops, and interfacing the controllers to 

other subsystems in the loop; thereby building complete feedback control systems.

The broad space of digital control applications can be roughly divided into two categories: industrial 

control and embedded control. Industrial control applications are those in which control is used as part 

of the process of creating or producing an end product. The control system is not a part of the actual end 

product itself. Examples include the manufacture of pharmaceuticals and the refining of oil. In the case 

of industrial control, the control system must be robust and reliable, since the processes typically run 

continuously for days, weeks or years.

Embedded control applications are those in which the control system is a component of the end product 

itself. For example, Electronic Control Units (ECUs) are found in a wide variety of products including 

automobiles, airplanes, and home applications. Most of these ECUs implement different feedback 

control tasks. For instance, engine control, traction control, anti-lock braking, active stability control, 

cruise control, and climate control. While embedded control systems must also be reliable, cost is a 

more significant factor, since the components of the control system contribute to the overall cost of 

manufacturing the product. In this case, much more time and effort is usually spent in the design phase 

of the control system to ensure reliable performance without requiring any unnecessary excess of 

processing power, memory, sensors, actuators, etc., in the digital control system. Our focus in this book 

will be on industrial control applications.

Perhaps more than any other factor, the development of microprocessors has been responsible for the 

explosive growth of the computer industry. While early microprocessors required many additional  

components in order to perform any useful task, the increasing use of Large-Scale Integration (LSI) or 

Very Large-Scale Integration (VLSI) semiconductor fabrication techniques has led to the production of 

microcomputers, where all of the required circuitry is embedded on one or a small number of integrated 

circuits. A further extension of the integration is the single-chip microcontroller, which adds analog and 

binary I/O, timers, and counters so as to be able to carry out real-time control functions with almost 

no additional hardware. Examples of such microcontrollers are Intel 8051, 8096 and Motorola MCH 

68HC11. These chips were developed largely, in response to the automotive industries’ desire for  

computer-controlled ignition, emission control and anti-skid systems. They are now widely used 

in process industries. This digital control practice, along with the theory of sampled-data systems is 

covered in Chapters 2–4 of the book.
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1.1 CONTROL SYSTEM TERMINOLOGY

A Control System is an interconnection of components to provide a desired function. The portion of 

the system to be controlled is given various names: process, plant, and controlled system being perhaps 

the most common. The portion of the system that does the controlling is the controller. Often, a control 

system designer has little or no design freedom with the plant; it is usually fixed. The designer’s task is, 

therefore, to develop a controller that will control the given plant acceptably. When measurements of the 

plant response are available to the controller (which, in turn, generates signals affecting the plant), the 

configuration is a feedback control system.

A digital control system uses digital hardware, usually in the form of a programmed digital computer, as 

the heart of the con troller. In contrast, the controller in an analog control system is composed of analog 

hardware; an electronic controller made of resistors, capacitors, and operational amplifiers is a typical  

example. Digital controllers normally have analog devices at their periphery to interface with the plant; 

it is the internal working of the controller that distinguishes digital from analog control.

The signals used in the description of control systems are clas sified as continuous-time and discrete-

time. Continuous-time signals are defined for all time, whereas discrete-time signals are defined only 

at discrete instants of time, usually evenly spaced steps. The signals for which both time and ampli tude 

are discrete, are called digital signals. Because of the complexity of dealing with quantized (discrete-

amplitude) sig nals, digital control system design proceeds as if computer-generated signals were not 

of discrete amplitude. If necessary, further analysis is then done, to determine if a proposed level of 

quantization is acceptable.

Systems and system components are termed continuous-time or discrete-time according to the 

type of signals they involve. They are classified as being linear if signal components in them can be 

superimposed—any linear combination of signal components, applied to a system, produces the same 

linear combination of corresponding output components; otherwise the system is nonlinear. A system 

or component is time-invariant if its properties do not change with time—any time shift of the inputs 

produces an equal time shift of every corresponding signal. If a system is not time-invariant, then it is 

time-varying.

A typical topology of a computer-controlled system is sketched schematically in Fig. 1.1. In most cases, 

the measuring transdu cer (sensor) and the actuator (final control element) are analog devices, requiring, 

Introduction

Chapter 1



4  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

respectively, analog-to-digital (A/D) and digital-to-analog (D/A) conversion at the computer input and 

output. There are, of course, exceptions; sensors which combine the functions of the transducer and the 

A/D converter, and actua tors which combine the functions of the D/A converter and the final control 

element are available. In most cases, however, our sensors will provide an analog voltage output, and our 

final control elements will accept an analog voltage input.

In the control scheme of Fig. 1.1, the A/D converter performs the sampling of the sensor signal (analog 

feedback signal ) and pro duces its binary representation. The digital computer (control algorithm) 

generates a digital control signal using the informa tion on desired and actual plant behavior. The 

digital control signal is then converted to analog control signal via the D/A converter. A real-time clock 

synchronizes the actions of the A/D and D/A converters, and the shift registers. The analog control signal 

is applied to the plant actuator to control the plant’s behavior.

The overall system in Fig. 1.1 is hybrid in nature; the signals are in the sampled form (discrete-time 

signals) in the computer, and in a continuous form in the plant. Such systems have tradi tionally been 

called sampled-data systems; we will use this term as a synonym for computer control systems/digital 

control sys tems.

The word ‘servomechanism’ (or servo system) is used for a command-following system, wherein the 

controlled output of the system is required to follow a given command. When the desired value of the 

controlled outputs is more or less fixed, and the main problem is to reject disturbance effects, the control 

system is sometimes called a regulator. The command input for a regulator becomes a constant and 

is called set-point, which corresponds to the de sired value of the controlled output. The set-point may 

however be changed in time, from one constant value to another. In a tracking system, the controlled 

output is required to follow, or track, a time-varying command input.

To make these definitions more concrete, let us consider some familiar examples of control systems.

Example 1.1 Servomechanism for Steering of Antenna

One of the earliest applications of radar tracking was for anti-aircraft fire control; first with guns and 

later with missiles. Today, many civilian applications exist as well, such as satel lite-tracking radars, 

navigation-aiding radars, etc.

Fig. 1.1 Basic structure of a computer-controlled system
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The radar scene includes the radar itself, a target, and the transmitted waveform that travels to the target 

and back. Information about the target’s spatial position is first obtained by measuring the changes in the 

back-scattered waveform relative to the transmitted waveform. The time shift provides information about 

the target’s range, the frequency shift provides informa tion about the target’s radial velocity, and the  

received voltage magnitude and phase provide information about the target’s angle1[1].

In a typical radar application, it is necessary to 

point the radar antenna towards the target and 

follow its movements. The radar sensor detects 

the error between the antenna axis and the target, 

and directs the antenna to follow the target. The 

servomechanism for steering the antenna in 

response to commands from the radar sensor, 

is considered here. The antenna is designed for 

two independent angular motions; one about 

the vertical axis in which the azimuth angle is 

varied, and the other about the hori zontal axis 

in which the elevation angle is varied (Fig. 1.2). 

The servomechanism for steering the antenna 

is described by two controlled variables—azimuth angle b and elevation angle a. The desired values 

or commands are the azimuth angle br and the elevation angle ar of the target. The feedback control 

problem involves error self-nulling, under conditions of disturbances beyond our control (such as wind 

power).

The control system for steering antenna can be treated as two independent systems—the azimuth-angle 

servomechanism, and the elevation-angle servomechanism. This is because the interaction effects are 

usually small. The operational diagram of the azimuth-angle servomechanism is shown in Fig. 1.3.

 1 The bracketed numbers coincide with the list of references given at the end of the book.

Fig. 1.3 Azimuthal servomechanism for steering of antenna

Fig. 1.2
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The steering command from the radar sensor, which corresponds to target the azimuth angle, is compared 

with the azimuth angle of the antenna axis. The occur rence of the azimuth-angle error causes an error 

signal to pass through the amplifier, which increases the angular velocity of the servo motor in a direction 

towards an error reduction. In the scheme of Fig. 1.3, the measurement and processing of signals 

(calculation of control signal) is digital in nature. The shaft-angle encoder combines the functions of 

transducer and A/D con verter.

Figure 1.4 gives the functional block diagrams of the control system. A simple model of the load  

(antenna) on the motor is shown in Fig. 1.4b. The moment of inertia J and the viscous friction coefficient 

B are the parameters of the assumed model. Nominal load is included in the plant model for the control 

design. The main disturbance inputs are the deviations of the load from the nominal estimated value as a 

result of uncertainties in our estimate, effect of wind power, etc.

In the tracking system of Fig. 1.4a, the occurrence of error causes the motor to rotate in a direction  

favoring the dissolu tion of error. The processing of the error signal (calculation of the control signal) is 

based on the proportional control logic. Note that the components of our system cannot respond instan-

taneously, since any real-world system cannot go from one energy level to another in zero time. Thus, 

in any real-world system, there is some kind of dynamic lagging behavior between input and output. 

In the servo system of Fig. 1.4a, the control action, on occurrence of the deviation of the controlled 

output from the desired value (the occurrence of error), will be delayed by the cumulative dynamic 

lags of the shaft-angle encoder, digital computer and digital-to-analog converter, power amplifier, and 

the servo motor with load. Eventually, however, the trend of the controlled variable deviation from 

the desired value, will be reversed by the action of the amplifier output on the rotation of the motor, 

Fig. 1.4 
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returning the controlled variable towards the desired value. Now, if a strong correction (high amplifier 

gain) is applied (which is desirable from the point of view of control system performance, e.g., strong 

correction improves the speed of response), the controlled variable overshoots the desired value (the 

‘run-out’ of the motor towards an error with the opposite rotation), causing a reversal in the algebraic 

sign of the system error. Unfortunately, because of system dynamic lags, a reversal of correction does 

not occur immediately, and the amplifier output (acting on ‘old’ information) is now actually driving 

the con trolled variable in the direction it was already heading, instead of opposing its excursions, thus 

leading to a larger deviation. Eventually, the reversed error does cause a reversed correction, but the 

controlled variable overshoots the desired value in the opposite direction and the correction is again in 

the wrong direction. The controlled variable is thus driven, alternatively, in opposite directions before 

it settles to an equilibrium condition. This oscillatory state is unacceptable as the be havior of antenna-

steering servomechanism. The considerable amplifier gain, which is necessary if high accuracies are to 

be obtained, aggravates the described unfavorable phenomenon.

The occurrence of these oscillatory effects can be controlled by the application of special compensation 

feedback. When a signal proportional to the motor’s angular velocity (called the rate signal) is subtracted 

from the error signal (Fig. 1.4c), the braking process starts sooner than the error reaches a zero value.

The ‘loop within a loop’ (velocity feedback system embedded within a position feedback system) 

configuration utilized in this application, is a classical scheme called minor-loop feedback scheme.

Example 1.2 Variable Speed dc Drive

Many industrial applications require variable speed drives. For example, variable speed drives are used 

for pumping duty to vary the flow rate or the pumping pressure, rolling mills, harbor cranes, rail traction, 

etc. [2–4].

The variable speed dc drive is the most versatile drive availa ble. Silicon Controlled Rectifiers (SCR) are 

almost universally used to control the speed of dc motors, because of considerable benefits that accrue 

from the compact static con trollers supplied directly from the ac mains.

Basically, all dc systems involving SCR controllers are similar but, with different configurations of 

the devices, differ ent characteristics may be obtained from the controller. Figure 1.5 shows a dc motor 

driven by a full-wave rectified supply. Armature current of the dc motor is controlled by an SCR, which 

is, in turn, controlled by the pulses applied by the SCR trigger control circuit. The SCR controller thus 

combines the functions of a D/A converter and a final control element.

Firing angle of the SCR controls the average armature current, which, in turn, controls the speed of the 

dc motor. The average armature current (speed) increases as the trigger circuit reduces the delay angle 

of firing of the SCR, and the average armature current (speed) reduces as the delay angle of firing of the 

SCR is increased.

In the regulator system of Fig. 1.5, the reference voltage which corresponds to the desired speed of the 

dc motor, is compared with the output voltage of tachogenerator, corresponding to the actual speed of 

the motor. The occurrence of the error in speed, causes an error signal to pass through the trigger circuit, 

which controls the firing angle of the SCR in a direction towards an error reduction. When the processing 

of the error signal (calcu lation of the control signal) is based on the proportional con trol logic, a steady-
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state error between the actual speed and the desired speed exists. The occurrence of steady-state error 

can be eliminated by generating the control signal with two components: one component proportional to 

the error signal, and the other proportional to the integral of the error signal.

Example 1.3 Liquid-level Control System

This example describes the hardware features of the design of a PC-based liquid-level control system. The 

plant of our control system is a cylindrical tank. Liquid is pumped into the tank from the sump (Fig. 1.6). 

The inflow to the tank can be controlled by adjusting valve V1. The outflow from the tank goes back into 

the sump.

Valve V1 of our plant is a rotary valve; a stepping motor has been used to control the valve. The stepping 

motor controller card, interfaced to the PC, converts the digital control signals into a series of pulses 

which are fed to the stepping motor using a driver circuit. Three signals are generated from the digital 

control signal at each sampling instant, namely, number of steps, speed of rotation, and direction of 

rotation. The stepping motor driver circuit converts this information into a single pulse train, which is 

fed to the stepping motor. The valve characteris tics between the number of steps of the stepping motor 

and the outflow from the valve, are nonlinear.

The probe used for measurement of liquid level, consists of two concentric cylinders connected to a 

bridge circuit, to provide an analog voltage. The liquid partially occupies the space between the cylinders, 

with air in the remaining part. This device acts like two capacitors in parallel; one with dielectric constant 

of air (~1) and the other with that of the liquid. Thus, the varia tion of the liquid level causes variation of 

the electrical capacity, measured between the cylinders. The change in the ca pacitance causes a change 

in the bridge output voltage which is fed to the PC through an amplifier circuit. The characteristics of the 

sensor between the level and the voltage are approximately linear.

Fig. 1.5 
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In the liquid-level control system of Fig. 1.6, the command signal (which corresponds to the desired 

level of the liquid in the cylinder) is fed through the keyboard; the actual level signal is received through 

the A/D conversion card. The digital computer compares the two signals at each sampling instant, and 

generates a control signal which is the sum of two components: one proportional to the error signal, and 

the other, proportional to the integral of the error signal.

1.2

Digital computers were first applied to industrial process control in the late 1950s. The machines 

were generally large-scale ‘main frames’ and were used in a so-called supervisory control mode; the 

individual temperature, pressure, flow and the like, feedback loops were locally controlled by electronic 

or pneumatic analog controllers. The main function of the computer was to gather information on how 

the overall process was operat ing, feed this into a technical-economic model of the process (programmed 

into computer memory), and then, periodically, send signals to the set-points of all the analog controllers, 

so that each individual loop operated in such a way as to optimize the overall operation.

In 1962, Imperial Chemical Industries in England made a drastic departure from this approach—a digital 

computer was installed, which measured 224 variables and manipulated 129 valves directly. The name 

Direct Digital Control (DDC) was coined to emphasize that the computer controlled the process directly. 

In DDC systems, analog controllers were no longer used. The central computer served as a single, time-

shared controller for all the individual feedback loops. Conventional control laws were still used for each 

loop, but the digital versions of control laws for each loop resided in the software in the central computer. 

Though digital computers were very expensive, one expected DDC systems to have economic advantage 

Fig. 1.6 Liquid-level control system
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for processes with many (50 or more) loops. Unfortunately, this did not often materialize. As failures 

in the central computer of a DDC system shut down the entire system, it was necessary to provide a 

‘fail-safe’ backup system, which usually turned out to be a complete system of individual loop analog 

controllers, thus negating the expected hardware savings.

There was a substantial development of digital computer technolo gy in the 1960s. By the early 1970s, 

smaller, faster, more relia ble, and cheaper computers became available. The term minicompu ters was 

coined for the new computers that emerged. DEC PDP11 is by far, the best-known example. There were, 

however, many related machines from other vendors.

The minicomputer was still a fairly large system. Even as performance continued to increase and prices to 

decrease, the price of a minicomputer main frame in 1975, was still about $10,000. Computer control was still 

out of reach for a large number of control problems. However, with the development of microcom puter, the 

price of a card computer, with the performance of a 1975 minicomputer, dropped to $500 in 1980. Another 

consequence was that digital computing power in 1980 came in quanta as small as $50. This meant that 

computer control could now be considered as an alternative, no matter how small the application [54–57].

Microcomputers have already made a great impact on the process control field. They are replacing analog 

hardware even as single-loop controllers. Small DDC systems have been made using microcomputers. 

Operator communication has vastly improved with the introduction of color video-graphics displays.

The variety of commercially available industrial controllers ranges from single-loop controllers through 

multiloop single computer systems to multiloop distributed computers. Although the range of equipment 

available is large, there are a number of identifiable trends which are apparent.

Single-loop microprocessor-based controllers, though descendants of single-loop analog controllers, have 

greater degree of flexibility. Control actions which are permitted, include on/off control, proportional 

action, integral action, derivative action, and the lag effect. Many controllers have self-tuning option. 

During the self-tune sequence, the controller introduces a number of step commands, within the tolerances 

allowed by the operator, in order to characterize the system response. From this response, values for 

proportional gain, reset time, and rate time are developed. This feature of online tuning in industrial 

control lers is interesting, and permits the concept of the computer automatically adjusting to changing 

process conditions [11–12].

Multiloop single computer systems have variability in available interface and software design. Both 

single-loop and multiloop controllers may be used in stand-alone mode, or may be interfaced to a host 

computer for distributed operation. The reducing costs and increasing power of computing systems, has 

tended to make distributed computing systems for larger installations, far more cost effective than those 

built around one large computer. Howe ver, the smaller installation may be best catered for by a single 

multiloop controller, or even a few single-loop devices.

Control of large and complex processes using Distributed Computer Control Systems (DCCS), is 

facilitated by adopting a multilevel or hierarchical view point of control strategy. The multilevel approach 

subdivides the system into a hierarchy of simpler control design problems. On the lowest level of control 

(direct process control level), the following tasks are handled: acquisition of process data, i.e., collection 

of instantaneous values of individual process variables, and status messages of plant control facilities 

(valves, pumps, motors, etc.) needed for efficient direct digital control; processing of collected data; 

plant hardware monitoring, system check and diagnosis; closed-loop control and logic control functions, 

based on directives from the next ‘higher’ level.
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Supervisory level copes with the problems of determination of optimal plant work conditions, and 

generation of relevant instruc tions to be transferred to the next ‘lower’ level. Adaptive control, optimal 

control, plant performance monitoring, plant coordination and failure detections are the functions 

performed at this level.

Production scheduling and control level is responsible for pro duction dispatching, inventory control, 

production supervision, production rescheduling, production reporting, etc.

Plant(s) management level, the ‘highest’ hierarchical level of the plant automation system, is in charge of 

the wide spectrum of engineering, economic, commercial, personnel, and other func tions.

It is, of course, not to be expected that in all available distributed computer control systems, all four 

hierarchical levels are already implemented. For automation of small-scale plants, any DCCS having 

at least two hierarchical levels, can be used. One system level can be used as a direct process control 

level, and the second one as a combined plant supervisory, and production scheduling and control level. 

Production planning and other enterprise-level activities, can be managed by the separate mainframe 

computer or the computer center. For instance, in a LAN (Local Area Network)-based system structure, 

shown in Fig. 1.7a, the ‘higher’ automation levels are implemented by simply attach ing the additional 

‘higher’ level computers to the LAN of the system [89].

For complex process plant monitoring, SCADA (Supervisory Control And Data Acquisition) systems are 

available. The basic functions carried out by a SCADA system are as follows:

  Data acquisition and communication 

  Events and alarms reporting

  Data processing   

  Partial process control

The full process control functions are delegated to the special control units, connected to the SCADA 

system, and are capable of handling emergency shut down situations.

Fig. 1.7a Hierarchical levels in Computer Integrated Process Systems (CIPS)
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The separation of SCADA and DCCS is slowly vanishing and the SCADA systems are being  

brought within the field of DCCS; the hierarchical, distributed, flexible and extremely powerful Computer 

Integrated Process Systems (CIPS), is now a technical reality.

The other main and early application area of digital methods was machine tool numerical control, which 

developed at about the same time as computer control in process industries. Earlier, numerically controlled 

(NC) machines used ‘hard-wired’ digital techniques. As the price and performance of microcomputers 

improved, it became feasible to replace the hard-wired functions with their software-implemented 

equivalents, using a microcomputer as a built-in component of the machine tool. This approach has been 

called Computerized Numerical Control (CNC) [20]. Industrial robots were developed simultaneously 

with CNC systems.

A quiet revolution is ongoing in the manufacturing world, which is changing the look of factories. 

Computers are controlling and monitoring the manufacturing processes [21–22]. The high degree of 

automation that, until recently, was reserved for mass production only, is also applied now to small 

batches. This requires a change from hard automation in the production line, to a Flexible Manufacturing 

System (FMS), which can be more readily rearranged to handle new market requirements.

Flexible manufacturing systems, combined with automatic assembly and product inspection on one hand, 

and CAD/CAM systems on the other, are the basic components of the modern Computer Integrated 

Manufacturing System (CIMS). In a CIMS, the production flow, from the conceptual design to the 

finished product, is entirely under computer control and management.

Figure 1.7b illustrates the hierarchical structure of CIMS. The lowest level of this structure contains 

stand-alone computer control systems of manufacturing processes and industrial robots. The computer 

control of processes includes all types of CNC machine tools, welding, electrochemical machining, 

electrical discharge machining, and a high-power laser, as well as the adaptive control of these processes.

When a battery of NC or CNC machine tools is placed under the control of a single computer, the result 

is a system known as Direct Numerical Control (DNC).

Fig. 1.7b Hierarchical levels in Computer Integrated Manufactur ing Systems (CIMS)
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The operation of several CNC machines and industrial robots, can be coordinated by systems called 

manufacturing cells. The computer of the cell is interfaced with the computer of the robot and CNC  

machines. It receives ‘completion of job’ signals from the machines and issues instructions to the robot 

to load and unload the machines, and change their tools. The software includes strategies permitting the  

handling of machine breakdown, tool breakage, and other special situations.

The operation of many manufacturing cells can be coordinated by Flexible Manufacturing System (FMS). 

The FMS accepts incoming workpieces and processes them under computer control, into fi nished parts.

The parts produced by the FMS must be assembled into the final product. They are routed on a transfer 

system to assembly stations. In each station, a robot will assemble parts, either into a sub-assembly or 

(for simple units), into the final product. The sub-assemblies will be further assembled by robots located 

in other stations. The final product will be tested by an automatic inspection system.

The FMS uses CAD/CAM systems to integrate the design and manufacturing of parts. At the highest 

hierarchical level, there will be a supervisory computer, which coordinates participation of computers 

in all phases of a manufacturing enterprise: the design of the product, the planning of its manufacture, 

the automatic production of parts, automatic assembly, automatic testing, and, of course, computer-

controlled flow of materials and parts through the plant.

In a LAN-based system, the ‘higher’ automation levels (production planning and other enterprise-level 

activities), can be implement ed by simply attaching the additional ‘higher’ level computers to the LAN 

of the system.

One of the most ingenious devices ever devised to advance the field of industrial automation, is the 

Programmable Logic Control ler (PLC). The PLC, a microprocessor-based general-purpose device, 

provides a ‘menu’ of basic operations that can be config ured by programming to create logic control 

system for any appli cation [23–25]. So versatile are these devices, that they are employed in the 

automation of almost every type of industry. CIPS and CIMS provide interfaces to PLCs for handling 

high-speed logic (and other) control functions. Thousands of these devices go unrecognized in process 

plants and factory environments—quietly monitoring security, manipulating valves, and controlling ma-

chines and automatic production lines.

Thus, we see that the recent appearance of powerful and inexpen sive microcomputers, has made digital 

control practical for a wide variety of applications. In fact, now every process is a candi date for digital 

control. The flourishing of digital control is just beginning for most industries, and there is much to be 

gained by exploiting the full potential of new technology. There is every indication that a high rate of 

growth in the capability and application of digital computers, will continue far into the future.

1.3

The development of control system analysis and design can be divided into three eras. In the first era,  

we have the classical control theory, which deals with techniques developed during the 1940s and 1950s. 

Classical control methods—Routh–Hurwitz, Root Locus, Nyquist, Bode, Nichols—have in common 

the use of transfer functions in the complex frequency (Laplace variable s) domain, and the emphasis 
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on the graphical techniques. Since computers were not available at that time, a great deal of emphasis 

was placed on developing methods that were amenable to manual computation and graphics. A major 

limitation of the classical control methods was the use of Single-Input, Single-Output (SISO) control 

configurations. Also, the use of the transfer function and frequency domain limited one to linear time-

invariant systems. Important results of this era have been discussed in Part I of this book.

In the second era, we have modern control (which is not so modern any longer), which refers to state-

space-based methods developed in the late 1950s and early 1960s. In modern control, system models are 

directly written in the time domain. Analysis and design are also carried out in the time domain. It should 

be noted that before Laplace transforms and transfer functions became popular in the 1920s, engineers 

were studying systems in the time domain. Therefore, the resurgence of time-domain analy sis was not 

unusual, but it was triggered by the development of computers and advances in numerical analysis. As 

computers were available, it was no longer necessary to develop analysis and design methods that were 

strictly manual. Multivariable (Multi-Input, Multi-Output (MIMO)) control configurations could be 

analyzed and designed. An engineer could use computers to numeri cally solve or simulate large systems 

that were nonlinear and/or time-varying. Important results of this era—Lyapunov stability criterion, 

pole-placement by state feedback, state observers, optimal control—are discussed in Part II of this book.

Modern control methods initially enjoyed a great deal of success in academic circles, but they did not perform 

very well in many areas of application. Modern control provided a lot of insight into system structure and 

properties, but it masked other important feedback properties that could be studied and manipulated using 

the classical control theory. A basic requirement in control engineering is to design control systems that 

will work properly when the plant model is uncertain. This issue is tackled in the classical control theory 

using gain and phase margins. Most modern control design methods, however, inherently require a precise 

model of the plant. In the years since these methods were developed, there have been few signifi cant  

implementations and most of them have been in a single application area—the aerospace industry. The  

classical control theory, on the other hand, is going strong. It provides an effi cient framework for the 

design of feedback controls in all areas of application. The classical design methods have been greatly 

enhanced by the availability of low-cost computers for system analysis and simulation. The graphical 

tools of classical design can now be more easily used with computer graphics for SISO as well as MIMO 

systems.

During the past three decades, the control theory has experienced a rapid expansion, as a result of the 

challenges of the stringent requirements posed by modern systems, such as flight vehicles, weapon control 

systems, robots, and chemical processes; and the availability of low-cost computing power. A body of  

methods emerged during this third era of control-theory development, which tried to provide answers to the 

problems of plant uncer tainty. These techniques, commonly known as robust control, are a combination 

of modern state-space and classical frequency-domain techniques. For a thorough understanding of these 

new methods, we need to have adequate knowledge of state-space methods, in addi tion to the frequency-

domain methods. This has guided the prepa ration of this text.

Robust control system design has been dominated by linear control techniques, which rely on the key 

assumption of availability of the uncertainty model. When the required operation range is large, and 

a reliable uncertainty model cannot be developed, a linear controller is likely to perform very poorly. 

Nonlinear controllers, on the other hand, may handle the nonlinearities in large-range operations, directly. 

Also, nonlinearities can be intentionally introduced into the controller part of a control system, so that the 

model uncertainties can be tolerated. Advances in computer technology have made the implementation 
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of nonlinear control schemes—feedback linearization, variable structure sliding mode control, adaptive 

control, gain scheduling—a relatively simpler task.

The third era of control-theory development has also given an alternative to model-based design methods: 

the knowledge-based control method. In this approach, we look for a control solution that exhibits 

intelligent behavior, rather than using purely mathematical methods to keep the system under control.

Model-based control techniques have many advantages. When the underlying assumptions are satisfied, 

many of these methods provide good stability, robustness to model uncertainties and disturbances, and 

speed of response. However, there are many practical deficiencies of these ‘crisp’ (‘hard’ or ‘inflexible’) 

control algorithms. It is generally difficult to accurately represent a complex process by a mathematical 

model. If the process model has parameters whose values are partially known, ambiguous or vague, then 

crisp control algorithms, that are based on such incomplete information, will not usually give satisfactory 

results. The environment with which the process interacts, may not be completely predictable and it is 

normally not possible for a crisp algorithm, to accurately respond to a condition that it did not anticipate, 

and that it could not ‘understand’.

Intelligent control is the name introduced to describe control systems in which control strategies are 

based on AI (Artificial Intelligence) techniques. In this control approach, which is an alternative to 

model-based control approach, a behavioral (and not mathematical) descrip tion of the process is used, 

which is based on qualitative ex pressions and experience of people working with the process. Actions 

can be performed either as a result of evaluating rules (reasoning), or as unconscious actions based on 

presented process behavior after a learning phase. Intelligence becomes a measure of the capability to 

reason about facts and rules, and to learn about presented behavior. It opens up the possibility of applying 

the experience gathered by operators and process engineers. Uncer tainty about facts and rules along with 

ignorance about the structure of the system can then be handled easily.

Fuzzy logic, and neural networks are very good methods to model real processes which cannot be 

described mathematically. Fuzzy logic deals with linguistic and imprecise rules based on an expert’s 

knowledge. Neural networks are applied in the case where we do not have any rules but several data.

The main feature of fuzzy logic control is that a control engi neering knowledge base (typically in terms of 

a set of rules), created using an expert’s knowledge of process behavior, is available within the controller 

and the control actions are generated by applying existing process conditions to the knowledge base, 

making use of an inference mechanism. The knowledge base and the inference mechanism can handle 

noncrisp and incomplete information, and the knowledge itself will improve and evolve through learning 

and past experience.

In neural network based control, the goal of artificial neural network is to emulate the mechanism of 

human brain func tion and reasoning, and to achieve the same intelligence level as the human brain in 

learning, abstraction, generalization and making decisions under uncertainty.

In conventional design exercises, the system is modeled analytically by a set of differential equations, and 

their solu tion tells the controller how to adjust the system’s control activities for each type of behavior. In 

a typical intelligent control scheme, these adjustments are handled by an intelligent controller, a logical 

model of thinking processes that a person might go through in the course of manipulating the system. 

This shift in focus from the process to the person in volved, changes the entire approach to automatic 

control prob lems. It provides a new design paradigm such that a controller can be designed for complex, 
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ill-defined processes without know ing quantitative input-output relations, which are otherwise required 

by conventional methods.

The ever-increasing demands of the complex control systems being built today, and planned for the  

future, dictate the use of novel and more powerful methods in control. The potential for intelli gent 

control techniques in solving many of the problems involved is great, and this research area is evolving 

rapidly. The emerging viewpoint is that model-based control techniques should be augmented with 

intelligent control techniques in order to enhance the performance of control systems. The developments 

in intelligent control methods should be based on firm theoretical foundations (as is the case with model-

based control methods), but this is still at its early stages. Strong theoretical results guaranteeing control 

system properties such as stability are still to come, although promising results reporting progress in 

special cases have been  reported recently. The potential of intelligent control systems clearly needs to 

be further explored and both theory and applications need to be further developed. A brief account of 

nonlinear control schemes, both the conventional and the intelligent, is given in Part III of this book.

1.4

The tools of classical linear control system design are the Laplace transform, stability testing, root locus, 

and frequency response. Laplace transformation is used to convert system descriptions in terms of integro-

differential equations to equivalent algebraic relations involving rational functions. These are conveniently 

manipulated in the form of transfer functions with block diagrams and signal flow graphs [155].

The block diagram of Fig. 1.8 represents the basic structure of feedback control systems. Not all systems 

can be forced into this format, but it serves as a reference for discussion.

In Fig. 1.8, the variable y(t) is the controlled variable of the system. The desired value of the controlled 

variable is yr(t), the command input. yr(t) and y(t) have the same units. The feed back elements with 

transfer function H(s) are system components that act on the controlled variable y(t) to produce the 

feedback signal b(t). H(s) typically represents the sensor action to convert the controlled variable y(t) to 

an electrical sensor output signal b(t).

The reference input elements with transfer function A(s) convert the command signal yr(t) into a form 

compatible with the feedback signal b(t). The transformed command signal is the actual physi cal input 

to the system. This actual signal input is defined as the reference input.

Fig. 1.8 
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The comparison device (error detector) of the system compares the reference input r(t) with the feedback  

signal b(t) and generates the actuating error signal ê(t). The signals r(t), b(t), and ê(t) have the same 

units. The controller with transfer function D(s) acts on the actuating error signal to produce the control 

signal u(t).

The control signal u(t) has the knowledge about the desired control action. The power level of this signal 

is relatively low. The actuator elements with transfer function GA(s), are the system components that act 

on the control signal u(t) and develop enough torque, pressure, heat, etc. (manipulated variable m(t)), to 

influence the controlled system. GP(s) is the transfer function of the controlled system.

The disturbance w(t) represents the undesired signals that tend to affect the controlled system. The 

disturbance may be intro duced into the system at more than one location.

The dashed-line portion of Fig. 1.8 shows the system error e(t) = yr – y(t). Note that the actuating error 

signal ê(t) and the system error e(t) are two different variables. 

The basic feedback system block diagram of Fig. 1.8 is shown in an abridged form in Fig. 1.9. The output 

Y(s) is influenced by the control signal U(s) and the disturbance signal W(s) as per the following relation:

 Y(s) = GP(s) GA(s) U(s) + GP(s) W(s) (1.1a)

  = G(s) U(s) + N(s) W(s) (1.1b)

where G(s) is the transfer function from the control signal U(s) to the output Y(s), and N(s) is the transfer 

function from the disturbance input W(s) to the output Y(s). Using Eqns (1.1), we can modify the block 

diagram of Fig. 1.9 to the form shown in Fig. 1.10. Note that in the block diagram model of Fig. 1.10, 

the plant includes the actuator elements.

Fig. 1.9 

Fig. 1.10 
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The actuating error signal

 Ê(s) = R(s) – B(s) = A(s) Yr(s) – H(s) Y(s)

The control signal

 U(s) = D(s) A(s) Yr (s) – D(s) H(s) Y(s) (1.2a)

  = D(s) H(s) 
A s

H s
Y s Y sr

( )

( )
( ) ( )-

È

Î
Í

˘

˚
˙  (1.2b)

Using Eqns (1.2a) and (1.2b), we can simplify Fig. 1.10 to obtain the structure shown in Fig. 1.11.

Fig. 1.11 

Further simplification of Fig. 1.11 is 

possible if H = A. In this case, which is 

quite common, we can model the system 

as a unity-feedback system shown in 

Fig. 1.12, and take advantage of the 

fact that now the actuating signal is the 

system error e(t).

The block diagrams in Figs 1.10–1.12 

are very useful for the purpose of system 

design. However, it should be clear that 

these block diagrams have lost physical 

significance. For example, the block in 

Fig. 1.11 with transfer function A(s)/

H(s), does not refer to any physical 

portion of the original system. Rather, 

it represents the result of manipulating 

Eqn. (1.2a) into the form given by Eqn. 

(1.2b).

Thus, the reader is advised to think in 

terms of the equations that the block 

diagrams represent, rather than attach 

any special significance to the block 

diagrams themselves. The only role 

played by a block diagram is that it is 

a convenient means of representing the 

Fig. 1.12 

Fig. 1.13 

Fig. 1.14 
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various system equations, rather than writing them out explicitly. Block diagram manipulation is nothing 

more than the manipulation of a set of algebraic transform equations.

For the analysis of a feedback system, we require the transfer function between the input—either 

reference or disturbance—and the output. We can use block diagram manipulations to eliminate all the 

signals except the input and the output. The reduced block diagram leads to the desired result.

Consider the block diagram of Fig. 1.13. The feedback system has two inputs. We shall use superposition 

to treat each input sepa rately.

When disturbance input is set to zero, the single-input system of Fig. 1.14 results. The transfer function 

between the input R(s) and the output Y(s) is referred to as the reference transfer function and will be 

denoted by M(s). To solve for M(s), we write the pair of transform equations

 Ê(s) = R(s) – H(s) Y(s); Y(s) = G(s) U(s) = G(s) D(s) Ê(s)

and then eliminate Ê(s) to obtain

[1 + D(s) G(s) H(s)] Y(s) = D(s) G(s) R(s)

which leads to the desired result

 M(s) = 
Y s

R s
W s

( )

( )
( ) = 0

 = 
D s G s

D s G s H s

( ) ( )

( ) ( ) ( )1+
 (1.3)

Similarly, we obtain the disturbance transfer function Mw(s) by setting the reference input to zero in 

Fig. 1.13 yielding Fig. 1.15, and then solving for Y(s)/W(s). From the revised block diagram,

 Ê(s) = – H(s)Y(s); Y(s) = G(s)D(s) Ê(s) + N(s)W(s)

from which Ê(s) can be eliminated to give

 Mw(s) = 
Y s

W s
R s

( )

( )
( ) = 0

 = 
N s

D s G s H s

( )

( ) ( ) ( )1+
 (1.4)

The response to the simultaneous application of R(s) and W(s) is given by

 Y(s) = M(s) R(s) + Mw(s) W(s) (1.5)

Figure 1.16 shows the reduced block diagram model of the given feedback system.

Fig. 1.16 Fig. 1.15 
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The transfer functions given by Eqns (1.3) and (1.4) are referred to as closed-loop transfer functions. The 

denominator of these transfer functions has the term D(s)G(s)H(s) which is the multiplication of all the 

transfer functions in the feedback loop. It may be viewed as the transfer function between the variables 

R(s) and B(s) if the loop is broken at the summing point. D(s)G(s)H(s) may, therefore, be given the name 

open-loop transfer function. The roots of denominator polynomial of D(s)G(s)H(s) are the open-loop 

poles, and the roots of numerator polynomial of D(s)G(s)H(s) are the open-loop zeros.

The roots of the characteristic equation

 1 + D(s)G(s)H(s) = 0 (1.6)

are the closed-loop poles of the system. These poles indicate whether or not the system is Bounded-

Input Bounded-Output (BIBO) stable, according to whether or not all the poles are in the left half of the 

complex plane. Stability may be tested by the Routh stability criterion.

A root locus plot consists of a pole-zero plot of the open-loop transfer function of a feedback system, 

upon which is superimposed the locus of the poles of the closed-loop transfer function, as some parameter 

is varied. Design of the controller (compensator) D(s) can be carried out using the root locus plot. 

One begins with simple compensators, increasing their complexity until the performance requirements 

can be met. Principal measures of transient performance are peak overshoot, settling time, and rise 

time. The compensator poles, zeros, and multiplying con stant are selected to give feedback system pole 

locations, that result in acceptable transient response to step inputs. At the same time, the parameters are 

constrained so that the resulting system has acceptable steady-state response to important inputs, such 

as steps and ramps.

Frequency response characterizations of systems have long been popular because of the ease and 

practicality of steady-state sinusoidal response measurements. These methods also apply to systems in 

which rational transfer function models are not adequate, such as those involving time delays. They do 

not require explicit knowledge of system transfer function models; experimentally obtained open-loop 

sinusoidal response data can directly be used for stability analysis and compensator design. A stability 

test, the Nyquist criterion, is available. Principal measures of transient performance are gain margin, 

phase margin, and bandwidth. The design of the compensator is conveniently carried out using the Bode 

plot and the Nichols chart. One begins with simple compensators, increasing their complexity until the 

transient and steady-state performance requirements are met.

There are two approaches to carry out the digital controller (compensator) design. The first approach uses 

the methods discussed above to design an analog compensator, and then trans form it into a digital one. The 

second approach, first transforms analog plants into digital plants, and then carries out the design using 

digital techniques. The first approach performs discretization after design; the second approach performs 

dis cretization before design. The classical approach to designing a digital compensator directly using an 

equivalent digital plant for a given analog plant, parallels the classical approach to analog compensator 

design. The concepts and tools of the classi cal digital design procedures are given in Chapters 2–4. This 

background will also be useful in understanding and applying the state variable methods to follow.
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Signal Processing in Digital Control

2.1 WHY USE DIGITAL CONTROL?

Digital control systems offer many advantages over their analog counterparts. Of course, there are 

possible problems also. Let us first look at the advantages of digital control over the corresponding 

analog control before we talk of the price one has to pay for the digital option.

2.1.1

Flexibility An important advantage offered by digital control is in the flexibility of its modifying 

controller characteristics, or in other words, in adaptability of the controller if plant dynamics change 

with operating conditions. The ability to ‘redesign’ the controller by changing software (rather than 

hardware) is an important feature of digi tal control against analog control.

Implementation of advanced control techniques 

was earlier constrained by the limitations of analog controllers and the high costs of digital computers. 

However, with the advent of inexpen sive digital computers with virtually limitless computing power, the 

techniques of modern control theory may now be put to practice. For example, in multivariable control 

systems with more than one input and one output, modern techniques for optimizing system performance 

or reducing interactions between feedback loops can now be implemented.

Feedback control is only one of the functions of 

a computer. In fact, most of the information transfer between the process and the computer exploits the 

logical decision-making capability of the computer. Real-time applica tions of information processing 

and decision-making, e.g., pro duction planning, scheduling, optimization, operations control, etc., may 

now be integrated with the traditional process control functions.

To enable the computer to meet a variety of demands imposed on it, its tasks are time-shared.

The study of emerging applications shows that Artificial 

Intelligence (AI) will affect the design and application of control systems, as profoundly as the impact 

of microprocessors in the last two decades. It is clear that future generation control systems will have 

a significant AI component; the list of applications of computer-based control will continue to expand.

Chapter 2
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2.1.2

The main problems associated with the implementation of digital control are related to the effects of 

sampling and quantization.

Most processes that we are called upon to control, operate in continuous-time. This implies, that we are 

dealing largely with an analog environment. To this environment, we need to interface digital computers 

through which we seek to influence the process.

The interface is accomplished by a system of 

the form shown in Fig. 2.1. It is a cascade 

of analog-to-digital (A/D) conversion 

system followed by a computer which is, in 

turn, followed by a digital-to-analog (D/A) 

conversion system. The A/D conversion 

process involves deriving samples of the 

analog signal at dis crete instants of time 

separated by sampling period T sec. The 

D/A conversion process involves reconstructing continuous-time signals from the samples given by the 

digital computer.

The conversion of signals from analog into digital form and vice versa is performed by electronic devices 

(A/D and D/A converters) of finite resolution. A device of n-bit resolution has 2n quantization levels. 

Here, the analog signal gets tied to these finite number of quantization levels in the process of conversion 

to digital form. Therefore, by the sheer act of conversion, a valuable part of information about the signal, 

is lost.

Furthermore, any computer employed as a real-time controller must perform all the necessary calculations 

with limited precision, thus introduction of a truncation error after each arithmetic opera tion has been 

performed. As computational accuracy is normal ly much higher than the resolution of real converters, 

a further truncation must take place before the computed data are converted into the analog form. The  

repetitive process of approximate conver sion–computation–conversion may be costly, if not disastrous, 

in terms of control system performance.

The process of quantization in signal conversion systems is discussed ahead.

The selection of a sampling period is a fundamental problem in digital control systems. Later in this 

chapter, we will discuss the sampling theorem which states that the sampling period T should be chosen 

such that

T < p /wm

where wm is the strict bandwidth of the signal being sampled. This condition ensures that there is no loss 

of information due to sampling and the continuous-time signal can be completely recovered from its 

samples using an ideal low-pass filter.

Computer

Discrete-time signals

Continuous-time signals

A/D D/A
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There are, however, two problems associated with the use of this theorem in practical control systems:

 (i) Real signals are not band-limited and hence strict bandwidth limits are not defined.

 (ii) An ideal low-pass filter, needed for the distortionless reconstruction of continuous-time signals 

from its samples, is not physically realizable. Practical devices, such as the D/A converter, 

introduce distortions.

Thus, the process of sampling and reconstruction also affects the amount of information available 

to the control computer, and degrades control system performance. For example, converting a given 

continuous-time control system into a digital control system, without changing the system parameters, 

degrades the system stability margin.

The ill-effects of sampling can be reduced, if not eliminated completely, by sampling at a very high 

rate. However, excessively fast sampling (T Æ 0) may result in numerical ill-conditioning in the 

implementation of recursive control algorithms (described later in this chapter).

With the availability of low-cost, high-performance digital computers and interfacing hardware, the  

implementation problems in digital control do not pose a serious threat to its useful ness. The advantages 

of digital control outweigh its implementation problems for most of the applications.

This book attempts to provide a modest coverage of digital control theory and practice. In the 

present chapter, we focus on digital computers and their interface with signal conversion systems  

(Fig. 2.1). The goal is to formulate tools of analysis necessary to understand and guide the design of 

programs for a computer acting as a control logic component. Needless to say, digital computers can do 

many things other than control dynamic systems; our purpose is to examine their characteris tics while 

executing the elementary control task.

2.2 CONFIGURATION OF THE BASIC

 DIGITAL CONTROL SCHEME

Figure 2.2 depicts a block diagram of a digital control system showing a configuration of the basic 

control scheme. The basic elements of the system are shown by the blocks.

The analog feedback signal coming from the sensor is usually of low frequency. It may often include 

high frequency ‘noise’. Such noise signals are too fast for the control system to correct; low-pass filtering 

is often needed to allow good control performance. The anti-aliasing filter shown in Fig. 2.2 serves 

this purpose. In digital systems, a phenomenon called aliasing introduces some new aspects of noise 

problems. We will study this phe nomenon later in this chapter.

The analog signal, after anti-aliasing processing, is converted into digital form by the A/D conversion 

system. The conversion system usually consists of an A/D converter preceded by a sample-and-hold 

(S/H) device. The A/D converter converts a voltage (or current) amplitude, at its input, into a binary code 

representing a quantized amplitude value closest to the amplitude of the input. However, the conversion is not  

instantaneous. Input signal variation, during the conversion time of the A/D converter, can lead to 

erroneous results. For this reason, high performance A/D conversion systems include an S/H device, 

which keeps the input to the A/D converter, constant during its conversion time.
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The digital computer processes the sequence of numbers by means of an algorithm and produces a new 

sequence of numbers. Since data conversions and computations take time, there will always be a delay when a 

control law is implemented using a digital computer. The delay, which is called computational delay, degrades 

the control system performance. It should be minimized by the proper choice of hardware and by the proper 

design of software for the control algorithm. Floating-point operations take a considerably longer time to 

perform (even when carried out by an arithmetic co-processor) than the fixed-point ones. We, there  fore, 

try to execute fixed-point operations whenever possible. Alternative realization schemes for a control  

algorithm are given in the next chapter.

The D/A conversion system in Fig. 2.2 converts the sequence of numbers in numerical code into a 

piecewise continuous-time signal. The output of the D/A converter is fed to the plant through the actuator 

(final control element) to control its dynamics.

The basic control scheme of Fig. 2.2 assumes a uniform sampling operation, i.e., only one sampling 

rate exists in the system and the sampling period is constant. The real-time clock in the computer, 

synchronizes all the events of A/D conversion–computation–D/A conversion.

The control scheme of Fig. 2.2 shows a single feedback loop. In a control system having multiple loops, 

the largest time constant involved in one loop may be quite different from that in other loops. Hence, it 

may be advisable to sample slowly in a loop involving a large time constant, while in a loop involving 

only small time constants, the sampling rate must be fast. Thus, a digital control system may have 

different sampling periods in different feedback paths, i.e., it may have multiple-rate sampling. Although 

digital control systems with multirate sampling are important in practical situations, we shall concentrate 

on single-rate sampling. (The reader interested in multirate digital control systems may refer to Kuo 

[87]).

The overall system in Fig. 2.2 is hybrid in nature; the signals are in a sampled form (discrete-time 

signals/digital signals) in the computer and in continuous-time form in the plant. Such systems have 

traditionally been called sampled-data control systems. We will use this term as a synonym of computer 

control systems/digital control systems.
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In the present chapter, we focus on digital computers and their analog interfacing. For the time being, we 

delink the digital computer from the plant. The link will be re-established in the next chapter.

2.3

Figure 2.3a shows an analog signal y(t)—it is defined at the continuum of times, and its amplitudes assume a 

continuous range of values. Such a signal cannot be stored in digital computers. The signal, therefore, must 

be converted to a form that will be accepted by digital computers. One very common method to do this is  

to record sample values of this signal at equally spaced instants. For example, we sample the signal 

every 10 msec, we would obtain the discrete-time signal sketched in Fig. 2.3b. The sampling interval of 

10 msec corresponds to a sampling rate of 100 samples/sec. The choice of sampling rate is important, 

since it determines how accurately the discrete-time signal can represent the original signal.

In a practical situation, the sampling rate is determined by the range of frequencies present in the original 

signal. Detailed analysis of uniform sampling process, and the related problem of aliasing will appear 

later in this chapter.

Notice that the time axis of the discrete-time signal in Fig. 2.3b, is labeled simply ‘sample number’ and 

index k has been used to denote this number (k = 0, 1, 2, ...). Corresponding to di fferent values of sample 

number k, the discrete-time signal as sumes the same continuous range of values assumed by the analog 

signal y(t). We can represent the sample values by a sequence of numbers ys (refer to Fig. 2.3b):

 ys = {1.7, 2.4, 2.8, 1.4, 0.4, ...}
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In general,

 ys = {y(k)}, 0 £ k < 

where y(k) denotes the kth number in the sequence.

The sequence defined above is a one-sided sequence; ys = 0 for k < 0. In digital control applications, we 

normally encounter one-sided sequences.

Although, strictly speaking, y(k) denotes the kth number in the sequence, the notation given above is often 

unnecessarily cumber some, and it is convenient and unambiguous to refer to y(k) itself as a sequence.

Throughout our discussion on digital control, we will assume uniform sampling, i.e., sample values of the 

analog signal are extracted at equally spaced sampling instants. If the physical time, corresponding to the  

sampling interval is T seconds, then the kth sample y(k), gives the value of the discrete-time signal at 

t = kT seconds. We may, therefore, use y(kT) to denote a sequence wherein the independent variable is 

the physical time.

The signal of Fig. 2.3b is defined at discrete instants of time. The sample values are, however, tied to a 

continuous range of numbers. Such a signal, in principle, can be stored in an infi nite-bit machine because 

a finite-bit machine can store only a finite set of numbers.

A simplified hypothetical two-bit machine can store 

four numbers as given adjacent in the table.

The signal of Fig. 2.3b can be stored in such a machine 

if the sample values are quantified to four quantization 

levels. Figure 2.3c shows a quantized discrete-time 

signal for our hypothetical machine. We have assumed 

that any value in the interval [0.5, 1.5) is rounded to 

1, and so forth. The signals for which both time and 

amplitude are discrete, are called digi tal signals.

After sampling and quantization, the final step required in converting an analog signal to a form 

acceptable to digital computers is coding (or encoding). The encoder maps each quan tized sample value 

into a digital word. Figure 2.3d gives the coded digital signal, corresponding to the analog signal of  

Fig. 2.3a for our hypothetical two-bit machine.

The device that performs the sampling, quantization, and coding is an A/D converter. Figure 2.4 is a 

block diagram representation of the operations performed by an A/D converter.

It may be noted that the quantized discrete-time signal of Fig. 2.3c and the coded signal of Fig. 2.3d 

carry exactly the same information. For the purpose of analytical study of digital systems, we will use 

the quantized discrete-time form for digital signals.

The number of binary digits carried by a device is its word length, and this is obviously an important 

characteristic related to the resolution of the device—the smallest change in the input signal that will 

produce a change in the output signal. The A/D converter that generates signals of Fig. 2.3 has two binary 

digits and thus four quantization levels. Any change, therefore, in the input over the interval [0.5, 1.5) 

produces no change in the output. With three binary digits, 23 quantization levels can be obtained, and 

the resolution of the converter could be improved.

Binary number Decimal equivalent

00 0

01 1

10 2

11 3
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The A/D converters in common use have word lengths of 8 to 16 bits. For an A/D converter with a word 

length of 8 bits, an input signal can be resolved to one part in 28, or 1 in 256. If the input signal has a 

range of 10 V, the resolution is 10/256, or approximately 0.04 V. Thus, the input signal must change by 

at least 0.04 V, in order to produce a change in the output.

With the availability of converters with resolution ranging from 8 to 16 bits, the quantization errors do 

not pose a serious threat to computer control of industrial processes. In our treatment of the subject, we 

assume quantization errors to be zero. This is equivalent to assuming infinite-bit digital devic es. Thus we 

treat digital signals as if they are discrete-time signals with amplitudes assuming a continuous range of 

values. In other words, we make no distinction between the words ‘discrete-time’ and ‘digital.’

A typical topology of a single-loop digital control system is shown in Fig. 2.2. It has been assumed that 

the measuring trans ducer and the actuator (final control element) are analog devices, requiring respectively 

A/D and D/A conversion at the computer input and output. The D/A conversion is a process of producing 

an analog signal from a digital signal and is, in some sense, the reverse of the sampling process discussed 

above.

The D/A converter performs two functions: first, 

generation of output samples from the binary-

form digital signals produced by the machine, 

and second, conversion of these samples to analog 

form. Figure 2.5 is a block diagram representation 

of the opera tions performed by a D/A converter. 

The decoder maps each digital word into a sample 

value of the signal in discrete-time form. It is 

usually not possible to drive a load, such as a motor, with these samples. In order to deliver sufficient 

energy, the sample amplitude might have to be so large that it may become infeasible to realistically 

generate it. Also large-amplitude signals might saturate the system being driven.

The solution to this problem is to smooth the output samples to produce a signal in analog form. The 

simplest way of converting a sample sequence into a continuous-time signal is to hold the value of the 

sample until the next one arrives. The net effect is to convert a sample to a pulse of duration T—the sample 

period. This function of a D/A converter is referred to as a Zero-Order Hold (ZOH) operation. The term 

zero-order refers to the zero-order polynomial used to extrapolate between the sampling times (detailed 

Sampler
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discussion will appear later in this chapter). Figure 2.6 shows a typical sample sequence produced by the 

decoder, and the analog signal1 resulting from the zero-order hold operation.
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2.3.1

Most D/A converters use the principle shown in the three-bit form in Fig. 2.7 to convert the HI/LO digital 

signals at the computer output to a single analog voltage. The circuit of Fig. 2.7 is an ‘R–2R’ ladder; the 

value of R typically ranges from 2.5 to 10K ohms.

Suppose a binary number b2b1b0 is given. The switch (actually, electronic gates) positions in Fig. 2.7 

correspond to the digital word 100, i.e., b2 = 1 and b1 = b0 = 0. The circuit can be sim plified to the 

equivalent form shown in Fig. 2.8a. The currents in the resistor branches are easily calculated and are 

indicated in the circuit (for the high gain amplifier, the voltage at point A is practically zero [155]). The 

output voltage is

 V0 = 3R 
i2

2
 = 

1

2
 Vref

If b1 = 1 and b2 = b0 = 0, then the equivalent circuit is as shown in Fig. 2.8b. The output voltage is

 V0 = 3R 
i1

4
 = 

1

4
 Vref

Similarly, if b0 = 1 and b2 = b1 = 0, then the equivalent circuit is as shown in Fig. 2.8c. The output 

voltage is

 V0 = 3R 
i0

8
 = 

1

8
 Vref 

In this way, we find that when the input data is b2b1b0 (where the bi’s are either 0 or 1), then the output 

voltage is

 V0 = (b22–1 + b12–2 + b02–3)VFS (2.1)

where VFS = Vref = full scale output voltage.

 1 In the literature, including this book, the terms ‘continuous-time signal’ and ‘analog signal’ are fre quently inter-

changed. 
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The circuit and the defining equation for an n-bit D/A converter easily follow from Fig. 2.7 and Eqn. (2.1), 

respectively.

2.3.2

Most A/D converters use the principle of successive approximation. Figure 2.9 shows the organization 

of an A/D con verter that uses this method. Its principal components are a D/A converter, a comparator, a 

Successive Approximation Register (SAR), a clock, and control and status logic.

On receiving the (Start-Of-Conversion) SOC command, the SAR is cleared to 0s and its most significant 

bit is set to 1. This results in a V0 value that is one half of the full scale (refer to Eqn. (2.1)). The output of 
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the comparator is then tested to see whether VIN is greater than or less than V0. If VIN is greater, the most 

significant bit is left on; otherwise it is turned off (complemented).

In the next step, the next most significant bit of the SAR is turned on. At this stage, V0 will become either 

three quarters or one quarter of the full scale, depending on whether VIN was, respectively, greater than 

or less than V0 in the first step. Again, the comparator is tested and if VIN is greater than the new V0, the 

next most significant bit is left on. Otherwise it is turned off.

 

   b0 b1  b  b0  b1  b  b0  b1 b
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The process is repeated for each remaining 

SAR bit. When the process has been carried 

out for each bit, the SAR contains the binary 

number that is proportional to VIN, and the 

(End-Of-Conversion) EOC line indicates 

that comparison has been completed and 

digital output is available for transmission.  

Figure 2.10 gives the code sequence for a three-

bit successive approximation.

Typical conversion times of commercial A/D units 

range from 10 nsec to 200 msec. The input VIN 

in Fig. 2.9 should remain con stant during the 

conversion time of the A/D converter. For this 

reason, a high performance A/D conversion system includes an S/H device which keeps the input to the 

A/D converter, constant during its conversion time. The S/H operation is described in Section 2.10.

There are a number of basic discrete-time signals which play an important role in the analysis of signals 

and systems. These signals are direct counterparts of the basic continuous-time signals.2 As we shall 

see, many characteristics of basic discrete-time signals are directly analogous to the properties of basic 

continuous-time signals. There are, however, several impor tant differences in discrete-time, and we will 

point these out as we examine the properties of these signals.

111

110

110

010

101

111

101

011

001

100

011
100

010

001

000

 2 Chapter 2 of the companion book [155].
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The unit sample sequence contains only one nonzero element and is defined by (Fig. 2.11a)

 d (k) = 
1 0

0

for =

otherwise

kÏ
Ì
Ó

 (2.2a)

The delayed unit-sample sequence, denoted by d (k – n), has its nonzero element at sample time n

(Fig. 2.11b):

 d (k – n) = 
1

0

for =

otherwise

k nÏ
Ì
Ó

 (2.2b)

One of the important aspects of the unit-sample sequence is that an arbitrary sequence can be represented 

as a sum of scaled, delayed unit samples. For example, the sequence r (k) in Fig. 2.11c can be expressed 

as

 r(k) = r(0)d (k) + r(1)d (k – 1) + r(2)d (k – 2) +   

  = 

n = 0

Â r(n)d(k – n) (2.3)

r(0), r(1), … , are the sample values of the sequence r(k). This representation of a discrete-time signal is 

found useful in the analysis of linear systems through the principle of superposi tion.

As we will see, the unit-sample sequence plays the same role for discrete-time signals and systems, 

that the unit-impulse function does for continuous-time signals and systems. For this reason, the unit-

sample sequence is often referred to as the discrete-time impulse. It is important to note that a discrete-

time impulse does not suffer from the same mathematical complexity as a continuous-time impulse. Its 

definition is simple and precise.

The unit-step sequence is defined as3 (Fig. 2.11d)

 m(k) = 
1 0

0

for

otherwise

k ≥Ï
Ì
Ó

 (2.4)

The delayed unit-step sequence, denoted by m(k – n), has its first nonzero element at sample time n 

(Fig. 2.11e):

 m(k – n) = 
1

0

for

otherwise

k n≥Ï
Ì
Ó

 (2.5)

An arbitrary discrete-time signal r(k) switched on to a system at k = 0 is represented as r(k)m(k).

A one-sided sinusoidal sequence has the general form (Fig. 2.11f )

 r(k) = A cos(Wk + f) m(k) (2.6)

 3 In discrete-time system theory, the unit-step sequence is generally denoted by u(k). In control theory, u(k) is 

used to represent the control signal. In this book, m(k) has been used to represent the unit-step sequence while 

u(k) denotes the control signal.
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The quantity W is called the frequency of the discrete-time sinusoid and f is called the phase. Since k is a 

dimensionless integer, the dimension of W must be radians (we may specify the units of W to be radians/

sample, and units of k to be samples).

The fact that k is always an integer in Eqn. (2.6) leads to some differences between the properties of discrete-

time and continu ous-time sinusoidal signals. An important difference lies in the range of values the 

frequency variable can take on. We know that for the continuous-time signal r(t) = A cos w t = real {Ae jwt}, 

w can take on values in the range (– , ). In contrast, for the discrete-time sinusoid r(k) = A cos Wk = 

real {Ae jWk}, W can take on values in the range [–p, p].

To illustrate the property of discrete-time sinusoids, consider W = p + x, where x is a small number 

compared with p. Since

 e jWk = e j(p + x)k = e j(2p – p + x)k = e j(– p + x)k

a frequency of (p + x) results in a sinusoid of frequency (– p + x). Suppose now, that W is increased to 2p. 

Since e j2pk = e j0, the observed frequency is 0. Thus, the observed frequency is always between – p and p, 

and is obtained by adding (or subtracting) multiples of 2p to W until a number in that range is obtained.

The highest frequency that can be represented by a digital signal is, therefore, p radians/sample interval. 

The implications of this property for sequences obtained by sampling sinusoids and other signals is 

discussed in Section 2.11.
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A discrete-time system is defined mathematically, as a transformation, or an operator, that maps an input 

sequence r(k) into an output sequence y(k). Classes of discrete-time systems are defined by placing 

constraints on the transformation. As they are relatively easy to characterize mathematically, and as they 

can be designed to perform useful signal processing functions, the class of linear time-invariant systems 

will be studied in this book. In the control structure of Fig. 2.2, the digital computer transforms an input 

sequence into a form which is in some sense more desirable. Therefore, the discrete-time systems we 

consider here are, in fact, computer programs.

As we shall see, there is a similarity in the structure of models of continuous-time and discrete-time 

systems. This has resulted in the development of similar methods of analysis. For example, the simulation 

diagrams of discrete-time systems are similar to those for continuous-time systems, with only the 

dynamic element changed from an integrator to a delayer. The convolution summation is similar to 

convolution integral, and the z-transform method, tailored especially for linear discrete-time systems, 

bears many similarities to the Laplace transform. There are differences also between the properties of 

discrete-time and continuous-time systems. In this chapter, we are concerned with the analysis tools 

for discrete-time systems. Similarities with the tools for continuous-time systems will be obvious. The 

di  fferences are pointed out specifically.

For linear time-invariant discrete-time systems, four different ways of mathematical representation are 

discussed. Time-domain models are described in this section, and a transform-domain model is given in 

Section 2.7.

Consider a simple computer program expressed in MATLAB:

 y (1) = 0

for i = 2, N (2.7)

 y (i) = r(i – 1) + 0.1 * y (i – 1)

end

where r(i) is the ith sample of the input sequence, y(i) is the ith sample of the output sequence, and N is 

the total length of the signal record. We must define the value y(1) in order to start signal processing. This 

value is the initial condition of the signal processor. For the signal processor, represented by the computer 

program (2.7), the initial condition has been taken as zero.

In the computer program (2.7), the initial condition is repre sented by y(1) and not by y(0) because 

MATLAB does not allow arrays to be indexed starting with zero. For the analytical study of discrete-

time systems, starting a sequence y(k) with y(0) is more convenient.
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It is obvious that the computer program 

(2.7) is characterized by the three basic 

operations:

 (i) multiplication of a machine variable 

by a constant,

 (ii) addition of several machine variables, 

and 

 (iii) storage of past values of machine 

variables.

These basic operations are diagrammatically 

represented in Fig. 2.12. The unit delayer 

represents a means for storing previous 

values of a sequence. If the signal x1(k); k ≥ 

0 is the input to the unit delayer, its output 

sequence x2(k) has the sample val ues:

 x2(0) = specified initial condition

 x2(1) = x1(0)

 x2(2) = x1(1)

   

A specified initial condition is stored before the commencement of the algorithm, in the appropriate 

register (of the digital computer) containing x2(.). This can be diagrammatically repre sented by adding 

a signal x2(0)d (k) to the output of the delay er, where d (k) is the unit-sample sequence defined by 

Eqn. (2.2a).

The signal processing function performed 

by the computer program (2.7) can be 

represented by a block diagram shown in 

Fig. 2.13. Various blocks in this figure 

represent the basic computing operations of 

a digital computer. The unit delayer is the 

only dynamic element involved. The signal 

processing configuration of Fig. 2.13, thus, 

represents a first-order discrete-time system. 

The output x(k) of the dynamic element gives the state of the system at any k. If the signal r(k) is 

switched on to the system at k = 0 (r(k) = 0 for k < 0), the sample value x(0) of the output sequence x(k), 

represents the initial state of the system. Since the initial state in the computer program (2.7) is zero, a 

signal of the form x(0) d(k) does not appear in Fig. 2.13.

The defining equation for the computer program (2.7), obtained by forming an equation of the summing 

junction in Fig. 2.13, is

 x(k + 1) = 0.1 x(k) + r(k);  x(0) = 0 (2.8)

+

+

+ 0.1

r k( ) x k( + 1) x k( )
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The solution of this first-order linear difference equation for given input r(k) applied at k = 0, and given 

initial state x(0), yields the state x(k); k > 0. Equation (2.8) is thus the state equation of the discrete-time 

system of Fig. 2.13. Conver sely, Fig. 2.13 is the simulation diagram for the mathematical model (2.8).

To solve an equation of the form (2.8) is an elementary matter. If k is incremented to take on values 

k = 0, 1, 2, ..., etc., the state x(k); k = 1, 2, ..., can easily be generated by an itera tive procedure. The 

iterative method, however, generates only a sequence of numbers and not a closed-form solution.

Example 2.1

In order to introduce discrete-time systems, we study the signal processing algorithm given by the  

difference equation:

 x(k + 1) = – a x(k) + r(k);  x(0) = 0 (2.9)

where a is a real constant.

We shall obtain a closed-form solution of this equation by using a so-called brute force method  

(z-transform method of solving linear difference equations is given in Section 2.7). When solved 

repetitively, Eqn. (2.9) yields

 x(0) = 0; x(1) = r(0)

 x(2) = – a r(0) + r(1); x(3) = (– a)2 r(0) – a r(1) + r(2)

   

The general term becomes (r(k) = 0 for k < 0),

 x(k) = (– a)k – 1 r(0) + (– a)k – 2 r(1) +   + r(k – 1) (2.10)

Examining this equation, we note that the response x(k) is a linear combination of the input samples r(0), 

r(1), ..., r(k – 1), and there appears to be a definite structure of the various weights.

The response of linear discrete-time systems to an impulse input d (k) (defined in Eqn. (2.2a)) will be of 

special interest to us. Let us denote this response, called the impulse response, by g(k).

For the system described by Eqn. (2.9), the impulse response obtained from Eqn. (2.10) is given by

 g(k) = 
0 0

1

for =

for 1

k

kk( )- ≥

Ï
Ì
Ô

ÓÔ
-a

 (2.11)

The question of whether or not the solution decays, is more closely related to the magnitude of a than to 

its sign. In par ticular, for |a | > 1, g(k) grows with increasing k while it decays when |a | < 1. The nature 

of time functions of the form (2.11) for different values of a is examined in Section 2.9.

A discrete-time system is completely characterized by the output variables of independent dynamic  

elements of the system. The outputs of independent dynamic elements, thus, constitute a set of 

characterizing variables of the system. The values of the charac terizing variables at instant k describe 

the state of the system at that instant. These variables are, therefore, the state varia bles of the system.

The discrete-time system shown in Fig. 2.14 has two dynamic elements; the outputs x1(k) and x2(k) of 

these elements are, therefore, the state variables of the system. The following dynamical equations for 
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the state variables easily follow from Fig. 2.14:

 x1(k + 1) = x2(k); x1(0) = x0
1 (2.12a)

 x2(k + 1) = a1 x1(k) + a2 x2(k) + r(k); x2(0) = x0
2

The solution of these equations for a given input r(k) applied at k = 0, and given initial state {x0
1, x0

2}, 

yields the state {x1(k), x2(k)}, k > 0.

If y(k) shown in Fig. 2.14 is the desired output information, we have the following algebraic relation to 

obtain y(k):

 y(k) = c1 x1(k) + c2 x2(k) (2.12b)

Equations (2.12a) are the state equations, and Eqn. (2.12b) is the output equation of the discrete-time 

system of Fig. 2.14.

+
+

+
+

a2

c2

c1
y k( )x k1( )+

+

x01 d( )k

x k2( )

r k( ) +

+

+

+

x02 d( )k

a1

In general, the state variable formulation may be 

visualized in block diagram form as shown in  

Fig. 2.15. We have depicted a Multi-Input, Multi-

Output (MIMO) system which has p inputs, 

q outputs, and n state variables; the different 

variables are represented by the input vector r(k), 

the output vector y(k) and the state vector x(k), 

where

 r(k) =D 

r k

r k

r kp

1

2

( )

( )

( )

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; y(k) =D 

y k

y k

y kq

1

2

( )

( )

( )

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; x(k) =D 

x k

x k

x kn

1

2

( )

( )

( )

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 

Assuming that the input is switched on to the system at k = 0 (r(k) = 0 for k < 0), the initial state is given by

 x(0) =D x0, a specified n ¥ 1 vector

n state variables

p input
variables

q output
variables

MIMO
discrete-time

system..
.

...

..
.

r1

r2

rp

x1 x2 xn

y1
y2

yq
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The dimension of the state vector defines the order of the sys tem. The dynamics of an nth-order linear 

time-invariant system are described by equations of the form

 x1(k + 1) = f11 x1(k) + f12 x2(k) +   + f1n xn(k) + g11 r1(k)

     + g12 r2(k) +   + g1p rp(k)

 x2(k + 1) = f21 x1(k) + f22 x2(k) +   + f2n xn(k) + g21 r1(k)

     + g22 r2(k) +   + g2p rp(k)

    (2.13)

 xn(k + 1) = fn1 x1(k) + fn2 x2(k) +   + fnn xn(k) + gn1 r1(k)

     + gn2 r2(k) +   + gnp rp(k)

 where the coefficients fij and gij are constants.

In the vector-matrix form, Eqns (2.13) may be written as

 x(k + 1) = Fx(k) + Gr(k); x(0) =D x0 (2.14)

where

 F = 

f f f

f f f

f f f

n

n

n n nn

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 and G = 

g g g

g g g

g g g

p

p

n n np

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

are, respectively, n ¥ n and n ¥ p constant matrices. Equation (2.14) is called the state equation of the 

system.

The output variables at t = kT are linear combinations of the values of the state variables and input 

variables at that time, i.e.,

 y(k) = Cx(k) + Dr(k) (2.15)

where

 C = 

c c c

c c c

c c c

n

n

q q qn

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 and D = 

d d d

d d d

d d d

p

p

q q qp

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

are, respectively, q ¥ n and q ¥ p constant matrices. Equation (2.15) is called the output equation of the 

system.

The state equation (2.14) and the output equation (2.15) together give the state variable model of the 

MIMO system4:

 x(k + 1) = Fx(k) + Gr(k); x(0) =D x0 (2.16a)

 y(k) = Cx(k) + Dr(k) (2.16b)

For single-input (p = 1) and single-output (q = 1) system, the state variable model takes the form

 x(k + 1) = Fx(k) + gr(k); x(0) =D x0 (2.17a)

 y(k) = cx(k) + dr(k) (2.17b)

 4 We have used lower case bold letters to represent vectors and upper case bold letters to represent matrices.
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where g is n ¥ 1 column vector, c is 1 ¥ n row vector and d is a scalar:

 g = 

g

g

gn

1

2

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2 … cn]

Example 2.2

The discrete-time system of Fig. 2.16 has one dynamic element (unit delayer); it is, therefore, a first-

order system. The state of the system at any k is described by x(k)—the output of the dynamic element.

The equation of the input summing junction is

 x(k + 1) = 0.95 x(k) + r(k); x(0) = 0 (2.18a)

This is the state equation of the first-order system.

The output y(k) is given by the following output equation:

 y(k) = 0.0475 x(k) + 0.05 r(k) (2.18b)

Equations (2.18a) and (2.18b) together constitute the state variable model of the first-order system.

Let us study the response of the system of Fig. 2.16 to the unit-step sequence,

 m(k) = 
1 0

0 0

for

for

k

k

≥
<

Ï
Ì
Ó

 (2.19a)

and the unit-alternating sequence,

 r(k) = 
( )- ≥

<

Ï
Ì
Ô

ÓÔ

1 0

0 0

k k

k

for

for
 (2.19b)

We will first solve Eqn. (2.18a) for x(k) and then use Eqn. (2.18b) to obtain y(k).

The solution of Eqn. (2.18a) directly follows from Eqn. (2.10):

 x(k) = (0.95)k – 1 r(0) + (0.95)k – 2 r(1) +   + r(k – 1)

  = 

i

k

=0

1-

Â (0.95)k – 1 – i r(i) (2.20)

+
+

+
+

0.05

0.95

0.0475
y k( )x k( +1) x k( )r k( )
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For the unit-step input given by Eqns (2.19a), we have5

 x(k) = 

i

k

=0

1-

Â(0.95)k – 1 – i = (0.95)k – 1 

i

k

=0

1-

Â 1

0 95.

Ê
ËÁ

ˆ
¯̃

i

  = (0.95)k – 1 

1
1

0 95

1
1

0 95

- Ê
ËÁ

ˆ
¯̃

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

k

 = 
1

0 05.
 [1 – (0.95)k]

The output

 y1(k) = 
0 0475

0 05

.

.
 [1 – (0.95)k] + 0.05; k ≥ 0

  = 1 – (0.95)k + 1; k ≥ 0 (2.21)

Consider now the system excited by the unit-alternating input given by Eqn. (2.19b). It follows from  

Eqn. (2.20) that for this input, the state

 x(k) = 

i

k

=0

1-

Â(0.95)k – 1 – i (–1)i = 
1

1 95.
 [(0.95)k – (–1)k]

The output

 y2(k) = 0.0475 x(k) + 0.05 (–1)k

  = 
0 05

1 95

.

.
 [(–1)k + (0.95)k + 1]; k ≥ 0 (2.22)

From Eqns (2.21) and (2.22), we observe that the steady-state values of y1(k) and y2(k) are

 y1(k) = 1 for large k; y2(k) = 
1

39
(–1)k for large k

Thus, the discrete-time system of Fig. 2.16 readily transmits a unit step and rejects a unit-alternating 

input (reduces its magnitude by a factor of 39). Since the unit-alternating signal is a rapidly fluctuating 

sequence of numbers, while the unit step can be viewed as a slowly fluctuating signal, the discrete-time 

system of Fig. 2.16 represents a low-pass digital filter. In Example 2.11, we will study the frequency-

domain characteristics of this filter.

Consider the single-input, single-output (SISO) system represent ed by the state model (2.17). The system 

has two types of inputs; the external input r(k), and the initial state x(0) representing initial storage in the 

appropriate registers (of the digital computer) containing xi(◊).

If the dynamic evolution of the state x(k) is not required, i.e., we are interested only in the input-output 

relation for k ≥ 0, a linear time-invariant discrete-time system composed of n dynamic elements can be 

 5 a j

j

k

=0

Â  = 
1

1
1

1-
-

π
+a

a
a

k

;
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analyzed using a single nth-order difference equation as its model. A general form of nth-order linear 

di fference equation relating output y(k) to input r(k) is given below.

  y(k) + a1y(k – 1) +   + an y(k – n) = b0r(k) + b1 r(k – 1) +   + bmr(k – m)

The coefficients ai and bj are real constants; m and n are integers with m £ n.

We will consider the general linear difference equation in the following form:

 y(k) + a1 y(k – 1) +   + an y(k – n) = b0r(k) + b1r(k – 1) +   + bnr(k – n) (2.23)

There is no loss of generality in this assumption; the results for m = n can be used for the case of m < n 

by setting appropriate bj coefficients to zero.

If the input is assumed to be switched on at k = 0 (r(k) = 0 for k < 0), then the difference equation model 

(2.23) gives the output at instant ‘0’ in terms of the past values of the output; y(– 1), y(– 2), ..., y(– n), 

and the present input r(0). Thus the initial conditions of the model (2.23) are {y(– 1), y(– 2), ..., y(– n)}.

Since the difference equation model (2.23) represents a time-invariant system, the choice of the initial 

point on the time scale is simply a matter of convenience in analysis. Shifting the origin from k = 0 to 

k = n, we get the equivalent difference equation model:

 y(k + n) + a1 y(k + n – 1) +   + an y(k) = b0r(k + n) + b1r(k + n – 1) +   + b0r(k) (2.24)

Substituting k = 0 in Eqn. (2.24), we observe that the output at instant ‘n’ is expressed in terms of n values 

of the past outputs: y(0), y(1), ..., y(n – 1), and in terms of inputs: r(0), r(1), ..., r(n). If k is incremented 

to take on values k = 0, 1, 2, ..., etc., the y(k); k = n, n +1 , ..., can easily be generated by the iterative 

procedure. Given { y(– 1), y(– 2), ..., y(– n)}, the initial conditions {y(0), y(1), ..., y(n – 1)} of the model 

(2.24) can be determined by successively substituting k = – n, – n + 1, ..., – 2, – 1 in Eqn. (2.24).

In this book, we have not accommodated the classical methods of solution of linear difference equations 

of the form (2.23) for given initial conditions and/or external inputs. Our approach is to transform the 

model (2.23) to other forms which are more con venient for analysis and design of digital control systems. 

Our emphasis is on the state variable models and transfer functions.

In Chapter 6, we will present methods of conversion of difference equation models of the form (2.23), 

to state variable models. We will use state variable models to obtain the system response to given initial 

conditions and external inputs, to construct digital computer simulation diagrams, and to design digital 

control algorithms using modern methods of design.

Later in this chapter, the z-transform technique for transforming difference equation model (2.23) to 

transfer function form has been presented. Here we will use transfer function models to study input-

output behavior of discrete-time systems; and to design digital control algorithms using classical 

methods of design.

Consider the SISO system represented by the state model (2.17) or the difference equation model (2.23). 

The system has two types of inputs: the external input r(k); k ≥ 0, and initial state x(0).

A system is said to be relaxed at k = 0 if the initial state x(0) = 0. In terms of the representation (2.23), a 

system is relaxed if y(k) = 0 for k < 0.
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We have earlier seen in Eqn. (2.3) that an arbitrary sequence r(k) can be represented as a sum of scaled, 

delayed impulse sequences. It follows from this result, that a linear time-invariant, initially relaxed 

system can be completely character ized by its impulse response. This can be easily established.

Let g(k) be the response of an initially relaxed, linear time-invariant discrete-time system to an impulse 

d(k). Due to time-invariance property, the response to d (k – n) will be g(k – n). By linearity property, the 

response to an input signal r(k) given by Eqn. (2.3) will be

 y(k) = r(0) g(k) + r(1) g(k – 1) + r(2) g(k – 2) +  

  = 
j = 0

Â  r( j) g(k – j); k ≥ 0 (2.25)

As a consequence of Eqn. (2.25), a linear time-invariant system is completely characterized by its 

impulse response g(k) in the sense that given g(k), it is possible to use Eqn. (2.25) to compute the output 

to any input r(k). Equation (2.25) is commonly called the convolution sum.

It should be pointed out that the summation in Eqn. (2.25) is not really infinite in a practical situation, 

since for causal sys tems, g(k – j) resulting from the input d (k – j) is zero for k < j. This is because a 

causal system cannot respond until the input is applied. Thus, for a causal system with input r(k)m(k), 

Eqn. (2.25) modifies to

 y(k) = 
j

k

= 0

Â  r( j) g(k – j); k ≥ 0 (2.26)

Another important observation concerns the symmetry of the situa tion. If we let k – j = m in Eqn. (2.26), 

we get

 y(k) = 
m k=

0

Â  r(k – m) g(m)

Reversing the order of summation,

 y(k) = 
m

k

= 0

Â  g(m) r(k – m) (2.27)

The symmetry shows that we may reverse the roles of r (◊) and g(◊) in the convolution formula.

We may remind the reader here, that whenever impulse response models are used to describe a system, 

the system is always implicitly assumed to be linear, time-invariant, and initially relaxed.

We now transform r(k) and g(k) using the mapping

 f (k) Æ F(z)

where

 F(z) =D  
k = 0

Â f (k)z–k; z is a complex variable  (2.28)

The application of this mapping to Eqn. (2.25) yields

 Y(z) = 
k = 0

Â  y(k)z–k = r j g k j z

j

k

k

( ) ( )-
È

Î
Í
Í

˘

˚
˙
˙

-ÂÂ
== 00
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Changing the order of summations gives

 Y(z) = 
j = 0

Â   r( j)z–j 
k = 0

Â  g(k – j)z– (k – j)

Since g(k – j) = 0 for k < j, we can start the second summation at k = j. Then, defining the index m = k – j, 

we can write

 Y(z) = 
j = 0

Â  r( j)z–j 
m = 0

Â g(m)z–m 

  = R(z) G(z) (2.29)

where

 R(z) =D  
k = 0

Â  r(k)z–k and G(z) =D  
k = 0

Â  g (k)z–k

We see that by applying the mapping (2.28), a convolution sum is transformed into an algebraic equation. 

The mapping (2.28) is, in fact, the definition of z-transform.

The use of z-transform technique for the analysis of discrete-time systems runs parallel to that of Laplace 

transform technique for continuous-time systems. The brief introduction to the theory of z-transform 

given in this chapter provides the working tools adequate for the purposes of this text.

 THE z

There are basically two ways to approach the z-transform. One way is to think in terms of systems that are 

intrinsically discrete. Signal processing by a digital computer, as we have seen in the previous section, 

is an example of such systems. In fact, intrinsically discrete-time systems arise in a number of ways. A 

model of the growth of cancer is discrete, because the cancer cells divide at discrete points in time. A 

macroeconomic model is usually discrete, because most economic data is usually reported monthly and 

quarterly. Representing the discrete instants of time by the integer variable k (k = 0, 1, 2, ...), we denote 

the output of a SISO system by the sequence y(k); k ≥ 0, and the input by the sequence r(k); k ≥ 0.

The alternative approach to the z-transform is in terms of sampled-data systems. This is the approach 

we will adopt because it best fits the problem we intend to solve, namely, the control of continuous-time 

systems by a digital signal processor (refer to Fig. 2.2). Sampling a continuous-time signal defines the 

discrete instants of time. Interestingly, we will see that the z-transform (2.28) defined for analyzing 

systems that are intrinsically discrete, is equally useful for sampled-data systems.

Consider an analog signal xa(t); t ≥ 0. By substituting t = kT; k = 0, 1, 2, ..., a sequence xa(kT ) is said to 

be derived from xa(t) by periodic sampling, and T is called the fixed sampling period. The reciprocal of 

T is called the sampling frequency or sampling rate. In a typical digital control scheme (refer to Fig. 2.2), 

the operation of deriving a sequence from a continuous-time signal is performed by an analog-to-digital 

(A/D) converter. A simple ideal sampler representation of the sampling operation is shown in Fig. 2.17.
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The ideal sampler consists of a switch that closes 

and reopens instantaneously. For our purposes, 

time will be in seconds, although this is not always 

the case. In chemical processes, for instance, the 

unit of time could very well be minutes.

Of course, no switch opens and closes instantaneously, but the modern A/D converter comes very close. 

A/D converters with a conversion rate of 100 kHz are fairly inexpensive, and conversion rates in the 

megahertz range are available. In control applications, the sampling rate is usually less than 100 Hz. If 

the conversion rate is 100 kHz, the conversion is completed in less than one thousandth of the typical 

sample period. Thus the conversion rate of A/D converter is close enough to instantaneous.

For intrinsically discrete-time systems, the sequence x(k) represents the values the variable x takes at 

discrete instants k = 0, 1, 2, ... . When the sampling operation is involved, the sequence xa(kT ) represents 

the values of continuous-time signal xa(t) derived at t = kT; k = 0, 1, 2, ...; and T is a fixed sampling 

period. Since T remains fixed, there is no loss in information if variable x(k) is used to represent xa(kT); 

the advantage is in terms of notational convenience. We will follow this notation.

To establish a relationship of the sequence x(k) to the continuous-time function xa(t) from which this 

sequence is derived, we take the following approach. We treat each sample of the sequence x(k) as 

an impulse function of strength equal to the value of the sample (Impulse function Ad (t – t0) is an 

impulse of strength A occurring at t = t0). The idea is to give a mathematical description to periodic 

samples of a continuous-time function in such a way, that we can analyze the samples and the function 

simultaneously, using the same tool (Laplace transform). The sequence x(k) can be viewed as a train of 

impulses represented by the continuous-time function x*(t):

 x*(t) = x(0)d (t) + x(1) d (t – T ) + x(2)d (t – 2T ) +   

  = 
k = 0

Â  x(k)d (t – kT ) (2.30)

Typical signals xa(t), x(k) and x*(t) are shown in Fig. 2.18. The sampler of Fig. 2.17 can thus be viewed 

as an ‘impulse modulator’ with the carrier signal,

 d T (t) = 
k = 0

Â  d (t – kT ) (2.31)

and modulating signal xa(t). The modulation process is schematically represented in Fig. 2.19a, and the 

impulse train d T (t) in Fig. 2.19b:

 x*(t) = xa(t) dT(t) (2.32a)

T
x k( ) = x kTa( )x ta( )

x ta( ) x k( ) x t*( )

t 0 1 2 3 0 T 2T 3T
t

x(3)
x(2)x(1)

x(0)

k
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We will eliminate the impulse function by simply taking the Laplace transform of x*(t) to obtain (refer to 

Chapter 2 of the companion book [155] for definitions and properties of impulse function, and Laplace 

transform)

 L [x*(t)] =D  X*(s) = 

0

Ú  xa (t)d T(t)e–st dt

 = 

k = 0 0

Â Ú xa (t)d (t – kT )e–st dt

 = 

k = 0

Â xa (kT )e–skT (2.32b)

This expression for X *(s) represents a Laplace transform, but it is not a transform that is easy to use 

because the complex variable s occurs in the exponent of the transcendental function e. By contrast, 

the Laplace transforms that we have used previously in the companion book [155], have mostly been 

ratios of polynomials in the Laplace variable s, with real coefficients. These latter transforms are easy to 

manipulate and interpret.

Ultimately, we will be able to achieve these same ratios of polynomials in a new complex variable z by 

transforming X*(s) to reach what we will call the z-plane. 

We remind the reader here that X *(s) is the notation used for Laplace transform of impulse modulated 

signal x*(t); the ‘star’ distinguishes it from X(s)—the conventional Laplace transform of the unsampled 

continuous function xa(t). We have used the same complex plane (s-plane) for Laplace transform 

of ‘starred’ functions and conventional functions. This is the most compact approach used almost 

universally.
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z

The expression X*(s), given by (2.32b), contains the term e–Ts; T is the fixed sampling period. To transform 

the irrational function X*(s) into a rational function, we use a transformation from the complex variable s 

to another complex variable, say, z. An obvious choice for this transformation is

 z = eTs (2.33a)

although z = e–Ts would be just as acceptable.

Solving for s in Eqn. (2.33a), we obtain

 s = 
1

T
ln z (2.33b)

The relationship between s and z in Eqns (2.33) may be defined as the z-transformation. In these two 

equations, z is a complex variable; its relation with real and imaginary parts of complex variable s is 

given by (with s = s + jw ):

 z = eT(s + jw ) = eTs e jwT = re jW (2.34)

For a fixed value of r, the locus of z is a circle in the complex 

z-plane. Circle of radius unity in the complex z-plane will be of 

specific interest to us. This circle is called a unit circle (Fig. 2.20).

When Eqns (2.33) are substituted in Eqn. (2.32b), we have 

 X*
s

T
z=

1
ln

Ê
ËÁ

ˆ
¯̃  = X(z) = 

k =0

Â xa (kT )z–k (2.35)

Thus, the z-transformation given by Eqns (2.33) is same as defined 

earlier in Eqn. (2.28) for intrinsically discrete-time systems.

Since T remains fixed, there is no loss of information if variable 

x (k) is used to represent xa(kT). The expression

 X (z) = 

k =0

Â x (k)z–k

is often used as the definition of the z-transform of sequence x (k) (intrinsically discrete-time sequence or 

derived from continuous-time signal xa(t); x(k) =D xa (kT)), denoted symbolically as Z [x (k)]:

 X (z) =D Z [x (k)] = 

k =0

Â x(k)z–k (2.36)

The summation in Eqn. (2.36) does not converge for all functions; and when it does, it does so for  

restricted values of z in the z-plane. Therefore, for each sequence for which the summation converges, 

there is an associated convergence region in the complex z-plane (Examples of z-plane convergence 

regions will shortly follow).

We now have a transform X(z) defined in terms of a complex variable z. However, our expression for X(z) 

is an infinite sum in the complex variable z. What we would like to achieve is something of the form:

 X(z) = 
b z b z b

z a z a

m m
m

n n
n

0 1
1

1
1

+ + +
+ + +

-

-
 

 
; m £ n (2.37)

where all the ai and bj are real.

Im

Re

1

z-plane

z
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Under these conditions, we can write

 X(z) = 

K z

z

i

i

m

j

j

n

( )

( )

-

-

’

’

b

a

=

=

1

1

  (2.38)

where the b i and a j are either real or complex-conjugate pairs.

The z-transform zeros are the values of z for which the transform is zero. z = – b i are the zeros of X(z) 

in Eqn. (2.38).

The z-transform poles are the values of z for which the transform is infinite. z = – a j are the poles of X(z) 

in Eqn. (2.38).

Actually, we are not very far from our goal. We will now show that we can find closed-form expressions 

for the z-transforms of all the functions that we need to study the control of sampled-data systems.

 z

In this subsection, our goal is to find the z-transform of the functions we will subsequently need for 

analysis of control systems.

The unit-sample sequence contains only one nonzero element and is defined by

 d (k) = 
1 0

0

for

otherwise

k =Ï
Ì
Ó

The z-transform of the elementary signal is

 Z [d (k)] = 

k = 0

Â d (k)] z–k = z0 = 1; | z | > 0 (2.39)

The unit-step sequence is defined as

 m (k) = 
1 0

0

for

otherwise

k =Ï
Ì
Ó

The z-transform is

 Z [m (k)] = 

k = 0

Â m(k)] z–k = 

k = 0

Â z–k 

Using the geometric series formula

 

k = 0

Â  xk = 
1

1 - x
; |x| < 1,
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this becomes

 Z [m (k)] = 
1

1 1- -z
 = 

z

z - 1
 (2.40)

Note that this equation holds only if the infinite sum converges, that is, if |z–1| < 1 or |z| > 1. Thus, the 

region of convergence is the area outside the unit circle in the z-plane.

Discrete form of y(t) = tm (t) is of the form

 y(k) = 
kT kfor

0 otherwise

≥Ï
Ì
Ó

0

From the basic definition (2.36),

 
dX z

dz

( )
 = 

d

dz
x k z k

k

[ ( ) ]-Â
= 0

 = 
k = 0

Â (–k) x(k)z– k –1

Consequently,

 - z
dX z

dz

( )
 = 

k = 0

Â k  x (k)z–k

or

 Z [kT x(k)] = – Tz
dX z

dz

( )
 (2.41)

For x(k) = m (k), we obtain

 Z [kT m (k)] = Z [y(k)] = Y(z) = –Tz
d

dz

z

z -
Ê
ËÁ

ˆ
¯̃1

 

  = –Tz
z

z z

-
-

+
-

È

Î
Í

˘

˚
˙

( )1

1

12

  = 
Tz

z( )- 1 2 ; | z | > 1  (2.42)

Discrete form of x(t) = e–at is of the form

 x(k) = 
e kakT- ≥Ï

Ì
Ô

ÓÔ

for

otherwise

0

0

Then

 X(z) = 

k = 0

Âe–akT z–k = 

k = 0

Â (eaT z)–k
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  = 

k = 0

Â a–k; a = eaTz 

  = 
1

1 1- -a
 = 

e z

e z

aT

aT - 1
 = 

z

z e aT- -

This equation holds only if the infinite sum converges, that is, if |e–aT z–1| < 1 or |z| > | e–aT |. The result 

holds for both real and complex a.

 Discrete form of x(t) = A cos (wt + f) is of the form

 x(k) = 
A kT kcos ( )w f+ ≥Ï

Ì
Ó

for

otherwise

0

0

The transform of sampled sinusoids can be found by expanding the sequence into complex exponential 

components.

 x(k) = A
e ej kT j kT( ) ( )w f w f+ - ++Ê

ËÁ
ˆ
¯̃2

Then

 X(z) = 
A

2 k = 0

Â e jf e jwkT z–k + 
A

2 k = 0

Â e –jf e jwkT z–k

  = 
A ze

z e

A ze

z e

j

j T

j

j T2 2

f

w

f

w-
+

--

-

  = 

Az
z e e e e

z
e e

j j j T j T

j T j T

( ) ( ) ( )f f w f w f

w w

+
-

+È

Î
Í

˘

˚
˙

-
+Ê

ËÁ

- + - +

-
2 2

2
2

2
ˆ̂
¯̃ +z 1

  = 
Az z T

z z T
z

cos cos ( )

cos
;| |

f w f

w

- +[ ]
- +

>
2 2 1

1

Given the z-transform of A cos(wkT + f ), we can obtain the z-transform of Ae–akT cos(wkT + f) as 

follows:

 Z [e–akT x(k)] = x k e zakT k

k

( ) - -

=
Â

0

  = x k ze X zeaT k aT

k

( )( ) ( )-

=

=Â
0

 (2.43)

Noting that

 Z [A cos (wkT + f )] = 
Az z T

z z T

[ cos cos( )]

cos

f w f

w

- +
- +2 2 1
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we substitute zeaT for z to obtain the z-transform of Ae–akT cos(wkT + f ) as follows:

 Z [Ae–akT cos (wkT + f )] = 
Aze ze T

z e ze T

aT aT

aT aT

[ cos cos( )]

cos

f w f

w

- +
- +2 2 2 1

; |z| > e–aT (2.44)

Example 2.3

Let us find the z-transform of

 X(s) = 
1

1s s( )+
Whenever a function in s is given, one approach for finding the corresponding z-transform is to convert 

X(s) into x(t) and then find the z-transform of x(kT ) = x(k); T is the sampling interval.

The inverse Laplace transform of X(s) is

 x(t) = 1–e–t; t ≥ 0

Hence

 x(kT) =D x(k) = 1 –e–kT; k ≥ 0

 X(z) = Z [x(k)] = 
z

z

z

z e T–
–

– –1
 = 

( )

( )( )
;| |

1

1
1

-

- -
>

-

-
e z

z z e
z

T

T

We summarize the z-transforms we have derived up to this point, plus some additional transforms in 

Table 2.1. The table lists commonly encountered functions x(t); t ≥ 0 and z-transforms of sampled 

version of these functions, given by x(kT ). We also include in this table, the Laplace transforms X(s) 

corresponding to the selected x(t). We have seen in Example 2.3, that whenever a function in s is given, 

one approach for finding the corresponding z-transform is to convert X(s) into x(t), and then find its 

z-transform. Another approach is to expand X(s) into partial functions and use z-transform table to find 

the z-transforms of the expanded terms. Table 2.1 will be helpful for this second approach.

All the transforms listed in the table, can easily be derived from first principles. It may be noted that 

in this transform table, regions of convergence have not been specified. In our applications of systems 

analysis, which involve transformation from time domain to z-domain and inverse transformation, the 

variable z acts as a dummy operator. If transform pairs for sequences of interest to us are available, we 

are not concerned with the region of convergence.

z

z-transformation of difference equations written in terms of advanced versions of the input and output 

variables (refer to Eqn. (2.24)) requires the following results:

 Z [ y(k + 1)] = y k z z y k zk

k

k

k

( ) ( ) ( )+ = +-

=

- +

=
Â Â1 1

0

1

0
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Letting k + 1 = m, yields

 Z [ y(k + 1)] = z y m z z y m z ym

k

m

k

( ) ( ) ( )-

=

-

=
Â Â= -

È

Î
Í
Í

˘

˚
˙
˙0 0

0

  = zY(z) – zy(0) (2.45a)

Use of this result in a recursive manner leads to the following general result:

 Z [y(k + n)] = zn Y(z) – zn y(0) –zn–1 y(1) –   – z2 y(n –2) – zy(n – 1) (2.45b)

z-transformation of difference equations written in terms of delayed versions of input and output variables 

(refer to Eqn. (2.23)) requires the following results:

z

X(s) x(t); t ≥ 0 x(k); k = 0, 1, 2, … X(z)

– – d (k) 1

1

s
m (t) m(k)

z

z –1

1

s a+ e–at e–akT z

z e aT– –

1
2s

t kT
Tz

z( )–1 2

1
2( )s a+

t e–at kTe–akT Te z

z e

aT

aT

–

–( – )2

a

s s a( )+
1 – e–at 1 – e–akT

( )

( )( )

1

1

-

- -

-e z

z z e

aT

aT-

w

ws2 2+
sin wt sin wkT

(sin )

( cos )

w

w

T z

z T z2 2 1- +

s

s2 2+ w
cos wt cos wkT

z T z

z T z

2

2 2 1

-
-

(cos )

( cos )

w

w +

w

w( )s a+ +2 2 e–at sin wt e–akT sin wkT
( sin )

( cos )

e T z

z e T z e

aT

aT aT

-

- --
w

w2 22 +

s a

s a

+
+ +( )2 2w

e–at cos wt e–akT cos wkT
z e T z

z e T z e

aT

aT aT

2

2 22

– ( cos )

– ( cos )

–

– –

w

w +
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 Z [ y(k – 1)] = ( )k z k

k

- -

=
Â 1

0

  = y(– 1)z0 + y(0)z–1 + y(1)z–2 +  

  = z–1 y k z yk

k

( ) ( )-

=
Â

È

Î
Í
Í

˘

˚
˙
˙

+ -
0

1

  = z–1 Y(z) + y(–1) (2.46a)

Use of this result in a recursive manner leads to the following general result:

 Z [y(k – n)] = z–n Y(z) + z–(n–1) y(–1) + z–(n–2) y(–2) +  

      + z–1 y(–n + 1) + y(–n) (2.46b)

If y(k) = 0 for k < 0, we have 

 Z [y(k – n)] = z–n Y(z) (2.47)

Example 2.4

Let us find the z-transforms of unit-step functions that are delayed by one sampling period, and n 

sampling periods, respectively.

Using the shifting theorem given by Eqn. (2.47), we have

 Z [m(k –1)] = z–1 
Z [m (k)] = z–1 

1

1 11

1

1– ––

–

–z

z

z

Ê
ËÁ

ˆ
¯̃

=

Also

 Z [m(k – n)] = z–n 
Z [m (k)] = z–n 

1

1 11 1– ––

–

–z

z

z

nÊ
ËÁ

ˆ
¯̃

=

Remember that multiplication of the z-transform X(z) by z has the effect of advancing the signal x(k) 

by one sampling period, and that multiplication of the z-transform X(z) by z–1 has the effect of delaying 

the signal x(k) by one sampling period. In control engineering and signal processing, X(z) is frequently 

expressed as a ratio of polynomials in z–1 as follows (refer to Table 2.1):

 Z [e–akT cos wkT ] = 
z e T z

z e T z e

aT

aT aT

2

2 22

– ( cos )

– ( cos )

–

– –

w

w +
 (2.48a)

  = 
1

1 2

1

1 2 2

– ( cos )

– ( cos )

– –

– – – –

e T z

e T z e z

aT

aT aT

w

w +
 (2.48b)

z–1 is interpreted as the unit-delay operator.

In finding the poles and zeros of X(z), it is convenient to express X(z) as a ratio of polynomials z, as is 

done in Eqn. (2.48a). In this and the next chapter, X(z) will be expressed in terms of powers of z, as given 

by Eqn. (2.48a), or in terms of powers of z–1, as given by Eqn. (2.48b), depending on the circumstances.
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Example 2.5

Analogous to the operation of integration, we can define the summation operation

 x(k) = y i

i

k

( )

=
Â

0

 (2.49)

In the course of deriving an expression for X(z) in terms of Y(z), we shall need the infinite series sum:

 ( )az k

k

-

=
Â 1

0

 = 
1

1 1– ––az

z

z a
=  (2.50)

which converges, provided that |az–1| < 1, or |z| > a.

Successive values of x(k) are as follows:

 x(0) = y(0)

 x(1) = y(0) + y(1)

  

 x(k) = y(0) + y(1) +   + y(k)

Thus, X(z) is the infinite sum given below.

 X(z) = x k z k

k

( ) -

=
Â

0

 = x(0) + z–1 x(1) +   + z–k x(k) +  

  = y(0) + z–1 [y(0) + y(1)] +   + z–k [y(0) +   + y(k)] +  

  = y(0)[1 + z–1 + z–2 +  ] + y(1)[z–1 + z–2 +  ] +  

     + y(k)[z–k + z–k–1 +  ] +  

  = 
z

z –1

Ê
ËÁ

ˆ
¯̃

[y(0) + z–1y(1) + z–2 y(2) +  ]

  = 
z

z
y k z k

k
–

( ) –

1
0

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙=

Â
Therefore, 

 X(z) = 
z

z –1
 Y(z) (2.51)

 z

We will obtain the inverse z-transform in exactly the same way that we obtained the inverse Laplace 

transform (Chapter 2 [155]), namely, by partial fraction expansion. The reason that the partial fraction 

expansion method works is that we frequently encounter transforms that are rational functions, i.e., 

ratio of two polynomials in z with real coefficients (refer to Eqn. (2.37)). The fact that the coefficients 

are real is crucial, because it guarantees that the roots of the numerator and denominator polynomials 

will be either real, or complex-conjugate pairs. This, in turn, means that the individual terms in the 

partial fraction expansion of the transform will be simple in form and we will be able to do the inverse 

transformation by inspection.
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The transform pairs encountered using the partial fraction expansion technique will usually be those 

found in Table 2.1. Those not found in the table can easily be derived by using basic properties of  

z-transformation. The partial fraction expansion method for z-transforms is very straightforward, and 

similar, in most respects, to the partial fraction expansion in Laplace transforms. We first illustrate the 

method with some examples from which we can then abstract some general guidelines.

Example 2.6

We observe that the transforms of the elementary functions (see Table 2.1) contain a factor of z in the 

numerator, e.g.,

 Z [m(k)] = 
z

z –1

where m (k) is a unit-step sequence.

To ensure that the partial fraction expansion will yield terms corresponding to those tabulated, it is 

customary to first expand the function Y(z)/z, if Y(z) has one or more roots at the origin, and then multiply 

the resulting expansion by z.

For instance, if Y(z) is given as

 Y(z) = 
2 1 5

1 5 0 5

2 1 5

0 5 1

2

2

z z

z z

z z

z z

– .

– . .

( . )

( – . )( – )
,

+
=

–

we are justified in writing

 
Y z

z

( )
 = 

2 1 5

0 5 1 0 5 1

1 2z

z z

A

z

A

z

– .

( – . )( – ) – . –
= +

Constants A1 and A2 can be evaluated by applying the conventional partial fraction expansion rules.

 A1 = (z – 0.5)
Y z

z z

( )

.

È
ÎÍ

˘
˚̇

=
=0 5

1; A2 = (z – 1)
Y z

z z

( )È
ÎÍ

˘
˚̇

=
=1

1

 
Y z

z

( )
 = 

1

0 5

1

1z z– . –
+

or

 Y(z) = 
z

z

z

z– . –0 5 1
+

Using the transform pairs from Table 2.1,

 y(k) = (0.5)kT + 1; k ≥ 0

Example 2.7

When Y(z) does not have one or more zeros at the origin, we expand Y(z), instead of Y(z)|/z, into partial 

fractions and utilize shifting theorem given by Eqn. (2.47) to obtain inverse z-transform.



 Signal Processing in Digital Control 55

In applying the shifting theorem, notice that if

 Z 
–1[Y(z)] = y(k) then Z 

–1[z–1Y(z)] = y(k –1)

Let us consider an example:

 Y(z) = 
10

1 0 2( )( . )z z- -
We first expand Y(z) into partial fractions:

 Y(z) = 
12 5

1

12 5

0 2

. .

.z z-
-

-
Notice that the inverse z-transform of 1/(z–1) is not available in Table 2.1. However, using the shifting 

theorem, we find that

 Z 
–1 1

1z –

È
ÎÍ

˘
˚̇

 = Z 
–1 z

z

z

k

k

–

–

; , ,

;

1

1

1 1 2

0 0

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ =

=
£

Ï
Ì
Ó

…

Also,

 Z 
–1 1

0 2z – .

È
ÎÍ

˘
˚̇

 = Z 
–1 z

z

z

k

k

k
–

–

– .

( . ) ; , ,

;

1
1

0 2

0 2 1 2

0 0

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ =

=
£

Ï
Ì
Ô

ÓÔ

…

Therefore,

 y(k) = Z 
–1[Y(z)] = 

12 5 1 0 2

0

1 2

0

1. ( . ) ; , ,

;

-ÈÎ ˘̊Ï
Ì
Ô

ÓÔ

=
£

-k k

k

…

which can be written as

 y(k) = 12.5[1 – (0.2)k–1]m (k–1)

The final value theorem is concerned with the evaluation of y(k) as k Æ  assuming, of course, that y(k) 

does approach a limit. Using partial fraction expansion for inverting z-transforms, it is a simple matter to 

show that y(k) approaches a limit as k Æ , if all the poles of Y(z) lie inside the unit circle ( | z | <1) in the 

complex z-plane. The unit-circle boundary is, however, excluded except for a single pole at z = 1. This 

is because purely sinusoidal signals whose transforms will have poles on the unit circle, do not settle to 

a constant value as k Æ . Multiple poles at z = 1 are also excluded because, as we have already seen 

in the table of z-transform, these correspond to unbounded signals like ramps. A more compact way of 

phrasing these conditions is to say that (z – 1)Y(z) must be analytic on the boundary, and outside the unit 

circle in the complex z-plane. The final value theorem states that when this condition on (z – 1)Y(z) is 

satisfied, then

 lim
k

y(k) = lim
zÆ1

(z – 1)Y(z) (2.52)

The proof is as follows:

 Z [y(k + 1) – y(k)] = lim
m

[ ( ) ( )]y k y k z k

k

m

+ - -

=
Â 1

0

or

 zY(z) – z y(0) – Y(z) = lim
m

[ ( ) ( )]y k y k z k

k

m

+ - -

=
Â 1

0
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Letting z Æ 1 on both sides,

 lim
zÆ1

[(z – 1)Y(z)] = y(0) + lim
zÆ1

lim
m

[ ( ) ( )]y k y k z k

k

m

+ - -

=
Â 1

0

 

Interchanging the order of limits on the right-hand side, we have

 lim
zÆ1

[(z – 1)Y(z)] = y(0) + lim
m

[ ( ) ( )] ( )y k y k y

k

m

+ -
=

Â 1

0

Example 2.8

Given

 X(z) = 
z

z

z

z e
a

aT–
–

–
;

–1
0>

By applying the final value theorem to the given X(z), we obtain

 lim
k

x(k) = lim ( )
z aT

z
z

z

z

z eÆ --
-

-
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

1
1

1
 = lim

z aT

z

z e
z

Æ -
-

-

-
È

ÎÍ
˘

˚̇
=

1
1

1
1

It is noted that the given X(z) is actually the z-transform of

 x(k) = 1 –  e–akT

By substituting k =  in this equation, we have

 x( ) = lim
k

akTe--( ) =1 1

 TRANSFER FUNCTION MODELS

The very first step in the analytical study of a system is to set up mathematical equations to describe the 

system. Because of different analytical methods used, or because of different questions asked, we may 

often set up different mathematical equations to describe the same system.

We have seen earlier in Section 2.5 (Eqn. (2.26)) that the input r(k) and output y(k) of any linear time-

invariant discrete-time system that is initially relaxed at k = 0, can be described by an equation of the 

form

 y(k) = r j

j

k

( )

=
Â

0

g(k – j ); k ≥ 0 (2.53)

This is called the convolution sum. The function g(k) is defined for k ≥ 0 and is called the impulse 

response of the system.

The application of z-transform to Eqn. (2.53) gives us an extremely useful mathematical description, of 

a linear time-invariant discrete-time system (refer to Eqn. (2.29))

 Y(z) = Z [(y(k)] = G(z)R(z) (2.54)
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where

 R(z) =D Z [(r(k)] and G(z) =D Z [(g(k)] 

We see that by applying the z-transform, a convolution sum is transformed into an algebraic equation. 

The function G(z) is called the transfer function of the discrete-time system.

The transfer function of a linear time-invariant discrete-time system is, by definition, the z-transform of 

the impulse response of the system.

An alternative definition of transfer function follows from Eqn. (2.54).

 G(z) = 
Z

Z

[ ( )]

[ ( )]

y k

r k System
initially relaxed

 = 
Y z

R z

( )

( ) System
initially relaxed

 (2.55)

Thus, the transfer function of a linear time-invariant discrete-time system is the ratio of the z-transforms 

of its output and input sequences, assuming that the system is initially relaxed.

Figure 2.21 gives the block diagram of a discrete-time system in transform domain.

Let us use the definition given by Eqn. (2.55) to obtain transfer 

function model of a discrete-time system, represented by a 

difference equation of the form (2.23), relating its output y(k) 

to the input r(k). We assume that the discrete-time system is 

initially relaxed:

 y(k) = 0 for k < 0

and is excited by an input

 r(k); k ≥ 0

Taking z-transform of all the terms of Eqn. (2.23), under the assumption of zero initial conditions, we 

obtain

  Y(z) + a1 z–1 Y(z) + … + an z– n Y(z) = b0 R(z) + b1 z–1 R(z) + … + bn z–n R(z)

where

 Y(z) =D Z [y(k)] and R(z) =D Z [r(k)]

Solving for Y(z),

 Y(z) = 
( ) ( )b b z b z R z

a z a z

n
n

n
n

0 1
1

1
11

+ + +
+ + +

- -

- -
 

 

Therefore, the transfer function G(z) of the discrete-time system represented by difference equation 

(2.23) is

 G(z) = 
Y z

R z

( )

( )
 = 

b b z b z

a z a z

n
n

n
n

0 1
1

1
11

+ + +
+ + +

- -

- -
 

 
 (2.56)

The same result can be obtained by taking the z-transformation of the shifted difference equation (2.24). 

We first consider the case with n = 2, and then present the general result.

 y(k + 2) + a1y(k + 1) + a2y(k) = b0r(k + 2) + b1r(k + 1) + b2r(k) (2.57)

R z( )
G z( )

Y z( )
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The z-transform of Eqn. (2.57) gives (using the shifting theorem given by Eqns (2.45)):

 [z2Y(z) – z2y(0) – zy(1)] + a1[zY(z) – zy(0)] + a2Y(z)

  = b0[z2R(z) – z2r(0) – zr(1)] + b1[zR(z) – zr(0)] + b2R(z)

or

 (z2 + a1z + a2) Y(z) = (b0z2 + b1z + b2) R(z) + z2 [y(0) – b0r(0)] 

              + z[y(1) + a1y(0) – b0r(1) – b1r(0)] (2.58)

Since the system is initially at rest, and switched on at k = 0, we have y(k) = 0 for k < 0, and r(k) = 0 for 

k < 0. To determine the initial conditions y(0) and y(1), we substitute k = –2 and k = –1, respectively, 

into Eqn. (2.57).

 y(0) + a1y(–1) + a2y(–2) = b0r(0) + b1r(–1) + b2r(–2)

which simplifies to

 y(0) = b0r(0) (2.59a)

and

 y(1) + a1y(0) + a2 y(–1) = b0r(1) + b1r(0) + b2r(–1)

or

 y(1) = –a1y(0) + b0r(1) + b1r(0) (2.59b)

By substituting Eqns (2.59) into Eqn. (2.58), we get

 (z2 + a1z + a2)Y(z) = (b0z2 + b1z + b2) R(z)

Therefore,

 G(z) = 
Y z

R z

b z b z b

z a z a

b b z b z

a z a z

( )

( )
=

+ +

+ +
=

+ +

+ +

- -

- -
0

2
1 2

2
1 2

0 1
1

2
2

1
1

2
21

Therefore, we can express the general transfer function model (2.56) as

 G(z) = 
Y z

R z

b z b z b

z a z a

n n
n

n n
n

( )

( )
=

+ + +

+ + +

-

-
0 1

1

1
1

 

 
 (2.60a)

We will represent the numerator polynomial of G(z) by N(z), and the denominator polynomial by D(z):

 G(z) = 
N z

z

( )

( )D
 (2.60b)

where

 N(z) = b0 zn + b1 zn –1 +   + bn; D(z) = zn + a1 zn –1 +   + an

The terminology used in connection with G(s)—the transfer func tion of continuous-time systems6—is 

directly applicable in the case of G(z).

The highest power of the complex variable z in the denominator polynomial D(z) of the transfer function 

G(z) determines the order of the transfer function model. The denominator polynomial D(z) is called the 

characteristic polynomial.

 6 Chapter 2 of reference [155].
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The roots of the equation

 D(z) = 0 (2.61a)

are called the poles of the transfer function G(z), and roots of the equation

 N(z) = 0 (2.61b)

are called the zeros.

Equation (2.61a) is called the characteristic equation; the poles are the characteristic roots.

Section 2.9 shows that if the poles of the trans fer function G(z) of a discrete-time system lie inside the 

unit circle in the complex z-plane, the discrete-time system is sta ble.

We now give a simple example of transfer function description of discrete-time systems. Figure 2.12  

describes the basic operations characterizing a computer program. The unit delayer shown in this figure 

is a dynamic system with input x1(k) and output x2(k); x2(0) represents the initial storage in the shift 

register.

We assume that the discrete-time system (unit delayer) is ini tially relaxed:

 x2(0) = 0 (2.62a)

and is excited by an input sequence

 x1(k); k ≥ 0 (2.62b)

The following state variable model gives the output of the unit delayer at k = 0, 1, 2, ...

 x2(k + 1) = x1(k) (2.63)

The z-transformation of Eqn. (2.63) yields

 X2(z) = z –1 X1(z)

where

 X2(z) =D Z [x2(k)]; X1(z) =D Z [x1(k)]

Therefore, the transfer function of the unit delayer represented by Eqn. (2.63) is

 
X z

X z

2

1

( )

( )
 = z –1 (2.64)

The discrete-time system of Fig. 2.16 may be equivalently represented by Fig. 2.22a using the transfer 

function description of the unit delayer. Use of the block-diagram analysis results in Fig. 2.22b, which 

gives

 Y(z) = 
0 0475

0 95
0 05

.

.
.

z -
+È

ÎÍ
˘
˚̇

 R(z)

Therefore, the transfer function G(z) of the discrete-time system of Fig. 2.22 is

 G(z) = 
Y z

R z

( )

( )
 = 

0 05

0 95

.

.

z

z -
 (2.65)
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A standard problem in control engineering is to find the response, y(k), of a system given the input, r(k), 

and a model of the system. With z-transforms, we have a means for easily computing the response of 

linear time-invariant systems to quite general inputs.

Given a general relaxed, linear discrete-time system and an input signal r(k), the procedure for determining 

the output y(k) is given by the following steps:

Step 1 Determine the transfer function G(z) by taking z-transform of equations of motion.

Step 2 Determine the z-transform of the input signal; R(z) = Z [r(k)].

Step 3 Determine the z-transform of the output; Y(z) = G(z)R(z).

Step 4 Break-up Y(z) by partial fraction expansion.

Step 5 Invert Y(z) to get y(k); find the components of y(k) in a table of transform pairs and combine the 

components to get the total solution in the desired form.

Example 2.9

A discrete-time system is described by the transfer function

 G(z) = 
Y z

R z z a z a

( )

( )
=

+ +
1

2
1 2

; a1 = –
3

4
, a2 = 

1

8

Find the response y(k) to the input (i) r(k) = d (k), (ii) r(k) = m(k).

+
+

+

+

0.05

0.95

(a)

0.0475
Y z( )X z( )

z–1
R z( )
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Solution The transfer function G(z) expressed as a ratio of polynomials in z–1:

 G(z) = 
z

z z

–

– ––

2

1 21
3

4

1

8
+

Since z–1 is a unit-delay operator, we can immediately write the corresponding difference equation:

 y(k) – 
3

4
 y(k – 1) + 

1

8
 y(k – 2) = r(k – 2)

The difference equations can be solved by means of recursion procedure. The recursion procedure is 

quite simple and convenient for digital computations.

In the following, we obtain the closed-form solutions.

 (i) The z-transform of d(k) is (refer to Table 2.1) 

   Z [d (k)] = 1

  Letting R(z) = 1, we obtain

   Y(z) = G(z) = 
1

3

4

1

8

1

1

4

1

2

2z z z z– – –+
=

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 = 
4

1

2

4

1

4
z z–

–

–

  The impulse response g(k) is, therefore, (refer to Table 2.1)

   g(k) = Z 
–1 z

z

z

- Ê

Ë
Á
Á

ˆ

¯
˜
˜

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 4

1

2
–

 – 
Z 

–1 
z

z

z

–

–

1 4

1

4

Ê

Ë
Á
Á

ˆ

¯
˜
˜

È

Î

Í
Í

˘

˚

˙
˙

    = 4
1

2

1
Ê
ËÁ

ˆ
¯̃

k –

 – ;

–

4
1

4
1

1
Ê
ËÁ

ˆ
¯̃ ≥

k

k

  The impulse input thus excites the system poles without creating any additional response term.

 (ii) The z-transform of m(k) is (refer to Table 2.1)

   Z [m(k)] = 
z

z –1

  Letting R(z) = 
z

z –1
, we obtain

   Y(z) = 
1

1

4

1

2

1
z z

z

z
– –

–Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

 = 
z

z z z– – ( – )
1

4

1

2
1

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

    = 

16

3
1

4

8

1

2

z

z

z

z–

–

–

+

System poles

       

 + 

8

3

1

z

z –
Excitationpole
 

  The inverse transform operation gives (refer to Table 2.1)
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   y(k) = 
16

3

1

4
8

1

2

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í

k k

–

Transient response

         
 + 

8

2
1( )k

Steady state response-
 

˘

˚

˙
˙

The transient response terms correspond to system poles excited by the input m(k). These terms vanish 

as k .

The second response term arises due to the excitation pole, and has the same nature as the input itself 

except for a modification in magnitude caused by the system’s behavior to the specified input. Since the 

input exists as k Æ , the second response term does not vanish and is called the steady-state response 

of the system.

The steady-state response can be quickly obtained without doing the complete inverse transform 

operation by use of the final value theorem (Eqn. (2.52)):

 lim
k

y(k) = lim
zÆ1

(z – 1)Y(z)

 if (z – 1)Y (z) has no poles on the boundary and outside of the unit circle in the complex z-plane.

Example 2.10

Consider a discrete-time system described by the difference equation

 y(k + 2) + 
1

4
y(k + 1) –

1

8
y(k) = 3r(k + 1) – r(k)

The system is initially relaxed (y(k) = 0 for k < 0) and is excited by the input 

 r(k) = (–1)k m (k)

Obtain the transfer function model of the discrete-time system, and therefrom, find the output y(k); k ≥ 0.

Solution The given difference equation is first converted to the equivalent form:

 y(k) + 
1

4
 y(k – 1) – 

1

8
 y(k – 2) = 3r(k – 1) – r(k – 2)

z-transformation of each term in this equation yields (using shifting theorem (2.47))

 Y(z) + 
1

4
 z–1Y(z) – 

1

8
 z–2 = 3z–1 R(z) – z–2R(z)

or

 1
1

4

1

8

1 2+Ê
ËÁ

ˆ
¯̃z z– –– Y(z) = (3z–1 – z–2) R(z)

or

 z z2 1

4

1

8
+Ê

ËÁ
ˆ
¯̃– Y(z) = (3z – 1) R(z)
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The transfer function of the given discrete-time system is

 G(z) = 
Y z

R z

z

z z

( )

( )
=

-

+ -

3 1

1

4

1

8

2

For (refer to Table 2.1; e–aT = –1)

 R(z) = Z [(–1)k] = 
z

z +1
,

 Y(z) = G(z)R(z) = 
z z

z z z

( )

( )

3 1

1

4

1

8
12

-

+ -Ê
ËÁ

ˆ
¯̃ +

  = 
z z

z z z

( )

( )

3 1

1

2

1

4
1

-

+Ê
ËÁ

ˆ
¯̃ -Ê

ËÁ
ˆ
¯̃ +

 = 

20

3
1

2

4

15
1

4

32

5
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Then

 y(k) = 
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Using the Laplace transform, we were able to show that if we applied the input r(t) = R0 cos wt to a linear 

time-invariant system with transfer function G(s), the steady-state output yss was of the form (refer to 

[155]),

 yss = lim
t

 y(t) = R0 |G( jw)| cos(w t + f)

where f = –G( jw).

A similar result can be obtained for discrete-time systems. Let G(z) be the z-transform of a discrete linear 

time-invariant system, and let the input to this system be r(kT) = R0 cos(wkT), with T sampling period. 

Then

 Z [r(kT )] = 
R z z T

z z T

0

2 2 1

( cos )

cos

-

- +

w

w
 = 

R z z T

z e z ej T j T

0 ( cos )-

-( ) -( )-

w
w w

Suppose

 G(z) = 

k z p

z

i

i

m

j

j

n j

( )

( )

;| |

-

-

<=

=

’

’
1

1

1

a

a  (2.66)
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For simplicity, we assume no repeated poles. Then

 Y(z) = G(z)R(z)

can be expressed as

 Y(z) = 
Az

z e

A z

z e

B z

zj T j T

j

jj

n

– – –

*

–w w a
+ +

=
Â

1

Now

 A = z e
R z T

z e z e
G zj T

j T j T
z e j T

–
( – cos )

– –
( )

–

w

w w

w

w

( )
( )( )

=

0

  = 
R e e e

e e
G e

j T j T j T

j T j T

j T0 0 5w w w

w w

w– .

–

–

–

+( )ÈÎ ˘̊ ( )  = 
R

G e j T0

2

w( )  = |A|e jq

The other residue A* is the complex conjugate of A. Taking the inverse transform of Y(z), we obtain

 y(k) = Ae A ej kT j kTw w+ -*

Steady-state component

         
 + Bj j

k

j

n

( )a

=
Â

1

Transient component

     

If |aj| < 1 for j = 1, 2, …, n, then

 lim
k

j j
k

j

n

B

=
( )Â a

1

 = 0

Thus,

 yss =D lim
k

y(kT ) = Ae jw kT + A*e–jw kT = 
2

2

| | ( ) ( )
A e ej kT j kTw q w q+ - ++ÈÎ ˘̊

  = 2|A| cos(wkT + q)

  = R0 G e kTj Tw w q( ) +cos( )  (2.67)

We have obtained a result that is analogous to that for continuous-time systems. For a sinusoidal input,  

the steady-state output is also sinusoidal; scaled by the gain factor |G(e jwT)|, and shifted in phase by 

q = –G(e jwT). An important difference is that in the continuous-time case we have |G( jw)|, while in 

the discrete-time case we have |G(e jwT)|. The implications of this difference are discussed later in this 

chapter.

The steady-state response is also given by (2.67) when the poles of G(z) in Eqn.(2.66) are repeated with 

|aj | < 1. This can easily be verified.

Example 2.11

The discrete-time system of Fig. 2.22 is described by the transfer function (refer to Eqn.(2.65))

 G(z) = 
Y z

R z

z

z

( )

( )

.

.
=

-
0 05

0 95
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The given input sequence is

 r(k) = R0 cos(Wk) = Re {R0e jWk}

The output is then given by

 y(k) = Re Z
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È
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 G(e jW ) = G z
z e j( )

= W  = 
0 05

0 95

.

.

e

e

j

j
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W -
 The inverse z-transform operation yields

 y(k) = Re 
0 0475

0 95
0 950.

.
( . ) (

R

e
G ej

k j

-
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ÎÍ
+

W

Transient
component

         

WW W
)R e j k

0

˘

˚
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˙

Steady-state
component

       

This equation shows that as k increases, the transient component dies out. When this happens, the output 

expression becomes

 y k

k

( )

very large

 = yss(k) = Re {G(ejW) R0 e jWk}

Let  G(e jW) = |G(e jW)| e jf; f = –G(e jW)

Then

 yss(k) = Re{R0 |G(e jW )|e j(Wk + f)} = R0 |G(e jW)| cos(Wk + f)

The steady-state response has the same form as the input (dis crete sinusoidal), but is modified in 

amplitude by |G(ejW)| and in phase by –G(e jW).

The graphs of |G(e jW)| and –G(e jW) as the frequency W is varied, are the frequency-response curves of 

the given discrete-time system. The graphs are shown in Fig. 2.23. It is obvious from these curves, that 

the given system is a low-pass digital filter.
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 7 Chapter 5 of reference [155].

 STABILITY ON THE z

 THE JURY STABILITY CRITERION

Stability is concerned with the qualitative analysis of the dynamic response of a system. This section  

is devoted to the stability analysis of linear time-invariant discrete-time systems. Stability concepts and 

definitions used in connection with continuous-time systems7 are directly applicable here.

A linear time-invariant discrete-time system described by the state variable model (refer to Eqns (2.17)),

 x(k + 1) = Fx(k) + gr(k); x(0) =D x
0

 y(k) = cx(k) + d r(k)

has the following two sources of excitation:

(i)  the initial state x0 representing initial internal energy storage; and (ii) the external input r(k).

The system is said to be in equilibrium state xe = 0, when both the initial internal energy storage and the 

external input are zero.

In the stability study, we are generally concerned with the questions listed below.

 (i) If the system with zero input (r(k) = 0; k ≥ 0) is perturbed from its equilibrium state xe = 0 at 

k = 0, will the state x(k) return to xe, remain ‘close’ to xe, or diverge from xe?

 (ii) If the system is relaxed, will a bounded input r(k); k ≥ 0, produce a bounded output y(k) for all k?

The first notion of stability is concerned with the ‘boundedness’ of the state of an unforced system in 

response to arbitrary initial state, and is called zero-input stability. The second notion is concerned 

with the boundedness of the output of a relaxed system in response to the bounded input, and is called  

Bound ed-Input, Bounded-Output (BIBO) stability.

A relaxed system (zero initial conditions) is said to be BIBO stable if for every bounded input  

r(k); k ≥ 0, the output y(k) is bounded for all k.

For a linear time-invariant system to satisfy this condition, it is necessary and sufficient that

 

k =
Â

0

|g(k)| <  (2.68)

where g(k) is the impulse response of the system.

To prove that condition (2.68) guarantees BIBO stability—i.e., sufficiency—we first establish an upper 

bound on |y(k)|.

From Eqn. (2.25), we can express the output as a convolution sum:

 y(k) = 

j =
Â

0

  g(j) r(k – j)
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If we consider the magnitude of the response y(k), it is easy to see that

 |y(k) | = g j r k j

j

( ) ( )-
=
Â

0

which is surely less than the sum of the magnitudes as given by

 |y(k)| £ 
j =
Â

0

  |g( j)| |r(k – j)|

Now take a bounded input, i.e.,

 |r(k)| < M; 0 £ k < 

where M is an arbitrary but finite positive constant. With this input,

 |y(k)| £ M 
j =
Â

0

|g( j)|

and if condition (2.68) holds true, |y(k)| is finite; hence the output is bounded and the system is BIBO 

stable.

The condition (2.68) is also necessary, for if we consider the bounded input

 r(k – j) = 

+ >
=

- <

Ï

Ì
Ô

Ó
Ô

1 0

0 0

1 0

if

if

if

g j

g j

g j

( )

( )

( )

then the output at any fixed value of k is given by

 |y(k)| = g j r k j

j

( ) ( )-
=

Â
0

 = | ( ) |g j

j =
Â

0

Thus, unless the condition given by (2.68) is true, the system is not BIBO stable.

The condition (2.68) for BIBO stability can 
be translated into a set of restrictions on the 
location of poles of the transfer function 
G(z) in the z-plane. Consider the discrete-
time system shown in Fig. 2.24. The block-

diagram analysis gives the follow ing input-

output relation for this system.

 
Y z

R z

( )

( )
 = G(z) = 

z

z a z a2
1 2+ +

or Y(z) = 
z

z a z a2
1 2+ +

 R(z)

+

+

+

+

Y z( )

R z( )

– a1

– a2

z–1 z–1
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For the impulse input, R(z) = 1. Therefore, response transform

 Y(z) = 
z

z a z a2
1 2+ +

The impulse response of the system is given by

 y(k) = g(k) = Z 
– 1 z

z a z a2
1 2+ +

È

Î
Í

˘

˚
˙

Assume that the poles of the response transform Y(z) are real and distinct:

 z2 + a1 z + a2 = (z – a1) (z – a2)

Partial fraction expansion of Y(z)/z is then of the form

 
Y z

z

( )
 = 

A

z

A

z

1

1

2

2-
+

-a a

where A1 and A2 are real constants.

This gives Y(z) = 
A z

z

A z

z

1

1

2

2-
+

-a a
; y(k) = A1(a1)k + A2(a2)k

The time functions (a1)k and (a2)k are the response functions contributed by the system poles at z = a1 and 

z = a2, respective ly. These time functions dictate the qualitative nature of the impulse response of the 

system.

 A time function (a)k either grows or decays depending on |a | > 1 or |a | < 1, respectively. The growth or 

decay is monotonic when a is positive and alternates in sign when a is negative. (a)k remains constant for 

a = 1 and alternates in sign with constant amplitude for a = – 1 (Fig. 2.25).

Consider now the situation wherein the poles of response trans form Y(z) are complex.

For the complex-conjugate pole pair at z = p = R0e jW and z = p* = R0e–jW of Y(z), the response y(k) is 

obtained as follows:

 
Y z

z

( )
 = 

A

z p

A

z p-
+

-
*

*

where A = |A| –f and A* is complex-conjugate of A.

The impulse response

      y(k) = A(p)k + A*(p*)k = A(p)k + [A(p)k]*

  = 2Re [A (p)k] = 2Re [|A| e jf R k
0 e jWk]

  = 2|A| R k
0  Re[e j(Wk + f)] = 2|A| R k

0 cos(W k + f)

Therefore, the complex-conjugate pair of poles of the response transform Y(z) gives rise to a sinusoidal 

or oscillatory response function R k
0 cos(Wk + f), whose envelope R k

0 can be constant, growing or decaying 

depending on whether R0 = 1, R0 > 1, or R0 < 1, respectively (Fig. 2.26).

For an nth-order linear discrete-time system, the response transform Y(z) has an nth-order characteristic 

polynomial. Assume that Y(z) has a real pole at z = a of multiplicity m, and partial fraction expansion of 
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z-plane

Unit circle
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z-plane

Unit circle
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Y(z) is of the form

 Y(z) = 
A z

z

A z

z

m

m

m

m

1 1 1

1

( ) ( )

( ) ( )-
+

-
+-

-a a
 +

-
+

-
A z

z

A z

z

12

2

11

( ) ( )a a
  (2.69)

where A1(m), ..., A12, A11 are real constants.

Response functions contributed by the real pole of multiplicity m can be evaluated as follows:

Consider the transform pair

  
z

z

k

-
´

a
a( )

Application of the shifting theorem (Eqn. (2.47)) gives

  
1
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kk
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Using Eqn. (2.41),
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From this pair, we may write (Eqn. (2.47)),
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Performing differentiation operation once again, we have
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In general,

  
z

z

k

k m m
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k m

( )

!( )

( )! ( )!
( )

-
´

- + -
- +

- +

a

a
m

1

1 1
1  (2.70)

It can easily be established using final value theorem (Eqn. (2.52)) that each response function in Eqn. 

(2.69) equals zero as k  if |a| < 1. However, the response functions in Eqn. (2.69) grow without 

bound for |a| ≥ 1.

Similar conclusions can be derived in case of response functions corresponding to complex-conjugate pair 

of poles (R0e ± jW) of multiplicity m. The limit of each response function as k Æ  equals zero if R0 < 1. 

The case of R0 ≥ 1 contributes growing response functions.

From the foregoing discussion it follows that the nature of the response terms contributed by the 

system poles (i.e., the poles of the transfer function G(z)), gives the nature of the impulse response g(k) 

(= Z 
–1[G(z)]) of the system. This, therefore, an swers the question of BIBO stability through condition 

(2.68), which says that for a system with transfer function G(z) to be BIBO stable, it is necessary and 



 Signal Processing in Digital Control 71

sufficient that

  

k =
Â

0

|g(k)| < 

The nature of response terms contributed by various types of poles of G(z) = 
N z

z

( )

( )D
, i.e., the roots of the 

characteristic equation D(z) = 0, has already been investigated. Observing the nature of response terms 

carefully, leads us to the following general conclusions on BIBO stability.

 (i) If all the roots of the characteristic equation lie inside the unit circle in the z-plane, then the 

  impulse response is bounded and eventually decays to zero. Therefore, 

k =
Â

0

 |g(k)| is finite and the 

  system is BIBO stable.

 (ii) If any root of the characteristic equation lies outside the unit circle in the z-plane, g(k) grows 

  without bound and 

k =
Â

0

 |g(k)| is infinite. The system is, therefore, unstable.

 (iii) If the characteristic equation has repeated roots on the unit circle in the z-plane, g(k) grows 

  without bound and 

k =
Â

0

 |g(k)| is infinite. The system is, therefore, unstable.

 (iv) If one or more nonrepeated roots of the characteristic equation are on the unit circle in the 

  z-plane, then g(k) is bounded but 

k =
Â

0

 |g(k)| is infinite. The system is, therefore, unsta ble.

An exception to the definition of BIBO stability is brought out by the following observations. Consider 

a system with transfer function

 G(z) = 
N z

z z e z ej j

( )

( )( )( )- - - -1 W W

The system has nonrepeated poles on the unit circle in the z-plane. The response functions contributed 

by the system poles at z = 1 and z = e± jW are respectively (l)k and cos(Wk + f). The terms (l)k and 

cos(Wk + f) are bounded, 

k =
Â

0

 | g(k)| is infinite and the system is unstable in the sense of our definition 

of BIBO stability.

Careful examination of the input-output relation

  Y(z) = G(z)R(z) = 
N z

z z e z ej j

( )

( )( )( )- - - -1 W W  R(z)

shows that y(k) is bounded for all bounded r(k), unless the input has a pole matching one of the system 

poles on the unit circle. For example, for a unit-step input r(k) = m(k),

  R(z) = 
z

z -1
 and Y(z) = 

zN z

z z e z ej j

( )

( ) ( )( )- - - -1 2 W W
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The response y(k) is a linear combination of the terms cos(Wk + f), (l)k, and k(l)k, and therefore, 

y(k)  as k . Such a system, which has bounded output for all bounded inputs, except for the 

inputs having poles matching the system poles, may be treated as acceptable or non-acceptable. We 

will bring the situa tions where the system has nonrepeated poles on the unit circle under the class of 

marginally stable systems.

This concept of stability is based on the dynamic evolution of the system state in response to arbitrary 

initial state representing initial internal energy storage. State variable model (refer to Eqn. (2.17))

 x(k + 1) = Fx(k) (2.71)

is the most appropriate for the study of dynamic evolution of the state x(k) in response to the initial 

state x(0).

We may classify stability as follows:

 (i) Unstable: There is at least one finite initial state x(0) such that x(k) grows thereafter without being 

bound as k .

 (ii) Asymptotically stable: For all possible initial states x(0), x(k) eventually decays to zero as k .

 (iii) Marginally stable: For all initial states x(0), x(k) re mains thereafter within finite bounds for k > 0.

Taking z-transform on both the sides of Eqn. (2.71) yields

 z X(z) – z x(0) = FX(z) where X(z) =D Z [x(k)]

Solving for X(z), we get

 X(z) = (zI – F)–1zx(0) = F(z) x(0)

where

 F (z) = (zI – F)–1z = 
( )

| |

z z

z

I F

I F

-
-

+
 (2.72a)

The state vector x(k) can be obtained by inverse transforming X(z):

 x(k) = Z 
–1[F(z)] x(0) (2.72b)

Note that for an n ¥ n matrix F, |zI – F| is an nth-order polynomial in z. Also, each element of the adjoint 

matrix (zI – F)+ is a polynomial in z of order less than or equal to (n – 1). Therefore, each element of 

F(z)/z is strictly a proper rational function, and can be expanded in a partial fraction expansion. Using 

the time-response analysis given earlier in this section, it is easy to establish that

lim ( )
k

k Æx 0

if all the roots of the characteristic polynomial |zI – F|, lie strictly inside the unit circle of the complex 

plane. In Chapter 6 we will see that under mildly restrictive conditions (namely, the system must be both 

controllable and observable), the roots of the characteristic polynomial |zI – F| are same as the poles of 

the corresponding transfer function, and asymptotic stability ensures BIBO stability and vice versa. This 

implies that stability analysis can be carried out using the BIBO stability test (or only the asymptotic 

stability test).
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We will use the following terminology and tests for stability analysis of linear time-invariant systems 

described by the trans fer function G(z) = N(z)/D(z), with the characteristic equation D(z) = 0:

 (i) If all the roots of the characteristic equation lie inside the unit circle in the z-plane, the system is 

stable.

 (ii) If any root of the characteristic equation lies outside the unit circle in the z-plane, or if there is a 

repeated root on the unit circle, the system is unstable.

 (iii) If condition (i) is satisfied except for the presence of one or more nonrepeated roots on the unit 

circle in the z-plane, the system is marginally stable.

It follows from the above discussion that stability can be established by determining the roots of the 

characteristic equa tions. All the commercially available CAD packages ([151–154]) include root-solving 

routines. However, there exist tests for determining the stability of a discrete-time system, without finding 

the actual numerical values of the roots of the charac teristic equation. 

A well-known criterion to test the location of zeros of the polynomial

 D(z) = a0 zn + a1 zn – 1 +   + an – 1 z + an

where a’s are real coefficients, is the Jury stability criterion. The proof of this criterion is quite involved 

and is given in the literature (Jury and Blanchard [98]). The criterion gives the necessary and sufficient 

conditions for the roots to lie inside the unit circle. In the following, we present the Jury stability criterion 

without proof. 

In applying the Jury stability criterion to a given characteris tic equation D(z) = 0, we construct a table 

whose elements are based on the coefficients of D(z).

Consider the general form of the characteristic polynomial D(z) (refer to Eqn. (2.60b)):

 D(z) = a0 zn + a1 zn –1 +   + ak z
n – k +   + an – 1 z + an; a0 > 0 (2.73)

The criterion uses the Jury stability table given in Table 2.2.

The Jury stability table is formed using the following rules:

 (i) The first two rows of the table consist of the coefficients of D(z), arranged in ascending order of 

power of z in row 1, and in reverse order in row 2.

 (ii) All even-numbered rows are simply the reverse of the imme diately preceding odd-numbered rows.

 (iii) The elements for rows 3 through (2n – 3) are given by the following determinants:

 bk = 
a a

a a

n n k

k

- -

+

1

0 1

; k = 0, 1, 2, ..., n – 1

 ck = 
b b

b b

n n k

k

- - -

+

1 2

0 1

; k = 0, 1, 2, ..., n – 2 (2.74)

      

 qk = 
p p

p p

k

k

3 2

0 1

-

+
 ; k = 0, 1, 2
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The procedure is continued until the (2n – 3)rd row is reached which will contain exactly three elements.

The necessary and sufficient conditions for polynomial D(z) to have no roots on and outside the unit 

circle in the z-plane are:

 D(1) > 0

 D(–1) 
>Ï

Ì
Ó

0 for even

<0 for  odd

n

n
 (2.75a)

 | an | < | a0 |

  

| | | |

| | | |

| | | |

( )

b b

c c

q q

n

n
n

-

-

>
>

>

¸

˝
Ô
Ô

˛
Ô
Ô

-

1 0

2 0

2 0

2
 

constraints  (2.75b)

The conditions on D(1), D(–1), and between a0 and an in (2.75a) form necessary conditions of stability 

that are very simple to check without carrying out the Jury tabulation.

It should be noted that the test of stability given in (2.75) is valid only if the inequality conditions provide 

conclusive re sults. Jury tabulation ends prematurely if, either the first and the last elements of a row are 

zero, or, a complete row is zero. These cases are referred to as singular cases. These problems can be 

resolved by expanding and contracting the unit circle infini tesimally, which is equivalent to moving the 

roots off the unit circle. The transformation for this purpose is

 ẑ = (1 + e)z

where e is a very small real number.

Row z0 z1 z2 z3 … zk … zn – 2 zn –1 zn

1 an an – 1 an – 2 an – 3
… an – k

… a2 a1 a0

2 a0 a1 a2 a3
… ak

… an – 2 an – 1 an

3 bn – 1 bn – 2 bn – 3 bn – 4
… bn – k – 1

… b1 b0

4 b0 b1 b2 b3
… bk

… bn – 2 bn – 1

5 cn – 2 cn – 3 cn – 4 cn – 5
… cn – k – 2

… c0

6 c0 c1 c2 c3
… ck

… cn – 2

…

2n – 5 p3 p2 p1 p0

2n – 4 p0 p1 p2 p3

2n – 3 q2 q1 q0
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This transformation can easily be applied since

 (1 + e)n zn @ (1 + ne)zn

When e is a positive number, the radius of the unit circle is expanded to (1 + e), and when e is negative, the 

radius of the unit circle is reduced to (1 – |e |). This is equivalent to moving the roots slightly. The difference 

between the number of roots found inside (or outside) the unit circle when the circle is expanded and 

contracted by e, is the number of roots on the circle [97].

Example 2.12

Consider the characteristic polynomial

 D(z) = 2z4 + 7z3 + 10z2 + 4z + 1

Employing stability constraints (2.75a), we get

 (i) D(1) = 2 + 7 + 10 + 4 + 1 = 24 > 0; satisfied

 (ii) D(–1) = 2 – 7 + 10 – 4 + 1 = 2 > 0; satisfied

 (iii) |1| < |2| ; satisfied

Next, we construct the Jury table:

Row z0 z1 z2 z3 z4

1 1 4 10 7 2

2 2 7 10 4 1

3 –3 –10 –10 –1

4 –1 –10 –10 –3

5 8 20 20

 Employing stability constraints (2.75b), we get

 (i) | –3| > | –1|; satisfied

 (ii) |8| > | 20 |; not satisfied

The system is, therefore, unstable.

Usefulness of the Jury stability test for the design of a digital control system from the stability point of 

view, is demon strated in the next chapter.

The Jury criterion is of marginal use in designing a feedback system; it falls far short of the root locus 

method discussed in Chapter 4. The root locus technique of factoring a polynomial is intrinsically 

geometric, as opposed to the algebraic approach of the Jury criterion. The root locus method enables us 

to rapidly sketch the locus of all solutions to the characteristic polynomial of the closed-loop transfer 

function. The sketch is usually only qualitative, but even so, it offers great insight by showing how the 

locations of the poles of closed-loop transfer function change as the gain is varied. As we will see in 

Chapter 4, the root locus approach has been reduced to a set of ‘rules’. Applied in an orderly fashion, 

these rules quickly identify all closed-loop pole locations.
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2.10

The sampling operation—conversion of a continuous-time function to a sequence—has earlier been 

studied in Section 2.6. We developed an impulse modulation model for the sampling operation (refer to 

Fig. 2.19).

It is important to emphasize here that the impulse modulation model is a mathematical representation 

of sampling; not a representation of any physical system designed to implement the sampling operation. 

We have introduced this representation of the sampling operation because it leads to a simple derivation 

of a key result on sampling (given in the next section) and because this approach allows us to obtain a 

transfer function model of the hold operation.

2.10.1

It is the inverse of the sampling operation—conversion of a sequence to a continuous-time function. In 

computer-controlled systems, it is necessary to convert the control actions calculat ed by the computer as 

a sequence of numbers, to a continuous-time signal that can be applied to the process.

The problem of hold operation may be posed as follows:

Given a sequence {y(0), y(1), ..., y(k), ...}, we have to con struct ya(t), t ≥ 0.

A commonly used solution to the problem of hold operation, is polynomial extrapolation. Using Taylor’s 

series expansion about t = kT, we can express ya(t) as

 ya(t) = ya(kT) +  ya (kT ) (t – kT) + 
  y kTa ( )

!2
 (t – kT)2 +  ; kT £ t < (k + 1)T (2.76)

where

  ya(kT ) =D  
dy t

dt

a

t kT

( )

=
 @ 1

T
[ya(kT) – ya((k – 1)T )]

   ya(kT ) =D  d y t

dt

a

t kT

2

2

( )

=

 @ 1

T
[  ya (kT) –  ya((k – 1)T )]

     = 
1
2T

[ ya(kT ) – 2ya((k – 1)T ) + ya ((k – 2)T)]

If only the first term in expansion (2.76) is used, the data hold is called a zero-order hold (ZOH). Here 

we assume that the func tion ya(t) is approximately constant within the sampling interval, at a value equal 

to that of the function at the preceding sam pling instant. Therefore, for a given input sequence {y(k)}, 

the output of ZOH is given by

 ya(t) = y(k); kT £ t < (k + 1)T (2.77)

The first two terms in Eqn. (2.76) are used to realize the first-order hold. For a given input sequence 

{y(k)}, the output of the first-order hold is given by

 ya(t) = y(k) + 
t kT

T

-
[y(k) – y(k – 1)] (2.78)
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It is obvious from Eqn. (2.76) that the higher the order of the derivative to be approximated, the larger will 

be the number of delay pulses required. The time-delay adversely affects the stability of feedback control 

systems. Furthermore, a high-order extrapolation requires complex circuitry and results in high costs of 

construction. The ZOH is the simplest, and most commonly used, data hold device. The standard D/A 

converters are often designed in such a way that the old value is held constant until a new conversion is 

ordered.

2.10.2

In the digital control structure of Fig. 2.2, 

discrete-time processing of continuous-

time signals is accomplished by the system 

depicted in Fig. 2.27. The system is a 

cascade of an A/D converter followed by a 

discrete-time system (computer program), 

followed by a D/A converter. Note that 

the overall system is equivalent to a 

continuous-time system, since it transforms 

the continuous-time input signal xa(t) into 

the continuous-time signal ya(t). However, 

the properties of the system are dependent 

on the choice of the discrete-time system 

and the sampling rate.

In the special case of discrete-time signal 

processing with a unit-gain algorithm, and 

negligible time delay (i.e., y(k) = x(k)), 

the combined action of the A/D converter, 

the computer, and the D/A converter can 

be described as a system that samples the 

analog signal and produces another analog 

signal that is constant over the sampling periods. Such a system is called a sample-and-hold (S/H) system. 

Input-output behavior of an S/H system is described diagrammatically in Fig. 2.28. In the following, we 

develop an idealized model for S/H systems.

S/H operations require modeling of the following two processes:

 (i) extracting the samples, and

 (ii) holding the result fixed for one period.

The impulse modulator effectively extracts the samples in the form of x(k)d (t – kT). The remaining 

problem is to construct a linear time-invariant system which will convert this impulse into a pulse of 

height x(k) and width T. The S/H may, therefore, be modeled by Fig. 2.29a, wherein the ZOH is a system 

whose re sponse to a unit impulse d (t) is a unit pulse gh0(t) of width T. The Laplace transform of the 

impulse response gh0(t) is the transfer function of the hold operation, namely,

Fig. 2.27 

Fig. 2.28 
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 Gh0(s) = L 
–1[gh0(t)] =

0

Ú gh0(t) e–stdt = 

0

T

Ú e–st dt = 
1 - -e

s

sT

 (2.79)

Figure 2.29b is a block diagram representation of the transfer function model of the S/H operation.

ZOH

(a)

(b)

T
x ta( ) x t*( ) y ta( )

d( )t

1 1

0t tT

g th0( )

X sa( )
T

Y sa( )
G sh0( ) =

1 – e
s

–sT

X s*( ) =
k = 0

x k e( ) –skT

Fig. 2.29 

In a majority of practical digital operations, S/H functions are performed by a single S/H device. It 

consists of a capacitor, an electronic switch, and operational amplifiers (Fig. 2.30). Op amps are needed 

for isolation; the capacitor and switch cannot be connected directly to analog circuitry because of the 

capacitor’s effect on the driving waveform.

Since the voltage between the inverting and non-inverting inputs of an op amp is measured in microvolts, 

we can approximate this voltage to zero. This implies that the voltage from the inverting input (– input) 

to ground in Fig. 2.30 is approximately VIN; therefore, the output of first op amp is approximately VIN.

When the switch is closed, the capacitor rapidly charges to VIN, and VOUT is equal to VIN approximately. 

When the switch opens, the capacitor retains its charge; the output holds at a value of VIN.

+
+ Hold

capacitor

Sample/hold
pulse

Control
logic

–
–

VIN

VOUT

Fig. 2.30 
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If the input voltage changes rapidly while the switch is closed, the capacitor can follow this voltage 

because the charging time-constant is very short. If the switch is suddenly opened, the capacitor voltage 

represents a sample of the input voltage at the instant the switch was opened. The capacitor then holds 

this sample until the switch is again closed and a new sample is taken.

As an illustration of the application of a 

sampler/ZOH circuit, consider the A/D 

conversion system of Fig. 2.31. The two 

subsystems in this figure correspond to 

systems that are availa ble as physical  

devices. The A/D converter converts a voltage (or current) amplitude at its input into a binary code 

represent ing a quantized amplitude value closest to the amplitude of the input. However, the conversion 

is not instantaneous. Input signal variation during the conversion time of the A/D converter (typical 

conversion times of commercial A/D units range from 100 nsec to 200 m sec), can lead to erroneous 

results. For this reason, a high performance A/D conversion system includes an S/H device, as shown in 

Fig. 2.31.

Although an S/H is available commercially as one unit, it is advantageous to treat the sampling and 

holding operations sepa rately for analytical purposes, as has been done in the S/H model of Fig. 2.29b. 

This model gives the defining equation of the sampling process and the transfer function of the ZOH. It 

may be emphasized here that X*(s) is not present in the physical system but appears in the mathematical 

model; the sampler in Fig. 2.29 does not model a physical sampler and the block does not model a 

physical data hold. However, the combination does accurately model a sampler/ZOH device.

2.11

We can get further insight into the process of sampling by relat ing the spectrum of the continuous-time 

signal to that of the dis crete-time sequence, which is obtained by sampling.

Let us define the continuous-time signal by xa(t). Its spectrum is then given by Xa(jw), where w is the 

frequency in radians per second. The sequence x(k) with value x(k) = xa(kT) is derived from xa(t) by 

periodic sampling. Spectrum of x(k) is given by X(e jW) where the frequency W has units of radians per 

sample interval.

The Laplace transform expresses an analog signal xa (t) as a continuous sum of exponentials est; 

s = s + jw. The Fourier transform expresses xa(t) as a continuous sum of exponentials e jwt. Similarly 

z-transform expresses a sequence x(k) as a discrete sum of phasors z–k; z = re jW. Fourier transform 

expresses x(k) as a discrete sum of exponentials ejWk [31].

The Fourier transforms of xa(t) and x(k) are, respectively,

 Xa(jw) = Ú xa(t) e –jw t dt (2.80)

 X(e jW) = 
k = -
Â x(k) e –jWk (2.81)

Fig. 2.31 
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We use the intermediate function x*(t)—the impulse modulated xa(t)—to establish a relation between 

Xa( jw) and X(ejW).

The Fourier transform of x*(t), denoted by X* (jw), is (refer to Eqn. (2.30)) given by 

 X*(jw) = x t e dtj t*( ) -Ú w  = x k t kT e dt

k

j t( ) ( )d w-
È

Î

Í
Í

˘

˚

˙
˙=

-ÂÚ
0

  = d w( ) ( )t kT x k e dtj t

k

- -

= -
ÚÂ  = 

k = -
Â x(k)e–jkwT (2.82)

(The summation over the interval –  to  is allowed, since x(k) = 0 for k < 0). We have arrived at our 

first intermediate result. By comparing Eqn. (2.82) with Eqn. (2.81), we observe that

 X(e jW ) = X j
T

*( )w
w =

W  (2.83a)

X(e jW ) is thus a frequency-scaled version of X*(jw) with the frequency scaling specified by

 W = wT (2.83b)

We now determine X*( jw) in terms of the continuous-time spectrum Xa(jw). From Eqn. (2.30), we have

 x*(t) = 
k =
Â

0

x(k) d (t – kT) = 
k =
Â

0

xa(t) d (t – kT) = xa(t) 
k =
Â

0

 d (t – kT)

The summation over the interval –  to  is allowed since xa(t) = 0 for t < 0.

Therefore, x*(t) = xa(t) 
k = -
Â d(t – kT)

A nonsinusoidal periodic signal y(t) of period T0 can be expanded through the Fourier series [31] as

 y(t) = c en
jn t

n

w0

=-
Â ; w0 = 2p /T0

 cn = 
1

0
2

2

0

0

0

T
y t e jn t

T

T

( )

/

/

-

-
Ú w

dt 

Since 
k = -
Â d (t – kT) is a periodic function of period T, it can be expressed in terms of the following 

Fourier series expansion.

 
k = -
Â d(t – kT) = 

n= -
Â cn e

j
n t

T

2p

where

 cn = 
1

2

2

2

T
t kT e dt

k

j
nt

T

T

T

d

p

( )

/

/

-
È

Î

Í
Í

˘

˚

˙
˙= -

-

-
ÂÚ

  = 
1

2

2

2

T
t e dt

j
nt

T

T

T

d

p

( )

/

/
-

-
Ú  = 

1 0

T
e j-

 = 
1

T
 for all n
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Substituting this Fourier series expansion into the impulse modulation process, we get

 x*(t) = xa(t) 

k = -
Â d (t – kT)

  = xa(t) 
1

2

T
e

n

j
nt

T

= -
Â

p

= 
1

T
n= -
Â xa(t) e

j
nt

T

2p

The continuous-time spectrum of x*(t) is then equal to

 X*( jw) = Ú  x*(t)e–jwt dt = 
1

2

T
x t e e dta

j
nt

T

n

j t( )

p
w

= -

-ÂÚ
È

Î

Í
Í

˘

˚

˙
˙

Interchanging the order of summation and integration, we obtain

 X*( jw) = 
1

2

T
x t e dt

n

a

j
n

T
t

= -

- -Ê
ËÁ

ˆ
¯̃Â Ú

È

Î

Í
Í

˘

˚

˙
˙

( )
w

p

  = 
1 2

T
X j j

n

T
n

a

= -
Â -Ê

ËÁ
ˆ
¯̃

w
p

 (2.84a)

where Xa( jw) is the Fourier transform of xa(t).

We see from this equation that X*( jw) consists of periodically repeated copies of Xa(jw), scaled by 1/T. 

The scaled copies of Xa(jw) are shifted by integer multiples of the sampling frequency

 ws = 
2p

T
 (2.84b)

and then superimposed to produce X*( jw).

Equation (2.84a) is our second intermediate result. Combining this result with that given by Eqn. (2.83a), 

we obtain the fol lowing relations:

 X*( jw) = 
1 2

T
X j j

k

T
k

a

= -
Â -Ê

ËÁ
ˆ
¯̃

w
p

 (2.85a)

 X(e jW) = X j
T

*
WÊ

ËÁ
ˆ
¯̃

 = 
1 2

T
X j

T
j

k

T
a

k

W
-Ê

ËÁ
ˆ
¯̃

= -
Â p

  (2.85b)

2.11.1

While sampling a continuous-time signal xa(t) to produce the sequence x(k) with values x(k) = xa(kT), 

we want to ensure that all the information in the original signal is retained in the samples. There will be 

no information loss if we can exactly recover the continuous-time signal from the samples. To determine 

the condition under which there is no information loss, let us consider xa(t) to be a band-limited signal 

with maximum frequency wm, i.e.,

 Xa(jw) = 0 for |w | > wm (2.86)

as shown in Fig. 2.32a. Figure 2.32b shows a plot of X*(jw) under the condition

 
w

s

2
 = 

p

T
 > wm (2.87a)
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Figure 2.32c shows the plot of X(ejW), which is derived from Fig. 2.32b by simply scaling the frequency 

axis.

(a)

(b)

(c)

(d)

X ja( )w
1

0–wm wm w

X j*( )w
1/T

–2p
T – p

T

–wm wm0
p
T

–2p
T

2p
T

w

X e( )jW

1/T

0– 2p
–p

–wmT wmT 2p
p

X j*( )w
1/T

– p
T p

T

2p
T

0

w1

wm w

2p
T

w– 1

w– m

W

Fig. 2.32 

X *( jw) is seen to be a periodic function with period 2p/T (X(e jW) is a periodic function with period 

2p). The spectrum X*(jw) for |w | £ p/T is identical to the continuous-time spectrum Xa(jw) except for 

linear scaling in amplitude (the spec trum X(e jW) for |W | £ p is identical to the continuous-time spectrum 

Xa( jw), except for linear scaling in amplitude and fre quency). The continuous-time signal xa(t) can be 

recovered from its samples x(k) without any distortion by employing an ideal low-pass filter (Fig. 2.33).

Figure 2.32d shows a plot of X*( jw) under the condition

 
ws

2
 = 

p
w

T
m<  (2.87b)

The plot of X(ejW) can easily be derived from Fig. 2.32d by scaling the frequency axis.
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It is obvious from Fig. 2.32d that the 

shifted versions of Xa( jw) overlap; 

X*(jw) in the range |w | £ p/T can be 

viewed as being found by superimposing 

onto this frequency range, the behavior 

of the shifted versions of Xa( jw).

Consider an arbitrary frequency point w1 

in Fig. 2.32d which falls in the region 

of the overlap of shifted versions of Xa( jw). The frequency spectrum at w = w1 is the sum of two 

components. One of these, the larger one in the figure, has a value equal to Xa(jw1). The other component 

comes from the spectrum centered at 2p /T, and has a value equal to X j
T

a

2
1

p
w-Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

. Note that the 

high frequency 
2

1

p
w

T
-Ê

ËÁ
ˆ
¯̃

 is ‘folded in’ about the folding frequency p/T; and appears as low frequency 

at w1. The frequency 
2

1

p
w

T
-Ê

ËÁ
ˆ
¯̃

 which shows up at w1 after sampling, is called in the trade as the ‘alias’ 

of w1. The super imposition of the high-frequency behavior onto the low frequency is known as frequency 

folding or aliasing. Under the condition given by (2.87b), the form of X*( jw) in the frequency range |w | 

£ p/T is no longer similar to Xa(jw); therefore, the true spectral shape Xa( jw) is no longer recoverable by 

low-pass filtering (refer to Fig. 2.33). In this case, the reconstructed signal xr(t) is related to the original 

signal xa(t) through a distortion intro duced by aliasing and therefore, there is loss of information due to 

sampling.

Example 2.13

We consider a simple example to illustrate the effects of alias ing.

Figure 2.34a shows a recording of the temperature in a thermal process. From this recording we observe 

that there is an oscilla tion in temperature with a period of two minutes.

X ja( )w T X*( )jw
T

G j( )w

X jr ( )w

0 p
T

–p
T

w

Fig. 2.33 

2 min

1.8 min

18 min

(a)

(b)

Fig. 2.34 
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The sampled recording of the temperature obtained by measurement of temperature after every  

1.8 minutes is shown in Fig. 2.34b. From the sampled recording, one might believe that there is an 

oscillation with a period of 18 minutes. There seems to be loss of information because of the process of 

sampling.

The sampling frequency is ws = 2p/1.8 = p/0.9 rad/min, and the frequency of temperature oscillation is 

w0 = 2p/2 = p rad/min. Since w0 is greater than ws/2, it does not lie in the passband of a low-pass filter 

with a cut-off frequency ws/2. However, the frequency w0 is ‘folded in’ at ws – w0 = p/9 rad/min which 

lies in the passband of the low-pass filter. The reconstructed signal has, therefore, a period of 18 minutes, 

which is the period of the sampled recording.

2.11.2

A corollary to the aliasing problem is the sampling theorem stated below.

Let xa(t) be a band-limited signal with Xa(jw) = 0 for |w | > wm. Then xa(t) is uniquely determined from 

its samples x(k) = xa(kT) if the sampling frequency ws =Ê
ËÁ

ˆ
¯̃

2p

T
 > 2wm, i.e., the sampling frequen cy must 

be at least twice the highest frequency present in the signal.

We will discuss the practical aspects of the choice of sampling frequency in Section 2.13.

2.12

Digital control systems usually require the transformation of discrete-time sequences into analog signals. 

In such cases, we are faced with the converse problem from that of sampling xa(t) to obtain x(k). The 

relevant question now becomes—how can xa(t) be recovered from its samples.

We begin by considering the unaliased spectrum of X*(jw) shown in Fig. 2.32b. Xa(jw) has the same 

form as X*(jw) over 
-

£ £
p

w
p

T T
. Xa(jw) can be recovered from X*( jw) by a low-pass filter.

Consider the ideal low-pass filter shown in Fig. 2.33. It is characterized by G(jw) defined below.

 G(jw) = 
T

T T
for 

otherwise

-
£ £È

Î

Í
Í
Í

p
w

p

0

 (2.88)

Note that the ideal filter given by Eqn. (2.88) has a zero phase characteristic. This phase characteristic 

stems from our requirement that any signal whose frequency components are total ly within the passband 

of the filter, be passed undistorted.

 We will need the following basic mathematical background in this section [31].

The Fourier transform pair:

 F [ y(t)] = Y(jw) =D  y t e dtj t( ) -Ú w
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 F 
 –1[Y( jw)] = y(t) =D 

1

2p
w wwY j e dj t( )Ú

Shifting theorem:

 F  y t
T

-Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

2
 = e– jwT/2 Y( jw)

The impulse response of the ideal low-pass filter is given by inverse Fourier transformation.

 g(t) = 1

2p Ú G( jw) e jwt dw = 
1

2p
ww

p

p

Te dj t

T

T

-
Ú

/

/

  = 
T

j t
e ej t T j t T

2p
p p( )/ /- -

 = 
sin /

/

p

p

t T

t T
 (2.89)

Figure 2.35 shows a plot of g(t) versus t. Notice that the response extends from t = –  to t = . This 

implies that there is a response for t < 0 to a unit impulse applied at t = 0 (i.e., the time response that 

begins before an input is applied). This cannot be true in the physical world. Hence, such an ideal filter 

is physically unrealizable.

t

g t( )

1

– 3T – T 0 3TT

Fig. 2.35 

We consider polynomial holds as an approximation to the ideal low-pass filter. The ZOH was considered 

in Section 2.10, and its transfer function was derived to be (Eqn. (2.79)),

 Gh0(s) = 
1- -e

s

sT

Its frequency response is consequently given by

 Gh0( jw) = 
1- -e

j

j Tw

w
 = 

e e e

j

j T j T j T- --w w w

w

/ / /( )2 2 2

  = T
T

T
e j Tsin ( / )

/

/w

w
w2

2

2-
  (2.90)

Plot of 
sin ( / )

/

w

w

T

T

2

2
 versus w will be of the form shown in Fig. 2.35 with sign reversals at w  = 

2 4p p

T T
, , º
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(i.e., w = ws, 2ws, … ). The sign reversals amount to a phase shift of –180º (it can be taken as +180º as 

well) at w = kws; k = 1, 2, …

Equation (2.90) can, therefore, be expressed as

 Gh0( jw) = |Gh0( jw) | –Gh0( jw)

where

 |Gh0( jw)| = T 
sin( / )

/

w

w

T

T

2

2
 (2.91a)

and

 –Gh0( jw) = 
-

-Ê
ËÁ

ˆ
¯̃

wT

2
180°  at w = 

2p k

T
; k = 1, 2, ... (2.91b)

A plot of magnitude and phase characteristics of ZOH are shown in Fig. 2.36. The ideal low-pass filter is 

shown by dashed lines in Fig. 2.36a. The phase of the ideal filter, at all frequencies, is zero.

It is obvious that the hold device does not have the ideal filter characteristics.

 (i) The ZOH begins to attenuate at frequencies considerably below ws/2.

 (ii) The ZOH allows high frequencies to pass through, although they are attenuated.

Fig. 2.36 
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 (iii) The factor e– jwT/2 in Eqn. (2.90) corresponds to a delay of T/2 in the time domain. This follows 

from the shifting theorem of Fourier transforms. Therefore, the linear phase characteristic 

introduces a time delay of T/2. When ZOH is used in a feedback system, the lag characteristic of 

the device degrades the degree of system stability.

The higher-order holds, which are more sophisticated and which better approximate the ideal filter, 

are more complex and have more time delay than the ZOH. As the additional time delay in feedback 

control systems decreases the stability margin or even causes instability, the higher-order holds are rarely 

justified in terms of improved performance, and therefore, the zero-order hold is widely used in practice.

In practice, signals in control systems have frequency spectra consisting of low-frequency components 

as well as high-frequency noise components. Recall that all signals with frequency higher than ws/2 

appear as signals of frequencies between 0 and ws/2 due to the aliasing effect. Therefore, high-frequency 

noise will be folded in and will corrupt the low-frequency signal containing the desired information.

To avoid aliasing, we must either choose the sampling frequency high enough (ws > 2wm, where wm 

is the highest-frequency component present in the signal) or use an analog filter ahead of sampler 

(refer to Fig. 2.2) to reshape the frequency spectrum of the signal (so that the frequency spectrum for  

w > (1/2)ws is negli gible), before the signal is sampled. Sampling at very high fre quencies introduces 

numerical errors. Anti-aliasing filters are, therefore, useful for digital control applications.

The synthesis of analog filters is now a very mature subject area. Extensive sets of tables exist, which 

give, not only the frequency and phase response of many analog prototypes, but also the element values 

necessary to realize those prototypes. Many of the design procedures for digital filters, have been 

developed in ways that allow this wide body of analog filter knowledge, to be utilized effectively.

2.13

Every time a digital control algorithm is designed, a suitable sampling interval must be chosen. Choosing 

a long sampling inter val reduces both the computational load and the need for rapid A/D conversion, and 

hence the hardware cost of the project.

However, as the sampling interval is increased, a number of potentially degrading effects start to become 

significant. For a particular application, one or more of these degrading effects set the upper limit for 

the sampling interval. The process dynamics, the type of algorithm, the control requirement and the 

characteristics of input and noise signals, all interact to set the maximum usable value for T.

There is also a lower limit for the sampling interval. Digital hardware dictates the minimum usable value 

for T.

We will discuss some of the factors which limit the choice of sampling interval. Some empirical rules for 

the selection of sampling interval are also reported.
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2.13.1

The sampling theorem states that a continuous-time signal whose frequency spectrum is bounded by 

upper limit wm, can be completely reconstructed from its samples when the sampling frequency is 

ws > 2wm. There are two problems associated with the use of the sampling theorem in practical control 

systems.

 (i) The frequency spectra of real signals do not possess strictly defined wm. There are almost always 

frequency components outside the system bandwidth. Therefore, the selection of the sampling 

frequency ws using the sampling theorem on the basis of system bandwidth (wb = wm) is risky, as 

frequency components outside wb will appear as low-frequency signals of frequencies between 0 

and ws /2 due to the aliasing effect, and lead to loss of information.

 (ii) The ideal low-pass filter needed for perfect reconstruction of a continuous-time signal from its 

samples is not physically realizable. Practical filters, such as the ZOH, introduce recon struction 

errors because of the limitations of their operation.

Figure 2.28 clearly indicates that the accuracy of the zero-order hold as an extrapolating device depends 

greatly on the sampling frequency ws. The accuracy improves with increase in sampling frequency.

In practice, signals in control systems include low-frequency components carrying useful information, 

as well as high-frequency noise components. The high-frequency components appear as low-frequency 

signals (of frequencies between 0 and ws/2) due to the aliasing effect, causing a loss of information.

To avoid aliasing, we use the analog filter ahead of sampler (refer to Fig. 2.2) to reshape the frequency 

spectrum of the signal, so that the frequency spectrum for w > (1/2)ws is negligible. The cut-off frequency 

ws /2 of the anti-aliasing filter must be much higher than the system bandwidth, otherwise the anti-

aliasing filter becomes as significant as the system itself, in determining the sampled response.

Due to the conversion times and the computation times, a digital algorithm contains a dead-time that is 

absent from its analog counterpart. Dead-time has a marked destabilizing effect on a closed-loop system 

due to the phase shift caused.

A practical approach of selecting the sampling interval is to determine the stability limit of the closed-

loop control system, as sampling interval T is increased. For control system applica tions, this approach 

is more useful than the use of the sampling theorem for the selection of sampling interval. In the later 

chapters of this book, we will use stability tests, root-locus techniques, and frequency-response plots to 

study the effect of the sampling interval on closed-loop stability.

A number of digital control algorithms are derived from analog algorithms by a process of discretization. 

As we shall see in the next section, in the transformation of an algorithm, from contin uous-time to 
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discrete-time form, errors arise and the character of the digital algorithm differs from that of its analog 

counter part. In general, these errors occurring during the discretiza tion process, become larger as the 

sampling interval increases.

This effect should rarely be allowed to dictate a shorter sam pling interval, than would otherwise have 

been needed. We will see in Chapter 4 that the direct digital design approach allows a longer sampling 

interval without the introduction of unacceptable errors.

As the sampling interval T becomes very short, a digital system does not tend to the continuous-time 

case, because of the finite word-length. To visualize this effect, we can imagine that as a signal is sampled 

more frequently, adjacent samples have more similar magnitudes. In order to realize the beneficial effects 

of shorter sampling, longer word-lengths are needed to resolve the differences between adjacent samples.

Excessively fast sampling (T Æ 0) may also result in numerical ill-conditioning in implementation of 

recursive control algo rithms (such as the PID control algorithm—discussed in the next section).

2.13.2

Practical experience and simulation results have produced a number of useful approximate rules for the 

specification of minimum sampling rates.

 (i) The recommendations given in the adjacent table 

for the most common process variables follow 

from the experience of process industries.

 (ii) Fast-acting electromechanical systems require 

much shorter sampling intervals, perhaps down 

to a few milliseconds.

 (iii) A rule of thumb says that, a sampling period 

needs to be selected that is much shorter than 

any of the time constants, in the continuous-time plant, to be controlled digitally. The sam pling 

interval, equal to one tenth of the smallest time-constant, or the inverse of the largest real pole (or 

real part of complex pole), has been recommended.

 (iv) For complex poles with the imaginary part wd, the frequency of transient oscillations, corresponding 

to the poles, is wd. A convenient rule suggests sampling at the rate of 6 to 10 times per cycle. 

Thus, if the largest imaginary part in the poles of the continuous-time plant is 1 rad/sec, which 

corresponds to transient oscillations with a frequency of 1/6.28 cycles per second, T = 1 sec may 

be satisfactory.

 (v) Rules of thumb based on the open-loop plant model, are risky under conditions where the high 

closed-loop performance is forced from a plant with a low open-loop performance. The rational 

choice of the sampling rate, should be based on an understanding of its influence on the closed-

loop performance of the control system. It seems reasonable that the highest frequency of 

inter  est, should be closely related to the 3dB-bandwidth of the closed-loop system. The selection 

Type of variable
Sampling time 

(seconds)

Flow 1–3

Level 5–10

Pressure 1–5

Temperature 10–20
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of sampling rates can then be based on the bandwidth of the closed-loop system. Reasonable 

sampling rates are 10 to 30 times the bandwidth.

 (vi) Another rule of thumb, based on the closed-loop performance, is to select sampling interval T 

equal to, or less than, one tenth of the desired settling time.

2.14

Most of the industrial processes that we are called upon to control are continuous-time processes. 

Mathematical models of continuous-time processes are usually based around differential equations or, 

equivalently, around transfer functions in the operator s. A very extensive range of well-tried methods for 

control system analysis and design are in the continuous-time form.

To move from the continuous-time form to the discrete-time form requires some mechanism for time 

discretization (we shall refer to this mechanism simply as discretization). In this section, principles and 

various methods of discretization will be presented. An understanding of various possible approaches 

helps the formation of a good theoretical foundation for the analysis and design of digital control systems.

The main point is to be aware of the significant features of discretization and to have a rough quantitative 

understanding of the errors that are likely to be introduced by various methods. We will shortly see that 

none of the discretization methods preserves the characteristics of the continuous-time system exactly.

The specific problem of this section is: given a transfer func tion G(s), what discrete-time transfer function 

will have approx imately the same characteristics?

We present four methods for solution of this problem.

 (i) Impulse-invariant discretization

 (ii) Step-invariant discretization

 (iii) Discretization based on finite-difference approximation of derivatives

 (iv) Discretization based on bilinear transformation

2.14.1

If we are given a continuous-time impulse response ga(t), we can consider transforming it to a discrete-

time system with impulse response g(k) consisting of equally spaced samples of ga(t) so that

 g(k) = ga(t) | t = kT = ga(kT)

where T is a (positive) number to be chosen as part of the dis cretization procedure.

The transformation of ga(t) to g(k) can be viewed as impulse modulation (refer of Fig. 2.19) giving 

impulse-train representation g*(t) to the samples g(k):

 g*(t) = 
k =
Â

0

 g(k)d(t – kT ) (2.92)

From the discussion in Section 2.11, and specifically Eqns (2.85), it follows that

 G*(jw) = 
1

T
k = -
Â  G j j

k

T
a w -Ê

ËÁ
ˆ
¯̃

2p
 (2.93a)



 Signal Processing in Digital Control 91

 G(e jW) = 1 2

T
G j

T
j

k

T
a

k

W
-Ê

ËÁ
ˆ
¯̃

=-
Â p  (2.93b)

w, in radians/second, is the physical frequency of the continu ous-time function and W = wT, in radians, 

is the observed fre quency in its samples.

Thus, for a discrete-time system obtained from a continuous-time system through impulse invariance, 

the discrete-time frequency response G(e jW ) is related to the continuous-time frequency response 

Ga( jw) through replication of the continuous-time fre quency response and linear scaling in amplitude 

and frequency. If Ga( jw) is band-limited and T is chosen so that aliasing is avoid ed, the discrete-time 

frequency response is then identical to continuous-time frequency response, except for linear scaling in 

amplitude and frequency.

Let us explore further the properties of impulse invariance. Applying the Laplace transform to  

Eqn. (2.92), we obtain (refer to Eqn. (2.32b))

 G*(s) = 

k =
Â

0

 g(k) e–skT (2.94a)

On the other hand, the z-transform of g (k) is, by definition,

 G(z) = 

k =
Â

0

 g(k) z –k (2.94b)

Comparing Eqns (2.94a) and (2.94b), it follows that

 G z

z esT

( )

=

 = G*(s) (2.95a)

Rewriting Eqn. (2.93a) in terms of the general transform variable s, gives a relationship between G*(s) 

and Ga(s):

 G*(s) = 
1 2

T
G s

k

T
a

k

-Ê
ËÁ

ˆ
¯̃

= -
Â p

 (2.95b)

Therefore, G z

z esT

( )

=

 = 
1 2

T
G s

k

T
a

k

-Ê
ËÁ

ˆ
¯̃

= -
Â p

 (2.95c)

 We note that impulse invariance corresponds to a transformation between G*(s) and G(z) represented by 

the mapping

 z = esT= e(s ± jw)T = esT – ± wT (2.96)

between the s-plane and the z-plane. 

In the following, we investigate in more detail the mapping z = esT. We begin by letting ga(t) = e–atm(t); 

a > 0. The Laplace transform of this function is

 Ga (s) = 
1

s a+
 (2.97a)

The starred transformation is (refer to Eqn. (2.32b))

 G*(s) = e eakT kTs

k

- -

=
Â

0

= 
e

e e

sT

sT aT- -  (2.97b)
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Under the mapping z = esT, G*(s) is mapped into the z-transform

 G(z) = 
z

z e aT- -  (2.97c)

The function Ga(s) has a pole at s = – a. The poles of G*(s) are at s = – a ± j2mp / T; m = 0, 1, 2, .... Thus 

G*(s) has a countably infinite number of poles, one of which is the pole of Ga(s) at s = – a, as shown in 

Fig. 2.37a. We see that the poles of G*(s) consist of a pole of Ga(s) and copies of this pole, repeated at 

intervals of 2p/T. The same would be true for any other function whose Laplace transform exists. The poles 

of the Laplace transform will lie in a strip of width 2p/T centered on the real axis of the s-plane. This strip 

is called the primary strip. These poles are then repeated in complementary strips, above and below the 

primary strip (refer to Fig. 2.37a). 

Suppose we map the primary strip of the s-plane into the z-plane. We begin by mapping the points of 

a vertical line s = s + jw, where s < 0 is fixed. Under the mapping z = esT, a point on this line maps to

 z = e e ej T T j T( )s w s w+ =

The term esT is a real number that can be thought of as a scaling factor for the unit phasor e jwT . 

If 
-

£ £
p

w
p

T T
, and s is fixed with s < 0, then the mapping is a circle with radius less than one. If 

s = 0, the line segment, maps onto the unit circle. For clarity, the circles in Fig. 2.37b have been divided 

Fig. 2.37 z
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into dashed and solid portions; the solid portions correspond to mapping for 0 £ w £ p/T and the dashed 

portions correspond to mapping for - £ £
p

w
T

0 .

The following points are worth noting at this juncture.

 (i) The left half of the primary strip in the s-plane maps onto the interior of the unit circle, in the 

z-plane.

 (ii) The imaginary axis between –jp /T and jp /T associated with primary strip in the s-plane, maps 

onto the unit circle in the z-plane.

 (iii) The right half of the primary strip in the s-plane, maps onto the region, exterior to the unit circle, 

in the z-plane.

 (iv) The same pattern holds for each of the complementary strips.

  The fourth point needs further discussion. We consider

   ga(t) = cos (wt)

  The corresponding Laplace transform is

   Ga(s) = 
s

s

s

s j s j2 2+ - +w w w
=

( )( )

  and the z-transform is

   G (z) = 
z z T

z e z ej T j T

( cos )

( )( )

-

- - -
w

w w

The s-plane poles: s = jw and s = – jw, in the primary strip are mapped to the z-plane poles: z = e jwT and 

z = e – jwT, respectively. However, these z-plane poles are also maps of s-plane poles: s = jw + 2p /T and 

s = – jw + 2p /T; s = jw –2p /T and s = – jw – 2p /T; s = jw + 4p /T and s = –jw + 4p/T; s = jw – 4p /T 

and s = – jw – 4p/T;..., in the complementary strips. The z-plane poles: z = ejwT and z = e – jwT, cannot 

distinguish the poles in the primary strip from the poles in the complementary strips. Thus the largest 

frequency we can distinguish is w = p/T, which is half of the sampling frequency 2p/T.

While sampling a continuous-time signal to produce the discrete-time sequence, we want to ensure that 

all the information in the original signal is retained in the samples. There will be no information loss if 

we can exactly recover the continuous-time signal from the samples. To determine the condition under 

which there is no information loss, let us consider the continuous-time signal to be band-limited signal 

with maximum frequency wm. From Fig. 2.37, we observe that there is no information loss if

p
w

T
m<

This, in fact, is the sampling theorem.

In summary, the use of impulse invariance corresponds to convert ing the continuous-time impulse  

response to a discrete-time impulse response through sampling. To avoid aliasing, the proce dure is 

restricted to transforming band-limited frequency re sponses. Except for aliasing, the discrete-time 

frequency re sponse is a replication of the continuous-time frequency response, linearly scaled in 

amplitude and frequency.
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Although useful for discretizing band-limited analog systems, the impulse-invariance method is 

unsuccessful for discretizing trans fer functions Ga(s) for which |Ga( jw)| does not approach zero for 

large w. In these cases, an appropriate sampling rate cannot be found to prevent aliasing.

To overcome the problem of aliasing, we need a method in which the entire jw-axis in the s-plane, maps 

uniquely onto the unit circle in the z-plane. This is accomplished by the bilinear transformation method, 

described later in this section.

For a given analog system Ga(s), the impulse-invariant discrete-time system is obtained following the 

procedure given below:

 (i) Obtain the impulse response,

   ga(t) = L – 1[Ga(s)]

 (ii) Select a suitable sampling interval and derive samples g(k) from ga(t),

   g(k) = ga(t)|t = kT

 (iii) Obtain z-transform of the sequence g(k),

   G(z) = Z [g(k)]

  The three steps given above can be represented by the following relationship:

   G(z) = Z [L –1[Ga(s)]|t = kT] (2.98a)

  This z-transform operation is commonly indicated as

   G(z) = Z [Ga(s)] (2.98b)

  Single factor building blocks of the Laplace and z-transform pairs are given in Table 2.1. Expanding 

any Ga(s) into partial fractions, G(z) can be found by use of this table.

Example 2.14

With the background on analog design methods, the reader will appreciate the value of being able to 

correlate particular pat terns in the s-plane with particular features of system be havior. Some of the useful 

s-plane patterns, which have been used in analog design, are the loci of points in the s-plane with (i) 

constant damping ratio z, and (ii) constant undamped natural frequency wn. In this example, we translate 

these patterns in the primary strip of the s-plane onto the z-plane using the basic rela tion z = e sT, where 

T is some chosen sampling period.

Consider a second-order system with transfer function

 Ga(s) = 
K

s sn n
2 22+ +zw w

where z = damping ratio, and wn = undamped natural frequency.

The characteristic root locations in the s-plane are

 s1, s2 = – zwn ± jwn 1 2-z  = – zw n ± jwd

Figure 2.38a shows a locus of the characteristic roots, with z held constant and wn varying. Figure 2.38b 

shows a locus with wn held constant and z varying. The loci in Figs 2.38a and 2.38b, correspond to an 

underdamped second-order system.
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Define the sampling frequency by

 ws = 2p /T

Corresponding to each point s = s + jw in the primary strip of the s-plane, there is a point

 z = exp[(s + jw)2p /ws]

in the z-plane.

 (i) Mapping of constant damping ratio loci

  A point on the constant-z line in the second quadrant (Fig. 2.38a), can be expressed as

   s = s + jwd = – zwn + jwn 1 2-z

  Since cotq = 
zw

w
n

d

 = 
zw

w z

n

n 1 2-
 = 

z

z1 2-
,

  the s-plane point may be described by the relation

   s = – wd cotq + jwd

Constant-z
locus

–zwn

jwd

jwjw

T 2
=

Constant-wn

locus

Constant-w

w p
n

n

locus

( = 6 /10 )T

w pd /2T=

Constant-z

locus (z = 0.6)

(a)

Im

ReRe

11

Im

(b)

wsp

q

s

jwn

jwd

–zwn s

wd = 0

w pd /T=

(c) (d)

j j

 Fig. 2.38 z wn s z
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  The z-plane relation becomes

   z = exp [(– wd cotq + jwd) 2p /ws] = exp [((– 2p cotq)/ws) wd] exp [j(2p/ws) wd]

  where wd varies from 0 to ws/2.

  As per this equation, for a constant value of z (and hence cotq ), z is a function of wd only. The constant 

damping ratio line in the s-plane maps into the z-plane as a logarithmic spiral (except for q = 0º and 

q = 90º). The portion of z-line between wd = 0 and wd = ws/2 corresponds to one half revolution 

of the logarithmic spiral in the z-plane. Mapping of one representative constant-z line is shown 

in Fig. 2.38c.

 (ii) Mapping of constant undamped natural frequency loci

  A point on the constant-wn locus in the second quadrant (Fig. 2.38b), can be expressed as

   s = s + jwd = – zwn + jwd

  It lies on the circle given by

   s2 + w 2
d = w 2

n

  For points in the second quadrant,

   s = – w wn d
2 2-

  The locus of constant-wn in the z-plane is given by the relation

   z = e
n d dj T- - +( )w w w2 2

  where wd varies from 0 to ws/2.

  Mapping of one representative constant-wn locus is shown in Fig. 2.38d.

2.14.2

The basis for impulse invariance is to choose an impulse response for the discrete-time system that is 

similar to the impulse re sponse of the analog system. The use of this procedure is often motivated not so 

much by a desire to preserve the impulse-response shape, as by the knowledge that if the analog system 

is band-limited, then the discrete-time frequency response will closely approximate the continuous-time 

frequency response.

In some design problems, a primary objective may be to control some aspect of the time response, such 

as the step response. In such cases, a natural approach might be to discretize the continuous-time system 

by waveform-invariance criteria. In this subsection, we consider the step-invariant discretization.

The step-invariant discrete-time system is obtained by placing a unit step on the input to the analog 

system Ga(s), and a sampled unit step on the input to the discrete-time system. The transfer function G(z) 

of the discrete-time system is adjusted, until the output of the discrete-time system represents samples of 

the output of the analog system. The input to the analog system Ga(s) is m(t)—a unit-step function. Since 

L [m(t)] = 1/s, the output y(t) of the analog system is given by
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 y(t) = L 
–1

G s

s

a ( )Ï
Ì
Ó

¸
˝
˛

Output samples of the discrete-time system are defined to be

 y(kT) = L 
–1

G s

s

a

t kT

( )Ï
Ì
Ó

¸
˝
˛ =

The z-transform of this quantity yields the z-domain output of the discrete-time system. This gives

 Y(z) = Z L
-

=

Ï
Ì
Ó

¸
˝
˛

È

Î
Í
Í

˘

˚
˙
˙

1 G s

s

a

t kT

( )
 (2.99a)

Since Z [m(k)] =
z

z -1
, where m(k) is the unit-step sequence, the output y(k) of the discrete-time 

system G(z) is given by

 Y(z) = G(z) 
z

z -
Ï
Ì
Ó

¸
˝
˛1

 (2.99b)

Comparing Eqn. (2.99b) with Eqn. (2.99a), we obtain

 G(z) = (1 – z–1) Z L
-

=

Ê
ËÁ

ˆ
¯̃
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 (2.100a)

or  G(z) = (1 – z–1) Z
G s

s

a ( )Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙  (2.100b)

 Notice that Eqn. (2.100b) can be rewritten as follows:

 G(z) =
-È

Î
Í
Í

˘

˚
˙
˙

-
Z

1 e

s
G s

sT

a ( )   (2.100c)

This can easily be established.

Let L 
–1 G s

s

a ( )È

ÎÍ
˘

˚̇
 = g1(t), and Z [g1(kT)] = G1(z)

Then L 
–1 e

G s

s

sT a-È

ÎÍ
˘

˚̇

( )
 = g1(t – T ), and Z [g1(kT – T)] = z–1 G1(z)

Therefore,

 Z 
G s

s
e

G s

s

a sT a( ) ( )
-È

ÎÍ
˘

˚̇
-  = (1 – z–1) Z 

G s

s

a ( )È

ÎÍ
˘
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This establishes the equivalence of Eqns (2.100b) and (2.100c).

The right-hand side of Eqn (2.100c) can be viewed as the z-transform of the analog system Ga(s), 

preceded by zero-order hold (ZOH). Introducing a fictitious sampler and ZOH for analytical purposes, 

we can use the model of Fig. 2.39 to derive a step-invariant equivalent of analog systems. For obvious 

reasons, step-invariant equivalence is also referred to as ZOH equivalence. In the next chapter, we will 

use the ZOH equivalence to obtain dis crete-time equivalents of the plants of feedback control systems.
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x t( ) x t*( )
T

1 – e–sT

s
G s( )a

y t( )

Fig. 2.39 Ga s

Equivalent discrete-time systems obtained by the step-invariance method, may exhibit the frequency 

folding phenomena and may, therefore, present the same kind of aliasing errors as found in impulse-

invariance method. Notice, however, that the presence of 1/s term in Ga(s)/s causes high-frequency 

attenuation. Conse quently, the equivalent discrete-time system obtained by the step-invariance method, 

will exhibit smaller aliasing errors than that obtained by the impulse-invariance method.

As for stability, the equivalent discrete-time system obtained by the step-invariance method is stable if 

the original continuous-time system is a stable one (refer to Review Example 6.2).

Example 2.15

Figure 2.40 shows the model of a plant driven by a D/A converter. In the following, we derive the 

transfer function model relating y(kT) to r(kT).

r kT( )
D/A G s( ) =a

0.5 ( + 4)s

( + 1)s ( + 2)s

y t( )

Fig. 2.40 

The standard D/A converters are designed in such a way, that the old value of the input sample is held 

constant until a new sample arrives. The system of Fig. 2.40 can, therefore, be viewed as an analog 

system Ga(s), preceded by zero-order hold, and we can use ZOH equivalence to obtain the transfer 

function model relating y(kT) to r(kT).

 Zero-order hold equivalent (step-invariant equivalent) of Ga(s) can be deter mined as follows: 

Since 
1

s
G sa ( )  = 

0 5 4

1 2

. ( )

( ) ( )

s

s s s

+
+ +

 = 
1 1 5

1

0 5

2s s s
-

+
+

+
. .

we have (refer to Table 2.1)

 Z
1

s
G sa ( )

È

ÎÍ
˘

˚̇
 = 

z

z

z

z e

z

z eT T-
-

-
+

-- -1

1 5 0 5
2

. .

From Eqn. (2.100b),

 G(z) = 
z

z

z

z

z

z e

z

z eT T

-
-

-
-

+
-

È

ÎÍ
˘

˚̇- -
1

1

1 5 0 5
2

. .
 = 1

1 5 1 0 5 1
2

-
-

-
+

-

-- -
. ( ) . ( )z

z e

z

z eT T

Let the sampling frequency be 20 rad/sec, so that

 T = 
2

20

p
 = 0.31416 sec;  e–T = 0.7304; e–2T = 0.5335
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With these values, we get the following step-invariant equivalent of the given analog system:

 G(z) = 
0 17115 0 04535

1 2639 0 38972

. .

. .

z

z z

-

- +

2.14.3

Another approach to transforming a continuous-time system into a discrete-time one is to approximate 

derivatives in a differential equation representation of the continuous-time system by finite differences. 

This is a common procedure in digital simulations of analog systems, and is motivated by the intuitive 

notion that the derivative of a continuous-time function, can be approximated by the difference between 

consecutive samples of the signal to be differentiated. To illustrate the procedure, consider the first-order 

differential equation

 
dy t

dt
ay t

( )
( )+  = r(t) (2.101)

The backward-difference method consists of replacing r(t) by r(k), y(t) by y(k); and the first derivative 

dy(t)/dt by the first backward-difference

 
dy t

dt t kT

( )

=
 = 

y k y k

T

( ) ( )- -1
 (2.102)

This yields the difference equation

 
y k y k

T

( ) ( )- -1
 + ay(k) = r(k) (2.103)

If T is sufficiently small, we would expect the solution y(k) to yield a good approximation to the samples 

of y(t).

To interpret the procedure in terms of a mapping of continuous-time function Ga(s) to a discrete-time 

function G(z), we apply the Laplace transform to Eqn. (2.101) and z-transform to Eqn. (2.103), to obtain

 sY(s) + aY(s) = R(s) ; so that Ga(s) = 
Y s

R s

( )

( )
 = 

1

s a+

 
1 1-Ê

Ë
Á

ˆ

¯
˜

-z

T
Y(z) + a Y(z) = R(z) ; so that G(z) = 

Y z

R z

( )

( )
 = 

1

1 1-Ê

Ë
Á

ˆ

¯
˜ +

-z

T
a

Comparing Ga(s) with G(z), we see that

 G(z) = G sa

s z T

( )

( ) /= - -1 1

Therefore, s = 
1 1- -z

T
; z = 

1

1- sT
 (2.104)

is a mapping from the s-plane to the z-plane when the backward-difference method is used to discretize 

Eqn. (2.101).
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The stability region in the s-plane can be mapped by Eqn. (2.104) into the z-plane as follows. Noting 

that the stable region in the s-plane is given by Re(s) < 0, the stability region in the z-plane under the 

mapping (2.104), becomes

 Re 
1 1-Ê

Ë
Á

ˆ

¯
˜

-z

T
 = Re 

z

T z

-Ê
ËÁ

ˆ
¯̃

1
 < 0

Writing the complex variable z as a + jb, we may write the last inequality as

 Re 
a b

a b

+ -
+

Ê
ËÁ

ˆ
¯̃

j

j

1
 < 0

or Re 
( )a b a b

a b

+ - -( )
+

È

Î
Í
Í

˘

˚
˙
˙

j j1

2 2
 = Re 

a a b b

a b

2 2

2 2

- + +

+

È

Î
Í
Í

˘

˚
˙
˙

j
 = 

a a b

a b

2 2

2 2

- +

+
 < 0

which can be written as

 (a – 1/2)2 + b2 < (1/2)2

The stable region in the s-plane can thus be mapped into a circle with center at a = 1/2, b = 0 and radius 

equal to 1/2, as shown in Fig. 2.41a.

Fig. 2.41
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The backward-difference method is simple and will produce a stable discrete-time system for a stable 

continuous-time system. Also, the entire s-plane imaginary axis is mapped once and only once onto the 

small z-plane circle; the folding or aliasing problems do not occur. The penalty is a ‘warping’ of the 

equiva lent s-plane poles, as shown in Fig. 2.41b. This situation is reflected in the relationship between 

the exact z-transformation, and the backward-difference approximation.

Consider a pole in z-plane at z = e jaT. Inverse mapping of this pole to the s-plane, using the transformation 

s = ln z/T, gives s = ja (shown in Fig. 2.41b). Inverse mapping of the pole in the z-plane at z = e jaT to the 

s-plane, using the backward-difference approximation s = (1– z –1)/T, gives s = jâ = (1 – e –jaT)/T (also 

shown in Fig. 2.41b).

Thus a nonlinear relationship or ‘warping’:

 jâ = (1 – e –jaT)/T (2.105)

exists between the two poles ja and jâ in the s-plane. Note that for small aT, using the first two terms of 

the expansion of the exponential in Eqn. (2.105), yields

  ja
T

jaTˆ ( )@ - -[ ]1
1 1

       @ ja

The ‘warping’ effect is thus negligible for relatively small aT (about 17° or less).

Let us now investigate the behavior of the equivalent discrete-time system when the derivative dy(t)/dt in 

Eqn. (2.101), is replaced by forward difference:

 
dy t

dt t kT

( )

=

 = 
y k y k

T

( ) ( )+ -1

This yields the following difference equation approximation for Eqn. (2.101):

 
y k y k

T

( ) ( )+ -1
 + ay(k) = r(k) (2.106)

Applying Laplace transform to Eqn. (2.101) and z-transform to Eqn. (2.106), we obtain

 
Y s

R s

( )

( )
 = Ga(s) = 

1

s a+
 (2.107a)

and 
Y z

R z

( )

( )
 = G(z) = 

1

1z

T
a

-
+

 (2.107b)

The right-hand sides of Eqns (2.107a) and (2.107b) become identical if we let

 s = 
z

T

-1
 (2.108)

We may consider Eqn. (2.108) to be the mapping from the s-plane to the z-plane, when the forward-

difference method is used to discre tize Eqn. (2.101).

One serious problem with the forward-difference approximation method is regarding stability. The left- 

hand side of the s-plane is mapped into the region Re
z

T

-Ê
ËÁ

ˆ
¯̃

1
< 0 or Re (z) < 1. This mapping shows 
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that the poles of the left half of the s-plane, may be mapped outside the unit circle in z-plane. Hence the 

discrete-time system obtained by this method may become unstable.

Consider the continuous-time system (2.101):

  y (t) = – ay(t) + r(t) (2.109a)

or y(t) = y(0) – a y d r d

t t

( ) ( )t t t t

0 0

Ú Ú+  (2.109b)

In numerical analysis, the procedure known as the rectangular rule for integration proceeds by 

approximating the continuous-time function by continuous rectangles, as illustrated in Fig. 2.42, and 

then adding their areas to compute the total integral. We thus approximate the area as given below.

 (i) Forward rectangular rule for integration

   y t dt

k T

kT

( )

( )-
Ú
1

 @ [y(k – 1)]T (2.110a)

 (ii) Backward rectangular rule for integration

   y t dt

k T

kT

( )

( )-
Ú
1

 @ [y(k)]T (2.110b)

With the forward rule for integration, the continuous-time system (2.109) is converted to the following 

recursive algorithm:

  y(k)  = y(k – 1) – aTy(k – 1) + Tr (k – 1)

The z-transformation of this equation gives

 Y(z) = z–1 Y(z) – aT z–1 Y(z) + T z–1 R(z)

or  
Y z

R z

( )

( )
 = 

1

1z

T
a

-
+

2T 2T3T 3T

y t( ) y t( )

0 T t tT0

(a) (b)

 Fig. 2.42 
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Laplace transformation of Eqn. (2.109a) gives the transfer func tion of the continuous-time system:

 
Y s

R s

( )

( )
 = 

1

s a+

The forward rectangular rule for integration thus results in the s-plane to z-plane mapping:

 s = 
z

T

-1

which is same as the one obtained by forward-difference approxi mation of derivatives (Eqn. (2.108)).

Similarly, it can easily be established that the backward rectangular rule for integration results in s-plane 

to z-plane mapping, which is same as the one obtained by backward-difference approximation of 

derivatives (Eqn. (2.104)).

Example 2.16

The simplest formula for the PID or three-mode controller is the addition of the proportional, integral, and 

derivative modes:

 u(t) = Kc 
e t

T
e t dt T

de t

dtI
D

t

( ) ( )
( )

+ +
È

Î

Í
Í

˘

˚

˙
˙Ú1

0

 (2.111)

where

 u = controller output signal;

 TI = integral or reset time;

 e = error (controller input) signal;

 TD = derivative or rate time; and

 K = controller gain.

For the digital realization of the PID controller, it is necessary to approximate each mode in Eqn. (2.111) 

using the sampled values of e(t).

The proportional mode requires no approximation since it is a purely static part:

 uP(k) = Kc e(k)

The integral mode may be approximated by the backward rectangular rule for integration. If S(k – 1) 

approximates the area under the e(t) curve up to t = (k – 1)T, then the approximation to the area under the 

e(t) curve up to t = kT is given by (refer to Eqn. (2.110b))

 S(k) = S(k – 1) + Te(k)

A digital realization of the integral mode of control is as follows:

 uI(k) = 
K

T

c

I

 S(k)

where S(k) = sum of the areas under the error curve = S(k – 1) + Te(k)
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The derivative mode may be approximated by the backward-difference approximation:

 
de t

dt t kT

( )

=
 = 

e k e k

T

( ) ( )- -1

Therefore, uD(k) = 
K T

T

c D
 [e(k) – e(k – 1)]

Bringing all the three modes together, results in the following PID algorithm:

 u(k) = uP(k) + uI(k) + uD(k)

  = Kc e k
T

S k
T

T
e k e k

I

D( ) ( ) [ ( ) ( )]+ + - -
È

Î
Í

˘

˚
˙

1
1  (2.112a)

where S(k) = S(k – 1) + Te(k) (2.112b)

We can directly use the s-plane to z-plane mapping given by Eqn. (2.104) to obtain the discrete equivalent 

(2.112) of the PID con troller (2.111).

The PID controller (2.111), expressed in terms of operator s, is given by the input-output relation

 U(s) = Kc 1
1

+ +
È

Î
Í

˘

˚
˙

T s
T s

I
D  E(s) (2.113a)

The mapping (2.104):

 s = 
1 1- -z

T
 

corresponds to backward-difference approximation of derivatives. This mapping transforms Eqn. 

(2.113a) to the following system:

 U(z) = Kc 1
1

1
1

1

1+
-

Ê
ËÁ

ˆ
¯̃

+ -
È

Î
Í

˘

˚
˙-

-T

T z

T

T
z

I

D ( )  E(z) (2.113b)

This is the input-output relation of the PID controller in terms of operator z. By the inverse transform 

operation, we can express individual control modes by difference equations:

 (i)  uP(k) = Kc e(k)

 (ii)  uI(k) – uI(k – 1) = 
K T

T

c

I

e(k)

  or uI(k) = uI(k – 1) + 
K T

T

c

I

 e(k) = 
K

T

c

I

 S(k)

  where S(k) = S(k – 1) + T e(k)

 (iii)  uD(k) = 
K T

T

c D
 [e(k) – e(k – 1)]

Bringing all the three modes together results in the PID algo rithm given by Eqns (2.112).
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2.14.4

The technique, based on finite-difference approximation to differential equations, for deriving a 

discrete- time system from an analog system, has the advantage that z-transform of the discrete-time 

system, is trivially derived from the Laplace trans form of the analog system by an algebraic substitution. 

The disadvantages of these mappings are that jw-axis in the s-plane, generally does not map into the 

unit circle in the z-plane, and (for the case of forward-difference method) stable analog systems may not 

always map into stable discrete-time systems.

A nonlinear one-to-one mapping from the s-plane to the z-plane which eliminates the disadvantages 

mentioned above and which preserves the desired algebraic form is the bilinear8 transforma tion defined 

by

 s = 
2 1

1T

z

z

-
+

Ê
ËÁ

ˆ
¯̃  (2.114)

This transformation is invertible with the inverse mapping given by

 z = 
1 2

1 2

+
-

( / )

( / )

T s

T s
 (2.115)

The bilinear transformation also arises from a particular approx imation method—the trapezoidal rule 

for numerically integrating differential equations.

Let us consider a continuous-time system for which the describing equation is (Eqn. (2.101))

  y(t) = – ay(t) + r(t) (2.116a)

or y(t) = y(0) – a y d r d

tt

( ) ( )t t t t+ ÚÚ
00

 (2.116b)

Laplace transformation of Eqn. (2.116a) gives the transfer func tion of the continuous-time system.

 
Y s

R s

( )

( )
 = Ga(s) = 

1

s a+
Applying bilinear transformation (Eqn. (2.114)) to this transfer 

function, we obtain

 G(z) = 
1

2 1

1T

z

z
a

-
+

Ê
ËÁ

ˆ
¯̃

+

In numerical analysis, the procedure known as the trapezoidal 

rule for integration proceeds by approximating the continuous-

time function by continuous trapezoids, as illustrated in Fig. 

2.43, and then adding their areas to compute the total integral. 

We thus approximate the area

( )

( )

k T

kT

y t dt

-
Ú
1

1

2
by [y(k) + y(k – 1)]T

 8 The transformation is called bilinear from consideration of its mathematical form.

y(t)

0 T 2T 3T t

Fig. 2.43 
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With this approximation, Eqn. (2.116b) can be converted to the following recursive algorithm:

 y(k) = y(k – 1) – 
aT

2
 [y(k) + y(k – 1)] + 

T

2
 [r(k) + r(k – 1)]

The z-transformation of this equation gives

 Y(z) = z–1 Y(z) – 
aT

2
 [Y(z) + z–1 Y(z)] + 

T

2
 [R(z) + z–1 R(z)]

or 
Y z

R z

( )

( )
 = 

T
z

z
aT

z

2
1

1
2

1

1

1 1

( )

( ) ( )

+

- + +

-

- -
 = 

1

2 1

1T

z

z
a

-
+

Ê
ËÁ

ˆ
¯̃

+

This result is identical to the one obtained from the transfer function of the continuous-time system by 

bilinear transforma tion.

The nature of bilinear transformation is best understood from Fig. 2.44, which shows how the s-plane 

is mapped onto the z-plane. As seen in the figure, the entire jw-axis in the s-plane, is mapped onto the 

unit circle in the z-plane. The left half of the s-plane is mapped inside the unit circle in the z-plane, 

and the right half of the s-plane is mapped outside the z-plane unit circle. These properties can easily 

be established. Consider, for example, the left half of the s-plane defined by Re(s) < 0. By means of 

Eqn. (2.114), this region of the s-plane is mapped onto the z-plane region defined by

 Re 
2 1

1T

z

z

-
+

Ê
ËÁ

ˆ
¯̃
 < 0  or  Re 

z

z

-
+

Ê
ËÁ

ˆ
¯̃

1

1
 < 0

By taking the complex variable z = a + jb, this inequality becomes

 Re 
z

z

-
+

Ê
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ˆ
¯̃

1

1
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a b

a b

+ -
+ +

Ê
ËÁ

ˆ
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j
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1

1
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( ) ( )
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a b a b

- + + -
+ + + -
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˘

˚
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1 1

1 1

j j

j j
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a b b

a b

2 2

2 2

1 2

1

- + +

+ +

È

Î
Í
Í

˘

˚
˙
˙

j

( )
 < 0

Im

Unit circle

s-plane z-plane

Re

jw

s

Fig. 2.44 s z
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which is equivalent to

 a2 – 1 + b2 < 0 or a2 + b2 < 12

which corresponds to the inside of the unit circle in z-plane. The bilinear transformation thus produces a 

stable discrete-time system for a stable continuous-time system.

Since the entire jw-axis of the s-plane is mapped once and only once onto the unit circle in the z-plane, 

the aliasing errors inherent with impulse-invariant transformations are eliminated. However, there is 

again a warping penalty.

Consider a pole in z-plane at z = e jaT, shown in Fig. 2.45c. Its inverse mapping in the s-plane using 

the transformation s = ln z/T, gives s = ja (shown in Fig. 2.45a). Inverse mapping of the z-plane pole 

(Fig. 2.45b) at z = e jaT, to the s-plane obtained using the bilinear transformation s
T

z

z
=

-
+

1 1

1
, is also 

shown in Fig. 2.45a.

aT rad

(b)

Exact map

Approximate map

2
T
z – 1

j2
T
tanaT

2

ja

= –2/T

–p/T

p/T

Im( )s

s =
z – 1

–s Re( )s Im( )z

Im( )z

Re( )z

| | = 0s

| |<2/s T
| |>2/s T

aT rad

Re( )z

| | = 0s

| |<2/s T

| |>2/s T

s z T= ln /

(a) (c)

Fig. 2.45 s z  
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(a)

(b)
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+
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T

e k( )
D z( )
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Gh0( )s G( )s
y( )t

T

r t( )
D s( ) e– /2sT G( )s
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 s = ja
e

Te

jaT

jaT
ˆ =

-

+

2 1

1
 = 

2 2 2

2 2

e e

Te e

jaT jaT

jaT jaT

/ /

/ /

-

+

-

-

  = j
T

aT2

2
tan  (2.117)

Equation (2.117) is a measure of the frequency distortion or warping caused by the bilinear transformation. 

Whereas the exact mapping gives the s-plane pole at s = ja, approximate mapping gives the pole at 

s j
T

aT
=

2

2
tan . This mapping will be correct only if 

aT

2
<< p , i.e., if w

p
s

T
a= >>

2
. When 

aT

2
17< ∞, 

or about 0.3 rad, then j
T

aT
a

2

2
tan @ . This means that in frequency domain, the bilinear transformation 

is good only for small values wT /2.

Some additional information about the nature of the bilinear mapping can be obtained, by considering 

the mapping of s-plane poles, s = – s  +  jw. Figure 2.45a shows the regions of poles with s >
2

T
, and 

s <
2

T
; the vertical line through - = -s

2

T
 in the left half of the s-plane, maps to a closed curve inside 

the unit circle in z-plane (Fig. 2.45b). The approximations introduced by bilinear mapping are clearly 

visible when we compare this mapping with exact mapping z = esT shown in Fig. 2.45c.

Example 2.17

A method that has been frequently used by practicing engineers to approximate a sampled-data system 

by a continuous-time system, relies on the approximation of the sample-and-hold operation by means of 

a pure time delay. Consider the sampled-data system of Fig. 2.46a. The sinusoidal steady-state transfer 

function of the zero-order hold is (refer to Eqn. (2.90))
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 Gh0( jw) = T 
sin ( / )

/

/w

w
wT

T
e j T2

2

2-

The sinusoidal steady-state transfer function of the impulse-modulation model of the open-loop system 

is given by (refer to Eqn. (2.84a))

 Gh0G*(jw) = 
1 2 2

0
T

G j j
n

T
G j j

n

T
h

n

w
p

w
p

-Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

= -
Â

Since in most control systems, G( jw) has low-pass filter charac teristics, we can approximate the right-

hand side of the equation given above just by the n = 0 term. At low frequencies, the magnitude of 

sin(wT/2)/(wT/2) is approximately unity; therefore (refer to Eqn. (2.90))

 Gh0G*( jw) = G(jw) e–jwT/2

This means that the sample-and-hold operation can be approximated by a pure time delay of one half the 

sampling period T. Figure 2.46b shows the continuous-time approximation of the sampled-data system.

The approximating continuous-time system can be used for the design of the discrete-time system as 

illustrated by the follow ing example.

Consider that the transfer function of the controlled process of the system shown in Fig. 2.46a is

 G(s) = 
10

1 0 5 1 0 1 1 0 05( . ) ( . ) ( . )+ + +s s s

We wish to design a digital controller for the process so that the closed-loop system acquires a damping 

ratio of 0.4 without loss of steady-state accuracy. We select sampling time T = 0.04 sec for the proposed 

digital controller. Our approach will be to first design an analog controller D(s) for the approximating 

continuous time system in Fig. 2.46b (with G(s) = 10/[(1+ 0.5s)(1+ 0.1s)(1+ 0.05s)]), that meets the 

given design specifica tions and then discretizing D(s) to obtain the digital controller D(z).

The plant model for the design of D(s) becomes

 GP(s) = 
10

1 0 5 1 0 1 1 0 05

0 02e

s s s

s-

+ + +

.

( . ) ( . ) ( . )

Since the design is handled more conveniently in frequency domain in the presence of time delay, we 

can translate damping ratio specification into equivalent phase margin specification and then proceed. 

Using the standard frequency-domain design procedure9, we obtain the following analog compensator:

 D(s) = 
0 67 1

2 1

. s

s

+
+

The bandwidth of the compensated system is wb = 10 rad/sec. Note that the sampling rate ws = 2p/T = 

157 rad/sec is factor of 16 faster than wb; therefore, our selection of T = 0.04 sec is quite ‘safe’ (refer to 

Section 2.13).

Using the bilinear transformation given by Eqn. (2.114), we obtain

 D(z) = 

0 67
50 1

1
1

2
50 1

1
1

.
( )

( )

z

z

z

z

-
+

È
ÎÍ

˘
˚̇

+

-
+

È
ÎÍ

˘
˚̇

+
 = 

34 5 32 5

101 99

. .z

z

-
-

 = 
U z

E z

( )

( )

 9 Chapters 8–10 of reference [155].
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which leads to

 u(k) = 0.9802 u(k – 1) + 0.3416 e(k) – 0.3218 e(k – 1), where e(k) = r(k) – y(k).

This is the proposed algorithm for the digital control system of Fig. 2.46a. To make sure that with the 

proposed design, the system will behave as expected, we must analyze the system response. Methods for 

analysis of digital control systems are covered in the next chapter.

In this section, we have presented several methods for obtaining discrete-time equivalents for continuous-

time systems. The re sponse between sampling points is different for each discretization method used. 

Furthermore, none of the equivalent discrete-time systems can have complete fidelity. The actual 

(continuous-time) response between any two consecutive sampling points, is always different from the 

response between the same two consecutive sampling points that is taking place in each equivalent 

discrete-time system, no matter what method of dis cretization is used.

It is not possible to say which equivalent discrete-time system is best for any given analog system, since 

the degree of distor tions in transient response and frequency response characteris tics, depends on the 

sampling frequency, the highest frequency component involved in the system, transpor tation lag present 

in the system, etc. It may be advisable for the designer to try a few alternate forms of the equivalent 

discrete-time systems, for the given analog system.

REVIEW EXAMPLES

Review Example 2.1

Consider a first-order discrete-time system described by the difference equation

 y(k + 1) + a1 y(k) = b0 r(k + 1) + b1 r(k) (2.118)

The input is switched to the system at k = 0 (r (k) = 0 for k < 0); the initial state y(–1) of the system is 

specified. Obtain a simulation diagram for the system.

Solution State variable models of discrete-time systems can easily be translated into digital computer 

simulation diagrams. Methods of conversion of difference equation models to state variable models, is 

presented in Chapter 6.

It can easily be verified that the following state variable model represents the given difference equation 

(2.118):

 x(k + 1) = – a1x(k) + r(k) 

 y(k) = (b1 – a1b0) x(k) + b0r(k) (2.119)

In terms of the specified initial condition y(–1) of the difference equation model (2.118), the initial state 

x(0) of the state variable model (2.119) is given by

 x(0) = 
-
-

a

b a b

1

1 1 0

 y(–1)
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Note that if the first-order discrete-time system is relaxed before switching on the input r(k) at k = 0, the 

initial condi tion y(–1) = 0 for the model (2.118), and equivalently the initial condition x(0) = 0 for the 

model (2.119).

Figure 2.47 shows a simulation diagram for the given discrete-time system.

Fig. 2.47 

Review Example 2.2

Consider a discrete-time system

 y(k + 2) + 
1

4
 y(k + 1) – 

1

8
 y(k) = 3r(k + 1) – r(k) (2.120)

with input

 r(k) = (–1)k m(k)

and initial conditions

 y(–1) = 5, y(–2) = – 6

Find the output y(k); k ≥ 0.

Solution The difference equation (2.120) is first converted to the equiva lent form

 y(k) + 1
4

 y(k – 1) – 1
8

 y(k – 2) = 3r(k – 1) – r(k – 2) (2.121)

z-transformation of the linear difference equation (2.121) re quires the following results:

 Z [y(k – 1)] = 
k =
Â

0

 y(k – 1)z–k

  = y(–1) + z–1 
k =
Â

0

y(k)z–k = y(–1) + z–1 Y(z) (2.122a)

 Z [y(k – 2)] = y(–2) + z–1[y(–1) + z–1 Y(z)]  

  = y(–2) + z–1 y(–1) + z–2 Y(z) (2.122b)
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z-transformation of each term in Eqn. (2.121) yields

 Y(z) + 1
4

 [z–1 Y(z) + y(–1)] – 1
8

 [z–2 Y(z) + z–1 y(–1) + y(–2)]

  = 3 [z–1 R(z) + r(–1)] – [z–2 R(z) + z–1 r(–1) + r(–2)]

Since r(–1) = r(–2) = 0, we have

 1 1
4

1 1
8

2+ -( )- -z z  Y(z) = (3z–1 – z–2)R(z) + 5
8

 z–1 – 2

or  z z2 1
4

1
8

+ -( )  Y(z) = (3z – 1) R(z) + 5
8

 z – 2z2

Therefore, Y(z) = 
3 1 2

2 1
4

1
8

2 5
8

2 1
4

1
8

z

z z
R z

z z

z z

-

+ -
+

- +

+ -
( )

For (refer to Example 2.10)

 R(z) = Z  [(–1)k] = 
z

z +1
,

 Y(z) = 
z z

z z z

z z

z z

( )

( )

3 1

1

2

2 1
4

1
8

2 5
8

2 1
4

1
8

-

+ -( ) +
+

- +

+ -
 

  = 
- + -

+( ) -( ) +

2

1

3 13
8

2 3
8

1
2

1
4

z z z

z z z( )

Expanding Y(z)/z into partial fractions,

 
Y z

z

( )
 = 

- + -

+( ) -( ) +

2

1

2 13
8

3
8

1
2

1
4

z z

z z z( )
 = 

9
2

1
2

1
10

1
4

32
5

1z z z+
+

-

-
+

+

-

Then (refer to Table 2.1)

 y(k) = 9
2

1
2

1
10

1
4

32
5

1-( ) - ( ) - -È
ÎÍ

˘
˚̇

k k k k( ) ( )m

Review Example 2.3

Consider a second-order discrete-time system described by the difference equation

 y(k + 2) – 3
2

 y(k + 1) + 1
2

 y(k) = r(k + 1) + 1
2

 r(k)

 The system is initially relaxed (y(k) = 0 for k < 0) and is excited by the input

 r(k) = 
0 0

1 0

;

;

k

k

=
>

Ï
Ì
Ó

Shifting the difference equation by two sampling intervals, we obtain

 y(k) – 3
2

 y(k – 1) + 1
2

 y(k – 2) = r(k – 1) + 1
2

 r(k – 2)
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z-transformation of this equation gives

 Y(z) = 
z z

z z

- -

- -

+

- +

1 1
2

2

3
2

1 1
2

21
 R(z) = 

z

z z

+

-( ) -

1
2

1
2

1( )
 R(z)

The system modes are 1
2( )k

 and (l)k. The mode 1
2( )k

 decays as k , and the mode (l)k is constant 

(i.e., it remains within finite bounds for all k).

The input r(k) = m(k – 1)

Therefore, R(z) = z–1 z

z -
È

Î
Í

˘

˚
˙

1
 = 

1

1z -

For this input, Y(z) = 
z

z z

+

-( ) -

1
2

1
2

21( )

It is observed that excitation pole matches one of the system poles. Though the system modes, as well as 

the input, do not grow with increasing k, the effect of the pole-matching is to give rise to a time function, 

in forced response of the system, that grows indefinitely as k . This is evident from the inverse 

transform of Y(z) (refer to Table 2.1)

 Y(z) = 
A

z

1

1

2
-

 + 
A

z

2

21( )-
 + 

A

z

3

1-

 A1 = z Y z
z

-Ê
ËÁ

ˆ
¯̃

=

1

2 1

2

( )  = 4

 A2 = ( ) ( )z Y z
z

- =1 2

1
 = 3

 A3 = 
d

dz
z Y z

z

[( ) ( )]-
=

1 2

1

 = – 4

Therefore,

 Y(z) = 
4 3

1

4

11
2

2z z z-
+

-
+

-
-( )

 y(k) = 4 1
2

1 1 13 1 1 4 1( ) + - -
- - -k k kk( ) ( ) ( )

  = 4 1
2

1
3 1 4 1( ) + - - ≥

-k
k k( ) ;

  = 4 3 7 11
2

1( ) + - ≥
-k

k k;
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Review Example 2.4

Solve for y(k) the equation:

 y(k) = r(k) – r(k – 1) – y(k – 1), k ≥ 0

where  r(k) = 
1; k

k

even

0; odd

Ï
Ì
Ó

; y(–1) = r(–1) = 0

Solution The z-transformation of the given equation yields

 Y(z) = 
1

1

1

1

-

+

-

-
z

z
R z( )  = 

z

z

-
+

1

1
 R(z)

For the given input,

 R(z) = 1 + z–2 + z–4 +   = 
1

1 2- = -x x z

 = 
1

1 2- -z
 = 

z

z

2

2 1-

Thus Y(z) = 
z

z

z

z

-
+

Ê
ËÁ

ˆ
¯̃ -

1

1 1

2

2
 = 

z

z z

2

2 2 1+ +

We can expand Y(z) into a power series by dividing the numerator of Y(z) by its denominator:

  )z z z

z z z

2 2

1 2 3

2 1

1 2 3 4

+ +

- + - +- - -
 

 z2 + 2z + 1

 – 2z – 1

 – 2z – 4 – 2z–1

 3 + 2z–1

 3 + 6z–1 + 3z–2

 – 4z–1 – 3z–2

  

Therefore, Y(z) = 1 – 2z –1 + 3z–2 – 4z–3 +  

and the values of y(k) are {1, – 2, 3, – 4, …}

Review Example 2.5

Through this simple example, we explain the phenomenon of aliasing.

Suppose the sampling rate is 10 Hz; ws = 20 p rad/sec, T = 0.1 sec. The primary strip in the s-plane 

corresponding to this sampling rate is shown in Fig. 2.48a.
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We try to sample 6 Hz sine wave (w0 = 12p). Note that the signal lies outside the primary strip. Consider 

mapping of the imaginary axis of the s-plane to the z-plane, as frequency increases from 0 to 6 Hz. The 

paths followed as the frequency increases are shown in Fig. 2.48b.

Note that at a frequency of 5 Hz, the two paths meet at z = –1. The 6 Hz (w0 = 12 p) sine wave will appear 

to be (10 Hz – 6 Hz) = 4 Hz sine wave. The high frequency w0 = 12 rad/sec is ‘folded in’ about the folding 

frequency p/T = 10p; and appears as low frequency at (ws – w0) = 
2

80

p
w p

T
-Ê

ËÁ
ˆ
¯̃

= . 

The high frequency w0, which shows up at (ws – w0) after sampling, is called the ‘alias’ of the primary-

strip frequency (ws – w0). The superimposition of the high-frequency behavior onto the low frequency is 

known as frequency folding or aliasing.

Take a sine wave of 6 Hz frequency and extract the samples with T = 0.1 sec. Examine the sampled 

recording carefully; it has a frequency of 4 Hz.

The phenomenon of aliasing has a clear meaning in time. Two continuous sinusoids of different 

frequencies (6 Hz and 4 Hz in the example under consideration) appear at the same frequency when 

sampled. We cannot, therefore, distinguish between them, based on their samples alone.

To avoid aliasing, the requirement is that the sampling frequency ws , must be at least twice the highest 

frequency wm present in the signal, i.e., ws > 2wm. This requirement is formally known as the sampling 

theorem.

36°

12p

10p

8p

–8p

–10p

Im ( )s

Re ( )s

(a) (b)

Im ( )z

f = 3 Hz

f = 4 Hz

f = 5 Hz

f = 6 Hz

Re ( )z

( = 0.2 = 36°)w pT

f = 1 Hz

f = 2 Hz

f = –6 Hz

f = –5 Hz

f =
–4

Hz
f = –1 Hzf

=
–
2
H
z

f
=
–
3
H
z

Fig. 2.48
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Review Example 2.6

Find the response of the system shown in Fig. 2.49 to a unit-impulse input.

r t( )
T = 1

r t*( )
1 – e–sT

s
1

s s( + 1)

y t( )

Fig. 2.49

Solution The discrete-time transfer function of the given system is ob tained as follows (refer to 

Eqns (2.100)):

 Gh0(s) = 
1- -e

s

sT

, Ga(s) = 
1

1s s( )+

 
Y z

R z

( )

( )
 = Z [Gh0(s)Ga(s)] = (1 – z–1) Z 

G s

s

a ( )Ê
ËÁ

ˆ
¯̃

  = (1 – z–1) Z 
1

12s s( )+

È

Î
Í
Í

˘

˚
˙
˙

= (1 – z–1) Z 
1 1 1

12s s s
- +

+
È

ÎÍ
˘

˚̇

Using Table 2.1, we obtain  

 
Y z

R z

( )

( )
 = (1 – z–1) 

Tz

z

z

z

z

z e T( )-
-

-
+

-
È

Î
Í

˘

˚
˙-1 12   

  = 
( ) ( )

( ) ( )

ze z Tz e Te

z z e

T T T

T

- - -

-
- + + - -

- -

È

Î
Í
Í

˘

˚
˙
˙

1

1

For T = 1, we have

 
Y z

R z

( )

( )
 = 

ze e

z z e

- -

-
+ -

- -

1 1

1

1 2

1( ) ( )

  = 
0 3678 0 2642

1 0 3679

. .

( ) ( . )

z

z z

+
- -

 = 
0 3678 0 2642

1 3678 0 36792

. .

. .

z

z z

+

- +

For unit-impulse input, R(z) = 1.

Therefore,  Y(z)  = 
0 3678 0 2642

1 3678 0 36792

. .

. .

z

z z

+

- +
We can expand Y(z) into a power series by dividing the numerator of Y(z) by its denominator:

 
z z z

z z z
2

1 2

1 3678 0 3678 0 3678 0 2644

0 3678 0 7675 0 9145

- + +
+ +- -

. . . .

. . .

)

-- + º3

 
0 3678 0 5031 0 1353

0 7675 0 1353

0 7675 1 0497

1

1

1

. . .

. .

. .

z z

z

z

- +

+ -

+ -

-

-

- ++

-

-

- -
0 2823

0 9145 0 2823

2

1 2

.

. .

z

z z
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This calculation yields the response at the sampling instants, and can be carried on as far as needed. In 

this case we have obtained y(kT) as follows:

 y(0) = 0, y(T) = 0.3678, y(2T) = 0.7675, and y(3T) = 0.9145.

Review Example 2.7

A PID controller is described by the following relation between input e(t) and output u(t):

 u(t) = Kc e t
T

e t dt T
de t

dtI
D

t

( ) ( )
( )

+ +
È

Î
Í

˘

˚
˙Ú

1

0
 (2.123)

Using the trapezoidal rule for integration and backward-difference approximation for the derivatives, 

obtain the difference-equation model of the PID algorithm. Also obtain the transfer function U(z)/E(z).

Solution By the trapezoidal rule for integration, we obtain

 e t dt
kT

( )
0Ú  = T

e e T e T e T e k T e kT( ) ( ) ( ) ( ) (( ) ) ( )0

2

2

2

1

2

+
+

+
+ +

- +È

ÎÍ
˘

˚̇
 

  = T
e i T e iT

i

k
(( ) ) ( )- +È

Î

Í
Í

˘

˚

˙
˙=

Â 1

2
1

 By backward-difference approximation for the derivatives (refer to Eqn. (2.102)), we get

 
de t

dt t kT

( )

=
 = 

e kT e k T

T

( ) (( ) )- -1

 A difference-equation model of the PID controller is, therefore, given by

 u(k) = Kc e k
T

T

e i e i T

T
e k e k

I

D

i

k

( )
( ) ( )

[ ( ) ( )]+
- +

+ - -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂=
Â 1

2
1

1

 (2.124)

Let us now obtain the transfer function model of the PID control algorithm given by Eqn. (2.124).

Define (refer to Fig. 2.50)

   
e i e i( ) ( )- +1

2
 = f (i); f(0) = 0

Then 
e i e i

i

k
( ) ( )- +

=
Â 1

2
1

 = 
i

k

=
Â

1

f(i)

Taking the z-transform of this equation (refer to 

Eqn. (2.51)), we obtain

 Z 
e i e i

i

k
( ) ( )- +È

Î

Í
Í

˘

˚

˙
˙=

Â 1

2
1

 = Z f i

i

k

( )

=
Â

È

Î

Í
Í

˘

˚

˙
˙

1

  = 
z

z
F z

-1
( )

e t( )

f T( )

f (0)

f T(2 )

–T 0 T 2T 3T t

Fig. 2.50 f kT
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Notice that F(z) = Z 
e i e i( ) ( )- +È

ÎÍ
˘

˚̇

1

2
 = 

1

2

1+ -z
E z( )

Hence Z 
e i e i

i

k
( ) ( )- +È

Î

Í
Í

˘

˚

˙
˙=

Â 1

2
1

 = 
1

2 1

1

1

+

-

-

-
z

z
E z

( )
( ) = 

z

z
E z

+
-
1

2 1( )
( )

 The z-transform of Eqn. (2.124) becomes

 U(z) = Kc 1
2

1

1
1

1

1

1+
+

-
+ -

È

Î
Í
Í

˘

˚
˙
˙

-

-
-T

T

z

z

T

T
z E z

I

D ( ) ( )

  = Kc 1
2

1

1

1
+

+
-

Ê
ËÁ

ˆ
¯̃

+
-Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙

T

T

z

z

T

T

z

z
E z

I

D ( )  (2.125)

This equation gives the transfer function model of the PID con trol algorithm. Note that we can obtain 

the discrete-time transfer function model (2.125) by expressing the PID controller (2.123) in terms of 

operator s and then using the mapping (2.104) for the derivative term, and the mapping (2.114) for the 

integral term of the control ler.

Review Example 2.8

Derive the difference equation model for the numerical solution of the differential equation

 
d y t

dt
a

dy t

dt
a y t

2

2 1 2

( ) ( )
( )+ +  = r(t); y(0) = y 0

1, 
dy

dt
( )0 = y2

0, 0 £ t £ tf (2.126)

Use backward-difference approximation for the derivatives.

Solution We divide the interval 0 £ t £ tf into N equal intervals of width equal to step-length T:

 
t

N

f
 = T; t = kT, k = 0, 1, 2, ..., N

 By backward-difference approximation,

 
dy t

dt t kT

( )

=
 =D   y k( )  = 

y k y k

T

( ) ( )- -1
 (2.127)

 
d y t

dt
t kT

2

2

( )

=

 =D    y k( )  = 
  y k y k

T

( ) ( )- -1
 = 

1
2T

 [y(k) – 2y(k – 1) + y(k – 2)]

(2.128)

From Eqn. (2.127), we have

  y(0) = y0
2 = 

y y

T

1
0 1- -( )

Substituting Eqns (2.127) and (2.128) into (2.126) at t = kT, we obtain

 
1
2T

[y(k) – 2y(k – 1) + y(k – 2)] + 
a

T

1  [y(k) – y(k – 1)] + a2 y(k) = r(k)

or a
a

T T
y k

a

T T
2

1

2

1

2

1 2
+ +Ê

ËÁ
ˆ
¯̃

- +Ê
ËÁ

ˆ
¯̃

( )  y(k – 1) + 
1
2T

 y(k – 2) = r(k);
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 y(0) = y 0
1, y(–1) = y 0

1 – Ty 0
2 (2.129)

Incrementing k to take on values k = 1, 2, ..., N, we can easily obtain y(1), ..., y(N) from Eqn. (2.129) by 

the iterative proce dure.

PROBLEMS

 2.1 Consider the signal processing algorithm shown in Fig. P2.1.

 (a) Assign the state variables and obtain a state variable model for the system.

 (b) Represent the algorithm of Fig. P2.1 by a signal flow graph and from there obtain the transfer 

function model of the system using Mason’s gain formula.

+

+

+
+

–

1.368

0.264

0.368

0.368

r k( ) y k( )

Fig. P 2.1

 2.2 Consider the signal processing algorithm shown in Fig. P2.2. Represent the algorithm by (a)   

difference equation model, (b) a state variable model, and (c) a transfer function model.

R z( )

– 3 z–1 1 z–1 1

Y z( )

– 5

– 3

1

Fig. P 2.2
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 2.3 Consider the discrete-time system shown in Fig. P2.3.

 

R z( ) +

+

– 1
2

2z–1

– 1

Y z( )
+

+

Fig. P 2.3

 (a) Obtain the difference equation model and therefrom the trans fer function model of the 

system.

 (b) Find the impulse response of the system.

 (c) Find the response of the system to unit-step input m(k).

 2.4 A filter often used as part of computer-controlled algorithms is shown in Fig. P2.4 (b and a are 

real constants).

 (a) Find the impulse response to an impulse of strength A.

 (b) Find the step response to a step of strength A.

 (c) Find the ramp response to a ramp function with a slope A.

 (d) Find the response to sinusoidal input A cos(W k).

z–1

a

b+

+

R z( ) Y z( )

Fig. P2.4

 2.5 Solve the following difference equations:

 (a) y(k + 2) + 3y(k + 1) + 2y(k) = 0; y(–1) = -
1

2
, y(–2) = 

3

4

 (b) 2y(k) – 2y(k – 1) + y(k – 2) = r(k)

     y(k) = 0 for k < 0 and

     r(k) = 
1 0 1 2

0 0

; , , , ...

;

k

k

=
<

Ï
Ì
Ó

 2.6 Consider the difference equation:

   y(k + 2) – 1.3679 y(k + 1) + 0.3679 y(k) = 0.3679 r(k + 1) + 0.2642 r(k)

   y(k) = 0 for k £ 0, and r(k) = 0 for k < 0,

   r(0) = 1, r(1) = 0.2142, r(2) = –0.2142; r(k) = 0, k = 3, 4, 5, ...

  Determine the output y(k).
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 2.7 Solve the following difference equation using z-transforms:

    y(k) – 3y(k – 1) + 2y(k – 2) = r(k)

  where r(k) = 
1 0 1

0 2

for

for

k

k

=
≥

Ï
Ì
Ó

,
 ; y(–2) = y(–1) = 0

  Will the final value theorem give the correct value of y(k) as k ? Why?

 2.8 For the transfer function models and inputs given below, find the response y(k) as a function of k:

 (a) G(z) = 
Y z

R z

( )

( )
 = 

2 3

0 5 0 3

z

z z

-
- +( . ) ( . )

 (b) G(z) = 
Y z

R z

( )

( )
 = 

- +

- +( ) - -( )
6 1

1
2

1
4

1
2

1
4

z

z j z j

  r(k) = 
1 1

0 0 2 3 4

;

; , , , ,

k

k

=
=

Ï
Ì
Ó …

  r(k) = 
0 1

1 0 1 2 3

;

; , , , ,

k

k

<
=

Ï
Ì
Ó …

 2.9 For the transfer function models and inputs given below, find the response y(k) as a function of k:

 (a) G(z) = 
Y z

R z

( )

( )
 = 

1

0 5 0 3( . ) ( . )z z- +
 (b) G(z) = 

Y z

R z

( )

( )
 = 

1

0 5 0 12( . ) ( . )z z- -

  r(k) = 
1

0

;

;

k

k

even

odd

Ï
Ì
Ó

    r(k) = 
0 0

1 0 1 2 3

;

; , , , ,

k

k

<
=

Ï
Ì
Ó …

 2.10 Determine y( ) for the following Y(z) function (a is a real constant):

   Y(z) = 
K z az a a a z

z z a z a

[ ( ) ]

( ) ( ) ( )

3 2 3 2

2

2

1

- + - +

- - -
  Assuming stable response, determine what the value of K must be for y( ) = 1.

 2.11 Given: y(k) = 
k

k m m
k m

k m!( )

( ) ! ( ) !
( )

a
m

- +

- + -
- +

1

1 1
1

  Prove that y(k) decays to zero as k if |a| < 1.

 2.12 A system has the transfer function

   G(z) = 
Y z

R z

( )

( )
 = 

1

12z +
.

  Show that when the input r(k) is a unit-step function, the output y(k) is bounded; and when the 

input

   r(k) = {1, 0, –1, 0, 1, 0, –1, ...},

  the output y(k) is unbounded.

  Explain why a bounded input produces a bounded output in the first case but an unbounded output 

in the second case.

 2.13 Using Jury stability criterion, check if all the roots of the following characteristic equa tions lie 

within the unit circle:

 (a) z3 – 1.3 z2 – 0.08z + 0.24 = 0

 (b) z4 – 1.368z3 + 0.4z2 + 0.08z + 0.002 = 0

 2.14 Using Jury stability criterion, find if all the poles of the following transfer function lie inside the 

unit circle on the z-plane.
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   G(z) = 
3 2 4 5

0 5 0 2 0 4

4 3 2

4 3 2

z z z z

z z z z

+ - + +

+ - + +. . .

 2.15 Figure P2.15 shows the input-output description of a D/A converter. The converter is designed 

in such a way that the old value of the input sample is held constant, until a new sample arrives. 

Treating each sample of the sequence r(kT) as an impulse 

function of strength equal to the value of the sample, the 

system of Fig. P2.15 becomes a continuous-time system. 

Determine the transfer function model of the system.

 2.16  (a)   State and prove the sampling theorem.

 (b) Given: E(s) = 
10 2

2 22 2

( )

( )

s

s s s

+

+ +
  Based upon the sampling theorem, determine the maximum value of the sampling interval T 

that can be used to enable us to recon struct e(t) from its samples.

 (c) Consider a system with sampling frequency 50 rad/sec. A noise signal cos 50t enters into the 

system. Show that it can cause a dc component in the system output.

 2.17 Draw the magnitude and phase curves of the zero-order hold, and compare these curves with those 

of the ideal low-pass filter.

 2.18 Consider a signal f(t), which has discrete values f(kT) at the sampling rate 1/T. If the signal f(t) is 

imagined to be impulse sampled at the same rate, it becomes 

   f *(t) = f kT t kT

k

( ) ( )-
=

Â d

0

 (a) Prove that F z

z e
sT

( )

=

 = F*(s)

 (b) Determine F z

z e
sT

( )

=

 in terms of F(s). Using this result, explain the relationship between 

  the z-plane and the s-plane.

 2.19 Figure P2.19 shows two root paths in the s-plane:

r kT( )
D/A

y t( )

Fig. P 2.15

jws/2 jws/2

– jws/2– jws/2

a w0

(i) (ii)

Fig. P 2.19
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 (i) roots with the same time-constant t = 1/a, and

 (ii) roots with the same oscillation frequency w0.

  Derive and sketch the corresponding root paths in the z-plane under the impulse-invariant 

transformation. Sampling frequency is ws.

 2.20 Figure P2.20 shows a discrete-time system. Determine the transfer function G(z) of this system 

assuming that the samplers operate synchronously at intervals of T sec. Also find the unit-step 

response of the system.

r t( )
T

r t*( )
ZOH

1

( + 1)s

y t( )
T

y k( )

Fig. P 2.20

 2.21 Figure P2.21 shows the model of a plant driven by 

a D/A converter. Derive the transfer function model 

relating r(kT) and y(kT); T = 0.4 sec.

 2.22 Show that if y is the integral of a function r, then

 (i) by the backward rectangular rule for integration,

   Y(z) = 
Tz

z -1
 R(z);

 (ii) by the trapezoidal rule for integration

   Y(z) = 
T z

z2

1

1

+
-

 R(z)

 2.23 Consider the discretization method based on the backward-difference approximation of derivatives, 

as a mapping from the s-plane to the z-plane. Show that the mapping transforms the left half of the 

s-plane into a circle in the z-plane. Is the size of the circle dependent on the choice of the sampling 

interval?

 2.24 Prove that the bilinear transformation maps the left half of the s-plane into the unit circle in the 

z-plane.

  The transformation z = esT also maps the left half of the s-plane into the unit circle in the z-plane. 

What is the difference between the two maps?

 2.25 A PID controller is described by the following relation between input e(t) and output u(t):

   u(t) = Kc e t
T

e t dt T
de t

dtI
D

t

( ) ( )
( )

+ +
È

Î

Í
Í

˘

˚

˙
˙Ú1

0

  Obtain the PID control algorithm by the discretization of the equation:

   u̇(t) = Kc    e t
T

e t T e t
I

D( ) ( ) ( )+ +
È

Î
Í

˘

˚
˙

1

  using the backward-difference approximation of the derivatives. Also find the transfer function 

U(z)/E(z).

r kT( )
D/A

10

s s( + 2)

y t( )

Fig. P 2.21
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 2.26 For a plant 1.57/[s(s + 1)], we are required to design a digital controller so that the closed-loop 

system acquires a damping ratio of 0.45 without loss of steady-state accuracy. The sampling 

period T = 1.57 sec. The following design procedure may be followed:

 (i) First we design the analog controller D(s) defined in Fig. P2.26. The transfer function Gh(s) 

has been inserted in the analog control loop, to take into account the effect of the hold that 

  must be included in the equivalent digital control sys tem. Verify that D(s) = 
25 1

62 5 1

s

s

+
+.

 meets

  the design requirements. 

 (ii) Discretize D(s) using bilinear transformation.

r t( ) +

–

D s( ) G s( ) =h
sTe– /2

1.57

s s( + 1)

y t( )

Fig. P 2.26

 2.27 A PID controller is described by the following relation between input e(t) and output u(t):

   U(s) = Kc 1
1

+ +
È

Î
Í

˘

˚
˙

T s
T s E s

I
D ( )

 (a) Derive the PID algorithm using the s-plane to z-plane maps—bilinear transformation for 

integration and backward-difference approximation for the derivatives.

 (b) Convert the transfer function model of the PID controller obtained in step (a) into a difference 

equation model.

 2.28 Derive difference equation models for the numerical solution of the following differential equation 

using (a) the backward rectangular rule for integration, and (b) the forward rectangular rule for 

integration:

   ẏ (t) + ay(t) = r(t); y(0) = y0

 2.29 Consider the second-order system

   ÿ + aẏ  + by = 0; y(0) = a, ẏ (0) = b

  Approximate this equation with a second-order difference equation for computer solution. Use 

backward-difference approxi mation for the derivatives.
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Models of Digital Control  
Devices and Systems

3.1 INTRODUCTION

Now that we have developed the prerequisite signal processing techniques in Chapter 2, we can use them 

to study closed-loop digital control systems. A typical topology of the type of sys tems to be considered 

in this chapter, is shown in Fig. 3.1.

Fig. 3.1 

Digital control systems with analog sensors include an analog prefilter between the sensor and the sampler 

(A/D converter) as an anti-aliasing device. The prefilters are low-pass, and the simplest transfer function 

is

Hpf (s) = 
a

s a+
so that the noise above the prefilter breakpoint a, is attenuated. The design goal is to provide enough 

attenuation at half the sample rate (ws /2) so that the noise above ws/2, when aliased into lower frequencies 

by the sampler, will not be detrimental to the control-system performance.

Since the phase lag from the prefilter can significantly affect system stability, it is required that the control 

design be carried out with the analog prefilter included in the loop trans fer function. An alternative design 

Chapter 3
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procedure is to select the breakpoint and ws sufficiently higher than the system bandwidth, so that the 

phase lag from the prefilter does not significantly alter the system stability, and thus the prefilter design 

problem can be divorced from the control-law design problem. Our treat ment of the subject is based on  

this alternative design proce dure. We, therefore, ignore the prefilter design and focus on the basic control-

system design. The basic configuration for this design problem is shown in Fig. 3.2, where

G(s) = transfer function of the controlled plant (continuous-time system);

H(s) = transfer function of the analog sensor; and

D(z) = transfer function of the digital control algorithm. 

Fig. 3.2 

The analog and digital parts of the system are connected through D/A and A/D converters. The computer, 

with its internal clock, drives the D/A and A/D converters. It compares the command signal r(k) with 

the feedback signal b(k) and generates the control signal u(k), to be sent to the final control elements of 

the controlled plant. These signals are computed from the digital control algorithm D(z), stored in the 

memory of the computer.

There are two different approaches for the design of digital algorithms.

 (i) Discretization of Analog Design The controller design is done in the s-domain using analog 

design methods.1 The resulting analog control law is then converted to discrete-time form, using 

one of the approximation techniques given in Section 2.14.

 (ii) Direct Digital Design In this approach, we first develop the discrete-time model of the analog 

part of the loop—from C to A in Fig. 3.2—that includes the controlled plant. The controller design 

is then performed using discrete-time analysis.

An actual design process is often a combination of the two meth ods. First iteration to a digital design 

can be obtained using discretization of an analog design. Then the result is tuned up using direct digital 

analysis and design.

The intent of this chapter is to provide basic tools for the analysis and design of a control system that is to 

be implemented using a computer. Mathematical models of commonly used digital control devices and 

systems are developed. Different ways to implement digital controllers (obtained by the discretization of 

analog design (Section 2.14) or by direct digital design (Chapter 4), are also given in this chapter. 

 1 Chapters 7–10 of reference [155].
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3.2 z

Whenever a digital computer is used to control 

a continuous-time plant, there must be some 

type of interface system that takes care of the 

communication between the discrete-time and the 

continuous-time systems. In the system of Fig. 3.2, 

the interface function is performed by A/D and 

D/A converters. 

Simple models of the interface actions of A/D and 

D/A converters have been developed in Chapter 2. 

A brief review is in order here.

A simple model of an A/D converter is shown in 

Fig. 3.3a. A continuous-time function f (t), t ≥ 0, is 

the input and the se quence of real numbers f (k), k = 0, 1, 2, ..., is the output. The following relation holds 

between input and output:

 f (k) = f (t = kT); T is the time interval between samples. (3.1)

The sequence f (k) can be treated as a train of impulses repre sented by continuous-time function f *(t):

  f *(t) = f (0) d(t) + f (1) d (t – T) + f (2) d (t – 2T) +   

  = 
k =
Â

0

f (k) d (t – kT ) (3.2)

The sampler of Fig. 3.3a can thus be viewed as an ‘impulse modu lator’ with the carrier signal

 dT (t) = 
k =
Â

0

d (t – kT) (3.3)

and modulating signal f (t). A schematic representation of the modulation process is shown in Fig. 3.3b.

A simple model of a D/A converter is shown in Fig. 3.4a. A se quence of numbers f (k), k = 0, 1, 2, ..., 

is the input, and the continuous-time function f +(t), t ≥ 0 is the output. The follow ing relation holds 

between input and output:

 f +(t) = f (k); kT £ t < (k + 1)T (3.4)

Each sample of the sequence f(k) may be treated as an impulse function of the form f(k)d(t – kT). The 

Zero-Order Hold (ZOH) of Fig. 3.4a can thus be viewed as a linear time-invariant system that converts 

the impulse f (k)d (t – kT) into a pulse of height f (k) and width T. The D/A converter may, therefore, be 

modeled by Fig. 3.4b, where the ZOH is a system whose response to a unit impulse d (t), is a unit pulse 

f t( )

f t f t t*( ) = ( ) ( )dT

0

(a)

(b)

0 1 2 3 4t k

T

Impulse
modulator

f k( )

dT t( )

f t( )

Fig. 3.3 
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gh0(t) of width T. The Laplace transform 

of gh0(t) is the transfer function of hold 

operation, namely (refer to Eqn. (2.79))

 Gh0(s) = Z [gh0(t)] = 
1- -e

s

sT

 (3.5)

Figure 3.5 illustrates a typical example 

of an interconnection of discrete-time 

and con tinuous-time systems. In order 

to analyze such a system, it is often 

convenient to represent the continuous-

time system together with the ZOH by an 

equivalent discrete-time system.

We assume that the continuous-time system of Fig. 3.5 is a linear system with the transfer function 

G(s). A block diagram model of the equivalent discrete-time system is shown in Fig. 3.6a. As seen 

from this figure, the impulse modulated signal u*(t) is applied to two s-domain transfer functions in 

tandem. Since the two blocks with transfer functions Gh0(s) and G(s) are not separated by an impulse 

modulator, we can consider them as a single block with transfer function [Gh0(s)G(s)], as shown in 

Fig. 3.6b. The continuous-time system with transfer function [Gh0(s)G(s)] has input u*(t) and output y(t). 

The output signal y(t) is read off at discrete synchronous sampling instants kT; k = 0, 1, ..., by means of 

a mathematical sampler T(M).

We assume that ĝ(t) is the impulse response of the continuous-time system Gh0(s)G(s):

 ĝ (t) = L 
–1[Gh0(s)G(s)] (3.6)

The input signal to the system is given by (refer to Eqn. (3.2)), 

 u*(t) = 
k =
Â

0

u(kT)d (t – kT) (3.7)

0 0

(a)

(b)

k

T

t

ZOHf k( ) f t( )+

f t( )*f k( ) f t( )+

G sh0( ) =
1 – e

s

–sT

Fig. 3.4 

u k( ) u t+( ) y t( )

T M( )

y k( )
ZOH

Digital
computer

Continuous-
time
system

Equivalent discrete-time system

Fig. 3.5 

(a)

(b)

T

T
G s G sh0( ) ( )

u k( )

u k( )
G sh0( ) G s( )

y t( ) y k( )

y t( ) y k( )

T M( )

T M( )

u t*( )

u t*( )

Fig. 3.6 



 Models of Digital Control Devices and Systems 129

This is a sequence of impulses with intensities given by u (kT). Since ĝ(t) is the impulse response of the 

system (response to the input d (t)), by superposition from Eqn. (3.7),

y(t) = 
j =
Â

0

u(jT) ĝ (t – jT)

At the sampling times t = kT, y(t) is given by

 y(kT) = 
j =
Â

0

u( jT) ĝ (kT – jT) (3.8)

We can recognize it at once as discrete-time convolution (refer to Eqn. (2.25)). Taking the z-transform of 

both sides of Eqn. (3.8), we obtain (refer to Eqn. (2.29)), 

 Y(z) = U(z) Ĝ (z) (3.9a)

where  Ĝ (z) = Z [ ĝ (kT )]

  = Z [L 
–1{Gh0(s)G(s)}|t = kT] (3.9b)

The z-transforming operation of Eqn. (3.9b) is commonly indicated as

 Ĝ (z) = Z [Gh0(s)G(s)] = Gh0G(z) (3.10)

It may be carefully noted that since the two blocks Gh0(s) and G(s) are not separated by an impulse 

modulator, 

 Ĝ (z) π Z [Gh0(s)] Z [G(s)] (3.11a)

  π Gh0(z) G(z) (3.11b)

It follows from Eqns (3.9), that the block diagram 

of Fig. 3.6b becomes the z-domain block diagram 

of Fig. 3.7. We could, of course, directly draw the 

z-domain block diagram of Fig. 3.7 from Fig. 3.6b, 

which implies that

 Y(s) = Gh0(s)G(s)U*(s) ´ Y(z) = Gh0G(z)U(z) (3.12a)

or  Z [Gh0(s)G(s)U*(s)] = Z [Gh0(s)G(s)] Z [U*(s)]

  = Gh0G(z)U(z) (3.12b)

We can use the following relation (refer to Eqns (2.100 b) and (2.100 c)) for evaluation of Gh0G(z):

 Gh0G(z) = Z [Gh0(s)G(s)]

  = Z ( )
( )

1-
È

ÎÍ
˘

˚̇
-e

G s

s

sT

  = (1 – z–1) Z 
G s

s

( )È

ÎÍ
˘

˚̇
 (3.13)

Single factor building blocks of the Laplace and z-transform pairs are given in Table 2.1. Expanding 

G(s)/s into partial fractions, Z [G(s)/s] can be found by using this table.

Consider now the basic sampled-data feedback system, whose block diagram is depicted in Fig. 3.8a. In 

terms of impulse modulation, this block diagram can be redrawn as shown in Fig. 3.8b. 

Fig. 3.7 
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r k( )

y k( )
A/D

u k( )
D z( ) D/A G s( )

y t( )

Plant
Computer

(a)

u k( )e k( )r k( ) +

–

T

T

y t( ) y k( )

y k( )

(b)

G sh0( ) G s( )
u t*( )

T M( )
D z( )

Fig. 3.8 

Using the relations previously established in this section, we have

  U(z) = D(z) E(z) (3.14a)

 Y(z) = Gh0G(z)U(z) (3.14b)

Since e(kT) = r (kT) – y(kT)

we have E(z) = R(z) – Y(z) (3.14c)

Combining Eqns (3.14a), (3.14b), and (3.14c) gives

 
Y z

R z

( )

( )
 = 

D z G G z

D z G G z

h

h

( ) ( )

( ) ( )

0

01+
 (3.15)

Figure 3.9 gives the z-domain equivalent of Fig. 3.8.

Having become familiar with the technique, from now 

onwards we may directly write z-domain relationships, 

without introducing impulse modulators in block 

diagrams of sampled-data systems.

Consider the sampled-data feedback system of Fig. 3.10 where the sensor dynamics is represented by 

transfer function H(s). The following equations easily follow:

 E(z) = R(z) – B(z) (3.16a)

 U(z) = D(z) E(z) (3.16b)

 Y(z) = Gh0G(z) U(z) = Z [Gh0(s)G(s)] U(z) (3.16c)

 B(z) = Gh0GH(z)U(z) = Z [Gh0(s)G(s)H(s)]U(z) (3.16d)

Equations (3.16a), (3.16b) and (3.16d) give

 
E z

R z

( )

( )
 = 

1

1 0+ D z G GH zh( ) ( )
 (3.17)

–

+
G G zh0 ( )D z( )

R z( ) E z( ) U z( ) Y z( )

Fig. 3.9 
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Combining Eqns (3.16b), (3.16c) and (3.17), we get

 
Y z

R z

( )

( )
 = 

D z G G z

D z G GH z

h

h

( ) ( )

( ) ( )

0

01+
 (3.18)

Figure 3.11 illustrates a phenomenon that we have not yet encoun tered. When an input signal is acted upon 

by a dynamic element before being sampled, it is impossible to obtain a transfer function for the system. 

The system in Fig. 3.11 differs from that in Fig. 3.10, in that the analog error e(t) is first ampli fied before 

being converted to digital form for the control computer. The amplifier’s dynamics are given by G1(s).

+

–
D z( ) G s G sh0( ) ( )

e t( )r t( ) e t1( ) e k1( ) u t*( ) y t( )u k( )

H s( )

b t( )

T T
G s1( )

Fig. 3.11 

Consider first the subsystem shown in Fig. 3.12a. We can equiva lently represent it as a block [G1(s)E(s)] 

with input d (t), as in Fig. 3.12b. Now the input, and therefore, the output, does not change by imagining 

a fictitious impulse modulator through which d(t) is applied to [G1(s)E(s)] as in Fig. 3.12c.

On application of Eqn. (3.12), we can write

 E1(z) = Z [G1(s)E(s)] Z [d (k)] = Z [G1(s)E(s)] (3.19)

Now, for the system of Fig. 3.11,

 E(s) = R(s) – B(s) = R(s) – H(s)Y(s)

  = R(s) – H(s) Gh0(s) G(s) U*(s) (3.20)

Therefore, from Eqns (3.19) and (3.20), we obtain

 E1(z) = Z [G1(s)R(s)] – Z [G1(s)H(s)Gh0(s)G(s)]U(z)

  = G1R(z) – G1Gh0GH(z) U(z) (3.21)

Since  U(z) = D(z) E1(z),

T

+

–
D z( ) ZOH G s( )

y t( )u k( )e k( )e t( )r t( )

b t( )

H s( )

Fig. 3.10 
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we can write from Eqn. (3.21),

 E1(z) = 
G R z

D z G G H zh

1

1 01

( )

( ) ( )+
The output Y(z) = Gh0G(z) U(z) = D(z) Gh0G(z) E1(z)

  = 
D z G G z G R z

D z G G GH z

h

h

( ) ( ) ( )

( ) ( )

0 1

1 01+
 (3.22)

Since it is impossible to form the ratio Y(z)/R(z) from Eqn. (3.22), we can not obtain a transfer function 

for the system of Fig. 3.11, and we cannot analyze it further without specifying a functional form for the 

input r(t).

It is not permissible to create a transfer function for the system in Fig. 3.11 by inserting a fictitious 

sampler at the input, because this would change the physics of the situation represented by the diagram 

(the analog input would be replaced by the train of impulses). Fictitious samplers are permissible at only 

the output, because they are simply a means of selecting the values of the output at the times of interest 

to us, namely, the sample times.

Example 3.1

Consider the sampled-data system shown in Fig. 3.13a. From the block diagram, we obtain (refer to 

Eqn. (3.15))

 
Y z

R z

( )

( )
 = 

G G z

G G z

h

h

0

01

( )

( )+
 (3.23)

Figure 3.13b gives the z-domain equivalent of Fig. 3.13a. The forward path transfer function:

 Gh0G(z) =Z [Gh0(s)G(s)]

  = (1 – z–1) Z 
G s

s

( )È

ÎÍ
˘

˚̇
 = (1 – z–1) Z 

1

12s s( )+

È

Î
Í
Í

˘

˚
˙
˙

T
(a)

(b)

(c)

e k1( )e t1( )
G s1( )

e t( )

d( )t

d( )t

G s E s1( ) ( )
e t1( ) e k1( )

G s E s1( ) ( )
e t1( ) e k1( )d*( ) = ( )t td

T T

T

Fig. 3.12 s
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  = (1 – z–1) Z 
1 1 1

12s s s
- +

+
È

ÎÍ
˘

˚̇
 = (1 – z–1) 

Tz

z

z

z

z

z e T( )-
-

-
+

-

È

Î
Í
Í

˘

˚
˙
˙-1 12

  = 
z T e e Te

z z e

T T T

T

( ) ( )

( ) ( )

- + + - -

- -

- - -

-

1 1

1

When T = 1, we have

Gh0G(z) = 
ze e

z z e

- -

-

+ -

- -

1 1

1

1 2
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Substituting in Eqn. (3.23), we obtain

Y z

R z

( )

( )
 = 

0 3679 0 2642

0 63212

. .

.

z

z z

+

- +

For a unit-step input,

R(z) = 
z

z -1

and therefore,

Y(z) = 
z z

z z z

( . . )

( ) ( . )

0 3679 0 2642

1 0 63212

+

- - +
 = 

0 3679 0 2642

2 1 6321 0 6321

2

3 2

. .

. .

z z

z z z

+

- + -

By long-division process, we get

Y(z) = 0.3679 z–1 + z–2 + 1.3996 z–3 + 1.3996 z–4 + 1.1469 z–5 + 0.8944 z–6 + 0.8015 z–7+  

Therefore, the sequence (k = 1, 2, ...)

 y(kT) = {0.3679, 1, 1.3996, 1.3996, 1.1469, 0.8944, 0.8015, ...}

Note that the final value of y(kT) is (refer to Eqn. (2.52),

lim
k

 y(kT) = lim
zÆ1

 (z – 1)Y(z) = 
0 3679 0 2642

0 6321

. .

.

+
 = 1

T = 1 sec

(a)

(b)

+

+

–

–

G G zh0 ( )

y t( )r t( )

R z( ) Y z( )

G sh0( ) G s( ) =
1

( + 1)s s

Fig. 3.13 
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The unit-step response is shown in Fig. 3.14. 

Also shown in this figure is the unit-step 

response of the continuous-time system (i.e., 

when T = 0). The overshoot of the sampled 

system is 45%, in contrast to 17% for the 

continuous-time system.

The performance of the digital system is, thus, 

dependent on the sampling period T. Larger 

sampling periods usually give rise to higher 

overshoots in the step response, and may 

eventually cause instability if the sampling 

period is too large.

Example 3.2

Let us compare the stability properties of the system shown in Fig. 3.15, with and without a sample-and-

hold on the error sig nal.

Without sample-and-hold, the system in Fig. 3.15 has the transfer function

Y s

R s

( )

( )
 = 

K

s s K2 2+ +

This system is stable for all values of K > 0.

T

+

–

G sh0( )
r t( ) e t( ) y t( )K

s s( + 2)

Fig. 3.15 

For the system with sample-and-hold, the forward-path transfer function is given by 

 Gh0G(z) = (1 – z–1) Z 
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È
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Fig. 3.14 
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 The characteristic equation of the sampled-data system is

1 + Gh0G(z) = 0

or  4(z – 1)(z – e–2T) + 2KT(z – e–2T) – K(z – 1) (1 – e–2T) = 0

or  z2 + z 
1

2

1

2

1

2
12 2 2K T e e eT T T- +

Ê
ËÁ

ˆ
¯̃

- -
È

Î
Í

˘

˚
˙ +- - -  + 

1

2
K  

1

2

1

2

2 2- -
È

ÎÍ
˘

˚̇
- -e TeT T

 = 0

Case 1: T = 0.4 sec

For this value of sampling period, the characteristic polynomial becomes

D(z) = z2 + (0.062K – 1.449)z + 0.449 + 0.048K

Applying the Jury stability test (refer to Eqns (2.73)–(2.75)), we find that the system is stable if the 

following conditions are satisfied:

 D(1) = 1 + 0.062K – 1.449 + 0.449 + 0.048K > 0

 D(–1) = 1 – 0.062K + 1.449 + 0.449 + 0.048K > 0

| 0.449 + 0.048K | < 1

These conditions are satisfied for 0 < K < 11.479.

Case II: T = 3 sec

For this value of sampling period, the characteristic polynomial becomes

D(z) = z2 + (1.2506K – 1.0025) z + 0.0025 + 0.2457K

The system is found to be stable for 0 < K < 1.995.

Thus, the system which is stable for all K > 0 when T = 0 (contin uous-time system), becomes unstable 

for K > 11.479 when T = 0.4 sec. When T is further increased to 3 sec, it becomes unstable for K > 1.995. 

It means that increasing the sampling period (or decreasing the sampling rate), reduces the margin of 

stability.

3.3 

Figure 3.16 is the block diagram of a computer-controlled contin uous-time system with dead-time. We 

assume that the continuous-time system is described by transfer function of the form

 Gp(s) = G(s) e Ds-t  (3.24)

where tD is the dead-time, and G(s) contains no dead-time.

The equivalent discrete-time system, shown by dotted lines in Fig. 3.16, is described by the model

 
Y z

U z

( )

( )
 = Z [Gh0(s)Gp(s)] = Gh0Gp(z) (3.25a)

  = (1 – z–1) Z 
1

s
e G sDs-È

ÎÍ
˘

˚̇
t ( )  (3.25b)
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If N is the largest integer number of sampling periods in tD, we can write 

 tD = NT + DT; 0 £ D < 1 (3.26)

(Given the capabilities of modern microprocessors, we can adjust the sampling frequency slightly so that 

tD = NT)

Therefore,  Gh0Gp(z) = (1 – z–1)z– N Z 
1

s
e G sTs-È

ÎÍ
˘

˚̇
D ( )

Let us take an example where

 G(s) = 
1

s a+
 (3.27)

For this example, 
Y z

U z
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 = Gh0Gp(z) = (1 – z–1)z–N Z 
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Now L
–1 e
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˘

˚
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D

 = g1(t) = m(t – DT); L 
–1 e

s a

Ts-

+
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Î
Í
Í

˘

˚
˙
˙

D

 = g2(t) = e–a(t – DT ) m(t – DT)

where m(t) is a unit-step function.

Therefore,  g1(kT ) = m (kT – DT ); g2(kT) = e–a(kT – DT) m(kT – DT )

 Z [g1(kT)] = 
k =
Â

0

 g1(kT )z–k = z–1 + z–2 + z–3 +  

  = z–1 (1 + z–1 + z–2 +  ) = z–1 
1

1

1

11-
Ê
ËÁ

ˆ
¯̃ --z z

=  (3.29)

 Z [g2(kT )] = 
k =
Â

0

 g2(kT)z–k = e–a(T – DT) z–1 + e–a(2T – DT) z–2 + e–a(3T – DT) z–3 +  

We introduce a parameter m, such that

m = 1 – D
Then  Z [g2(kT)] = e–amT z–1 + e–amT e–aT z–2 + e–amT e–2aT z–3 +  

  = e–amT z–1 [1 + e–aT z–1 + e–2aT z–2 +  ]

Fig. 3.16 
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  = e–amT z–1 1

1 1-
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ÎÍ
˘

˚̇- -e zaT

  = 
e

z e

amT

aT

–

–-
 (3.30)

Substituting the z-transform results given by Eqns (3.29) and (3.30) in Eqn. (3.28), we get
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Table 3.1 has been generated by applying the procedure outlined above, to commonly occurring functions.

Laplace transform

F(s)e–DTs; 0 £ D < 1
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Example 3.3

 The scheme of Fig. 3.17 produces a steady-stream flow of fluid with controlled temperature q. A stream 

of hot fluid is continu ously mixed with a stream of cold fluid, in a mixing valve. The valve characteristic 

is such that, the total flow rate Q (m3/sec) through it is maintained constant, but the inflow qi (m
3/sec) 

of hot fluid may be linearly varied by controlling valve stem posi tion x. The valve stem position x, thus 

controls the temperature qi (ºC) of the outflow from the mixing valve. Due to the distance between the 

valve and the point of discharge into the tank, there is a time delay between the change in qi and the 

discharge of the flow with the changed temperature, into the tank.

Fig. 3.17 

The differential equation governing the tank temperature is (assuming an initial equilibrium and taking 

all variables as perturbations)

 Vrc 
d

dt

q
 = Qrc (qid – q) (3.32)

where 

 q = tank fluid temperature, ºC

  = temperature of the outflowing fluid from the tank;

 c = specific heat of the fluid, Joules/(kg)(ºC);

 V = volume of the fluid in the tank, m3;

 r = fluid density, kg/m3;

 Q = fluid flow rate, m3/sec; and 

 qid = temperature of the fluid entering the tank, ºC.

The temperature qid at the input to the tank at time t, however, is the mixing valve output temperature tD 

seconds in the past, which may be expressed as

 qid(t) = qi(t – tD) (3.33)
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From Eqns (3.32)–(3.33), we obtain

  q (t) + aq(t) = aqi(t – tD)

where  a = Q/V

Therefore,  Gp(s) = 
q

q

( )

( )

s

si

 = 
ae

s a

Ds-

+

t

 (3.34)

To form the discrete-time transfer function of Gp(s) preceded by a zero-order hold, we must compute
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For the specific values of tD = 1.5, T = 1, a = 1, Eqn. (3.35) reduces to
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Using transform pairs of Table 3.1, we obtain

 Gh0Gp(z) = (1 – z–1) z–1 
( ) ( )

( ) ( )

. .1

1

0 5 0 5 1

1

- + -

- -

È

Î
Í
Í

˘

˚
˙
˙

- - -

-

e z e e

z z e

  = 
0 3935 0 6066

0 36792

. ( . )

( . )

z

z z

+

-
 = 

q

q

( )

( )

z

zi

 (3.36)

The relationship between x and qi is linear, as is seen below.

(Qi + qi) rcqH + [Q – (Qi + qi)] rcqC = Qrc (qi + qi)

where qH and qC are constant temperatures of hot and cold streams, respectively.

qi = K
v
 x

where K
v
 is the valve gain.

The perturbation equation is obtained as (neglecting second-order terms in perturbation variables),

 K
v
(qH – qC) x(t) = Qqi(t)

or  x(t) = Kqi(t); K = Q/[K
v
(qH – qC)]

Therefore, 
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X z
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z z
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3.4

The application of conventional 8- and 16-bit microprocessors to control systems, is now well established. 

Such processors have general-purpose architectures which make them applicable for a wide range of tasks, 

though none are remarkably efficient. In control applications, such devices may pose problems such as 

inadequate speed, difficulties with numerical manipulation, and relatively high cost for the complete system; 

the latter being due to both the programming effort and the cost of the peripheral hardware (memories,  

I/O ports, timers/counters, A/D converters, D/A converters, PWM circuit, etc.).

In applications requiring small amounts of program ROM, data RAM, and I/O ports, single-chip 

microcontrollers are ideally suited. In these chips, the capabilities in terms of speed of computa tion, on-

chip resources, and software facilities are optimized for control applications. Should the on-chip features 

be insuffi cient to meet control requirements, the microcontroller chips allow for easy expansion.

The Intel microcontroller family (MCS-48 group, MCS-51 group, MCS-96 group) includes 8- and 16-bit 

processors with the follow ing on-chip resources—ROM, RAM, I/O lines, timer/counter, A/D converter, 

and PWM output. The Motorola microcontroller family (HC 05 group, HC 11 group, HC 16 group) also 

provides microcontroller chips with similar features.

In many application areas, processing requirements for digital control systems, such as execution time 

and algorithm complexity, have increased dramatically. For example, in motor control, short sampling 

time constraints can place exacting requirements on algorithm execution time. New airframe designs 

and extended aircraft performance envelopes, increase the complexity of flight control laws. Controller 

complexity also increases with number of interacting loops (e.g., in robotics), or the number of sensors 

(e.g., in vision systems). For a growing number of real-time control applications, conventional single-

processor systems are unable to satisfy the new demands for increased speed and greater complexity and 

flexibility. 

The dramatic advances in VLSI technology leading to high transis tor packing densities have enabled 

computer architects to develop parallel-processing architectures consisting of multiple proces sors; thus 

realizing high-performance computing engines at rela tively low cost. The control engineer can exploit a 

range of architectures for a variety of functions. 

Parallel-processing speeds up the execution time for a task. This is achieved by dividing the problem into 

several subtasks, and allocating multiple processors to execute multiple subtasks simultaneously. Parallel 

architectures differ from one another in respect of nature of interconnectivity between the processing 

elements and the processing power of each individual processing element.

The transputer is a family of single-chip computers, which incor porates features to support parallel 

processing. It is possible to use a network of transputers to reduce the execution time of a real-time 

control law.

Digital signal processors (DSPs) offer an alternative strategy for implementation of digital controllers. 

They use architectures and dedicated arithmetic circuits, that provide high resolution and high speed 

arithmetic, making them ideally suited for use as controllers.

Many DSP chips, available commercially, can be applied to a wide range of control problems. The Texas 

Instruments TMS 320 family provides several beneficial features through its architec ture, speed, and  

instruction set.
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TMS 320 is designed to support both numeric-intensive operations, such as required in signal processing, 

and also general-purpose computation, as would be required in high speed control. It uses a modified 

architecture, which gives it speed and flexibility—the program and data memory are allotted separate 

sections on the chip, permitting a full overlap of the instruction fetch and execution cycle. The processor 

also uses hardware to implement functions which had previously been achieved using software. As a 

result, a multiplication takes only 200 nsec, i.e., one instruc tion cycle, to execute. Extra hardware has 

also been included to implement shifting and some other functions. This gives the design engineer the 

type of power previously unavailable on a single chip.

Implementation of a control algorithm on a computer consists of the following two steps:

 (i) Block diagram realization of the transfer function (obtained by the discretization of analog controller 

(Section 2.14), or by the direct digital design (Chapter 4) that represents the control algorithm.

 (ii) Software design based on the block diagram realization.

In the following, we present several different structures of block diagram realizations of digital controllers 

using delay elements, adders, and multipliers. Different realizations are equivalent from the input-output 

point of view if we assume that the calculations are done with infinite precision. With finite precision in 

the calculations, the choice of the realization is very important. A bad choice of the realization may give 

a con troller that is very sensitive to errors in the computations.

Assume that we want to realize the controller
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 (3.37a)

where the ai’s and bi’s are real coefficients (some of them may be zero).

Transfer functions of all digital controllers can be rearranged in this form. For example, the transfer 

function of PID control ler, given by Eqn. (2.113b), can be rearranged as follows:
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We shall now discuss different ways of realizing the transfer function (3.37a), or equivalently the transfer 

function:
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The methods for realizing digital systems of the form (3.37) can be divided into two classes—recursive 

and nonrecursive. The functional relation between the input sequence e(k) and the output sequence u(k) 

for a recursive realization has the form

 u(k) = f (u(k – 1), u(k – 2),..., e(k), e(k – 1), ...) (3.38)

For the linear time-invariant system of Eqn. (3.37b), the recur sive realization has the form

 u(k) = – a1u(k – 1) – a2u(k – 2) –   – anu(k – n) + b0e(k) + b1e(k – 1) +   + bne(k – n) (3.39)

The current output sample u(k) is a function of past outputs and present and past input samples. Due to 

the recursive nature, the errors in previous outputs may accumulate.

The impulse response of the digital system defined by Eqn. (3.39), where we assume not all ai’s are zero, 

has an infinite number of nonzero samples, although their magnitudes may become negligibly small as k 

increases. This type of digital system is called an Infinite Impulse Response (IIR) system.

The input-output relation for a nonrecursive realization is of the form

 u(k) = f (e(k), e(k – 1), ...) (3.40a)

For a linear time-invariant system, this relation takes the form

 u(k) = b0e(k) + b1e(k – 1) + b2e(k – 2) +   + bNe(k – N) (3.40b)

The current output sample u(k) is a function only of the present and past values of the input.

The impulse response of the digital system defined by Eqn. (3.40b), is limited to a finite number of 

samples defined over a finite range of time intervals, i.e., the impulse response se quence is finite. This 

type of digital system is called a finite impulse response (FIR) system.

The digital controller given by Eqn. (3.37b) is obviously an FIR digital system when the coefficients ai 

are all zero. When not all ai’s are zero, we can obtain FIR approximation of the digital system by dividing 

its numerator by the denominator and truncat ing the series at z–N; N ≥ n:

 
U z

E z

( )

( )
 = D(z) @ a0 + a1z–1 + a2z–2 +   + aN z

–N; N ≥ n (3.41) 

Notice that we may require a large value of N to obtain a good level of accuracy. 

In the following sections, we discuss the most common types of recursive and nonrecursive realizations 

of digital controllers of the form (3.37).

3.4.1

The transfer function (3.37) represents an nth-order system. Recursive realization of this transfer function 

will require at least n unit delayers. Each unit delayer will represent a first-order dynamic system. Each 

of the three recursive realization structures given below, uses the minimum number (n) of delay elements 

in realizing the transfer function (3.37).

Let us multiply the numerator and denominator of the right-hand side of Eqn. (3.37b) by a variable X(z). 

This operation gives
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Equating the numerators on both sides of this equation gives

 U(z) = (b0 + b1 z–1 +   + bn z
–n) X(z) (3.43a)

The same operation on the denominator brings

 E(z) = (1 + a1 z
–1 +   + an z

–n) X(z) (3.43b)

In order to construct a block diagram for realization, Eqn. (3.43b) must first be written in a cause-and-

effect relation. Solving for X (z) in Eqn. (3.43b) gives

 X(z) = E(z) – a1 z–1 X(z) –   – an z–n X(z) (3.43c)

A block diagram portraying Eqns (3.43a) and (3.43c) is now drawn in Fig. 3.18 for n = 3. Notice that we 

use only three delay elements. The coefficients ai and bi (which are real quantities) appear as multipliers. 

The block diagram schemes where the coe fficients ai and bi appear directly as multipliers are called 

direct structures.

Basically, there are three sources of error that affect the accuracy of a realization (Section 2.1):

 (i) the error due to the quantization of the input signal into a finite number of discrete levels;

 (ii) the error due to accumulation of round-off errors in the arithmetic operations in the digital system; 

and 

 (iii) the error due to quantization of the coefficients a i and b i of the transfer function. This error may 

become large for higher-order transfer functions. That is, in a higher-order digital controller in 

direct structure, small errors in the coefficients a i and b i cause large errors in the locations of the 

poles and zeros of the controller (refer to Review Example 3.3).

–
z–1 ++

+

b0

b1

b2

U z( )X z( )E z( )
b3z–1z–1

a3

a2

a1

 Fig. 3.18  n = 
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These three errors arise because of the practical limitations of the number of bits that represent various 

signal samples and coefficients. The third type of error listed above may be reduced by mathematically 

decomposing a higher-order transfer function into a combination of lower-order transfer functions. In 

this way, the system may be made less sensitive to coefficient inaccu racies.

For decomposing higher-order transfer functions in order to reduce the coefficient sensitivity problem, 

the following two approaches are commonly used. It is desirable to analyze each of these structures for 

a given transfer function, to see which one is better with respect to the number of arithmetic operations  

required, the range of coefficients, and so forth.

The sensitivity problem may be reduced by implementing the trans fer function D(z) as a cascade 

connection of first-order and/or second-order transfer functions. If D(z) can be written as a product of 

transfer functions D1(z),... , Dm(z), i.e.,

D(z) = D1(z) D2(z)   Dm(z),

then a digital realization for D(z) may be obtained by a cascade connection of m component realizations 

for D1(z), D2(z), ... , and Dm(z), as shown in Fig. 3.19.

Dm( )z
U z( )

D2( )zD1( )z
E z( )

Fig. 3.19 D(z

In most cases, the Di(z); i = 1, 2, ..., m, are chosen to be either first-order or second-order functions. If the 

poles and zeros of D(z) are known, then Di(z) can be obtained by grouping real poles and real zeros to 

produce first-order functions, or by grouping a pair of complex-conjugate poles and a pair of complex-

conjugate zeros to produce a second-order function. It is, of course, possible to group two real poles with 

a pair of complex-conjugate zeros and vice versa. The grouping is, in a sense, arbitrary. It is desirable to 

group several different ways, to see which one is best with respect to the number of arithmetic opera tions 

required, the range of coefficients, and so forth.

In general, D(z) may be decomposed as follows:

 D(z) = P
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are shown in Figs 3.20a and 3.20b, respectively. The realization for the digital controller D(z) is a cascade 

connection of p first-order systems of the type shown in Fig. 3.20a, and (m – p) second-order systems of 

the type shown in Fig. 3.20b.
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Fig. 3.20 

Another approach to reduce the coefficient sensitivity problem is to expand the transfer function D(z) 

into partial fractions. If D(z) is expanded so that

D(z) = A + D1(z) + D2(z) +   + Dr(z),

where A is simply a constant, then a digital realization for D(z) may be obtained by a parallel connection 

of (r + 1) component realizations for A, D1(z), ... , Dr(z), as shown in Fig. 3.21. Due to the presence of 

the constant term A, the first-order and second-order functions can be chosen in simpler forms:
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are shown in Figs 3.22a and 3.22b, respectively.

3.4.2

Nonrecursive structures for D(z) are similar to the recursive structures presented earlier in this section. 

In the nonrecursive form, the direct and cascade structures are commonly used; the parallel structure is 

not used since it requires more elements.
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Example 3.4

 Consider the digital controller with transfer function model

D(z) = 
U z

E z

( )

( )
 = 

2 0 6

1 0 5

1

1

-

+

-

-

.

.

z

z

Recursive realization of D(z) yields the block diagram shown in Fig. 3.23a. By dividing the numerator 

of D(z) by the denominator, we obtain

D(z) = 2 – 1.6z–1 + 0.8z–2 – 0.4z–3 + 0.2z–4 – 0.1z–5 + 0.05z–6 – 0.025z–7 + 

Fig. 3.21 D(z

Fig. 3.22 
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Truncating this series at z–5, we obtain the following FIR digital system:

U z

E z

( )

( )
 = 2 – 1.6 z–1 + 0.8 z–2 – 0.4 z–3 + 0.2 z–4 – 0.1 z–5

Figure 3.23b gives a realization for this FIR system. Notice that we need a large number of delay 

elements to obtain a good level of accuracy. An advantage of this realization is that, because of the lack 

of feedback, the accumulation of errors in past outputs is avoided in the processing of the signal.

Fig. 3.23 

3.5

The ultimate goal of control systems engineering is to build real physical systems to perform some 

specified tasks. To accomplish this goal, design and physical implementation of a control strate gy 

are required. The standard approach to design this is as follows. A mathematical model is built making 

necessary assumptions about various uncertain quantities on the dynamics of the system. If the objective 

is well defined in precise mathematical terms, then control strategies can be derived mathematically (e.g., 

by opti mizing some criterion of performance). This is the basis of all model-based control strategies. 

This approach is feasible when it is possible to specify the objective and the model, mathematical ly. 

Many sophisticated methods based on model-based control approach will appear in later chapters of the 

book. 
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For motion control applications (position, and speed control systems), identification of mathematical 

models of systems close enough to reality is usually possible. However, for process control applications 

(pressure, flow, liquid-level, temperature, and composition control systems), identification of 

process dynamics precisely can be expensive even if meaningful identifica tion is possible. This is  

because industrial processes are relatively slow and complex. In process-control field, therefore, it is not 

uncommon to follow an ad hoc approach for controller deve lopment, when high demands on control-

system performance are not made. In the ad hoc approach, we select a certain type of control ler based 

on past experience with the process to be controlled, and then set controller parameters by experiment 

once the con troller is installed. The ‘experimental design’ of controller settings has come to be known 

as controller tuning.

Many years of experience have shown that a PID controller is versatile enough to control a wide variety 

of industrial process es. The common practice is to interface a PID controller (with adjustment features) 

to the process and adjust the parameters of the controller online, by trial-and-error, to obtain acceptable 

performance. A number of tuning methods have been introduced to obtain fast convergence to control 

solution. These methods con sist of the following two steps:

 (i) experimental determination of the dynamic characteristics of the control loop; and

 (ii) estimation of the controller tuning parameters that produce a desired response for the dynamic 

characteristics determined in the first step.

It may be noted that for tuning purposes, simple experiments are performed to estimate important dynamic 

attributes of the pro cess. The approximate models have proven to be quite useful for process control 

applications (For processes whose dynamics are precisely known, the use of trial-and-error tuning is not 

justi fied since many model-based methods to the design of PID control lers are available which predict 

the controller parameters fairly well at the design stage itself). The predicted parameter values based on 

approximate models simply provide initial trial values for the online trial-and-error approach. These trial 

values may turn out to be a poor guess. Fine tuning the controller parame ters online is usually necessary 

to obtain acceptable control performance.

Some of the tuning methods which have been successfully used in process industry, will be described 

here. 

3.5.1

Approximately 75% of feedback controllers in the process industry are PI controllers; most of the balance 

are PID controllers. Some applications require only P, or PD controllers, but these are few.

The equation that describes the proportional controller is

 u(t) = Kce(t) (3.44a)

or  U(s) = KcE(s) (3.44b)

where Kc is the controller gain, e is the error, and u is the perturbation in controller output signal from the 

base value corresponding to the normal operating conditions; the base value on the controller is adjusted 

to produce zero error under the conditions of no disturbance and/or set-point change.
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Some instrument manufacturers calibrate the controller gain as proportional band (PB). A 10% PB 

means that a 10% change in the controller input causes a full-scale (100%) change in controller output. 

The conversion relation is thus

 Kc = 
100

PB
 (3.45)

A proportional controller has only one adjustable or tuning parameter: Kc or PB.

A proportionally controlled process with no integration property will always exhibit error at steady state in 

the presence of disturbances and changes in set-point. The error, of course, can be made negligibly small 

by increasing the gain of the proportional controller. However, as the gain is increased, the performance 

of the closed-loop system becomes more oscillatory and takes longer to settle down after being disturbed. 

Further, most process plants have a considerable amount of dead-time, which severely restricts the value 

of the gain that can be used. In processes where the con trol within a band from the set-point is acceptable, 

proportional control is sufficient. However, in processes which require per fect control at the set-point,  

proportional controllers will not provide satisfactory performance [155].

To remove the steady-state offset in the controlled variable of a process, an extra amount of intelligence 

must be added to the proportional controller. This extra intelligence is the integral or reset action, and 

consequently, the controller becomes a PI controller. The equation describing a PI controller is as follows:

 u(t) = Kc e t
T

e t dt
I

t

( ) ( )+
È

Î

Í
Í

˘

˚

˙
˙Ú

1

0

 (3.46a)

or  U(s) = Kc 
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where TI is the integral or reset time.

A PI controller has thus two adjustable or tuning parameters: Kc (or PB) and TI. The integral or reset 

action in this controller removes the steady-state offset in the controlled variable. However, the integral 

mode of control has a considerable destabi lizing effect which, in most of the situations, can be compensa-

ted by adjusting the gain Kc [155].

Some instrument manufacturers calibrate the integral mode parame ter as the reset rate, which is simply 

the reciprocal of the reset time.

Sometimes a mode faster than the proportional mode is added to the PI controller. This new mode of 

control is the derivative action, also called the rate action, which responds to the rate of change of error 

with time. This speeds up the controller action. The equation describing the PID controller is as follows:

 u(t) = Kc e t
T

e t dt T
de t

dtI
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or  U(s) = Kc 1
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+ +
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I
D E(s) (3.47b)

where TD is the derivative or rate time.

A PID controller has thus three adjustable or tuning parameters: Kc (or PB), TI, and TD. The derivative 

action anticipates the error, initiates an early corrective action, and tends to in crease the stability of 

the system. It does not affect the stea dy-state error directly. A derivative control mode, in isolation, 

produces no corrective effort for any constant error, no matter how large, and would, therefore, allow 

uncontrolled steady-state errors. Thus, we cannot consider derivative modes in isolation; they will always 

be considered as augmenting some other mode [155].

The block diagram implementation of Eqn. (3.47b) is sketched in Fig. 3.24a. The alternative form,  

Fig. 3.24b, is more commonly used, because it avoids taking the rate of change of the set-point input 

Fig. 3.24 
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to the controller, thus preventing the undesirable deriva tive ‘kick’ on set-point changes by the process 

operator.

Due to the noise-accentuating characteristics of derivative operation, the low-pass-filtered derivative 

TDs/(aTDs + 1) is actually preferred in practice (Fig. 3.24c). The value of the filter parameter a is not 

adjustable but is built into the design of the controller. It is usually of the order of 0.05 to 0.3.

The controller of Fig. 3.24 is considered to be non-interacting in that its derivative and integral modes 

operate independently of each other (although proportional gain affects all the three modes). Non-

interaction is provided by the parallel functioning of integral and derivative modes. By contrast, many 

controllers have derivative and integral action applied serially to the controlled variable, resulting in 

interaction between them. Many of the analog industrial controllers re alize the following interacting 

PID control action.

 U(s) = K ¢c 
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The first term in brackets is a derivative unit attached to the standard PI controller serially, to create the 

PID controller (Fig. 3.25a). The derivative unit installed on the controlled-varia ble input to the controller 

avoids the derivative kick (Fig. 3.25b).

Fig. 3.25 

Most commercially available tunable controllers use the non-interacting version of PID control. The  

discussion that follows applies to non-interacting PID control.
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3.5.2

A great number of manufacturers are now making available in the market, process controllers (electronic, 

and computer-based) with features that permit adjusting the set-point, trans ferring between manual and 

automatic control modes, adjusting the output signal from the control-action unit (tuning the parameters 

Kc, TI, and TD), and displaying the controlled variable, set-point, and control signal. Figure 3.26 shows 

the basic structure of an industrial controller. The controller has been broken down into the following 

three main units:

 (i) the set-point control unit;

 (ii) the PID control unit; and

 (iii) the manual/automatic control unit.

 The set-point control unit receives the measurement y of con trolled variable of the process, together with 

the set-point r of the control. A switch gives an option of choosing between local and remote (external) 

set-point operation. If the set-point to the controller is to be set by the operating personnel, then the local 

option rL is chosen. If the set-point to the controller is to be set by another control module, then remote 

(external) option re is chosen. This is the case, for example, in cascade control where the drive of the 

controller in the major loop constitutes the set-point of the minor-loop controller.

+

–

Set-point
control
unit

PID
control
unit

Manual/
Automatic
control
unit

A

uM
e

R

L r

y

rL

re

uC

uM

y
ProcessPID

Fig. 3.26 

The PID control unit receives the error signal e developed by the set-point control unit, and generates an 

appropriate control signal uC. Adjustment features provided in the control unit, for generating appropriate 

control signals, include tuning of the three parameters Kc, TI, and TD.

The manual/automatic control unit has a switch which determines the mode of control action. When 

the switch is in the auto (A) position, the control signal uC calculated by PID control unit is sent to the 

process (in such a case, the process is controlled in closed loop). When the switch is in the manual (M) 

position, the PID control unit ‘freezes’ its output. The control signal uM can then be changed manually 

by the operating personnel (the process is then controlled in open loop).

The basic structure of a process controller shown in Fig. 3.26 is common for electronic, and computer-

based controllers. These controllers are different in terms of realization of ad justment features. 
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3.5.3

This pioneer method, also known as the closed-loop or on-line tuning method, was proposed by J G Ziegler 

and N B Nichols around 1940. In this method, the parameters by which the dynamic characteristics of 

the process are represented are the ultimate gain and period. These parameters are used in tuning the 

controller for a specified response: the quarter-decay ratio (QDR) response.

When the process is under closed-loop proportional (P) control, the gain of the P controller at which the 

loop oscillates with constant amplitude, has been defined as the ultimate gain Kcu. Ultimate period Tu is 

the period of these sustained oscillations. The ultimate gain is, thus, a measure of difficulty in controlling 

a process; the higher the ultimate gain, the easier it is to control the process loop. The ultimate period is, 

in turn, a measure of speed of response of the loop; the larger the period, the slower the loop.

By its definition, it can be deduced that the ultimate gain is the gain at which the loop is at the threshold 

of instability. At gains just below the ultimate, the loop signals will oscillate with decreasing amplitude, 

and at gains above the ultimate, the amplitude of the oscillations will grow with time.

For experimental determination of Kcu and Tu, the controller is set in ‘auto’ mode and the following 

procedure is followed (refer to Fig. 3.26).

 (i) Remove the integral mode by setting the integral time to its highest value. Alternatively, if the PID 

controller allows for switching off the integral mode, switch it off. 

 (ii) Switch off the derivative mode, or set the derivative time to its lowest value, usually zero.

 (iii) Increase the proportional gain in steps. After each increase, disturb the loop by introducing a 

small step change in set-point and observe the response of the controlled variable, preferably on 

a trend recorder. The controlled variable should start oscil lating as the gain is increased. When 

the amplitude of the oscil lations remains approximately constant, the ultimate controller gain has 

been reached. Record it as Kcu.

 (iv) Measure the period of the oscillations from the trend record ing. This parameter is Tu.

The procedure just outlined is simple and requires a minimum upset to the process, just enough to be 

able to observe the oscillations. Nevertheless, the prospect of taking a process control loop to the verge 

of instability is not an attractive one from a process operation standpoint.

Ziegler and Nichols proposed that the parameters Kcu and Tu, characterizing a process, be used in tuning 

the controller for QDR response. The QDR response is illustrated in Fig. 3.27 for a step change in 

disturbance, and for a step change in set-point. Its characteristic is that each oscillation has an amplitude 

that is one fourth of the previous oscillation.

Empirical relations [12] for calculating the QDR tuning parameters of P, PI and PID controllers, from the 

ultimate gain Kcu and period Tu, are given in Table 3.2.
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Fig. 3.27 

PI and PID tuning parameters that produce quarter-decay response, are not unique. For each setting 

of the integral and derivative times, there will usually be a setting of the controller gain that produces 

quarter-decay response. The settings given in Table 3.2 are the figures based on experience; these settings 

have produced fast response for most industrial loops.

Controller Gain Integral time Derivative time

P Kc = 0.5 Kcu — —

PI Kc = 0.45 Kcu TI = Tu/1.2 —

PID Kc = 0.75 Kcu TI = Tu/1.6 TD = Tu/10

3.5.4

Although the tuning method based on ultimate gain and period is simple and fast, other methods of 

characterizing the dynamic response of feedback control loops have been developed over the years. The 

need for these alternative methods is based on the fact that, it is not always possible to determine the 

ultimate gain and period of a loop; some loops would not exhibit sustained oscillations with a proportional 
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controller. Also, the ultimate gain and period do not give insight into which process or control system 

characteristics could be modified to improve the feedback controller performance. A more fundamental 

method of characteriz ing process dynamics is needed to guide such modifications. In the following, we 

present an open-loop method for characterizing the dynamic response of the process in the loop.

Process control is characterized by systems which are relatively slow and complex and which, in many 

cases, include an element of pure time delay (dead-time). Even where a dead-time element is not present, 

the complexity of the system which will typically contain several first-order subsystems, will often result 

in a process reaction curve (dynamic response to a step change in input), which has the appearance of 

pure time delay. 

Process reaction curve may be obtained by carrying out the fol lowing step-test procedure.

With the controller on ‘manual’, i.e., the loop opened (refer to Fig. 3.26), a step change of magnitude 

Du in the control signal u(t) is applied to the process. The magnitude Du should be large enough for 

the consequent change Dy(t) in the process output variable to be measurable, but not so large that the 

response will be distorted by process nonlinearities. The process output is recorded for a period from the 

introduction of the step change in the input, until the process reaches a new steady state.

0

u t( )

y t( )

Du

Dyss

Fig. 3.28 

A typical process reaction curve is sketched in Fig. 3.28. The most common model used to characterize 

the process reaction curve is the following:
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where K = the process steady-state gain;

 tD = the effective process dead-time; and 

 t = the effective process time-constant.

This is a first-order plus dead-time model. The model response for a step change in the input signal of 

magnitude Du, is given by 
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Inverting with the help of a transform table (Table 2.1), and applying the real translation theorem of 

Laplace transforms L [ y (t – t0)m(t – t0)] = e–st0 Y(s); t0 > 0 [155], we get

  Dy(t) = KDu [1 – e t D- -( )/t t ] ; t > tD 

  = 0 ; t £ tD 

(3.51)

The term Dy is the perturbation or change in the output from its initial value:

Dy(t) = y(t) – y(0)

Figure 3.29 shows the model response to a step change of magni tude Du in the input signal. Dyss is the 

steady-state change in the process output (refer to Eqn. (3.51)):

Dyss = lim
t

 Dy(t) = KDu

Fig. 3.29 

At the point t = tD on the time axis, the process output variable leaves the initial steady state with a 

maximum rate of change (refer to Eqn. (3.51)):

d

dt
y t

t D

D ( )
=t

 = KDu
1

t

Ê
ËÁ

ˆ
¯̃  = 

Dyss

t

The time-constant t is the distance on the time axis between the point t = tD, and the point at which the 

tangent to the model response curve, drawn at t = tD, crosses the new steady state. 

Note that the model response at t = tD + t is given by

Dy (tD + t) = KDu(1 – e–1) = 0.632 Dyss

The process reaction curve of Fig. 3.28 can be matched to the model response of Fig. 3.29 by the 

following estimation proce dure.

The model parameter K is given by

 K = 
Change in process output at steady state

Step change in proccess input
 = 

D
D
y

u

ss  (3.52)

The estimation of the model parameters tD and t can be done by, at least, three methods; each of which 

results in different values. 

This method makes use of the line that is tangent to the process reaction curve at the point of maximum rate 

of change. The time-constant is then defined as the distance on the time axis, between the point where the 
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tangent crosses the initial steady state of the 

output variable, and the point where it crosses 

the new steady-state value. The dead-time is 

the distance on the time axis, between the 

occurrence of the input step change, and the 

point where the tangent line crosses the initial 

steady state. These estimates are indicated in 

Fig. 3.30a.

In this method, tD is determined in the same 

manner as in the earlier method, but the value 

of t is the one that forces the model response 

to coincide with the actual response at t = tD + t. 

Construction for this method is shown in 

Fig. 3.30b. The value of t obtained by this 

method is usually less than that obtained by 

the earlier method, and the process reaction 

curve is usually closer to the response of the 

model obtained by this method compared to 

the one obtained by the earlier method.

The least precise step in the determination of tD and t by the previous two methods, is the drawing 

of the line tangent to the process reaction curve at the point of maximum rate of change. To eliminate 

this dependence on the tangent line, it is proposed that the values of tD and t be selected such that the 

model and the actual response coincide at two points in the region of high rate of change. The two points 

recommended are (tD + 1
3

t ) and (tD + t ). To locate these points, we make use of Eqn. (3.51):

 Dy(tD + 1
3

t ) = KDu[1 – e–1/3] = 0.283 Dyss

 Dy(tD + t ) = KDu [1 – e–1] = 0.632 Dyss

These two points are labeled t1 and t2 in Fig. 3.30c. Knowing t1 and t2, we can obtain the values of tD 

and t.

 tD + t = t2; tD + 1
3

t = t1

which reduces to 

 t = 3
2

(t2 – t1); tD = t2 – t (3.53)

where t1 = time at which Dy(t) = 0.283 Dyss; and

 t2 = time at which Dy(t) = 0.632 Dyss.

t

t

(a) Tangent method

(b) Tangent-and-point method

(c) Two-points method
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Fig. 3.30 
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Besides the formulas for QDR response tuning based on the ulti mate gain and period of the loop (refer to 

Table 3.2), Ziegler and Nichols also developed tuning formulas based on the parameters of a first-order 

model fit to the process reaction curve. These formulas are given in Table 3.3 [12].

G(s
Ke

s 1

Ds-

+

t

t

Controller Gain Integral time Derivative time

P Kc = t /KtD — —

PI Kc = 0.9t /KtD TI = 3.33 tD —

PID Kc = 1.5t /KtD TI = 2.5tD TD = 0.4tD

Three major conclusions can be drawn from this table.

 (i) The controller gain is inversely proportional to the process gain K which represents the product 

of gain of all the elements in the loop other than the controller. It means, that if the gain of any of 

the elements were to change because of recalibration, resizing, or nonlinearity, the response of the 

feedback loop will change, unless the controller gain is readjusted.

 (ii) The controller gain must be reduced when the ratio of the process dead-time to its time-constant, 

increases. This means, that the difficulty in controlling the loop increases when the ratio of the 

process dead-time to its time-constant, increases. This ratio, which can be used as a measure of 

difficulty in control ling a process, will be called the normalized dead-time tND.

 
Apparent dead-time  

Apparent time-constant 

t

t
D

 = Normalized dead-time tND (3.54)

  tND can be estimated from the process reaction curve. Processes with small tND are easy to 

control and processes with large tND are difficult to control. The parameter tND has been called the 

controllability ratio in the literature. To avoid confusion with the standard terminology of modern 

control theory (Chapter 5), the word normalized dead-time is used here.

  Notice that having a long dead-time parameter means that the loop is difficult to control only if 

the time-constant is short. In other words, a loop with a dead-time of several minutes, would be 

just as difficult to control as one with a dead-time of a few seconds—if the normalized dead-time 

for both the loops is the same. 

 (iii) The speed of response of the controller, which is determined by integral and derivative times, 

must match the speed of re sponse of the process. The formulas in Table 3.3 match these response 

speeds by relating the integral and derivative times of the controller to the process dead-time.

In using the formulas in Table 3.3, we must keep in mind that they were developed empirically for the 

most common range of the normalized dead-time parameter, which is between 0.1 and 0.3, based on the 

fact that most processes do not exhibit significant transportation lag (rather, the dead-time is the result of 

sever al first-order lags in series).
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As was pointed out in the earlier discussion on QDR tuning based on ultimate gain and period, the 

difficulty of the QDR perfor mance specification for PI and PID controllers is that there is an infinite set 

of values of the controller parameters that can produce it; i.e., for each setting of the integral time on a 

PI controller, and for each reset-derivative time combination on a PID controller, there is a setting of the 

gain that results in QDR response. The settings given in Table 3.3 are the figures based on experience; 

these settings have produced fast response for most industrial loops.

3.5.5

Most process industries today, use computers to carry out the basic feedback control calculations. The 

formulas that are pro grammed to calculate the controller output are mostly the dis crete versions of the 

analog controllers presented earlier in this section. This practice allows the use of established experi ence 

with analog controllers and in principle, their well-known tuning rules which could be applied.

As there is no extra cost in programming all the three modes of control, most computer-based algorithms 

contain all the three, and then use flags and logic to allow the process engineer to specify any single mode 

or, a combination of two or three modes. Most tunable commercially available controllers use the non-

interacting version of PID con trol (refer to Eqn. (3.47b)). The discussion that follows applies to non-

interacting PID control.

The equation describing an idealized non-interacting PID control ler is as follows (refer to Eqn. (3.47a)):

 u(t) = Kc e t
T

e t dt T
de t

dtI

t
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with parameters

Kc = controller gain; TI = integral time; and TD = derivative time.

For small sample times T, this equation can be turned into a difference equation by discretization. Various 

methods of dis cretization were presented in Section 2.14.

Approximating the derivative mode by the backward-difference approximation and the integral mode by 

backward integration rule, we obtain (refer to Eqns (2.112))

 u(k) = Kc e k
T

S k
T

T
e k e k
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˘

˚
˙

1
1  (3.56)

 S(k) = S(k – 1) + Te(k)

where  u(k) = the controller output at sample k;

 S(k) = the sum of the errors; and

 T = the sampling interval.

This is a nonrecursive algorithm. For the formation of the sum, all past errors e(◊) have to be stored.

Equation (3.56) is known as the ‘absolute form’ or ‘position form’ of the PID algorithm. It suffers from one 

particular disad vantage, which is manifest when the process it is controlling, is switched from manual 
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to automatic control. The initial value of the control variable u will simply be (e(k – 1) = S(k – 1) = 0 in 

Eqn. (3.56)):

u(0) = Kc 1+ +
È

Î
Í

˘

˚
˙

T

T

T

TI

D
e(0)

Since the controller has no knowledge of the previous sample values, it is not likely that this output value 

will coincide with that previously available under manual control. As a result, the transfer of control 

will cause a ‘bump’, which may seriously disturb the plant’s operation. This can only be overcome by 

la boriously aligning the manual and computer outputs or, by adding complexity to the controller so that 

it will automatically ‘track’ the manual controller.

Practical implementation of the PID algorithm includes the fol lowing additional features:

 (i) It is seldom desirable for the derivative mode of the control ler to respond to set-point changes. 

This is because the set-point changes cause large changes in the error that last for only one sample; 

when the derivative mode acts on this error, undesir able pulses or ‘derivative kicks’ occur on the 

controller output—right after the set-point is changed. These pulses, which last for one sampling 

interval, can be avoided by having the deriva tive mode act on the controlled variable, rather than 

on the error.

 (ii) A pure derivative term should not be implemented, because it will give a very large amplification 

of the measurement noise. The gain of the derivative must thus be limited. This can be done by 

approximating the transfer function TDs as follows:

TD s @ 
T s

T s

D

Da +1

  where a is the filter parameter, whose value is not adjustable but is built into the design of the 

controller. It is usually of the order of 0.05 to 0.3.

The PID controller, therefore, takes the form (refer to Fig. 3.24c):

 U(s) = Kc E s
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Discretization of this equation results in the following PID algorithm:

 u(k) = Kc e k
T

S k D k
I

( ) ( ) ( )+ +
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1
 (3.58)

 S(k) = S(k – 1) + Te(k)

 D(k) = 
a

a

T

T T

D

D +
D(k – 1) – 

T

T T

D

Da +
 [y(k) – y(k – 1)]

This is a recursive algorithm characterized by the calculation of the current control variable u(k) based on 

the previous control variable u(k – 1) and correction terms. To derive the recursive algorithm, we subtract 

from Eqn. (3.56)
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This gives

 u(k) – u(k – 1) = Kc e k e k
T
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Now, only the current change in the control variable 

 Du(k) = u(k) – u(k – 1) (3.61)

is calculated. This algorithm is known as the ‘incremental form’ or ‘velocity form’ of the PID algorithm. 

The distinction between the position and velocity algorithms is significant only for controllers with integral 

effect.

The velocity algorithm provides a simple solution to the require ment of bumpless transfer. The problem 

of bumps arises mainly from the need for an ‘initial condition’ on the integral; and the solution adopted 

is to externalize the integration, as shown in Fig. 3.31. The external integration may take the form of an 

electronic integrator but frequently the type of actuating element is changed, so that recursive algorithm 

is used with actuators which, by their very nature, contain integral action. Stepper motor (refer to  

Section  3.8) is one such actuating element.

Incremental
PID

algorithm

Auto

Manual

1
s

Du k( ) u k( )

e k( )

Fig. 3.31 

Practical implementation of this algorithm includes the features of avoiding derivative kicks and filtering 

measurement noise. Using Eqn. (3.58) we obtain

 Du(k) = Kc e k e k
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 D(k) = 
a

a a
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+
- -( ) [ ( ) ( )]1 1  (3.63)

where y(k) = controlled variable; Du(k) = incremental control variable = u(k) – u(k – 1);

 e(k) = error variable; Kc = controller gain;

 TI = integral time; TD = derivative time; and T = sampling interval.
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Though tuning formulas that are specifically applicable to digi tal control algorithms have been developed 

[12], the most popular and widely used tuning approach for digital PID control lers is to apply rules in 

Tables 3.2–3.3 with a simple correction to account for the effect of sampling. When a continuous-time 

signal is sampled at regular intervals of time, and is then recon structed by holding the sampled values 

constant for each sampling interval, the reconstructed signal is effectively delayed by approximately 

one half of the sampling interval, as shown in Fig. 3.32a (also refer to Example 2.17). In the digital 

control configu ration of Fig. 3.32b, the D/A converter holds the output of the digital controller constant 

between updates, thus adding one half the sampling time to the dead-time of the process components. 

The correction for sampling is then, simply, to add one half the sam pling time to the dead-time obtained 

from the process reaction curve.

 tCD = tD + 1
2

T  (3.64)

where tCD is the corrected dead-time, tD is the dead-time of the process, and T is the sampling interval.
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Fig. 3.32 

The tuning formulas given in Table 3.3 can directly be used for digital PID controllers with tD replaced 

by tCD.

Notice that the online tuning method, based on ultimate gain and period, inherently incorporates the effect of 

sampling when the ultimate gain and period are determined with the digital control ler included in the loop. 

Tuning rules in Table 3.2 can, therefore, be applied to digital control algorithms without any correction. 
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3.6

This section describes the hardware features of the design of a microprocessor-based controller for 

temperature control in an air-flow system.

Figure 3.33 shows the air-flow system, provided with temperature measurement and having a heater grid 

with controlled power input. Air, drawn through a variable orifice by a centrifugal blower, is driven past 

the heater grid and through a length of tubing, to the atmosphere again. The temperature sensing element 

consists of a bead thermistor fitted to the end of a probe, inserted into the air stream 30 cms from the 

heater. The task is to implement a con troller, in the position shown by dotted box, to provide tempera ture 

control of the air stream. It is a practical process-control problem in miniature, simulating the conditions 

found in furnac es, boilers, air-conditioning systems, etc.

Fig. 3.33 

The functions within the control loop can be broken down as follows:

 (a) sampling of the temperature measurement signal at an appro priate rate;

 (b) transfer of the measurement signal into the computer;

 (c) comparison of the measured temperature with a stored desired temperature, to form an error 

signal;

 (d) operation on the error signal by an appropriate algorithm, to form an output signal; and 

 (e) transfer of the output signal, through the interface, to the power control unit.

3.6.1

Figure 3.34 gives hardware description of the temperature control system. Let us examine briefly the 

function of each block. The block labeled keyboard matrix, interfaced to the microcomputer through a 

programmable keyboard/display interface chip, enables the user to feed reference input to the temperature 

control system. The LED display unit provides display of the actual temperature of the heating chamber.
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The temperature range for the system under consideration is 20 to 60ºC. When a thermistor is used as 

temperature sensor, it is necessary to convert the change in its resistance to an equiva lent analog voltage. 

This is accomplished with Wheatstone bridge; the thermistor exposed to the process air, forms one arm 

of the bridge. The millivolt range of the bridge error voltage is ampli fied to the range required by A/D 

converter. The output of the A/D converter is the digital measurement of the actual tempera ture of the 

process air. This data is fed to the microcomputer through an input port. The microcomputer compares 

the actual temperature with the desired temperature at each sampling instant, and generates an error 

signal. The error signal is then processed as per the control algorithm (to be given later), resulting in a 

control signal in digital form. The control signal is, in fact, the amount of power required to be applied 

to the plant, in order to reduce the error between the desired temperature and the actual temperature. The 

power input to the plant may be con trolled with the help of triacs and firing circuit interface.

Fig. 3.34 

A basic circuit using a triac (bidirectional thyristor) which controls the flow of alternating current through 

the heater is shown in Fig. 3.35a. If the triac closes the circuit for tp seconds out of T seconds, the average 

power applied to the plant over the sampling period T is

u = 
1

T

V

R
dt

tp 2

0

Ú = 
V

R

t

T

p
2

  V = rms value of the voltage applied to the heater; and

  R = resistance of the heater.

This gives  tp = 
u

V R
T

2/
 (3.65)
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Depending on the control signal u (power required to be applied to the plant), tp is calculated in the 

microcomputer. A number is latched in a down counter (in the programmable timer/counter chip 

interfaced with the microcomputer) which is determined by the value of tp and the counter’s clock 

frequency. A pulse of required width tp is thus available at each sampling instant from the programmable 

timer/counter chip. This, in fact, is a pulse width modulated (PWM) wave whose time period is constant 

and width is varied in accordance with the power required to be fed to the plant (Fig. 3.35b).

R

Triac control
pulses

Heater

(a) (b)
0 tp T 2T Time

230 V
50 Hz

Fig. 3.35 

The function of the triacs and firing circuit interface is thus, to process the PWM output of the 

microcomputer, such that the heater is ON when the PWM output is logic 1, and OFF when it is logic 0. 

Since the heater is operated off 230 V ac at 50 Hz, the firing circuit should also provide adequate isolation 

between the high voltage ac signals and the low voltage digital signals.

3.6.2

A model for the temperature control system under study is given by the block diagram of Fig. 3.36. A 

gain of unity in the feedback path corresponds to the design of feedback circuit (temperature transducer 

+ amplifier + A/D converter) which enables us to interpret the magnitude of the digital output of A/D 

converter directly as temperature in ºC. The temperature command is given in terms of the digital number 

with magnitude equal to the desired temperature in ºC. The error e (ºC) is processed by the control 

algorithm with transfer function D(z). The computer generates a PWM wave whose time period is equal 

to the sampling interval, and width is varied in accordance with the control signal u (watts). The PWM 

wave controls the power input to the plant through the triacs and the firing circuit interface. Since the 

width of PWM remains constant over a sampling interval, we can use S/H to model the input-output 

relation of the triacs and the firing circuit interface.

Controller

Digital number

Triacs and firing circuit
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Process
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Fig. 3.36 
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To develop the digital controller D(z) for the process, we will follow the approach of controller tuning 

(refer to Section 3.5). A simple tuning procedure consists of the following steps:

 (i) Obtain experimentally the dynamic characteristics of the process, either by open-loop or closed-loop 

tests. 

 (ii) Based on dynamic characteristics of a process, tuning rules have been developed by Ziegler 

and Nichols (refer to Tables 3.2–3.3). Use these rules to obtain initial settings of the control ler 

parameters Kc, TI, and TD of the PID controller

   D(s) = Kc 1
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 (iii) Discretize the PID controller to obtain digital control algorithm for the temperature control 

process. Thumb rules given in Section 2.13 may be followed for initial selection of sampling 

interval T. 

  In digital mode, the PID controller takes the form (refer to Eqn. (2.125))
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 (iv) Implement the digital PID controller. Figure 3.37 shows a realization scheme for the controller; 

the proportional, integral, and derivative terms are implemented separately and summed up at the 

output.

 (v) Fine tune Kc, TI, TD and T to obtain acceptable performance.

+
+

+
+

+
+
+

+
–

T T/(2 )I

z–1

z–1
E( )z U( )z

T TD/

Kc

Fig. 3.37 

An open-loop test was performed on the air-flow system (Fig. 3.33) to obtain its dynamic characteristics. 

 Input : heater power

 Output : air temperature

The test was carried out with a dc input signal. A wattmeter, on the input side, measured the heater 

power, and a voltmeter, on the output side, measured the output (in volts) of the bridge circuit, which is 

proportional to the air temperature in ºC.

Figure 3.38 shows the response for a step input of 20 watts. This process reaction curve was obtained for 

a specific orifice set ting.
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Fig. 3.38 

Approximation of the process reaction curve by a first-order plus dead-time model is obtained as follows 

(refer to Fig. 3.29):

 The change in the process output at steady state is found to be Dyss = 24.8 volts. Therefore, the process 

gain

K = 
24 8

20

.
 = 1.24 volts/watt

The line that is tangent to the process reaction curve at the point of maximum rate of change gives 

tD = 0.3 sec. The time at which the response is 0.632 Dyss is found to be 0.83 sec. There fore, t + tD = 

0.83; which gives t = 0.53 sec. (It may be noted that the response is oscillatory in nature; therefore, a 

second-order model will give a better fit. However, for coarse tuning, we have approximated the response 

by a first-order plus dead-time model).

The process reaction curve of the air-flow system is thus repre sented by the model:

 G(s) = 
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Taking a sampling interval T = 0.1 sec, we have (refer to Eqn. (3.64)):

 tCD = tD + 
1

2
T = 0.35 sec

Using tuning formulas of Table 3.3, we obtain the following parameters for the PID controller:

 Kc = 1.5t /(KtCD) = 1.832

 TI = 2.5tCD = 0.875 (3.69)

 TD = 0.4tCD = 0.14 

3.7

This section describes hardware features of the design of a microprocessor-based controller for a 

position control system. The plant of our digital control system is an inertial load, driven by an armature-
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controlled dc servo motor. The plant also includes a motor-drive circuit. The output of the drive circuit 

is fed to the armature of the motor which controls the position of the motor shaft. In addition, it also 

controls the direction of rotation of the motor shaft.

Figure 3.39 gives hardware description of the position control system. Let us examine briefly the function 

of each block.

Fig. 3.39 

The block labeled digital signal generator, interfaced with the microcomputer through an input port, 

enables the user to feed the desired position (set-point) of the motor shaft. A keyboard matrix can be used 

for entering numerical commands into the digital system.

The microcomputer compares the actual position of the motor shaft with the desired position at each 

sampling instant, and generates an error signal. The error signal is then processed as per the control 

algorithm (to be given later), resulting in a control signal in digital form. The digital control signal 

is converted to a bipolar (can be + ve or –ve) analog voltage in the D/A con verter interfaced to the 

microcomputer. This bipolar signal is processed in a preamplifier and servo amplifier (power amplifier), 

enabling the motor to be driven in one direction for positive vol tage at preamplifier input, and in opposite 

direction for a negative voltage.

With these units, the block diagram of Fig. 3.39 also shows a shaft encoder for digital measurement of 

shaft position/speed. We now examine in detail the principle of operation of this digital device.

3.7.1

The digital measurement of shaft position requires conversion from the analog quantity ‘shaft angle’ to a 

binary number. One way of doing this would be to change shaft angle to a voltage using a potentiometer, 

and then to convert it to a binary number through an electronic A/D converter. This is perfectly feasible, 

but is not sensible because of the following reasons:
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 (i) high quality potentiometers of good accuracy are expensive and subject to wear; and

 (ii) the double conversion is certain to introduce more errors than a single conversion would.

We can go straight from angle to number, using an optical angular absolute-position encoder. It consists 

of a rotary disk made of a transparent material. The disk is divided into a number of equal angular 

sectors—depending on the resolution required. Several tracks, which are transparent in certain sectors 

but opaque in others, are laid out. Each track represents one digit of a binary number. Detectors on these 

tracks sense whether the digit is a ‘1’ or a ‘0’. Figure 3.40 gives an example. Here, the disk is divided 

into eight 45º sectors. To represent eight angles in binary code requires three digits (23 = 8), hence, there 

are three tracks. Each track has a light source sending a beam on the disk and, on the opposite side, a 

photoelectric sensor receiving this beam. Depending upon the angular sector momentarily facing the 

sensors, they transmit a bit pattern representing the angular disk position. For example, if the bit pattern 

is 010, then Sector IV is facing the sensors.

Figure 3.40 is an example of an ‘absolute encoder’. It is so called because for a given angle, the digital 

output must always be the same. Note that a cyclic (Gray) binary code is normally used on absolute 

encoders (in cyclic codes, only one bit changes between adjacent numbers). If a natural binary-code 

pattern were used, a transition from, say, 001 to 010, would produce a race between the two right-hand 

bits. Depending on which photosensor responded faster, the output would go briefly through 011 or 000. 

In either case, a momentary false bit pattern would be sent. Cyclic codes avoid such races. A cyclic code 

can be converted into a natural binary code by using either hardware or computer software.

Encoders similar to Fig. 3.40 have been widely used. However, they have certain disadvantages. 
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 (i) The resolution obtainable with these encoders is limited by the number of tracks on the encoder 

disk. The alignment of up to ten detectors and the laying out of ten tracks is still quite difficult and 

thus expensive.

 (ii) The resulting digital measurement is in a cyclic code and must usually be converted to natural 

binary before use.

 (iii) The large number of tracks and detectors, inevitably in creases the chance of mechanical and/or 

electrical failure.

For these reasons, another form of encoder is commonly used today and is known as the incremental 

encoder. The basis of an incre mental encoder is a single track served by a single detector, and laid out 

in equal segments of ‘0’ and ‘1’, as in Fig. 3.41. As the track moves relative to the detector, a pulse train 

is generated, and can be fed to a counter to record how much motion has oc curred. With regard to this 

scheme of measurement, the following questions may be raised:

 (i) How do we know which direction the motion was?

 (ii) If we can record only the distance moved, how do we know where we were?

Counter

Detector

Track motion
relative to
detector

Fig. 3.41 

The answer to the first question involves the addition of a second detector. Figure 3.42a shows two 

detectors, spaced one half of a segment apart. As the track moves relative to the detectors (we assume at 

a constant rate), the detector outputs vary with time, as shown in the waveforms of Fig. 3.42b. We can 

see that the relative ‘phasing’ of the A and B signals depends upon the direc tion of motion, and so gives 

us a means of detecting the direc tion.

For example, if signal B goes from ‘0’ to ‘1’ while signal A is at ‘1’, the motion is positive. For the same 

direction, we see that B goes from ‘1’ to ‘0’ whilst A is at ‘0’. For negative motion, a similar but different 

pair of statements can be made. By application of some fairly simple logic, it is possible to control a 

reversible counter as is indicated in Fig. 3.43

This method of direction-sensing is referred to as quadrature encoding. The detectors are one half of 

a segment apart, but reference to the waveforms of Fig. 3.42 shows that there are two segments to one 

cycle; so the detectors are one quarter of a cycle apart, and hence the name.

The solution to the second problem also requires an additional detector working on a datum track, as 

shown in Fig. 3.44. The datum resets the counter every time it goes by. 

We have thus three detectors in an incremental encoder. But this is still a lot less than on an absolute 

encoder.
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In an analog system, speed is usually measured by a tachogenera tor attached to the motor shaft. This is 

because the time differ entiation of analog position signal presents practical problems.

In a digital system, however, it is relatively easy to carry out step-by-step calculation of the ‘slope’ of 

the position/time curve. We have the position data in digital form from the shaft encoder, so the rest is 

fairly straightforward.
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(a)

(b)

Track motion
relative to
detector

Positive
motion

Negative
motion

A

A

1

0

0

1

1

0

B

B

B

+–

Fig. 3.42 

Encoder

Up

Down

Logic Reversible
counter

Quadrature outputs

A

B

Fig. 3.43 



172  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In a position control system, the load is connected 

to the motor through a gear train. The encoder may 

be connected to the load shaft/motor shaft directly 

or through a pulley system.

To know the shaft position, the number of pulses 

obtained at the output of detector A or detector 

B have to be counted. To know the direction of 

rotation, the relative phasing of the outputs of 

detectors A and B has to be sensed. To implement 

the direction sensing, a negative edge-triggered 

D-flipflop may be used (Fig. 3.45). This flipflop has the following two inputs:

 (i) clock input, derived from the output of detector A of the encoder; and

 (ii) ‘D’ input, derived from the output of detector B of the encoder.

Every time the flipflop is triggered on the 1 Æ 0 transition of waveform A, the output of the D flipflop is 

either 1 or 0, depend ing on the direction of rotation of the shaft. The output of the D flipflop thus serves 

as the control for the up/down input of the counter, reversing the direction of its count whenever the shaft 

reverses its direction.
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3.7.2

The mathematical model of the position control under study is given by the block diagram of Fig. 3.46. 

The magnitude of the digital output of the shaft encoder can be interpreted directly as the position of the 

motor shaft in degrees, by proper design of the encoder interface. Similarly, the magnitude of the digital 

reference input can be interpreted directly as reference input in degrees, by proper design of the keyboard 

matrix interface. The error e (degrees) in position is processed by the control algo rithm with transfer 

function D(z). The control signal u (in volts) is applied to the preamplifier through the D/A converter. 

The plant (preamplifier + servo amplifier + dc motor + load) is described by the transfer function

 
q( )

( )

s

V s
 = G(s) = 

94

0 3 1s s( . )+
 (3.70)
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Fig. 3.46 

To design the digital controller D(z) for this plant, we will follow the approach of discretization of analog 

design (refer to Section 2.14). The design requirements may be fixed as z = 0.7 and wn @ 10. The first step 

is to find a proper analog controller D(s) that meets the specifications. The transfer function

D(s) = Kc

( . )s

s

+
+
3 33

a

cancels the plant pole at s = –3.33. The characteristic roots of

1 + D(s)G(s) = 0

give z = 0.7 and wn = 10 if we choose Kc = 0.32 and a = 14.

The controller D(s) = 
0 32 3 33

14

. ( . )s

s

+
+

 (3.71)

gives the following steady-state behavior:

K
v
 = lim

s Æ 0
 sG(s)D(s) = 7.15

This may be considered satisfactory.

The discretized version of the controller D(s) is the proposed digital controller D(z) for the control loop 

of Fig. 3.46. The D(z) will perform as per the specifications if the lagging effect of zero-order hold is 

negligible. We take a small value for sampling interval T to satisfy this requirement. For a system with 

wn = 10 rad/sec, a very ‘safe’ sample rate would be—a factor of 20 faster than wn, yielding 

ws = 10 ¥ 20 = 200 rad/sec



174  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

and T = 
2p

ws

 @ 0.03 sec

The dominant time constant of the plant is 0.3 sec. The sampling interval T is one tenth of this value. 

We use the bilinear transformation given by 

 s = 
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z
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to digitize D(s). This results in
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The control algorithm is, therefore, given by

 u(k) = 0.653 u(k – 1) + 0.278 e(k) – 0.25 e(k – 1) (3.72b)

This completes the digital algorithm design.

3.8

The explosive growth of the computer industry in recent years has also meant an enormous growth for 

stepping motors, because these motors provide the driving force in many computer peripheral devices. 

Stepping motors can be found, for example, driving the paper-feed mechanism in printers. These motors 

are also used exclusively in floppy disk drives, where they provide precise posi tioning of magnetic head 

on the disks. The X and Y coordinate pens in plotters, are driven by stepping motors.

The stepping motor can be found performing countless tasks out side the computer industry as well. The 

most common application is probably in analog quartz watches where tiny stepping motors drive the 

hands. These motors are also popular in numerical-control applications (positioning of the workpiece 

and/or the tool in a machine according to previously specified numerical data).

A stepping motor is especially suited for applications mentioned above because, essentially, it is a device 

that serves to convert input information in digital form to an output that is mechani cal. It thereby provides 

a natural interface with the digital computer. A stepping motor, plus its associated drive electronics, 

accepts a pulse-train input and produces an increment of rotary displace ment for each pulse. We can 

control average speed by manipulating pulse rate, and motor position by controlling the total pulse count.

Two types of stepping motors are in common use—the permanent magnet (PM), and the variable  

reluctance (VR). We will discuss the PM motor first.

3.8.1

A PM stepping motor in its simplest form is shown in Fig. 3.47. The motor has a permanent magnet rotor 

that, in this example, has two poles, though often many more poles are used. The stator is made of soft 
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iron with a number of pole pieces and associated 

windings. Only four windings (grouped into two 

sets of two windings each) are used in this example. 

These windings must be excited sequentially in a 

certain order. Although this is common ly done by 

solid-state switching circuits, mechanical switches 

are shown in the figure since their operation is 

easier to visua lize.

Assume the switches to be in the positions shown. 

Windings 1 and 3 are energized and, as a result, 

the pole pieces have the polar ities shown. The 

rotor is thus found in the position shown with 

its S pole centered between the two upper N pole 

pieces, and its N pole between the two lower S pole 

pieces. With the field maintained, if we try to twist 

the shaft away from its standstill (equilibri um) position, we feel a ‘magnetic spring’ restoring torque. 

However, a sufficiently large external torque can overcome the magnetic spring. 

With the rotor energized and in equilibrium position, the torque required from an external source to 

break away the motor from this position is called the holding torque. The holding torque is a basic 

characteristic of the stepping motors, and provides posi tional integrity under standstill conditions. 

If we now imagine the position of switch A changed, then winding 2 is energized instead of winding 1. 

As a result, the right upper pole piece becomes S instead of N, and the left lower one N, so that the rotor 

is forced to rotate 90º counterclockwise. Changing switch B produces the next 90º step, etc. The rotor 

is thus forced to realign itself continuously according to the prevalent magnetic fields. If it is desired to 

reverse the direction of rotation, the order of changing the switch positions need only be reversed. 

One characteristic feature of PM stepping motors is that they have a so-called residual or detent torque 

when power to the stator windings is cut off. It is the result of the permanent-magnet flux of the PM 

motor acting on residual flux on stator poles. The detent torque is naturally much lower than the holding 

torque, produced when the stator is energized, but it does help in keeping the shaft from moving due to 

outside forces.

Many motors have more than four stator pole pieces—and possibly also more rotor poles—resulting 

in smaller step angles. Typical step angles for PM motors range from 90º to as low as 1.8º. Stator pole 

windings are connected in so-called phases, with all windings belonging to the same phase energized at 

the same time. Typically, the phases can range from as low as two to as high as eight. The more phases 

the motor has, the smoother is its output torque.

Figure 3.48 shows a simple power drive scheme; each time the power transistors are switched as per the 

sequence given in the chart, the motor moves through a fixed angle, referred to as the step angle. The 

chart is circular in the sense that, the next entry after Step 4 is Step 1. To rotate the motor in a clockwise 

direction, the chart is traversed from top to bottom, and to rotate the motor in counterclockwise direction, 

A

B

1

4

S

S

S

N

N

N2

3

Fig. 3.47 
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the chart is traversed from bottom to top. Number of step movements/sec gives the stepping rate—a 

parameter that gives a measure of the speed of operation of the stepping motor. The stepping rate is 

controlled by changing the switching frequency of the transistors.
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From the foregoing description of the method of operation of a stepping motor, we observe that the 

stepping action of the motor is dependent on a specific switching sequence that serves to energize and 

de-energize the stator windings. In addition to the sequence requirement, the windings must be provided 

with suffi cient current. These requirements are met by the stepping motor driver, whose block diagram is 

shown in Fig. 3.49. The sequence-logic section of the motor driver accepts the pulse-train input, and also 

receives a binary direction signal indicating the direction in which the motor is to step. It then produces 

an appropriate switching sequence, so that each phase of the motor is energized at the proper time. The 

drive-amplifier section con sists of power transistors supplying sufficient current to drive the motor.

Pulse train

Direction
CW/CCW logic input

Sequence
logic

Drive
amplifier

Motor
(four phase)

Fig. 3.49 
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3.8.2

Figure 3.50 illustrates a typical Variable Reluctance (VR) motor. The rotor is made of magnetic material, 

but it is not a permanent magnet, and it has a series of teeth (eight in this case) ma chined into it. As 

with the PM stepping motor, the stator con sists of a number of pole pieces with windings connected in 

phases; all windings belonging to the same phase are energized at the same time. The stator in Fig. 3.50 

is designed for 12 pole pieces with 12 associated windings arranged in three phases (labeled 1, 2, and 3, 

respectively). The figure shows a set of four windings for Phase 1; the windings for the other two phases 

have been omitted for clarity.

1

1

3

2

Fig. 3.50 

The operating principle of the  VR motor is straightforward. Let any phase of the windings be energized with 

a dc signal. The magnetomotive force set up will position the rotor such that the teeth of the rotor section 

in the neighborhood of the excited phase of the stator, are aligned opposite to the pole pieces associat ed 

with the excited phase. This is the position of minimum reluc tance, and the motor is in stable equilibrium. 

Figure 3.50 illustrates the rotor in the position it would assume when Phase 1 is energized. If we now 

de-energize Phase 1 and energize Phase 2, the rotor rotates counterclockwise so that the four rotor teeth 

nearest to the four pole pieces belonging to Phase 2, align themselves with these. The step angle of 

the motor equals the difference in angular pitch between adjacent rotor teeth and adjacent pole pieces; 

in this case 45 – 30 = 15º. Due to this di fference relationship, VR motors can be designed to operate 

with considerably smaller step angles than PM motors. Other advantages of VR motors include faster 

dynamic response and the ability to accept higher pulse rates.
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Among the drawbacks—their output torque is lower than that of a PM motor of a similar size, and they 

do not provide any detent torque when not energized.

3.8.3

Torque versus speed curves of a stepping motor give the dynamic torque, produced by the stepping 

motor at a given stepping rate, on excitation under rated conditions. The dynamic torque of a motor is 

the most important data and it plays a major role in the selection of a motor for a specified application. 

In a load-positioning application, for instance, the rotor would typically start from rest and accelerate 

the load to the desired position. To provide this type of motion, the motor must develop sufficient torque 

to overcome friction, and to accelerate the total inertia. In accel erating the inertia, the motor may be 

required to develop a large amount of torque, particularly if the acceleration must be com pleted in a short 

time—so as to position the load quickly. Ina bility of the motor to develop sufficient torque during motion 

may cause the motor to stall, resulting in a loss of synchroniza tion between the motor steps and phase 

excitation, and conse quently, resulting in incorrect positioning of the load.

A typical torque versus stepping rate characteristic graph is shown in Fig. 3.51, in which curve a gives 

pull-in torque versus rotor steps/sec and curve b gives pull-out torque versus rotor steps/sec.

Fig. 3.51 

The pull-in range (the area between axes and curve a) of the motor is the range of switching speeds 

at which the motor can start and stop, without losing steps. For a frictional load requiring torque T1 to 

overcome friction, the maximum pull-in rate is S1 steps per sec. S2 is the maximum pull-in rate at which 

the unloaded motor can start and stop, without losing steps.

When the motor is running, the stepping rate can be increased above the maximum pull-in rate, and 

when this occurs, the motor is operating in the slew-range region (the area between horizontal axis, 

and curves a and b). The slew range gives the range of switching speeds within which the motor can 

run unidirectionally, but cannot be started or reversed (at shaft torque T1, the motor cannot be started 

or reversed at step rate S3). When the motor is running in the slew range, it can follow changes in the 

stepping rate without losing steps, but only with a certain acceleration limit.
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For a frictional load requiring torque T1 to overcome friction, the maximum slewing rate at which the 

motor can run is S4. S5 is the maximum slewing rate at which the unloaded motor can run without losing 

steps.

Curve c in Fig. 3.51 gives the pull-in torque with external inertia. It is obvious that if the external load 

results in a pull-in torque curve c, the torque developed by the motor at step rate S1 is T2 < T1. Stepping 

motors are more sensitive to the inertia of the load than they are to its friction.

3.8.4

In motion control technology, the rise of stepping motors, in fact, began with the availability of easy-to-

use integrated circuit chips to drive these stepping motors. These chips require, as inputs a pulse train 

at the stepping frequency, a logic signal to specify CW and CCW rotation, and a logic signal for STOP/

START operation. An adjustable frequency pulse train is readily ob tained from another integrated circuit 

chip—a voltage-controlled oscillator.

The application of stepping motors has shot up with the availa bility of low-cost microprocessors. A 

simplified form of micro processor-based stepping motor drive is shown in Fig. 3.52. The system requires 

an input port and an output port (this require ment is reduced to one port if a programmable I/O port is 

used). Output port handles the binary pattern applied to the stepping motor (which is assumed to be a 

four-phase motor). The excitation sequence is usually stored in a table of numbers. A pattern for four-

phase motor is shown in the chart of Fig. 3.52. The chart is circular in the sense that the next entry 

after Step 4 is Step 1. To rotate the motor in a clockwise direction, the chart is traversed from top to 

Fig. 3.52 
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bottom, and to rotate the motor in counterclockwise direc tion, the chart is traversed from bottom to top. 

By controlling the number of bit-pattern changes, and the speed at which they change, it is possible to 

control the angle through which the motor rotates and the speed of rotation. These controls can easily be 

realized through software.

The system operator has control over the direction of rotation of the motor by means of a DIRECTION 

switch, which is interfaced to the CPU through the input port. The operator is also provided with a STOP 

switch which is connected to an interrupt line of the CPU. The interrupt routine must stop the motor  

by sending out logic ‘0’s on the data bus lines connected to the stepping motor windings through the  

output port.

Figure 3.52 also shows a simple drive circuit for the stepping motor. Power transistors Q1–Q4 act as 

switching elements.

When a power transistor is turned off, a high voltage builds up due to di/dt, which may damage the 

transistor. This surge in voltage can be suppressed by connecting a diode in parallel with each winding 

in the polarity shown in Fig. 3.52. Now, there will be a flow of circulating current after the transistor is 

turned off, and the current will decay with time.

3.8.5

Stepping motors present a number of pronounced advantages, as compared to conventional electric 

motors:

 (i) Since the stepping-motor shaft angle bears an exact relation to the number of input pulses, the 

motor provides an accurate open-loop positioning system without the need for closing the loop 

with a position encoder, comparator, and servo amplifier, as is done in conventional closed-loop 

systems.

 (ii) If the stepping motor receives a continuous train of pulses at constant frequency, it rotates at a 

constant speed, provided neither the load torque nor the pulse frequency are excessive for the 

given motor. The stepping motor can thus take the place of a velocity servo, again, without the 

need for a closed-loop system. By changing pulse frequency, the motor speed can be controlled. 

Even low velocities can be maintained accurately, which is diffi cult to do with conventional dc 

motors.

 (iii) By driving several motors from the same frequency source, synchronized motions at different 

points in a machine are easily obtained. Using standard frequency-divider chips, we can drive a 

motor at a precise fraction of another motor’s speed, giving an electronic gear train.

 (iv) If the motor stator is kept energized during standstill, the motor produces an appreciable holding 

torque. Thus, the load position can be locked without the need for clutch-brake arrange ments. The 

motor can be stalled in this manner indefinitely, without adverse effects.

There are, of course, also certain drawbacks. 

 (i) If the input pulse rate is too fast, or if the load is exces sive, the motor will ‘miss’ steps, making the 

speed and position inaccurate.

 (ii) If the motor is at rest, an external disturbing torque greater than the motor’s holding torque, can 

twist the motor shaft away from its commanded position by any number of steps.
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 (iii) With high load inertias, overshooting and oscillations can occur unless proper damping is applied, 

and under certain condi tions, the stepping motor may become unstable.

 (iv) Stepping motors are only available in low or medium hp ratings, up to a couple of hp (in theory, 

larger stepping motors could be built, but the real problem lies with the controller—how to get 

large currents into and out of motor windings at a suffi ciently high rate, in spite of winding 

inductance).

 (v) Stepping motors are inherently low-speed devices, more suited for low-speed applications because 

gearing is avoided. If high speeds are required, this of course becomes a drawback.

Since the cost and simplicity advantages of stepping-motor con trol systems erode when motion sensors 

and feedback loops are added, much effort has gone into improving the performance of open-loop 

systems:

 (i) As explained earlier in connection with Fig. 3.51, the permissible pulse rate for starting an inertia 

load (i.e., the pull-in rate), is much lower than the permissible pulse rate once the motor has 

reached maximum speed (pull-out rate). A good controller brings the motor up to its maximum 

speed gradually, a process called ramping2, in such a manner that no pulses are lost. Simi larly, a 

good controller controls deceleration when the motor is to be stopped.

 (ii) Various schemes for improving damping to prevent overshoot ing and oscillations when the 

motor is to be stopped, are availa ble. Mechanical damping devices provide a simple solution, but 

these devices reduce the available motor torque and also, mostly, require a motor with a double-

ended shaft. Therefore, electronic damping methods are usually preferred. A technique called  

back-phase damping consists of switching the motor into the reverse direction using the last few 

pulses of a move.

 (iii) The more sophisticated controllers are able to provide so-called microstepping. This technique 

permits the motor shaft to be positioned at places other than the natural stable points of the 

motor. It is accomplished by proportioning the current in two adjacent motor windings. Instead 

of operating the winding in the on-off mode, the current in one winding is decreased slightly, but 

increased in the adjacent winding.

 (iv) Complex drive circuits that offer good current build-up without loss at high stepping rates, are 

used.

Although the advantages of stepping-motor drives in open-loop systems are most obvious, closed-loop 

applications also exist. A closed-loop stepping motor drive can be analyzed using classical techniques 

employed for continuous-motion systems. For a detailed account of stepping motors, refer to [52].

3.9

A great deal of what has been said in this book so far about control systems seems exotic: algorithms 

for radar tracking, drives for rolling mills, filters for extracting information from noisy data, methods for  

numerical control of machine tools, fluid-temperature control in process plants, etc. Underlying most 

of these are much more mundane tasks: turning equipment (pumps, conveyor belts, etc.) on and off; 

 2 Refer to [96] for detailed description of hardware and software.
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opening and closing of valves (pneumatic, hydraulic); checking sensors to be certain they are working; 

sending alarms when monitored signals go out of range; etc. Process control plants and manufacturing 

floors share this need for simple, but important, tasks.

These so-called logic control functions can be implemented using one of the most ingenious devices 

ever devised to advance the field of industrial automation. So versatile are these devices, that they are 

employed in the automation of almost every type of industry. The device, of course, is the programmable 

controller, and thousands of these devices go unrecognized in process plants and factory environments—

quietly monitoring security, manipulat ing valves, and controlling machines and automatic production 

lines.

Industrial applications of logic control are mainly of two types; those in which the control system is 

entirely based on logic principles, and those that are mainly of a continuous feed back nature and use a 

‘relatively small’ amount of logic in auxiliary functions, such as start-up/shut-down, safety interlocks 

and overrides, and mode switching. Programmable controllers, origi nally intended for ‘100%’ logic 

systems, have, in recent years, added the capability of conventional feedback control; making them 

very popular—since one controller can now handle, in an integrated way, all aspects of operation of a 

practical system, that includes both types of control problems. General-purpose digital computers could 

also handle such situations, but they are not as popular as the programmable controllers, for the reasons 

mentioned below.

In theory, general-purpose computers can be programmed to perform most of the functions of 

programmable controllers. However, these machines are not built to operate reliably under industrial 

conditions, where they can be exposed to heat, humidity, corro sive atmosphere, mechanical shock and 

vibration, electromagnetic noise, unreliable ac power with dropping voltages, voltage spikes, etc. A 

programmable controller is a special-purpose computer, especially designed for industrial environments. 

A general-purpose computer is a complex machine, capable of executing several programs or tasks 

simultaneously, and in any order. By contrast, a programmable controller typically executes its tiny 

program continuously hundreds of millions of times before being interrupted to introduce a new program. 

General-purpose computers can be interfaced with external equipment with special circuit cards. In 

programmable controllers by comparison, the hardware interfaces for connecting the field devices are 

actually a part of the controller and are easily connected. The software of the controllers is designed for 

easy use by plant technicians. A programmable controller is thus a special-purpose device for industrial 

automation applications—requiring logic control func tions and simple PID control functions; it cannot 

compete with conventional computers when it comes to complex control algo rithms and/or fast feedback 

loops, requiring high program execu tion speeds.

Early devices were called ‘programmable logic controllers (PLCs)’, and were designed to accept on-off 

(binary logic) vol tage inputs from sensors, switches, relay contacts, etc., and produce on-off voltage 

outputs to actuate motors, solenoids, control relays, lights, alarms, fans, heaters, and other electri cal 

equipment. As many of today’s ‘programmable controllers’ also accept analog data, perform simple 

arithmetic operations, and even act as PID (proportional-integral-derivative) process control lers, the 

word ‘logic’ and the letter ‘L’ were dropped from the name long ago. This frequently causes confusion, 

since the let ters ‘PC’ mean different things to different people; the most common usage of these letters 

being for ‘Personal Computer’. To avoid this confusion, there has been a tendency lately to restore the 

letter ‘L’ and revive the designation ‘PLC’. We have followed this practice in the book.
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Before the era of PLCs, hardwired relay control panels were, in fact, the major type of logic systems, and 

this historical development explains why the most modern, microprocessor-based PLCs still are usually 

programmed according to relay ladder diagrams. This feature has been responsible for much of the 

widespread and rapid acceptance of PLCs; the computer was forced to learn the already familiar human 

language rather than making the humans learn a new computer language. Originally cost-effective for 

only large-scale systems, small versions of PLCs are now available.

A sequenced but brief presentation of building blocks of a PLC, ladder diagrams, and examples of 

industrial automation, follows [23–25]. It is not appropriate to discuss here the internal details, 

performance specifications and programming details for any particular manufacturer’s PLC. These 

aspects are described in every manufacturers’ literature.

3.9.1

A definition of logic controls, that adequately describes most applications, is that they are controls that 

work with one-bit binary signals. That is, the system needs only to know that a signal is absent or present; 

its exact size is not important. This definition excludes the field of digital computer control discussed so 

far in the book. Convention al computer control also uses binary signals (though usually with many bits); 

the type of application and the analysis methods are quite different for logic controls and conventional 

computer controls, which is why we make the distinction.

Logic control systems can involve both combinational and sequen tial aspects. Combinational aspects 

are implemented by a proper interconnection of basic logic elements such as AND, OR, NOT, so as to 

provide a desired output or outputs, when a certain combina tion of inputs exists. Sequential effects use 

logic elements together with memory elements (counters, timers, etc.), to ensure that a chain of events 

occurs in some desired sequence. The present status of outputs depends, both, on the past and pre sent 

status of inputs.

It is important to be able to distinguish between the nature of variables in a logic control system, and 

those in a conventional feedback control system. To define the difference, we consider an example that 

employs both the control schemes. 

Figure 3.53 shows a tank with a valve that controls flow of liquid into the tank, and another valve that 

controls flow out of the tank. A transducer is available to measure the level of the liquid in the tank. Also 

shown is the block diagram of a feedback control system, whose objective is to maintain the level of the 

liquid in the tank at some preset, or set-point value. We assume that the controller operates according to 

PID mode of control, to regulate the level against variations induced from external influences. This is a 

continuous variable control system because, both the level and the control valve setting can vary over a 

range to achieve the desired regulation. 

The liquid-level control system is a part of the continuous bottle filling process. Periodically, a bottle 

comes into posi tion under the outlet valve. The level must be maintained at the set-point while the outlet 

valve is opened and the bottle is filled. This requirement is necessary to assure a constant pressure head 

during bottle-filling. Figure 3.53 shows a pictorial representation of process hardware for continu ous 

bottle-filling control. The objective is to fill bottles moving on a conveyor, from the constant-head tank. 

This is a typical logic control problem. We are to implement a control program that will detect the 

position of a bottle under the tank outlet via a mechanically actuated limit switch, stop the feed motor 
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M1 to stop the feed conveyor, open the solenoid-operated outlet valve V1, and then fill the bottle until 

the photosensor detects the filled position. After the bottle is filled, it will close the valve V1, and restart 

the conveyor to continue to the next bottle. The start and stop pushbuttons (PB) will be includ ed for the 

outfeed motor, and for the start of the bottle-filling process. Once the start PB is pushed, the outfeed 

motor M2 will be ON until the stop PB is pushed. The feed motor M1 is energized once the system starts 

(M2 ON), and is stopped when the limit switch detects the correct position of the bottle.

The sensors used for the logic control problem have characteris tics different from those used for the 

regulator problem. For the regulator problem, the level sensor is an analog device producing analog 

signal as its output. For the logic control problem, sensors used are binary sensors producing on-off 

(binary logic) signals. For example, a limit-switch consists of mechanically actuated electrical contacts. 

The contacts open or close when some object reaches a certain position (i.e., limit), and actuates the 

switch. Hence, limit-switches are binary sensors. Photoelec tric sensors consist, basically, of a source 

emitting a light beam and a light-sensing detector receiving the beam. The object to be sensed interrupts 

the beam, thereby making its presence known without physical contact between sensor and object. The 

filled-bottle state of the product can thus be sensed by a binary photo electric sensor.

The system of Fig. 3.53 involves solenoid and electric motors as motion actuators. Thus, when the logic 

controller specifies that ‘output valve be opened’, it may mean moving a solenoid. This is not done by a 

simple toggle switch. Instead, one would logically assume that a small switch may be used to energize a 

relay with contact ratings that can handle the heavy load. Similarly, an on-off voltage signal from the logic  

controller may actuate a thyristor circuit to run a motor.

Controller Set-point

Solenoid
operated valve 1V

Photoelectric sensor

Filled bottlesEmpty bottles

Feed motor
drive
1M

Outfeed motor drive
(always ON
during process)

2M

Limit switch

Fixed
rollers

LS

Control valve

Input flow

Fig. 3.53 



 Models of Digital Control Devices and Systems 185

3.9.2

The programmable logic controllers are basically computer-based; and therefore, their architecture is very  

similar to computer architecture. The memory contains the operating system stored in fixed memory 

(ROM), and the application programs stored in alter able memory (RAM). The Central Processing Unit 

(CPU) is a micro processor that coordinates the activities of the PLC system. Figure 3.54 shows basic 

building blocks of a PLC.

Power supply

Input
module

Output
module

CPU

Memory

Signals from
switches,
sensors, etc.

Signals to
solenoids,
motors, etc.

Fig. 3.54 

Input devices such as pushbuttons, sensors, and limit switches are connected to the input interface  

circuit, called the input module. This section gathers informa tion from the outside environment, and 

sends it to the CPU. Output devices such as solenoids, motor controls, indicator lights and alarms are 

connected to the output interface circuit, called the output module. This sec tion is where the calculation 

results from the CPU are output to the outside environment. With the control application program (stored 

within the PLC memory) in execution, the PLC constantly monitors the state of the system through the 

field input devices; and based on the program logic, it determines the course of action to be carried out 

at the field output devices. This pro cess of sequentially reading the inputs, executing the program in 

memory, and updating the outputs is known as scanning. 

Intelligence of an automated system is greatly dependent on the ability of a PLC to read in the signals 

from various types of input field devic es. The most common class of input devices in an automated 

system is the binary type. These devices provide input signals that are ON/OFF or OPEN/CLOSED. 

To the input interface circuit, all binary input devices are essentially a switch that is either open or 

closed, signaling a 1(ON) or 0(OFF). Some of the binary input field devices along with their symbolic 

representation are listed in Fig. 3.55.
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As mentioned earlier, a switch is a symbolic representation of the field input device, interfaced to the 

input module of the PLC. The device may be a manually operated pushbutton, mechanically actuated 

limit switch (the contacts open/close when some object reaches a certain position and actuates the 

switch), proximity switch (device based on inductive/capacitive/magnetic effect which, with appropriate 

electronics, can sense the presence of an object without a physical contact with the object), photoelectric 

sensor, level sensor, temperature sensor, shaft encoder, etc. The main purpose of the input module is to 

condition the various signals, received from the field devices, to produce an output to be sensed by the 

CPU. The signal conditioning involves converting power-level signals from field devices to logic-level 

signals acceptable to the CPU, and providing electrical isolation so that there is no electrical connection 

between the field device (power) and the controller (logic). The coupling between the power and the 

logic sections is normally provided by an optical coupler.

During our discussion on PLC programming, it will be helpful if we keep in mind the relationship 

between the interface signals (ON/OFF) and their mapping and addressing used in the program. When 

in operation, if an input signal is energized (ON), the input interface circuit senses the field device’s 

supplied vol tage and converts it to a logic-level signal acceptable to the CPU, to indicate the status of the 

device. The field status infor mation provided to the standard input module is placed into the input table 

in memory through PLC instructions. The I/O address assignment document of the PLC manufacturer 

identifies each field device by an address. During scanning, the PLC reads the status of all field input 

devices, and places this information at the corresponding address locations.

An automation system is incomplete without means for interface to the field output devices. The output 

module provides connections between the CPU and output field devices. The output module receives 

from the CPU logic-level signals (1 or 0).

The main purpose of the output interface circuit is to condition the signals received from the CPU, to 

produce outputs to actuate the output field devices. The signal conditioning circuit consists, primarily, of 

the logic and power sections, coupled by an isola tion circuit. The output interface can be thought of as a 

simple switch through which power can be provided to control the output device.

During normal operation, the CPU sends to the output table, at predefined address locations, the output 

status according to the logic program. If the status is 1, ON signal will be passed through the isolation 

circuit, which, in turn, will switch the voltage to the field device through the power section of the module. 

The power section of the output module may be transistor based, triac based, or simply, relay ‘contact 

based’ circuit. The relay circuit output interface allows the output devices to be switched by NO  

(normally open) or NC (normally closed) relay contact. When the processor sends the status (1 or 0) to 

the module (through output table) during the output update, the state of the contact will change. If a 1 is 

sent to the module from the processor, a nor mally open contact will close, and a normally closed contact 

will change to an open position. If a 0 is sent, no change occurs to the normal state of the contacts. The 

contact output can be used to switch either ac or dc loads; switching small currents at low voltages. High 

power contact outputs are also available for switching of high currents.

Some of the output field devices, along with their symbolic representation, are given in Fig. 3.56.
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Once we have the CPU programmed, we get information in and out of the PLC through the use of 

input and output modules. The input module terminals receive signals from switches, and other input 

information devices. The output module terminals provide output voltages to energize motors and valves, 

operate indicating devices, and so on. 

For small PLC systems, the input and output terminals may be included on the same frame as the CPU. 

In large systems, the input and output modules are separate units; modules are placed in groups on racks, 

and the racks are connected to the CPU via appropriate connector cables.

Generally speaking, there are three categories of rack en closures—the master rack, the local rack, and 

the remote rack. A master rack refers to the enclosure containing the CPU module. This rack may, or may 

not, have slots available for the insertion of I/O modules. The larger the PLC system, the less likely that 

the master rack will have I/O housing capability or space. A local rack is an enclosure which is placed 

in the same location or area where the master rack is housed. If a master rack contains I/O, it can also be 

considered a local rack. In general, a local rack contains a local I/O processor which re ceives and sends 

data to and from the CPU. 

As the name implies, remote racks are enclosures containing I/O modules located far away from the 

CPU. A remote rack contains an I/O processor which communicates I/O information just like the local 

rack.

Timers and counters play an important part in many industrial automation systems. The timers are used 

to ini tiate events at defined intervals. The counters, on the other hand, are used to count the occurrences 

of any defined event.

Basically the operation of both the timer and the counter is same, as a timer operates like a counter. The 

counter shown in Fig. 3.57a, counts down from set value when its execution condition (count input) goes 

from OFF to ON. When the value reaches zero, the counter contact point is turned ON. It is reset with a 

reset input. The set value is decided by the programmer, and stored in the internal register of the counter 

through control program instruc tions. The count input signal may refer to any event which may occur 

randomly.



188  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

When a count input signal occurs at fixed frequency, i.e., after every fixed interval of time, the counter 

performs as a timer. Now 10 pulses, i.e., counts, will mean an elapsed time of 5 seconds, if the signal 

is occurring after a regular interval of 0.5 seconds. The timer, shown in Fig. 3.57b, is activated when its 

execution condition goes ON and starts decreasing from the set value. When the value reaches zero, the 

timer contact point is turned ON. It is reset to set value when the execution condition goes OFF.

It is unlikely that two different PLCs will have identical memory maps, but a generalization of memory 

organization is still valid in the light of the fact that all PLCs have similar storage requirements. In 

general, all PLCs must have memory allocated for the four items described below.

The executive software is a permanently stored collec tion of programs that are considered 

a part of the system itself. These programs direct system activities such as execution of the control 

program, communication with peripheral devices, and other housekeeping activities. The executive area 

of memory is not accessible to the user.

It is a temporary storage used by the CPU to store a relatively small amount of data 

for interim calculations or control.

This area stores any data associated with the control program, such as timer/counter set 

values, and any other stored constants or variables that are used by the control program. This section also 

retains the status information of the system inputs once they have been read, and the system outputs once 

they have been set by the control program.

This area provides storage for any programmed in structions entered by the user. The 

control program is stored in this area. 

The Data Table and the User Program areas are accessi ble and are required by the user for control  

application. The Executive and Scratch Pad areas together are normally referred to as ‘system memory’, 

and Data Table and User Program areas to gether are labeled as ‘application memory’.

The data table area of the PLC’s application memory is composed of several sections described below.

The input table is an array of bits that stores the status of discrete inputs which are 

connected to input interface circuit. The maximum number of bits in the input table is equal to the 

maximum number of field inputs that can be connected to the PLC. For instance, a controller with 128 

Counter Start input Timer

Set value

(a)

Set value

Count input

Reset input

(b)

Fig. 3.57 
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inputs would require an input table of 128 bits. If the PLC system has 8 input mod ules, each with 16 

terminal points, then the input table in PLC memory (assuming 16 bit word length) will look like that 

in Fig. 3.58.
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Each terminal point on each of the input modules will have an address by which it is referenced. This 

address will be a pointer to a bit in the input table. Thus, each connected input has a bit in the input table 

that corresponds exactly to the terminal to which the input is connected. The address of the input device 

can be interpreted as word location in the input table corresponding to the input module, and bit location 

in the word corresponding to the terminal of the input module, to which the device is con nected.

Several factors determine the address of the word loca tion of each module. The type of module, input or 

output, deter mines the first number in the address from left to right (say, 0 for input, and 1 for output). 

The next two address numbers are determined by the rack number and the slot location where the module 

is placed. Figure 3.58 graphically illustrates a mapping of the input table, and the modules placed in rack 

0 (master rack). Note that the numbers associated with address assignment depend on the PLC model 

used. These addresses can be represented in octal, decimal, or hexadecimal. We have used decimal 

numbers.

The limit switch connected to the input interface (refer to Fig. 3.58) has an address of 00012 for its 

corresponding bit in the input table. This address comes from the word location 000 and the bit number 

12; which are related to the rack position where the module is installed, and the module’s terminal 

connect ed to the field device, respectively. If the limit switch is ON (closed), the corresponding bit 00012 

will be 1; if the limit switch is OFF (open), its corresponding bit will be 0. 

During PLC operation, the processor will read the status of each input in the input modules, and then 

place this value (1 or 0) in the corresponding address in the input table. The input table is constantly 

changing—to reflect the changes in the field devices connected to the input modules. These changes in 

the input table take place during the reading part of the processor scan.
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The output table is an array of bits that controls the status of output devices, which 

are connected to the output interface circuit. The maximum number of bits available in the output table 

is equal to the maximum number of output field devices that can be interfaced to the PLC. For instance, 

a con troller with a maximum number of 128 outputs would require an output table of 128 bits.

Each connected output has a bit in the output table that corre sponds exactly to the terminal to which the 

output is connected. The bits in the output table are controlled (ON/OFF) by the processor, as it interprets 

the control program logic. If a bit in the table is tuned ON (logic 1), then the connected output is switched 

ON. If a bit is cleared or turned OFF (logic 0), the output is switched OFF. Remember that the turning 

ON or OFF, of the field devices occurs during the update of outputs after the end of the scan.

This section of the data table may be subdivided in two parts consisting of a work 

bit storage area and a word stor age area. The purpose of this data table section is to store data that can 

change, whether it is a bit or a word (16 bits). Work bits are internal outputs which are normally used 

to provide interlocking logic. The internal outputs do not directly control output field devices. When the 

processor evaluates the control program, and any of these outputs is energized (logic 1), then this internal 

output, in conjunction with other internal and/or real signals from field devices, forms an interlocking 

logic sequence that drives an output device or another internal output.

The outputs of timers and counters are used as internal outputs which are generated after a time interval 

has expired, or a count has reached a set value.

Assume that the timer/counter table in storage area has 512 points. Address assignment for these points 

depends on the PLC model used. We will use TIM/CNT000 to TIM/CNT512 as the ad dresses of these 

points. The word storage area will store the set values of timers/counters.

In our application examples given in the next subsection, we shall use word addresses 000 to 007 for 

input table, and addresses 100 to 107 for output table. The input devices will be labeled with numbers 

such as 00000,..., 00015, and output devices with numbers such as 10000, ..., 10015.

We shall use word addresses 010 to 017 for internal outputs. Examples of typical work bits (internal 

outputs) are 01000, ..., 01015. TIM/CNT000 to TIM/CNT512 are the typical addresses of timer/counter 

points.

3.9.3

Although specialized functions are useful in certain situations, most logic control systems may be 

implemented with the three basic logic functions AND, OR, and NOT. These functions are used either 

singly or in combinations, to form instructions that will determine if an output field device is to be 

switched ON or OFF. The most widely used language for implementing these instructions are ladder 

diagrams. Ladder diagrams are also called contact symbology, since the instructions, as we shall see, are 

relay-equivalent contact symbols shown in Figs 3.56f and 3.56g.

An AND device may have any number of inputs and one output. To turn the output ON, all the inputs 

must be ON. This function is most easily visualized in terms of switch arrangement of Fig. 3.59a, and 

timing chart of Fig. 3.59b. The corresponding ladder diagram is given in Fig. 3.59c. Figure 3.59d gives 

the Boolean algebra expression for the two-input AND, read as “A AND B equals C”.
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The timing chart in Fig. 3.59b is simply a series of graphs, each representing a logic variable, in which 

the horizontal axis is time and the vertical axis is logic state, that is, 0 or 1. The graphs are placed so that 

their time-axis are synchronized; in this way, a vertical line at any point on the graph describes a point in 

time, and all input and output variables can be evaluat ed at that point. The graph of the output variable is 

determined by the structure of the logic system and, of course, the pattern of the input.

The input contacts in Fig. 3.59c are normally open (NO) contacts (Do not confuse this symbol with 

the familiar electrical symbol for capacitors). If the status of the input A is ‘1’, the contact A in ladder 

diagram will close, and allow current to flow through the contact. If the status of the input A is ‘0’, the 

contact will remain open, and not allow current to flow through the contact.

The ladder diagram of Fig. 3.59c can be thought of as a circuit having many inputs. A circuit is known 

as the ‘rung’ of the ladder. A complete PLC ladder diagram consists of several rungs; a rung controls 

an output field device either through an output module or an internal output. The input to a rung can be 

logic commands from input modules, or from output modules connected to field devices, or from internal 

outputs.

Figure 3.60 gives similar details for logical OR operation and should be self-explanatory. The Boolean 

expression is read as “A OR B equals C”.

The contact in Fig. 3.61 in normally closed (NC) contact. If the status of the input A is ‘0’, the contact 

will remain closed, thus allowing current to flow through the contact. If the status of the input A is ‘1’, 

the contact will open and not allow current to flow through the contact. This symbol permits the use of 

logic NOT operator. The Boolean expression is read as “NOT A equals B”; the overbar is used in general, 

for applying NOT function.

Fig. 3.59 
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Consider the logic system

A · B = C

read as “A AND NOT B equals C”.

The ladder diagram and timing chart for this system are given in Fig. 3.62.
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Consider now the logic system

A + B = C

read as “A OR NOT B equals C”.

The ladder diagram and timing chart for this system are given in Fig. 3.63.

Fig. 3.63 

Example 3.5 Start/Stop Pushbutton System

Most large industrial machines are turned on and off by means of sepa rate spring pushbuttons for start 

and stop. This has safety implications in that the stop pushbutton can be given priority to shut down 

the machine in an emergency, regardless of the status of the start pushbutton. The start/stop pushbutton 

system is a logic control system with three variables, each of which can take on two, and only two values, 

or states. These variables and their states are defined as follows:
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Assume that 000 is the word address of the input module, and 100 is the word address of the output 

module of a PLC. Each module is assumed to have 16 terminals: 00 to 15. The start pushbutton is 

connected to terminal 00, and stop pushbutton is connected to terminal 01 of the input module 000; and 

the signal from terminal 00 of the output module 100 controls the machine. The system variables may, 

therefore, be designated as 00000, 00001, and 10000. 

The bit 00000 of the input table in PLC memory is 1 when the start pushbutton is pressed, and is 0 when 

start pushbutton is released. The bit 00001 of the input table is 1 when the stop pushbutton is pressed, 

and is 0 when the stop pushbutton is released. The bit 10000 of the output table is 1 when the machine is 

running, and 0 when the machine is not running.

The logic system has three input variables and one output varia ble. There appears to be a contradiction, 

but the statement is true. The variable 10000, representing the start of the machine, is both an input 

variable and an output variable. This makes sense because the current state of the machine may affect 

the future state.

Figure 3.64a illustrates a simple situation in which pushbutton 00000 turns ON machine 10000. This 

of course would not be satis factory pushbutton switch because as soon as pushbutton is re leased, the 

machine comes to OFF state. Figure 3.64b adds an OR condition that keeps the machine ON if it is 

already ON. This is an improvement, but now there is a new problem; once turned ON, the output will 

00000

00000

00000

10000

10000

00000

00001

10000

1

1

1

0

0

0

00001

10000

10000

(a)

(b)

(c)

(d)

10000

1 3 5 7 9

Fig. 3.64 



 Models of Digital Control Devices and Systems 195

never be turned OFF by the logic system. We add another input switch in Fig. 3.64c. Note that 00001 

contact is normally closed. Input 00000 turns ON output 10000; input 10000 keeps output 10000 ON 

until input 00001 turns it OFF.

The timing chart of the logic system is shown in Fig. 3.64d.

Example 3.6 Automatic Weigh Station

Consider the conveyer system of Fig. 3.65, in which an automatic weigh station activates a trap door, or 

diverter, in the event an overweight item passes over the weigh station. The trap door opens immediately, 

and remains open for 4 seconds to allow suffi cient time for the item to drop through to the overweight 

track (For the system to work properly, it is necessary for successive items on the conveyor to be separated 

by distances of at least 5 seconds or so).

Automatic
weigh
station

Overweight track

Trap door

Fig. 3.65 

The variables of the logic system are defined as follows (refer to Fig. 3.66a). 00000 represents the 

pressure switch connected to terminal 00 of input module 000. It senses the overweight item on the 

automatic weigh station. The bit 00000 in the input table latches 1 for the overweight item. 10000 

represents a solenoid connected to terminal 00 of the output module 100, which pushes the trap door 

open. When the bit 10000 in the output table latch es 1, the trap door is open and when the bit is 0, the 

trap door is closed.

For a 4 sec delay, the set value 0040 is stored in word storage area of memory. Countdown of this number 

to 0000 will give an elapsed time of 4 seconds in our PLC system, wherein we assume that the timer 

counts time-based intervals of 0.1 sec (40 counts will mean an elapsed time of 4 sec).

Fig. 3.66
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The timer TIM000 is activated when its execution condition goes ON and starts decreasing from the set 

value. When the value reaches 0000, the timer contact point is tuned ON. It is reset to set value when the 

execution condition goes OFF. The timer con tact point works as internal work bit (A work bit/internal 

output is for use of program only; it does not turn ON/OFF external field devices).

It is obvious from the ladder diagram of Fig. 3.66a that once an overweight item is detected, the trap 

door opens; it remains open for 4 sec, and thereafter it closes. Figure 3.66b shows the timing chart for 

the logic system.

Example 3.7 Packaging Line Control

Figure 3.67 shows a pictorial representation of process hardware of a conveyor system used for automatic 

packaging. The objective is to fill boxes moving on Box Conveyor from the Part Conveyor System.

Input devices : Box proximity sensor 00003

  Part proximity sensor 00002

  Stop pushbutton 00001

  Start pushbutton 00000

Output devices : Part conveyor motor 10000

  Box conveyor motor 10001

Pushbutton 00000 starts the packaging line control which stops when pushbutton 00001 is pressed. 

Let us generate a work bit (internal output) 01000, which depends on the state of both the pushbuttons 

(refer to Fig. 3.68). The work bit is 1 when packaging line control is ON, and it is 0 when packaging line 

control is OFF. The work bit is useful where the same combination of input signals appears repeatedly in 

the ladder diagram. We will shortly see that work bit 01000 is helpful in simplifying the ladder diagram.

Part conveyor

Part sensor

Box sensor

Box conveyor

Fig. 3.67 



 Models of Digital Control Devices and Systems 197

The event sequences are as follows.

 (i) Box proximity sensor in ‘0’ state; box conveyor 

will start, keeping part conveyor standstill. 

 (ii) Box proximity sensor in ‘1’ state; box conveyor 

will stop, signaling the start of the part conveyor. 

 (iii) Part proximity sensor in ‘1’ state and box proximity 

sensor in ‘1’ state; this state signals the execution 

of the counter.

A counter counts down how many times input is turned 

ON. It counts down from set value, when its execution 

condition (count input) goes from OFF to ON. It 

decrements one count every time the input signal goes 

from OFF to ON. When the value reaches 0000, the 

counter contact point is turned ON. It is reset with a 

reset input. The counter contact point works as internal 

work bit.

The execution signal for our counter is generated by part 

proxim ity sensor 00002 and reset signal is generated by 

box proximity sensor 00003. For counting to occur, we 

need both the part prox imity sensor and the box proximity sensor in ‘1’ state.

 (iv) Assume that set value 0010 of count has been loaded in word storage area of memory. When the 

value reaches 0000, the work bit CNT010 takes ‘1’ state, which starts the box conveyor.

 (v) Box proximity switch gets deactivated and count stops. The timing chart is shown in Fig. 3.69.
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Example 3.8 Automatic Bottle Filling Control

In this application (shown in Fig. 3.53), we are to 

implement a control program that will detect the 

position of a bottle via a limit switch, wait for 5 

seconds, and then fill the bottle until the photosensor 

detects the filled position. After the bottle is filled, it 

will wait for 7 seconds to continue to the next bot tle. 

The start and stop circuits will also be included for 

the outfeed motor and for the start of the process. The  

I/O assign ment follows:

Start-process pushbutton : 00000

Stop-process pushbutton : 00001

Limit switch (position detect) : 00002

Photosensor (level detect) : 00003

Feed-motor drive : 10000

Outfeed-motor drive : 10001

Solenoid control : 10002

The work bits may be assigned  

as follows :

Timer for 5 sec delay : TIM000

Timer for 7 sec delay : TIM001

Ladder diagram for automatic bottle filling controller is shown in Fig. 3.70. Rung 1 provides a start/stop 

latch for the system. The outfeed motor is always ON during process operation. Rung 2 drives the feed 

conveyor until a bottle is in position. Rung 3 introduces a time delay of 5 sec. The work bit TIM000 

turns ON the valve solenoid (Rung 4). Rung 5 introduces a time delay of 7 sec after detecting bottle filled 

position. Rung 6 is necessary to detect that the bottle is full and 7 sec waiting period is over, and to restart 

the conveyor to move the bottle out (01000 is a work bit).

3.9.4

PLC programming methods vary from manufacturer to manufacturer, but the basic ladder diagram 

approach appears to be the standard throughout the industry. A CRT connected to the CPU of the PLC 

through a peripheral port, is perhaps the most common device used for programming the controller. A 

CRT is a self-contained, video display unit with a keyboard and the necessary electronics to communicate 

with the CPU. The graphic display on the CRT screen appears as a ladder diagram. This ladder diagram 

takes form while the programmer builds it up using the keyboard. The keys themsel ves have symbols 

such as: ; , which are interpreted exactly as explained earlier in this sec tion. 
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A limitation of CRT is that the device is not interchangeable from one manufacturer’s PLC family to  

another. However, with the increasing number of products in the manufacturers’ product lines and user 

standardization of products, these programming devices may be a good choice, especially if the user has 

standardized with one brand of PLCs.

At the other end of the spectrum of PLC programming devices is a Programming Console for programming 

small PLCs (up to 128 I/O). Physically, these devices resemble handheld calculators but have a larger 

display and somewhat different keyboard. The Programming Console uses keys with two- or three-letter 

abbreviations, to write programs that bear some semblance to computer coding. The display at the top 

of the Console exhibits the PLC instruction located in the User Program memory area. As with CRTs, 

Program ming Consoles are designed so that they are compatible with con trollers of the product family. 

Common usage of  a Personal Computer (PC) in our daily lives has led to a new breed of PLC programming 

devices. Due to the PC’s gener al-purpose architecture and de facto standard operating system, PLC 

manufacturers provide the necessary software to implement the ladder diagram entry, editing and real-

time monitoring of the PLC’s control program. PCs will soon be the programming device of choice, not 

so much because of its PLC programming capabilities, but because these PCs may already be present at 

the location where the user may be performing the programming.

The programming device is connected to the CPU through a per ipheral port. After the CPU has been 

programmed, the programming device is no longer required for CPU and process operation; it can be 

disconnected and removed. Therefore, we may need only one programming device for a number of 

operational PLCs. The program ming device may be moved about in the plant as needed.

Program ming details for any manufacturer’s PLC are not included here. These aspects are described in 

every manufacturers’ literature.

3.9.5

Programmable logic controllers are available in many sizes, covering a wide spectrum of capability. On 

the low end are ‘relay replacers’ with minimum I/O and memory capability. At the high end are large 

supervisory controllers, which play an important role in distributed control systems—by performing 

a variety of control and data acquisition functions. In between these two ex tremes are multifunctional 

controllers with communication capa bility which allow integration with various peripherals, and 

expansion capability which allows the product to grow, as the application requirements change.

PLCs with analog input modules and analog output modules, for driving analog valves and actuators 

using the PID control algo rithms, are being used in process industries.

Large PLCs are used for complicated control tasks that require a nalog control, data acquisition, data 

manipulation, numerical computations and reporting. The enhanced capabilities of these controllers 

allow them to be used effectively in applications where LAN (local area network) may be required.

Some PLCs offer the ability to program in other languages beside the conventional ladder language. 

An example is the BASIC pro gramming language. Other manufacturers use what is called ‘Boolean 

Mnemonics’, to program a controller. The Boolean language is a method used to enter and explain the 

control logic which fol lows Boolean algebra.
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REVIEW EXAMPLES

Review Example 3.1

We have so far used the z-transform technique to obtain system response at the sampling instants only. 

In a large number of cases, this information is adequate because, if the sampling theorem is satisfied, 

then the output will not vary too much between any two consecutive sampling instants. In certain 

cases, however, we may need to find the response between consecutive sampling instants. Often, for 

example, hidden oscillations, that may or may not decay with time, are present. We can compute ripple 

(response between sampling instants) by introducing a fictitious delay of DT seconds at the output of 

the system, where 0 £ D £ 1 and T is the sampling period. By varying D between 0 and 1, the output y(t) at 

t = kT – DT (where k = 1, 2, ...) may be obtained.

In Example 3.1, unit-step response of the sampled-data system of Fig. 3.13a was obtained. The sampling 

period T = 1 sec, and the output at the sampling instants is given by

y(T ) = 0.3679, y(2T ) = 1, y(3T ) = 1.3996, y(4T) = 1.3996,

y(5T ) = 1.1469, y(6T ) = 0.8944, y(7T ) = 0.8015, ...

We now introduce at the output a fictitious delay of DT seconds with D = 0.5 as shown in Fig. 3.71. The 

output ŷ (kT) can be determined as follows:

 Ŷ (z) = Z [Gh0(s) e–DTs] E(z)

 E(z) = R(z) – Y(z)

 Y(z) = Z [Gh0(s)G(s)] E(z)

Therefore,  E(z) = 
R z

G s G sh

( )

[ ( ) ( )]1 0+ Z

 Ŷ (z) = 
Z

Z

[ ( ) ( ) ]

[ ( ) ( )]

G s G s e

G s G s

h
Ts

h

0

01

-

+

D
 R(z) (3.73)

Referring to Example 3.1, we have

 Z [Gh0(s)G(s)] = 
0 3679 0 2642

1 3679 0 36792

. .

. .

z

z z

+

- +

Referring to Table 3.1, we get

 Z [Gh0(s)G(s)e–DTs] = (1 – z–1) 
1

1

0 5

1

0 6065

0 36792( )

.

( )

.

( . )z z z-
-

-
+

-

È

Î
Í
Í

˘

˚
˙
˙

  = 
0 1065 0 4709 0 0547

1 3679 0 3679

2

3 2

. . .

. .

z z

z z z

+ +

- +
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Referring to Eqn. (3.73) and noting that R(z) = z/(z – 1), we have 

 ˆ( )Y z  = 
0 1065 0 4709 0 0547

1 2 1 6321 0 6321

1 2 3

1 2 3

. . .

. .

z z z

z z z

- - -

- - -

+ +

- + -

This equation can be expanded into an infinite series in z–1:

 ˆ( )Y z  = 0.1065 z–1 + 0.6839 z–2 + 1.2487 z–3 + 1.4485 z–4 

 + 1.2913 z–5 + 1.0078 z–6 + 0.8236 z–7 + 0.8187 z–8 +  

Therefore, 

 ŷ (T ) = y(0.5T) = 0.1065; ŷ(2T ) = y(1.5T) = 0.6839; ŷ (3T ) = y(2.5T ) = 1.2487;

 ŷ(4T ) = y(3.5T) = 1.4485; ŷ (5T ) = y(4.5T) = 1.2913; ŷ(6T ) = y(5.5T) = 1.0078;

 ŷ(7T ) = y(6.5T) = 0.8236; ŷ(8T ) = y(7.5T) = 0.8187;  

These values give the response at the midpoints between pairs of consecutive sampling points. Note that 

by varying the value of D between 0 and 1, it is possible to find the response at any point between two 

consecutive sampling points.

Review Example 3.2

 Reconsider the sampled-data system of Example 3.2 (Fig. 3.15). The characteristic polynomial of the 

system is 

 D(z) = 1 + Gh0G(z) = z2 – az + b

where a = 1 + e–2T – 0.5K (T + 0.5e–2T – 0.5)

 b = e–2T + 0.5K (0.5 – 0.5e–2T – Te–2T).

Employing stability constraints (2.75a) of the Jury stability criterion, we get

 (i) D(1) = 1 – a + b > 0;

 (ii) D(– 1) = 1 + a + b > 0; and

 (iii) b < 1.

Thus, for a stable system, 1 + a + b > 0 (3.74a)

 1 – b > 0 (3.74b)

 1 – a + b > 0 (3.74c)

T

+

–

G sh0( ) e–DTs

e t*( )r t( ) y t( ) y t( )

G s( ) =
1

( + 1)s s

Fig. 3.71 
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Substituting a and b into (3.74a) and solving for K yields

K < 
4

1 12 2T e eT T- - +- -( )/( )

From (3.74b), we get

K < 
2

0 5 12 2. ( )/( )- -- -Te eT T

and from (3.74c),

e–2T < 1

Table 3.4 indicates the values of K obtained for various values of T from (3.74a) and (3.74b). A sketch of 

T versus the boundary value of K for a stable system is shown in Fig. 3.72. Note that lim
T Æ 0

K = 

T Inequality (3.74a) Inequality (3.74b) Value of K for stability

0.01 K < 3986844 K < 401.4 K < 401.4

0.1 K < 12042.7 K < 41.378 K < 41.378

1.0 K < 16.778 K < 5.8228 K < 5.8228

1.0 K < 4 K < 4 K < 4

Fig. 3.72   K 

Review Example 3.3

Consider a digital control function

 D(z) = 
N z

z

( )

( )D
 = 

b b b

a a

0 1
1

1
1

z z

z z

n n
n

n n
n

+ + +

+ + +

-

-

 

 

 (3.75)

For direct realization of this control function, the computer must store the parameters a1, a2, ..., an, b0, 

b1, ..., bn (refer to Fig. 3.18). If the machine uses fixed-point arithmetic, the parameter values will be 

rounded off to the accuracy of the machine. Thus, a program designed to realize Eqn. (3.75) actually 

realizes3

 3 In addition to parameter quantization error, accuracy of a realization is affected by the error due to quantization 

of the input signal, and the error due to accumulation of round-off errors in arithmetic operations.
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D̂ (z) = 
( ) ( ) ( )

( ) (

b db b db b db

a da a da

0 0 1 1
1

1 1
1

+ + + + + +

+ + + + +

-

-

z z

z z

n n
n n

n n
n

 

 nn )

To study the effects of this realization on the dynamic response, we consider the characteristic equation 

and determine how a particular root changes when a particular parameter undergoes change.

 D (z, a1, a2, ..., an) = zn + a1 zn – 1 +   + an = 0 (3.76)

is the characteristic equation with roots l1, l2, …, ln:

 D (z, a1, a2, ..., an) = (z – l1) (z – l2)   (z – ln) (3.77)

We shall consider the effect of parameter aj on the root lk. By definition,

D(lk, aj) = 0

If aj is changed to aj + daj, then lk also changes and the new polynomial is

D(lk + dlk, aj + daj) = D(lk, aj) + 
∂
∂ =

D
z z kl

dlk + 
∂
∂

=

D
a

l
j

z k

daj +   = 0 

Neglecting the higher-order terms, we obtain

 dlk = – 
∂ ∂

∂ ∂

Ê

ËÁ
ˆ

¯̃
=

D

D

/

/

a

l

j

z
z

k

 daj (3.78)

From Eqn. (3.76),

 
∂
∂

=

D
a

l
j

z k

 = lk
n j-

and from Eqn. (3.77),

 
∂
∂ =

D
z z kl

 = P
i k=

(lk – li)

Therefore, Eqn. (3.78) gives

 dlk = – 
l

l l
da

k
n j

i k
k i

j

-

π
-P ( )

A measure of the sensitivity of the root lk to the parameter aj is

 S
j

k

a

l
 = 

∂
∂

l

a a

k

j j/

  = 
-

-

-

π

l a

l l

k
n j

j

i k
k iP ( )

 (3.79)

Following observations are made from Eqn. (3.79):

 (i) The numerator term in Eqn. (3.79) varies with j—the index number of the parameter whose 

variation is under consideration. For a stable system, lk < 1 and, therefore, the numerator term 
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in Eqn. (3.79) is largest for j = n. Therefore, the most sensitive parameter in the characteristic 

equation (3.76), is an. 

 (ii) The denominator in Eqn. (3.79) is the product of vectors from the characteristic roots to lk. Thus, 

if all the roots are in a cluster, the sensitivity is high.

In the cascade and parallel realizations, the coefficients, mechanized in the algorithm, are poles themselves; 

these realiza tions are generally less sensitive than the direct realization.

PROBLEMS

 3.1 Find Y(z)/R(z) for the sampled-data closed-loop system of Fig. P3.1.

TT

+

–
G sh0( )

y t( )r t( ) e t*( ) u t*( )
G s1( ) G sh0( ) G s2( )

H s( )

 3.2 For the sampled-data feedback system with digital network in the feedback path as shown in 

Fig. P3.2, find Y(z)/R(z).

T T

T

+

–
G sh0( ) G s( )

H z( )

e t*( )r t( ) r k( ) y t( )

y k( )

 3.3 Find Y(z) for the sampled-data closed-loop system of Fig. P3.3.
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 3.4 Obtain the z-transform of the system output for the block diagram of Fig. P3.4.

 3.5 Obtain the transfer function Y(z)/R(z) of the closed-loop control system shown in Fig. P3.5. Also 

obtain the transfer function between X(z) and R(z).

 3.6 Consider the block diagram of a digital control system shown in Fig. P3.6; r(t) stands for reference 

input and w(t) for dis turbance. Obtain the z-transform of the system output when r(t) = 0.

T T

+ +
+

–
G sh0( ) G s( )

r t( ) e k( )
D z( )

u t*( ) y t( )

w t( )

 3.7 Shown in Fig. P3.7 is the block diagram of the servo control system for one of the joints of a 

robot. With D(z) = 1, find the transfer function model of the closed-loop system. Sampling period 

T = 0.25 sec.

+

–

Compensator

Motor

20

Shaft
encoder

GearsPreamplifier

D z( )
qR( )k qL( )t1

20
1
s

1
+ 1s

D/A

qL( )k

qM
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 3.8 The plant of the speed control system shown in Fig. P3.8 consists of load, armature-controlled dc 

motor and a power ampli fier. Its transfer function is given by

w( )

( )

s

V s
 = 

185

0 025 1. s +
  Find the discrete-time transfer function w(z)/wr(z) for the closed-loop system. Sampling period 

T = 0.05 sec.

 3.9 For the system shown in Fig. P3.9, the computer solves the difference equation u(k) = u(k – 1) + 

0.5 e(k), where e(k) is the filter input and u(k) is the filter output. If the sampling rate fs = 5 Hz, 

find Y(z)/R(z).

+

–

Digital
filter

D/A

A/D

y k( )

e k( )r k( ) u k( ) y t( )
1

( + 1)s s

 3.10 Consider the sampled-data system shown in Fig. P3.10. Find Y(z)/R(z) when (i) tD = 0.4 sec, (ii) 

tD = 1.4 sec.

+

–

r t( ) y t( )
G sh0( )

T = 1 sec

e–tDs

+ 1s
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 3.11 Figure P3.11 shows an electrical oven provided with tempera ture measurement by a thermocouple 

and having a remotely con trolled, continuously variable power input. The task is to design a 

microprocessor-based control system to provide temperature control of the oven.

Temperature-
measuring device

Continuously-variable
electrical input

Oven

Microcontroller

Power control unit

Power supply

  The functions within the control loop can be enumerated as follows: 

 (i) sampling of the output of thermocouple;

 (ii) transfer of temperature signal into the computer;

 (iii) comparison of the measured temperature with the stored desired temperature, to form an 

error signal;

 (iv) operation on the error signal by an appropriate algorithm, to form a control signal; and

 (v) processing of the control signal and its transfer through the interface to the power control 

unit.

  Suggest suitable hardware to implement these control-loop func tions. Make a sketch of the system 

showing how the hardware is connected.

 3.12 (a) A unity-feedback system has the open-loop transfer function

 G(s) = 
5

1 2s s s( )( )+ +

    Using the Routh stability criterion, show that the closed-loop system is stable.

  (b) A sampler and ZOH are now introduced in the forward path (Fig. P3.12). Show that the stable 

linear continuous-time system becomes unstable upon the introduction of sampler and ZOH.
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 3.13 The characteristic equation of a linear digital system is

z3 – 0.1 z2 + 0.2Kz – 0.1K = 0

  Using Jury stability criterion, determine the values of K > 0 for which the system is stable.

 3.14 Compare the stability properties of the system shown in Fig. P3.14 with (i) T = 0.5, and (ii) T = 1. 

Assume K > 0. 

 3.15 The block diagram of a digital control system is shown in Fig. P3.15. Apply the Jury stability 

criterion to determine the range of values that K > 0 can have for a stable response. Also show 

graphically how these values are affected by the sampling period T.

+

T
–

K
( + 3)s

Y s( )R s( ) 1 – e–Ts

s

+

T
–

K
( + 1)s s

R s( ) Y s( )
G sh0( )

 3.16 Consider the system shown in Fig. P3.16. Using Jury stability criterion, find the range of K > 0 

for which the system is stable.

 3.17 (a) A unity-feedback system has the open-loop transfer function 

   G(s) = 
Y s

R s

( )

( )
 = 

4500

361 2

K

s s( . )+
; K = 14.5

  Find the response y(t) of the system to a unit-step input.
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 (b) A sampler and ZOH are now introduced in the forward path (Fig. P3.17). For a unit-step 

input, determine the output y(k) for first five sampling instants when (i) T = 0.01 sec, and (ii) 

T = 0.001 sec. Compare the result with that obtained earlier in part (a) above.

+

T
–

y t( )r t( )
G sh0( ) G s( )

 3.18 For the sampled-data system shown in Fig. P3.18, find the output y(k) for r(t) = unit step.

 3.19 For the sampled-data system of Fig. P3.19, find the response y(kT); k = 0, 1, 2, ..., to a unit-step 

input r(t). Also, obtain the output at the midpoints between pairs of consecutive sampling points.

+

T = 1 sec–

ZOH
1
+ 1s

y t( )r t( )

 3.20 Consider the digital controller defined by 

 D(z) = 
U z

E z

( )

( )
 = 

4 1 1 2 1

0 1 0 3 0 8

2

2

( ) ( . )

( . ) ( . . )

z z z

z z z

- + +

+ - +
  Realize this digital controller in the cascade scheme and in parallel scheme. Use one first-order 

section and one second-order section.

 3.21 Consider the digital controller defined by

 D(z) = 
U z

E z

( )

( )
 = 

10 1

0 5 0 8

2

2

( )

( . )( . )

z z

z z z

+ +

- -
  Draw a parallel realization diagram.
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 3.22 Consider the temperature control system shown in Fig. P3.22a. A typical experimental curve, 

obtained by opening the steam valve at t = 0 from fully closed position to a position that allows a 

flow Qm of 1 kg/min with initial sensor temperature q of 0 ºC is shown in Fig. P3.22b.

 (a) Approximate the process reaction curve by a first-order plus dead-time model using two-

points method of approximation.

 (b) Calculate the QDR tuning parameters for a PID controller. The PID control is to be carried 

out with a sampling period of 1 min on a computer control installation.

Steam
boiler

Valve

Dial

Environment

(a)

(b)
0 t, min

Room

Radiator

Steam exhaust

25 65

10 °C

20 °C

30 °C

40 °C

0.632qss

qss = 30

q, °C

0.283qss

 3.23 Consider the liquid-level control system shown in Fig. 1.6. The digital computer was programmed 

to act as adjustable-gain proportional controller with a sampling period of T = 10 sec. The

proportional gain was increased in steps. After each increase, the loop was disturbed by introduc-

ing a small change in set-point, and the response of the controlled variable (level in the tank) was 

observed. The proportional gain of 4.75 resulted in oscil latory behavior, with amplitude of oscil-

lations approximately constant. The period of oscillations measured from the response is 800 sec.

  The PC implements the digital PI control algorithm. Determine tuning parameters for the 

controller:

Du(k) = u(k) – u(k – 1) = Kc 
e k e k

T

T
e k

I

( ) ( ) ( )- - +
È

Î
Í

˘

˚
˙1



 Models of Digital Control Devices and Systems 211

  where

   u(k) = output of controller at kth sampling instant;

   Du(k) = change in output of controller at kth sampling instant;

   e(k) = error at kth sampling instant;

   T = sampling time;

   TI = integral time; and

   Kc = proportional gain.

 3.24 A traffic light controller is to be designed for a road, partly closed to traffic for urgent repair work 

(Fig. P3.24). North traffic light will go GREEN for 30 sec with South traffic light giving RED 

signal. For the next 15 sec, both the traffic lights will give RED signals. Thereafter, South traffic 

light will go GREEN for 30 sec with North traffic light giving RED signal. Both the traffic lights 

will give RED signal for the next 15 sec. Then this cycle will repeat.

  Develop a PLC ladder diagram that accomplishes this objective.

S

N

 3.25 Consider the tank system of Fig. P3.25. Valve V1 opens on pressing a pushbutton PB1 and liquid 

begins to fill the tank. At the same time, the stirring motor M starts operations. When the liquid 

level passes LL2 and reaches LL1, the valve V1 closes and the stirring motor stops. When PB1 is 

pressed again, the valve V2 opens and starts draining the liquid. When the liquid level drops below 

LL2, valve V2 closes. This cycle is repeated five times. A buzzer will go high after 5 repetitions. 

The buzzer will be silenced by pressing pushbutton PB2. The process will now be ready to take up 

another filling-stirring-draining operation under manual control. Develop a PLC ladder diagram 

that accomplishes this objective.
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M

Liquid

LL1

V2

V1

LL2

 3.26 A control circuit is to be developed to detect and count the number of products being carried 

on an assembly line (Fig. P3.26). A sensor activates a counter as a product leaves the conveyor 

and enters the packaging section. When the counter counts five pro ducts, the circuit energizes a 

solenoid. The solenoid remains energized for a period of 2 seconds; the time being measured by 

a software timer. When the set time has lapsed, the solenoid is deenergized, causing it to retract; 

and the control circuit is ready for the next cycle.

  Develop a suitable PLC ladder diagram.

Sensor

Conveyor

Solenoid

 3.27 In the system of Fig. P3.27, a PLC is used to start and stop the motors of a segmented conveyor 

belt. This allows only belt sections carrying an object to move. Motor M3 is kept ON during 

the operation. Position of a product is first detected by proxim ity switch S3, which switches on 

the motor M2. Sensor S2 switches on the motor M1 upon detection of the product. When the 

product moves beyond the range of sensor S2, a timer is activated and when the set time of 20 sec 

has lapsed, motor M2 stops. Similar ly, when the product moves beyond the range of sensor S1, 

another timer is activated and when the set time of 20 sec (for unloading the product) has lapsed, 

motor M1 stops. 
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   Develop a suitable ladder diagram for control.

M1

S1

M2

S2

M3

S3

 3.28 The system of Fig. P3.28 has the objective of drilling a hole in workpiece moved on a carriage. 

When the start button PB1 is pushed and LS1 is ON (workpiece loaded), feed carriage motor runs 

in CW direction, moving the carriage from left to right. When the work comes exactly under the 

drill, which is sensed by limit switch LS2, the motor is cut-off and the work is ready for drilling 

operation. A timer with a set time of 7 sec is activat ed. When the timer set value has lapsed, the 

motor reverses, moving the carriage from right to left. When the work piece reaches LS1 position, 

the motor stops. The motor can be stopped by a stop pushbutton while in opera tion.

  Develop a suitable ladder diagram for PLC control.

Drill

LS1 LS2

Clamp
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Design of  
Digital Control Algorithms

4.1 INTRODUCTION

During recent decades, the design procedures for analog control systems have been well formulated and a 

large body of knowledge has been accumulated. The analog-design methodology, based on conventional 

techniques of root locus and Bode plots or the tuning methods of Ziegler and Nichols, may be applied 

to designing digital control systems. The procedure would be to first design the analog form of the 

controller, or compensator, to meet a particular set of performance specifications. Having done this, the 

analog form can be transformed to a discrete-time formulation. This approach is based on the fact that 

a digital system with a high sampling rate approximates to an analog system. The justification for using 

digital control under these circumstances must be that the practical limitations of the analog controller 

are overcome, the implementation cheaper, or that the supervisory control and communications more 

easily implemented.

However, the use of high sampling rates wastes computer power, and can lead to problems of arithmetic 

precision, etc. One is, therefore, driven to find methods of design which take account of the sampling 

process.

The alternative approach is to design controllers directly in the discrete-time domain, based on the 

specifications of closed-loop system response. The controlled plant is represented by a discrete-time 

model which is a continuous-time system ob served, analyzed, and controlled at discrete intervals of time. 

This approach provides a direct path to the design of digital controllers. The features of direct digital 

design are that the sample rates are generally lower than those for discretized analog design, and the 

design is directly ‘perfor mance based’.

Figure 4.1 shows the basic structure of a digital control system. The design problem generally evolves around 

the choice of the control function D(z), in order to impart a satisfactory form to the closed-loop transfer 

function. The choice is constrained by the function Gh0G(z) representing the fixed process elements.

A wide variety of digital-design procedures is available; these fall into the following two categories:

 (i) direct synthesis procedures; and

 (ii) iterative design procedures.

Chapter 4
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The direct synthesis procedures assume that the control function D(z) is not restricted in any way by 

hardware or software limita tions, and can be allowed to take any form demanded by the nature of the 

fixed process elements and the specifications of the re quired system performance. This design approach 

has found wider applications in digital control systems—than has the equivalent technique used with 

analog systems. In a digital control system, realization of the required D(z) may involve no more than 

programming a special-purpose software-procedure. With analog systems, the limitation was in terms of 

the complications involved in designing special purpose analog controllers.

The design obtained by a direct synthesis procedure will give perfect nominal performance. However,  

the performance may be inadequate in the field because of the sensitivity of the design to plant disturbances 

and modeling errors. It is important that a control system is robust in its behavior with respect to the 

discrepancies between the model and the real process, and uncer tainties in disturbances acting on the 

process. Robustness prop erty of some of the standard control structures, such as a three-term (PID) 

control algorithm, has been very well established. The design of such algorithms calls for an iterative 

design procedure where the choice of control function D(z) is restricted to using a standard algorithm 

with variable parameters; the designer must then examine the effect of the choice of controller parameters 

on the system performance, and make an appropriate final choice. The iterative design procedures for 

digital control systems are similar to the techniques evolved for analog system design, using root locus 

and frequency response plots.

Figure 4.2 summarizes the basic routes to the design of digital controllers for continuous-time processes.

The route: continuous-time modeling Æ continuous-time control design Æ discrete-time approximation of 

the controller, was considered in Chapter 2 (refer to Example 2.17). This chapter is devoted to the 

following route:

  Continuous-time modeling Æ discrete-time approximation of the model Æ discrete-time control 

design.

Plant models can be obtained from the first principles of physics. The designer may, however, turn to  

the other source of information about plant dynamics, which is the data taken from experiments directly 

conducted to excite the plant, and to measure the response. The process of constructing models from 

experimental data is called system identification. An introduction to system identification and adaptive 

control is given in Chapter 10.

One obvious, but fundamental, point is that control design always begins with a sufficiently accurate  

mathematical model of the process to be controlled. For a typical industrial problem, the effort required 

for obtaining a mathematical model of the process to be controlled, is often an order of magnitude greater  

than the effort required for control design proper. Any control-design method that requires only a simple 

+

–
Control
algorithm

Sensor

T T
Process

G sh0( ) G s( )D z( )
y t( )r t( )

ZOH

H s( )

Fig. 4.1 Basic structure of a digital control system
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process model, therefore, has a high appeal to those faced with real industrial control problems. Tunable 

PID controllers which require only simple process models, have already been described in Chapter 3.

The design approaches discussed in this chapter, use z-transform as the background tool. In Chapters 7 

and 8, we will solve the identical problems using state-space formulation.

The discussion in this chapter is based on the material that the student has already studied in a prerequisite, 

introductory course on control systems. The presentation given in this chapter is not sufficient to learn 

control system design for the first time; rather, it states, only concisely, the key concepts and relationships 

from the continuous-time control for ready reference, as we move to the new concepts of discrete-time 

control. For an in-depth treatment of the principles of control system design, see the companion book 

[155].

In this chapter, the following classes of feedback systems will be under consideration:

  The system can be represented by a unity-feedback structure shown in Fig. 4.3b.

  The open-loop transfer function G(s) in Fig. 4.3b has no poles in the right half of the s-plane.

  The feedback system of Fig. 4.3b is desired to be an underdamped system.

In Section 1.4, we have described a generalized, operational block diagram of a feedback system  

(revisiting the section will be helpful). It was shown that the generalized, non-unity-feedback block 

diagram can be converted to a unity-feedback structure when the sensor transfer function is equal to 

the transfer function representing the reference input elements. This, in fact, is quite common; the two 
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Fig. 4.2 Basic routes to the design of digital controllers
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transfer functions in many control system designs are assumed to have zero-order dynamics and are 

equal.

The majority of the systems we deal with, in practice, belong to the class under consideration in this 

chapter. However, the control system design techniques presented in the chapter, are not limited to this 

class. There are control design problems wherein the sensor transfer function H(s) (of first or higher-

order), is explicitly present in the feedback path (Fig. 4.3a); the open-loop transfer function G(s) or 

G(s)H(s), has poles in the right half of the s-plane; and/or the oscillations in feedback system cannot 

be tolerated, and the system is required to be overdamped. A detailed treatment of such problems is 

given in the companion book [155]; the principles given therein for continuous-time control, have direct 

extension to discrete-time control. Our decision to leave these extensions to the reader, is prompted only 

by the desire to save space for other topics.

4.2 z

The central concerns of controller design are for good relative stability and speed of response, good 

steady-state accuracy, and sufficient robustness. Requirements on time response need to be expressed 

as constraints on z-plane pole and zero locations, or on the shape of the frequency response in order to 

permit design in the transform domain. In this section, we give an outline of specifications of controller 

design in the z-plane.

Our attention will be focused on the unity-feedback systems1 of the form shown in Fig. 4.3b, with the 

open-loop transfer function Gh0G(z) = Z [Gh0(s)G(s)], having no poles outside the unit circle in the 

z-plane. Further, the feedback system of Fig. 4.3b is desired to be an underdamped system.

+

– T
G sh0( ) G s( )

H s( )

y t( )r t( )

+

–
G sh0( ) G s( )

y t( )r t( )

T

e t*( )

(a) A non-unity feedback discrete-time system

(b) A unity feedback discrete-time system

Fig. 4.3

 1 It is assumed that the reader is familiar with the design of unity and non-unity-feedback continuous-time 

systems. With this background, the results presented in this chapter for unity-feedback discrete-time systems, 

can easily be extended for the non-unity-feedback case.
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The nature of transient response of a linear control system is revealed by any of the standard test 

signals—impulse, step, ramp, parabola—as this nature is dependent on system poles only and not on the 

type of the input. It is, therefore, sufficient to specify the transient response to one of the standard test 

signals; a step is generally used for this purpose. Steady-state response depends on both the system and 

the type of input. From the steady-state viewpoint, the ‘easiest’ input is generally a step since it requires 

only maintaining the output at a constant value, once the transient is over. A more difficult problem 

is tracking a ramp input. Tracking a parabola is even more difficult since a parabolic function is one 

degree faster than the ramp function. In practice, we seldom find it necessary to use a signal faster than a 

parabolic function; characteristics of actual signals which the control systems encounter, are adequately 

represented by step, ramp, and parabolic functions.

4.2.1

Steady-state accuracy refers to the requirement that after all transients become negligible, the error 

between the reference input r and the controlled output y must be acceptably small. The specification on 

steady-state accuracy is often based on polyno mial inputs of degree k: r(t) = 
t

k
t

k

!
( )m . If k = 0, the input 

is a step of unit amplitude; if k = 1, the input is a ramp with unit slope; and if k = 2, the input is a parabola 

with unit second derivative. From the common problems of mechanical motion con trol, these inputs are 

called, respectively, position, velocity, and acceleration inputs.

For quantitative analysis, we consider the unity-feedback dis crete-time system shown in Fig. 4.3b. The 

steady-state error is the difference between the reference input r(k) and the con trolled output y(k), when 

steady state is reached, i.e., steady-state error

 e*
ss = lim

k
 e(k) = lim

k
[r(k) – y(k)] (4.1a)

Using the final value theorem (Eqn. (2.52)),

 e*
ss = lim

z Æ 1
[(z – 1)E(z)] (4.1b)

provided that (z – 1) E(z) has no poles on the boundary and outside of the unit circle in the z-plane.

For the system shown in Fig. 4.3b, define

 Gh0G(z) = (1–  z–1) Z 
G s

s

( )È

ÎÍ
˘

˚̇

Then, we have 
Y z

R z

( )

( )
 = 

G G z

G G z

h

h

0

01

( )

( )+

and E(z) = R(z) – Y(z) = 
R z

G G zh

( )

( )1 0+
 (4.2)

By substituting Eqn. (4.2) into Eqn. (4.1b), we obtain

 e*
ss = lim

zÆ1
 [(z – 1)E(z)] (4.3a)

  = lim
zÆ1

 ( )
( )

( )
z

R z

G G zh

-
+

È

Î
Í

˘

˚
˙1

1 0

 (4.3b)

Thus, the steady-state error of a discrete-time system with unity feedback, depends on the reference 

input signal R(z), and the forward-path transfer function Gh0G(z). By the nature of the limit in Eqns (4.3), 



 Design of Digital Control Algorithms 219

we see that the result of the limit can be zero, or can be a constant different from zero. Also, the limit 

may not exist, in which case, the final-value theorem does not apply. However, it is easy to see from basic 

definition (4.1a) that e*
ss =  in this case anyway, because E(z) will have a pole at z = 1 that is of order 

higher than one. Discrete-time systems, having a finite nonzero steady-state error when the reference 

input is a zero-order polynomial input (a constant), are labeled ‘Type-0’. Similarly, a system that has 

finite nonzero steady-state error to a first-order polynomial input (a ramp), is called a ‘Type-1’ system, 

and a system with finite nonzero steady-state error to a second-order polynomial input (a parabola), is 

called a ‘Type-2’ system.

Let the reference input to the system of Fig. 4.3b be a step function of magnitude unity. The z-transform 

of discrete form of r(t) = m (t) is (refer to Eqn. (2.40)) 

 R(z) = 
z

z -1
 (4.4a)

Substituting R(z) into Eqn. (4.3b), we have

 e*
ss = lim

( ) lim ( )z h
z

hG G z G G zÆ
Æ

+
=

+1 0
1

0

1

1

1

1

In terms of the position error constant Kp, defined as 

 Kp = lim
z Æ 1

 Gh0G(z) (4.4b)

the steady-state error to unit-step input becomes

 e*
ss = 

1

1+ K p

 (4.4c)

For a ramp input r(t) = tm (t); the z-transform of its discrete form is (refer to Eqn. (2.42))

 R(z) = 
Tz

z( )-1 2
 (4.5a)

Substituting into Eqn. (4.3b), we get

e*
ss = lim

( )[ ( )]z h

T

z G G zÆ - +1 01 1
 = 

1

1

1
0lim ( )

z
h

z

T
G G z

Æ

-È
ÎÍ

˘
˚̇

In terms of velocity error constant K
v
, defined as

 K
v
 = 

1

1T z
lim

Æ
 [(z – 1)Gh0G(z)] (4.5b)

the steady-state error to unit-ramp input becomes

 e*
ss = 

1

K
v

 (4.5c)

For a parabolic input r(t) = (t2/2) m (t); the z-transform of its discrete form is (from Eqns (2.41)–(2.42))

 R(z) = 
T z z

z

2

3

1

2 1

( )

( )

+

-
 (4.6a)
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Substituting into Eqn. (4.3b), we get

e*
ss = lim

z Æ 1

T

z G G zh

2

2
01 1( ) [ ( )]- +

 = 
1

1

1

2

0lim ( )
z

h

z

T
G G z

Æ
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ˆ
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Î
Í
Í

˘

˚
˙
˙

In terms of acceleration error constant Ka, defined as

 Ka = 
1
2 1T z

lim
Æ

[(z – 1)2 Gh0G(z)] (4.6b)

the steady-state error to unit-parabolic input becomes 

 e*
ss = 

1

Ka

 (4.6c)

As said earlier, discrete-time systems can be classified on the basis of their steady-state response to 

polynomial inputs. We can always express the forward-path transfer function Gh0G(z) as

 Gh0G(z) = 

K z z

z z p

i
i

N

j
j

P

P

( )

( ) ( )

-

- -1
; pj π 1, zi π 1  (4.7)

Gh0G(z) in Eqn. (4.7) involves the term (z – 1)N in the denomina tor. As z Æ 1, this term dominates in 

determining the steady-state error. Digital control systems are, therefore, classified in accordance with 

the number of poles at z = 1 in the forward-path transfer function, as described below.

If N = 0, the steady-state errors to various standard inputs, obtained from Eqns (4.1)–(4.7), are

  e*
ss = 

1

1
1

+
=

-

-
=

K
K

K z z

z pp
p

i
i

j
j

z

in response to unit step input

in

- ;
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P

rresponse to unit ramp input

in response to unit parabolic input
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-

Ï
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Ô
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Ó
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Ô

 (4.8a)

Thus, a system with N = 0, or no pole at z = 1 in Gh0G(z), has a finite nonzero position error, and infinite 

velocity and accelera tion errors at steady state.

If N = 1, the steady-state errors to various standard inputs are

 e*
ss = 

0

1

in response to unit step input

in response to unit ramp input;

- ;

-
K
v

KK

K

T
z z

z p
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j
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Ó
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 (4.8b)
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Thus, a system with N = 1, or one pole at z = 1 in Gh0G(z), has zero position error, a finite nonzero 

velocity error, and infi nite acceleration error at steady state.

If N = 2, the steady-state errors to various standard inputs are  

 e*
ss = 

0

0

1

in response to unit step input

in response to unit ramp input

i

-

-

Ka

nn response to unit parabolic input;-
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Ô
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 (4.8c)

Thus, a system with N = 2, or two poles at z = 1 in Gh0G(z), has zero position and velocity errors, and a 

finite nonzero accelera tion error at steady state.

Steady-state errors for various inputs and systems are summarized in Table 4.1.

 Steady-state errors for various inputs and systems

Type of input Steady-state error

Type-0 system Type-1 system Type-2 system

Unit step 1

1+ K p

0 0

Unit ramp 1

K
v

0

Unit parabolic
1

Ka

Kp = lim ( ); lim [( ) ( )];
z

h
z

hG G z K
T

z G G z
Æ Æ

= -
1

0
1

0

1
1

v
     Ka = 

1
1

2 1

2
0

T
z G G z

z
hlim [( ) ( )]

Æ
-

The development above indicates that, in general, increased system gain K, and/or addition of poles at 

z = 1 to the open-loop transfer function Gh0G(z), tend to decrease steady-state errors. However, as will be 

seen later in this chapter, both large system gain and the poles at z = 1 in the loop transfer function, have 

destabilizing effects on the system. Thus, a control system design is usually a trade off between steady-

state accuracy and accepta ble relative stability.

Example 4.1

In the previous chapter, we have shown that sampling usually has a detrimental effect on the transient 

response and the relative stability of a control system. It is natural to ask what the effect of sampling on 
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the steady-state error of a closed-loop system will be? In other words, if we start out with a continu ous-

time system and then add S/H to form a digital control sys tem, how would the steady-state errors of the 

two systems compare, when subject to the same type of input?

Let us first consider the system of Fig. 4.3b without S/H. Assume that the process G(s) is represented by 

Type-1 transfer function:

 G(s) = 
K s s s

s s s s

a b m

n

( )( ) ( )

( )( ) ( )

1 1 1

1 1 11 2

+ + +
+ + +

t t t

t t t

 

 

having more poles than zeros.

The velocity error constant

 K
v
 = lim

s Æ 0
sG(s) = K

The steady-state error of the system to unit-step input is zero, to unit-ramp input is 1/K, and to unit-

parabolic input is .

We now consider the system of Fig. 4.3b with S/H:

 Gh0G(z) = (1 – z–1) Z 
K s s s

s s s s

a b m

n

( )( ) ( )

( )( ) ( )

1 1 1

1 1 12
1 2

+ + +

+ + +
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Î
Í
Í

˘

˚
˙
˙

t t t

t t t

 

 

  = (1 – z–1) Z 
K

s

K

s2

1+ +
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ÎÍ
˘

˚̇
terms due to the nonzero poles

  = (1 – z–1)
KTz

z

K z

z( )-
+

-
+

È

Î
Í
Í

˘

˚
˙
˙1 12

1 terms due to the nonzero poles

It is important to note that the terms due to the nonzero poles do not contain the term (z – 1) in the 

denominator. Thus, the velocity error constant is 

K
v
 = 

1

1T z
lim

Æ
[(z – 1)Gh0G(z)] = K

The steady-state error of the discrete-time system to unit-step input is zero, to unit-ramp input is 1/K, 

and to unit-parabolic input is . Thus, for a Type-1 system, the system with S/H has exactly the same 

steady-state error as the continuous-time system with the same process transfer function (this, in fact, is 

true for Type-0 and Type-2 systems also).

Equations (4.5b) and (4.6b) may purport to show that the velocity error constant and the acceleration 

error constant of a digital control system depend on the sampling period T. However, in the process of 

evaluation, T gets canceled, and the error depends only on the parameters of the process and the type 

of inputs.

4.2.2

Transient performance in time domain is defined in terms of parameters of the system response to a step 

in command input. The most frequently used parameters are rise time, peak time, peak overshoot, and 

setting time. Figure 4.4 shows a typical unit-step response of a control system.

For underdamped systems, the rise time, tr, is normally defined as the time required for the step response 

to rise from 0% to 100% of its final value.
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Fig. 4.4 Typical unit-step response of a digital control system

The peak overshoot, Mp, is the peak value of the response curve measured from unity. The time at which 

peak occurs is referred to as the peak time, tp.

The time required for the response to damp out all transients, is called the settling time, ts. Theoretically, 

the time taken to damp out all transients may be infinity. In practice, however, the transient is assumed 

to be over when the error is reduced below some acceptable value. Typically, the acceptable level is set 

at 2% or 5% of the final value.

The use of root locus plots for the design of digital control systems necessitates the translation of time-

domain performance specifications into desired locations of closed-loop poles in the z-plane. However, 

the use of frequency response plots necessitates the translation of time-domain speci fications in terms of  

frequency response features such as band width, phase margin, gain margin, resonance peak, resonance  

frequency, etc.

z

Our approach is to first obtain the transient response specifica tions in terms of characteristic roots in the 

s-plane, and then use the relation

 z = esT (4.9)

to map the s-plane characteristic roots to the z-plane.

The transient response of Fig. 4.4 resembles the unit-step response of an underdamped second-order system

 
Y s

R s

( )

( )
 = 

w

zw w

n

n ns s

2

2 22+ +
 (4.10)

where 

 z = damping ratio, and wn = undamped natural frequency.

The transient response specifications in terms of rise time tr, peak time tp, peak overshoot Mp, and 

settling time ts can be approximated to the parameters z and wn of the second-order system defined by 
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Eqn. (4.10), using the following correlations2:

 tr(0% to 100%) = 
p z

w z

-

-

-cos 1

21n

 (4.11)

 tp = 
p

w zn 1 2-
 (4.12)

 Mp = exp ( )- -pz z1 2  (4.13)

 ts(2% tolerance band) = 
4

zwn

 (4.14)

Peak overshoot is used mainly for relative stability. Values in excess of about 40% may indicate that the 

system is dangerously close to absolute instability. Many systems are designed for 5% to 25% overshoot. 

No overshoot at all is sometimes desirable. Howe ver, this usually penalizes the speed of response 

needlessly. 

The specification on speed of response in terms of tr, tp and/or ts, should be consistent as all these 

depend on z and wn. The greater the magnitude of wn when z is constant, the more rapidly does the 

response approach the desired steady-state value. The value of wn is limited by measurement noise 

considerations—a system with large wn has large bandwidth and will, therefore, allow the high frequency 

noise signals to affect its performance.

We need to now convert the specifications on z and wn into guide lines on the placement of poles and 

zeros in the z-plane, in order to guide the design of digital controls. We do so through the mapping (4.9).

Figure 4.5 illustrates the translation of specifications on z and wn to the characteristic root locations in 

the z-plane (referr ing to Section 2.14 will be helpful). The s-plane poles

 s1, 2 = – zwn ± jwn 1 2-z  = – zwn ± jwd (4.15a)

for constant z, lie along a radial line in the s-plane (Fig. 4.5a). In the z-plane, 

 z1, 2 = e en nT j T- ± -zw w z1 2

 = r e ± jq (4.15b)

The magnitude of z (i.e., the distance to the origin) is r = e nT-zw
 and the angles with the positive real 

axis of the z-plane, measured positive in the counterclockwise direction, are q = wnT 1 2-z . It should 

be observed that the z-plane pole locations depend on the s-plane positions, as well as the sampling 

interval T.

As wn increases for a constant-z, the magnitude of z decreases and the phase angle increases; constant-z 

locus is a logarithmic spiral in the z-plane (Fig. 4.5b). Increasing wn negatively, gives the mirror image.

In Fig. 4.5a, the s-plane has been divided into strips of width ws, where ws = 2p/T is the sampling 

frequency. The primary strip extends from w = –ws/2 to + ws/2, and the complementary strips extend from 

– ws/2 to –3ws/2, ... , for negative frequencies, and from ws/2 to 3ws/2,..., for positive frequencies. 

We will assume that the low-pass analog filtering characteristics of the contin uous-time plant and the 

 2 Chapter 6 of reference [155].
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ZOH device, attenuate the responses due to the poles in the complementary strips; only the poles in the 

primary strip, generally, need be considered.

Figure 4.5 illustrates the mapping of constant-z locus in the primary strip of the s-plane to the z-plane. 

As the imaginary parts ± jwd = ± jwn 1 2-z  of the s-plane poles move closer to the limit ± jws/2 of the 

primary strip, the angles q = ± wdT = ± wnT 1 2-z of the z-plane poles approach the direction of the 

negative real axis. The negative real axis in the z-plane, thus, corresponds to the boundaries of the primary 

strip in the s-plane. Figure 4.5 also shows the mapping of a constant-wn locus, in the primary strip of the 

s-plane, to the z-plane.

In the z-plane, the closed-loop poles must lie on the constant-z spiral to satisfy peak overshoot 

requirement, also the poles must lie on constant-wn curve to satisfy speed of response require ment. The 

intersection of the two curves (Fig. 4.5b) provides the preferred pole locations, and the design aim is to 

make the root locus pass through these locations.

If one chooses the following boundaries for the system response:

 T = 1 sec

 Peak overshoot £ 15% fi z ≥ 0.5

 Settling time £ 25 sec fi wn ≥ 
8

25
,

the acceptable boundaries for the closed-loop pole locations in z-plane are shown in Fig. 4.6.

In the chart of Fig. 4.6, the patterns are traced for various natural frequencies and damping ratios. Such 

a chart is a useful aid in root-locus design technique. We will be using this chart in our design examples.

Fig. 4.5 Mapping of s  z-plane
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Fig. 4.6 

Most control systems found in practice are of high order. The preferred locations of closed-loop poles 

given by Fig. 4.5b, realize the specified transient performance only if the other closed-loop poles and 

zeros of the system have negligible effect on the dynamics of the system, i.e., only if the closed-loop 

poles corresponding to specified z and wn, are dominant.

In the following, we examine the relationship between the pole-zero patterns and the corresponding step-

responses of discrete-time systems. Our attention will be restricted to the step responses of the discrete-

time system with transfer function
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( )

( )
 = 

K z z z z
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q q
 = 

K z z z z

z p z r z r
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( )( cos )

- -

- - +
1 2

2 22 q
 (4.16)

for a selected set of values of the parameters K, z1, z2, p, r and q.
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We assume that the roots of the equation

 z2 – 2r cosq z + r2 = 0

are the preferred closed-loop poles corresponding to 

the speci fied values of z and wn. Complex-conjugate 

pole pairs correspond ing to z = 0.5 with q = 18º, 45º 

and 72º, will be considered in our study. The pole pair 

with q = 18º is shown in Fig. 4.7.

To study the effect of zero location, we let z2 = p and 

explore the effect of the (remaining) zero location z1 

on the transient performance. We take the gain K to be 

such that the steady-state output value equals the step 

size. For a unit-step input,

 Y(z) = 
K z z

z r z r

z

z

( )

cos

-

- +

È

Î
Í
Í

˘

˚
˙
˙ -

Ê
ËÁ

ˆ
¯̃

1

2 22 1q
 (4.17)

with  K = 
1 2

1

2

1

- +
-

r r

z

cos

( )

q

The major effect of the zero z1 on the step response y(k) is to change the peak overshoot, as may be 

seen from the step responses plotted in Fig. 4.8a. Figure 4.8b shows plots of peak overshoot versus zero 

location for three different cases of complex-conjugate pole pairs. The major observation from these 

plots is that the zero has very little influence when on the negative real axis, but its influence is dramatic 

when it comes near +1.

To study the influence of a third pole on a basically second-order response, we again consider the system 

(4.16), but this time, we fix z1 = z2 = –1 and let p vary from near –1 to near +1. In this case, the major 

influence of the moving singularity is on the rise time of the step response. Figure 4.8c shows plots of 

rise time versus extra pole location, for three different cases of complex-conjugate pole pairs. We see 

here that the extra pole causes the rise time to get very much longer as the location of p moves towards 

z = +1, and comes to dominate the response.

Our conclusions from these plots are that the addition of a pole, or a zero, to a given system has only 

a small effect—if the added singularities are in the range 0 to –1. However, a zero moving towards 

z = +1 greatly increases the system overshoot. A pole placed towards z = +1 causes the response to 

slow down and thus, primarily, affects the rise time—which is being progressively increased. The pole 

pair corresponding to specified z and wn, is a dominant pole pair of the closed-loop system only if the 

influence of addition al poles and zeros is negligibly small on the dynamic response of the system.

The translation of time-domain specifications into desired loca tions of pair of dominant closed-loop 

poles in the z-plane, is useful if the design is to be carried out by using root locus plots. The use of 

frequency response plots necessitates the translation of time-domain performance specifications in terms 

of frequency response features.

Unit circle

Re

Im

18°

z-plane

z = 0.5

Fig. 4.7 A complex-conjugate pole pair of 
the system (4.16)
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All the frequency-domain methods of continuous-time systems can be extended for the analysis and  

design of digital control sys tems. Consider the system shown in Fig. 4.3b. The closed-loop transfer 

function of the sampled-data system is

 
Y z

R z

( )

( )
 = 

G G z

G G z

h

h

0

01

( )

( )+
 (4.18)

Just as in the case of continuous-time systems, the absolute and relative stability conditions of the closed-

loop discrete-time system can be investigated by making the frequency response plots of Gh0G(z). The 

frequency response plots of Gh0G(z) are obtained by setting z = e jwT, and then letting w vary from  – ws/2 

to ws/2. This is equivalent to mapping the unit circle in the z-plane onto the Gh0G(e jwT)-plane. Since the 

unit circle in the z-plane is symmetrical about the real axis, the frequency response plot of Gh0G(e jwT) 
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will also be symmetrical about the real axis, so that only the portion that corresponds to w = 0 to w = 

ws/2 needs to be plotted.

A typical curve of (refer to Eqn. (4.18))

 
Y

R
(e jwT) = 

G G e

G G e

h
j T

h
j T

0

01

( )

( )

w

w+
, (4.19)

the closed-loop frequency response, is shown in Fig. 4.9. The amplitude ratio and phase angle will 

approximate the ideal 1.0 – 0º for some range of ‘low’ frequencies, but will deviate for high frequencies. 

The height Mr (resonance peak) of the peak is a relative stability criterion; the higher the peak, the poorer 

the relative stability. Many systems are designed to exhibit a resonance peak in the range 1.2 to 1.4. 

The frequency wr (resonance frequency) at which this peak occurs, is a speed of response criterion; the 

higher the wr, the faster the system. For systems that exhibit no peak (sometimes the case), the bandwidth 

wb is used for speed of response specifications. Bandwidth is the frequency at which amplitude ratio has 

dropped to 1 2/  times its zero-frequency value. It can, of course, be specified even if there is a peak.

Alternative measures of relative stability and speed of response are stability margins and crossover  

frequencies. To define these measures, a discussion of the Nyquist stability criterion in the z-plane is 

Fig. 4.9 Closed-loop frequency response criteria 
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required. Given the extensive foundation for the Nyquist criterion for continuous-time systems, that we 

laid in Chapter 10 of the companion book [155], it will not take us long to present the criterion for the 

discrete-time case.

4.2.3 z

The concepts involved in z-plane Nyquist stability criterion, are identical to those for s-plane criterion. 

In the s-plane, the region of stability is infinite in extent, namely, the entire left half of the s-plane. In the 

z-plane, this is not the case. The region of stability is the interior of the unit circle. This makes drawing 

the locus of Gh0G(e jwT), the open-loop frequency response on the polar plane, easier because the Nyquist 

contour Gz in the z-plane is finite in extent, being simply the unit circle. We treat poles at z = 1 in the way 

we treated poles at s = 0, by detouring around them on a contour of arbitrarily small radius.

Figure 4.10a shows a typical Nyquist contour along which we will evaluate Gh0G(z). Note that we detour 

around the pole at z = 1, on a portion of a circle of radius e centered at z = 1. A typical Nyquist plot 

Gh0G(e jwT) is shown in Fig. 4.10b. We see from this figure, that the Nyquist plot is similar to those we 

obtain for continuous-time functions with a single pole at s = 0, with the following exception. The plot 

does not touch the origin in the z-plane. The reason is that we evaluate Gh0G(e jwT) over a finite range of 

values of w, namely, 0 £ w £ p /T, where T is the sampling interval.

We have labeled the segments of Gz in the same fashion as we did in the s-plane Nyquist analysis [155]. 

Segment C1 is the upper half of the unit circle, and segment C2 is the lower half of the unit circle. 

Segment C3 is the portion of a circle with radius e centered at z = 1. There is no segment corresponding 

to the s-plane portion of a circle with infinite radius centered at s = 0, because the Nyquist contour Gz in 

the z-plane, unlike its counterpart in the s-plane, is of finite extent.

Note that the locus Gh0G(C1) in Fig. 4.10b, is directly obtained from Gh0G(e jwT) for 0 £ w £ p/T, whereas 

the locus Gh0G(C2) is the same information, with the phase reflected about 180°; Gh0G(C3) is inferred 

from Fig. 4.10a based on pole-zero configuration.

In the case of open-loop transfer function Gh0G(z) with no poles outside the unit circle, the closed-loop 

system of Fig. 4.3b is stable if

 N = number of clockwise encirclements of the critical point –1 + j0 made by the Gh0G(e jwT ) locus 

of the Nyquist plot

 = 0

Note that the necessary information to determine relative stability is contained in the portion Gh0G(C1) 

of the Nyquist plot, which corresponds to the frequency response of the open-loop system Gh0G(z). This 

portion of the Nyqusit plot of Fig. 4.10b has been redrawn in Fig. 4.10c. Gain and phase margins are 

defined so as to provide a two-dimensional measure of how close the Nyquist plot is to encircling the 

–1 + j0 point, and they are identical to the definitions developed for continuous-time systems. The Gain 

Margin (GM) is the inverse of the amplitude of Gh0G(e jwT) when its phase is 180°, and is a measure of 

how much gain of the system can be increased before instability results. The Phase Margin (FM) is the 

difference between 180° and the phase of Gh0G(e jwT) when its amplitude is 1. It is a measure of how 

much additional phase lag, or time delay, can be tolerated before instability results, because the phase of 

a system is highly related to these characteristics.
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The Nyquist plot in Fig. 4.10c intersects the negative real axis at frequency wf. This frequency at which 

the phase angle of Gh0G(e jwT) is 180°, is referred to as phase crossover frequency. The gain margin of 

the closed-loop system of Fig. 4.3b, is defined as the number

 GM = 
1

0G G eh
j T

( )
wf

For stable systems, GM is always a number greater than one.

A unit circle, centered at the origin, has been drawn in Fig. 4.10c in order to identify the point at which 

the Nyquist plot has unity magnitude. The frequency at this point has been designated wg, the gain 

crossover frequency. The phase margin of the closed-loop system of Fig. 4.3b, is defined as

 FM = 180° + –Gh0G(e jwgT )

For stable systems, FM is always positive.

The GM and FM are both measures of relative stability. General numerical design goals for these margins 

cannot be given since systems that satisfy other specific performance criteria may exhibit a wide range 
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of these margins. It is possible, however, to give useful lower bounds—the gain margin should usually 

exceed 2.5 and the phase margin should exceed 30°.

For continuous-time systems, it is often pointed out that the phase margin is related to the damping ratio z 

for a standard second-order system; the approximate relation being z = FM/100. The FM, from a z-plane 

frequency response analysis, carries the same implications about the damping ratio of the closed-loop 

system.

The gain crossover frequency wg is related to the bandwidth of the system. The larger the wg, the wider 

the bandwidth of the closed-loop system, and the faster is its response.

The translation of time-domain specifications in terms of fre quency response features, is carried out 

by using the explicit correlations for second-order system (4.10). The following corre lations are valid 

approximations for higher-order systems domi nated by a pair of complex conjugate poles3.

 Mr = 
1

2 1 2z z-
; z £ 0.707  (4.20)

 wr = wn 1 2 2- z  (4.21)

 wb = wn 1 2 2 4 42 2 4

1

2- + - +È
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˘
˚̇
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¸
˝
Ô
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  @ 100z (4.23)

4.2.4

The effectiveness of a system in disturbance signal rejection is readily studied with the topology of  

Fig. 4.11a. The response Y(z) to disturbance W(z), can be found from the closed-loop transfer function

 
Y z

W z

( )

( )
 = 

1

1 0+ D z G G zh( ) ( )
 (4.24a)

We now introduce the function

 S(z) = 
1

1 0+ D z G G zh( ) ( )
 (4.24b)

which we call the sensitivity function of the control system, for reasons to be explained later. To reduce 

the effects of distur bances, it turns out that S(e jwT) must be made small over the frequency band of 

disturbances. If constant disturbances are to be suppressed, S(1) should be made small. If D(z)Gh0G(z) 

includes an integrator (which means that D(z) or Gh0G(z) has a pole at z = 1), then the steady-state error 

due to constant disturbance is zero. This may be seen as follows. Since for a constant distur bance of 

amplitude A, we have

W(z) = 
Az

z -1
,

 3 Chapter 11 of reference [155].



 Design of Digital Control Algorithms 233

the steady-state value of the output is given by

 yss = lim
z Æ 1

(z – 1)Y(z) = lim
z Æ 1

(z – 1)S(z)W(z) = lim
z Æ 1

AS(z)

which is equal to zero if D(z)Gh0G(z) has a pole at z = 1. 

Note that the point where the disturbance enters the system is very important in adjusting the gain of 

D(z)Gh0G(z). For example, consider the system shown in Fig. 4.11b. The closed-loop transfer function 

for the disturbance is 

 
Y z

W z

( )

( )
 = 

G G z

D z G G z

h

h

0

01

( )

( ) ( )+

In this case, the steady-state error due to constant disturbance W(z) is not equal to zero when Gh0G(z) has 

a pole at z = 1. This may be seen as follows: 

Let  Gh0G(z) = Q(z)/(z – 1)

where Q(z) is a rational polynomial of z, such that Q(1) π 0 and Q(1) ; and D(z) is a controller which 

does not have pole at z = 1. Then

yss = lim
z Æ 1

( ) ( )

( ) ( )

z G G z

D z G G z

h

h

-
+

1

1

0

0

 W(z) = lim
z Æ 1

AzQ z

z D z Q z

( )

( ) ( )- +1
 = 

A

D( )1

Thus, the steady-state error is nonzero; the magnitude of the error can be reduced by increasing the 

controller gain.

Figure 4.11c gives a block diagram of the situation where meas urement noise Wn(z) enters the system 

through the feedback link. The closed-loop transfer function for this disturbance is 
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+

Fig. 4.11 
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Thus, the measurement noise is transferred to the output whenever |D(z)Gh0G(z)| > 1. Hence, large 

gains of D(z)Gh0G(z) will lead to large output errors due to measurement noise. This is in conflict with 

the disturbance-rejection property with respect to configu rations of Figs 4.11a and 4.11b. To solve this 

problem, we can generally examine the measuring instrument and modify the filter ing, so that it satisfies 

the requirements of a particular control problem.

4.2.5

Finally, in our design, we must take into account both the small and, often, the large differences between 

the derived process model and the real process behavior. The differences may appear due to modeling  

approximations, and the process behavior changes with time during operation. If, for simplicity, it is  

assumed that the structure and order of the process model are chosen exactly, and they do not change 

with time, then these differences are mani fested as parameter errors.

Parameter changes with respect to nominal parameter vector pn are assumed. The closed-loop behavior 

for parameter vector

p = pn + Dp

is of interest. If the parameter changes are small, then sensi tivity methods can be used. For controller design, 

both good control performance (steady-state accuracy, transient accuracy, and disturbance rejection),  

and small parameter sensitivity, are required. The resulting controllers are then referred to as insensitive 

controllers. However, for large parameter changes, the sensitivity design is unsuitable. Instead, one has to 

assume several process models with different parameter vectors p1, p2, ..., pM, and try to design a robust 

controller which, for all process models, will maintain stability and certain control per formance range.

For the design of insensitive controllers, the situation is very much like the disturbance-signal rejection. 

The larger the gain of the feedback loop around the offending parameter, the lower the sensitivity of the 

closed-loop transfer function to changes in that parameter.

Consider the digital control system of Fig. 4.11. The closed-loop input-output behavior corresponding to 

the nominal parameter vector, is described by 

 M(pn, z) = 
Y z
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 = 
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 (4.26)

The process parameter vector now changes by an infinitesimal value Dp. For the control loop, it follows 

that
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From Eqns (4.26)–(4.27), it follows that 
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 (4.28a)

with the sensitivity function S(pn, z) of the feedback control given as

 SG G
M

h0
 = S(pn, z) = 

1

1 0+ D z G G zh n( ) ( , )p
 (4.28b)

This sensitivity function shows how relative changes of input/output behavior of a closed loop, depend 

on changes of the process transfer function. Small parameter-sensitivity of the closed-loop behavior, can 

be obtained by making S(pn, e jwT) small in the significant frequency range.

4.2.6

Control system design with high-gain feedback results in the following:

 (i) good steady-state tracking accuracy;

 (ii) good disturbance-signal rejection; and

 (iii) low sensitivity to process-parameter variations.

There are, however, factors limiting the gain:

 (i) High gain may result in instability problems.

 (ii) Input amplitudes limit the gain; excessively large mag nitudes of control signals will drive the 

process to saturation region of its operation, and the control system design, based on linear model 

of the plant, will no longer give satisfactory per formance.

 (iii) Measurement noise limits the gain; with high-gain feedback, measurement noise appears 

unattenuated in the controlled output.

Therefore, in design, we are faced with trade-offs.

4.3

All the frequency response methods of continuous-time systems4, are directly applicable for the analysis 

and design of digital control systems. For a system with closed-loop transfer function
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 4 Chapters 10–12 of reference [155].
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the absolute and relative stability conditions can be investigat ed by making the frequency response plots 

of Gh0G(z). The fre quency response plots of Gh0G(z) can be obtained by setting

 z = e jwT; T = sampling interval (4.30)

and then letting the frequency w vary from –ws/2 to ws/2; ws = 2p/T. Computer assistance is normally 

required to make the fre quency response plots (refer to Problem A.8 in Appendix A).

Since the frequency appears in the form z = ejwT, the discrete-time transfer functions are typically not 

rational functions and the simplicity of Bode’s design technique is altogether lost in the z-plane. The 

simplicity can be regained by transforming the discrete-time transfer function in the z-plane, to a different 

plane (called w) by the bilinear transformation (refer to Eqn. (2.115))

 z = 
1 2

1 2

+
-

wT

wT

/

/
 (4.31a)

By solving Eqn. (4.31a) for w, we obtain the inverse relationship 

 w = 
2 1

1T

z

z

-
+

 (4.31b)

Through the z-transformation and the w-transformation, the prim ary strip of the left half of the s-plane 

is first mapped into the inside of the unit circle in the z-plane, and then mapped into the entire left half 

of the w-plane. The two mapping processes are depicted in Fig. 4.12. Notice that as s varies from 0 to 

jws/2 along the jw-axis in the s-plane, z varies from 1 to  –1 along the unit circle in the z-plane, and w 

varies from 0 to  along the imaginary axis in the w-plane. The bilinear transforma tion (4.31) does not 

have any physical significance in itself and, therefore, all w-plane quantities are fictitious quantities that 

correspond to the physical quantities of either the s-plane or the z-plane. The correspondence between 

the real frequency w, and the fictitious w-plane frequency, denoted as n, is obtained as follows:

From Eqn. (4.31b),
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Fig. 4.12 Diagrams showing mappings from s-plane to z-plane and from z-plane to w-plane
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Thus, a nonlinear relationship or ‘warping’ exists between the two frequencies w and n. As w moves from 

0 to ws/2, n moves from 0 to  (Fig. 4.13).

Note that for relatively small 
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and the ‘warping’ effect on the frequency response is negligible.

Fig. 4.13 n and actual frequency w

The distortion depicted in Fig. 4.13 may be taken into account in our design of digital compensation by 

frequency ‘prewarping’. The idea of prewarping is simply to adjust the critical frequencies in our design. 

For example, if the closed-loop bandwidth is specified as wb, then the corresponding bandwidth on the 

w-plane is nb = 
2

2T

Tbtan
wÊ

ËÁ
ˆ
¯̃

. Our design based on the frequency response plots of Gh0G(jn) attempts 

to realize a closed-loop bandwidth equal to nb. 

Example 4.2

Consider a process with transfer function 

 G(s) = 
10

11
5

s s( )+
 (4.34)
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which, when preceded by a ZOH (T = 0.1 sec), has the discrete-time transfer function (refer to Table 2.1)
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50
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By use of the bilinear transformation
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Gh0G(z) can be transformed into Gh0G(w) given below.
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Notice that the gain of Gh0G(w) is precisely the same as that of G(s)—it is 10 in both the cases. This will 

always be true for a Gh0G(w) computed using the bilinear transformation given by Eqns (4.31). The gain 

of 10 in Eqn. (4.36) is the K
v
 of the uncompensated system (4.35). 

We also note that in Eqn. (4.36), the denominator looks very much similar to that of G(s), and that 

the denominators will be the same as T ap proaches zero. This would also have been true for any zeros 

of Gh0G(w) that corresponded to zeros of G(s), but our example does not have any. Our example also 

shows the creation of a right-half plane zero of Gh0G(w) at 2/T, and the creation of a fast left-half plane 

zero when compared to the original G(s). The transfer function Gh0G(w) is thus a nonminimum phase 

function.

To summarize, the w-transformation maps the inside of the unit circle in the z-plane, into the left half of 

the w-plane. The magnitude and phase of Gh0G( jn) correspond to the magnitude and phase of Gh0G(z) 

as z takes on values around the unit circle. Since Gh0G( jn) is a rational function of n, we can apply all 

the stan dard straight-line approximations to the log-magnitude and phase curves.

To obtain  Gh0G(w) = G G zh
z
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the following ready-to-use formula may be used:

 Gh0G(z) = 

K z a

z z b

i

m

i

l

j

n

j

P

P

=

=

+

- +

1

1
1

( )

( ) ( )

 (4.37a)

 Gh0G(w) = 

K a
w

T

w

T a ai

m

i

l m n

i

m

i i

P P
=

- +

=
+ -

Ê
ËÁ

ˆ
¯̃

+
+ -

Ê
1 1

1 1
2

1
2 1 1

( )
/ ( / ) [( )/( )]ËËÁ

ˆ
¯̃

+ +
+ -

Ê

Ë
Á

ˆ

¯
˜= =

P P
j

n

j
l l

j

n

j j

b T w
w

T b b1 1
1 1

2 1 1
( )

( / )[( )/( )]

 (4.37b)



 Design of Digital Control Algorithms 239

The design of analog control systems usually falls into one of the following categories: (1) lead 

compensation, (2) lag compen sation, (3) lag-lead compensation. Other more complex schemes, of 

course, do exist, but knowing the effects of these three basic types of compensation, gives a designer 

much insight into the design problem. With reference to the design of digital control systems by Bode 

plots, the basic forms of compensating network D(w) have also been classified as lead, lag, and lag-

lead. In the following paragraphs, we briefly review the fundamental frequen cy-domain features of these 

compensators.

A simple lead compensator model in the w-plane is described by the transfer function

 D(w) = 
1

1

+
+

w

w

t

a t
; 0 < a < 1, t > 0 (4.38)

The zero-frequency gain of the compensator is found by letting w = 0. Thus, in Eqn. (4.38), we are 

assuming a unity zero-frequency gain for the compensator. Most of the designs require a compensa tor 

with a non-unity zero-frequency gain to improve steady-state response, disturbance rejection, etc. A non-

unity zero-frequency gain is obtained by multiplying the right side of Eqn. (4.38) by a constant equal 

to the value of the desired zero-frequency gain. For the purpose of simplifying the design procedure, 

we normally add the required increase in gain to the plant transfer function, and design the unity zero-

frequency gain compensator given by Eqn. (4.38), based on the new plant transfer function. Then the 

compensator is realized as the transfer function of (4.38) multi plied by the required gain factor. 

The Bode plot of the unity zero-frequency gain lead compensator is shown in Fig. 4.14. The maximum 

phase lead fm of the compensa tor is given by the relation 

 a = 
1

1

-
+

sin

sin

f

f
m

m

 (4.39)

and it occurs at the frequency 

 nm = 
1 1

t at

Ê
ËÁ

ˆ
¯̃

Ê
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ˆ
¯̃

 (4.40)

The magnitude of D( jn) at n = nm is 20 log ( / )1 a .

The phase lead is introduced in the vicinity of the gain crosso ver frequency of the uncompensated  

system—in order to increase the system’s phase margin. Lead compensation increases the system gain at 

higher frequencies, thereby increasing the system band width and hence the speed of response. However, 

a system with large bandwidth may be subjected to high-frequency noise prob lems.

A simple lag compensator model in the w-plane is described by the transfer function

 D(w) = 
1

1

+
+

w

w

t

b t
; b > 1, t > 0 (4.41)

The Bode plot of this unity zero-frequency gain compensator is shown in Fig. 4.15.
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Since the lag compensator reduces the system gain in the high frequency range, without reducing the 

gain at low frequen cies, the total system gain can be appreciably increased by a non-unity zero-frequency 

gain obtained by multiplying the right side of Eqn. (4.41) by a constant. This is equivalent to increasing 

the gain for the entire frequency range, and then attenuating the magnitude curve in the high frequency 

region. This results in an appreciable increase in gain in the low frequency range of the lag-compensated 

system, thereby improving steady-state accuracy.

Fig. 4.15 Bode plot of lag compensator
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20 log

20 log
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1
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a

Fig. 4.14 Bode plot of lead compensator
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In the design method using Bode plots, the attenuation prop erty of lag compensator is utilized; the phase 

lag characteristic is of no consequence. The attenuation provided by the lag compen sator in the high 

frequency range shifts the gain crossover frequency to a lower value, and gives the system sufficient 

phase margin. So that a significant phase lag will not be contributed near the new gain crossover, the 

upper corner frequency 1/t of D(w) is placed far below the new gain crossover. 

With the reduction in system gain at high frequencies, the system bandwidth gets reduced and thus the 

system has a slower speed of response. This may be an advantage if high frequency noise is a problem.

Equations (4.38) and (4.41) describe simple first-order compensa tors. In many system design problems, 

however, the system speci fications cannot be satisfied by a first-order compensator. In these cases, higher-

order compensators must be used. To illus trate this point, suppose that smaller steady-state errors to ramp 

inputs are required for a Type-2 system; this requires an increase in the low-frequency gain of the system. 

If phase-lead compensation is employed, this increase in gain must be reflected at all frequencies. It is 

then unlikely that one first-order section of phase-lead compensation can be designed to give adequate 

phase margin. One solution to this problem would be to cascade two first-order lead compensa tors. 

However, if the noise in the control system is a problem, this solution may not be acceptable. A different 

approach is to cascade a lag compensator with a lead compensator. This compen sator is usually referred 

to as a lag-lead compensator.

Example 4.3

Consider the feedback control system shown in Fig. 4.16. The plant is described by the transfer 

function

G(s) = 
K

s s( )+ 5

Design a digital control scheme for the system to meet the fol lowing specifications:

 (i) the velocity error constant K
v
 ≥ 10;

 (ii) peak overshoot Mp to step input £ 25%; and

 (iii) settling time ts (2% tolerance band) £ 2.5 sec.

Solution The design parameters are the sampling interval T, the system gain K, and the parameters of 

the unity zero-frequency gain compensator D(z). 

Let us translate the transient accuracy require ments to frequency response measures. z = 0.4 corresponds 

to a peak overshoot of about 25% (Eqn. (4.13)), and a phase margin of about 40º (Eqn. (4.23)). The 

requirement of ts @ 2.5 sec corresponds to wn = 4 rad/sec (Eqn. (4.14)) and closed-loop bandwidth

wb @ 5.5 rad/sec (Eqn. (4.22)). Taking the sampling frequency about 10 times the band width, we choose 

the sampling interval 

T = 
2

10
0 1

p

wb

@ . sec



242  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Our design approach is to first fix the system gain K to a value that results in the desired steady-state 

accuracy. A unity zero-frequency gain compensator, that satisfies the transient accuracy requirements 

without affecting the steady-state accuracy, is then introduced.

Since sampling does not affect the error constant of the system, we can relate K with K
v
 as follows, for 

the system of Fig. 4.16 with D(z) = 1 (i.e., for uncompensated system):

K
v
 = lim

s Æ 0
 sG(s) = 

K

5

Thus, K = 50 meets the requirements on steady-state accuracy. 

For T = 0.1 and K = 50, we have

 Gh0G(z) = Z
1 50

5

-
+

Ê
ËÁ
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The Bode plot of Gh0G( jn) (i.e., the uncompensated system) is shown in Fig. 4.17. We find from this 

plot, that the uncompensated system has gain crossover frequency nc1 = 6.6 rad/sec and phase margin 

FM1 @ 20º. The magnitude versus phase angle curve of the uncompensated system is drawn in Fig. 4.18. 

The bandwidth5 of the system is read as

nb1 = 11

In terms of the real frequency, the bandwidth (Eqn. (4.32))

Compensator

T T

+

–

ZOH Plant

G s( )

u t*( )

y t( )

u k( )e k( )e t( )

r t( )
D z( ) G sh0( )

Fig. 4.16 

 5 The –3dB closed-loop gain contour of the Nichols chart has been used to determine bandwidth. The contour 

has been construct ed using the following table obtained from the Nichols chart.

Degrees –90 –100 –120 –140 –160 –180 –200 –220

dB 0 –1.5 –4.18 –6.13 –7.28 –7.66 –7.28 –6.13
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wb1 = 
2

2

1 1

T

Tbtan- Ê
ËÁ

ˆ
¯̃

n
 = 10 rad/sec

It is desired to raise the phase margin to 40º without altering K
v
. Also the bandwidth should not increase. 

Obviously, we should first try a lag compensator.

From the Bode plot of uncompensated system, we observe that the phase margin of 40º is obtained 

if the gain crossover frequency is reduced to 4 rad/sec. The high frequency gain –20 log b of the lag 

compensator (Fig. 4.15) is utilized to reduce the gain cross over frequency. The upper corner frequency 1/t 

of the compensator is placed one octave to one decade below the new gain crossover, so that the phase lag 

contribution of the compensator, in the vicinity of the new gain crossover, is made sufficiently small. 

To nullify the small phase lag contribution which will still be present, the gain crossover frequency is 

reduced to a value nc2 where the phase angle of the uncompensated system is

f = –180º + FMs + e;

FMs is the specified phase margin and e is allowed a value 5º–15º.

The uncompensated system (Fig. 4.17) has a phase angle

f = –180º + FMs + e = –180º + 40º + 10º = –130º

at nc2 = 3 rad/sec. Placing the upper corner frequency of the compensator two octaves below nc2, we have

Fig. 4.17 Compensator design (Example 4.3)
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1

t
 = 

nc2

22( )
 = 

3

4

To bring the magnitude curve down to 0 dB at nc2, the lag compen sator must provide an attenuation of 

9 dB (Fig. 4.17). Therefore,

20 log b = 9 or b = 2.82

The lower corner frequency of the compensator is then fixed at 

 
1

bt
 = 0.266

The transfer function of the lag compensator is then

 D(w) = 
1

1

+
+

t

bt

w

w
 = 

1 1 33

1 3 76

+
+

.

.

w

w

Phase lag introduced by the compensator at nc2 = tan–1(1.33 nc2) – tan–1 (3.76nc2) = 75.93º – 84.93º = 

–9º. Therefore, the safety margin of e = 10º is justified. 

The open-loop transfer function of the compensated system becomes

D(w)Gh0G(w) = 

10 1
20

1
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The Bode plot of D(w)Gh0G(w) is shown in Fig. 4.17, from where the phase margin of the compensated 

system is found to be 40º and the gain margin is 15 dB. The magnitude versus phase angle curve of the 

compensated system is shown on Nichols chart in Fig. 4.18. The bandwidth of the compensated system is

Fig. 4.18 Compensator design (Example 4.3)
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nb2 = 5.5 w
n

b
b
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T
2

1 22

2
5 36= Ê
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ËÁ

ˆ
¯̃

-tan . rad/sec

Therefore, the addition of the compensator has reduced the band width from 10 rad/sec to 5.36 rad/sec. 

However, the reduced value lies in the acceptable range. 

Substituting  w = 
2 1

1T

z

z

-
+

in D(w), we obtain 

 D(z) = 0.362 
z

z

-
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.
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0 974
 = 1

The digital controller D(z) has a pole-zero pair near z = 1. This creates a long tail of small amplitude 

in the step response of the closed-loop system. This behavior of the lag-compensated system will be 

explained shortly, with the help of root locus plots. 

To evaluate the true effectiveness of the design, we write the closed-loop transfer function of the 

compensated system (Fig. 4.19) and therefrom obtain the response to step input. Computer assistance is 

usually needed for this analysis.

Lag compensator

+

–

Plant

0.215 ( + 0.85)

( – 1)( – 0.61)

z

z z

0.362 – 0.336

– 0.974

z

z

Y( )zU( )zE( )zR( )z

D( ) =z G G zh0 ( ) =

Fig. 4.19 Compensator design (Example 4.3)

Comment We have obtained a digital control algorithm which meets the following objectives: K
v
 @ 10, 

Mp @ 25%, ts @ 2.5 sec. We may attempt to improve upon this design to obtain K
v
 > 10, Mp < 25% and 

ts < 2.5 sec. However, the scope of such an exercise is limited, because the improvement in steady-state 

accuracy will be at the cost of stability margins and vice versa. Also, the con flicting requirements of 

limiting the magnitudes of control signals to avoid saturation problems, limiting the bandwidth to avoid 

high-frequency noise problems, etc., have to be taken into consideration.

Example 4.4

Reconsider the feedback control system of Example 4.3 (Fig. 4.16). We now set the following goal for our 

design:

 (i) K
v
 ≥ 10;
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 (ii) Phase margin @ 40º; and

 (iii) Bandwidth @ 12 rad/sec.

Sampling interval T = 0.1 sec corresponds to a sampling frequency which is about five times the closed-

loop bandwidth. A smaller value of T is more appropriate for the present design problem which requires 

higher speed of response; we will, however, take T = 0.1 sec to compare our results with those of 

Example 4.3.

Following the initial design steps of Example 4.3, we find that K = 50 meets the requirement on steady-

state accuracy. For K = 50 and T = 0.1 sec, we have (refer to Eqn. (4.44))
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The uncompensated system has a gain crossover frequency nc1 = 6.6 rad/sec, phase margin FM1 @ 20º 

and bandwidth nb1 = 11(w b1 = 10 rad/sec). This follows from Figs 4.20 and 4.21.

It is desired to raise the phase margin to 40º without altering K
v
. The bandwidth should also increase. 

Obviously, we should try a lead compensator for this situation.

The phase margin FM1 = 20º of the uncompensated system falls short of the specified phase margin 

FMs = 40º by 20º. Additional phase margin can be provided by a lead compensator (Fig. 4.14), so placed 
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Compensator design (Example 4.4)
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that its corner frequencies 1/t and 1/at are on either side of the gain crossover frequency nc1 = 6.6 

rad/sec. The compensator so placed will increase the system gain in the vicin ity of nc1; this will cause 

the gain crossover to shift to the right—to some unknown value nc2. The phase lead provided by the 

compensator at nc2 adds to the phase margin of the system.

Phase margin of the uncompensated system at nc1 is FM1. At nc2, which is expected to be close to nc1, let 

us assume the phase margin of the uncompensated system to be (FM1 – e) where e is allowed a value 

5º – 15º. The phase lead required at nc2 to bring the phase margin to the specified value FMs, is given by 

fl = FMs – (FM1 – e) = FMs – FM1 + e

In our design, we will force the frequency nm of the compensator to coincide with nc2, so that maximum 

phase lead fm of the compen sator is added to the phase margin of the system. Thus, we set

 nc2 = nm

Therefore, fm = fl

The a-parameter of the compensator can then be computed from (refer to Eqn. (4.39))

a = 
1

1

-
+

sin

sin

f

f
m

m

Since at nm, the compensator provides a dB-gain of 20 log( / )1 a , the new crossover frequency nc2 = nm 

can be determined as that fre quency at which the uncompensated system has a dB-gain of –20 log( / )1 a .

For the design problem under consideration, 

 fl = 40º – 20º + 15º = 35º

Therefore, a = 
1 35

1 35

-
+

sin

sin

°

°
 = 0.271

Fig. 4.21 Compensator design (Example 4.4)
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The magnitude contribution of the compensator at nm is 20 log ( / . )1 0 271  = 5.67dB.

From Bode plot of Fig. 4.20, we obtain

 nc2 = 9.4 = nm

Therefore (refer to Eqn. (4.40))

    
1 1

t at

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

  = nm = 9.4

or 
1

t
 = a ( )vm  = 4.893 and 

1

at
 = 

4 893

0 271

.

.
 = 18.055

Since the compensator zero is very close to a pole of the plant, we may cancel the pole with the zero, 

i.e., we may choose

 
1

t
 = 4.84; 

1

at
 = 17.86

The transfer function of the lead compensator becomes

 D(w) = 
1

1

+
+

t

at

w

w
 = 

1 0 21

1 0 056

+
+

.

.

w

w

Substituting 

 w = 
2 1

1T

z

z

-
+

in D(w), we obtain 

 D(z) = 
2 45 0 616

0 057

. ( . )

.

z

z

-
-

The open-loop transfer function of the compensated system is 

 D(w)Gh0G(w) = 
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The Bode plot of D(w)Gh0G(w) is shown in Fig. 4.20, from where the phase margin of the compensated 

system is found to be 38º, and gain margin is 7.5 dB. The magnitude versus phase angle curve of the 

compensated system is shown in Fig. 4.21. The bandwidth of the compensated system is

nb2 = 22.5; wb2 = 
2

2

1 2

T

Tbtan- Ê
ËÁ

ˆ
¯̃

n
 = 16.9 rad/sec

Thus, the addition of the lead compensator has increased the system bandwidth from 10 to 16.9 rad/sec. 

It may lead to noise problems if the control system is burdened with high frequency noise.

A solution to noise problems involves the use of a lag compensa tor cascaded with lead compensator. The 

lag compensation is employed to realize a part of the required phase margin, thus reducing the amount 

of lead compensation required. 
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4.4

Design of compensation networks using the root locus plots is a well established procedure in analog 

control systems. This is essentially a trial-and-error method where, by varying the control ler parameters, 

the roots of the characteristic equation are relocated to favorable locations. In the present section, we 

shall consider the application of root locus method to the design of digital control systems.

4.4.1 z

The characteristic equation of a discrete-time system can always be written in the form

   1 + F(z) = 0 (4.45)

where F(z) is a rational function of z.

From Eqn. (4.45), it is seen that the roots of the characteristic equation (i.e., the closed-loop poles of the 

discrete-time sys tem), occur only for those values of z where

   F(z) = – 1 (4.46)

Since z is a complex variable, Eqn. (4.46) is converted into two conditions given below. 

 (i) Magnitude condition: |F(z)| = 1   (4.47a)

 (ii) Angle condition: –F(z) = ± 180º (2q + 1 ); q = 0, 1, 2, ... (4.47b)

In essence, the construction of the z-plane root loci is to find the points that satisfy these conditions. If 

we write F(z) in the standard pole-zero form:

   F(z) = 

K z z

z p

i
i

j
j

P

P

( )

( )

-

-
; K ≥ 0 (4.48a)

then the two conditions given in Eqns (4.47) become

 |F(z)| = 

K z z

z p

i
i

j
j

P

P

| |

| |

-

-
 = 1 (4.48b)

and  –F(z) = 
j

Â –z – zi – 
j

Â –z – pj = ± 180º (2q + 1); q = 0, 1, 2, … (4.48c)

Consequently, given the pole-zero configuration of F(z), the construction of the root loci in the z-plane 

involves the follow ing steps:

 (i) A search for the points on the z-plane that satisfy the angle condition given by Eqn. (4.48c).

 (ii) The value of K at a given point on a root locus is deter mined from the magnitude condition given 

by Eqn. (4.48b).

The root locus method developed for continuous-time systems can be extended to discrete-time systems 

without modifications, except that the stability boundary is changed from the jw axis in the s-plane, to 

the unit circle in the z-plane. The reason the root locus method can be extended to discrete-time systems 
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is that the characteristic equation (4.45) for the discrete-time system, is of exactly the same form as the 

equation for root locus analysis in the s-plane. However, the pole locations for closed-loop systems in the 

z-plane must be interpreted differently from those in the s-plane.

We assume that the reader is already familiar with the s-plane root locus technique. We shall concentrate 

on the interpretation of the root loci in the z-plane with reference to the system performance, rather 

than the construction of root loci in the z-plane. Rules of construction of root loci are summarized in

Table 4.2 for ready reference.6

F(z) = 0

F(z) = 

K z z

z p

i

m

i

j

n

j

P

P

=

=

-

-

1

1

( )

( )

; K ≥ 0, n ≥ m; zi: m open-loop zeros; pj: n open-loop poles

     (i) The root locus plot consists of n root loci as K varies from 0 to . The loci are symmetric with 

respect to the real axis.

 (ii) As K increases from zero to infinity, each root locus origi nates from an open-loop pole with 

K = 0, and terminates either on an open-loop zero or on infinity with K = . The number of 

loci terminating on infinity equals the number of open-loop poles minus zeros. 

 (iii) The (n – m) root loci which tend to infinity, do so along straight-line asymptotes radiating out 

from a single point z = – sA on the real axis (called the centroid), where

 – sA = 
S S( ) (real parts of open-loop poles real parts of open-loop-   zeros)

n m-
           These (n – m) asymptotes have angles

 fA = 
( )2 1 180q

n m

+
-

°
; q = 0, 1, 2, ..., (n – m – 1)

 (iv) A point on the real axis lies on the locus if the number of open-loop poles plus zeros on the 

real axis to the right of this point, is odd. By use of this fact, the real axis can be divided into 

segments on-locus and not-on-locus; the dividing points being the real open-loop poles and 

zeros.

 (v) The intersections (if any) of root loci with the imaginary axis can be determined by use of the 

Routh criterion.

 (vi) The angle of departure, fp of a root locus from a complex open-loop pole, is given by 

 fp = 180º + f

  where f is the net angle contribution at this pole of all other open-loop poles and zeros.

 (vii) The angle of arrival, fz of a locus at a complex zero, is given by 

 fz = 180º – f

           where f is the net angle contribution at this zero of all other open-loop poles and zeros.

 6 Chapter 7 of reference [155].

Contd.
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(viii)  Points at which multiple roots of the characteristic equation occur (breakaway points of root 

loci) are the solutions of

dK

dz
= 0, where K = – 

P

P

j

n

j

i

m

i

z p

z z

=

=

-

-

1

1

( )

( )

 (ix) The gain K at any point z0 on a root locus, is given by 

 K = 

P

P

j

n

j

i

m

i

z p

z z

=

=

-

-

1
0

1
0

| |

| |

  = 
[Product of phasor lengths (read to scale) from to poles0z   of 

Product of phasor lengths (read to scale)from 

F z

z

( )]

[ 00 to zeros of F z( )]

Example 4.5

Consider a process with the transfer function

 G(s) = 
K

s s( )+ 2
 (4.49a)

which, when preceded by a zero-order hold (T = 0.2 sec), has the discrete-time transfer function (refer to 

Table 2.1)

 Gh0G(z) = (1 – z – 1) Z
K

s s2 2( )+

È

Î
Í
Í

˘

˚
˙
˙

 = 
¢ -

- -
K z b

z a z a

( )

( )( )1 2

 (4.49b)

where K¢ = 0.01758K, b = – 0.876, a1 = 0.67, a2 = 1.

The root locus plot of

 1 + Gh0G(z) = 0 (4.50)

can be constructed using the rules given in Table 4.2. Gh0G(z) has two poles at z = a1 and z = a2, and a 

zero at z = b. From rule (iv), the parts of the real axis between a1 and a2, and between –  and b constitute 

sections of the loci. From rule (ii), the loci start from z = a1 and z = a2; one of the loci terminates at 

z = b, and the other locus terminates at  – . From rule (viii), the breakaway points (there are two) may 

be obtained by solving for the roots of 

dK

dz

¢
 = 0, where K ¢ = – 

( ) ( )

( )

z a z a

z b

- -
-

1 2

However, we can show that for this simple two-pole and one zero configuration, the complex-conjugate 

section of the root locus plot is a circle. The breakaway points are easily obtained from this result, which 

is proved as follows:

Let  z = x + jy

 (Contd.)
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Equation (4.49b) becomes

Gh0G(z) = 
¢ + -

+ - + -
K x jy b

x jy a x jy a

( )

( )( )1 2

 = 
¢ - +

- - - + - -

K x b jy

x a x a y jy x a a

( )

( )( ) ( )1 2
2

1 22

On the root loci, z must satisfy Eqn. (4.50). 

Therefore,

–Gh0G(z) = tan–1 y

x b-
 – tan–1 

y x a a

x a x a y

( )

( )( )

2 1 2

1 2
2

- -

- - -
 = (2q + 1) 180º

Taking the tangent of both sides of this equation yields

 

y

x b

y x a a

x a x a y

y

x b

y x a a

x a x a

-
-

- -
- - -

+
-

- -
- -

( )

( ) ( )

( )

( ) (

2

1
2

1 2

1 2
2

1 2

1 22
2) -

È

Î
Í

˘

˚
˙

y

 = 0

or 
1 2 1 2

1 2
2x b

x a a

x a x a y-
-

- -

- - -( ) ( )
 = 0

Simplifying, we get

 (x – b)2 + y2 = (b – a1)(b – a2) (4.51)

which is the equation of a circle with the center at the open-loop zero z = b, and the radius equal to 

[(b – a1) (b – a2)]1/2.

The root locus plot for the system given by Eqn. (4.49b), is constructed in Fig. 4.22. The limiting value  

of K for stability may be found by graphical construction or by the Jury stability test. We illustrate the 

use of graphi cal construction. 

P

Re

Unit circle

Im

K =K K = 0 K = 0

K = 22.18

– 0.876 0.67

Fig. 4.22 Root locus plot for the system of Example 4.5
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By rule (ix) of Table 4.2, the value of K ¢ at point P where the root locus crosses the unit circle is given by 

 K ¢ = 
(Phasor length from  to pole at  = 1) (Phasor length froP z ¥ mm  to pole  at  =  0.67)

(Phasor length from  to zero at 

P z

P z   =  0.876)

  = 
0 85 0 78

1 7

. .

.

¥
 = 0.39 = 0.01758K

Therefore, K = 
0 39

0 01758

.

.
 = 22.18

The relative stability of the system can be investigated by superimposing the constant-z loci on the system 

root locus plot. This is shown in Fig. 4.23. Inspection of this figure shows that the root locus intersects the 

z = 0.3 locus at point Q. The value of K ¢ at point Q is determined to be 0.1; the gain 

K = K ¢/0.01758 = 5.7

Fig. 4.23 
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The value of wn for K¢ = 0.1, may be obtained by superimposing constant-wn loci on the root locus plot and 

locating the con stant-wn locus which passes through the point Q. From Fig. 4.23, we observe that none 

of the constant-wn loci on the standard chart passes through the point Q; we have to make a guess for the 

wn value. We can, instead, construct a constant-wd locus passing through the point Q and from there 

obtain wn more accurately.

 s1, 2 = - ± -zw w zn nj 1 2  = – zw wn dj±

are mapped to  z1, 2 = e en dT j T- ±zw w  = re j± q

in the z-plane.

A constant-wd locus is thus a radial line passing through the origin at an angle q = wdT with the positive 

real axis of the z-plane, measured positive in the counterclockwise direction.

The radial line passing through the point Q makes an angle q = 25º with the real axis (Fig. 4.23). This is 

a constant-wd locus with wd given by

 wdT = 
25

180

¥ p
 rad

Therefore,  w znT 1 2-  = 
25

180

p

This gives wn = 2.29 rad/sec.

The value of K ¢ at the breakaway point R, located at z = 0.824, is determined to be 0.01594. Therefore, 

the gain K = 0.01594/0.01758 = 0.9067 results in critical damping (z = 1) with the two closed-loop poles 

at z = 0.824.

A pole in the s-plane at s = – a has a time constant of t = 1/a and an equivalent z-plane location of e–aT = 

e–T/t. Thus, for the critically damped case,

 e–0.2/t = 0.824

or  t = 1.033 = time constant of the closed-loop poles.

In the frequency-response design procedure described in the previous section, we attempted to reshape the 

open-loop frequency response to achieve certain stability margins, steady-state response characteristics 

and so on. A different design technique is presented in this section—the root-locus procedure. In this 

procedure, we add poles and zeros through a digital controller, so as to shift the roots of the characteristic 

equation to more appropriate locations in the z-plane. Therefore, it is useful to investigate the effects of 

various pole-zero configurations of the digital controller on the root locus plots. 

A simple lead compensator model in the w-plane is described by the transfer function (refer to Eqn. 

(4.38))

D(w) = 
1

1

+
+

w

w

t

a t
; a < 1, t > 0
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The bilinear transformation

w = 
2 1

1T

z

z

-
+

transforms D(w) into the following D(z). 

D(z) = 
1 2

1 2

1 2 1 2

1 2 1 2

+
+

+ - +
+ - +

È

Î
Í

˘

˚

t

at

t t

at at

/

/

( / ) /( / )

( / )/( / )

T

T

z T T

z T T
˙̇

Since t and a are both positive numbers and since a < 1, the pole and zero of D(z) always lie on the real 

axis inside the unit circle in the z-plane; the zero is always to the right of the pole. A typical pole-zero 

configuration of a lead compensator

 D(z) = Kc1

z

z

-
-

a

a
1

2

 (4.52)

is shown in Fig. 4.24a.

(a)

Re Re

(b)

Unit circleUnit circle
Im Im

Fig. 4.24 

For the purpose of simplifying the design procedure, we normally associate the gain Kc1 with the plant 

transfer function, and design the lead compensator

 D(z) = 
z

z

-
-

a

a
1

2

 (4.53a)

based on the new plant transfer function. It may be noted that D(z) given by Eqn. (4.53a) is not a unity 

gain model; the dc gain of D(z) is given by

 lim
z Æ 1

z

z

-
-

Ê
ËÁ

ˆ
¯̃

a

a
1

2

  = 
1

1

1

2

-
-

Ê
ËÁ

ˆ
¯̃

a

a
 (4.53b)

To study the effect of a lead compensator on the root loci, we consider a unity-feedback sampled-data 

system with open-loop transfer function

 Gh0G(z) = 
K z

z z

( . )

( . )( . )

+
- -

0 368

0 368 0 135
; T = 1 sec (4.54)
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The root locus plot of the uncompensated system is shown in Fig. 4.25a. The plot intersects the z = 0.5 

locus7 at point P. The value of gain K at this point is determined to be 0.3823. 

Constant-wd locus passing through point P is a radial line at an angle of 82º with the real axis (Fig. 4.25a). 

Therefore, 

 wdT = wnT 1 2-z  = 
82

180

p

This gives wn = 1.65 rad/sec

Since Gh0G(z) given by Eqn. (4.54) is a Type-0 system, we will consider position error constant Kp to 

study steady-state accu racy. For K = 0.3823, 

Kp = lim
z Æ 1

Gh0G(z) = 
0 3823 1 0 368

1 0 368 1 0 135

. ( . )

( . )( . )

+
- -

 = 0.957

We now cancel the pole of Gh0G(z) at z = 0.135 by the zero of the lead compensator, and add a pole at 

z = –0.135, i.e., we select

D(z) = 
z

z

-
+

0 135

0 135

.

.

Figure 4.25b shows the root locus plot of lead compensated sys tem. The modified locus has moved to 

the left, towards the more stable part of the plane. The intersection of the locus with the z = 0.5 line is 

at point Q. The value of wn at this point is determined to be 2.2 rad/sec. The lead compensator has thus 

increased wn and hence the speed of response of the system. The gain K at point Q is determined to be 

0.433. The position error constant of the lead compensated system is given by

Kp = lim
z Æ 1

 D(z)Gh0G(z) = lim
z Æ 1

0 433 0 368

0 368 0 135

. ( . )

( . )( . )

z

z z

+
- +

 = 0.82

The lead compensator has thus given satisfactory dynamic re sponse, but the position error constant is too 

low. We will shortly see how Kp can be increased by lag compensation.

z = 0.3 Re 0.932 0.735 0.360 0 – 0.259 –0.380 –0.373

   Im 0.164 0.424 0.623 0.610 0.448 0.220 0

z = 0.4  Re 0.913 0.689 0.317 0 –0.201 –0.276 –0.254

   Im 0.161 0.398 0.549 0.504 0.347 0.160 0

z = 0.5 Re 0.891 0.640 0.273 0 –0.149 –0.191 –0.163

   Im 0.157 0.370 0.473 0.404 0.259 0.110 0

z = 0.6 Re 0.864 0.585 0.228 0 –0.104 –0.122 –0.095

   Im 0.152 0.338 0.395 0.308 0.180 0.070 0

z = 0.7 Re 0.830 0.519 0.179 0 –0.064 –0.067 –0.046

   Im 0.146 0.299 0.310 0.215 0.111 0.039 0

z = 0.8 Re 0.780 0.431 0.124 0 –0.031 –0.026 –0.015

   Im 0.138 0.249 0.215 0.123 0.053 0.015 0

{

{

{

{

{

{

 7 For a given z, the constant-z curve may be constructed using Eqn. (4.15b). The following table gives the real 

and imaginary coordinates of points on some constant-z curves.
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The selection of the exact values of pole and zero of the lead compensator is done by experience and by 

trial-and-error. In general, the zero is placed in the neighborhood of the desired dominant closed-loop 

poles, and the pole is located at a reasona ble distance to the left of the zero location.

A simple lag compensator model in the w-plane is described by the transfer function (refer to Eqn. 

(4.41))

D(w) = 
1

1

+
+

w

w

t

b t
; b > 1, t > 0

The bilinear transformation

w = 
2 1

1T

z

z

-
+

P

Re

Im
q = 82°

Locus for

z = 0.5

q = 109°

Q

q = 60°

R

Unit circle

Root locus

(a) (b)

(c)

Fig. 4.25 Root locus plot for (a) uncompensated; (b) lead compensated; and (c) lag compensated 
system.
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transforms D(w) into the following D(z).

D(z) = 
1 2

1 2

1 2 1 2

1 2 1 2

+
+

+ - +
+ - +

È

Î
Í

˘

˚

t

bt

t t

bt bt

/

/

( / )/( / )

( / )/( / )

T

T

z T T

z T T
˙̇

Since t and b are both positive numbers and since b > 1, the pole and zero of D(z) always lie on 

the real axis inside the unit circle; the pole is always to the right of the zero. A typical pole-zero 

configuration of the lag compensa tor

 D(z) = Kc

z

z
2

1

2

-
-

b

b
 (4.55)

is shown in Fig. 4.24b. Note that both the pole and the zero have been shown close to z = 1. This, as we 

shall see, gives better stability properties.

Again, we will associate the gain Kc2 with the plant transfer function and design the lag compensator,

 D(z) = 
z

z

-
-

b

b
1

2

 (4.56)

based on the new plant transfer function. The dc gain of the lag compensator given by (4.56), is equal to 

 lim
z

z

zÆ

-
-1

1

2

b

b
 = 

1

1

1

2

-
-

b

b
 (4.57)

To study the effect of lag compensator on the root loci, we reconsider the system described by Eqn. (4.54):

Gh0G(z) = 
K z

z z

( . )

( . )( . )

+
- -

0 368

0 368 0 135
; T = 1 sec

The root locus plot of the uncompensated system is shown in Fig. 4.25a. At point P, z = 0.5, wn = 1.65 

and K = 0.3823 (Kp = 0.957).

We now cancel the pole of Gh0G(z) at z = 0.368 by the zero of the lag compensator, and add a pole at

z = 0.9, i.e., we select 

D(z) = 
z

z

-
-
0 368

0 9

.

.

Figure 4.25c shows the root locus plot of the lag compensated system. The intersection of the locus 

with z = 0.5 line is at point R. The value of wn at this point is determined to be 1.2 rad/sec. The lag 

compensator has thus reduced wn and hence the speed of response. The value of the gain K at point R is 

deter mined to be 0.478. The position error constant of the lag compen sated system is 

Kp = lim
z Æ 1

 D(z)Gh0G(z) = lim
z Æ 1

 
0 478 0 368

0 135 0 9

. ( . )

( . )( . )

z

z z

+
- -

= 7.56

Thus, we have been able to increase position error constant appre ciably by lag compensation.

If both the pole and the zero of the lag compensator are moved close to z = 1, then the root locus plot of 

the lag compensated system moves back towards its uncompensated shape. Consider the root locus plot 

of the uncompensated system shown in Fig. 4.25a. The angle contributed at point P by additional pole-

zero pair close to z = 1 (called a dipole), will be negligibly small; therefore, the point P will continue to 

lie on the lag compensated root locus plot. However, the lag compensator
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D(z) = 
z

z

-
-

b

b
1

2

will raise the system Kp (refer to Eqn. (4.57)), by a factor of (1 – b1)/(1 – b2).

The following examples illustrate typical digital control system design problems carried out in the 

z-plane, using the root locus technique. As we shall see, the design of digital compensation using root 

locus plots is essentially a trial-and-error method. The designer may rely on a digital computer to plot 

out a large number of root loci by scanning through a wide range of possible values of the compensator 

parameters, and select the best solu tion. However, one can still make proper and intelligent initial 

‘guesses’ so that the amount of trial-and-error effort is kept to a minimum.

Example 4.6

Consider the feedback control system shown in Fig. 4.26. The plant is described by the transfer 

function

G(s) = 
K

s s( )+ 2

Design a digital control scheme for the system to meet the fol lowing specifications; 

 (i) the velocity error constant K
v
 = 6;

 (ii) peak overshoot Mp to step input £ 15%; and

 (iii) settling time ts (2% tolerance band) £ 5 sec.

r

T T

e yu+

–
G( )sG sh0( )D( )z

Fig. 4.26 

Solution The transient accuracy requirements correspond to z = 0.5 and wn = 1.6. We select T = 0.2 sec. 

Note that sampling frequency ws = 2p/T is about 20 times the natural frequency; therefore, our choice of 

sampling period is satisfactory.

The transfer function Gh0G(z) of the plant, preceded by a ZOH, can be obtained as follows:

 Gh0G(z) = (1 – z–1) Z
K

s s2 2( )+

È

Î
Í
Í

˘

˚
˙
˙

  = 
0 01758 0 876

1 0 67

. ( . )

( )( . )

K z

z z

+
- -

= 
¢ +
- -

K z

z z

( . )

( )( . )

0 876

1 0 67
 (4.58)

The root locus plot of this system for 0 £ K ¢ <  was earlier constructed in Fig. 4.22. Complex-conjugate 

sections of this plot are shown in Fig. 4.27. The plot intersects the z = 0.5 locus at point P. At this point 

wn = 1.7 rad/sec, K ¢ = 0.0546.
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Re

Im

Unit circle
Root locus

Locus

for = 0.5z

q =17°P

– 0.876 0.67

Fig. 4.27 Root locus plot for system (4.58)

Therefore, the transient accuracy requirements (z = 0.5, wn = 1.6) are almost satisfied by gain adjust-

ment only. Let us now examine the steady-state accuracy of the uncompensated system (D(z) = 1) with 

K¢ = 0.0546.

The velocity error constant K
v
 of the system is given by 

 K
v
 = 

1

1T z
lim

Æ
 (z – 1)Gh0G(z) 

  = 
5 0 0546 1 0 876

1 0 67

( . )( . )

( . )

+
-

 = 1.55

The specified value of K
v
 is 6. Therefore, an increase in K

v
 by a factor of 3.87 (= 6/1.55) is required. 

The objective before us now is to introduce a D(z) that raises the system K
v
 by a factor of 3.87, without 

appreciably affecting the transient performance of the uncompensated system, i.e., without appreciably  

affecting the root locus plot in the vicinity of point P. This objective can be realized by a properly 

designed lag compensator, as is seen below. 

We add the compensator pole and zero as shown in Fig. 4.28. Since both the pole and the zero are very 

close to z = 1, the scale in the vicinity of these points has been greatly expanded. The angle contributed 

by the compensator pole at point P, is almost equal to the angle contributed by the compensator zero. 

Therefore, the addition of dipole near z = 1 does not appreciably disturb the root locus plot in the vicinity 

of point P. It only slightly reduces wn. The lag compensator

D(z) = 
z

z

-
-

0 96

0 99

.

.

raises the system K
v
 by a factor of (1 – 0.96)/(1 – 0.99) = 4.
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Note that because of lag compensator, a third closed-loop pole has been added. This pole, as seen from 

Fig. 4.28, is a real pole lying close to z = 1. This pole, fortunately, does not disturb the dominance of the 

complex conjugate closed-loop poles. The reason is simple.

P

– 0.876 0.67

Compensator
pole and zero

Expanded

Fig. 4.28 Compensator design (Example 4.6)

The closed-loop pole, close to z = 1, has a long time constant. However, there is a zero close to this 

additional pole. The net effect is that the settling time will increase because of the third pole, but the 

amplitude of the response term contributed by this pole will be very small. In system response, a long 

tail of small amplitude will appear which may not appreciably degrade the performance of the system.

Example 4.7

Reconsider the feedback control system of Example 4.6 (Fig. 4.26). We now set the following goal for our 

design:

 (i) K
v
 ≥ 2.5;

 (ii) z @ 0.5; and

 (iii) ts (2% tolerance band) £ 2 sec.

The transient accuracy requirements correspond to z = 0.5 and wn = 4. For sampling interval T = 0.2 

sec, the sampling frequency is about eight times the natural frequency. A smaller value of T is more 

appropriate for the present design problem—which requires higher speed of response. We will, however, 

take T = 0.2 sec to compare our results with those of Example 4.6.

Following the initial design steps of Example 4.6, we find that

Gh0G(z) = 
0 01758 0 876

1 0 67

. ( . )

( )( . )

K z

z z

+
- -

 = 
¢ +
- -

K z

z z

( . )

( )( . )

0 876

1 0 67
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Complex conjugate sections of the root locus plot superimposed on z = 0.5 line are shown in Fig. 4.27. 

The root locus plot inter sects the constant-z locus at point P. At this point, wn = 1.7 rad/sec. The specified 

value of wn is 4. Therefore, the transient accuracy requirements cannot be satisfied by only gain adjust-

ment.

The natural frequency wn can be increased by lead compensation. To design a lead compensator, we 

translate the transient perfor mance specifications into a pair of dominant closed-loop poles, add open-

loop poles and zeros through D(z) to reshape the root locus plot, and force it to pass through the desired 

closed-loop poles.

Point Q in Fig. 4.29 corresponds to the desired closed-loop pole in the upper half of z-plane. It is the 

point of intersection of the z = 0.5 locus and the constant-wd locus, with wd given by

wd = wn 1 2-z  = 3.464 rad/sec

For this value of wd, constant-wd locus is a radial line at an angle of wdT 
180

p

Ê
ËÁ

ˆ
¯̃  = 39.7º with the real 

axis.

If the point Q is to lie on the root locus plot of the compensat ed system, then the sum of the angles 

contributed by open-loop poles and zeros of the plant, and the pole and zero of the compensator at the 

point Q, must be equal to ± (2q + 1)180º; q = 0, 1, 2, …

The sum of the angle contributions due to open-loop poles and zero of the plant at plant Q, is 

17.10º – 138.52º – 109.84º = – 231.26º

– 0.876

Unit circle

q = 39.7°

0.254

51.26°

Im

0.67

Q

Re

Locus

for = 0.5z

Fig. 4.29 Compensator design (Example 4.7)



 Design of Digital Control Algorithms 263

Hence, the compensator D(z) must provide +51.26º. The transfer function of the compensator may be 

assumed to be

 D(z) = 
z

z

-
-

a

a
1

2

If we decide to cancel the pole at z = 0.67 by the zero of the compensator at z = a1, then the pole of the 

compensator can be determined (from the condition that the compensator must provide + 51.26º) as a 

point at z = 0.254 (a2 = 0.254). Thus, the transfer function of the compensator is obtained as

 D(z) = 
z

z

-
-

0 67

0 254

.

.

The open-loop transfer function now becomes

D(z)Gh0G(z) = 
0 01758 0 876 0 67

0 254 1 0 67

. ( . )( . )

( . )( )( . )

K z z

z z z

+ -
- - -

 = 
0 01758 0 876

0 254 1

. ( . )

( . )( )

K z

z z

+
- -

 = 
¢ +

- -
K z

z z

( . )

( . )( )

0 876

0 254 1

The value of K ¢ at point Q, obtained from Fig. 4.29 by graphical construction, is 0.2227. Therefore, K = 12.67.

The velocity error constant of the compensated system is given by 

K
v
 = 

1

1T z
lim

Æ
 [(z – 1)D(z)Gh0G(z)] = 2.8

It meets the specification on steady-state accuracy. 

If it is required to have a large K
v
, then we may include a lag compensator. The lag-lead compensator can 

satisfy the require ments of high steady-state accuracy and high speed of response.

From the viewpoint of microprocessor implementation of the lag, lead, and lag-lead compensators, the 

lead compensators present the least coefficient quantization problems, because the loca tions of poles and 

zeros are widely separated, and the numerical inaccuracies in realization of these compensators will result 

in only small deviations in expected system behavior. However, in the case of lag compensators and lag-

lead compensators, the lag section may result in considerable coefficient quantization problems, because 

the locations of poles and zeros are usually close to each other (they are near the point z = 1). Numerical 

problems associated with realization of compensator coefficients, may lead to significant deviations in  

expected system behavior. 

4.5 z

Much of the style of the transform-domain techniques we have been discussing in this chapter, grew out 

of the limitations of tech nology which was available for realization of the compensators with pneumatic 

components, or electric networks and amplifiers. In digital computer, such limitations on realization 

are, of course, not relevant, and one can ignore these particular con straints. One design method which 

eliminates these constraints begins from the very direct point of view that we are given a process (plus 

hold) transfer function, Gh0G(z), that we want to construct a desired transfer function, M(z), between 
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input r and output y and that we have the computer transfer function, D(z), to do the job as per the 

feedback control structure of Fig. 4.30.

r

T T

Computer

e u y+

–

ZOH Process

G sh0( ) G s( )
u+( )t

D z( )

The closed-loop transfer function is given by the formula 

 M(z) = 
D z G G z

D z G G z

h

h

( ) ( )

( ) ( )

0

01+
 (4.59)

from which we get the design formula

 D(z) = 
1

10G G z

M z

M zh ( )

( )

( )-
È

Î
Í

˘

˚
˙  (4.60)

As is seen from Eqn. (4.60), the controller transfer function consists of the inverse of the plant transfer 

function and the additional term which depends on the system closed-loop transfer function. Thus, the  

design procedure, outlined above, looks for a D(z) which will cancel the process effects and add whatever 

is necessary to give the desired performance.

For prescribing the required closed-loop transfer function M(z), the following restrictions have to be 

noted.

Assume that a digital controller

 D(z) = 
Q z

P z

v ( )

( )m

 = 
q z q z q

z p z p

v v
v0 1

1

1
1

+ + +

+ + +

-

-
 

 

m m
m

 (4.61)

is cascaded with the process

 GhoG(z) = 
B z

A z

m

n

( )

( )
 = 

b z b z b

z a z a

m m
m

n n
n

0 1
1

1
1

+ + +

+ + +

-

-
 

 

; m £ n  (4.62)

in the control loop given by Fig. 4.30. 

For D(z) to be physically realizable, n £ m.

The closed-loop transfer function 

M(z) = 
D z G G z

D z G G z

h

h

( ) ( )

( ) ( )

0

01+
 = 

Q z B z

P z A z Q z B z

v m

n v m

( ) ( )

( ) ( ) ( ) ( )m +
 = 

N z

D z

v m

n

+

+

( )

( )m

The order of the numerator polynomial of M(z) is n + m, and the order of the denominator polynomial of 

M(z) is m + n. The pole excess8 of M(z) is, therefore, {(m – n) + (n – m)}. 

 8 Pole excess of M(z) = {Number of finite poles of M(z) – Number of finite zeros of M(z)}.
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This means that because of the condition of realizability of digital controller, the pole excess of the 

closed-loop transfer function M(z) has to be greater than or equal to the pole excess of the process 

transfer function Gh0G(z).

If the digital controller D(z) given by Eqn. (4.60) and the process Gh0G(z) are in a closed loop, the 

poles and zeros of the process are canceled by the zeros and poles of the controller. The cancellation 

is perfect if the process model Gh0G(z) matches the process exactly. Since the process models used for 

design practically never describe the process behavior exactly, the corresponding poles and zeros will 

not be canceled exactly; the cancellation will be approximate. For poles and zeros of Gh0G(z) which 

are sufficiently spread in the inner of the unit disc in the z-plane, the approximation in cancellation 

leads to only small deviations of the assumed behavior M(z) in general. Howe ver, one has to be careful 

if Gh0G(z) has poles or zeros on or outside the unit circle. Imperfect cancellation may lead to weakly 

damped or unstable behavior. Therefore, the design of digital controllers, according to Eqn. (4.60), has 

to be restricted to cancellation of poles and zeros of Gh0G(z) located inside the unit circle. This imposes 

certain restrictions on the desired transfer function M(z) as is seen below.

Assume that Gh0G(z) involves an unstable (or critically stable) pole at z = a. Let us define

Gh0G(z) = 
G z

z

1( )

- a

where G1(z) does not include a term that cancels with (z – a). Then the closed-loop transfer function 

becomes

 M(z) = 

D z
G z

z

D z
G z

z

( )
( )

( )
( )

1

11

-

+
-

a

a

 (4.63)

Since we require that no zero of D(z) cancel the pole of Gh0G(z) at z = a, we must have 

1 – M(z) = 
1

1 1+
-

D z
G z

z
( )

( )

a

 = 
z

z D z G z

-
- +

a

a ( ) ( )1

that is, 1 – M(z) must have z = a as a zero. This argument applies equally if Gh0G(z) involves two or more 

unstable (or critically stable) poles.

Also note from Eqn. (4.63) that if poles of D(z) do not cancel zeros of Gh0G(z), then the zeros of Gh0G(z) 

become zeros of M(z).

Let us summarize what we have stated concerning cancelation of poles and zeros of Gh0G(z). 

 (i) Since the digital controller D(z) should not cancel unstable (or critically stable) poles of Gh0G(z), 

all such poles of Gh0G(z) must be included in 1 – M(z) as zeros.

 (ii) Zeros of Gh0G(z) that lie on or outside the unit circle should not be canceled with poles of D(z); 

all such zeros of Gh0G(z) must be included in M(z) as zeros.
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The design procedure, thus, essentially involves the following three steps: 

 (I) The closed-loop transfer function M(z) of the final system is determined from the performance 

specifications, and the fixed parts of the system, i.e., Gh0G(z).

 (II) The transfer function D(z) of the digital controller is found using the design formula (4.60).

 (III) The digital controller D(z) is synthesized.

Step (I) is certainly the most difficult one to satisfy. In order to pass step (I), a designer must fulfil the 

following require ments: 

 (i) the digital controller D(z) must be physically realizable; 

 (ii) the poles and zeros of Gh0G(z) on or outside the unit circle should not be canceled by D(z); and

 (iii) the system specifications on transient and steady-state accuracy should be satisfied.

Example 4.8

The plant of sampled-data system of Fig. 4.30 is described by the transfer function

 G(s) = 
1

10 1s s( )+
 (4.64a)

The sampling period is 1 sec.

The problem is to design a digital controller D(z) to realize the following specifications:

 (i) K
v
 ≥ 1;

 (ii) z = 0.5; and

 (iii) ts (2% tolerance band) £ 8 sec.

The selection of a suitable M(z) is described by the following steps.

 (i) The z-transfer function of the plant is given by (refer to Table 2.1)

   Gh0G(z) = (1 – z–1) Z
1

10 12s s( )+

È

Î
Í
Í

˘

˚
˙
˙

 = 0.04837 
( . )

( )( . )

z

z z

+
- -

0 9672

1 0 9048
 (4.64b)

  Since Gh0G(z) has one more pole than zero, M(z) must have a pole excess of at least one.

 (ii) Gh0G(z) has a pole at z = 1. This must be included in 1– M(z) as zero, i.e.,

   1 – M(z) = (z – 1)F(z) (4.65)

  where F(z) is a ratio of polynomials of appropriate dimensions. 

 (iii) The transient accuracy requirements are specified as z = 0.5, wn = 1(ts = 4/zwn). With a sampling 

period T = 1 sec, this maps to a pair of dominant closed-loop poles in the z-plane with 

| z1, 2| = e–zwnT = 0.6065

– z1, 2 = ± wnT 1 2-z  = ± 
0 866 180

3 14

.

.

¥
 = ± 49.64º

This corresponds to 

z1, 2 = 0.3928 ± j 0.4621
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 The closed-loop transfer function, M(z), should have dominant poles at the roots of the equation

 D(z) = z2 – 0.7856 z + 0.3678 = 0 (4.66)

The steady-state accuracy requirements demand that steady-state error to unit-step input is zero, and 

steady-state error to unit-ramp input is less than 1/K
v
.

 E(z) = R(z) – Y(z) = R(z)[1 – M(z)] = R(z) (z – 1)F(z)

 ess
*

unit step
 = lim

z Æ 1

 z (z – 1) F(z) = 0

Thus, with the choice of M(z) given by Eqn. (4.65), the steady-state error to unit-step input is always 

zero.

 ess
*

unit ramp
 = lim

z Æ 1
 (z – 1)

Tz

z( )-1 2
(z – 1)F(z) = T F(1) = 1/K

v

For  T = 1 and K
v
 = 1,

 F(1) = 1 (4.67)

From Eqns (4.65) and (4.66), we observe that

F(z) = 
z

z z

-

- +

a
2 0 7856 0 3678. .

meets the requirements on realizability of D(z), cancellation of poles and zeros of Gh0G(z), and transient 

accuracy. The require ment on steady-state accuracy is also met if we choose a such that (refer to 

Eqn. (4.67))

1

1 0 7856 0 3678

-
- +

a

. .
 = 1

This gives  a = 0.4178

Therefore,  F(z) = 
z

z z

-

- +

0 4178

0 7856 0 36782

.

. .
; 1 – M(z) = 

( )( . )

. .

z z

z z

- -

- +

1 0 4178

0 7856 0 36782

 M(z) = 
0 6322 0 05

0 7856 0 36782

. .

. .

z

z z

-

- +
 (4.68)

Now, turning to the basic design formula (4.60), we compute 

 D(z) = 
1

10G G z

M z

M zh ( )

( )

( )-
È

Î
Í

˘

˚
˙  = 

( )( . )

( . )( . )

. .

( )( .

z z

z

z

z z

- -
+

-
- -

1 0 9048

0 04837 0 9672

0 6322 0 05

1 0 41778)

È

Î
Í

˘

˚
˙

  = 13.07 
( . )( . )

( . )( . )

z z

z z

- -
+ -

0 9048 0 079

0 9672 0 4178
 (4.69)

A plot of the step response of the resulting design is provided in Fig. 4.31, which also shows the control 

effort. The underdamped response settles within a two percent band of the desired value of unity in less 

than 8 sec. We can see the oscillation of u(k)—associated with the pole of D(z) at z = –0.9672, which 

is quite near the unit circle. Strong oscilla tions of u(k) are often considered unsatisfactory, even though 

the process is being controlled as was intended. In the literature, poles near z = –1 are often referred to 

as ringing poles.
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Fig. 4.31 Step response (Example 4.8)

To avoid the ringing effect, we could include the zero of Gh0G(z) at z = –0.9672 in M(z) as zero, so that 

this zero of Gh0G(z) is not canceled with pole of D(z). M(z) may have additional poles at z = 0, where the 

transient is as short as possible. The result will be a simpler D(z) with a slightly more complicated M(z).

REVIEW EXAMPLES

Review Example 4.1

Consider the digital control system shown in Fig. 4.32. The transfer function of the plant is G(s) = 1/[s(s 

+ 1)]. Design a lead compensator D(z) in the w-plane such that the phase margin in 50º, the gain margin 

is at least 10 dB, and the velocity error constant K
v
 is 2. Assume that the sampling period is 0.2 sec.

r
T T

e u y+

–

ZOH PlantCompensator

G s( )G sh0( )D z( )

Fig. 4.32 



 Design of Digital Control Algorithms 269

Solution The digital controller is assumed to be of the form 

 
U z

E z

( )

( )
 = KD1(z) = D(z)

To simplify the design procedure, we will associate the gain K of the controller with the plant model. The 

design problem is, therefore, to obtain compensator D1(z) for the plant

 G(s) = 
K

s s( )+1

to meet the specifications on steady-state and transient perfor mance.

We will fix the gain K to a value that realizes the given K
v
. A unity dc gain compensator D1(z) will then 

be introduced to meet the transient accuracy requirements without affecting the steady-state accuracy.

 K
v
 = lim

s Æ 0
 sG(s) = K

Therefore, K = 2 meets the requirement on steady-state accuracy.

For T = 0.2 and K = 2, we have (refer to Table 2.1)

Gh0G(z) = (1 – z–1) Z 
2

12s s( )+

È

Î
Í
Í

˘

˚
˙
˙

= 0.03746 
z

z z

+
- -

È

Î
Í

˘

˚
˙

0 9356

1 0 8187

.

( )( . )

By use of the bilinear transformation

z = 
1 2

1 2

+
-

wT

wT

/

/
 = 

1 0 1

1 0 1

+
-

.

.

w

w

Gh0G(z) can be transformed to Gh0G(w) given below (refer to Eqns (4.37)).

Gh0G(w) = 

2 1
10

1
300 6

1
0 997

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

w w

w
w

.

.

The Bode plot of Gh0G(jn) is shown in Fig. 4.33. The phase margin can be read from the Bode plot as 

32º and the gain margin as 14.2 dB.

It is desired to raise the phase margin to 50º without altering K
v
. Also the gain margin should be at least 

10 dB. We now design a lead compensator

D1(w) = 
1

1

+
+

w

w

t

a t
; a < 1, t > 0

to meet these objectives. We choose the zero of the compensator at 0.997 (This choice cancels a pole  

of Gh0G(w)). Addition of this zero shifts the gain crossover frequency of the uncompensat ed system to 

nc = 1.8. The phase margin of the uncompensated system at nc is FM1 = 22º. The phase lead required at 

nc to bring the phase margin to the specified value FMs = 50º, is given by 

fl = FMs – FM1 + e = 50º – 22º + 3º = 31º

By using Eqn. (4.39), we obtain 

a = 
1 31

1 31

- ∞
+ ∞

sin

sin
 = 0.3
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The phase lead of 31° is provided at the frequency (refer to Eqn. (4.40))

nm = 
1 1

t at

Ê
ËÁ

ˆ
¯̃  = 0 997 3 27. .¥  = 1.8

which is same as the gain crossover frequency.

Thus, the compensator transfer function is 

 D1(w) = 

1
0 997

1
3 27

+

+

w

w
.

.

 (4.70)

The magnitude and phase angle curves for the compensated open-loop transfer function are shown by solid 

curves in Fig. 4.33. From these curves, we see that the phase margin is 51º and the gain margin is 11.5 dB.

The compensator transfer function given by Eqn. (4.70) will now be transformed back to the z-plane by 

the bilinear transformation

 w = 
2 1

1T

z

z

-
+

 = 10
z

z

-
+

1

1

This gives  D1(z) = 2.718 
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 5071

.

.

The system gain K was determined to be 2. Therefore, for the plant of the system of Fig. 4.32, the digital 

controller is given by 
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Fig. 4.33 Compensator design (Review Example 4.1)
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U z

E z

( )

( )
 = D(z) = 2.718 K

z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 5071

.

.
 = 5.436

z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 5071

.

.

Review Example 4.2

Consider the digital control configuration shown in Fig. 4.32. The transfer function,

G(s) = 
e

s

s-

+

1 5

1

.

describes a process of temperature control via mixing (refer to Example 3.3). In the following, we design 

a digital compensator for the temperature control process; the sampling interval T is assumed to be 1 sec.

The transfer function Gh0G(z) derived in Example 3.3 is repeated below. 

Gh0G(z) = 0.3935 
z

z z

+

-

0 6066

0 36792

.

( . )

Since Gh0G(z) is a Type-0 transfer function, the system will have a steady-state error to a constant 

command or disturbance. If we assume that such a behavior in steady-state is unacceptable, we can 

correct the problem by including integral control through the transfer function

D1(z) = 
Kz

z -1

The effective plant transfer function is now 

D1(z)Gh0G(z) = 0.3935K 
( . )

( )( . )

z

z z z

+
- -

0 6066

1 0 3679
 = 

¢ +
- -

K z

z z z

( . )

( )( . )

0 6066

1 0 3679

The unity-feedback root locus plot for this transfer function is sketched in Fig. 4.34. The point P on the 

root locus corresponds to z = 0.5, and wn = 0.423 q w z
p

= - =Ê
ËÁ

ˆ
¯̃nT 1

21

180

2
.

The natural frequency wn has to be raised to improve the speed of response. We employ a lead 

compensation which cancels the plant pole at z = 0.3679 and the plant zero at z = –0.6066. The open-

loop transfer function of the lead-compensated system becomes

D2(z)D1(z)Gh0G(z) = 
z

z

-
+

0 3679

0 6066

.

.
 

¢ +
- -

È

Î
Í

˘

˚
˙

K z

z z z

( . )

( )( . )

0 6066

1 0 3679
 = 

¢
-

K

z z( )1

The root locus plot is sketched in Fig. 4.35. The point Q on the root locus corresponds to z = 0.5,

wn = 0.826, K
v
 = K¢ = 0.45.

Suppose we wish to raise K
v
 to 1. A lag compensator 

D3(z) = 
z

z

-
-

0 9

0 9545

.

.

will raise K
v
 by a factor of (1 – 0.9)/(1 – 0.9545). The lag pole-zero pair are very close to each other, 

and do not change the root locus near the dominant roots significantly. However, the lag compensation 

does introduce a small, but very slow transient, whose effect on dynamic response needs to be evaluated, 

especial ly in terms of the response to disturbances.
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PROBLEMS

 4.1 For the system shown in Fig. P4.1, find

 (i) position error constant, Kp;

 (ii) velocity error constant, K
v
; and

 (iii) acceleration error constant, Ka.

  Express the results in terms of K1, K2, J, and T.

 4.2 Consider the analog control system shown in Fig. P4.2a. Show that the phase margin of the system 

is about 45º.

  We wish to replace the analog controller by a digital controller as shown in Fig. P4.2b. First, 

modify the analog controller to take into account the effect of the hold that must be included 

r

r

r

T = 1.57 T

+

+

+

–

–

–

(a)

(c)

(b)

y

y

y

D s( ) = 1
1.57
( + 1)s s

D1( )z
1 – e– sT

s
1.57
( + 1)s s

D1( )s
1.57e– /2sT

s s( + 1)
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in the equivalent digital control system (the zero-order hold may be approximated by a pure 

time delay of one half of the sampling period T (Fig. P4.2c), and then a lag compensator D1(s) 

may be designed to realize the phase margin of 45º). Then, by using the bilinear transformation, 

determine the equivalent digital controller.

  Compare the velocity error constants of the original analog system of Fig. P4.2a, and the equivalent 

digital system of Fig. P4.2b.

 4.3 A unity-feedback system is characterized by the open-loop transfer function 

Gh0G(z) = 
0 2385 0 8760

1 0 2644

. ( . )

( )( . )

z

z z

+
- -

  The sampling period T = 0.2 sec.

  Determine steady-state errors for unit-step, unit-ramp, and unit-acceleration inputs.

 4.4 Predict the nature of the transient response of a discrete-time system whose characteristic equation 

is given by 

z2 – 1.9z + 0.9307 = 0

  The sampling interval T = 0.02 sec.

 4.5 The system of Fig. P4.5 contains a disturbance input W(s), in addition to the reference input R(s). 

 (a) Express Y(z) as a function of the two inputs.

 (b) Suppose that D2(z) and D3(z) are chosen such that D3(z) = D2(z)Gh0G(z). Find Y(z) as a 

function of the two inputs.

 (c) What is the advantage of the choice in part (b) if it is desired to minimize the response Y(z) 

to the disturbance W(s)?

+ + +
++

–T T

T

D1( )z
Y s( )

G s( )

W s( )D2( )z

D3( )z
R s( )

G sh0( )

 4.6 Consider the system of Fig. P4.6. The design specifications for the system require that

 (i) the steady-state error to a unit-ramp reference input be less than 0.01; and

 (ii) a constant disturbance w should not affect the steady-state value of the output.

  Show that these objectives can be met if D(z) is a proportional-plus-integral compensator.

+
+

w

yr

TT

+

–
G sh0( )D z( )

1
+ 1s
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 4.7 Consider the feedback system shown in Fig. P4.7. The nominal values of the parameters K and 

t of the plant G(s) are both equal to 1. Find an expression for the sensitivity S(z) of the closed-

loop transfer function M(z), with respect to incremental changes in open-loop transfer function 

Gh0G(z). Plot |S(ejwT)| for 0 £ w £ ws/2, where ws is the sampling frequency. Determine the band-

width of the system if it is designed to have |S(ejwT)| < 1.

r y+

T = 0.5 sec–
G sh0( ) G s( ) =

K

s + 1t

 4.8 A unity-feedback digital control system has open-loop trans fer function

   Gh0G(z) = 
0 368 0 264

1 368 0 3682

. .

. .

z

z z

+

- +
; T = 1 sec

  The function Gh0G(e jwT) may be used to obtain frequency response plots of the system. This 

function is, however, irrational. Prove that the relation 

   w = 
2

2

1

T

T
tan- n

  approximates Gh0G(e jwT) to a rational function Gh0G(jn).

   For Gh0G(jn), construct the Bode plot, and the log-magnitude versus phase angle plot and 

obtain the gain margin, the phase margin and the bandwidth nb. What is the corresponding value 

of wb? The –3 dB contour of the Nichols chart may be constructed using the follow ing table:

   Phase, degrees 0 –30 –60 –90 –120 –150 –180 –210

   Magnitude, dB 7.66 6.8 4.18 0 –4.18 – 6.8 –7.66 –6.8

 4.9 Consider the control system of Fig. P4.9, where the plant transfer function 

   G(s) = 
1

2s s( )+
, and T = 0.1 sec

 (a) Increase the plant gain to the value that results in K
v
 = 5. Then find the phase margin.

 (b) Design a lead compensator that results in 55º phase margin with K
v
 = 5.

 (c) Design a lag compensator that results in 55º phase margin with K
v
 = 5.

 (d) Obtain the bandwidth realized by the three designs corre sponding to parts (a), (b) and (c). 

Comment on the result.

 (e) Is the selection of T = 0.1 sec justified from closed-loop bandwidth considerations?

r e u y

T T

+

–
G sh0( ) G s( )D z( )

ZOH PlantCompensator



276  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 4.10 Consider the control system of Fig. P4.9, where the plant transfer function is G(s) = 1/s2, and

T = 0.1 sec. Design a lead compensator such that the phase margin is 50º and the gain margin is at 

least 10 dB. Obtain the velocity error constant K
v
 of the compensated system.

  Can the design be achieved using a lag compensator? Justify your answer.

 4.11 Consider the control system of Fig. P4.9, where the plant transfer function is 

  G(s) = 
K

s s( )+ 5
, and T = 0.1 sec

  The performance specifications are given as

 (i) velocity error constant K
v
 ≥ 10;

 (ii) phase margin FM ≥ 60º; and 

 (iii) bandwidth wb = 8 rad/sec.

 (a) Find the value of K that gives K
v
 = 10. Determine the phase margin and the bandwidth of the 

closed-loop system. 

 (b) Show that if lead compensation is employed, the system band width will increase beyond 

the specified value, and if lag com pensation is attempted, the bandwidth will decrease 

sufficiently so as to fall short of the specified value.

 (c) Design a lag section of a lag-lead compensator to provide partial compensation for the phase 

margin. Add a lead section to realize phase margin of 60º. Check the bandwidth of the lag-

lead compensated system.

 (d) Find the transfer function D(z) of the lag-lead compensator and suggest a realization scheme.

 4.12 Shown in Fig. P4.12a is a closed-loop temperature control system. Controlled electric heaters 

maintain the desired temper ature of the liquid in the tank. The computer output controls electronic 

switches (triacs), to vary the effective voltage sup plied to the heaters, from 0 V to 230 V. The 

temperature is meas ured by a thermocouple whose output is amplified to give a vol tage in the 

range required by A/D converter. A simplified block diagram of the system, showing perturbation 

dynamics, is given in Fig. P4.12b. 

 (a) Consider the analog control loop of Fig. P4.12c. Determine K that gives 2% steady-state 

error to a step input. 

 (b) Let D(z) = K obtained in part (a). Is the sampled-data system of Fig. P4.12b stable for this 

value of D(z)?

 (c) Design a lag compensator for the system of part (b), such that 2% steady-state error is 

realized, the phase margin is greater than 40º and the gain margin is greater than 6 dB. Give 

the total transfer function D(z) of the compensator. 

 (d) Can the design of part (c) be achieved using a lead compensa tor? Justify your answer.

 4.13  (a) Consider a unity-feedback system with open-loop transfer function

    Gh0G(z) = 
K z z

z p z p

( )

( )( )

-
- -

1

1 2

; 0 £ K < 

  The poles and zero of this second-order transfer function lie on the real axis; the poles 

are adjacent or congruent, with the zero to their left. Prove that the complex-conjugate 

section of the root locus plot is a circle with the center at z = z1, and the radius equal to 

( ) ( )z p z p1 1 1 2- - .
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 (b) Given Gh0G(z) = 
K z

z

( . )

( )

-

-

0 9048

1 2

  Sketch the root locus plot for 0 £ K < . Using the information in the root locus plot, 

determine the range of values of K for which the closed-loop system is stable. Also determine 

the value of K for which the system closed-loop poles are real and multi ple.

 4.14 A sampled-data feedback control system is shown in Fig. P4.14. The controlled process of the 

system is described by the transfer function

  G(s) = 
K

s s( )+1
; 0 £ K < 

  The sampling period T = 1 sec.

 (a) Sketch the root locus plot for the system on the z-plane and from there obtain the value of K 

that results in marginal stabil ity. 

+

–

+

–

230 V rms
0-230 V

Heaters
Triac
circuit

Computer

A/D

Tank

Thermocouple

volts

(a)

(b)

(c)

q q
1

0.04
T = 0.5 sec

0.04 G sh0( )D z( )
20

3 + 1s

ZOH
Power
gain

Plant

qr

0.04

0.04

Power
gain

20
3 + 1s1K

qr °C q °C

q
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 (b) Repeat part (a) for (i) T = 2 sec, (ii) T = 4 sec, and com pare the stability properties of the 

system with different values of sampling interval.

r

T

y+

–
G sh0( ) G( )s

 4.15 The digital process of a unity-feedback system is described by the transfer function

  Gh0G(z) = 
K z

z z

( . )

( )( . )

+
- -

0 717

1 0 368
; T = 1 sec

  Sketch the root locus plot for 0 £ K <  and from there obtain the following information:

 (a) The value of K that results in marginal stability. Also find the frequency of oscillations.

 (b) The value of K that results in z = 1. What are the time constants of the closed-loop poles?

 (c)  The value of K that results in z = 0.5. Also find the natural frequency wn for this value of K. 

You may use the following table to construct a constant-z locus on the z-plane corresponding 

to z = 0.5.

   Re 0.891 0.64 0.389 0.169 0 –0.113 –0.174 –0.188 –0.163

   Im 0.157 0.37 0.463 0.464 0.404 0.310 0.207 0.068 0

 4.16 The characteristic equation of a feedback control system is

  z2 + 0.2A z – 0.1 A = 0

  Sketch the root loci for 0 £ A < , and therefrom obtain the range of parameter A for which the 

system is stable.

 4.17 The block diagram of a sampled-data system using a dc motor for speed control is shown in 

Fig. P4.17. The encoder senses the motor speed, and the output of the encoder is compared with 

the speed command. Sketch the root locus plot for 0 £ K < .

 (a) For K = 1, find the time constant of the closed-loop pole.

 (b) Find the value of K which results in a closed-loop pole whose time constant is less than or 

equal to one fourth of the value found in part (a).

  Use the parameter values:

  Km = 1, tm = 1, T = 0.1 sec, P = 60 pulses/revolution.
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 4.18 Consider the system shown in Fig. P4.9 with G(s) = 
1

1s s( )+
 and T = 0.2 sec.

 (a) Design a lead compensator so that the dominant closed-loop poles of the system will have  

z = 0.5 and wn = 4.5.

 (b) Obtain the velocity error constant K
v
 of the lead compensated system.

 (c) Add a lag compensator in cascade so that K
v
 is increased by a factor of 3. What is the effect 

of the lag compensator on the transient response of the system?

 (d) Obtain the transfer function D(z) of the lag-lead compensator, and suggest a realization 

scheme.

  Use root locus method.

 4.19 Consider the system shown in Fig. P4.9 with

  G(s) = 
1

1 2( )( )s s+ +
; T = 1 sec

  Design a compensator D(z) that meets the following specifications on system performance:

 (a) z = 0.5;

 (b) wn = 1.5; and

 (c) Kp ≥ 7.5.

  Use root locus method.

 4.20  The block diagram of a digital control system is shown in Fig. P4.9. The controlled process is 

described by the transfer function

  G(s) = 
K

s2
; T = 1 sec

  which may represent a pure inertial load.

 (a) The dominant closed-loop poles of the system are required to have z = 0.7, wn = 0.3 rad/sec. 

Mark the desired dominant closed-loop pole locations in the z-plane. The root loci must pass 

through these points.

 (b) Place the zero of the compensator D(z) below the dominant poles and find the location of 

pole of D(z), so that the angle criterion at the dominant poles is satisfied. Find the value of 

K, so that the magnitude criterion at the dominant poles is satis fied. 

 (c) Find the acceleration error constant, Ka.

 (d) Your design will result in specified values of z and wn for the closed-loop system response, only if 

the dominance condition is satisfied. Find the third pole of the closed-loop system and 

comment on the effectiveness of your design.

 4.21 The configuration of a commercial broadcast videotape posi tioning system is shown in Fig. P4.21. 

The relationship between the armature voltage (applied to drive motor) and tape speed at the 

recording and playback heads, is approximated by the transfer function G(s). The delay term 

involved, accounts for the propaga tion of speed changes along the tape, over the distance of 

physi cal separation of the tape drive mechanism and the recording and playback heads. The tape 

position is sensed by a recorded signal on the tape itself.
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+

–

Position sensor

1

qqr 1
s

G s( ) =

40
+ 40
e

s

– /120s

D z( ) D/A

A/D

   Design the digital controller that should result in zero steady-state error to any step change in 

the desired tape position. The closed-loop poles of the system are required to lie within a circle of 

radius 0.56. Take the sampling interval T = 1/120 sec.

 4.22 Consider the sampled-data system shown in Fig. P4.22; the plant is known to have the transfer 

function

  G(s) = 
1

1s s( )+
  A sampling period of T = 0.1 sec is to be used.

 (a) Design a digital controller to realize the following specifi cations:

 (i) z = 0.8; 

 (ii) wn = 2p/10T; and

 (iii) K
v
 ≥ 5.

 (b) Design a digital controller so that the response to unit-step input is 

  y(k) = 0, 0.5, 1, 1, …

   Find the steady-state error to unit-ramp input. 

+

– T T

e yur
G s( )D z( ) G sh0( )

 4.23 In the control configuration of Fig. P4.22, find the control algorithm D(z) so that the response to 

a unit-step function will be y(t) = 1– e–t. The plant transfer function is

  G(s) = 
1

10 1s +
  Assume that the sampling interval T = 2 sec.
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Part II
State Variable Methods in Automatic Control: 
Continuous-Time and Sampled-Data Systems

In Part I of the book, we developed some general procedures for the design of controllers. Our discussion 

was basically centered around the generalized operational block diagram of a feedback system, shown 

in Fig. 1.8.

We have assumed in our presentation, that the dynamic behavior of the plant can be represented (or 

approximated with ‘sufficient’ accuracy) by a linear time-invariant nth-order system, which is described 

by a strictly proper, minimal (controllable and observable) rational transfer function GP(s). We have also 

assumed that any external disturbances that affect the plant, can be represented by a single, additive 

signal w(t), with known dynamic properties (refer to Fig.1.8). The dynamics in the feedback path (often 

attributed to the sensor), was assumed to be characterized by the proper minimal transfer function H(s), 

which produces a continuous measure of the potentially noisy output y(t).

We placed a restriction on the design of controllers: the controller can be represented by a linear time-

invariant system, whose single output (for the single-input single-output (SISO) systems) u(t) is produced 

by the input r(t) – b(t) = ê(t). Therefore, its dynamic behavior can be described by

U(s) = D(s)[R(s) – B(s)]

where D(s) is the proper minimal transfer function of the controller, whose degree defines the order of 

the controller.

We have observed that in many cases involving the so-called classical control techniques, the transfer 

function A(s) (corresponding to the reference-input elements (Fig.1.8)), is assumed to be equal to H(s). 

This implies the more restrictive unity-feedback configuration depicted in Fig. 1.12. However, the choice 

of A(s) π H(s) would imply non-unity-feedback structure; the design procedures for this structure have 

been developed in our companion book [155]. In the vast majority of applications, the unity-feedback 

configuration is preferred because the error (e(t) = r(t) – y(t) = yr(t) – y(t)) is explicitly present—both to 

drive the controller, and to be zeroed via feedback.

In this part of the book, we intend to relax the restrictions we have so far imposed on the development 

of general procedures for the design of controllers. We know that the output y(t) does not represent the 

complete dynamic state of the plant at time t; it is the state vector x(t)=[x1(t), …, xn(t)]T which carries 

complete knowledge on the dynamics at time t. In the output-feedback configurations of the form shown 

in Fig. 1.8, only partial information on the dynamical state of the plant is fed back. We will relax this 

restriction and allow the complete state x(t) to be fed back.

In the classical configuration of Fig. 1.8, the controller output u(t) is produced by one input:

[r(t) – b(t)]. We will relax this restriction also, and allow the controller u(t) to be a function of r(t), and 

b(t) independently.
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The control law will take the form

u(t) = kR r(t)–kx(t) 

where kR (scalar) is the reference control gain, and k (1 ¥ n vector) is the state feedback gain.

Design procedures for such a control law will require state-space formulation for the dynamic systems 

in the feedback loop. We, therefore, begin our discussion with development of state variable models, and 

their analysis (Chapters 5 and 6). This will be followed by development of design procedures (Chapters 

7 and 8).
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5.1 INTRODUCTION

In Part I of this book, we have seen that the root-locus method and the frequency-response method are 

quite powerful for the analysis and design of feedback control systems. The analysis and design are 

carried out using transfer functions, together with a variety of graphical tools such as root-locus plots, 

Nyquist plots, Bode plots, Nichols chart, etc. These techniques of the so-called classical control theory 

have been greatly enhanced by the availability, and low cost, of digital computers for system analysis and 

simulation. The graphical tools can now be more easily used with computer graphics.

The classical design methods suffer from certain limitations, due to the fact that the transfer function 

model is applicable only to linear time-invariant systems, and that, there too, it is generally restricted 

to Single-Input, Single-Output (SISO) systems. This is because the classical design approach becomes 

highly cumbersome for use in Multi-Input, Multi-Output (MIMO) systems. Another limitation of the 

transfer function technique is that it reveals only the system output for a given input and provides no 

information about the internal behavior of the system. There may be situations where the output of a 

system is stable and yet some of the system elements may have a tendency to exceed their specified 

ratings. In addition to this, it may sometimes be necessary, and advantageous, to provide a feedback 

proportional to the internal variables of a system, rather than the output alone, for the purpose of 

stabilizing and improving the performance of a system.

The limitations of classical methods, based on transfer function models, have led to the development of 

state variable approach of analysis and design. It is a direct time-domain approach which provides a basis 

for modern control theory. It is a powerful technique for the analysis and design of linear and nonlinear, 

time-invariant or time-varying MIMO systems. The organization of the state variable approach is such 

that it is easily amenable to solution through digital computers.

It will be incorrect to conclude from the foregoing discussion, that the state variable design methods can 

completely replace the classical design methods. In fact, the classical control theory, comprising a large 

body of use-tested knowledge, is still going strong. State variable design methods prove their mettle in 

applications that are intractable by classical methods.

The state variable formulation contributes to the application areas of classical control theory 

in a different way. To compute the response of G(s) to an input R(s), requires the expansion of 

Control System Analysis using  
State Variable Methods

Chapter 5
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{G(s) R(s)} into partial fractions; which, in turn, requires computation of all the poles of {G(s)R(s)}, 

or all the roots of a polynomial. The roots of a polynomial are very sensitive to their coefficients 

(refer to Review Example 3.3). Furthermore, to develop a computer program to carry out partial 

fraction expansion is not simple. On the other hand, the response of state variable equations is easy 

to program. Its computation does not require the computation of roots or eigenvalues. Therefore, it 

is less sensitive to parameter variations. For these reasons, it is desirable to compute the response 

of G(s) through state variable equations. State variable formulation is thus the most efficient form 

of system representation—from the standpoint of computer simulation. For this reason, many 

Computer-Aided-Design (CAD) packages, handling both the classical and the modern tools of control  

system design, use this notation. It is, therefore, helpful for the control engineer to be familiar with state 

variable methods of system representation and analysis.

Part-II of this text presents an introduction to a range of topics which fall within the domain of state 

variable analysis and design. Our approach is to build on, and complement, the classical methods of 

analysis and design. State variable analysis and design methods use vector and matrix algebra and are, to 

some extent, different from those based on transfer functions. For this reason, we have not integrated the 

state variable approach with the frequency-domain approach based on transfer functions.

We have been mostly concerned with SISO systems in the text so far. In the remaining chapters also, our 

emphasis will be on the control of SISO systems. However, many of the analysis and design methods 

based on state variable concepts are applicable to both SISO and MIMO systems with almost equal 

convenience; the only difference being the additional computational effort for MIMO systems, which is 

taken care of by CAD packages. A specific reference to such results will be made at appropriate places 

in these chapters.

5.2 VECTORS AND MATRICES

This section is intended to be a concise summary of facts about vectors and matrices. Having them all at 

hand will minimize the need to consult a book on matrix theory. It also serves to define the notation and 

terminology which are, regrettably, not entirely standard.

No attempt has been made at proving every statement made in this section. The interested reader is urged 

to consult a suitable book (for example [27, 28]) for details of proofs.

5.2.1 Matrices1

Basic definitions and algebraic operations associated with matrices are given below.

Matrix

The matrix

 A = 

a a a

a a a

a a a

m

m

n n nm

11 12 1

21 22 2

1 2

�

�

� � �

�

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = [aij] (5.1)

 1 We will use upper case bold letters to represent matrices and lower case bold letters to represent vectors.
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is a rectangular array of nm elements. It has n rows and m columns. aij denotes (i, j)th element, i.e., the 

element located in ith row and jth column. A is said to be a rectangular matrix of order n ¥ m.

When m = n, i.e., the number of columns is equal to that of rows, the matrix is said to be a square matrix 

of order n.

A n ¥ 1 matrix, i.e., a matrix having only one column is called a column matrix. A 1 ¥ n matrix, i.e., a 

matrix having only one row is called a row matrix.

Diagonal Matrix

A diagonal matrix is a square matrix whose elements off the principal diagonal are all zeros (aij = 0 for 

i π j ). The following matrix is a diagonal matrix.

 L = 

a

a

ann

11

22

0 0

0 0

0 0

�

�

� � �

�

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = diag [a11 a12   ann] (5.2)

A unit matrix I is a diagonal matrix whose diagonal elements are all equal to unity (aii = 1, aij = 0 for 

i π j).

I = 

1 0 0

0 1 0

0 0 1

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Whenever necessary, an n ¥ n unit matrix will be denoted by In.

A null matrix 0 is a matrix whose elements are all equal to zero.

0 = 

0 0 0

0 0 0

0 0 0

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Whenever necessary, the dimensions of the null matrix will be indicated by two subscripts: 0nm.

Lower-Triangular Matrix

A lower-triangular matrix L has all its elements above the principal diagonal equal to zero; lij = 0 if i < j 

for 1 £ i £ n and 1 £  j £ m.
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L = 

l

l l

l l ln n nm

11

21 22

1 2

0 0

0

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Upper-Triangular Matrix

An upper-triangular matrix U has all its elements below the principal diagonal equal to zero; uij = 0 if

i > j for 1 £ i £ n and 1 £ j £ m.

U = 

u u u

u u

u

m

m

nm

11 12 1

22 20

0 0

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Matrix Transpose

If the rows and columns of an n ¥ m matrix A are interchanged, the resulting m ¥ n matrix, denoted as 

A
T, is called the transpose of the matrix A. Namely, if A is given by Eqn. (5.1), then

A
T = 

a a a

a a a

a a a

n

n

m m nm

11 21 1

12 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Some properties of the matrix transpose are

 (i) (AT)T = A (ii) (kA)T = kA
T, where k is a scalar

 (iii) (A + B)T = AT + BT (iv) (AB)T = BT
A

T

If a square matrix A is equal to its transpose;

A = AT, 

then the matrix A is called a symmetric matrix.

If a square matrix A is equal to the negative of its transpose;

A = –A
T, 

then the matrix A is called a skew-symmetric matrix.

Conjugate Matrix

If the complex elements of a matrix A are replaced by their respective conjugates, then the resulting 

matrix is called the conjugate of A.
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Conjugate Transpose

The conjugate transpose is the conjugate of the transpose of a matrix. Given a matrix A, the conjugate 

transpose is denoted by A*, and is equal to conjugate of AT. 

If a square matrix A is equal to its conjugate transpose;

A = A*,

then the matrix A is called a Hermitian matrix. For matrices whose elements are all real (real matrices), 

symmetric and Hermitian mean the same thing.

If a square matrix A is equal to the negative of its conjugate transpose;

A = – A*,

then the matrix A is called a skew-Hermitian matrix. For real matrices, skew-symmetric and skew-

Hermitian mean the same thing.

Determinants are defined for square matrices only. The determinant of the n ¥ n matrix A, written as |A|, 

or det A, is a scalar-valued function of A. It is found through the use of minors and cofactors.

The minor mij of the element aij is the determinant of a matrix of order (n – 1) ¥  (n – 1), obtained from 

A by removing the row and the column containing aij.

The cofactor cij of the element aij is defined by the equation

cij = (– 1)i + j mij

Determinants can be evaluated by the method of Laplace expansion. If A is an n ¥ n matrix, any arbitrary 

row k can be selected and |A| is then given by

 |A| = 
j

n

=
Â

1

akj ckj 

Similarly, Laplace expansion can be carried out with respect to any arbitrary column l, to obtain

 |A| = 
i

n

=
Â

1

ail cil

Laplace expansion reduces the evaluation of an n ¥ n determinant down to the evaluation of a string of 

(n – 1) ¥ (n – 1) determinants, namely, the cofactors.

Some properties of determinants are

 (i) det AB = (det A)(det B)

 (ii) det AT = det A  
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 (iii) det kA = kn det A; A is n ¥ n matrix and k is scalar

  (iv) The determinant of any diagonal or triangular matrix is the product of its diagonal elements.

Singular Matrix

A square matrix is called singular if the associated determinant is zero.

Nonsingular Matrix

A square matrix is called nonsingular if the associated determinant is nonzero.

Adjoint Matrix

The adjoint matrix of a square matrix A is found by replacing each element aij of matrix A, by its 

cofactor cij and then transposing.

 adj A = A+ = 

c c c

c c c

c c c

n

n

n n nn

11 21 1

12 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = [cji] 

Note that

 A(adj A) = (adj A)A = |A| I (5.3)

Matrix Inverse

The inverse of a square matrix is written as A–1, and is defined by the relation

 A
–1

A = AA
–1 = I

From Eqn. (5.3) and the definition of the inverse matrix, we have

 A
–1 = 

adjA

A
 (5.4) 

Some properties of matrix inverse are

 (i) (A–1)–1 = A (ii) (AT) 
–1 = (A– 1)T (iii) (AB)–1 = B–1

A
–1

 (iv) det A–1 = 
1

det A
 (v) det P–1

AP = det A

 (vi) Inverse of diagonal matrix given by Eqn. (5.2) is

L
–1 = 

1 0 0

0 1 0

0 0 1

11

22

/

/

/

a

a

ann

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = diag 
1 1 1

11 22a a ann

 
È

Î
Í

˘

˚
˙
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The rank r(A) of a matrix A is the dimension of the largest array in A with a nonzero determinant. Some 

properties of rank are

 (i) r(AT ) = r(A) 

 (ii) The rank of a rectangular matrix cannot exceed the lesser of the number of rows and the number of 

columns. A matrix whose rank is equal to the lesser of the number of rows and number of columns 

is said to be of full rank.

  r(A) £ min (n, m); A is n ¥ m matrix 

 (iii) The rank of a product of two matrices cannot exceed the rank of the either:

  r(AB) £ min [r(A), r(B)]

The trace of a square matrix A is the sum of the elements on the principal diagonal.

 tr A = 
i

Â aii (5.5)

Some properties of trace are

 (i) tr AT = tr A   (ii) tr (A + B) = tr A + tr B 

 (iii) tr AB = tr BA; tr AB π (tr A)(tr B)  (iv) tr P–1
AP = tr A 

A matrix can be partitioned into submatrices or vectors. Broken lines are used to show the partitioning 

when the elements of the submatrices are explicitly shown. For example,

A = 

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The broken lines indicating the partitioning are sometimes omitted when the context makes it clear that 

partitioned matrices are being considered. For example, the matrix A given above may be expressed as

A = 
A A

A A

11 12

21 22

È

Î
Í

˘

˚
˙

We will be frequently using the following forms of partitioning.

 (i) Matrix A partitioned into its columns:

  A = [ a1  a2    am]

  where

  ai = 

a

a

a

i

i

ni

1

2

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = ith column in A
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 (ii) Matrix A partitioned into its rows:

  A = 

`

`

`

1

2

 

n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  where

  `i = [ai1 ai2   aim ] = ith row in A

 (iii) A block diagonal matrix is a square matrix that can be partitioned so that the nonzero elements are 

contained only in square submatrices along the main diagonal,

  A = 

A 0 0

0 A 0

0 0 A

1

2

 

 

   

 m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = diag [A1 A2     Am ]

  For this case

 (i) |A| = |A1| |A2|   |Am|

 (ii) A
– 1 = diag [A1

– 1 
A2

– 1   A–1
m ], provided that A–1 exists.

5.2.2 Vectors

We will be mostly concerned with vectors and matrices that have real elements. We, therefore, restrict 

our discussion to these cases only. An extension of the results to the situations where the vectors/matrices 

have complex elements is quite straightforward.

The scalar product of two n ¥ 1 constant vectors x and y is defined as

 < x, y > = xT
y

  = [x1 x2   xn] 

y

y

yn

1

2

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = x1y1 + x2 y2 +   + xn yn

  = yT
x

The concept of norm of a vector is a generalization of the idea of length. For the vector
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x = 

x

x

xn

1

2

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

the Euclidean vector norm || x || is defined by

 || x || = (x2
1 + x2

2 +  + x2
n)1/2 = (xT

x)1/2 (5.6a)

In two or three dimensions, it is easy to see that this definition for the length of x satisfies the conditions 

of Euclidean geometry. It is a generalization to n dimensions of the theorem of Pythagoras.

For any nonsingular matrix P, the vector

y = Px

has the Euclidean norm

 || y || = [(P x)T(P x)]1/2 = (xT 
P

T P x)1/2

Letting Q = PT P, we write

 || y || = (xT
Q x)1/2 

or

 || x ||Q = (xT
Q x)1/2 (5.6b)

We call || x ||Q the norm of x with respect to Q. It is, in fact, a generalization of the norm defined in (5.6a) 

in that it is a measure of the size of x ‘weighted’ by the matrix Q.

The norm of a matrix is a measure of the ‘size’ of the matrix (not its dimension). For the matrix

A = 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

the Euclidean matrix norm || A || is defined by

 || A || = aij

i j

n
2

1

1 2

,

/

=
Â

È

Î

Í
Í

˘

˚

˙
˙

 = [tr (AT
A]1/2   (5.6c)

We can also describe the size of A by

|| A || = max
|| ||

|| ||x

Ax

x
; x π 0

i.e., the largest value of the ratio of the length || Ax || to the length || x ||.
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Using the Euclidean norm for vectors, we obtain

|| A || = max
x

x A Ax

x x

/

/

T T

T

( )
( )

1 2

1 2
 = max

/

x

x A Ax

x x

T T

T

Ê

Ë
Á

ˆ

¯
˜

1 2

The maximum value of the ratio in this expression can be determined in terms of the eigenvalues2 of the 

matrix AT
A. The real symmetric matrix AT

A has all real and nonnegative eigenvalues and the maximum 

value of the ratio (xT
A

T
Ax)/(xT

x) is equal to the maximum eigenvalue of AT
A (for proof, refer to [107]). 

Therefore,

 || A || = (Maximum eigenvalue of AT
A)1/2 (5.6d)

This definition of the matrix norm is known as the spectral norm3 of A.

The square roots of the eigenvalues of AT
A are called the singular values of A. The spectral norm of A 

is equal to its largest singular value.

Singular values of a matrix are useful in numerical analysis. The ratio of the largest to the smallest 

singular values of A, called the condition number of A, is a measure of how close the matrix A comes to 

being singular. The matrix A is, therefore, ‘ill-conditioned’ if its condition number is large.

Orthogonal Vectors

Any two vectors which have a zero scalar product are said to be orthogonal vectors. Two n ¥ 1 vectors 

x and y are orthogonal if 

x
T
y = 0

A set of vectors is said to be orthogonal if, and only if, every two vectors from the set are orthogonal: 

x
T
y = 0 for all x π y in the set.

Unit Vector

A unit vector x̂  is, by definition, a vector whose norm is unity; || x̂ || = 1. Any nonzero vector x can be 

normalized to form a unit vector.

x̂ = 
x

x|| ||

A set of vectors is said to be orthonormal if, and only if, the set is orthogonal and each vector in this 

orthogonal set is a unit vector.

Orthogonal Matrix

Suppose that {x1, x2, … , xn} is an orthogonal set:

x
T
i xi = 1,  for all i

 2 The roots of the equation

|lI – A| = 0

  are called the eigenvalues of matrix A. Detailed discussion is given in Section 5.6.
 3 Refer to [105] for other valid vector and matrix norms.
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and 

x
T
i xj = 0  for all i and j with i π j.

If we form the n ¥ n matrix

P = [ x1 x2   xn],

it follows from partitioned multiplication that

 P
T
P = I

That is, 

 P
T = P–1

Such a matrix P is called an orthogonal matrix.

Consider a set of m vectors {x1, x2, … , xm}, each of which has n components. If there exists a set of m 

scalars ai , at least one of which is not zero, which satisfies

 a1x1 + a2x2 +   + amxm = 0,

then the set of vectors {xi} is said to be linearly dependent.

Any set of vectors {xi} which is not linearly dependent is said to be linearly independent. That is, if

 a1x1 + a2x2 +   + amxm = 0

implies that each ai = 0, then {xi} are linearly independent vectors.

Consider the set of m vectors {xi}, each of which has n components, with m π n. Assume that this set is 

linearly dependent so that

 a1x1 + a2x2 +   + amxm = 0

with at least one nonzero ai. 

Premultiplying both sides of this equation by xT
i , gives a set of m simultaneous equations:

a1x
T
i x1 + a2 x

T
i x2 +   + am x

T
i xm = 0; i = 1, 2, … , m

These equations can be written in the matrix form as

 

x x x x x x

x x x x x x

x x x x x x

1 1 1 2 1

2 1 2 2 2

1 2

T T T
m

T T T
m

m
T

m
T

m
T

m

 

 

   

 

È

Î

Í
Í
Í
Í
Í

˘̆

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

a

a

a

1

2

0

0

0

  

m

 (5.7a)

or G` = 0
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If the m ¥ m matrix G has a nonzero determinant, then G– 1 exists, and

 ` = G
– 1

0 = 0 (5.7b)

This contradicts the assumption of at least one nonzero ai. The matrix G is called the Grammian matrix.

A necessary and sufficient condition for the set {xi} to be linearly dependent is that |G| = 0.

Linear Independence and Rank

The column rank of a matrix A is equal to maximum number of linearly independent columns in A.

The maximum number of linearly independent columns of a matrix is equal to the maximum number of 

linearly independent rows. Therefore, the column rank of A = the row rank of A = r(A), which is, in turn, 

equal to the order of the largest square array in A whose determinant does not vanish.

In Section 5.8, we will require a test for the linear independence of the rows of a matrix whose elements 

are functions of time.

Consider a matrix

F(t) = 

f t f t f t

f t f t f t

tm

n n nm

11 12 1

1 2

1( ) ( ) ( )

( ) ( ) ( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
( ) 

   

 

 

f

ffn t( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

fi(t); i  = 1, … , n are the n row vectors of matrix F; each vector has m components.

The scalar product of two 1 ¥ m vector functions fi(t) and fj(t) on [t0, t1] is by definition,

< fi, fj > = 

t

t

0

1

Ú fi(t)fj
T(t) dt

The set of n row-vector functions {f1(t), … , fn(t)} are linearly dependent if there exists a set of n scalars 

ai, at least one of which is not zero, which satisfies

a1f1(t) + a2f2(t) +   + anfn(t) = 01 ¥ m

or a1 

f t

f tm

11

1

( )

( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

  + a2 

f t

f tm

21

2

( )

( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

  +   + an 

f t

f t

n

nm

1( )

( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

  = 

0

0

 

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 

Equivalently, the n rows fi(t) are linearly dependent if

 `
T

F(t) = 0 (5.8a)

for some

` = 

a

a

1

 

n

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 π 0
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The Grammian matrix of functions fi(t), i = 1, … , n; where fi(t) is the ith row of the matrix F(t), is given 

by (refer to Eqns (5.7))

 W(t0, t1) = 

t

t

0

1

Ú F(t)FT(t) dt (5.8b)

The functions f1(t), … , fn(t), which are the rows of the matrix F(t), are linearly dependent on [t0, t1] if, 

and only if, the n ¥ n constant matrix W(t0, t1) is singular.

5.2.3

An expression such as

V(x1, x2, … , xn) = 
i

n

j

n

= =
Â Â

1 1

qij xi xj

involving terms of second degree in xi and xj, is known as the quadratic form of n variables. Such scalar-
valued functions are extensively used in stability analysis and modern control design.

In practice, one is usually concerned with quadratic forms V(x1, x2, … , xn) that assume only real values. 

When xi, xj, and qij are all real, the value of V is real, and the quadratic form can be expressed in the 

vector-matrix notation as

 V(x) = [x1 x2   xn] 

q q q

q q q

q q q

x

x

x

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

 

 

   

 

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘̆

˚

˙
˙
˙
˙

or V(x) = x
T
Qx

Any real square matrix Q may be written as the sum of a symmetric matrix Qs and a skew-symmetric 

matrix Qsk, as shown below.

Let

Q = Qs + Qsk

Taking transpose of both sides,

Q
T = Q Qs

T
sk
T+  = Qs – Qsk

Solving for Qs and Qsk, we obtain

Qs = 
Q Q+ T

2
; Qsk = 

Q Q– T

2

For a real matrix Q, the quadratic function V(x) is, therefore, given by

 V(x) = x
T
Qx = xT(Qs + Qsk)x = x Q x x Qx x Q x

T
s

T+ 1
2

1
2

T T-

Since x
T
Qx = (xT

Qx)T = xT
Q

T
x, we have

 V(x) = xT
Qsx
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Thus, in quadratic function V(x), only the symmetric portion of Q is of importance. We shall, therefore, 
tacitly assume that Q is symmetric.

It may be noted that real vector x and real matrix Q do not constitute necessary requirements for V(x) 

to be real. V(x) can be real when Q and x are possibly complex; it can easily be established that for a 

Hermitian matrix Q,

V(x) = x*Qx

has real values.

Our discussion will be restricted to real symmetric matrices Q.

If for all x π 0,

 (i) V(x) = xT
Qx ≥ 0,

  then V(x) is called a positive semidefinite function and Q is called a positive semidefinite matrix;

 (ii) V(x) = xT
Qx > 0,

  then V(x) is called a positive definite function and Q is called a positive definite matrix;

 (iii) V(x) = xT
Qx £ 0,

  then V(x) is called a negative semidefinite function and Q is called a negative semidefinite matrix; 

and

 (iv) V(x) = xT
Qx < 0,

  then V(x) is called a negative definite function and Q is called a negative definite matrix.

(i)  Eigenvalues of Q and the nature of quadratic form

A real symmetric matrix Q has all real eigenvalues, and the signs of the eigenvalues of Q determine the 

nature of the quadratic form xT
Qx, as summarized in Table 5.1.

Table 5.1

Eigenvalues of Q Nature of quadratic form xT
Qx

All li > 0 Positive definite

All li ≥ 0 Positive semidefinite

All li < 0 Negative definite

All li £ 0 Negative semidefinite

Some li ≥ 0, some lj £ 0 Indefinite

(ii) Sylvester’s Criterion

The Sylvester’s criterion states that the necessary and sufficient conditions for

V(x) = xT
Qx = [x1 x2   xn] 

q q q

q q q

q q q

x

x

x

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

 

 

   

 

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙
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to be positive definite are that all the successive principal minors of Q be positive, i.e.,

 q11 > 0; 
q q

q q

q q q

q q q

q q q

11 12

21 22

11 12 13

21 22 23

31 32 33

0> ;  > 0;   ; | Q | > 0 (5.9)

The necessary and sufficient conditions for V(x) to be positive semidefinite are that Q is singular and all 

the other principal minors of Q are non-negative.

V(x) is negative definite if [–V(x)] is positive definite. Similarly, V(x) is negative semidefinite if [–V(x)] 

is positive semidefinite.

5.3 STATE VARIABLE REPRESENTATION

We will be mostly concerned with SISO system configurations of the type shown in the block diagram 

of Fig. 5.1. The plant in the figure is a physical process, characterized by the state variables x1, x2, … , xn, 

the output variable y and the input variable u.

yu
Plant

–

+r

+

k1

kR

k2

kn
xn

x2

x1

Fig. 5.1 

5.3.1 State Variable Concepts

The modeling process of linear systems involves setting up a chain of cause-effect relationships, 

beginning from the input variable and ending at the output variable. This cause-effect chain includes 

a number of internal variables. These variables are eliminated, both in the differential equation model 

and in the transfer function model, to obtain the final relationship between the input and the output. 
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Analysis of systems with the input-output model will not give any information about the behavior of the 

internal variables for different operating conditions. For a better understanding of the system behavior, 

its mathematical model should include the internal variables also. The state variable techniques of system 

representation and analysis, make the internal variables an integral part of the system model, and thus 

provide more complete information about the system behavior. In order to appreciate how the internal 

variables are included in the system representation, let us examine the modeling process by means of a 

simple example.

Consider the network shown in Fig. 5.2a. The set of voltages and currents associated with all the branches 

of the network at any time t, represents the status of the network at that time. Application of Kirchhoff’s 

current law at nodes 1 and 2 of the network gives the following equations:

 
de

dt

de

dt

1 22+  = 
u e- 1

2

 2 3de

dt
 = 2 2de

dt

Application of Kirchhoff’s voltage law to the loop consisting of the three capacitors yields

 e1(t) – e2(t) = e3(t)

K

Force
M

Zero
friction

B

(b)(a)

2 W

+ –y

1 F
–

+

2 F

2 Fu
+

–

1 + – 2

–

+

Displacement
y t( )

Velocity ( )tv

e1 e3

e2

( )F t

Fig. 5.2

All other voltage and current variables associated with the network are related to e1, e2, e3 and input u, 

through linear algebraic equations. This means that their values (at all instants of time) can be obtained 

from the knowledge of the network variables e1, e2, e3 and the input variable u, merely by linear 

combinations. In other words, the reduced set {e1(t), e2(t), e3(t)} of network variables with the input 

variable u(t), completely represents the status of the network at time t.

For the purpose of finding a mathematical model to represent a system, we will naturally choose a 

minimal set of variables that describes the status of the system. Such a set would be obtained when none 

of the selected variables is related to other variables and the input, through linear algebraic equations. 

A little consideration shows that there is redundancy in the set{e1(t), e2(t), e3(t)} for the network of 

Fig. 5.2a; a set of two variables, say, {e1(t), e2(t)}, with the input u(t) represents the network completely 

at time t.



 Control System Analysis using State Variable Methods 299

Manipulation of the network equations obtained earlier, gives

de t

dt
e t u t1 1

4 1
1
4

( )
= - ( ) + ( )

de t

dt
e t u t2 1

8 1
1
8

( )
= - ( ) + ( )

This set of equations constitutes a mathematical model for the system. It is a set of two first-order 

differential equations. Its complete solution for any given u(t) applied at t = t0, will require a knowledge 

of the value of the selected variables {e1, e2} at t = t0. To put it differently, we can say that if the values 

of {e1, e2} at t = t0 are known, then the values of these variables at any time t > t0, in response to a given 

input u(t0, t], can be obtained by the solution of the two first-order differential equations. A set of system 

variables having this property, is called a set of state variables. The set of values of these variables at any 

time t is called the state of the system at time t. The set of first-order differential equations relating the 

first derivative of the state variables with the variables themselves and the input, is called a set of state 

equations. It is also to be noted that the number of state variables needed to form a correct and complete 

model of the system is equal to the order of the system.

An important point regarding the concept of state of a system is that the choice of state variables is not 

unique. In the network of Fig. 5.2a, instead of voltages {e1, e2}, the voltages {e2, e3} or {e3, e1} may be 

taken as state variables to define the state of the system. In fact, any set of variables x1(t) and x2(t), given 

by

 
x t

x t

1

2

( )
( )

È

Î
Í
Í

˘

˚
˙
˙
 = 

p p

p p

e t

e t

11 12

21 22

1

2

È

Î
Í

˘

˚
˙

( )
( )

È

Î
Í
Í

˘

˚
˙
˙

where pij are constants such that the matrix

 P = 
p p

p p

11 12

21 22

È

Î
Í

˘

˚
˙

is nonsingular, is qualified to describe the state of the system of Fig. 5.2a because we can express the 

capacitor voltages in terms of the selected variables x1(t) and x2(t). This brings out additional facts that 

there are infinitely many choices of state variables for any given system, and that the selected state 

variables may not correspond to physically measurable quantities of the system. Later in this chapter, 

we will see that all the choices of state variables are not equally convenient. Usually, state variables are 

chosen so that they correspond to physically measurable quantities, or lead to particularly simplified 

calculations.

For a particular goal of study of a given physical system, we may not be interested in the total information 

about the system at a particular time. We may be interested only in a part of the total information. This is 

called the output of the system, which can be obtained algebraically from the information of the system 

state and the input. The output is, by definition, a physical attribute of the system and is measurable. For 

example, in the electric network of Fig. 5.2a, the information of interest may be the voltage across the 

resistor. The output

y(t) = – e1(t) + u(t)

As another example of the state of a system, consider the mechanical network shown in Fig. 5.2b. The 

force F(t) is the input variable. Defining the displacement y(t) of the mass as the output variable, we 

obtain the following input-output model for the system:
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M 
d y t

dt

2

2

( )
 + B 

dy t

dt

( )
 + Ky(t) = F(t)

An alternative form of the input-output model is the transfer function model:

Y s

F s Ms Bs K

( )

( ) =
+ +

1
2

The set of forces, velocities, and displacements, associated with all the elements of the mechanical 

network at any time t, represents the status of the network at that time. A little consideration shows that 

values of all the system variables (at all instants of time) can be obtained from the knowledge of the 

system variables y(t) and v(t), and the input variable F(t), merely by linear combinations. The dynamics 

of y(t) and v(t) are given by the following first-order differential equations:

dy t

dt

( )
 = v(t)

 
d t

dt

v( )
= – 

K

M
y(t) – 

B

M
v(t) + 

1

M
F(t) 

The variables {y(t), v(t)} are, therefore, the state variables of the system of Fig. 5.2b, and the two 

first-order differential equations given above, are the state equations of the system. Using standard 

symbols for state variables and input variable, we can write the state equations as

  x1 = x2

  x2 = – 
K

M
x1 – 

B

M
x2 + 

1

M
u 

 x1(t) =D y(t); x2(t) =D v(t); u(t) =D F(t)

Defining y(t) as the output variable, the output equation becomes

y = x1

We can now appreciate the following definitions:

State

The state of a dynamic system is the smallest set of variables (called state variables) such that 

the knowledge of these variables at t = t0, together with the knowledge of the input for t ≥ t0, completely 

determines the behavior of the system for any time t ≥ t0.

State Vector

If n state variables x1, x2, … , xn, are needed to completely describe the behavior of a given system, then 

these n state variables can be considered the n components of a vector x. Such a vector is called a state 

vector.

State Space

The n-dimensional space whose coordinate axes consist of the x1-axis, x2-axis, … , xn-axis, is called a 

state space.
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At any time t0, the state vector (and hence the state of the system) defines a point in the state space. As 

time progresses and the system state changes, a set of points will be defined. This set of points, the locus 

of the tip of the state vector as time progresses, is called the state trajectory of the system.

State space and state trajectory in two-dimensional cases are referred to as the phase plane and phase 

trajectory, respectively.

5.3.2 State Variable Modeling

We know through our modeling experience that the application of physical laws to mechanical, electrical, 

thermal, liquid-level, and other physical processes results in a set of first-order and second-order 

differential equations.4 Linear time-invariant differential equations can be rearranged in the following 

form:

  x1(t) = a11 x1(t) + a12 x2(t) +   + a1n xn(t) +b1 u(t)

  x2(t) = a21 x1(t) + a22 x2(t) +   + a2n xn(t) + b2 u(t) (5.10a)

    

  xn(t) = an1 x1(t) + an2 x2(t) +   + ann xn(t) + bnu(t) 

where the coefficients aij and bi are constants. These n first-order differential equations are called state 

equations of the system.

Integration of Eqn. (5.10a) gives

xi(t) = xi(t0) + 

t

t

0

Ú [ai1 x1(t) +   + ain xn(t) + bi u(t)]dt; i = 1, 2, … , n

Thus, the n state variables and hence the state of the system can be determined uniquely at any 

t > t0, if each state variable is known at t = t0, and the control force u(t) is known throughout the interval 

t0 to t.

The output y(t) at any time t will be a function of x1(t), x2(t), …, xn(t). However, in some cases, the output 

may also depend upon the instantaneous value of the input u(t). For linear systems, the output is a linear 

combination of the state variables and the input:

 y(t) = c1 x1(t) + c2 x2(t) +   + cn xn(t) + d u(t) (5.10b)

where ci and d are constants. The algebraic equation (5.10b) is called output equation of the system.

Since every real-world system has some nonlinearity, a mathematical model of the form (5.10) is an 

approximation to reality. Many real-world nonlinearities involve a ‘smooth’ curvelinear relation between 

independent and dependent variables. Nonlinear functions fi(◊) and g(◊) of the form

  xi(t) = fi (x1(t), x2(t), … , xn(t), u(t)); xi(t0) =D xi
0 (5.11a)

 y(t) = g(x1(t), x2(t), … , xn(t), u(t)) (5.11b)

 4 Chapter 2 of reference [155]
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may be linearized about a selected operating point using the multivariable form of the Taylor series:

  f(x1, x2, x3,  ) = f(x10, x20, …) + 
∂

∂

f

x x x1 10 20, ,
 

È

Î
Í
Í

˘

˚
˙
˙

 (x1 – x10) + 
∂

∂

f

x x x2 10 20, ,  

È

Î
Í
Í

˘

˚
˙
˙

(x2 – x20) +    (5.11c)

One of the advantages of state variable formulation is that an extremely compact vector-matrix notation 

can be used for the mathematical model. Using the laws of matrix algebra, it becomes much less 

cumbersome to manipulate the equations.

In the vector-matrix notation, we may write Eqns (5.10) as
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  (5.12a)

 y(t) = [c1 c2   cn] 

x t

x t

x tn

1

2

( )
( )

( )

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 
 + d u(t) (5.12b)

In compact notation, Eqns (5.12) may be expressed as

  x (t) = Ax(t) + bu(t); x(t0) =D x0 : State equation   (5.13a)

 y(t) = cx(t) + du(t) : Output equation (5.13b)

where

 x(t) = n ¥ 1 state vector of nth-order dynamic system

 u(t) = system input

 y(t) = defined output

 A = n ¥ n matrix

 b = n ¥ 1 column matrix

 c = 1 ¥ n row matrix

 d = scalar, representing direct coupling between input and output (direct coupling is rare in control 

systems, i.e., usually d = 0)

Example 5.1 Two very usual applications of dc motors are in speed and position 

control systems.

Figure 5.3 gives the basic block diagram of a speed control system. A separately excited dc motor drives 

the load. A dc tachogenerator is attached to the motor shaft; speed signal is fed back and the error signal 

is used to control the armature voltage of the motor.
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Error signal

Controller
u

Armature voltage

dc motor
+

load

Controlled output (speed)

+

Reference signal corresponding
to desired speed

–

Tachogenerator

Feedback signal corresponding
to actual speed

wer

Fig. 5.3 

In the following, we derive the plant model for the speed control system. A separately excited dc motor 

with armature voltage control, is shown in Fig. 5.4.

The voltage loop equation is

 u(t) = La 
di t

dt

a ( )
 + Ra ia(t) + eb(t) (5.14a)

where

 La = inductance of armature winding (henrys);

 Ra = resistance of armature winding (ohms); 

 ia = armature current (amperes);

 eb = back emf (volts); and

 u  = applied armature voltage (volts).

Fig. 5.4 
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The torque balance equation is

 TM(t) = J 
d t

dt

w ( )
 + Bw(t) (5.14b)

where

 TM = torque developed by the motor (newton-m);

 J = equivalent moment of inertia of motor and load referred to motor shaft (kg-m2);

 B = equivalent viscous friction coefficient of motor and load referred to motor shaft ((newton-m)/

(rad/sec)); and

 w = angular velocity of motor shaft (rad/sec).

In servo applications, the dc motors are generally used in the linear range of the magnetization curve. 

Therefore, the air gap flux f is proportional to the field current. For the armature controlled motor, the 

field current if is held constant. Therefore, the torque TM developed by the motor, which is proportional 

to the product of the armature current and the air gap flux, can be expressed as

 TM(t) = KT ia(t) (5.14c)

where

 KT = motor torque constant ((newton-m/amp))

The counter electromotive force eb, which is proportional to f and w, can be expressed as

 eb(t) = Kb w(t) (5.14d)

where 

 Kb = back emf constant5 (volts/(rad/sec))

Equations (5.14) can be reorganized as

 
di t

dt

a( )
 = – 

R

L

a

a

 ia(t) – 
K

L

b

a

w(t) + 
1

La

u(t) (5.15)

 
d t

dt

w ( )
 = 

K

J

T ia(t) – 
B

J
w(t)

x1(t) = w (t), and x2(t) = ia(t) is the obvious choice for state variables. The output variable is y(t) = w(t).

The plant model of the speed control system, organized into the vector-matrix notation, is given below.
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u(t)

 y(t) = x1(t) 

Let us assign numerical values to the system parameters.

 5 In MKS units, Kb = KT ; Section 3.2 of reference [155]. 



 Control System Analysis using State Variable Methods 305

For the parameters6

 Ra = 1 ohm, La = 0.1 H, J = 0.1 kg-m2, B = 0.1 (newton-m)/(rad/sec), Kb = KT = 0.1, (5.16)

the plant model becomes

  x(t) = Ax(t) + bu(t) 
(5.17)

 y(t) = cx(t) 

where A = 
-
- -

È

Î
Í

˘

˚
˙

1 1

1 10
; b = 

0

10

È

Î
Í

˘

˚
˙ ; c = [1 0]

Example 5.2

Figure 5.5 gives the basic block diagram of a position control system. The controlled variable is now the 

angular position q (t) of the motor shaft:

 
d t

dt

q ( )
 = w (t) (5.18)

–

+

Error signal Armature voltage

Controller
u dc motor

+
load

Controlled output (position)
Reference signal corresponding

to desired position

Position sensor

Feedback signal corresponding
to actual position

er q

Fig. 5.5 

We make the following choice for state and output variables.

x1(t) = q (t), x2(t) = w (t), x3(t) = ia(t), y(t) = q (t)

For this choice, we obtain the following plant model from Eqns (5.15) and (5.18).
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y(t) = x1(t)

 6 These parameters have been chosen for computational convenience
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For the system parameters given by (5.16), the plant model for position control system becomes  

  x(t) = Ax(t) + bu(t)

 y(t) = cx(t)  
(5.19)

 

where

A = 

0 1 0

0 1 1

0 1 10

-
- -
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Î

Í
Í
Í

˘

˚

˙
˙
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; b = 
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Í

˘

˚

˙
˙
˙

; c = [1 0 0] 

In Examples 5.1 and 5.2 discussed above, the selected state variables are the physical quantities of the 

systems which can be measured.

We will see in Chapter 7 that in a physical system, in addition to output, other state variables could be 

utilized for the purpose of feedback. The implementation of design with state variable feedback becomes 

straightforward if the state variables are available for feedback. The choice of physical variables of 

a system as state variables, therefore, helps in the implementation of design. Another advantage of 

selecting physical variables for state variable formulation is that the solution of state equation gives time 

variation of variables which have direct relevance to the physical system.

5.3.3

It frequently happens that the state variables used in the original formulation of the dynamics of a system 

are not as convenient as another set of state variables. Instead of having to reformulate the system 

dynamics, it is possible to transform the set {A, b, c, d} of the original formulation (5.13), to a new set 

{A, b, c, d }. The change of variables is represented by a linear transformation

 x = P x  (5.20a)

where x  is a state vector in the new formulation, and x is the state vector in the original formulation. It 

is assumed that the transformation matrix P is a nonsingular n ¥ n matrix, so that we can always write

 x = P–1
x (5.20b)

We assume, moreover, that P is a constant matrix.

The original dynamics are expressed by

  x(t) = Ax(t) + bu(t); x(t0) =D x
0  (5.21a)

and the output by

 y(t) = cx(t) + du(t) (5.21b)

Substitution of x, as given by Eqn. (5.20a), into these equations gives

 P  x (t) = AP x (t) + bu(t)

 y(t) = cP x (t) + du(t)

or

  x (t) = A x (t) + b u(t); x (t0) = P–1
x(t0) (5.22a)

 y(t) = c x (t) + d u(t) (5.22b)
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with

A  = P–1
AP, b  = P–1

b, c  = cP, d  = d

In the next section, we will prove that both the linear systems (5.21) and (5.22) have identical output 

responses for the same input. The linear system (5.22) is said to be equivalent to the linear system (5.21), 

and P is called an equivalence or similarity transformation.

It is obvious that there exist an infinite number of equivalent systems since the transformation matrix P 

can be arbitrarily chosen. Some transformations have been extensively used for the purposes of analysis  

and design. Five of such special (canonical) transformations will be used in the present and the next two 

chapters.

Example 5.3 Example 5.1 Revisited

For the system of Fig. 5.4, we have taken angular velocity w(t) and armature current ia(t) as state variables:
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We can express velocity x1(t) and armature current x2(t) in terms of the variables x1(t) and x 2(t):

 x = P x   (5.23)

with

 P = 
1 0

1 1

È

Î
Í

˘

˚
˙

Using Eqns (5.22) and (5.17), we obtain the following state variable model for the system of Fig. 5.4, in 

terms of the transformed state vector x (t):

  x (t) = Ax (t) + b u(t) 
(5.24)

 y(t) = c x (t) 

where

 A = P–1
A P = 

1 0
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 c = cP = [1 0] 
1 0

1 1

È

Î
Í

˘

˚
˙  = [1 0]

 x1(t0) = x1(t0); x2(t0) = – x1(t0) + x2(t0)

Equations (5.24) give an alternative state variable model of the system previously represented by Eqns 

(5.17). x (t) and x(t) both qualify to be state vectors of the given system (the two vectors individually 

characterize the system completely at time t), and the output y(t), as we shall see shortly, is uniquely 

determined from either of the models (5.17) and (5.24). State variable model (5.24) is thus equivalent to 

the model (5.17), and the matrix P given by Eqn. (5.23) is an equivalence or similarity transformation.

The state variable model given by Eqns (5.24) is in a canonical (special) form. In Chapter 7, we will use 

this form of model for pole-placement design by state feedback.

5.3.4

An important advantage of state variable formulation is that it is a straightforward method to obtain a  

simulation diagram for the state equations. This is extremely useful if we wish to use computer simulation 

methods to study dynamic systems. In the following, we give an example of analog simulation diagram. 

Examples of digital simulation will appear in Chapter 6.

For brevity, we consider a second-order system:

  x1(t) = a11 x1(t) + a12 x2(t) + b1u(t)

  x2(t) = a21 x1(t) + a22 x2(t) + b2u(t) (5.25)

 y(t) = c1x1(t) + c2x2(t)

It is evident that if we knew  x1 and  x 2, we could obtain x1 and x2 by simple integration. Hence  x1 and 

 x2 should be the inputs to two integrators. The corresponding integrator outputs are x1 and x2. This 

leaves only the problem of obtaining  x1 and  x2 for use as inputs to the integrators. In fact, this is 

already specified by state equations. The completed state diagram is shown in Fig. 5.6. This diagram is 

essentially an analog-computer program for the given system.

5.4 CONVERSION OF STATE VARIABLE
 MODELS TO TRANSFER FUNCTIONS

We shall derive the transfer function of a SISO system from the Laplace-transformed version of the state 

and output equations. Refer to Section 5.2 for the vector and matrix operations used in the derivation.

Consider the state variable model (Eqns (5.13)):

  x(t) = Ax(t) + bu(t); x(t0) =D x0 

(5.26)
 y(t) = cx(t) + du(t) 

Taking the Laplace transform of Eqns (5.26), we obtain

 sX(s) – x0 = AX(s) + bU(s)

 Y(s) = cX(s) + dU(s)
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where

 X(s) =D L [x(t)]; U(s) =D L  [u(t)]; Y(s) =D L [y(t)]

Manipulation of these equations gives

 (sI – A)X(s) = x0 + bU(s); I is n ¥ n identity matrix 

or X(s) = (sI – A)–1
x

0 + (sI – A)–1
bU(s) (5.27a)

 Y(s) = c(sI – A)–1
x

0 + [c(sI – A)–1
b + d]U(s) (5.27b)

Equations (5.27) are algebraic equations. If x0 and U(s) are known, X(s) and Y(s) can be computed from 

these equations.

In the case of a zero initial state (i.e., x0 = 0), the input-output behavior of the system (5.26) is determined 

entirely by the transfer function

 
Y s

U s

( )

( )
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b + d  (5.28)

We can express the inverse of the matrix (sI – A) as
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Fig. 5.6 
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where

 |sI – A| = determinant of the matrix (sI – A)

(sI – A)+= adjoint of the matrix (sI – A)

Using Eqn. (5.29), the transfer function G(s) given by Eqn. (5.28) can be written as

 G(s) = 
c I A b

I A

( )

| |

s

s

-

-

+

 + d (5.30)

For a general nth-order matrix
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the matrix (sI – A) has the following appearance:
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If we imagine calculating det (sI – A), we see that one of the terms will be the product of diagonal 

elements of (sI – A):

(s – a11)(s – a22) � (s – ann) = sn + a ¢1 sn – 1 + � + a ¢n,

a polynomial of degree n with the leading coefficient of unity. There will be other terms coming from 

the off-diagonal elements of (sI – A), but none will have a degree as high as n. Thus | sI – A| will be of 

the following form:

 | sI – A| = D(s) = sn + a1 sn – 1 + � + an (5.31)

where ai are constant scalars.

This is known as the characteristic polynomial of the matrix A. It plays a vital role in the dynamic 

behavior of the system. The roots of this polynomial are called the characteristic roots or eigenvalues 

of matrix A. These roots, as we shall see in Section 5.7, determine the essential features of the unforced 

dynamic behavior of the system (5.26).

The adjoint of an n ¥ n matrix is itself an n ¥ n matrix, whose elements are the cofactors of the original 

matrix. Each cofactor is obtained by computing the determinant of the matrix that remains when a 

row and a column of the original matrix are deleted. It thus follows that each element in (sI – A)+ is a 

polynomial in s of maximum degree (n – 1). Adjoint of (sI – A) can, therefore, be expressed as

 (sI – A)+ = Q1 sn – 1 + Q2 sn – 2 + � + Qn – 1 s + Qn  (5.32)

where Qi are constant n ¥ n matrices. 

We can express transfer function G(s) given by Eqn. (5.30) in the following form:

 G(s) = 
c Q Q Q Q b[ ]1

1
2

2
1

1
1

1

s s s

s s s

n n
n n

n n
n n

- -
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+ + + +

+ + + +

�

�a a a

 + d  (5.33)
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G(s) is thus a rational function of s. When d = 0, the degree of numerator polynomial of G(s) is strictly 

less than the degree of the denominator polynomial and, therefore, the resulting transfer function is a 

strictly proper transfer function. When d π 0, the degree of numerator polynomial of G(s) will be equal 

to the degree of the denominator polynomial, giving a proper transfer function. Further,

 d = lim
s

[G(s)] (5.34)

From Eqns (5.31) and (5.33) we observe that the characteristic polynomial of matrix A of the system 

(5.26) is same as the denominator polynomial of the corresponding transfer function G(s). If there 

are no cancellations between the numerator and denominator polynomials of G(s) in Eqn. (5.33), the 

eigenvalues of matrix A are same as the poles of G(s). We will take up in Section 5.9, this aspect of 

the correspondence between state variable models and transfer functions. It will be proved that for a 

completely controllable and completely observable state variable model, the eigenvalues of matrix A are 

same as the poles of the corresponding transfer function.

5.4.1

It is recalled that the state variable model for a system is not unique, but depends on the choice of a set 

of state variables. A transformation

 x(t) = P x(t); P is a nonsingular matrix (5.35) 

results in the following alternative state variable model (refer to Eqns (5.22)) for the  system (5.26):

  x (t) = Ax (t) + bu(t); x(t0) = P–1
x(t0) (5.36a)

 y(t) = c x (t) + du(t) (5.36b)

where A = P–1
AP, b  = P–1

b, c  = cP

The definition of new set of internal state variables should, evidently, not affect the eigenvalues or 

input-output behavior. This may be verified by evaluating the characteristic polynomial and the transfer 

function of the transformed system.

 (i) | sI – A | = | sI – P–1
AP| = |sP

–1
P – P

– 1
AP| = |P–1(sI – A)P| = |P–1| |sI – A| |P| = |sI – A| (5.37)

 (ii)  System output in response to input u(t) is given by the transfer function

   G (s) = c (sI – A )–1 
b  + d = cP(sI – P–1

AP)–1
P

–1
b

 + d

    = cP(sP
–1

P – P–1
AP)–1 P–1

b + d = cP[P–1(sI – A)P]–1
P

–1
b + d

    = cPP
–1(sI– A)–1

PP
–1

b + d = c(sI – A)–1
b + d = G(s) (5.38)

 (iii) System output in response to initial state x (t0) is given by (refer to Eqn. (5.27b))

 c(sI – A )–1
x(t0) = cP(sI – P–1

AP)–1
P

–1
x(t0) = c(sI – A)–1

x(t0) (5.39)

The input-output behavior of the system (5.26) is, thus, invariant under the transformation (5.35).

Example 5.4

Consider the position control system of Example 5.2. The plant model of the system is reproduced 

below:

  x (t) = Ax(t) + bu(t)  
(5.40)

 y(t) = cx(t)
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with
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˙
˙
˙

; b = 

0

0

10

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

The characteristic polynomial of matrix A is

 |sI – A| = 

s

s

s

–1 0

0 1 1

0 1 10

+ -
+

 = s(s2 + 11s + 11)

The transfer function

 G(s) = 
Y s

U s

( )

( )
 = 

c I b

I

( )

| |

s

s

-
-

+
A

A

  = 

[ ] ( )

( )

1 0 0

11 11 10 1
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0 1

0

0

10

2s s s

s s s

s s s

+ + +
+
- +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙̇
˙
˙

+ +s s s( )2 11 11

  = 
10

11 112s s s( )+ +
 (5.41)

Alternatively, we can draw the state diagram of the plant model in signal-flow graph form and from there, 

obtain the transfer function using Mason’s gain formula. For the plant model (5.40), the state diagram is 

shown in Fig. 5.7. Application of Mason’s gain formula7 yields

 
Y s

U s

( )

( )
 = G(s) = 

10

1 10 10

3

1 1 2 2

s

s s s s

-

- - - -- - - - +( )

  = 
10

11 113 2s s s+ +
 = 

10

11 112s s s( )+ +

u 10 s–111

–10

–1

–1

s–1 s–1 x2x3 x1 = y

Fig. 5.7 

5.4.2

The matrix

 F(s) = (sI – A)–1 = 
( )

| |

s

s

I A

I A

-
-

+

 (5.42)

 7 Section 2.12 of reference [155]
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is known in mathematical literature as the resolvent of A. Resolvent matrix F(s) can be expressed in the 

following form (refer to Eqns (5.31) and (5.32)):

 F(s) = (sI – A)–1 = 
Q Q Q Q1

1
2

2

1
1

1

1s s s

s s s

n n
n n

n n
n n

- -
-

-
-

+ + + +

+ + + +

 

 a a a
  (5.43)

where Qi are constant (n ¥ n) matrices and a j are constant scalars.

An interesting and useful relationship for the coefficient matrices Qi of the adjoint matrix, can be 

obtained by multiplying both sides of Eqn. (5.43) by |sI – A|(sI – A). The result is

| sI – A| I = (sI – A)(Q1sn– 1 + Q2sn – 2 +   + Qn–1s + Qn)

or 

sn
I + a1sn – 1

I +   + anI = sn
Q1 + sn – 1(Q2 – AQ1) +   + s(Qn – AQn – 1) – AQn

Equating the coefficients of si on both the sides gives

 Q1 = I

 Q2 = AQ1 + a1I

 Q3 = AQ2 + a2I   (5.44a)

  

 Qn = AQn – 1 + an – 1I

 0 = AQn + anI

We have thus determined that the leading coefficient of (sI – A)+ is the identity matrix, and that the 

subsequent coefficients can be obtained recursively. The last equation in (5.44a) is redundant, but can be 

used as a check when these recursion equations are used as the basis of a numerical algorithm.

An algorithm based on Eqns (5.44a) requires the coefficients ai (i = 1, 2, ..., n) of the characteristic 

polynomial. Fortunately, the determination of these coefficients can be included in the algorithm, for it 

can be shown that8

 ai = – 
1

i
 tr(AQi); i = 1, 2, ..., n  (5.44b)

where tr(M), the trace of M, is the sum of all the diagonal elements of the matrix M.

The algorithm given by Eans (5.44), called the resolvent algorithm, is convenient for hand calculation 

and also easy to implement on a digital computer.

Example 5.5

Here we again compute (sI – A)–1 which appeared in Example 5.4, but this time using the resolvent 

algorithm (5.44).

 Q1 = I, a1 = – tr(A) = 11

 Q2 = A + a1I 

 8 The proof of relation (5.44b) is quite involved and will not be presented here. Refer to [108].
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  = 
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2
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˚
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; a3 = – 1
3

 tr(AQ3) = 0

As a numerical check, we see that the relation

 0 = AQ3 + a3I

is satisfied. Therefore,

 (sI – A)–1 = F(s) = 
Q Q Q1

2
2 3

3
1

2
2 3

s s

s s s

+ +

+ + +a a a

  = 
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11 11
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0 1
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Î

Í
Í
Í

˘

˚

˙
˙
˙

Using resolvent algorithm, we develop here a fundamental property of the characteristic equation. To this 

end, we write from Eqns (5.44a)

 Q2 = A + a1I

 Q3 = AQ2 + a2I = A2 + a1A + a2I

   

  Qn = An – 1 + a1A
n – 2 +   + an – 1I

 AQn = An + a1A
n – 1 +   + an – 1A = – anI

Therefore,

 A
n + a1A

n – 1 +   + an – 1A + anI = 0  (5.45)

This is the well-known result known as the Cayley–Hamilton theorem. Note that this equation is same as 

the characteristic equation

 sn + a1sn – 1 +   + an – 1s + an = 0 (5.46)

with the scalar si in the latter replaced by the matrix Ai ( i = 1, 2, … , n).

Thus, another way of stating the Cayley–Hamilton theorem is as follows: Every matrix satisfies its own 

characteristic equation.

Later we will use the resolvent algorithm and the Cayley–Hamilton theorem for evaluation of the state 

transition matrix required for the solution of the state equations.
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5.5 CONVERSION OF TRANSFER FUNCTIONS TO
 CANONICAL STATE VARIABLE MODELS

In the last section, we studied the problem—finding the transfer function from the state variable model of 

a system. The converse problem—finding a state variable model from the transfer function of a system, 

is the subject of discussion in this section. This problem is quite important because of the following 

reasons:

 (i) Quite often the system dynamics is determined experimentally using standard test signals like a 

step, impulse, or sinusoidal signal. A transfer function is conveniently fitted to the experimental 

data in some best possible manner.

  There are, however, many design techniques developed exclusively for state variable models. In 

order to apply these techniques, experimentally obtained transfer function descriptions must be 

realized into state variable models.

 (ii) Realization of transfer functions into state variable models is needed even if the control system 

design is based on frequency-domain design methods. In these cases, the need arises for the 

purpose of transient response simulation. Many algorithms and numerical integration computer 

programs designed for solution of systems of first-order equations are available, but there is not 

much software for the numerical inversion of Laplace transforms. Thus, if a reliable method 

is needed for calculating the transient response of a system, one may be better off converting 

the transfer function of the system to state variable description, and numerically integrating the 

resulting differential equations, rather than attempting to compute the inverse Laplace transform 

by numerical methods.

  We shall discuss here the problem of realization of transfer function into state variable models. 

Note the use of the term ‘realization’. A state variable model that has a prescribed rational function 

G(s) as its transfer function, is the realization of G(s). The term ‘realization’ is justified by the 

fact that by using the state diagram corresponding to the state variable model, the system with the 

transfer function G(s) can be built in the real world by an op amp circuit.9

The following three problems are involved in the realization of a given transfer function into state 

variable models:

 (i) Is it possible at all, to obtain state variable description from the given transfer function?

 (ii) If yes, is the state variable description unique for a given transfer function?

 (iii) How do we obtain the state variable description from the given transfer function?

The answer to the first problem has been given in the last section. A rational function G(s) is realizable 

by a finite dimensional linear time-invariant state model if, and only if, G(s) is a proper rational function. 

A proper rational function will have state model of the form:

  x(t) = Ax(t) + bu(t) 
(5.47)

 y(t) = cx(t) + du(t) 

where A, b, c and d are constant matrices of appropriate dimensions. A strictly proper rational function 

will have state model of the form

 9 Section 7.9 of reference [155]
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  x(t) = Ax(t) + bu(t) 
(5.48)

 y(t) = cx(t)  

Let us now turn to the second problem. In the last section, we saw that there are innumerable systems that 

have the same transfer function. Hence, the representation of a transfer function in state variable form is 

obviously, not unique. However, all these representations will be equivalent.

In the remaining part of this section, we deal with the third problem. We shall develop three standard, or 

‘canonical’ representations of transfer functions.

A linear time-invariant SISO system is described by transfer function of the form

G(s) = 
b b b

a a

0 1
1

1
1

s s

s s
m n

m m
m

n n
n

+ + +

+ + +
£

-

–

;
 

 

where the coefficients ai and bi are real constant scalars. Note that there is no loss in generality to assume 

the coefficient of sn to be unity.

In the following, we derive results for m = n; these results may be used for the case m < n by setting 

appropriate bi coefficients equal to zero. Therefore, our problem is to obtain a state variable model 

corresponding to the transfer function

 G(s) = 
b b b

a a

0 1
1

1
1

s s

s s

n n
n

n n
n

+ + +

+ + +

-

-

 

 
 (5.49)

5.5.1

Our development starts with a transfer function of the form

 
Z s

U s

( )
( )

 = 
1

1
1s sn n

n+ + +-a a 
 (5.50)

which can be written as

(sn + a1sn – 1 +   + an) Z(s) = U(s)

The corresponding differential equation is

pnz(t) + a1pn – 1z(t) +   + anz(t) = u(t)

where

pkz(t) =D 
d z t

dt

k

k

( )

Solving for highest derivative of z(t), we obtain 

 pnz(t) = – a1pn – 1z(t) – a2pn – 2 z(t) –   – anz(t) + u(t)  (5.51)

Now consider a chain of n integrators as shown in Fig. 5.8. Suppose that the output of the last integrator 

is z(t); then, the output of the just previous integrator is pz = dz/dt, and so forth. The output from the 

first integrator is pn – 1z(t), and thus, the input to this integrator is pnz(t). This leaves only the problem 

of obtaining pnz(t) for use as input to the first integrator. In fact, this is already specified by Eqn. (5.51). 

Realization of this equation is shown in Fig. 5.8.
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+
+ +

+
+

+

u + z

–

a1

pnz pn – 1z pn – 2z pz

a2 an – 1 an

Ú Ú Ú Ú

Fig. 5.8 

Having developed a realization of the simple transfer function (5.50), we are now in a position to consider 

the more general transfer function (5.49). We decompose this transfer function into two parts, as shown 

in Fig. 5.9. The output Y(s) can be written as

 Y(s) = (b0sn + b1sn – 1 +   + bn) Z(s) (5.52a)

where Z(s) is given by

 
Z s

U s

( )
( )

 = 
1

1
1s sn n

n+ + +-a a 
 (5.52b)

Z s( )U s( ) Y s( )1

+ + … +s sn n
n1

–1a a
b b b0 1

–1s sn n
n+ + … +

Fig. 5.9 

A realization of the transfer function (5.52b) has already been developed. Figure 5.8 shows this 

realization. The output of the last integrator is z(t) and the inputs to the integrators in the chain—from 

the last to the first— are the n successive derivatives of z(t).

Realization of the transfer function (5.52a) is now straightforward. The output

y(t) = b0 p
nz(t) + b1pn – 1z(t) +   + bnz(t),

is the sum of the scaled versions of the inputs to the n integrators. Figure 5.10 shows complete realization 

of the transfer function (5.49). All that remains to be done is to write the corresponding differential 

equations.

To get one state variable model of the system, we identify the output of each integrator in Fig. 5.10 with 

a state variable starting at the right and proceeding to the left. The corresponding differential equations, 

using this identification of state variables, are

  x1 = x2

  x2 = x3   

(5.53a)  

  xn – 1 = xn

  xn = – an x1 – an – 1 x2 –   – a1 xn + u 
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The output equation is found by careful examination of the block diagram of Fig. 5.10. Note that there 

are two paths from the output of each integrator to the system output—one path upward through the box 

labeled bi, and a second path down through the box labeled ai and hence, through the box labeled b0. As 

a consequence,

 y = (bn – anb0) x1 + (bn – 1 – an – 1b0) x2 +   + (b1 – a1b0) xn + b0u (5.53b)

Fig. 5.10 

The state and output equations (5.53), organized in vector-matrix form, are given below.

  x(t) = Ax(t) + bu(t) 
(5.54)

 y(t) = cx(t) + du(t) 

with

 A = 

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1
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˙
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˙
˙
˙
˙

 c = [bn – anb0, bn–1 – an–1 b0, ... , b1 – a1b0]; d = b0

If the direct path through b0 is absent (refer to Fig. 5.10), then the scalar d is zero and the row matrix c 

contains only the bi coefficients.

The matrix A in Eqns (5.54) has a very special structure: the coefficients of the denominator of the 

transfer function preceded by minus signs, form a string along the bottom row of the matrix. The rest 

of the matrix is zero except for the ‘superdiagonal’ terms which are all unity. In matrix theory, a matrix 
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with this structure is said to be in companion form. For this reason, we identify the realization (5.54) 

as companion-form realization of the transfer function (5.49). We call this the first companion form; 

another companion form, second companion from, is discussed in the following section.

5.5.2

In the first companion form, the coefficients of the denominator of the transfer function appear in one of 

the rows of the A matrix. There is another companion form in which the coefficients appear in a column 

of the A matrix. This can be obtained by writing Eqn. (5.49) as

 (sn + a1sn –1 +   + an) Y(s) = (b0sn + b1sn – 1 +   + bn) U(s)

or sn [Y(s) – b0U(s)] + sn – 1 [a1Y(s) – b1U(s)] +   + [anY(s) – bnU(s)] = 0

On dividing by sn and solving for Y(s), we obtain

 Y(s) = b0U(s) + 
1

s
 [b1U(s) – a1Y(s)] +   + 

1

sn
[bnU(s) – anY(s)] (5.55)

Note that 1/sn is the transfer function of a chain of n integrators. Realization of 
1

sn
 [bnU(s) – anY(s)] 

requires a chain of n integrators with input [bnu – an y] to the first integrator in the chain from left-

to-right. Realization of 
1

1sn-
 [bn – 1U(s) – an – 1Y(s)], requires a chain of (n–1) integrators, with input

[bn – 1u – an – 1 y] to the second integrator in the chain, from left-to-right, and so forth. This immediately 

leads to the structure shown in Fig. 5.11. The signal y is fed back to each of the integrators in the chain, 

and the signal u is fed forward. Thus the signal [bnu – an y] passes through n integrators; the signal

[bn – 1u – an – 1y] passes through (n – 1) integrators, and so forth—to complete the realization of 

Eqn. (5.55). The structure retains the ladder-like shape of the first companion form, but the feedback 

paths are in different directions.

We can now write differential equations for the realization given by Fig. 5.11. To get one state variable 

model, we identify the output of each integrator in Fig. 5.11 with a state variable starting at the left and 

proceeding to the right. The corresponding differential equations are

+

+

y

+

+
+

–

+
+

+
+

–

xn

u

––

bn b0b1bn – 1 bn – 2

an a1an – 1 an – 2

Ú Ú Ú Ú

x2x1 xn – 1

Fig. 5.11 
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  xn = xn – 1 – a1 (xn + b0u) + b1u

  xn – 1 = xn – 2 – a2 (xn + b0u) + b2u

   

  x2 = x1 – an – 1 (xn + b0u) + bn – 1u

  x1 = – an (xn + b0u) + bnu

and the output equation is

 y = xn + b0u

 The state and output equations, organized in vector-matrix form, are given below.

  x(t) = Ax(t) + bu(t)

 y(t) = cx(t) + du(t) 
(5.56)

with
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 c = [0 0   0 1]; d = b0

Compare A, b, and c matrices of the second companion form with that of the first. We observe that 

A, b, and c matrices of one companion form correspond to the transpose of the A, c, and b matrices, 

respectively, of the other.

There are many benefits derived from the companion forms of state variable models. One obvious benefit 

is that both the companion forms lend themselves easily to simple analog computer models. Both the  

companion forms also play an important role in pole-placement design through state feedback. This will 

be discussed in Chapter 7. 

5.5.3

In the two canonical forms (5.54) and (5.56), the coefficients of the denominator of the transfer function 

appear in one of the rows or columns of matrix A. In another of the canonical forms, the poles of 

the transfer function form a string along the main diagonal of the matrix. This canonical form follows 

directly from the partial fraction expansion of the transfer function.

The general transfer function under consideration is (refer to Eqn. (5.49))

G(s) = 
b b b

a a

0 1
1

1
1

s s

s s

n n
n

n n
n

+ + +

+ + +

-

-

 

 

By long division, G(s) can be written as

G(s) = b0 + 
¢ + ¢ + + ¢

+ + +

- -

-

b b b
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1
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2
2

1
1

s s

s s
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 = b0 + G¢(s)
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The results are simplest when the poles of the transfer function are all distinct. The partial fraction  

expansion of the transfer function, then has the form

 G(s) = 
Y s

U s

( )

( )  = b0 + 
r

s

1

1- l
 + 

r

s

2

2- l
 +   + 

r

s

n

n- l
 (5.57)

The coefficients ri (i = 1, 2, …, n) are the residues of the transfer function G¢(s) at the corresponding 

poles at s = li (i = 1, 2, …, n). In the form of Eqn. (5.57), the transfer function consists of a direct 

path with gain b0, and n first-order transfer functions in parallel. A block diagram representation of 

Eqn. (5.57) is shown in Fig. 5.12. The gains, corresponding to the residues, have been placed at the 

outputs of the integrators. This is quite arbitrary. They could have been located on the input side, or 

indeed, split between the input and the output.
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Identifying the outputs of the integrators with the state variables results in the following state and output 

equations:

  x(t) = Lx(t) + bu(t)

 y(t) = cx(t) + du(t)  
(5.58)

with

L = 

l

l

l
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; c = [r1 r2   rn]; d = b0
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It is observed that for this canonical state variable model, the matrix L is a diagonal matrix with the poles 

of G(s) as its diagonal elements. The unique decoupled nature of the canonical model is obvious from 

Eqns (5.58); the n first-order differential equations are independent of each other:

  xi (t) = li xi(t) + u(t); i = 1, 2, … , n (5.59)

This decoupling feature, as we shall see later in this chapter, greatly helps in system analysis.

The block diagram representation of Fig. 5.12 can be turned into hardware only if all the poles at 

s = l1, l2, ..., ln are real. If they are complex, the feedback gains and the gains corresponding to the 

residues, are complex. In this case, the representation must be considered as being purely conceptual; 

valid for theoretical studies, but not physically realizable. A realizable representation can be obtained by 

introducing an equivalence transformation.

Suppose that s = s + jw , s = s – jw and s = l are the three poles of a transfer function. The residues at 

the pair of complex conjugate poles must be themselves complex conjugates. Partial fraction expansion 

of the transfer function, with a pair of complex conjugate poles and a real pole, has the form

G(s) = d + 
p j q

s j

+
- +( )s w

 + 
p j q

s j

-
- -( )s w

 + 
r

s - l

A state variable model for this transfer function is given below (refer to Eqns (5.58)):

  x = Lx + bu

 y = cx + du 
(5.60)

with
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Introducing an equivalence transformation
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we obtain (refer to Eqns (5.22))

  x(t) = A x(t) + b u(t) 
(5.61)

 y(t) = c x(t) + du(t) 

where
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When the transfer function G(s) has repeated poles, the partial fraction expansion will not be as simple 

as Eqn. (5.57). Assume that G(s) has m distinct poles at s = l1, l2, …, lm of multiplicity n1, n2, …, nm, 

respectively; n = n1 + n2 +   + nm. That is, G(s) is of the form

 G(s) = b0 + 
¢ + ¢ + + ¢

- - -

- -b b b

l l l

1
1

2
2

1 2
1 2

s s

s s s

n n
n

n n
m

nm

 

 ( ) ( ) ( )
 (5.62)

The partial fraction expansion of G(s) is of the form.

 G(s) = b0 + H1(s) +   + Hm(s) = 
Y s

U s

( )

( )
 (5.63)

where

 Hi(s) = 
r

s

i

i
ni

1

( )- l
 + 

r

s

i

i
ni

2

1( )- -l
 +   + 

r

s

in

i

i

( )- l
 = 

Y s

U s

i( )

( )

The first term in Hi(s) can be synthesized as a chain of ni identical, first-order systems, each having 

transfer function 1/(s – li). The second term can be synthesized by a chain of (ni – 1) first-order systems, 

and so forth. The entire Hi(s) can be synthesized by the system having the block diagram shown in 

Fig. 5.13.

Fig. 5.13 Hi s  

 We can now write differential equations for the realization of Hi(s), given by Fig. 5.13. To get one state 

variable formulation, we identify the output of each integrator with a state variable—starting at the right 

and proceeding to the left. The corresponding differential equations are

  x i1 = li xi1 + xi2

  x i2 = li xi2 + xi3 (5.64a)

  

 xini
= li xini

+ u

and the output is given by

 yi = ri1 xi1 + ri2 xi2 +   + rini
 xini

 (5.64b)
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If the state vector for the subsystem is defined by

 xi = [xi1  xi2   xini
]T

then Eqns (5.64) can be written in the standard form

  xi = Lixi + biu

 yi = ci xi 
(5.65)

where

Li = 

l

l

l

l

i

i

i

i

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

 

 

     

 

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

; bi = 

0

0

0

1

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

; ci = [ri1 ri2   rini
]

 Note that matrix Li has two diagonals—the principal diagonal has the corresponding characteristic root 

(pole), and the superdiagonal has all 1s. In matrix theory, a matrix having this structure is said to be in 

Jordan form. For this reason, we identify the realization (5.65) as Jordan canonical form.

 According to Eqn. (5.63), the overall transfer function G(s) consists of a direct path with gain b0 and m 

subsystems, each of which is in the Jordan canonical form, as shown in Fig. 5.14. The state vector of the 

overall system consists of the concatenation of the state vectors of each of the Jordan blocks:

 x = 

x

x

x

1

2

 

m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (5.66a)

Since there is no coupling between any of the subsystems, the L matrix of the overall system is ‘block 

diagonal’:

u

+

+

+

+

+ yx x b

c x

= +v 1u

y =
1 1 1

1 1 1

x x b

c x

= +v 2u

y =
2 2 2

2 2 2

x x b

c x

= +v mu

y =
m m m

m m m

ym

y2

y1

b0

Fig. 5.14 
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 L = 

L

L

L

1

2

0 0

0 0

0 0

 

 

   

 m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (5.66b)

where each of the submatrices Li is in the Jordan canonical form (5.65). The b and c matrices of the 

overall system are the concatenations of the bi and ci matrices, respectively, of each of the subsystems:

 b = 

b

b

b

1

2

 

m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2 … cm]; d = b0  (5.66c)

The state variable model (5.58) derived for the case of distinct poles, is a special case of Jordan canonical 

form (5.66) where each Jordan block is of 1 ¥ 1 dimension.

Example 5.6

In the following, we obtain three different realizations for the transfer function

G(s) = 
s

s s s

+

+ + +

3

9 24 203 2
 = 

Y s

U s

( )

( )

First Companion Form Note that the given G(s) is a strictly proper fraction; the realization will, 

therefore, be of the form (5.48), i.e., the parameter d in the realization {A, b, c, d} is zero.

The state variable formulation in the first companion form, can be written just by inspection of the given 

transfer function. Referring to Eqns (5.54), we obtain

 

 

 

 

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 = 

0 1 0

0 0 1

20 24 9- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 

x

x

x

u

1

2

3

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 y = [3 1 0] 

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Figure 5.15a shows the state diagram in signal flow graph form.

Second Companion Form Referring to Eqns (5.56), we obtain

 

 

 

 

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 = 

0 0 20

1 0 24

0 1 9

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 

x

x

x

u

1

2

3

3

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 y = x3

Figure 5.15b shows the state diagram.
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Fig. 5.15 G s

Jordan Canonical Form The given transfer function G(s) in the factored form:

 G(s) = 
s

s s

+

+ +

3

2 52( ) ( )

Using partial fraction expansion, we obtain

 G(s) = 
1 3

2

2 9

2

2 9

52

/

( )

/ /

s s s+
+

+
+

-
+

 

A matrix of the state variable model in Jordan canonical form will be block-diagonal; consisting of two 

Jordan blocks (refer to Eqns (5.65)):

 L1 = 
-

-
È

Î
Í

˘

˚
˙

2 1

0 2
; L2 = [–5]

The corresponding bi and ci vectors are (refer to Eqns (5.65)):

 b1 = 
0

1

È

Î
Í

˘

˚
˙ ; c1 = [ 1

3
2
9

]; b2 = [1] ; c2 = [– 2
9

]

The state variable model of the given G(s) in Jordan canonical form is, therefore, given by (refer to 

Eqns (5.66))
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x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 1 0

0 2 0

0 0 5

 + 

x

x

x

u

1
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3
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1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

È

Î

Í
Í
Í

˘

˚

˙
˙
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 y = [ 1
3

2
9

2
9

- ] 

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Figure 5.15c shows the state diagram. We note that Jordan canonical state variables are not completely 

decoupled. The decoupling is blockwise; state variables of one block are independent of state variables of 

all other blocks. However, the state variables of one block, among themselves, are coupled; the coupling 

is unique and simple.

5.6 EIGENVALUES AND EIGENVECTORS

The last section was concerned with the derivation of state variable models for a given transfer function. 

Out of infinitely many realizations possible for a given transfer function, we have derived the following 

three ‘standard’ or canonical forms:

 (i) First companion form

 (ii) Second companion form

 (iii) Jordan form

Consider now the situation where the system dynamics is already known in the form of a state variable 

model. For example, state equations representing the dynamics of a physical system may be obtained by 

the application of physical laws. However, state variables in such a formulation may not be as convenient 

as some other canonical state variables. Transformation of an original state variable model to a canonical 

form may, therefore, be helpful in solving analysis and design problems.

In this section, we deal with the problem of transformation of a given state variable model to Jordan 

canonical form (transformation of a given model to other canonical forms will be taken up in Section 5.9, 

and to companion forms in Chapter 7).

Given state variable model:

  x(t) = Ax(t) + bu(t)

 y(t) = cx(t) + du(t) 
(5.67)

where A, b, c and d are constant matrices of dimensions n ¥ n, n ¥ 1, 1 ¥ n and 1 ¥ 1, respectively.

 The problem is to find an equivalence transformation 

 x = P x  (5.68)

such that the equivalent model (refer to Eqns (5.22))

  x(t) = P– 1
AP x(t) + P–1

bu(t) 
(5.69)

 y(t) = cP x(t) + du(t) 

is in Jordan canonical form.
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5.6.1 Eigenvalues

For a general nth-order matrix

 A = 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

the determinant

 |l I – A| = 

l

l

l

- - -
- - -

- - -

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

 

 

   

 

On expanding the determinant we find that |l I – A | , called the characteristic polynomial of the matrix 

A, is a polynomial of degree n:

|l I – A| = D(l) = ln + a1l n – 1 +   + an – 1l + an

where ai are constant scalars.

The equation

 D(l) = ln + a1ln – 1 +   + an – 1l +an = 0  (5.70)

is called the characteristic equation of the matrix A, and its n roots are called characteristic roots, or 

characteristic values, or eigenvalues of the matrix A. When A represents the dynamic matrix of a linear 

system, the eigenvalues determine the dynamic response of the system (the next section will establish 

this fact), and also turn out to be the poles of the corresponding transfer function (refer to Eqn. (5.31)).

Eigenvalues of a matrix A are invariant under equivalence transformation (refer to Eqn. (5.37)), i.e.,

|lI – A| = |lI – P–1
AP|

for any nonsingular matrix P.

5.6.2 Eigenvectors

Consider an n ¥ n matrix A with eigenvalues {l1, l2, …, ln}. We start with the assumption of distinct 

eigenvalues; later we will relax this assumption.

 State transformation to Jordan canonical form requires a 

transformation matrix P such that

 P
–1

AP = L = 

l

l

l

1

2

0 0

0 0

0 0

 

 

   

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (5.71)
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Let the transformation matrix P required to transform A to L, be of the form

 P = [v1 v2   vn];  (5.72a)

 vi = 

v

v

v

1

2

i

i

ni

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = ith column of P  (5.72b)

Equation (5.71) shows that

 AP = PL

or A[v1 v2   vn] = [v1 v2   vn] 

l

l

l

1

2

0 0

0 0

0 0

 

 

   

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

By equating the ith columns, we obtain

 Avi = livi

or (liI – A)vi = 0  (5.73)

This is a set of n homogeneous equations in n unknowns v1i, v2i, …, vni.

There are two questions of interest with regard to Eqn. (5.73):

 (i) whether a solution to Eqn. (5.73) exists; and

 (ii) if the answer to the first question is yes, how many linearly independent solutions occur?

We consider an example to answer these questions. Refer to Section 5.2 for the basic definitions from 

linear algebra used in the sequel.

Example 5.7

The matrix

A = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 1 0

0 3 1

0 0 2

has the characteristic equation

 |l I – A| = 

l

l

l

+ -
+ -

+

4 1 0

0 3 1

0 0 2

  = (l + 4)(l + 3)(l + 2) = 0

Therefore, the eigenvalues of A are l1 = – 2, l2 = – 3 and l 3 = – 4.

Consider a set of homogeneous equations

(l1I – A)v1 = 0
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or 

2 1 0

0 1 1

0 0 0

11

21

31

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

v

v

v

 = 

0

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 (5.74)

It is easy to check that rank of the matrix (l1I – A) is two, i.e.,

r (l1I – A) = 2

A highest-order array having a nonvanishing determinant, is

2 1

0 1

-È

Î
Í

˘

˚
˙ ,

which is obtained from (l1I – A) by omitting the third row and the third column. Consequently, a set of 

linearly independent equations is

 2v11 – v21 = 0

 v21 = v31

or 
2 1

0 1

11

21

-È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

v

v

 = 
0

31v

È

Î
Í

˘

˚
˙

Therefore, 
v

v

11

21

È

Î
Í

˘

˚
˙  = 

2 1

0 1

1-È

Î
Í

˘

˚
˙

-

 
0

31v

È

Î
Í

˘

˚
˙  = 

v

v

31

31

2/È

Î
Í

˘

˚
˙

There are three components in v1 and two equations governing them; therefore, one of the three 

components can be arbitrarily chosen. For v31 = 2, a solution to Eqn. (5.74) is

v1 = 

1

2

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

A different choice for v31 leads to a different solution to Eqn. (5.74). In fact, this set of equations has 

infinite solutions as demonstrated below.

For v31 = 2a (with a arbitrary), the solution

v1 = a 

1

2

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Obviously, this solution is non-unique. However, all nontrivial solutions have a unique direction, and 

they differ only in terms of a scalar multiplier. There is, thus, only one independent solution.

 Corresponding to the eigenvalue l2 = – 3, a linearly independent solution to homogeneous equations

(l2I – A)v2 = 0

is given by

v2 = 

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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And for l3 = – 4, the equations

(l3I – A)v3 = 0

have a linearly independent solution

v3 = 

2

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

In general, the number of equations that the vector vi in (5.73) has to obey, is equal to r(liI – A) where 

r(M) denotes the rank of matrix M. There are n components in vi (n = number of columns of (liI – A)); 

therefore, (n – r(liI – A)) components of vi can be arbitrarily chosen. Thus, the number of linearly 

independent solutions of the homogeneous equation (5.73) = [n – r(liI – A)] = g (l iI – A), where g (M) 

denotes the nullity of matrix M.

We have the following answers to the two questions raised earlier with regard to Eqn. (5.73):

 (i) For Eqn. (5.73) to have a nontrivial solution, rank of (liI – A) must be less than n, or, equivalently, 

det (liI – A) = 0. This condition is satisfied by virtue of the fact that li is an eigenvalue.

 (ii) The number of linearly independent solutions to Eqn. (5.73), is equal to nullity of (l iI – A).

The nullity of matrix (liI – A) does not exceed the multiplicity of the eigenvalue li (refer to Lancaster 

and Tismenetsky [28] for proof of the result). Therefore, for distinct eigenvalue li, there is one, and only 

one, linearly independent solution to Eqn. (5.73). This solution is called the eigenvector of A associated 

with the eigenvalue li.

Theorem 5.1 Let v1, v2, …, vn be the eigenvectors associated with the distinct eigenvalues l1, l2, 

…, ln, respectively, of matrix A. The vectors v1, v2, …, vn are linearly independent and the nonsingular 

matrix

P = [v1 v2   vn]

transforms matrix A into Jordan canonical form.

Proof Let a1v1 + a2v2 +   + anvn = 0 (5.75)

If it can be shown that this implies that a1 = a2 =   = an = 0, then the set {vi} is linearly independent. 

Define

 Ti = liI – A

Note that Tivi = 0

and Tivj = (li – lj)vj if i π j

Multiplying Eqn. (5.75) by T1 gives

a2(l1 – l2)v2 + a3(l1 – l3) v3 +   + an(l1 – ln)vn = 0
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Multiplying this in turn by T2, T3, …, Tn – 1 gives

 a3 (l1 – l3)(l2 – l3)v3 +   + an(l1 – ln)(l2 – ln)vn = 0

   

 an – 1 (l1 – ln – 1)(l2 – ln – 1)   (ln – 2 – ln – 1)vn – 1 

 + an (l1 – ln)(l2 – ln)   (ln – 2 – ln)vn = 0 (5.76)

 an(l1 – ln)(l2 – ln)   (ln – 2 – ln)(ln – 1 – ln)vn = 0 (5.77)

Since vn π 0 and ln π li for i π n, Eqn. (5.77) requires that an = 0. This, plus Eqn. (5.76), requires that 

an – 1 = 0.

Continuing this reasoning shows that Eqn. (5.75) requires ai = 0 for i = 1, 2, …, n; so the eigenvectors 

vi are linearly independent.

The matrix P, constructed by placing the eigenvectors (columns) together, is therefore a nonsingular 

matrix.

As per Eqns (5.71)–(5.73), P–1
AP = L.

Example 5.8

Consider the matrix

A = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 1 0

0 3 1

0 0 2

for which we found, in Example 5.7, the eigenvalues and eigenvectors to be

l1 = – 2, v1 = 

1

2

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; l2 = – 3, v2 = 

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; l3 = – 4, v3 = 

2

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The transformation matrix

P = 

1 1 2

2 1 0

2 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

This gives

P
–1

AP = 
1

4

0 0 2

0 4 4

2 2 1

4 1 0

0 3 1

0 0 2

1 1 2

2 1 0

2 0 0

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚̊

˙
˙
˙

 = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 0 0

0 3 0

0 0 4

 = L

which is the diagonal matrix (a special case of Jordan canonical form) with eigenvalues of A as its 

diagonal elements. In fact, L could be written down directly without computing P–1
AP.

The eigenvectors vi which satisfy the equations

 (liI – A)vi = 0 (5.78)
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can be computed by solving the set of linear algebraic equations. The method of Gauss elimination is 

a straightforward and powerful procedure for reducing systems of linear equations to a simple reduced 

form, easily solved by substitution (refer to Noble and Daniel [27]). High quality software is available 

commercially; for example, the MATLAB system from the Math Works [152].

In the following, we give an analytical procedure of computing the eigenvectors. This procedure is quite 

useful for hand calculations.

Using the property (refer to Eqn. (5.3))

M adj M = |M|I 

and letting M = (liI – A) yields

(liI – A) adj (liI – A) = |liI – A| I

Since |liI – A| is the characteristic polynomial and li is an eigenvalue, this equation becomes

 (liI – A) adj (liI – A) = 0 (5.79)

A comparison of Eqn. (5.78) with (5.79) shows that vi is proportional to any nonzero column of 

adj (liI – A).

Example 5.9

Consider the state variable model

  x = Ax + bu

 y = cx

with  A = 

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

9 1 0

26 0 1

24 0 0

; b = 

2

5

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1  2  – 1]

The characteristic equation

 |lI – A| = 0

yields the roots  l1 = – 2, l 2 = – 3, and l 3 = – 4.

 adj(lI – A) = adj 

l

l

l

+ -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

9 1 0

26 1

24 0

 = 

l l

l l l l

l l l

2

2

2

1

26 24 9 9

24 24 9 26

- - + +

- - + +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

For l1 = – 2, adj(l1I – A) = 

4 2 1

28 14 7

48 24 12

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v1 = 

1

7

12

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

For l2 = – 3, adj(l2I – A) = 

9 3 1

54 18 6

72 24 8

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v2 = 

1

6

8

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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For l3 = – 4, adj(l3I – A) = 

16 4 1

80 20 5

96 24 6

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v3 = 

1

5

6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

In each case, the columns of adj(liI – A) are linearly related. In practice, it is necessary to calculate only 

one (nonzero) column of the adjoint matrix.

The transformation matrix

 P = [v1 v2 v3] = 

1 1 1

7 6 5

12 8 6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

State transformation

 x = P x

results in the following model (refer to Eqns (5.22)):

  x = L x  + bu

 y = c x

with

 L = P
–1

AP = – 
1

2

4 2 1

18 6 2

16 4 1

9 1 0

26 0 1

24 0 0

1 1 1

7 6 5

- -
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙ 112 8 6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 0 0

0 3 0

0 0 4

b  = P–1
b = 

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

3

6

; c  = cP = [3 5 5]

Case II: Some Eigenvalues are Multiple Roots of the Characteristic Equation For notational 

convenience, we assume that matrix A has an eigenvalue l1 of multiplicity n1, and all other eigenvalues 

ln1 1+
, …, ln are distinct, i.e.,

|lI – A| = ( ) ( )l l l l- - +1 1
1

1

n
n    (l – ln)

 Recall the result stated earlier: the nullity g of matrix (liI – A) does not exceed the multiplicity of li. 

Therefore,

 1 £ g (l1I – A) £ n1

 g ( ln1 1+  I – A) = 1

  

 g (lnI – A) = 1

We know that the number of linearly independent eigenvectors associated with an eigenvalue li is equal 

to the nullity g of the matrix (liI – A). Thus, when one or more eigenvalues is a repeated root of the 

characteristic equation, a full set of n linearly independent eigenvectors may, or may not, exist.

It is convenient to consider three subclassifications for Case II.
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Case II1: Nullity of (l1I – A) = n1 In this case, the vector equation

(l1I – A)v = 0

has n1 linearly independent solutions, say, v1, v2, …, vn1. We have thus, a full set of n1 eigenvectors 

associated with multiple eigenvalue l1.

The remaining (n – n1) eigenvectors are obtained from the vector equations

(ljI – A)vj = 0, j = n1 + 1, …, n

Each of these vector equations has only one linearly independent solution.

The matrix

 P = [v1  v2   vn1  vn1+1   vn]

gives P
–1

AP = L = 

l

l

l

l

l

1

1

1

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

  

  

      

  

  

     

  

n

n

+

È

Î

Í
Í
ÍÍ
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

Case II2: Nullity of (l1I – A) = 1 For this case, there is only one eigenvector associated with l1, 

regardless of multiplicity n1. This eigenvector is given by the linearly independent solution of the vector 

equation

(l1I – A)v = 0

The solution to this equation may be found as in Case I.

 We have seen in Cases I and II1, that the transformation matrix P yields a diagonal matrix L if, and 

only if, P has a set of n linearly independent eigenvectors. When nullity of the matrix (l1I – A) is one, n 

linearly independent eigenvectors cannot be constructed and, therefore, the transformation to a diagonal 

matrix is not possible.

 The simplest form to which matrix A, having a multiple eigenvalue l1 of multiplicity n1 with g (l1I – A) 

= 1 and all other distinct eigenvalues, can be reduced is the Jordan canonical form:

 L = 

L

L

L

1

11

0 0

0 0

0 0

 

 

   

 

n

n

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

where the Jordan blocks Li are

 L1 = 

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0

 

 

    

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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Ln1 +1 = [ln1 + 1];  ; Ln = [ln]

The transformation matrix P is given by

P = [v1  v2   vn1
  vn1+1   vn]

with v1 v2  , vn1
 determined as follows:

 A [v1 v2   vn1
] = [v1 v2   vn1

] 

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0

 

 

    

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

or Av1 = l1v1

 Av2 = v1 + l1v2

  

 Avn1 = vn1 – 1 + l1vn1

Rearranging these equations, we obtain

 (l1I – A)v1 = 0

 (l1I – A)v2 = – v1

  

 (l1I – A)vn1
 = – vn1 – 1

It can easily be established that each of these vector equations gives one linearly independent solution, 

and the solutions v1, v2, ..., vn1
 form a linearly independent set of vectors. We shall call the set of vectors 

{v1, ..., vn1
} the chain of generalized eigenvectors. Note that the vector v1 in the chain is, in fact, the 

eigenvector associated with multiple eigenvalue l1.

Eigenvectors for the Jordan blocks Ln1 + 1, ..., Ln are given by the solution of the vector equations

 (ljI – A)vj = 0; j = n1 + 1, ..., n

The eigenvectors corresponding to distinct eigenvalues, and the chains of generalized eigenvectors 

corresponding to multiple eigenvalues, form the transformation matrix P.

Case II3: 1 < g (l1I – A) < n1 For this case, there are g eigenvectors associated with l1. There will 

be one Jordan block for each eigenvector; that is, l1 will have g blocks associated with it. This case is 

just a combination of the Cases II1 and II2; there is only one ambiguity—the knowledge of n1 and g does 

not directly give the information about the dimension of each of the Jordan blocks associated with l1.

Assume that l1 is a fourth-order root of the characteristic equation and g (l1I – A) = 2. The two 

eigenvectors associated with l1 satisfy

 (l1I – A)va = 0, (l1I – A)vb = 0

To form the transformation matrix, we require two generalized eigenvectors—but it is still uncertain 

whether the generalized eigenvectors are both associated with va, or both with vb, or one with each. That 

is, the two Jordan blocks could take one of the following forms:
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 L1 = 

l

l

l

1

1

1

1 0

0 1

0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, L2 = [l1]

or L1 = 
l

l

1

1

1

0

È

Î
Í

˘

˚
˙ , L2 = 

l

l

1

1

1

0

È

Î
Í

˘

˚
˙

The first pair corresponds to the equations

 (l1I – A)v1 = 0

 (l1I – A)v2 = – v1

 (l1I – A)v3 = – v2

 (l1I – A)v4 = 0

The second pair corresponds to the equations

 (l1I – A)v1 = 0

 (l1I – A)v2 = – v1

 (l1I – A)v3 = 0

 (l1I – A)v4 = – v3

Ambiguities such as this, can be resolved by the trial-and-error procedure.

An n-dimensional SISO system with m distinct eigenvalues l1, l2, ..., lm, of multiplicity n1, n2, ..., nm, 

respectively n ni

i

m

=
Ê

Ë
Á

ˆ

¯
˜

=
Â

1

, has the following Jordan canonical representation:

  x = Lx + bu

 y = cx + du

where L is a block diagonal matrix with Jordan blocks L1, ..., Lm corresponding to the eigenvalues 

l1, ..., lm, respectively, on its principal diagonal; each Jordan block Li corresponding to the eigenvalue 

li is again a block diagonal matrix with g (i) sub-blocks on its principal diagonal; g (i) being the number 

of linearly independent eigenvectors associated with the eigenvalue li:

 L
( )n n¥

 = 

L

L

L

1

2

0 0

0 0

0 0

 

 

   

 m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Li
n ni i( )¥

  = 

L

L

L

1

2

i

i

i i

0 0

0 0

0 0

 

 

   

  g ( )

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; i = 1, 2, …, m 
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Lki = 

l

l

l

i

i

i

1 0 0

0 1 0

0 0 0

 

 

    

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; k = 1, 2, …, g (i)

The topic of computation of eigenvectors and generalized eigenvectors for systems with multiple 

eigenvalues is much too detailed and specialized for this book to treat (Refer to Gopal [105] and Brogan 

[106]). Over the years, experts have developed excellent general-purpose computer programs for the  

efficient and accurate determination of eigenvectors and generalized eigenvectors [152-154].

In this book, the usefulness of the transformation of state variable models to Jordan canonical form will 

be illustrated through system examples having distinct eigenvalues.

5.7 SOLUTION OF STATE EQUATIONS

In this section, we investigate the solution of the state equation

  x(t) = Ax(t) + bu(t); x(t0) =D x0  (5.80)

where x is n ¥ 1 state vector, u is a scalar input, A is n ¥ n constant matrix, and b is n ¥ 1 constant vector.

5.7.1

Functions of square matrices arise in connection with the solution of vector differential equations. Of  

immediate interest to us are matrix infinite series.

Consider the infinite series in a scalar variable x:

  f(x) = a0 + a1x + a2 x
2 +   = 

i=
Â

0

ai x
i (5.81a)

with the radius of convergence r.

 We can define infinite series in a matrix variable A, as

 f(A) = a0I + a1A + a2A
2 +   = 

i=
Â

0

aiA
i (5.81b)

An important relation between the scalar power series (5.81a) and the matrix power series (5.81b) is 

that if the absolute values of eigenvalues of A are smaller than r, then the matrix power series (5.81b) 

converges (for proof, refer to Lefschetz [33]).

Consider, in particular, the scalar power series

 f (x) = 1 + x + 
1

2!
x2 +   + 

1

k !
xk +   = 

1

0
i

xi

i
!

=
Â  (5.82a)

It is well-known that this power series converges on to the exponential ex for all finite x, so that

 f (x) = ex (5.82b)
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It follows from this result that the matrix power series

 f (A) = I + A + 
1

2!
 A2 +   + 

1

k !
 Ak +   = 

1

0
i

i

i
!
A

=
Â

converges for all A. By analogy with the power series in Eqns (5.82) for the ordinary exponential 

function, we adopt the following nomenclature:

If A is an n ¥ n matrix, the matrix exponential of A is

 eA =D I + A + 
1

2!
 A2 +   + 

1

k !
A

k +   = 
1

0
i

i

i
!
A

=
Â

The following matrix exponential will appear in the solution of state equations:

 eAt = I + At + 
1

2!
A

2t2 +   + 
1

k !
A

ktk +   = 
i=
Â

0

1

i!
A

iti  (5.83)

It converges for all A and all finite t. 

 In the following, we examine some of the properties of the matrix exponential.

 (i)  eA0 = I  (5.84)

  This is easily verified by setting t = 0 in Eqn. (5.83).

 (ii)  eA(t + t ) = eAteAt = eAteAt  (5.85)

  This is easily verified by multiplying out the first few terms for eAt and eAt .

 (iii)  (eAt)–1 = e– At (5.86)

  Setting t = – t in Eqn. (5.85), we obtain

   eAte– At = eA0 = I

  Thus the inverse of eAt is e– At.

  Since the inverse of eAt always exists, the matrix exponential is nonsingular for all finite values 

of t.

 (iv)  
d

dt
eAt = AeAt = eAt

A (5.87)

  Term-by-term differentiation of Eqn. (5.83) gives

   
d

dt
eAt = A + A2t + 

1

2!
A

3t2 +   + 
1

1( )!k -
A

k tk – 1 +  

    = A[I + At + 
1

2!
A

2t2 +   + 
1

1( )!k -
A

k – 1tk – 1 +   ] = AeAt

    = [I + At + 
1

2!
A

2t2 +   + 
1

1( )!k -
A

k – 1tk – 1 +   ]A = eAt
A
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5.7.2

The simplest form of the general differential equation (5.80) is the homogeneous, i.e., unforced equation

  x(t) = Ax(t); x(t0) =
D x0 (5.88)

We assume a solution x(t) of the form

 x(t) = eAt
k  (5.89)

where eAt is the matrix exponential function defined in Eqn. (5.83), and k is a suitably chosen constant 

vector.

The assumed solution is, in fact, the true solution since it satisfies the differential equation ( 5.88) as is 

seen below.

  x(t) = 
d

dt
[eAt

k] = 
d

dt
[eAt]k

Using property (5.87) of the matrix exponential, we obtain

  x(t) = AeAt k = Ax(t)

To evaluate the constant vector k in terms of the known initial state x(t0), we substitute t = t0 in Eqn. 

(5.89):

 x(t0) = eAt0 k

Using property (5.86) of the matrix exponential, we obtain

 k = (eAt0)–1
x(t0) = e– At0x(t0)

Thus, the general solution to Eqn. (5.88) for the state x(t) at time t, given the state x(t0) at time t0, is

 x(t) = eAt e–At0 x(t0) = eA(t – t0) x(t0)  (5.90a)

We have used the property (5.85) of the matrix exponential to express the solution in this form.

If the initial time t0 = 0, i.e., the initial state x0 is known at t = 0, we have from Eqn. (5.90a):

 x(t) = eAt
x(0) (5.90b)

From Eqn. (5.90b), it is observed that the initial state x(0) =
D x0 at t = 0 is driven to a state x(t) at time t. 

This transition in state is carried out by the matrix exponential eAt. Due to this property, eAt is known as 

the state transition matrix, and is denoted by e(t).

Properties of the matrix exponential, given earlier in Eqns (5.84)–(5.87), are restated below in terms of 

state transition matrix e(t).

 (i)  
d

dt
e (t) = Ae(t); e(0) = I

 (ii)  e(t2 – t1)e(t1 – t0) = e(t2 – t0) for any t0, t1, t2
  This property of the state transition matrix is important since it implies that a state transition 

process can be divided into a number of sequential transitions. The transition from t0 to t2:

  x(t2) = e(t2 – t0)x(t0);
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  is equal to the transition from t0 to t1 and then from t1 to t2:

   x(t1) = e(t1 – t0)x(t0)

   x(t2) = e(t2 – t1)x(t1)

 (iii) e–1(t) = e(–t)

 (iv) e(t) is a nonsingular matrix for all finite t.

The state transition matrix e(t) = eAt of an n ¥ n matrix A, is given by the infinite series (5.83). The series 

converges for all A and all finite t. Hence, eAt can be evaluated within prescribed accuracy by truncating 

the series at, say, i = N. An algorithm for evaluation of matrix series is given in Section 6.3.

In the following, we discuss the commonly used methods for evaluating eAt in closed form.

Taking the Laplace transform on both 

sides of Eqn. (5.88) yields

sX(s) –  x
0 = AX(s)

where X(s) =D L [x(t)]; x0 
=D x(0)

Solving for X(s), we get

X(s) = (sI – A)– 1
x

0

The state vector x(t) can be obtained by inverse transforming X(s):

x(t) = L 
– 1[(sI – A)–1]x0

Comparing this equation with Eqn. (5.90b), we get

 eAt = e(t) = L 
– 1[(sI – A)–1] (5.91)

The matrix (sI – A)– 1 = F(s) is known in mathematical literature as the resolvent of A. The entries of the 

resolvent matrix F(s) are rational functions of s. Resolvent matrix F(s) can be expressed in the following 

form (refer to Eqn. (5.43)):

 F(s) = 
Q( )

( )

s

sD
 = 

Q Q Q Q1
1

2
2

1

1
1

1

s s s

s s s

n n
n n

n n
n n

- -
-

-
-

+ + + +

+ + + +

 

 a a a
 (5.92a)

where Qi are constant (n ¥ n) matrices and aj are constant scalars. The coefficients of the scalar polynomial 

D(s) and the matrix polynomial Q(s) may be determined sequentially by resolvent algorithm (convenient 

for digital computer) given in Eqns (5.44).

The inverse transform

 L 
–1[Q(s)/D(s)] = eAt  (5.92b)

can be expressed as a power series in t.
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Example 5.10

Consider the system

 x = 

0 0 2

0 1 0

1 0 3

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x; x(0) = 

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

By direct computation, we have

 (sI – A)– 1 = 

s

s

s

0 2

0 1 0

1 0 3

1

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

 = 
( )

| |

s

s

I A

I A

-
-

+

 |sI – A| = (s – 1)2 (s – 2); (sI – A)+ = 

( ) ( ) ( )

( ) ( )

( ) ( )

s s s

s s

s s s

- - - -
- -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 3 0 2 1

0 1 2 0

1 0 1

 eAt = L 
– 1[(sI – A)– 1] = L 

–1 

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) (

s

s s s s

s

s s

s

s s

-
- -

-
- -

-

- - - -

3

1 2
0

2

1 2

0
1

1
0

1

1 2
0

1 2))

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

  

  = 

2 0 2 2

0 0

0 2

2 2

2 2

e e e e

e

e e e e

t t t t

t

t t t t

- -

- + -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Consequently, the free response of the system is

x(t) = eAt
x(0) = 

0

0

et

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Note that x(t) could be more easily computed by taking the inverse Laplace transform of

X(s) = [(sI – A)– 1
x(0)].

Suppose that A is an n ¥ n nondiagonal 

matrix with distinct eigenvalues l1, l2, ..., ln. We define the diagonal matrix L as

L = 

l

l

l

1

2

0 0 0

0 0 0

0 0 0

 

 

    

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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A and L are similar matrices; there exists a nonsingular transformation matrix P such that (refer 

to Eqns (5.22))

L = P–1
AP

Now 

 P
–1eAt

P  = P–1[I + At + 
1

2!
 A

2t2+   ] P = I + P–1
APt + 

1

2!
 P

–1
A

2 Pt2 +   

  = I + P–1
APt + 

1

2!
 P–1

APP
–1

APt2 +   = I + Lt + 
1

2!
 L2t2 +   = eLt

Thus the matrices eAt and eLt are similar. Since L is diagonal, eLtis given by

eLt = 

e

e

e

t

t

tn

l

l

l

1

2

0 0 0

0 0 0

0 0 0

 

 

    

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The matrix exponential eAt of matrix A with distinct eigenvalues l1, l2, ..., ln may, therefore, be evaluated 

using the following relation:

 eAt
 = P eLt 

P
–1 = P 

e

e

e

t

t

tn

l

l

l

1

2

0 0

0 0

0 0

 

 

   

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 P–1  (5.93)

where P is a transformation matrix that transforms A into the diagonal form.

(For the general case wherein matrix A has multiple eigenvalues, refer to [105]. Also refer to Review 

Example 5.3 given at the end of this chapter).

Example 5.11

Consider the system
 x = 

0 1

2 3- -
È

Î
Í

˘

˚
˙  x; x(0) = 

0

1

È

Î
Í

˘

˚
˙

The characteristic equation for this system is

|lI – A| = 
l

l

-
+
1

2 3( )
 = 0

or (l + 1)(l + 2) = 0

Therefore, the eigenvalues of system matrix A are

l1 = – 1, l2 = – 2

Eigenvectors v1 and v2 corresponding to the eigenvalues l1 and l2, respectively, can be determined from 

the adjoint matrix (lI – A)+ (refer to Eqn. (5.79)).
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 (lI – A)+ = 
( )l

l

+
-

È

Î
Í

˘

˚
˙

3 1

2
 

For l = l1 = – 1, 

 (l1I – A)+  = 
2 1

2 1- -
È

Î
Í

˘

˚
˙ ; v1 = 

1

1-
È

Î
Í

˘

˚
˙

For l = l2 = – 2,

 (l2I – A)+  = 
1 1

2 2- -
È

Î
Í

˘

˚
˙ ; v2 = 

1

2-
È

Î
Í

˘

˚
˙

 The transformation matrix P that transforms A into diagonal form, is

 P = 
1 1

1 2- -
È

Î
Í

˘

˚
˙

The matrix exponential

 eAt = P 
e

e

t

t

-

-

È

Î
Í
Í

˘

˚
˙
˙

0

0 2
 P–1 = 

1 1

1 2- -
È

Î
Í

˘

˚
˙ 

e

e

t

t

-

-

È

Î
Í
Í

˘

˚
˙
˙

0

0 2
 

2 1

1 1- -
È

Î
Í

˘

˚
˙

  = 
2

2 2 2

2 2

2 2

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- + - +

È

Î
Í
Í

˘

˚
˙
˙

Consequently, the free response of the system is

 x(t) = eAt
x(0) = 

e e

e e

t t

t t

- -

- -

-

- +

È

Î
Í
Í

˘

˚
˙
˙

2

22

The state transition matrix may be 

evaluated using a technique based on the Cayley–Hamilton theorem. To begin with, we restate the 

theorem proved earlier in Section 5.4 (refer to Eqns (5.45)–(5.46)).

Every square matrix A satisfies its own characteristic equation.

Thus if we have, for an n ¥ n matrix A, the characteristic equation

D(l) = |lI – A| = ln + a1ln –1 +   + an– 1 l + an = 0,

then, according to this theorem

D(A) = An + a1 An– 1 +   + an–1 A + an I = 0

where I is an identity matrix and 0 is a null matrix.

This theorem provides a simple procedure for evaluating the function of a matrix. In the study of linear 

systems, we are mostly concerned with functions which can be represented as a series of the powers of 

a matrix. Consider the matrix polynomial

 f (A) = a0I + a1A + a2A
2 +   + anA

n + an + 1A
n + 1 +   (5.94a)
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This matrix polynomial, which is of degree higher than the order of A, can be computed by consideration 

of the scalar polynomial

 f (l) = a0 + a1l + a2l2 +   + anln + an + 1ln + 1 +   (5.94b)

Dividing f (l) by the characteristic polynomial D(l), we get

 
f( )

( )

l

lD
 = q(l) + 

g( )

( )

l

lD
 (5.95a)

where g(l) is the remainder polynomial of the following form:

 g(l) = b0 + b1l +   + bn – 1ln – 1 (5.95b)

Equation (5.95a) may be written as

 f (l) = q(l)D(l) + g(l) (5.96)

Assume that the n ¥ n matrix A has n distinct eigenvalues l1, l2, ..., ln;

D(li) = 0; i = 1, 2, ..., n

If we evaluate f (l) in Eqn. (5.96) at the eigenvalues l1, l2, ..., ln, we have

 f (li) = g(li), i = 1, 2, ..., n (5.97)

The coefficients b0, b1, ... , bn–1 in Eqn. (5.95b) can be computed by solving the set of n simultaneous 

equations obtained by successively substituting l1, l2, ... , ln in Eqn. (5.97).

Substituting A for l in Eqn. (5.96), we get

f (A) = q(A)D(A) + g(A)

Since D(A) is identically zero, it follows that

f(A) = g(A) = b0I + b1A +   + bn –1 An – 1

If A possesses an eigenvalue lk of multiplicity nk, then only one independent equation can be obtained by 

substituting lk into Eqn. (5.97). The remaining (nk –1) linear equations, which must be obtained in order 

to solve for bi’s, can be found by differentiating both sides of Eqn. (5.97).

Since 
d

d

j

j

k

l
l

l l

D( )
È

Î
Í
Í

˘

˚
˙
˙ =

= 0 ; j = 0, 1, ..., (nk – 1),

it follows that

d

d
f

j

j

k

l
l

l l

( )
È

Î
Í
Í

˘

˚
˙
˙ =

= 
d

d
g

j

j

k

l
l

l l

( )
È

Î
Í
Í

˘

˚
˙
˙ =

; j = 0, 1, ... , (nk – 1) 

The formal procedure of evaluation of the matrix polynomial f(A) is given below.

 (i) Compute D(l) =D |lI – A|

 (ii) Find the roots of D(l) = 0, say,

   D(l) = (l – l1)n1 (l – l2)n2   (l – lm)nm (5.98a)

  where n1 + n2 +   + nm = n. In other words, D(l) has root li with multiplicity ni. If li is a complex 

number, then its complex conjugate is also a root of D(l).
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 (iii) Form a polynomial g(l ) of degree (n – 1); i.e.,

   g(l) = b0 + b1l +   + bn – 1ln – 1 (5.98b)

  where the unknown parameters b0, b1, ..., bn – 1 are to be solved in Step (v).

 (iv) Form the following n equations:

   
d

d
f

j

j
il

l
l l

( )
È

Î
Í
Í

˘

˚
˙
˙ =

= 
d

d
g

j

j

i

l
l

l l

( )
È

Î
Í
Í

˘

˚
˙
˙ =

; 
j n

i m

i=
=

0 1 1

1 2

, , , ( )

, , ,

…

…

–
 (5.98c)

 (v) Solve for the n unknown parameters b0, b1, ... , bn – 1 from the n equations in Step (iv).

  Then 

   f(A) = g(A) = b0I + b1A +   + bn – 1A
n – 1 (5.98d)

Example 5.12

Find f (A) = A10 for

A = 
0 1

2 3- -
È

Î
Í

˘

˚
˙

Solution The characteristic polynomial is

D(l) = |lI – A| = 
l

l

-
+
1

2 3
 = (l + 1)(l + 2)

The roots of D(l) = 0 are l1 = – 1, l2 = – 2.

Since A is of second order, the polynomial g(l) will be of the following form:

g(l) = b0 + b1l

The coefficients b0 and b1 are evaluated from equations

f(l1) = (l1)10 = g(l1) = b0 + b1l1

f(l2) = (l2)10 = g(l2) = b0 + b1l2

The result is

b0 = – 1022, b1 = – 1023

Therefore,

f(A) = A10 = b0I + b1A = 
- -È

Î
Í

˘

˚
˙

1022 1023

2046 2047

The Cayley–Hamilton technique allows us to solve the problem of evaluation of eAt, where A is a constant 

n ¥ n matrix. Since the matrix power series

eAt = I + At + 
A

2 2

2

t

!
 +   + 

A
n nt

n!
 +  

converges for all A and for all finite t, the matrix polynomial f(A) = eAt can be expressed as a polynomial 

g(A) of degree (n – 1). This is illustrated below with the help of an example.
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Example 5.13

Consider the system

  x = Ax

with

 A = 

0 0 2

0 1 0

1 0 3

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 ; x(0) = 

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

In the following, we evaluate the function

 f(A) = eAt

using the Cayley–Hamilton technique.

The characteristic polynomial of matrix A is

 D(l) = |lI – A| = 

l

l

l

0 2

0 1 0

1 0 3

( )

( )

-
- -

 = (l – 1)2 (l – 2)

The characteristic equation D(l) = 0 has a second-order root at l1 = 1 and a simple root at l2 = 2.

Since A is of third order, the polynomial g(l) will be of the form

g(l) = b0 + b1l + b2l2

The coefficients b0, b1, and b2 are evaluated using the following relations:

 f(l1) = g(l1)

 
d

d
f

l
l

l l

( )
= 1

 = 
d

d
g

l
l

l l

( )
= 1

 f(l2) = g(l2)

These relations yield the following set of simultaneous equations:

 et = b0 + b1 + b2

 tet  = b1 + 2b2

 e2t = b0 + 2b1 + 4b2

Solving these equations, we obtain

 b0 = – 2tet + e2t

 b1 = 3tet + 2et – 2e2t, and

 b2  = e2t – et – tet

Hence, we have

 eAt  = g(A) = b0I + b1A + b2A
2

  = (– 2tet + e2t)I + (3tet + 2et – 2e2t)A + (e2t – et – tet)A2
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  = 

2 0 2 2

0 0

0 2

2 2

2 2

e e e e

e

e e e e

t t t t

t

t t t t

- -

- + -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Consequently, the free response (u(t) = 0) of the system is

x(t) = eAt
x(0) = 

0

0

et

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

This result is identical to the one obtained earlier in Example 5.10. 

5.7.3

When an input u(t) is present, the complete solution x(t) is obtained from the nonhomogeneous 

equation (5.80).

By writing Eqn. (5.80) as

  x(t) – Ax(t) = bu(t)

and premultiplying both sides of this equation by e–At, we obtain

 e–At [  x(t) – Ax(t)] = e–At bu(t)  (5.99)

By applying the rule for the derivative of the product of two matrices, we can write (refer to Eqn. (5.87))

 
d

dt
[e– At

x(t)] = e–At d

dt
(x(t)) + 

d

dt
(e–At)x(t) = e–At  x(t) – e– At Ax(t)

  = e–At [  x(t) – Ax(t)]

Use of this equality in Eqn. (5.99) gives

d

dt
[e–At

x(t)] = e– At
bu(t)

Integrating both sides with respect to t between the limits 0 and t, we get

 e–At
x(t) 

0

t

 = e u

t

-Ú A
b

t

0

(t)dt

or e–At
x(t) – x(0) = e

t

-Ú At

0

bu(t)dt

Now, premultiplying both sides by eAt, we have

 x(t) = eAt
x(0) + 

0

t

Ú eA(t – t)
bu(t)dt  (5.100)



 Control System Analysis using State Variable Methods 349

If the initial state is known at t = t0, rather than t = 0, Eqn. (5.100) becomes

 x(t) = e
t tA( )- 0  x(t0) + 

t

t

0

Ú eA(t – t)
bu(t)dt  (5.101)

Equation (5.101) can also be written as

 x(t) = e(t – t0) x(t0) + 

t

t

0

Ú e(t – t ) bu(t) dt  (5.102)

where

e(t) = eAt

Equation (5.102) is the solution of Eqn. (5.80). This equation is called the state transition equation. It 

describes the change of state relative to the initial conditions x(t0) and the input u(t).

Example 5.14

For the speed control system of Fig. 5.3, the following plant model was derived in Example 5.1 (refer to 

Eqns (5.17)):

  x = Ax + bu

 y = cx

with

 A = 
-
- -

È

Î
Í

˘

˚
˙

1 1

1 10
; b = 

0

10

È

Î
Í

˘

˚
˙ ; c = [ 1 0 ]

State variables x1 and x2 are the physical variables of the system:

 x1(t) = w (t), angular velocity of the motor shaft 

 x2(t) = ia(t), armature current

The output

y(t) = x1(t) = w (t)

In the following, we evaluate the response of this system to a unit-step input, under zero initial conditions.

 (sI – A)–1 = 
s

s

+ -
+

È

Î
Í

˘

˚
˙

-
1 1

1 10

1

 = 
1

11 11

10 1

1 12s s

s

s+ +

+
- +

È

Î
Í

˘

˚
˙

  = 

s

s a s a s a s a

s a s a

s

s a s a

+
+ + + +

-
+ +

+
+ +

10 1

1 1

1 2 1 2

1 2 1 2

( )( ) ( )( )

( )( ) ( )( )

ÈÈ

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; a1 = 1.1125, a2 = 9.8875

 eAt = L 
–1[(sI – A)–1]

  = 
1 0128 0 0128 0 114 0 114

0 114 0

1 2 1 2

1

. . . .

. .

e e e e

e

a t a t a t a t

a t

- - - -

-

- -

- + 1114 0 0128 1 01282 1 2e e ea t a t a t- - -- +

È

Î
Í
Í

˘

˚
˙
˙. .

 u(t) = 1; t ≥ 0; x(0) = 0
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Therefore,

 x(t) = 

0

t

Ú eA(t – t )
bdt = 

0

t

Ú
114

114 0 1123 8 8842

1 2

1 2

.

. . .

( ) ( )

( ) (

e e

e e

a t a t

a t a t

- - - -

- - -

-( )
- +

t t

t --( )
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

t )
 dt

  = 
0 9094 1 0247 0 1153

0 0132 0 1151 0 1019

1 2

1

. . .

. . .

- +

- + -

- -

- -

e e

e e

a t a t

a t aa t2

È

Î
Í
Í

˘

˚
˙
˙

The output

y(t) = w(t) = 0.9094 – 1.0247 e–1.1125t + 0.1153e–9.8875t; t ≥ 0

5.8

Controllability and observability are properties which describe structural features of a dynamic system. 

These properties play an important role in modern control system design theory; the conditions on 

controllability and observability often govern the control solution.

To illustrate the motivation of investigating controllability and observability properties, we consider the 

problem of the stabilization of an inverted pendulum on a motor-driven cart.

Example 5.15

Figure 5.16 shows an inverted pendulum with its pivot 

mounted on a cart. The cart is driven by an electric motor. 

The motor drives a pair of wheels of the cart; the whole 

cart and the pendulum become the ‘load’ on the motor. The 

motor at time t exerts a torque T(t) on the wheels. The linear 

force applied to the cart is u(t); T(t) = Ru(t), where R is the 

radius of the wheels.

The pendulum is obviously unstable. It can, however, be 

kept upright by applying a proper control force u(t). This 

somewhat artificial system example represents a dynamic 

model of a space booster on take off—the booster is 

balanced on top of the rocket engine thrust vector.

From inspection of Fig. 5.16, we construct the differential 

equations describing the dynamics of the inverted pendulum 

and the cart. The horizontal displacement of the pivot on 

the cart with respect to the fixed nonrotating frame, is z(t), while the rotational angle of the pendulum is 

q (t). The parameters of the system are as follows:

 M = the mass of the cart;

 L = the length of the pendulum = 2l;

 m = the mass of the pendulum; and

dm

r

Carriage

Pendulum

z

l
l

CG

q

u t( )

Inverted pendulum system
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 J = the moment of inertia of the pendulum with respect to center of gravity (CG).

 J = r dm r Adr A
r2 2

3

3
= =

È

Î
Í
Í

˘

˚
˙
˙- --

Ú Ú
l

l

l

l

l

l

( )r r  = r rA A
2

3
2

3

3 2l
l

lÊ

Ë
Á

ˆ

¯
˜ =

Ê

Ë
Á

ˆ

¯
˜( )

  = 
ml2

3

where A = area of cross section, and r = density.

The horizontal and vertical positions of the CG of the pendulum are given by (z + l sinq ) and (l cosq), 

respectively.

The forces exerted on the pendulum are—the force mg on the center of gravity, a horizontal reaction 

force H and a vertical reaction force V (Fig. 5.17a). H is the horizontal reaction force that the cart exerts 

on the pendulum, whereas –H is the force exerted by the pendulum on the cart. Similar convention 

applies to forces V and –V.

Pivot

(a) (b)

CG

V

V u

mg
z

H

H

0

q

Taking moments around CG of the pendulum, we get

 J
d t

dt

2

2

q( )
 = V(t) l sin q (t) – H(t) l cos q(t) (5.103a)

Summing up all forces on the pendulum in vertical and horizontal directions, we obtain

 m
d

dt

2

2
(l cosq (t)) = V(t) – mg  (5.103b)

 m
d

dt

2

2
(z(t) + l sinq (t)) = H(t) (5.103c)

Summing up all the forces on the cart in the horizontal direction (Fig. 5.17b), we get

 M
d z t

dt

2

2

( )
 = u(t) – H(t) – Fc (5.103d)

where

 Fc = Bc sign ( ) z  (5.103e)

is the model of the frictional force of the cart wheels on the track; Bc is the cart friction coefficient.
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Performing the required differentiation in Eqns (5.103b) and (5.103c), we get

 ml( cos cos )- -   q q q q2
 = V mg-  (5.104a)

 m z l     + - +( )( sin cos )q q q q2
 = H (5.104b)

Substituting (5.103d) into (5.104b) gives

 mz ml ml Fc     + - +q q q qcos sin2  = u M z-    (5.104c)

Now, substituting Eqns (5.104a) and (5.103d) into (5.103a) yields

 J   q = mg ml ml l F l u M z lc- -È
Î

˘
˚ + - -     q q q q q q q2 cos sin sin cos ( ) cos  (5.104d)

We next substitute ( )u M z-   from (5.104c) into (5.104d) and perform manipulations to get

 J   q  = mgl ml mzlsin cosq q q- -2      (5.104e)

Let a = 
1

m M+
Then, we can represent (5.104e) as

   z = – mal mal aF auc
   q q q qcos sin+ - +2

 (5.104f)

We substitute (5.104f ) into (5.104e), to obtain

   q  = 
mgl m l a mal F mal u

J m l a

csin ( sin )/ ( cos ) ( cos )

cos

q q q q q- + -

-

2 2 2

2 2

2 2 

22 2q + ml
 (5.104g)

We next substitute   q  from (5.104e) into (5.104f) to get

   z  = 
- + + - +

+ -

( sin )/ ( sin ( ))( )

cos

m l ag mal a u F J ml

J ml m l a

c
2 2 2 2

2 2 2

2 2q q q 

22q
 (5.104h)

 Since J = 
1

3

2ml , Eqns (5.104g) and (5.104h) reduce to the following nonlinear set of equations.

   q  = 
g mla a F u

l mla

csin ( sin )/ cos ( )

/ cos

q q q q

q

- -

-

 2

2

2 2

4 3

+
 (5.105a)

   z  = 
- + + -

-

( sin )/ ( sin ) / ( ) /

/ cos

mag a ml u F a

ma

c2 2 4 3 4 3

4 3 2

q q q

q
 (5.105b)

Suppose that the system parameters are as follows:

M = 1 kg; m = 0.15 kg; and l = 0.5 m.

Recall that g = 9.81 m/sec2.

In our problem, since the objective is to keep the pendulum upright, it seems reasonable to assume that 
 q( )t and q( )t will remain close to zero. In view of this, we can set with sufficient accuracy sin q   q ;

cos q   1. Also, the second-order deviations q q q q¥ ¥  0 0;   . We further assume, for simplified 

analysis, that Fc = 0.

With these assumptions, we have from Eqns (5.105) 

   q (t) = 16.3106 q (t) – 1.4458 u(t)

   z(t) = – 1.0637 q (t) + 0.9639 u(t) 
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Choosing the states x1 = q, x2 =  q , x3 = z, and x4 =  z , we obtain the following state model for the inverted 

pendulum on moving cart:

  x = Ax + bu  (5.106)

with

A = 

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b = 

0

1 4458

0

0 9639

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

The plant (5.106) is said to be completely controllable if every state x(t0) can be affected or controlled to 

reach a desired state in finite time, by some unconstrained control u(t). Shortly, we will see that the plant 

(5.106) satisfies this condition, and therefore, a solution exists to the following control problem:

Move the cart from one location to another without causing the pendulum to fall.

The solution to this control problem is not unique. We normally look for a feedback control scheme so 

that the destabilizing effects of disturbance forces (due to wind, for example) are filtered out. Figure 5.18a 

shows a state-feedback control scheme for stabilizing the inverted pendulum. The closed-loop system is 

formed by feeding back the state variables through a real constant matrix k:

u(t) = – kx(t)

The closed-loop system is thus described by

 x(t) = (A – bk)x(t)

The design objective in this case is to find the feedback matrix k such that the closed-loop system is 

stable. The existence of a solution to this design problem is directly based on the controllability property 

of the plant (5.106). This will be established in Chapter 7.

Implementation of the state-feedback control solution requires access to all the state variables of the 

plant model. In many control situations of interest, it is possible to install sensors to measure all the 

state variables. This may not be possible or practical in some cases. For example, if the plant model 

includes nonphysical state variables, measurement of these variables using physical sensors is not 

possible. Accuracy requirements or cost considerations may prohibit the use of sensors for some physical 

variables also.

The input and the output of a system are always physical quantities, and are normally easily accessible 

to measurement. We, therefore, need a subsystem that performs the estimation of state variables based 

on the information received from the input u(t) and the output y(t). This subsystem is called an observer 

whose design is based on observability property of the controlled system.

The plant (5.106) is said to be completely observable if all the state variables in x(t) can be observed from 

the measurements of the output y(t) = q (t) and the input u(t). Shortly, we will see that the plant (5.106) 

does not satisfy this condition and therefore, a solution to the observer-design problem does not exist 

when the inputs to the observer subsystem are u(t) and q(t).

Cart position z(t) is easily accessible to measurement and as we shall see, the observability condition is 

satisfied with this choice of input information to the observer subsystem. Figure 5.18b shows the block 
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diagram of the closed-loop system with an observer that estimates the state vector from measurements of 

u(t) and z(t). The observed or estimated state vector, designated as x̂, is then used to generate the control 

u through the feedback matrix k.

Control system with state feedback

A study of controllability and observability properties, presented in this section, provides a basis for the 

state-feedback design problems discussed in Chapter 7. Further, these properties establish the conditions 

for complete equivalence between the state variable and transfer function representations.

In this section, we study the controllability and observability of linear time-invariant systems described 

by state variable model of the following form:

  x(t) = Ax(t) + bu(t)  (5.107a)

 y(t) = cx(t) + du(t)  (5.107b)

where A, b, c and d are respectively n ¥ n, n ¥ 1, 1 ¥ n and 1 ¥ 1 matrices, x(t) is n ¥ 1 state vector, y(t) 

and u(t) are, respectively, output and input variables.

For the linear system given by Eqns (5.107), if there exists an input u[0, t1] which transfers the initial 

state x(0) =D x0 to the state x1 in a finite time t1, the state x0 is said to be controllable. If all initial states 

are controllable, the system is said to be completely controllable, or simply controllable. Otherwise, the 

system is said to be uncontrollable.

From Eqn. (5.100), the solution of Eqn. (5.107a) is

x(t) = eAt
x

0 + 

0

t

Ú eA(t – t ) bu(t ) dt

To study the controllability property, we may assume, without loss of generality, that x1 ∫ 0. Therefore, 

if the system (5.107) is controllable, there exists an input u[0, t1] such that

 – x0 = 

0

1t

Ú e–At bu(t ) dt  (5.108)
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From this equation, we observe that complete controllability of a system depends on A and b, and is 

independent of output matrix c. The controllability of the system (5.107) is frequently referred to as the 

controllability of the pair {A, b}.

It may be noted that according to the definition of controllability, there is no constraint imposed on the 

input or on the trajectory that the state should follow. Further, the system is said to be uncontrollable  

although it may be ‘controllable in part’.

From the definition of controllability, we observe that by complete controllability of a plant we mean 

that we can make the plant do whatever we please. Perhaps this definition is too restrictive in the sense 

that we are asking too much of the plant. But if we are able to show that system equations satisfy this 

definition, certainly there can be no intrinsic limitation on the design of the control system for the plant. 

However, if the system turns out to be uncontrollable, it does not necessarily mean that the plant can 

never be operated in a satisfactory manner. Provided that a control system will maintain the important 

variables in an acceptable region, the fact that the plant is not completely controllable, is immaterial.

Another important point which the reader must bear in mind, is that almost all physical systems are 

nonlinear in nature to a certain extent, and a linear model is obtained after making certain approximations. 

Small perturbations of the elements of A and b may cause an uncontrollable system to become 

controllable. It may also be possible to increase the number of control variables and make the plant 

completely controllable (controllability of multi-input systems is discussed in Section 5.10).

A common source of uncontrollable state variable models arises when redundant state variables are  

defined. No one would intentionally use more state variables than the minimum number needed to 

characterize the behavior of a dynamic system. In a complex system with unfamiliar physics, one may 

be tempted to write down differential equations for everything in sight and, in doing so, may write down 

more equations than are necessary. This will invariably result in an uncontrollable model for the system.

For the linear system given by Eqns (5.107), if the knowledge of the output y and the input u over a finite 

interval of time [0, t1] suffices to determine the state x(0) =D x
0, the state x0 is said to be observable. If 

all initial states are observable, the system is said to be completely observable, or simply observable 

otherwise, the system is said to be unobservable.

The output of the system (5.107) is given by

y(t) = c eAt
 x

0 + c

0

t

Ú eA(t – t )
bu(t)dt + du(t)

The output and the input can be measured and used, so that the following signal h (t) can be obtained 

from u and y.

 h(t) =D y(t) – c

0

t

Ú eA(t – t )
b u(t )dt – d u(t) = c eAt

x
0 (5.109)

Premultiplying by e
TtA
c

T and integrating from 0 to t1 gives

 e e dt e t dt
T Tt T t

t

t

t

TA A A
c c x c

0

0

0

1 1

Ú Ú
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= h( )  (5.110)
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When the signal h(t) is available over a time interval [0, t1], and the system (5.107) is observable, then 

the initial state x0 can be uniquely determined from Eqn. (5.110).

From Eqn. (5.110) we see that complete observability of a system depends on A and c, and is independent 

of b. The observability of the system (5.107) is frequently referred to as the observability of the pair 

{A, c}.

Note that the system is said to be unobservable, although it may be ‘observable in part’. Plants that are 

not completely observable can often be made observable by making more measurements (observability 

of multi-output systems will be discussed in Section 5.10). Alternately, one may examine feedback 

control schemes which do not require complete state feedback.

5.8.2

It is difficult to guess whether a system is controllable or not from the defining equation (5.108). Some 

simple mathematical tests which answer the question of controllability, have been developed. The 

following theorem gives two controllability tests.

The necessary and sufficient condition for the system (5.107) to be completely 

controllable is given by any one of the following:

 I.  W(0, t1) = e e dtt

t

T tT-Ú A
b b

0

1

–A  (5.111)

  is nonsingular.

 II. The n ¥ n controllability matrix

   U =D [b Ab A
2
b   An – 1

b]  (5.112)

  has rank equal to n, i.e., r(U) = n.

  Since Test II can be computed without integration, it allows the controllability of a system to be 

easily checked.

Sufficiency: If W(0, t1) given in Eqn. (5.111) is nonsingular, the input

 u(t) = – bT e
Tt-A

W
–1(0, t1)x0 (5.113)

can be applied to the system. This input satisfies the condition given in Eqn. (5.108):

 e dtt

t

-Ú A
b

0

1

u t( )  = - - - -Ú e e t dtt T t

t
T

A A
bb W x

1
1

0

0

0

1

( , )

  = – e e dtt T

t
Tt- -Ú

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

A A
bb

0

1

W
–1(0, t1)x0 = – x0

Necessity: Assume that the system is controllable, though W(0, t1) is singular for any t1. Then, as per 

the results given in Eqns (5.8), the n rows of e– At
b are linearly dependent, i.e., there exists a nonzero

n ¥ 1 vector ` such that

 `Te–At b = 0 (5.114)
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From the assumption of controllability, there exists an input u satisfying Eqn. (5.108); therefore, from 

Eqns (5.108) and (5.114),

 – `T
x

0 = 

0

1t

Ú `Te–At
b u(t) dt = 0  (5.115)

holds for any initial state x0. By choosing x0 =  `, Eqn. (5.115) gives (refer to Eqn. (5.6a)),

`T ̀  = [||` ||]2 = 0

This is true only for ` = 0, which contradicts the nonzero property of `. Therefore, the nonsingularity 

of W(0, t1) is proved.

Sufficiency: It is first assumed that though r (U) = n, the system is not controllable, and by showing that 

this is a contradiction, the controllability of the system is proved.

By the above assumption,

r (U) = n and W(0, t1) is singular.

Therefore, Eqn. (5.114) holds, i.e.,

`Te– At  
b = 0; t ≥ 0, ` π 0

Derivatives of the above equation at t = 0, yield (refer to Eqn. (5.87)),

`T
A

k
b = 0; k = 0, 1, ..., (n – 1)

which is equivalent to

`T [b Ab ◊◊◊ An – 1
b] = `T 

U = 0

Therefore, n rows of controllability matrix U are linearly dependent (refer to Eqn. (5.8a)). This contradicts 

the assumption that r(U) = n; hence the system is completely controllable. 

Necessity: It is assumed that the system is completely controllable but r (U) < n. From this assumption, 

there exists nonzero vector ` satisfying

`T
U = 0

or

 `T
A

k b = 0; k = 0, 1, ..., (n – 1)  (5.116a)

Also from the Cayley–Hamilton theorem, e–At can be expressed as a linear combination of I, A, ..., An–1:

 e–At = b0I + b1A +   + bn – 1 An–1 (5.116b)

From Eqns (5.116a) and (5.116b), we obtain

`Te–At
b = 0, t ≥ 0, ` π 0

and therefore (refer to Eqns (5.8)),

0

1t

Ú `Te–At
b b

T e
Tt-A ` dt = `T

W(0, t1) ` = 0

Since the system is completely controllable, W(0, t1) should be nonsingular from Test I; this contradicts 

the assumption that ` is nonzero. Therefore, r(U) = n.
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Example 5.16

Recall the inverted pendulum of Example 5.15, shown in Fig. 5.16, in which the object is to apply a force 

u(t) so that the pendulum remains balanced in the vertical position. We found the linearized equations 

governing the system to be

 x = Ax + bu

where x = [q  q  z  z]T

A = 

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b = 

0

1 4458

0

0 9639

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

z(t) = horizontal displacement of the pivot on the cart; and 

q (t) = rotational angle of the pendulum.

To check the controllability of this system, we compute the controllability matrix U:

U = [b Ab A
2
b A

3
b] = 

0 1 4458 0 23 5816

1 4458 0 23 5816 0

0 0 9639 0 1 5379

0 9639 0 1 5

- -
- -

. .

. .

. .

. . 3379 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Since |U| = 420.4851, U has full rank, and by Theorem 5.2, the system is completely controllable. Thus, 

if the angle q departs from equilibrium by a small amount, a control always exists which will drive it 

back to zero.10 Moreover, a control also exists which will drive both q and z, as well as their derivatives, 

to zero.

It may be noted that Eqn. (5.113) suggests a control law to prove the sufficiency of the controllability test. 

It does not necessarily give an acceptable solution to the control problem. The open-loop control given 

by Eqn. (5.113) is normally, not acceptable. In Chapter 7, we will derive a state-feedback control law for 

the inverted pendulum. As we shall see, for such a control to exist, complete controllability of the plant 

is a necessary requirement.

Example 5.17

Consider the electrical network shown in Fig. 5.19. Differential equations governing the dynamics of 

this network, can be obtained by various standard methods. By use of nodal analysis, for example, we 

get

 C1

de

dt

e e

R

e e

R

1 1 2

3

1 0

1

+
-

+
-

 = 0

 C2

de

dt

e e

R

e e

R

2 2 1

3

2 0

2

+
-

+
-

 = 0

 10 This justifies the assumption that q (t) @ 0, provided we choose an appropriate control strategy.
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The appropriate state variables for the network are the capacitor 

voltages e1 and e2. Thus, the state equations of the network are

  x = Ax  + be0

where x = [e1 e2]T

 A = 

- +
Ê
ËÁ

ˆ
¯̃

- +
Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 1 1 1

1 1 1 1

1 3 1 3 1

3 2 2 3 2

R R C R C

R C R R C

; b = 

1

1

1 1

2 2

R C

R C

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

The controllability matrix of the system is

U = [b Ab] = 

1 1 1 1 1

1 1 1 1

1 1 1 1
2

3 1 2 2 1 1

2 2 2 2
2

3 2

RC R C R C R C R C

R C R C R C

- + -
Ê
ËÁ

ˆ
¯̃

- +

( )

( ) RR C R C1 1 2 2

1
-

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

We see that under the condition

R1C1 = R2C2

r (U) = 1 and the system becomes ‘uncontrollable’. This condition is the one required to balance the 

bridge, and in this case, the voltage across the terminals of R3 cannot be influenced by the input e0.

5.8.3

The following theorem gives two observability tests. 

The necessary and sufficient condition for the system (5.107) to be completely 

observable, is given by any one of the following:

 I.  M(0, t1) = e
T
t

t

A

0

1

Ú c
T
ceAtdt (5.117)

  is nonsingular.

 II. The n ¥ n observability matrix

   V =D 

c

cA

cA

 

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 (5.118)

  has rank equal to n, i.e., r(V) = n.

+ R1

R3

R2

e2

C2C1

e1

e0
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Proof Using the defining equation (5.110), this theorem can be proved in a manner similar to 

Theorem 5.2.

Example 5.18

We now return to the inverted pendulum of Example 5.16. Assuming that the only output variable to be 

measured is q (t), the position of the pendulum, then the linearized equations governing the system are

 �x = Ax + bu

 y = cx

where A  = 

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 ; b = 

0

1 4458

0

0 9639

– .

.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 c = [ 1 0 0 0 ]

The observability matrix

 V = 

c

cA

cA

cA

2

3

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 = 

1 0 0 0

0 1 0 0

16 3106 0 0 0

0 16 3106 0 0

.

.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

|V| = 0, and therefore, by Theorem 5.3, the system is not completely observable.

Consider now, the displacement z(t) of the cart as the output variable. Then

c = [0 0 1 0]

and the observability matrix

V = 

0 0 1 0

0 0 0 1

1 0637 0 0 0

0 1 0637 0 0

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

|V| = 1.1315 π 0; the system is, therefore, completely observable. The values of �z(t), q (t) and �q (t) can 

all be determined by observing z(t) over an arbitrary time interval. Observer design for the inverted-

pendulum system is given in Chapter 7.

5.8.4 Invariance Property

It is recalled that the state variable model for a system is not unique, but depends on the choice of a set 

of state variables. A transformation

x(t) = P x (t); P is a nonsingular constant matrix, 
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results in the following alternative state variable model (refer to Eqns (5.22)) for the system (5.107):

  x (t) = A x (t) + bu(t); x(t0) = P–1
x(t0)

 y(t)  = c x(t) + du(t)

where

 A  = P–1
AP, b  = P–1

b, c  = cP

The definition of a new set of internal state variables should, evidently, not affect the controllability and 

observability properties. This may be verified by evaluating the controllability and observability matrices 

of the transformed system.

 I.  U = [ ( ) ]b A b b A
n - 1  (5.119a)

   b  = P–1
b

   A b  = P–1
APP

– 1
b = P–1

Ab

   ( )A
2 b  = A A b( )  = P–1

APP
–1

Ab = P–1
A

2
b

     

   ( )A b
n - 1  = P–1

A
n–1

b 

  Therefore, 

   U = [P–1
b  P

–1
Ab   P–1

A
n –1

b] = P–1
U

  where U = [b Ab   An – 1
b]  (5.119b)

  Since P–1 is nonsingular,

   r (U) = r(U) (5.119c)

 II. A similar relationship can be shown for the observability matrices.

5.8.5

If the system equations are known in Jordan canonical form, then one need not resort to controllability 

and observability tests given by Theorems 5.2 and 5.3. These properties can be determined almost by 

inspection of the system equations, as will be shown below.

Consider a SISO system with distinct eigenvalues l1, l2, ..., ln. The Jordan canonical state model of this 

system is of the form

  x = Lx + bu 

 y = cx + du 
(5.120)

with L = 

l

l

l

1

2

0 0

0 0

0 0

 

 

   

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b = 

b

b

bn

1

2

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2   cn]
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The system (5.120) is completely controllable if, and only if, none of the elements of 

the column matrix b is zero, and (5.120) is completely observable if, and only if, none of the elements 

of the row matrix c is zero.

The controllability matrix

 U = [b Lb   Ln – 1
b]

  = 

b b b

b b b

b b b

n

n

n n n n n
n

1 1 1 1 1
1

2 2 2 2 2
1

1

l l

l l

l l

 

 

   

 

-

-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙̇

  |U| = b1 ¥ b2  ¥   ¥ bn 

1

1

1

1 1
1

2 2
1

1

l l

l l

l l

 

 

   

 

n

n

n n
n

-

-

-

 π 0 if bi π 0, i = 1, 2, ..., n.

This proves the first part of the theorem. The second part can be proved in a similar manner.11

In frequency-domain analysis, it is tacitly assumed that the dynamic properties of a system are completely 

determined by the transfer function of the system. That this is not always the case is illustrated by the 

following examples.

Example 5.19

Consider the system

  x = Ax + bu 

 y = cx (5.121)

with A = 
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
; b = 

1

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

The controllability matrix

U = [b Ab] = 
1 1

1 1

-
-

È

Î
Í

˘

˚
˙

 11 Refer to Gopal [105] for controllability and observability tests using Jordan canonical representation of systems 

with multiple eigenvalues
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Since r(U) = 1, the second-order system (5.121) is not completely controllable. The eigenvalues of 

matrix A are the roots of the characteristic equation

|sI – A| = 
s

s

+ -
- +

2 1

1 2
 = 0

The eigenvalues are obtained as – 1, – 3. The modes of the transient response are, therefore, e– t and e–3t.

The transfer function of the system (5.121) is calculated as

 G(s) = c(sI – A)–1
b = [0 1] 

s

s

+ -
- +

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

-
2 1

1 2

1

1

1

  = [0 1] 

s

s s s s

s s

s

s s

+
+ + + +

+ +
+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙

2

1 3

1

1 3

1

1 3

2

1 3

( )( ) ( ) ( )

( ) ( ) ( ) ( )

˙̇
˙

 
1

1

È

Î
Í

˘

˚
˙  = 

1

1s +

We find that because of pole-zero cancellation, both the eigenvalues of matrix A do not appear as poles 

in G(s). The dynamic mode e–3t of the system (5.121), does not show up in input-output characterization 

given by the transfer function G(s). Note that the system under consideration is not a completely 

controllable system.

Example 5.20

Consider the system

  x = Ax + bu 

 y = cx (5.122)

with A = 
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
; b = 

1

0

È

Î
Í

˘

˚
˙ ; c = [1  –1]

The observability matrix

 V = 
c

cA

È

Î
Í

˘

˚
˙  = 

1 1

3 3

-
-

È

Î
Í

˘

˚
˙

Since r(V) = 1, the second-order system (5.122) is not completely observable.

The eigenvalues of matrix A are – 1, – 3. The transfer function of the system (5.122) is calculated as

 G(s) = c(sI – A)–1
b

  = [1  –1] 

s

s s s s

s s

s

s s

+
+ + + +

+ +
+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙

2

1 3

1

1 3

1

1 3

2

1 3

( )( ) ( ) ( )

( ) ( ) ( ) ( )

˙̇
˙

 
1

0

È

Î
Í

˘

˚
˙  = 

1

3s +

The dynamic mode e–t of the system (5.122), does not show up in the input-output characterization given 

by the transfer function G(s). Note that the system under consideration is not a completely observable system.
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In the following, we give two specific state transformations to reveal the underlying structure imposed 

upon a system by its controllability and observability properties (for proof, refer to [105]). These results 

are then used to establish equivalence between transfer function and state variable representations.

Consider an nth-order system

  x = Ax + bu 

 y = cx 
(5.123a)

Assume that

 r(U) = r[b Ab   An – 1
b] = m < n

Consider the equivalence transformation

 x = P x  = [ P1 P2] x  (5.123b)

where P1 is composed of m linearly independent columns of U, and (n – m) columns of P2 are chosen 

arbitrarily so that matrix P is nonsingular.

The equivalence transformation (5.123b) transforms the system (5.123a) to the following form:

 
 

 

x

x

1

2

È

Î
Í

˘

˚
˙  = 

A A

0 A

x

x

b

0

c c12

22

1

2

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙  u 

  = A x  + bu (5.123c)

 y = [ ]c c
x

x
c x1 2

1

2

È

Î
Í

˘

˚
˙ =

where the m-dimensional subsystem

 x A x b A x1 1 12 2= + +c c u

is controllable from u (the additional driving term A x12 2 has no effect on controllability); the (n – m) 

dimensional subsystem
 x A x2 22 2=

is not affected by the input and is, therefore, entirely uncontrollable.

This theorem shows that any system which is not completely controllable, can be decomposed into  

controllable and uncontrollable subsystems shown in Fig. 5.20. The state model (5.123c) is said to be in 

controllability canonical form.

In Section 5.4, it was shown that the characteristic equations and transfer functions of equivalent systems 

are identical. Thus, the set of eigenvalues of matrix A of system (5.123a) is same as the set of eigenvalues 

of matrix A of system (5.123c), which is a union of the subsets of eigenvalues of matrices Ac  and A22 . 

Also the transfer function of system (5.123a) must be the same as that of (5.123c). The transfer function 

of (5.123a) is calculated from Eqn. (5.123c) as12

 
12 A A

0 A

1 2

3

È

Î
Í
Í

˘

˚
˙
˙

  
B B

B B

1 2

3 4

È

Î
Í
Í

˘

˚
˙
˙

 = 
I 0

0 I

È

Î
Í
Í

˘

˚
˙
˙

  gives 
B B

B B

1 2

3 4

È

Î
Í
Í

˘

˚
˙
˙

 = 
A A A A

0 A

1
1

1
1

2 3
1

3
1

- - -

-

-È

Î
Í
Í

˘

˚
˙
˙
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 G(s) = c c
I A A

0 I A

b

0
1 2

12

22

1

[ ] - -
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

-
s

s

c c

  = c c1 2[ ]
( ) ( ) ( )

( )

s s s

s

c cI A I A A I A

0 I A

- - -

-

È

Î
Í
Í

˘

˚
˙
˙

– – –

–

1 1
12 22

1

22
1

  = c I A1
1( )s c- –
bc

Therefore, the input-output relationship for the system is dependent only on the controllable part of 

the system. We will refer to the eigenvalues of Ac as controllable poles and the eigenvalues of A22  as 

uncontrollable poles.

Only the controllable poles appear in the transfer function model; the uncontrollable poles are canceled 

by the zeros.

Consider the nth-order system

  x = Ax + bu 

 y = cx (5.124a)

Assume that

 r (V) = r 

c

cA

cA

 

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 = l < n 

Consider the equivalence transformation

 x = Qx = 
Q

Q

1

2

È

Î
Í

˘

˚
˙ x  (5.124b)

where Q1 is composed of l linearly independent rows of V, (n – l) rows of Q2 are chosen arbitrarily so 

that matrix Q is nonsingular.

The equivalence transformation (5.124b) transforms the system (5.124a) to the following form:

 
 

 

x

x

1

2

È

Î
Í

˘

˚
˙  = 

A 0

A A

x

x

b

b

0

21 22

1

2

1

2

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ u = A x  + bu (5.124c)

u

y
+

x A x b A x= + +u 21 1 12c c

x1

x2
c2

c1

x A x=2 22 2

The controllability canonical form of a state variable model
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 y = [ c 00 ]
x

x
c x

1

2

È

Î
Í

˘

˚
˙ =

where the l-dimensional subsystem

  x1 = A x b0 1 1+ u

 y = c x0 1

is observable from y, and the (n – l)-dimensional subsystem 

  x2 = A x b A x22 2 2 21 1+ +u

has no effect upon the output y, and is therefore entirely unobservable, i.e., nothing about x2 can be 

inferred from output measurement.

This theorem shows that any system which is not completely observable, can be decomposed into the 

observable and unobservable subsystems shown in Fig. 5.21. The state model (5.124c) is said to be in 

observability canonical form.

The observability canonical form of a state variable model

Since systems (5.124a) and (5.124c) are equivalent, the set of eigenvalues of matrix A of system (5.124a) 

is same as the set of eigenvalues of matrix A of system (5.124c), which is a union of the subsets of 

eigenvalues of matrices A0 and A22. The transfer function of the system (5.124a) may be calculated from 

(5.124c) as follows:

 G(s) =  [ ]c 0
I A 0

A I A

b

b
0

0

21 22

1

1

2

s

s

-
- -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

-

  = [ ]
( )

( ) ( ) ( )
c 0

A

A A A A

b

b
0

0
1

22
1

21 0
1

22
1

1s

s s s

I 0

I I I

-

- - -

È

Î
Í
Í

˘

˚
˙
˙

-

- - -
22

È

Î
Í

˘

˚
˙

  = c I A b0 0
1

1( )s - -  (5.125)

which shows that the unobservable part of the system does not affect the input-output relationship. We 

will refer to the eigenvalues of A0  as observable poles and the eigenvalues of A22  as unobservable 

poles.

We now examine the use of state variable and transfer function models of a system to study its dynamic 

properties.

We know that a system is asymptotically stable if all the eigenvalues of the characteristic matrix A 

of its state variable model, are in the left half of the complex plane. Also, we know that a system is  



 Control System Analysis using State Variable Methods 367

(Bounded-Input Bounded-Output) BIBO stable if all the poles of its transfer function model are in the 

left half of the complex plane. Since, in general, the poles of the transfer function model of a system 

are a subset of the eigenvalues of the characteristic matrix A of the system, asymptotic stability always 

implies BIBO stability.

The reverse, however, may not always be true because the eigen values of the uncontrollable and/or 

unobservable part of the system are hidden from the BIBO stability analysis. These may lead to instability 

of a BIBO stable system. When a state varia ble model is both controllable and observable, all the eigen-

values of characteristic matrix A appear as poles in the corre sponding transfer function. Therefore, BIBO 

stability implies asymptotic stability only for completely controllable and com pletely observable system. 

To conclude, we may say that the transfer function model of a system represents its complete dynamics 

only if the system is both controllable and observable.

Many of the analysis results developed in earlier sections of this 

chapter for SISO systems have obvious extensions for MIMO 

systems.

Consider a general MIMO system shown in the block diagram 

of Fig. 5.22. The input variables are represented by u1, u2, ..., 

up, and the output variables by y1, y2, ..., yq. The state, as in the 

case of SISO systems, is represented by variables x1, x2, ..., xn.

The state variable model for a MIMO system takes the following 

form:

  x( )t  = Ax(t) + Bu(t); x(t0) =D x0 (5.126a)

 y(t) = Cx(t) + Du(t) (5.126b)

where

 A = 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

 

 

   

 

È
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˘
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˙
˙
˙
˙

; B = 

b b b

b b b

b b b

p

p

n n np
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21 22 2
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È
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˘
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˙
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 C = 

c c c

c c c

c c c

n
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q q qn
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˘

˚

˙
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, D = 

d d d

d d d

d d d

p

p

q q qp

11 12 1

21 22 2

1 2
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˘

˚

˙
˙
˙
˙
˙

A, B, C and D are, respectively, n ¥ n, n ¥ p, q ¥ n, and q ¥ p constant matrices; x is n ¥ 1 state vector, u is 

p ¥ 1 input vector, and y is q ¥ 1 output vector.

The solution of the state equation (5.126a) is given by (refer to Eqn. (5.100))

yq

MIMO

system

up

x1 x2 xn

y2

y1

u2

u1

A general MIMO system
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 x(t) = eAt
x(0) + 

0

t

Ú eA(t – t) Bu(t ) dt (5.127a)

The output

 y(t) = C e e dt t

t

A A
x Bu( ) ( )( )0

0

+
È

Î

Í
Í

˘

˚

˙
˙

-Ú t
t t  + Du(t) (5.127b)

 In the transform domain, the input-output behavior of the system (5.126) is determined entirely by the 

matrix (refer to Eqn. (5.28))

 G(s) = C(sI – A)–1 B + D (5.128a)

 This matrix is called the transfer function matrix of system (5.126), and it has the property that the input 

U(s) and output Y(s) of Eqns (5.126) are related by

 Y( )
( )

s
q¥1

 = G U( ) ( )
( ) ( )

s s
q p p¥ ¥1

 (5.128b)

whenever x0 = 0.

 In an expanded form, Eqn. (5.128b) can be written as

Y s

Y s

Y sq
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U sp)
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˙

1

2

�

The (i, j)th element Gij(s) of G(s) is the transfer function relating the ith output to the jth input.

Example 5.21

The scheme of Fig. 5.23 describes a simple concentration control process. Two concentrated solutions of 

some chemical with constant concentrations C1 and C2 are fed with flow rates Q1(t) = Q1  +  q1(t), and 

Q2(t) = Q2  +q2(t), respectively, and are continu ously mixed in the tank. The outflow from the mixing 

tank is at a rate Q(t) = Q  + q(t) with concentration C(t) = C  + c(t). Let it be assumed that stirring causes 

perfect mixing so that the con centration of the solution in the tank is uniform throughout, and equals that 

of the outflow. We shall also assume that the density remains constant.

Let V(t) = V  + v(t) be the volume of the fluid in the tank.

The mass balance equations are

 
d

dt
[V  +  v(t)] = Q1  + q1(t) + Q2  +q2(t) – Q  – q(t) (5.129a)

 
d

dt
[{C  + c(t)}{V  +  v(t)}] = C1[ Q1  +  q1(t)] + C2[ Q2  +  q2(t)] – [ C  + c(t)][ Q  + q(t)] (5.129b)
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 The flow Q(t) is characterized by the turbulent flow relation

 Q(t) = k H t( )  = k
V t

A

( )
 (5.130)

where H(t) = H  +  h(t) is the head of the liquid in the tank, A is the cross-sectional area of the tank and 

k is a constant.

The steady-state operation is described by the equations (ob tained from Eqns (5.129) and (5.130))

 0 = Q Q Q1 2+ -

 0 = C Q C Q CQ1 1 2 2+ -

 Q = k
V

A

 For small perturbations about the steadystate, Eqn. (5.130) can be linearized using Eqn. (5.11c):

 Q(t) – Q = 
k

A

V t

V t
V V

∂
∂

=

( )

( )
 (V(t) – V )

or  q(t) = 
k

V2

V

A
v(t) = 

Q

V2
 v(t)
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 From the foregoing equations, we obtain the following relations describing perturbations about 

steadystate:

 �v(t) = q1(t) + q2(t) – 
1

2

Q

V
 v(t) (5.131a)

 C t c t� �v V( ) ( )+  = C1 q1(t) + C2 q2(t) – 
1

2

CQ

V
 v(t) – Q c(t) (5.131b)

(Second-order terms in perturbation variables have been neglect ed) 

The hold-up time of the tank is 

t = 
V

Q

Let us define

 x1(t) = v(t), x2(t) = c(t), u1(t) = q1(t), u2(t) = q2(t), y1(t) = q(t), and y2(t) = c(t)

In terms of these variables, we get the following state model from Eqns (5.131):

 �x (t) = 
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˘
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1 2C C
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C C
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 u(t) (5.132a)

 y(t) = 

1

2
0

0 1

t

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x(t) (5.132b)

For the parameters

Q1  = 10 liters/sec, Q2 = 20 liters/sec, C1 = 9 g-moles/liter, C2 = 18 g-moles/liter, V  = 1500 liters, the state 

variable model becomes

 �x (t) = Ax(t) + Bu(t) (5.133a)

 y(t) = Cx(t) (5.133b)

with 

A = 
-

-

È

Î
Í

˘

˚
˙

0 01 0

0 0 02

.

.
; B = 

1 1

0 004 0 002-

È

Î
Í

˘

˚
˙

. .
; C  = 

0 01 0

0 1

.È

Î
Í

˘

˚
˙

 In the transform domain, the input-output behavior of the system is given by 

 Y(s) = G(s) U(s)

where

 G(s) = C(sI – A)–1
B

 For A, B, and C given by Eqns (5.133), we have 

(sI – A) = 
s

s

+

+

È

Î
Í

˘

˚
˙

0 01 0

0 0 02

.

.
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 G(s) = C(sI – A)–1
B = 
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 (5.134)

The necessary and sufficient condition for the system (5.126) to be completely controllable, is that the 

n ¥ np matrix

 U =D [B AB A
2
B   An – 1

B] (5.135)

has rank equal to n, i.e., r (U) = n.

The necessary and sufficient condition for the system (5.126) to be completely observable, is that the 

nq ¥ n matrix

 V =D 

C

CA

CA

 

n-
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Í
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˙
˙
˙
˙
˙1

 (5.136)

has rank equal to n, i.e., r (V) = n.

 

The controllability and observability properties can be deter mined by the inspection of the system 

equations in Jordan canoni cal form. A MIMO system with distinct eigenvalues l1, l2, ..., ln has the 

following Jordan canonical state model:

  x = Lx + Bu (5.137a)

 y = Cx + Du (5.137b)

with 

L = 

l

l

l
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2

0 0

0 0

0 0
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The system (5.137) is completely controllable if, and only if, none of the rows of B matrix is a zero 

row, and (5.137) is completely observable if, and only if, none of the columns of C matrix is a zero 

column.

We have been using Jordan canonical structure only for systems with distinct eigenvalues. Refer to [105] 

for controllability and observability tests using Jordan canonical representation of systems with multiple 

eigenvalues.

Example 5.22

Consider the mixing-tank system discussed in Example 5.21. Sup pose the feeds Q1 and Q2 have equal 

concentrations, i.e., C1 = C2 = C0 (Fig. 5.23). Then the steady-state concentration in the tank is also C0, 

and from Eqn. (5.132a) we have

 x(t) = 

-

-

È

Î

Í
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Í
Í

˘

˚

˙
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˙
˙

1

2
0

0
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t

t

 x(t) + 
1 1

0 0

È

Î
Í

˘

˚
˙  u(t)

This state variable model is in Jordan canonical form. Since one row of the B matrix is a zero row, 

the system is not completely controllable. As is obvious from the Jordan canonical model, the input 

u(t) affects only the state variable x1(t), the incremental volume. The variable x2(t), the incremental 

concentration, has no connection with the input u(t).

If C1 π C2, the system is completely controllable.

REVIEW EXAMPLES

Review Example 5.1

A feedback system has a closed-loop transfer function

Y s

R s

( )

( )
 = 

10 4

1 3

( )

( )( )

s

s s s

+
+ +

Construct the following three different state models for this system:

 (a) One where the system matrix A is a diagonal matrix.

 (b) One where A is in first companion form.

 (c) One where A is in second companion form.

Solution

 (a) The given transfer function can be expressed as 

  
Y s

R s

( )

( )
 = 

10 4

1 3

( )

( )( )

s

s s s

+
+ +

 = 
40 3 15

1

5 3

3

/ /

s s s
+

-
+

+
+
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  Therefore, 

   Y(s) = 
40 3/

s
 R(s) + 

-
+
15

1s
 R(s) + 

5 3

3

/

s +
 R(s)

  Let X1(s) = 
40 3/

s
 R(s); this gives  x1  = 

40

3
r

   X2(s) = 
-

+
15

1s
R(s); this gives  x2  + x2 = – 15r

   X3(s) = 
5 3

3

/

s +
 R(s); this gives  x3  + 3x3 = 

5

3
r

  In terms of x1, x2 and x3, the output y(t) is given by

  y(t) = x1(t) + x2(t) + x3(t)

  A state variable formulation, for the given transfer function, is defined by the following matrices:

  L = 

0 0 0

0 1 0

0 0 3

-
-

È

Î

Í
Í
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˘

˚

˙
˙
˙

; b = 

40 3

15

5 3

/

/

-
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Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 1 1]; d = 0

  Note that the coefficient matrix A is diagonal, and the state model is in Jordan canonical form. 

  We now construct two state models for the given transfer function in companion form. To do this, 

we express the transfer function as

  
Y s

R s

( )

( )
 = 

10 4

1 3

( )

( )( )

s

s s s

+
+ +

 = 
10 40

4 33 2

s

s s s
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+ +
 = 

b b b b

a a a

0
3

1
2

2 3

3
1

2
2 3

s s s

s s s

+ + +

+ + +
;

  b0 = b1 = 0, b2 = 10, b3 = 40, a1 = 4, a2 = 3, a3 = 0

 (b) With reference to Eqns (5.54), we obtain the following state model in the first companion form:

  A = 

0 1 0

0 0 1

0 3 4- -
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; b = 
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1
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; c = [40 10 0]; d = 0

 (c) With reference to Eqns (5.56), the state model in second companion form becomes

  A = 

0 0 0

1 0 3

0 1 4

-
-

È
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˚
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; b = 
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, c = [0 0 1]; d = 0

Review Example 5.2

A linear time-invariant system is characterized by the homogene ous state equation
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0 2
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 (a) Compute the solution of the homogeneous equation assuming the initial state vector

x(0) = 
1

0

È

Î
Í

˘

˚
˙

  Employ both the Laplace transform method and the canonical trans formation method. 



374  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (b) Consider now that the system has a forcing function and is represented by the following 

nonhomogeneous state equation:
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x
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  where u is a unit-step input. 

  Compute the solution of this equation assuming initial conditions of part (a).

Solution 

 (a) Since

   (sI – A) = 
s

s

-
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1

0 2

  we obtain

   (sI – A)–1 = 

1 1

2

0
1

2

s s s

s

( )+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  Hence 
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  To obtain the state transition matrix eAt by the canonical trans formation method, we compute the 

eigenvalues and eigenvectors of matrix A. The roots of the characteristic equation

  |lI – A| = 0

  are l1 = 0, and l2 = – 2. These are the eigenvalues of matrix A. Eigenvectors corresponding to the 

distinct eigenvalues l i, may be obtained from the nonzero columns of adj(l iI – A).

  For the given A matrix

   adj(lil – A) = 
l

l

i

i
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  For l1 = 0, adj(l1I – A) = 
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   The eigenvector v1 corresponding to the eigenvalue l1 is, there fore, given by

   v1 = 
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  For l2 = – 2, adj (l2I – A) = 
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   The eigenvector v2 corresponding to the eigenvalue l2 is given by

  v2 = 
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  The transformation matrix 
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   The state transition matrix (refer to Eqn. (5.93))
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e d

t

t

t

t

t

t

t

t

 = 
- + +

-

È

Î

Í
Í

˘

˚

˙
˙

-

-

1
4

1
2

1
4

2

1
2

21

t e

e

t

t( )

  Therefore, 

   x1(t) = - + + -1
4

1
2

1
4

2t e t

   x2(t) = 
1
2 (1 – e–2t)

Review Example 5.3

Given

L
n n¥

 = 

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0 1

0 0 0

 

 

    

 

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Compute eLt using the Cayley–Hamilton technique.

Solution Equations (5.98) outline the procedure of evaluation of matrix exponential using the Cayley–

Hamilton technique.
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The matrix L has n eigenvalues at l = l1. To evaluate f (L) = eLt, we define (refer to Eqn. (5.98b)) the 

polynomial g(l) as

g(l) = b0 + b1l +   + bn – 1ln – 1

 This polynomial may be rearranged as

g(l) = b0 + b1(l – l1) +   + bn – 1(l – l1)n – 1

 The coefficients b0, b1, …, bn – 1 are given by the following equations (refer to Eqns (5.98c)):

 f(l1) = g(l1)

 
d

d
f

l
l

l l

( )
= 1

 = 
d

d
g

l
l

l l

( )
= 1

   

 
d

d
f

n

n

-

-
=

1

1

1

l
l

l l

( )  = 
d

d
g

n

n

-

-
=

1

1

1

l
l

l l

( )

 Solving, we get 

 b0 = el1t

 b1 = 
t

e t

1
1

!

l

 b2 = 
t

e t
2

2
1

!

l

   

 bn – 1 = 
t

n
e

n
t

-

-

1

1
1

( )!

l

Therefore,

eLt = b0I + b1(L – l1I) +   + bn –1(L – l1I)n – 1

 (L – l1I) = 

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

 

 

     

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (L – l1I)(L – l1I) = 

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

 

 

     

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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 eLt = 

b b b b

b b b

b

n

n

0 1 2 1

0 1 2

0

0

0 0 0

 

 

    

 

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  = 

e te t e t e n

e te t e n

t t t n t

t t n t

l l l l

l l l

1 1 1 1

1 1 1

2 1

2

2 1

0 2

/ ! /( )!

/(

 

 

-

-

-

- ))!

    

 0 0 0 1e tl

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

Review Example 5.4

The motion of a satellite in the equatorial (r, q) plane is given by [122] the state equation

 

 

 

 

x

x

x

x

1

2

3

4

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = 

0 1 0 0

3 0 0 2

0 0 0 1

0 2 0 0

2w w

w-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 

x

x

x

x

1

2

3

4

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 + 

0 0

1 0

0 0

0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 
u

u

1

2

È

Î
Í

˘

˚
˙  = Ax + Bu

where w is the angular frequency of the satellite in circular, equatorial orbit; x1(t) and x3(t) are, respectively, 

the devia tions in position variables r(t) and q(t) of the satellite; and x2(t) and x4(t) are, respectively, the 

deviations in velocity variables  r (t) and  q (t). The inputs u1(t) and u2(t) are the thrusts ur and uq in the 

radial and tangential directions, respec tively, applied by small rocket engines or gas jets (u = 0 when

x = 0).

 (a) Prove that the system is completely controllable.

 (b) Suppose that the tangential thruster becomes inoperable. Determine the controllability of the 

system with the radial thruster alone.

 (c) Suppose that the radial thruster becomes inoperable. Deter mine the controllability of the system 

with the tangential thruster alone.

 (d) Prove that the system is completely observable from radial (x1 = r) and tangential (x3 = q ) position 

measurements.

 (e) Suppose that the tangential measuring device becomes inopera ble. Determine the observability of 

the system from radial posi tion measurement alone.

 (f) Suppose that the radial measurements are lost. Determine the observability of the system from 

tangential position measurement alone.

Solution 
 (a) The controllability matrix

  U = [B AB A
2
B A

3
B]
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  Consider the matrix:

   U1 = [B AB] = 

0 0 1 0

1 0 0 2

0 0 0 1

0 1 2 0

w

w-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

   |U1| = –1

  Therefore, r(U1) = r(U) = 4; the system is completely controlla ble.

 (b) With u2 = 0, the B matrix becomes

   b = 

0

1

0

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  The controllability matrix

   U = [b Ab A
2
b A

3
b] = 

0 1 0

1 0 0

0 0 2 0

0 2 0 2

2

2

3

-

-
-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

w

w

w

w w

   |U| = – 

1 0

0 2 0

2 0 2

2

3

-
-

-

w

w

w w

 = –[– 2w (2w3 – 2w3)] = 0

   Therefore, r (U) < 4, and the system is not completely controlla ble with u1 alone.

 (c) With u1 = 0, the B matrix becomes

   b = 

0

0

0

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  The controllability matrix

   U = 

0 0 2 0

0 2 0 2

0 1 0 4

1 0 4 0

3

2

2

w

w w

w

w

-

-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

   |U| = 2w 

0 2 2

0 1 4

1 0 0

3

2

w w

w

-

-  = –12w4 π 0

   Therefore, r(U) = 4, and the system is completely controllable with u2 alone. 
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 (d) The observability matrix

  V = 

C

CA

CA

CA

2

3

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

  Taking radial and tangential position measurements as the out puts, we have 

   y1 = x1; y2 = x3

  or  y = Cx = 
1 0 0 0

0 0 1 0

È

Î
Í

˘

˚
˙ x

  Consider the matrix

  V1 = 
C

CA

È

Î
Í

˘

˚
˙  = 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  |V1| π 0

  Therefore, r(V1) = r(V) = 4, and the system is completely ob servable.

 (e) With x3 = 0, the C matrix becomes

  c = [1 0 0 0]

  The observability matrix

  V = 

c

cA

cA

cA

2

3

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 = 

1 0 0 0

0 1 0 0

3 0 0 2

0 0 0

2

2

w w

w-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

  |V| = 0

   Therefore, r(V) < 4, and the system is not completely observable from y1 = x1 alone.

 (f) With x1 = 0, the C matrix becomes

  c = [0 0 1 0]

  The observability matrix

   V = 

0 0 1 0

0 0 0 1

0 2 0 0

6 0 0 43 2

-

- -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

w

w w

   |V| = – 12w4 π 0

  Therefore, r (V) = 4, and the system is completely observable from y2 = x3 alone.
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PROBLEMS

 5.1 Figure P5.1 shows a control scheme for controlling the azi muth angle of a rotating antenna. The 

plant consists of an arma ture-controlled dc motor with dc generator used as an amplifier. The 

parameters of the plant are given below.

  Motor torque constant,  KT = 1.2 newton-m/amp

  Motor back emf constant, Kb = 1.2 V/(rad/sec)

  Generator gain constant,  Kg = 100 V/amp

  Motor to load gear ratio, n = (   q qL M/ ) = 1/2

   Rf = 21 W, Lf = 5H, Rg = 9 W, Lg = 0.06 H, Ra = 10 W, La = 0.04 H,

   J = 1.6 newton-m/(rad/sec2), B = 0.04 newton-m/(rad/sec), motor inertia and friction are negligible.

  Taking physically meaningful and measurable variables as state variables, derive a state model for 

the system.

u

+ –

J B,

Rg Lg Ra La

eg eb

Lf
Rf

qL

qM

 5.2 Figure P5.2 shows a position control system with state varia ble feedback. The plant consists of a field-

controlled dc motor with a dc amplifier. The parameters of the plant are given below.

  Amplifier gain, KA = 50 volt/volt

  Motor field resistance, Rf = 99 W
  Motor field inductance, Lf = 20 H

  Motor torque constant, KT = 10 newton-m/amp

  Moment of inertia of load, J = 0.5 newton-m/(rad/sec2)

  Coefficient of viscous friction of load, B = 0.5 newton-m/(rad/sec)

  Motor inertia and friction are negligible.

  Taking x1 = q, x2 =  q , and x3 = if as the state variables, u = ef as the input, and y = q as the output, 

derive a state variable model for the plant.
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Tachogenerator

Potentiometer

–

+

–

–

Rf

Ia

Lf

x1 = q

u = ef

x i3 = f

x2 = q

R = 1W

KA
r t( )

J B,

 5.3 Figure P5.3 shows the block diagram of a motor-driven, single-link robot manipulator with 

position and velocity feedback. The drive motor is an armature-controlled dc motor; ea is armature 

voltage, ia is armature current, qM is the motor shaft position and  qM is motor shaft velocity. qL is 

the position of the robot arm.

  Taking qM,  qM and ia as state variables, derive a state model for the feedback system. 

–

38

0.5

qM

+

–

+ +

–
1

20
1
s

1
2 + 1s

1
2 + 21s

k2

iaea qM qL

k1

qR

 5.4  Figure P5.4 shows the block diagram of a speed control system with state variable feedback. The 

drive motor is an armature-controlled dc motor with armature resistance Ra, armature induc tance 
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La, motor torque constant KT, inertia referred to motor shaft J, viscous friction coefficient referred 

to motor shaft B, back emf constant Kb, and tachogenerator constant Kt. The applied armature 

voltage is controlled by a three-phase full-converter. We have assumed a linear relationship 

between the control voltage ec and the armature voltage ea; er is the reference voltage corre-

sponding to the desired speed.

  Taking x1 = w (speed) and x2 = ia (armature current) as the state variables, u = er as the input, and 

y = w as the output, derive a state variable model for the feedback system.

 5.5 Consider the system

    x = 
-
-

È

Î
Í

˘

˚
˙

3 1

2 0
 x + 

0

1

È

Î
Í

˘

˚
˙ u

   y = [1 0] x

  A similarity transformation is defined by 

   x = Px  = 
2 1

1 1

-
-

È

Î
Í

˘

˚
˙ x

 (a) Express the state model in terms of the states x (t).

 (b) Draw state diagrams in signal-flow graph form for the state models in x(t) and x (t).

 (c) Show by Mason’s gain formula that the transfer functions for the two state diagrams in (b) 

are equal.

 5.6 Consider a double-integrator plant described by the differen tial equation 

  
d t

dt

2

2

q( )
 = u(t)

 (a) Develop a state equation for this system with u as the input, and q and  q  as the state variables 

x1 and x2, respectively.

 (b) A similarity transformation is defined as 

  x = P x  = 
1 0

1 1

È

Î
Í

˘

˚
˙ x

  Express the state equation in terms of the states x (t).

 (c) Show that the eigenvalues of the system matrices of the two state equations in (a) and (b), are 

equal.

+ +

–

–
+

–

k1
er ec

Kc

ea

ia

Kb

Kt

KT
1
+Js B

1
+sL Ra a

k2
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 5.7 A system is described by the state equation

   x = 

0 1 0

0 0 1

1 0 3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 x + 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 u; x(0) = x0

  Using the Laplace transform technique, transform the state equa tion into a set of linear algebraic 

equations in the form

  X(s) = G(s)x0 + H(s)U(s)

 5.8 Give a block diagram for the programming of the system of Problem 5.7 on an analog computer.

 5.9 The state diagram of a linear system is shown in Fig. P5.9. Assign the state variables, and write 

the dynamic equations of the system.

1

U Y

1

1

– 1

– 1

–1

– 2

1 2 1s–1s–1s–1

 5.10 Construct a state model for the system of Fig. P5.10.

3

3

3

4
2

4

+ + + +
+

+++

+

+

+–

–

–

–

y1(0)

y2(0)

u2

u1

y2

y1
ÚÚ

Ú Ú
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 5.11 Derive transfer functions corresponding to the following state models:

 (a)  x  = 
0 1

2 3- -
È

Î
Í

˘

˚
˙ x + 

1

0

È

Î
Í

˘

˚
˙  u; y = [1 0] x (b)  x  = 

-
-

È

Î
Í

˘

˚
˙

3 1

2 0
 x + 

0

1

È

Î
Í

˘

˚
˙  u; y = [1 0] x

 5.12 Derive the transfer function matrix corresponding to the following state model, using resolvent 

algorithm.

    x = 

2 1 0

1 1 2

1 0 1

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 x + 

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0

1 0

0 2

u

   y = 
1 1 0

1 0 1

È

Î
Í

˘

˚
˙  x

 5.13 Figure P5.13 shows the block diagram of a control system with state variable feedback and integral 

control. The plant model is

   
 

 

x

x

1

2

È

Î
Í

˘

˚
˙  = 

-
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

3 2

4 5

1

0

1

2

x

x
u

   y = [0 1] x

 (a) Derive a state model of the feedback system.

 (b) Derive the transfer function Y(s)/R(s).

yr u+

2

1.5

– –

+

–
– 3.5 Plant– ( )Ú ◊ dt

x1 x2

x3

 5.14 Construct state models for the systems of Fig. P5.14a and Fig. P5.14b, taking outputs of simple 

lag blocks as state varia bles.

u

u y

+

+ + +

+
+

–

–

y

(a)

(b)

1
+ 2s

1
+ 1s

1
+ 1s

1
+ 2s

1
s
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 5.15 Derive a state model for the two-input, two-output feedback control system shown in Fig. P5.15. 

Take outputs of simple lags as state variables.

+ +

+

+

–

–

+ +

1
+ 1s

5
+ 5s

0.4
+ 0.5s

4
+ 2s

K1

u1 y1

y2u2r2
K2

r1

 5.16 Construct state models for the following transfer functions. Obtain different canonical form for 

each system.

 (i) 
s

s s

+

+ +

3

3 22  (ii) 
5

1 22( ) ( )s s+ +
 (iii) 

s s s

s s s

3 28 17 8

1 2 3

+ + +
+ + +( ) ( ) ( )

  Give block diagrams for the analog computer simulation of these transfer functions.

 5.17 Construct state models for the following differential equa tions. Obtain a different canonical form 

for each system.

 (i)        y y y+ +3 2  =  u  + u   (ii)       y y y+ +6 11  + 6y = u

 (iii)       y y y+ +6 11  + 6y =       u u u+ +8 17  + 8u

 5.18 Derive two state models for the system with transfer func tion

  
Y s

U s

( )

( )
 = 

50 1 5

1 2 1 50

( / )

( / ) ( / )

+
+ +

s

s s s

 (a) One for which the system matrix is a companion matrix.

 (b) One for which the system matrix is diagonal.

 5.19  (a)  Obtain state variable model in Jordan canonical form for the system with transfer function

  
Y s

U s

( )

( )
 = 

2 6 5

1 2

2

2

s s

s s

+ +

+ +( ) ( )

 (b) Find the response y(t) to a unit-step input using the state variable model in (a).

 (c) Give a block diagram for analog computer simulation of the transfer function.
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 5.20 Find the eigenvalues and eigenvectors for the following matrices:

 (i) 
1 1

0 2

È

Î
Í

˘

˚
˙  (ii) 

-
-

È

Î
Í

˘

˚
˙

3 2

1 0
 (iii) 

0 1 0

3 0 2

12 7 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.21 (a) If l1, l2, …, ln are distinct eigenvalues of 

   A = 

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 

 

    

 

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

  prove that the matrix

   P = 

1 1 1

1 2

1
2

2
2 2

1
1

2
1 1

 

 

 

   

 

l l l

l l l

l l l

n

n

n n
n
n- - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

   transforms A into Jordan canonical form.

 (b) Using the result in (a), find the eigenvalues and eigenvec tors of the following matrix:

   A = 

0 1 0

0 0 1

24 26 9- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.22 Consider the matrix 

   A = 

0 1 0

0 0 1

2 4 3- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 (a) Suggest a transformation matrix P such that L = P–1
AP is in Jordan canonical form.

 (b) Matrix L in (a) has complex elements. Real arithmetic is often preferable, and can be 

achieved by further transformation. Suggest a transformation matrix Q such that Q–1LQ has 

all real elements.

 5.23 Given the system

   x = 
-
-

È

Î
Í

˘

˚
˙

4 3

6 5
 x = Ax 

  Determine eigenvalues and eigenvectors of matrix A, and use these results to find the state 

transition matrix.
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 5.24 Using Laplace transform method, find the matrix exponential eAt for 

 (a) A = 
0 3

1 4

-
-

È

Î
Í

˘

˚
˙  (b) A = 

0 1

3 4- -
È

Î
Í

˘

˚
˙

 5.25 Using the Cayley–Hamilton technique, find eAt for

 (a) A = 
0 1

6 5- -
È

Î
Í

˘

˚
˙  (b) A = 

0 2

2 4- -
È

Î
Í

˘

˚
˙

 5.26 Given the system

   x = 
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
 x + 

1

1

È

Î
Í

˘

˚
˙ u

 (a) Obtain a state diagram in signal-flow graph form.

 (b) From the signal-flow graph, determine the state equation in the form

  X(s) = G(s)x(0) + H(s)U(s)

 (c) Using inverse Laplace transformation, obtain the 

 (i) zero-input response to initial condition

  x(0) = [x0
1 x 0

2]T;

 (ii) zero-state response to unit-step input.

 5.27 A linear time-invariant system is described by the following state model:

    x = 

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 x + 

0

0

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u

   y = [1 0 0] x

  Diagonalize the coefficient matrix of the state model using a similarity transformation, and from 

there obtain the explicit solutions for the state vector and output when the control force u is a unit-

step function and the initial state vector is 

   x(0) = [0 0 2]T

 5.28 Consider the system

      x = 
0 1

2 3- -
È

Î
Í

˘

˚
˙  x + 

0

1

È

Î
Í

˘

˚
˙ u; x(0) = 

1

1

È

Î
Í

˘

˚
˙

     y = [1 0] x

 (a) Determine the stability of the system.

 (b) Find the output response of the system to unit-step input.

 5.29 Find the response of the system

      x = 
0 1

2 3- -
È

Î
Í

˘

˚
˙ x + 

2 1

0 1

È

Î
Í

˘

˚
˙ u; x(0) = 

0

0

È

Î
Í

˘

˚
˙

     y = 
1 0

1 1

È

Î
Í

˘

˚
˙  x

  to the following input:

     u(t) = 
u t

u t

1

2

( )

( )

È

Î
Í

˘

˚
˙  = 

m

m

( )

( )

t

e tt-

È

Î
Í

˘

˚
˙3

; m (t) is unit-step function.
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 5.30 Figure P5.30 shows the block diagram of a control system with state variable feedback and 

feedforward control. The plant model is 

    x = 
-

-
È

Î
Í

˘

˚
˙

3 2

4 5
 x + 

1

0

È

Î
Í

˘

˚
˙  u

   y = [0 1]x

 (a) Derive a state model for the feedback system.

 (b) Find the output y(t) of the feedback system to a unit-step input r(t); the initial state is assumed 

to be zero.

r u
7 Plant

3

1.5

+

+

+

–

y x= 2

x1

 5.31 Consider the state equation

   x  = 
0 1

1 2- -
È

Î
Í

˘

˚
˙ x

  Find a set of states x1(1) and x2(1) such that x1(2) = 2.

 5.32 Consider the system

   x  = 

0 1 0

3 0 2

12 7 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

 (a) Find the modes of the system.

 (b) Find the initial condition vector x(0) which will only excite the mode corresponding to the 

eigenvalue with the most negative real part.

 5.33 Consider the system

    x (t) = 
0 1

2 1

È

Î
Í

˘

˚
˙ x(t)

   y(t) = [1 2] x(t)

 (a) Show that the system modes are e–t and e2t.

 (b) Find a set of initial conditions such that the mode e2t is suppressed in y(t).

 5.34 The following facts are known about the linear system

    x(t) = Ax(t).

  If x(0) = 
1

2-
È

Î
Í

˘

˚
˙ , then x(t) = 

e

e

t

t

-

--

È

Î
Í
Í

˘

˚
˙
˙

2

22
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  If x(0) = 
1

1-
È

Î
Í

˘

˚
˙ , then x(t) = 

e

e

t

t

-

--

È

Î
Í
Í

˘

˚
˙
˙

  Find eAt and hence A.

 5.35 Show that the pair {A, c} is completely observable for all values of ai’s.

   A = 

0 0 0

1 0 0

0 1 0

0 0 1

1

2

1

 

 

 

    

 

-
-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

a

a

a

a

n

n

n

   c = [0 0   0 1]

 5.36 Show that the pair {A, b} is completely controllable for all values of ai’s.

   A = 

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 

 

    

 

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; b = 

0

0

0

1

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 5.37 Given the system

    x  = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

x + 

0 1

2 0

0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u; y = 
0 1 2

0 1 0

È

Î
Í

˘

˚
˙ x

  What can we say about controllability and observability—without making any further calculations?

 5.38 Determine the controllability and observability properties of the following systems:

 (i) A = 
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
 ; b = 

1

0

È

Î
Í

˘

˚
˙ ; c = [1 –1]

 (ii) A = 
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
; b = 

2

5

È

Î
Í

˘

˚
˙ ; c = [0 1]

 (iii) A = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

; B = 

1 0

1 2

2 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; C = 
1 1 2

3 1 5

È

Î
Í

˘

˚
˙

 (iv) A = 

0 1 0

0 0 1

0 2 3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [10 0 0]

 (v) A = 

0 0 0

1 0 3

0 1 4

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

40

10

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]
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 5.39 The following models realize the transfer function G(s) = 
1

1s +
.

 (i) A = 
–

–

2 1

1 2

È

Î
Í

˘

˚
˙; b = 

1

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

 (ii) A = 
-

-
È

Î
Í

˘

˚
˙

1 0

0 3
; b = 

1

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

 (iii) A = 
-

-
È

Î
Í

˘

˚
˙

2 0

0 1
; b = 

0

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

  Investigate the controllability and observability properties of these models. 

  Find a state variable model, for the given transfer function, which is both controllable and 

observable.

 5.40 Consider the systems

 (i) A = 
0 2

1 3

-
-

È

Î
Í

˘

˚
˙ ; b = 

1

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

 (ii) A = 

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [4 5 1]

  Determine the transfer function in each case. What can we say about controllability and 

observability properties—without making any further calculations?

 5.41 Consider the system 

   x = 

1 1 0

0 2 1

0 0 1

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x + 

0

1

2-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u; y = [1 0 0] x

 (a) Find the eigenvalues of A and from there determine the sta bility of the system.

 (b) Find the transfer function model and from there determine the stability of the system.

 (c) Are the two results the same? If not, why?

 5.42 Given a transfer function

  G(s) = 
10

1s s( )+
 = 

Y s

U s

( )

( )

  Construct the following three different state models for this system:

 (a) One which is both controllable and observable.

 (b) One which is controllable but not observable.

 (c) One which is observable but not controllable.

 5.43 Prove that the transfer function

   G(s) = Y(s)/U(s)

  of the system

    x (t) = Ax(t) + bu(t)

   y(t) = cx(t) + du(t)

  is invariant under state transformation x(t) = P x (t); P is a constant nonsingular matrix.
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State Variable Analysis of  
Digital Control Systems

6.1 INTRODUCTION

In the previous chapter of this book, we treated in considerable detail, the analysis of linear continuous-

time systems using state variable methods. In this chapter, we give a condensed review of the same 

methods for linear discrete-time systems. Since the theory of linear discrete-time systems—very 

closely—parallels the theory of linear continuous-time systems, many of the results are similar. For this 

reason, the comments in this chapter are brief, except in those cases where the results for discrete-time 

systems deviate markedly from the continuous-time situation. For the same reason, many proofs are 

omitted.

We will be mostly concerned with Single-Input, Single-Output (SISO) system configurations of the  

type shown in the block diagram of Fig. 6.1. The plant in the figure, is a physical pro cess characterized 

by continuous-time input and output variables. A digital computer is used to control the continuous-

time plant. The interface system that takes care of the communication between the digital computer 

and the continuous-time plant consists of analog-to-digital (A/D) converter and digital-to-analog (D/A) 

converter. In order to analyze such a system, it is often conven ient to represent the continuous-time plant, 

together with the D/A converter and the A/D converter, by an equivalent discrete-time system.

The discrete-time systems we will come across can, therefore, be classified into two types.

 (i) Inherently discrete-time systems (digital processors), where it makes sense to consider the system 

at discrete instants of time only, and what happens in between is irrelevant.

Chapter 6

Digital set-point
Digital

computer D/A

Sensor

Controlled
output

A/D

Plant

Fig. 6.1 Basic structure of digital control systems
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 (ii) Discrete-time systems that result from considering continuous-time systems at discrete instants of  

time only.

6.2 STATE DESCRIPTIONS OF DIGITAL PROCESSORS

A discrete-time system is a transformation, or operator, that maps a given input sequence u(k) into 

an output sequence y(k). Classes of discrete-time systems are defined by placing constraints on the 

transformation. As they are relatively easy to characterize mathematically, and as they can be designed 

to perform useful signal processing functions, the class of linear time-invariant systems will be studied 

here.

In the control structure of Fig. 6.1, the digital computer transforms an input sequence into a form which 

is, in some sense, more desirable. Therefore, the discrete-time systems we consider here, are in fact 

computer programs. Needless to say, digital computers can do many things other than control dynamic 

systems; it is our purpose to examine their characteristics when doing this elementary control task.

State variable model of a SISO discrete-time system consists of a set of first-order difference equations 

relating state variables x1(k), x2(k), ... , xn(k) of the discrete-time system to the input u(k); the output y(k) 

is algebraically related to the state variables and the input. Assuming that the input is switched on to the 

system at k = 0 (u(k) = 0 for k < 0), then the initial state is given by

 x(0) =
D  x

0; a specified n ¥ 1 vector

The dynamics of a linear time-invariant system is described by equations of the form

 x(k + 1) = Fx(k) + gu(k); x(0) =
D  x

0 (6.1a)

 y(k) = cx(k) + du(k) (6.1b)

where x(k) = 

x k

x k

x kn

1

2

( )

( )

( )

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = n ¥ 1 state vector of nth-order system

 u(k) = system input

 y(k) = defined output

 F = 

f f f

f f f

f f f

n

n

n n nn

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = n ¥ n constant matrix

 g = 

g

g

gn

1

2

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = n ¥ 1 constant column matrix

 c = [c1 c2   cn] = 1 ¥ n constant row matrix

 d = scalar, representing direct coupling between input and output
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Equation (6.1a) is called the state equation of the system, Eqn. (6.1b) is called the output equation; the 

two equations together give the state variable model of the system.

6.2.1

In the study of linear time-invariant discrete-time equations, we may also apply the z-transform 

techniques. Taking the z-transform of Eqns (6.1), we obtain:

 zX(z) – zx
0 = FX(z) + gU(z)

 Y(z) = cX(z) + dU(z)

where  X(z) =D  Z [x(k)]; U(z) =D  Z [u(k)]; Y(z) =D  Z [y(k)]

Manipulation of these equations, gives

 (zI – F) X(z) = zx
0 + gU(z); I is n × n identity matrix

or  X(z) = (zI – F)–1 zx
0 + (zI – F)–1 gU(z) (6.2a)

 Y(z) = c(zI – F)–1 zx
0 + [c(zI – F)–1 g + d] U(z) (6.2b)

Equations (6.2) are algebraic equations. If x0 and U(z) are known, X(z) can be computed from these 

equations.

In the case of zero initial state (i.e., x0 = 0), the input-output behavior of the system (6.1) is determined 

entirely by the transfer function

 
Y z

U z

( )

( )
 = G(z) = c(zI – F)–1 g + d (6.3a)

  = c
( )

| |

z

z

I F g

I F

-
-

+
 + d (6.3b)

where  (zI – F)+ = adjoint of the matrix (zI – F)

 |zI – F | = determinant of the matrix (zI – F)

|lI – F | is the characteristic polynomial of matrix F. The roots of this polynomial are the characteristic 

roots or eigenvalues of matrix F.

From Eqn. (6.3b), we observe that the characteristic polynomial of matrix F of the system (6.1), is same 

as the denominator polyno mial of the corresponding transfer function G(z). If there are no cancellations 

between the numerator and denominator polynomials of G(z) in Eqn. (6.3b), the eigenvalues of matrix 

F are same as the poles of G(z).

In a later section, we shall see that for a completely controllable and observable state variable model, the 

eigenvalues of matrix F are same as the poles of the corresponding transfer function.

6.2.2

 Canonical State Variable Models

In Chapters 2–4, we have seen that transform-domain design techniques yield digital control algorithms 

in the form of trans fer functions of the form

 D(z) = 
b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 

 
 (6.4)
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where the coefficients ai and bi are real constant scalars. Equation (6.4) represents an nth-order digital 

controller. Several different structures for realization of this controller—using delay elements, adders, 

and multipliers—were presented in Section 3.4. Each of these realizations is a dynamic system with n 

first-order dynamic  elements—the unit delayers. We know that output of a first-order dynamic element 

represents the state of that ele ment. Therefore, each realization of Eqn. (6.4) is, in fact, a state diagram; 

by labeling the unit-delayer outputs as state variables, we can obtain the state variable model.

In the following discussion, we shall use two of the structures presented in Section 3.4 for obtaining 

canonical state variable models corre sponding to the general transfer function

 G(z) = 
Y z

U z

( )

( )
 = 

b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 

 
 (6.5)

Revisiting Section 3.4 at this stage will be helpful in our discussion.

First Companion Form

A direct realization structure for the system described by Eqn. (6.5) is shown in Fig. 6.2. Notice that 

n delay elements have been used in this realization. The coefficients a1, a2, ..., an appear as feedback 

elements, and the coefficients b0, b1, ..., bn appear as feedforward elements. To get one state variable 

model, we identify the output of each unit delayer with a state variable—starting at the right and 

proceeding to the left. The corresponding difference equations are

 x1(k + 1) = x2(k)

 x2(k + 1) = x3(k) 

    (6.6a)

 xn – 1(k + 1) = xn(k)

 xn(k + 1) = – an x1(k) – an – 1 x2(k) –   – a1 xn(k) + u(k)

+

–

+

+

+ +

+

+

+

+
+

+

b0

y k( )

u k( )

b1 bn – 1 bn

x1( )kx2( )kxn( )k

a1 an – 1 an

Fig. 6.2 
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Careful examination of Fig. 6.2 reveals that there are two paths from the output of each unit delayer to 

the system output: one path upward through the box labeled bi, and a second path down through the box 

labeled ai and thence through the box labeled b0. As a consequence

 y(k) = (bn – anb0) x1(k) + (bn–1 – an–1 b0) x2(k) +   + (b1 – a1 b0) xn(k) + b0 u(k) (6.6b)

The state and output equations (6.6), organized in vector-matrix form, are given below.

 x(k + 1) = Fx(k) + gu(k) (6.7)

 y(k) = cx(k) + du(k)

with  F = 

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 

 

    

 

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; g = 

0

0

0

1

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 c = [bn – anb0, bn–1 – an –1b0, …, b1 – a1b0]; d = b0

The matrix F in Eqns (6.7) has a very special structure—the coefficients of the denominator of the 

transfer function preceded by minus signs form a string along the bottom row of the matrix. The rest of 

the matrix is zero except for the ‘superdiagonal’ terms which are all unity. A matrix with this structure 

is said to be in companion form. We call the state variable model (6.7) the first companion form1 state 

model for the transfer function (6.5); another companion form follows.

Second Companion Form

In the first companion form, the coefficients of the denominator of the transfer function appear in one of 

the rows of the F matrix. There is another companion form in which the coefficients appear in a column 

of the F matrix. This can be obtained from another direct realization structure shown in Fig. 6.3. We 

+ + + +

++ +

–––

b0b1bn – 1bn

a1an – 1an

u k( )

xn – 1( )kx1( )k

xn( )k

y k( )

Fig. 6.3 

 1 The pair (F, g) of Eqns (6.7) is completely controllable for all values of ai’s (Refer to Problem 5.36).
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iden tify the output of each unit delayer with a state variable—start ing at the left and proceeding to the 

right. The corresponding difference equations are

 xn(k + 1) = xn–1(k) – a1(xn(k) + b0u(k)) + b1u(k)

 xn–1(k + 1) = xn–2(k) – a2(xn(k) + b0u(k)) + b2u(k)

   

 x2(k + 1) = x1(k) – an–1(xn(k) + b0u(k)) + bn–1u(k)

 x1(k + 1) = – an(xn(k) + b0u(k)) + bnu(k)

 y(k) = xn(k) + b0u(k)

The state and output equations, organized in vector-matrix form, are given below.

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k) + du(k) 
(6.8)

with  F = 

0 0 0

1 0 0

0 1 0

0 0 1

1

2

1

 

 

 

    

 

-
-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

a

a

a

a

n

n

n ; g = 

b a b

b a b

b a b

n n

n n

-
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

- -

0

1 1 0

1 1 0

 

 c = [0 0   0 1]; d = b0

Comparing the F, g and c matrices of the second companion form2 with that of the first, we observe 

that F, g, and c matrices of one companion form correspond to the transpose of F, c, and g matrices, 

respectively, of the other.

Both the companion forms of state variable models play an impor tant role in pole-placement design 

through state feedback. This will be discussed in Chapter 7.

Jordan Canonical Form

In the two canonical forms (6.7) and (6.8), the coefficients of the denominator of the transfer function 

appear in one of the rows or columns of matrix F. In another of the canonical forms, the poles of 

the transfer function form a string along the main diagonal of the matrix. The canonical form follows 

directly from the parallel realization structure of transfer function. We shall first discuss the case where 

all poles are distinct. Then we shall consider the case where multiple poles are involved.

Case I: The transfer function involves distinct poles only

Assume that z = li (i = 1, 2, ..., n) are the distinct poles of the given transfer function (6.5). Partial-

fraction expansion of the transfer function gives

 
Y z

U z

( )

( )
 = G(z) = 

b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 

 

  = b0 + 
¢ + ¢ + + ¢

+ + +

- -

-
b b b

a a

1
1

2
2

1
1

z z

z z

n n
n

n n
n

 

 

 2 The pair {F, c} of Eqns (6.8) is completely observable for all values of ai’s (Refer to Problem 5.35).
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  = b0 + 
¢ + ¢ + + ¢
- - -

- -b b b

l l l
1

1
2

2

1 2

z z

z z z

n n
n

n

 

 ( )( ) ( )
 = b0 + G¢(z)

  = b0 + 
r

z

r

z

r

z

n

n

1

1

2

2-
+

-
+ +

-l l l
  (6.9)

The coefficients ri (i = 1, 2, ..., n) are the residues of the transfer function G¢(z) at the corresponding poles 

at z = li(i = 1, 2, ..., n). A parallel realization structure of the transfer function (6.9) is shown in Fig. 6.4.

+ +
+

+ +

+

+

b0

u k( ) y k( )

l1

ln

x1( )k
r1

rn
xn( )k

Fig. 6.4 

Identifying the outputs of the delayers with the state variables results in the following state and output 

equations:

 x(k + 1) = Lx(k) + gu(k) (6.10)

 y(k) = cx(k) + du(k)

with  L = 

l

l

l

1

2

0 0

0 0

0 0

 

 

   

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g = 

1

1

1

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 c = [r1 r2   rn]; d = b0

It is observed that for this canonical state variable model, the matrix L is a diagonal matrix with the poles 

of G(z) as its diagonal elements.

Case II: The transfer function involves multiple poles

When the transfer function G(z) involves multiple poles, the partial fraction expansion will not be as 

simple as (6.9). In the discussion that follows, we assume that G(z) involves a multiple pole of order m at 
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z = l1, and that all other poles are distinct. Performing the partial fraction expansion for this case, we get
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  = b0 + H1(z) + Hm+1(z) +   + Hn(z) (6.11a)

where  Hm+1(z) = 
r

z
H zm

m
n

+

+-
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1l
, , ( )…  = 

r

z

n
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, (6.11b)

and  H1(z) = 
r

z

r

z

r

zm m

m11

1

12

1
1

1

1( ) ( ) ( )-
+

-
+ +

--l l l
  (6.11c)

A realization of H1(z) is shown in Fig. 6.5. Other terms of Eqn. (6.11a) may be realized as per Fig. 6.4.

Fig. 6.5 H1 z  

Identifying the outputs of the delayers with the state variables results in the following state and output 

equations:

 x(k + 1) = Lx(k) + gu(k)

 y(k) = cx(k) + du(k) 
(6.12)

with         m ¥ m Jordan block

 L = 

l

l

l

l

l

1

1

1

1

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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È
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 c = r r r r rm m n11 12 1 1  +ÈÎ ˘̊ ; d = b0

Note that the L matrix in Eqns (6.12) is block diagonal:

 L = 

L

L

L

1

1

0 0

0 0

0 0
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 = m m¥ submatrix corresponding
 to eigenvalue of multiplicity1l   m

 Lm + 1 = lm + 1 = 1 ¥ 1 submatrix corresponding to simple eigen value lm+1

   

 Ln = ln = 1 ¥ 1 submatrix corresponding to simple eigenvalue ln

The matrix L1 has two diagonals: the principal diagonal has the corresponding pole l1 and the super 

diagonal has all 1s. This structure is said to be in Jordan form; for this reason the model (6.12) is 

identified as Jordan canonical form state model.

The state variable model (6.10) derived for the case of distinct poles, is a special case of Jordan canonical 

form wherein each Jordan block is of 1 ¥ 1 dimension.

6.3 STATE DESCRIPTION OF SAMPLED

Systems that consist of an interconnection of a discrete-time system and a continuous-time system are 

frequently encountered. An example of particular interest occurs when a digital computer is used to 

control a continuous-time plant. Whenever such interconnections exist, there must be some type of 

interface system that takes care of the communication between the discrete-time and continuous-time 

systems. In the system of Fig. 6.1, the interface function is performed by D/A and A/D converters.

Simple models of the interface actions of D/A and A/D converters have been developed in Chapter 2.  

A brief review is in order here.

A simple model of A/D converter is shown in Fig. 6.6. A continuous-time function f(t), t ≥ 0, is the input, 

and the se quence of real numbers f (k), k = 0, 1, 2, ..., is the output; the following relation holds between 

input and output:

 f (k) = f(t = kT); T is the time interval between samples (6.13a)

A simple model of D/A converter is shown in Fig. 6.7. A sequence of numbers f (k), k = 0, 1, 2, ..., is the 

input, and the continuous-time function f +(t), t ≥ 0, is the output; the follow ing relation holds between 

input and output:

 f +(t) = f (k); kT £ t < (k + 1)T (6.13b)
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Figure 6.8 illustrates a typical example of an interconnection of discrete-time and continuous-time 

systems. In order to analyze such a system, it is often convenient to represent the continuous-time system 

together with the zero-order hold (ZOH) and the sampler, by an equivalent discrete-time system.

We assume that the continuous-time system of Fig. 6.8 is a linear system with state variable model

  x (t) = Ax(t) + bu+(t) (6.14a)

 y(t) = cx(t) + du+(t) (6.14b)

where x(t) is n ¥ 1 state vector, u+(t) is scalar input, y(t) is scalar output; A, b, c, and d are, respectively, 

n ¥ n, n ¥ 1, 1 ¥ n, and 1 ¥ 1 real constant matrices.

The solution of Eqn. (6.14a) with t0 as initial time is

 x(t) = e tt tA
x

( ) ( )- 0
0  + 

t

t

0

Ú eA(t – t ) bu+(t) dt (6.15)

Since we use a ZOH (refer to Eqn. (6.13b)),

 u+(t) = u(kT); kT £ t < (k + 1)T; k = 0, 1, 2, ...

Fig. 6.6 

Zero-order hold

0 1 2 3 k t

f k( ) f +( )t

Fig. 6.7 

Discrete-
time
system

Discrete-
time

system

Continuous-
time

system
ZOH Sampler

Equivalent discrete-time system

y k( )y t( )u k( ) u+( )t

Fig. 6.8 
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Then from Eqn. (6.15), we can write

 x(t) = eA(t – kT) x(kT) + 

kT

t

te dÚ -
È

Î

Í
Í

˘

˚

˙
˙

A
b

( )t t  u(kT); kT £ t < (k + 1)T (6.16)

In response to the input u(kT), the state settles to the value x((k + 1)T) prior to the application of the input 

u((k + 1)T), where

 x((k + 1)T) = eAT x(kT) + e dk T

kT

k T

A[( + ) ]
b

1

1

-
+

Ú
È

Î

Í
Í

˘

˚

˙
˙

t t

( )

 u(kT)

  = Fx(kT) + gu(kT) (6.17)

Letting s = (t – kT) in Eqn. (6.17), we have

 g = 

0

T

Ú eA(T – s ) bds

With q = T – s, we get

 g = 

0

T

Ú eAq bdq

If we are interested in the value of x(t) (or y(t)) between sampling instants, we first solve for x(kT) for 

any k using Eqn. (6.17), and then use Eqn. (6.16) to determine x(t) for kT £ t < (k + 1)T.

Since we have a sampler in configuration of Fig. 6.8 (refer to Eqn. (6.13a)), we have from Eqn. (6.14b),

 y(kT) = cx(kT) + du(kT)

State description of the equivalent discrete-time system of Fig. 6.8 is, therefore, of the form

 x(k + 1) = Fx(k) + gu(k) (6.18a)

 y(k) = cx(k) + du(k) (6.18b)

where  F = eAT (6.18c)

 g = 

0

T

Ú eAq bdq (6.18d)

e
AT

There are several methods available for computing eAT. Some of these methods have been discussed in 

the earlier chapter. Stan dard computer programs based on these methods are available.

In the following, we present an alternative technique of comput ing eAT. The virtues of this technique are 

its simplicity and the ease of programming.

The infinite series expansion for F = eAT is

 F = eAT = I + AT + 
1

2!
 A2T2 + 

1

3!
 A3T 3 +  

  = 
A

i i

i

T

i!
=
Â

0

; A0 = I (6.19)
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For a finite T, this series is uniformly convergent (Section 5.7). It is, therefore, possible to evaluate F 

within prescribed accuracy. If the series is truncated at i = N, then we may write the finite series sum as

 F  = 
A

i i

i

N
T

i!
=
Â

0

 (6.20)

which represents the infinite series approximation. The larger the N, the better is the approximation. We 

evaluate F by a series in the form

 F = I A I
A

I
A

I
A

I
A

+ + + + +
-

+Ê
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ˆ
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È

Î
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˘
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Ô
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ˆ

¯
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T T T

N

T

N2 3 1
   (6.21)

which has better numerical properties than the direct series of powers. Starting with the innermost factor, 

this nested product expansion lends itself easily to digital programming. The empiri cal relation giving 

the number of terms, N, is

 N = min {3 || AT || + 6, 100} (6.22)

where || AT || is a norm of the matrix AT. There are several different forms of matrix norms commonly 

used. Any one of them may be used in Eqn. (6.22). Two forms of matrix norms are defined in Section 5.2.

The relation (6.22) assumes that no more than 100 terms are included. The series eAT will be accurate to, 

at least, six signifi cant figures.

The integral in Eqn. (6.18d) can be evaluated term by term, to give

 g = I A A+ + +Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙Ú q q q
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2

2 2

0
!

 d

T

 b = 
A

i i
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b (6.23)

  = 
A

i i

i

T

i( )!+
=
Â 1

0

Tb

  = I
A A

+ + +
Ê

Ë
Á

ˆ

¯
˜

T T

2 3

2 2

! !
  Tb = (eAT – I) A–1

b (6.24)

The transition from Eqn. (6.23) to (6.24) is possible only for a nonsingular matrix A. For a singular A, 

we may evaluate g from Eqn. (6.23) by the approximation technique described above. Since the series 

expansion for g converges faster than that for F, it suffices to determine N for F from Eqn. (6.22) and 

apply the same value for g.

Example 6.1

Figure 6.9 shows the block diagram of a digital positioning system. Defining the state variables as

 x1(t) = q (t), x2(t) =  q (t),

the state variable model of the plant becomes

  x(t) = Ax(t) + bu+(t)

 y(t) = cx(t) (6.25)

with  A = 
0 1

0 5-
È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í

˘

˚
˙ ; c = [1  0]
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T
= 0.1 sec

Digital Processor
ZOH

Plant

+

–

u+( )tu k( )e k( )

r t( ) 1
( + 5)s s

G sh0( )
k z1

2 + +k z k

z z
2 3

( – 1)

q( )t

Fig. 6.9 

Here we apply the Cayley–Hamilton technique to evaluate the state transition matrix eAt.

Eigenvalues of matrix A are given by

 |lI – A| = 
l

l

-
+

È

Î
Í

˘

˚
˙

1

0 5
 = 0

Therefore,  l1 = 0, l2 = – 5

Since A is of second order, the polynomial g(l) will be of the form (refer to Eqns (5.98)),

 g(l) = b0 + b1l

The coefficients b0 and b1 are evaluated from the following equations:

 1 = b0

 e–5t = b0 – 5b1

The result is  b0 = 1

 b1 = 
1

5
 (1 – e–5t)

Hence  eAt = b0I + b1A = 
1 1

0

1
5

5

5

( )-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

The equivalent discrete-time plant with input u(k) and output q (k) (refer to Fig. 6.9) is described by the 

equations

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k) 
(6.26)

where  F = eAT = 
1 1
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For T = 0.1 sec,

 F = 
1 0 0787

0 0 6065

.

.

È

Î
Í

˘

˚
˙ ; g = 

0 0043

0 0787

.

.

È

Î
Í

˘

˚
˙

Consider now the digital processor. The input-output model of the processor is
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Direct digital realization of the processor is shown in Fig. 6.10. Taking outputs of unit delayers as state 

variables, we get the following state description for the processor dynamics (refer to Eqns (6.8)):
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 u(k) = x4(k) + k1e(k)

e
1 1

1

u
z–1z–1

x3

k3

k2

k1

x4

Fig. 6.10 

The processor input is derived from the reference input and the position feedback (Fig. 6.9):

 e(k) = r(k) – x1(k) (6.28)

From Eqns (6.26)–(6.28), we get the following state variable model for the feedback system of Fig. 6.9.
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(6.29)

 y(k) = [1 0 0 0] 
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6.4

Consider a state equation of a single-input system which includes delay in control action:

  x (t) = Ax(t) + bu+(t – tD) (6.30)

where x is n ¥ 1 state vector, u+ is scalar input, tD is the dead-time, and A and b are, respectively, n ¥ n and 

n ¥ 1 real constant matrices.

The solution of Eqn. (6.30) with t0 as initial time is

 x(t) = e t tA( )- 0  x(t0) + e u dt
D

t

t

A
b

( ) ( )- + -Ú t t t t

0

If we let t0  = kT and t = kT + T, we obtain

 x(kT + T) = eAT x(kT) + 

kT

kT T+

Ú eA(kT + T – t ) bu+(t – tD) dt

With  s = kT + T – t, we get

 x(kT + T) = eAT x(kT) + 

0

T

Ú eAs bu+(kT + T – tD – s ) ds (6.31)

If N is the largest integer number of sampling periods in tD, we can write

 tD = NT + DT; 0 £ D < 1 (6.32a)

Substituting in Eqn. (6.31), we get

 x(kT + T) = eAT x(kT) + 

0

T

Ú eAs bu+(kT + T – NT – DT – s ) ds

We introduce a parameter m such that

 m = 1 – D (6.32b)

Then

 x(kT + T ) = eAT x(kT) + 

0

T

Ú eAs bu+(kT – NT + mT – s )ds (6.33)

Since we use a ZOH, u+ is piecewise constant. The nature of the integral in Eqn. (6.33), with respect to 

variable s, becomes clear from the sketch of the piecewise constant input u+ over a segment of time axis 

near t = kT – NT (Fig. 6.11). The integral runs for s from 0 to T—which corresponds to t from kT – NT 

+ mT backward to kT – NT – T + mT. Over this period, the control first takes on the value u(kT – NT ) 

and then the value u(kT – NT – T). Therefore, we can break the integral in Eqn. (6.33) into two parts as 

follows:

 x(kT + T) = eAT x(kT) + e d

mT

A
b

s s

0

Ú
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Î
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˘

˚

˙
˙

 u(kT – NT) + e d

mT

T
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b

s sÚ
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Î

Í
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˘

˚

˙
˙

 u(kT – NT – T)

  = Fx(kT) + g1u(kT – NT – T) + g2u(kT – NT) (6.34a)
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where  F = eAT (6.34b)

 g1 = 

mT

T

Ú eAs bds (6.34c)

 g2 = 

0

mT

Ú eAs bds (6.34d)

Setting q = s – mT in Eqn. (6.34c), we get

 g1 = 

0

DT

Ú eA(mT + q) bdq = eAmT 

0

DT

Ú eAq bdq (6.34e)

The matrices/vectors F, g1 and g2 can be evaluated by series truncation method discussed in the earlier 

section.

Equation (6.34a) can be expressed in the standard state variable format. To do this, we consider first the 

case of N = 0. For this case, Eqn. (6.34a) becomes

 x(k + 1) = Fx(k) + g1u(k – 1) + g2u(k)

We must eliminate u(k – 1) from the right-hand side, which we do by defining a new state

 xn +1(k) = u(k – 1)

The augmented state equation is given by
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 u(k) (6.35)

For N > 0, Eqn. (6.34a) can be expressed as

 x(k + 1) = Fx(k) + g1u(k – N – 1) + g2u(k – N)

t

u+( )t

u kT NT( – )

u kT NT T( – – )

kT NT T– –

kT NT T mT– – +
kT NT–

kT NT mT– +

kT NT T– +

s = mT

s = T s = 0

Fig. 6.11
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Let us introduce (N + 1) new states, defined below as

 xn + 1(k) = u(k – N – 1)

 xn + 2(k) = u(k – N)

   

 xn + N +1(k) = u(k – 1)

The augmented state equation now becomes
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u k( )  (6.36)

Example 6.2

In the following, we reconsider the tank fluid temperature control system discussed in Example 3.3 

(refer to Fig. 3.17). The differential equation governing the tank fluid temperature was found to be

  x1 (t) = – x1(t) + u(t – 1.5) (6.37)

where

 x1(t) = q(t) = tank fluid temperature;

 u(t) = qi(t) = temperature of the incoming fluid (control temper ature); and

 tD = 1.5 sec.

Assume that the system is sampled with period T = 1 sec. From Eqn. (6.32), we have

 N = 1, D = 0.5, m = 0.5

Equations (6.34b), (6.34d), and (6.34e) give

 F = e–1 = 0.3679

 g2 = 

0

0 5.

Ú e–s ds = 1 – e–0.5 = 0.3935

 g1 = e–0.5 

0

0 5.

Ú e–q dq = e–0.5 – e–1 = 0.2387

The discrete-time model of the tank fluid temperature control system becomes (refer to Eqn. (6.34a))

 x1(k + 1) = 0.3679 x1(k) + 0.2387 u(k – 2) + 0.3935 u(k – 1) (6.38)

Let us introduce two new states, defined below as

 x2(k) = u(k – 2)

 x3(k) = u(k – 1)
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The augmented state equation becomes

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k) 
(6.39)

with  F = 

0 3679 0 2387 0 3935

0 0 1

0 0 0

. . .È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 c = [1   0   0]

From Eqns (6.39), the transfer function model is given as fol lows:

 G(z) = 
Y z

U z

( )

( )
 = c(zI – F)–1 g

  = [ ]

. . .

1 0 0

0 3679 0 2387 0 3935

0 1

0 0

0

0

1

1
z

z

z

- - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙

-

˙̇

  = 
1

0 3679
1 0 0

0 2387 0 2387 0 3935

0 0 3679 0 3
2

2

z z

z z z

z z z
( . )

[ ]

. . .

( . ) .
-

+
- - 6679

0 0 0 3679

0

0

1z z( . )-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

  = 
0 2387 0 3935

0 36792

. .

( . )

+

-

z

z z
 = 

0 3935 0 6066

0 36792

. ( . )

( . )

z

z z

+

-
 (6.40)

Note that the same result was obtained earlier in Example 3.3.

6.5 SOLUTION OF STATE DIFFERENCE EQUATIONS

6.5.1

In this section, we investigate the solution of the state equa tion

 x(k + 1) = Fx(k) + gu(k); x(0) =D  x
0 (6.41)

where x is n ¥ 1 state vector, u is a scalar input, F is n ¥ n real constant matrix, and g is n ¥ 1 real constant 

vector.

In general, discrete-time equations are easier to solve than differential equations because the former 

can be solved easily by means of a recursion procedure. The recursion procedure is quite simple and 

convenient for digital computations.

The solution of Eqn. (6.41) for any positive integer k may be obtained directly by recursion as follows. 

From x(0) and u(0), x(1) can be calculated:

 x(1) = Fx(0) + gu(0) (6.42a)

Then using x(1) and u(1):

 x(2) = Fx(1) + gu(1) (6.42b)
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From x(2) and u(2):

 x(3) = Fx(2) + gu(2) (6.42c)

   

From x(k – 1) and u(k – 1):

 x(k) = Fx(k – 1) + gu(k – 1) (6.42d)

6.5.2

In the following, we obtain the closed-form solution of state equation (6.41).

From Eqns (6.42a)–(6.42b), we obtain

 x(2) = F[Fx(0) + gu(0)] + gu(1)

  = F2
x(0) + Fgu(0) + gu(1) (6.43)

From Eqns (6.43) and (6.42c), we get

 x(3) = F[F2
x(0) + Fgu(0) + gu(1)] + gu(2)

  = F3
x(0) + F2

gu(0) + Fgu(1) + gu(2)

By repeating this procedure, we obtain

 x(k) = Fk
x(0) + Fk – 1 gu(0) + Fk – 2 gu(1) +   + F0 gu(k – 1); F0 = I

  = Fk
x(0) + 

i

k

=

-

Â
0

1

F
k–1– i gu(i) (6.44)

Clearly x(k) consists of two parts: one representing the contri bution of the initial state x(0), and the other 

the contribution of the input u(i); i = 0, 1, 2, ..., (k – 1).

Notice that it is possible to write the solution of the homogene ous state equations

 x(k + 1) = Fx(k); x(0) =D  x
0 (6.45a)

as  x(k) = Fk
x(0) (6.45b)

From Eqn. (6.45b) it is observed that the initial state x(0) at k = 0 is driven to the state x(k) at the sampling 

instant k. This transition in state is carried out by the matrix Fk. Due to this property, Fk is known as the 

state transition matrix, and is denoted by e(k):

 e(k) = Fk; e(0) = I (Identity matrix) (6.46)

In the following, we discuss commonly used methods for evaluating state transition matrix in closed form.

Taking the z-transform on both sides of 

Eqn. (6.45a), yields

 zX(z) – zx(0) = FX(z)
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where  X(z) =D  Z  [x(k)]

Solving for X(z), we get

 X(z) = (zI – F)–1zx(0)

The state vector x(k) can be obtained by inverse transforming X(z):

 x(k) =  Z–1[(zI – F)–1z] x(0)

Comparing this equation with Eqn. (6.45b), we get

 F
k = e(k) = Z–1[(zI – F)–1z] (6.47)

Example 6.3

 Consider the matrix F = 
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.

 For this F, (zI – F)–1 = 
z

z

-
+

È

Î
Í

˘

˚
˙

-
1

0 16 1

1

.

  = 

z

z z z z

z z

z

z

+
+ + + +

-
+ + +

1

0 2 0 8

1

0 2 0 8

0 16

0 2 0 8 0 2

( . )( . ) ( . )( . )

.

( . )( . ) ( . ))( . )z +

È
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Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0 8
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4 3

0 2

1 3

0 8
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0 2
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0 8 3

0 2

0 8 3

0 8

/

.

/

.
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.

/

.

. /

.

. /

.
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+
+
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+
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+

-
+

+
+

--
+

+
+

È
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Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 3

0 2

4 3

0 8

/

.

/

.z z

Therefore e(k) = F
k =  Z–1[(zI – F)–1z]

  =  Z–1 

4
3

1
3

5
3

5
3

0 8
3

0 8
3

1

0 2 0 8 0 2 0 8

0 2 0 8

z

z

z

z

z

z

z

z

z

z

z

z

+
-

+ +
-

+

+
+

+
- -

. . . .
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. .
33

4
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z

z

z

z+
+

+

È
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Í
Í
Í
Í

˘

˚

˙
˙
˙
˙. .

  = 

4
3

1
3

5
3

5
3

0 8
3

0 8
3

0 2 0 8 0 2 0 8

0 2 0

( . ) ( . ) ( . ) ( . )

( . ) (. .
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k .. ) ( . ) ( . )8 0 2 0 81
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4
3

k k k- - + -

È

Î

Í
Í

˘

˚

˙
˙

Suppose that F is an n ¥ n nondiagonal 

matrix with distinct eigenvalues l1, l2, ..., ln. We define the diagonal matrix

 L = 

l

l

l

1

2

0 0

0 0

0 0

 

 

   

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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F and L are similar matrices; there exists a nonsingular matrix P such that (refer to Eqns (5.22))

 L = P–1 FP

Now  P
–1 Fk

P = P–1 [FF   F]P

  = P–1 [(PLP
–1) (PLP

–1)   (PLP
–1)]P = Lk

Thus the matrices Fk and Lk are similar. Since L is diagonal, Lk is given by

 Lk = 

l

l

l

1

2

0 0

0 0

0 0

k

k

n
k

 

 

   

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The state transition matrix Fk of matrix F with distinct eigen values l1, l2, ..., ln may, therefore, be 

evaluated using the following relation:

 F
k = PLk P–1 = P 

l

l

l

1

2

0 0

0 0

0 0

k

k

n
k

 

 

   

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

P
–1 (6.48)

where P is a transformation matrix that transforms F into the diagonal form (For the general case where 

matrix F has multiple eigenvalues, refer to [105]; also refer to Review Example 6.5 given at the end of 

this chapter).

Example 6.4 Consider the Matrix

 F = 
0 1

2 3- -
È

Î
Í

˘

˚
˙

The characteristic equation of the system is

 |lI – F| = l2 + 3l + 2 = 0

which yields l1 = – 1 and l2 = – 2 as the eigenvalues of F.

Since the matrix F is in companion form, the eigenvectors3, and hence the transformation matrix, can 

easily be obtained (refer to Problem 5.21).

 P = 
1 1

1 2l l

È

Î
Í

˘

˚
˙  = 

1 1

1 2- -
È

Î
Í

˘

˚
˙

gives the diagonalized matrix

 L = P–1 FP = 
-

-
È

Î
Í

˘

˚
˙

1 0

0 2

 3 Refer to Section 5.6 for methods of determination of eigenvectors for a given general matrix F.
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From Eqn. (6.48), we may write

 F
k = P 

( )

( )

-

-

È

Î
Í
Í

˘

˚
˙
˙

1 0

0 2

k

k
 P–1

  = 
1 1

1 2

1 0

0 2

2 1

1 1- -

È

Î
Í
Í

˘

˚
˙
˙

-

-

È

Î
Í
Í

˘

˚
˙
˙ - -

È

Î
Í
Í

˘

˚
˙
˙

( )

( )

k

k

  = 
2 1 2 1 2

2 1 2 2 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

- - - - - -

- - + - - - + -

È

Î
Í
Í

˘

˚
˙
˙

k k k k

k k k k

The Cayley–Hamilton technique has 

already been explained in the earlier chapter. We illustrate the use of this technique for evaluation of Fk 

by the following example.

Example 6.5 Consider the Matrix

 F = 
0 1

1 2- -
È

Î
Í

˘

˚
˙

Let us evaluate f(F) = Fk.

Matrix F has two eigenvalues at l1 = l2 = –1.

Since F is of second order, the polynomial g(l) will be of the form (refer to Eqns (5.98)):

 g(l) = b0 + b1l

The coefficients b0 and b1 are evaluated from the following equations:

 f (–1) = (–1)k = b0 – b1

 
d

d
f

l
l

l

( )
= -1

 = k(–1)k –1 = 
d

d
g

l
l

l

( )
= -1

 = b1

The result is  b0 = (1 – k) (–1)k

 b1 = – k(–1)k

Hence  f(F) = Fk = b0I + b1F

  = (1 – k) (–1)k 
1 0

0 1

È

Î
Í

˘

˚
˙  – k(–1)k 

0 1

1 2- -
È

Î
Í

˘

˚
˙

  = (–1)k 
( )

( )

1

1

- -
+

È

Î
Í

˘

˚
˙

k k

k k
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The solution of the nonhomogeneous state difference equation (6.41) is given by Eqn. (6.44). In terms of 

the state transition matrix e(k), Eqn. (6.44) can be written in the form

 x(k) = e(k) x(0) + e

i

k

=

-

Â
0

1

(k – 1 – i) gu(i) (6.49)

This equation is called the state transition equation; it describes the change of state relative to the initial 

conditions x(0) and the input u(k).

Example 6.6 Consider the System

 
x k

x k

1

2

1

1

( )

( )

+
+

È

Î
Í

˘

˚
˙  = 

0 1

2 3

0

1
1

1

2- -
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ -

x k

x k

k( )

( )
( )

 x1(0) = 1 = x2(0)

 y(k) = x1(k)

Find y(k) for k ≥ 1.

Solution For the given state equation, we have

 F = 
0 1

2 3- -
È

Î
Í

˘

˚
˙

For this F, e(k) = Fk was evaluated in Example 6.4:

 e(k) = Fk = 
2 1 2 1 2

2 1 2 2 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

- - - - - -

- - + - - - + -

È

Î
Í
Í

˘

˚
˙
˙

k k k k

k k k k

The state  x(k) = Fk x(0) + 
i

k

=

-

Â
0

1

F
k – 1 – i gu(i)

With  g = 
0

1

È

Î
Í

˘

˚
˙ , x(0) = 

1

1

È

Î
Í

˘

˚
˙ , and u(k)= (–1)k,

we get

 y(k) = x1(k) = 3(–1)k – 2(–2)k + 
i

k

=

-

Â
0

1

 [(–1)k – 1 – i – (–2)k – 1 – i] (–1)i

  = 3(–1)k – 2(–2)k + k(–1)k – 1 – (–2)k – 1 
1
2

0

1

( )
=

-

Â i

i

k

Since4

 
1
2

0

1

( )
=

-

Â i

i

k

 = 
1

1

1
2

1
2

- ( )
-

k

 = – 2 1
2

1( ) -È
ÎÍ

˘
˚̇

k
, we have

 4 a j

j

k

=
Â

0

 = 
1

1

1-
-

+a

a

k

; a π 1.
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 y(k) = 3(–1)k – 2(–2)k – k(–1)k + (–2)k [ ]1 1
2

- ( )k

  = 3(–1)k – 2(–2)k – k(–1)k + (–2)k – (–1)k = (2 – k) (–1)k – (–2)k

6.6 CONTROLLABILITY AND OBSERVABILITY

In this section, we study the controllability and observability properties of linear time-invariant systems 

described by state variable model of the following form:

 x(k + 1) = Fx(k) + gu(k) (6.50a)

 y(k) = cx(k) + du(k) (6.50b)

where F, g, c and d are, respectively, n ¥ n, n ¥ 1, 1 ¥ n, and 1 ¥ 1 matrices. x is n ¥ 1 state vector, and y 

and u are, respectively, output and input variables.

6.6.1

For the linear system given by Eqns (6.50), if there exists an input u(k); k Œ [0, N – 1] with N a finite 

positive integer, which transfers the initial state x(0) =D  x
0 to the state x1 at k = N, the state x0 is said to be 

controllable. If all initial states are controllable, the system is said to be completely controllable or simply 

controllable. Otherwise, the system is said to be uncontrollable.

The following theorem gives a simple controllability test.

The necessary and sufficient condition for the system (6.50) to be completely 

controllable is that the n ¥ n controllability matrix,

 U =D  [g Fg F
2
g   Fn –1

g] (6.51)

has rank equal to n, i.e., r (U) = n.

Solution of Eqn. (6.50a) is

 x(k) = Fk
x(0) + 

i

k

=

-

Â
0

1

F
k–1– i gu(i)

Letting x(0) =D  x
0 and x(n) =D  x

1, we obtain

 x
1 – Fn

x
0 = Fn – 1

gu(0) + Fn – 2
gu(1) +   + gu(n – 1)

or  x
1 – Fn

x
0 = [g Fg   Fn–1

g] 

u n

u n

u

( )

( )

( )

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2

0

 
 (6.52)

Since g is an n ¥ 1 matrix, we find that each of the matrices g, Fg, ..., Fn–1
g is an n ¥ 1 matrix. Therefore,

 U = [g Fg   Fn –1
g]



 State Variable Analysis of Digital Control Systems 415

is an n ¥ n matrix. If the rank of U is n, then for arbitrary states x0 and x1, there exists a sequence of 

unconstrained con trol signals u(0), u(1), ..., u(n – 1) that satisfies Eqn. (6.52). Hence, the condition that 

the rank of the controllability matrix is n gives a sufficient condition for complete controlla bility.

To prove that the condition r (U) = n is also a necessary condi tion for complete controllability, we 

assume that

  r[g Fg   Fn–1
g] < n

 The matrix U is, therefore, singular and for arbitrary x0 and x1, a solution {u(0), u(1), ..., u(n – 1)} 

satisfying Eqn. (6.52) does not exist.

Let us attempt a solution of the form {u(0), u(1), ..., u(N – 1)}; N > n. This will amount to adding 

columns Fn
g, Fn+1

g, ..., FN–1 g in the U matrix. But by Cayley–Hamilton theorem, f(F) = Fj; j ≥ n is a linear 

combination of Fn–1, …, F1, F0 (refer to Eqn. (5.98d)) and therefore, columns Fn
g, Fn+1

g, ..., FN–1
g add 

no new rank. Thus, if a state cannot be transferred to some other state in n sampling intervals, no matter 

how long the input sequence {u(0), u(1), ..., u(N – 1)}; N > n is, it still cannot be achieved. Consequently, 

we find that the rank condition given by Eqn. (6.51) is necessary and sufficient condition for complete 

controllability.

6.6.2

For the linear system given by Eqns (6.50), if the knowledge of the input u(k); k Œ [0, N – 1] and the 

output y(k); k Œ [0, N – 1] with N a finite positive integer, suffices to determine the state x(0) =D  x
0, the 

state x0 is said to be observable. If all initial conditions are observable, the system is said to be completely 

observable, or simply observable. Otherwise, the system is said to be unobservable.

The following theorem gives a simple observability test.

The necessary and sufficient condition for the system (6.50) to be completely 

observable is that the n ¥ n observability matrix

 V = 

c

cF

cF

cF

2

1

 

n -

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 (6.53)

has rank equal to n, i.e., r (V) = n.

The solution of Eqns (6.50) is

 y(k) = cF
k
x(0) + cF g

k i

i

k

u i- -

=

-

Â
È

Î

Í
Í

˘

˚

˙
˙

1

0

1

( )  + du(k)

This gives  y(0) = cx(0) + du(0)

 y(1) = cFx(0) + cg u(0) + du(1)

  

 y(n – 1) = cF
n – 1

x(0) + cF
n – 2

g u(0) + cF
n – 3

g u(1) +   + cg u(n – 2) + du(n – 1)
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From these equations, we may write

 

y du

y u du

y n u un n

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0

1 0 1

1 0 12 3

-
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- - - -- -
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cF g cF g
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˙cg u n du n( ) ( )2 1
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c

cF
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Í
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Í

˘

˚

˙
˙
˙
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˙
˙

 x0 = V x
n n n¥ ¥

¥ 0

1
 

(6.54)

If the rank of V is n, then there exists a unique solution x0 of Eqn. (6.54). Hence, the condition that the 

rank of the observability matrix is n, gives a sufficient condition for com plete observability.

It can easily be proved (refer to proof of Theorem 6.1) that the condition r (V) = n is also a necessary 

condition for complete observability.

6.6.3

 State Variable Model in Jordan Canonical Form

The following result for discrete-time systems easily follows from the corresponding result for 

continuous-time systems, given in the earlier chapter.

Consider a SISO system with distinct eigenvalues5 l1, l2, ..., ln.

The Jordan canonical state model of the system is of the form

 x(k + 1) = Lx(k) + gu(k) (6.55)

 y(k) = cx(k) + du(k)

with L = 

l

l

l

1

2

0 0

0 0

0 0

 

 

   

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g = 

g

g

gn

1

2

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2   cn]

The system (6.55) is completely controllable if, and only if, none of the elements of the column matrix 

g, is zero. The system (6.55) is completely observable if, and only if, none of the elements of the row 

matrix c, is zero.

6.6.4

The following result for discrete-time systems easily follows from the corresponding result for 

continuous-time systems, given in the earlier chapter.

The general state variable model of nth-order linear time-invariant discrete-time system is given by 

Eqns (6.50):

 x(k + 1) = Fx(k) + gu(k); x(0) =D  x
0

 y(k) = cx(k) + du(k) 
(6.56)

 5 Refer to Gopal [105] for the case of multiple eigenvalues.
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The corresponding transfer function model is

 
Y z

U z

( )

( )
 = 

c I F g I F

I F

( ) | |

| |

z d z

z

- + -
-

+

 (6.57)

The uncontrollable and unobservable modes of the state variable model (6.56) do not show up in the 

corresponding transfer func tion representation (6.57); the poles of the transfer function are, therefore, a 

subset of the eigenvalues of matrix F, and the asymptotic stability of the system always implies bounded-

input, bounded-output (BIBO) stability. The reverse, however, may not be true because the eigenvalues 

of uncontrollable and/or unobservable parts of the system are hidden from the BIBO stabil ity analysis. 

When the state variable model (6.56) is both controllable and observable, all the eigenvalues of F appear 

as poles in the transfer function (6.57), and therefore, BIBO stabil ity implies asymptotic stability only 

for controllable and ob servable systems.

Conclusion The transfer function model of a system represents its complete dynamics only if the 

system is both controllable and observable.

6.6.5

Sampling of a continuous-time system gives a discrete-time system with system matrices that depend 

on the sampling period. How will that influence the controllability and observability of the sampled 

system? To get a controllable sampled system, it is necessary that the continuous-time system also be 

controllable, because the allowable control signals for the sampled system—piecewise constant signals—

are a subset of allowable control signals for the continuous-time system. However, it may happen that the 

controllability is lost for some sampling peri ods.

The conditions for unobservability are more restricted in the continuous-time case because the output 

has to be zero over a time interval, while the sampled system output has to be zero only at the sampling 

instants. This means that the continuous output may oscillate between the sampling times and be zero at the 

sampling instants. This condition is sometimes called hidden oscillations. The sampled system can thus be 

unobservable—even if the corresponding continuous-time system is observable.

The harmonic oscillator can be used to illustrate the preceding discussion. The transfer function model 

of the oscillator system is

 
Y s

U s

( )

( )
 = 

w

w

2

2 2s +
 (6.58)

From this model, we have

   y  + w2y = w2u

Define  x1 = y; x2 = 
1

w
 y

This gives the following state variable representation of the oscillator system:
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(6.59)
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The discrete-time state variable representation of the system is obtained as follows. Noting that

 A = 
0

0

w
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È
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˘

˚
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w
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Hence, the discrete-time state variable representation of the oscillator system becomes
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 y(k) = [1 0]  
x k

x k

1

2

( )

( )

È

Î
Í

˘

˚
˙

The determinants of the controllability and observability matric es are

 |U| = |[g Fg]| = – 2 sinwT (1 – coswT )

 |V| = 
c

cF

È

Î
Í

˘

˚
˙  = sinwT

Both controllability and observability are lost for wT = np, n = 1, 2, ... (i.e., when the sampling interval 

is half the period of oscillation of the harmonic oscillator, or an integer multiple of that period), although 

the corresponding continuous-time system given by Eqns (6.59), is both controllable and observable.

Loss of controllability and/or observability due to sampling occurs only when the continuous-time 

system has oscillatory modes and the sampling interval is half the period of oscillation of an oscillatory 

mode, or an integer multiple of that period. This implies that controllability and observability properties 

of a continuous-time system, are preserved after introduction of sampling if, and only if, for every 

eigenvalue of the character istic equation, the relation

 Re li = Re lj (6.61)

implies  Im (li – lj) π 
2n

T

p

where T is the sampling period and n = ± 1, ± 2, ... .
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We know that controllability and/or observability is lost when the transfer function corresponding to a 

state model has common poles and zeros. The poles and zeros are functions of sampling interval. This 

implies that if the choice of sampling interval does not satisfy the condition given by (6.61), pole-zero 

cancellation will occur in passing from the continuous-time to the discrete-time case; the pole-zero 

cancellation will not take place if the continuous-time system does not contain complex poles.

It is very unlikely that the sampling interval chosen for a plant control system, would be precisely the 

one resulting in loss of con trollability and/or observability. In fact the rules of thumb, for the choice of 

sampling interval given in Section 2.13, imply a sampling interval of about one tenth of the period of 

oscillation of an oscillatory mode, and not just half.

6.7 MULTIVARIABLE SYSTEMS

The state variable model of the multi-input, multi-output (MIMO) system takes the following form (refer 

to Eqns (2.14)–(2.15)):

 x(k + 1) = Fx(k) + Gu(k); x(0) =D  x
0 (6.62a)

 y(k) = Cx(k) + Du(k) (6.62b)

F, G, C, and D are, respectively, n ¥ n, n ¥ p, q ¥ n and q ¥ p constant matrices, x is n ¥ 1 state vector, 

u is p ¥ 1 input vector, and y is q ¥ 1 output vector.

Many of the analysis results developed in earlier sections of this chapter for SISO systems, have obvious 

extensions for the system (6.62).

The solution of the state equation (6.62a) is given by (refer to Eqn. (6.44))

 x(k) = Fk
x(0) + F Gu

k i

i

k

i- -

=

-

Â 1

0

1

( )  (6.63a)

The output 

 y(k) = C F x F Gu
k k i
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i( ) ( )0 1

0

1

+
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Î

Í
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˘

˚

˙
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- -

=

-

Â  + Du(k) (6.63b)

In the transform domain, the input-output behavior of the system (6.62) is determined entirely by the 

transfer function matrix (refer to Eqns (6.3))

 G(z) = C(zI – F)–1
G + D (6.64a)

The output Y( )z
q ¥ 1

 = G( )z
q p¥

U( )z
p ¥ 1

 (6.64b)

The necessary and sufficient condition for the system (6.62) to be completely controllable is that the 

n ¥ np matrix

 U =D  [G FG F
2
G   Fn –1

G] (6.65)

has rank equal to n.
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The necessary and sufficient condition for the system (6.62) to be completely observable is that the  

nq ¥ n matrix

 V =D  

C

CF

CF
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È
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˘

˚

˙
˙
˙
˙
˙1

 (6.66)

has rank equal to n.

A MIMO system with distinct eigenvalues6 l1, l2, ..., ln has the following Jordan canonical state model.

 x(k + 1) = Lx(k) + Gu(k)

 y(k) = Cx(k) + Du(k) 
(6.67)

with

 L = 
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The system (6.67) is completely controllable if, and only if, none of the rows of G matrix is a zero row, 

and (6.67) is completely observable if, and only if, none of the columns of C matrix is a zero column.

Example 6.7

The scheme of Fig. 5.23 (refer to Example 5.21) describes a simple concentration control process. 

Mathematical model of the plant, given by Eqns (5.133), is reproduced below.

  x  = Ax + Bu

 y = Cx 
(6.68)

with A = 
-

-
È

Î
Í

˘

˚
˙

0 01 0

0 0 02

.

.
; B = 

1 1

0 004 0 002- -
È

Î
Í

˘

˚
˙

. .
; C = 

0 01 0

0 1

.È

Î
Í

˘

˚
˙

The state, input, and output variables are deviations from stea dy-state values:

 x1 = incremental volume of fluid in the tank (liters)

 x2 = incremental outgoing concentration (g-moles/liter)

 u1 = incremental feed 1 (liters/sec)

 u2 = incremental feed 2 (liters/sec)

 y1 = incremental outflow (liters/sec)

 y2 = incremental outgoing concentration (g-moles/liter)

Matrix A in Eqns (6.68) is in diagonal form; none of the rows of B matrix is a zero row, and none of the 

columns of C matrix is a zero column. The state model (6.68) is, therefore, completely controlla ble and 

observable.

 6 Refer to Gopal [105] for the case of multiple eigenvalues.
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With initial values of x1 and x2 equal to zero at t = 0, a step of 2 liters/sec in feed 1 results in

 y(t) = C e dt

t
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0
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Solving for y(t), we get
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Therefore, y1(t) = 2(1 – e–0.01t ) (6.69a)

 y2(t) = – 0.4(1 – e–0.02t) (6.69b)

Suppose that the plant (6.68) forms part of a process commanded by a process control computer. 

As a result, the valve settings change at discrete instants only and remain constant in between. 

Assuming that these instants are separated by time period T = 5 sec, we derive the discrete-time 

description of the plant.

 x(k + 1) = Fx(k) + Gu(k) (6.70a)

 y(k) = Cx(k) (6.70b)
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Matrix F in Eqns (6.70) is in diagonal form; none of the rows of G matrix is a zero row, and none of the 

columns of C matrix is a zero column. The state model (6.70) is, therefore, completely controllable and 

observable.

With initial values of x1 and x2 equal to zero at k = 0, a step of 2 liters/sec in feed 1 results in
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with  F
k = 

( . )

( . )

0 9512 0

0 0 9048

k

k

È

Î
Í
Í

˘

˚
˙
˙

 and  u(i) = 
2

0

È

Î
Í

˘

˚
˙

Solving for y(k), we get

 y1(k) = 0.01x1(k) = 0.01 
i

k

=

-

Â
0

1

9.76(0.9512)k –1 – i

Since (refer to footnote 4)
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we have  y1(k) = 2[1 – (0.9512)k] (6.71a)

 y2(k) = x2(k) = – 0.038 
i

k

=
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Â
0

1

(0.9048)k –1– i = – 0.4 [1 – (0.9048)k] (6.71b)

Comparison of y1(k) and y2(k) with y1(t) and y2(t), shows that the two sets of responses match exactly at 

the sampling instants.

REVIEW EXAMPLES

Review Example 6.1

Give three different canonical state variable models correspond ing to the transfer function

 G(z) = 
4 12 13 7

1 2

3 2

2

z z z
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- -( ) ( )

Solution The given transfer function is
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The controllable canonical state model (first companion form) follows directly from Eqns (6.5) and (6.7):
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The observable canonical state model (second companion form) follows directly from Eqns (6.5) and (6.8):
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The state variable model in Jordan canonical form follows from Eqns (6.11) and (6.12):
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Review Example 6.2

Prove that a discrete-time system obtained by zero-order-hold sampling of an asymptotically stable 

continuous-time system is also asymptotically stable.

Solution Consider an asymptotically stable continuous-time system

  x (t) = Ax(t) (6.72)

We assume for simplicity, that the eigenvalues l1, l2, ..., ln of matrix A are all distinct. Let P be a 

transformation matrix such that
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This gives (refer to Eqn. (5.93))
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The zero-order-hold sampling of the continuous-time system (6.72) results in a discrete-time system

 x(k + 1) = Fx(k)

where  F = eAT; T = sampling interval

The characteristic polynomial of the system is

 |zI – F| = |zI – eAT| = |P–1| |zI – eAT| |P|

  = |zP
–1

P – P–1eAT P | = |zI – eLT |

  = (z – e
Tl1 ) (z – e Tl2 )   (z – e nTl

)

Notice that the eigenvalues of F are given by zi = eliT; i = 1, 2, ..., n. We see the equivalence of Reli < 0 

and | zi | < 1. Thus, the discrete-time system, obtained by zero-order-hold sam pling of an asymptotically 

stable continuous-time system, is also asymptotically stable.

The proof for the case where matrix A has multiple eigenvalues follows on identical lines.

Review Example 6.3

Consider a unity-feedback system with the plant

  x = Ax + bu

 y = cx

where A = 
0 1

0 2-
È

Î
Í

˘

˚
˙ ; b = 

0

K

È

Î
Í

˘

˚
˙ ; c = [1 0]

 (a) Find the range of values of K for which the closed-loop system is stable.

 (b) Introduce now a sampler and zero-order hold in the forward path of the closed-loop system. Show  

that sampling has a destabilizing effect on the stability of the closed-loop system. To establish this 

result, you may find the range of values of K for which the closed-loop digital system is stable when 

(i) T = 0.4 sec, and (ii) T = 3 sec; and then compare with that obtained in (a) above.

Solution Consider the feedback system of Fig. 6.12a. Substituting

 u = r – y = r – x1

in the plant model, we get the following state variable descrip tion of the closed-loop system:
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The characteristic equation of the closed-loop system is

l2 + 2l + K = 0

The closed-loop system is stable for all values of K > 0.

Figure 6.12b shows a block diagram of the closed-loop digital system. The discrete-time description of 

the plant is obtained as follows:

 x(k + 1) = Fx(k) + g u(k)

 y(k) = cx(k)
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The state variable description of the closed-loop digital system, becomes

 x(k + 1) = 
1 1

1

1
2

1
2

1
2

2 1
2

2

1
2

2 2

- - + -

- -

È

Î

Í
Í

˘

˚

˙
˙

- -

- -

K T e e

K e e

T T

T T

( ) ( )

( )
 x(k) + 1

2
K

T e

e

T

T

- +

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

1
2

1
2

2

21
r(k)

The characteristic equation is given by

 l2 + [ ( ) ( )]- + + - +- -1 2 1
2

1
2

1
2

2e K T eT T l  + e–2T + 1
2

K( 1
2

 – 1
2

e–2T – Te–2T) = 0

Case I: T = 0.4 sec

For this value of sampling period, the characteristic polynomial becomes

 D(l) = l2 + (0.062K – 1.449)l + 0.449 + 0.048K

Applying the Jury stability test (refer to Eqns (2.73)–(2.75)), we find that the system is stable if the 

following conditions are satisfied:

 D(1) = 1 + 0.062K – 1.449 + 0.449 + 0.048K > 0

 D(–1) = 1 – 0.062K + 1.449 + 0.449 + 0.048K > 0

     | 0.449 + 0.048K| < 1

These conditions are satisfied for 0 < K < 11.479.

Case II: T = 3 sec

For this value of the sampling period, the characteristic polyno mial becomes

 D(l) = l2 + (1.2506K – 1.0025)l + 0.0025 + 0.2457K

The system is found to be stable for 0 < K < 1.995.

Thus, the system which is stable for all K > 0 when T = 0 (contin uous-time system), becomes unstable for 

K > 11.479 when T = 0.4 sec. When T is increased to 3 sec, it becomes unstable for K > 1.995. It means 

that increasing the sampling period (or decreas ing the sampling rate) reduces the margin of stability.

Review Example 6.4

A closed-loop computer control system is shown in Fig. 6.13. The digital controller is described by the 

difference equation

 e2(k + 1) + ae2(k) = be1(k)

The state variable model of the plant is given below.

  x = Ax + bu

 y = cx

with  A = 
0 1

0 1-
È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]
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Obtain discrete-time state description for the closed-loop sys tem.

+ u

T =1sec

r Digital
compensator

ZOH Plant

–

y x= 1e1( )ke1( )t e2( )k

Fig. 6.13

Solution

Given A = 
0 1

0 1-
È

Î
Í

˘

˚
˙

 eAt = L –1[(s I – A) –1] = L –1 

1 1

1

0
1

1

s s s

s

( )+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = 
1 1

0

-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

The discretized state equation of the plant is

 x(k + 1) = Fx(k) + gu(k) (6.73a)

where  F = eAT = 
1 1

0

-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

T

T

 g = 

0

T

Ú eAq b dq = 

( )1

0

0

-
È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

Ú

Ú

e d

e d

T

T

q

q

q

q

 = 
T e

e

T

T

- +

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

1

1
 (6.73b)

For T = 1 sec, we have

 F = 
1 0 632

0 0 368

.

.

È

Î
Í

˘

˚
˙ ; g = 

0 368

0 632

.

.

È

Î
Í

˘

˚
˙  (6.73c)

Consider now, the feedback system of Fig. 6.13 with the plant described by the equation (refer to Eqns 6.73)):

 
x k

x k

1

2

1

1

( )

( )

+
+

È

Î
Í

˘

˚
˙  = 

1 0 632

0 0 368

.

.

È

Î
Í

˘

˚
˙  

x k

x k

1

2

( )

( )

È

Î
Í

˘

˚
˙  + 

0 368

0 632

.

.

È

Î
Í

˘

˚
˙ e2(k) (6.74)

e2(k) may be taken as the third state variable x3(k) whose dynam ics are given by

 x3(k + 1) = – a x3(k) + b e1(k) = – a x3(k) + b (r(k) – x1(k)) = – b x1(k) – a x3(k) + b r(k) (6.75)

From Eqns (6.74)–(6.75), we get the following state variable model for the closed-loop digital system of  

Fig. 6.13:
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1 0 632 0 368

0 0 368 0 632

0

. .

. .

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
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È
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˙
˙
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0
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È
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Í
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Í

˘

˚

˙
˙
˙
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 y(k) = [1 0 0] 

x k
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3

( )
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È

Î

Í
Í
Í

˘

˚

˙
˙
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Review Example 6.5

Given

 L
n n¥

 = 

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0 1

0 0 0

 

 

    

 

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Compute Lk using the Cayley–Hamilton technique.

Solution Equations (5.98) outline the procedure of evaluation of functions of a matrix using the 

Cayley–Hamilton technique.

The matrix L has n eigenvalues at l = l1. To evaluate f (L) = Lk, we define (refer to Eqn. (5.98b)) the 

polynomial g(l) as

 g(l) = b0 + b1 l +   + b n –1 ln–1

This polynomial may be rearranged as

 g(l) = b0 + b1(l – l1) +   + bn –1 (l – l1)n–1

The coefficients b0, b1, ..., bn–1 are given by the following equations (refer to Eqns (5.98c)):

 f (l1) = g(l1)

 
d

d
f

l
l

l l

( )
= 1

 = 
d

d
g

l
l

l l

( )
= 1

  

 
d

d
f

n

n

-

-
=

1

1

1

l
l

l l

( )  = 
d

d
g

n

n

-

-
=

1

1

1

l
l

l l

( )

Solving, we get

 b0 = l k
1

 b1 = 
k k

1 1

1

!
l

-

 b2 = 
k k k( )

!

- -1

2
1

2l
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 bn–1 = 
k k k k n

n

k n( )( ) ( )
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-
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1
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Therefore (refer to Review Example 5.3),

 Lk = b0I + b1(L – l1I) +   + bn–1 (L – l1I)n–1
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l l l
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l l
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PROBLEMS

 6.1 A system is described by the state equation

   x(k + 1) = 

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 1 0

4 0 1

1 0 0

 x(k) + 

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3

7

0

 u(k); x(0) = x0

  Using the z-transform technique, transform the state equation into a set of linear algebraic 

equations in the form

   X(z) = G(z)x0 + H(z)U(z)

 6.2 Give a block diagram for digital realization of the state equation of Problem 6.1.

 6.3 Obtain the transfer function description for the following system:

   
x k

x k

1

2

1

1

( )

( )

+
+

È

Î
Í

˘

˚
˙  = 

2 5
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0
1
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-
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

x k

x k

( )

( )
u(k); y(k) = 2x1(k)

 6.4 A second-order multivariable system is described by the following equations:

   
x k

x k

1

2

1

1

( )

( )

+
+

È
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˚
˙  = 
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È
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  Convert the state variable model into a transfer function matrix.
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 6.5 The state diagram of a linear system is shown in Fig. P6.5. Assign the state variables and write the 

dynamic equations of the system.
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1/3
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–7
2

2

3

z–1

z–1

z–1

Y( )zU( )z

Fig. P6.5

 6.6 Set up a state variable model for the system of Fig. P6.6.

+

+ +

+

+

+

+ +
+

+
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2

2

2

12

7
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–

u1
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y2u2

Fig. P6.6
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 6.7 Obtain the companion form realizations for the following transfer functions. Obtain different 

companion form for each system.

 (i)  
Y z

R z

( )

( )
 = 

3 32

2 1
3

2
3

z z

z z

- -

+ -

 (ii)  
Y z

R z

( )

( )
 = 

- + - +

+ - -

2 2 23 2

3 2 3
4

z z z

z z z

 6.8 Obtain the Jordan canonical form realizations for the follow ing transfer functions.

 (i)  
Y z

R z

( )

( )
 = 

z z z

z z z

3 28 17 8

1 2 3

+ + +
+ + +( ) ( ) ( )

 (ii)  
Y z

R z

( )

( )
 = 

3 4 63

1
3

3

z z

z

- +

-( )

 6.9 Find state variable models for the following difference equations. Obtain different canonical form 

for each system.

 (i) y(k + 3) + 5 y(k + 2) + 7 y(k + 1) + 3 y(k) = 0

 (ii) y(k + 2) + 3 y(k + 1) + 2 y(k) = 5 r(k + 1) + 3 r(k)

 (iii) y(k + 3) + 5 y(k + 2) + 7 y(k + 1) + 3 y(k) = r(k + 1) + 2 r(k)

 6.10 Given

   F = 
0 1

3 4-
È

Î
Í

˘

˚
˙

  Determine f(k) = Fk using

 (a) the z-transform technique;

 (b) similarity transformation; and

 (c) Cayley–Hamilton technique.

 6.11 Consider the system

   x(k + 1) = Fx(k) + gu(k); x(0) = 
1

1-
È

Î
Í

˘

˚
˙

   y(k) = cx(k)

  with  F = 
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.
; g = 

1

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

  Find the closed-form solution for y(k) when u(k) is unit-step sequence.

 6.12 Consider the system

   x(k + 1) = Fx(k) + gu(k)

   y(k) = Cx(k) + du(k)

  with  F = 

3
2

1

1 1

-

-

È

Î
Í
Í

˘

˚
˙
˙

; g = 
3

2

È

Î
Í

˘

˚
˙ ; x(0) = 

-È

Î
Í

˘

˚
˙

5

1

   C = 
-
-

È

Î
Í

˘

˚
˙

3 4

1 1
; d = 

-È

Î
Í

˘

˚
˙

2

0
; u(k) = 1

2( )k
, k ≥ 0

  Find the response y(k), k ≥ 0.
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 6.13 Consider the system

   x(k + 1) = Fx(k)

  with  F = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1 0

0 1 0

0 0 2

 (a) Find the modes of the free response.

 (b) Find x(k) for

   x(0) = [0 1 1]T

 6.14 Consider the continuous-time system

   Ga(s) = 
Y s

R s

( )

( )
 = 

1

2s s( )+

  Insert sample-and-hold devices and determine the vector difference state model for digital 

simulation of the continuous-time system when the computation interval is T = 1 sec. Use the 

following methods to obtain the simulation model.

 (a) Obtain G(z) by taking the z transform of Ga(s) when it is preceded by a sampler-and-hold; 

convert G(z) into a vector di fference state model.

 (b) Obtain a continuous-time state model for the given Ga(s); insert sample-and-hold and 

discretize the model.

 6.15 Consider a continuous-time system

    x(t) = 
-

-
È

Î
Í

˘

˚
˙

2 2

1 3
 x(t) + 

-È

Î
Í

˘

˚
˙

1

5
 u(t)

   y(t) = [2 – 4] x(t) + 6 u(t)

  Insert sample-and-hold devices and determine the vector di fference state model for digital 

simulation of the continuous-time system when the computation interval T = 0.2.

 6.16 The plant of a single-input, single-output digital control system is shown in the block diagram of 

Fig. P6.16, where u(t) is the control input and w(t) is a unit-step load disturbance. Obtain the state 

difference equations of the plant. Sampling period T = 0.1 second.

10
+

+
y t( )u t( ) 1

10 + 1s

1
s

w t( )

Fig. P6.16

 6.17 The mathematical model of the plant of a two-input, two-output temperature control system is 

given below.

    x = Ax + Bu

   y = Cx

   A = 
-

-
È

Î
Í

˘

˚
˙

0 1 0

0 1 0 1

.

. .
; B = 

100 0

0 100

È

Î
Í

˘

˚
˙ ; C = 

1 0

0 1

È

Î
Í

˘

˚
˙
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  For the computer control of this system, obtain the discrete-time model of the plant. Sampling 

period T = 3 seconds.

 6.18 Consider the closed-loop control system shown in Fig. P6.18.

 (a) Obtain the z-transform of the feedforward transfer function.

 (b) Obtain the closed-loop transfer function, and convert it into a state variable model for digital 

simulation.

T= 1 sec

+

–

1
( + 1)s s

1– e–Ts

s

R s( ) Y s( )

Fig. P6.18

 6.19 The mathematical model of the plant of a control system is given below.

   
Y s

U s

( )

( )
 = Ga(s) = 

e

s

s-

+

0 4

1

.

  For digital simulation of the plant, obtain a vector difference state model with T = 1 sec as the 

sampling period. Use the fol lowing methods to obtain the plant model:

 (a) Sample Ga(s) with a zero-order hold and convert the resulting discrete-time transfer function 

into a state model.

 (b) Convert the given Ga(s) into a state model and sample this model with a zero-order hold.

 6.20 Determine zero-order hold sampling of the process

    x (t) = – x(t) + u(t – 2.5)

  with sampling interval T = 1.

 6.21 Convert the transfer function

   
Y s

U s

( )

( )
 = Ga(s) = 

e

s

s D- t

2
; 0 £ tD < T

  into a state model and sample this model with a zero-order hold; T is the sampling interval.

 6.22 The plant of a unity-feedback continuous-time control system is described by the equations

    x  = 
0 1

0 2-
È

Î
Í

˘

˚
˙  x + 

0

2

È

Î
Í

˘

˚
˙  u

   y = x1

 (a) Show that the continuous-time closed-loop system is stable.

 (b) A sampler and zero-order hold are now introduced in the forward loop. Show that the stable 

linear continuous-time system becomes unstable upon the introduction of a sampler and a 

zero-order hold with sampling period T = 3 sec.

 6.23 The block diagram of a sampled-data system is shown in Fig. P6.23.

 (a) Obtain a discrete-time state model for the system.

 (b) Obtain the equation for intersample response of the system.
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r u
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y+
ZOH
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1
+ 1s

1
s

Fig. P6.23

 6.24 The block diagram of a sampled-data system is shown in Fig. P6.24. Obtain the discrete-time state 

model of the system.

  Given A = 
0 1

2 3- -
È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

Fig. P6.24

 6.25 A closed-loop computer control system is shown in Fig. P6.25. The digital compensator is 

described by the difference equation

   e2(k + 1) + 2e2(k) = e1(k)

  The state model of the plant is, as given in Problem 6.24. Obtain the discrete-time state model for 

the system.

y
ZOH Plant

r uDigital
compensatorT=1 sec

+

–

e2( )ke1( )k

Fig. P6.25

 6.26 Consider the closed-loop analog control system shown in Fig. P6.26. For computer control of 

the process, transform the controller transfer function into a difference equation using backward-

difference approximation of the derivative.

  Sample the process model with a zero-order hold and obtain the state variable model of the closed-

loop computer-controlled system. Take T = 0.1 sec as sampling interval.

+

–
Controller

E( )sR( )s U( )s Y( )s

Process

10
(10 + 1)s s

9 + 4.1 s

Fig. P6.26
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 6.27 Investigate the controllability and observability of the following systems:

 (a)  x(k + 1) = 
1 2

1 1

-
-

È

Î
Í

˘

˚
˙  x(k) + 

1 1

0 0

-È

Î
Í

˘

˚
˙  u(k)

   y(k) = 
1 0

0 1

È

Î
Í

˘

˚
˙  x(k)

 (b)  x(k + 1) = 
-

-
È

Î
Í

˘

˚
˙

1 1

0 1
x(k) + 

0

1

È

Î
Í

˘

˚
˙  u(k)

   y(k) = [1 1] x(k)

 6.28 Consider the following continuous-time control system:

   
 

 

x t

x t

1

2

( )

( )

È

Î
Í

˘

˚
˙  = 

0 1

1 0

0

1

1

2-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

x t

x t
u t

( )

( )
( )

   y(t) = x1(t)

  Show that the system is completely controllable and completely observable. The control signal 

u+(t) is now generated by process ing the signal u(t), through a sampler and a zero-order hold. Study 

the controllability and observability properties of the system under this condition. Determine the 

values of the sampling period for which the discretized system may exhibit hidden oscil lations.

 6.29 For the digital system shown in Fig. P6.29, determine what values of T must be avoided so that 

the system will be assured of complete controllability and observability.

r y

T
ZOH +

1
+ 1s

p

( + 0.02) +s 22 p

Fig. P6.29

 6.30 Consider the state variable model

   x(k + 1) = Fx(k) + g r(k)

   y(k) = cx(k)

  with F = 
0 1
1
8

3
4

-
È

Î
Í

˘

˚
˙ ; g = 

0

1

È

Î
Í

˘

˚
˙ ; c = [ ]- 1

2
1

 (a) Find the eigenvalues of matrix F.

 (b) Find the transfer function G(z) = Y(z)/R(z) and determine the poles of the transfer function.

 (c) Comment upon the controllability and observability properties of the given system without 

making any further calculations.
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Pole-Placement Design and  
State Observers

7.1 INTRODUCTION

The design techniques presented in the preceding chapters are based on either frequency response or the 

root locus. These transfer function-based methods have been referred to as classi cal control design. The 

goal of this chapter is to solve the identical problems using different techniques based on state variable 

formulation. The use of the state-space approach has often been referred to as modern control design. 

However, since the state-space method of description for differential equations is over 100 years old, 

and was introduced in control design in the late 1950s, it seems somewhat mis leading to refer to it as 

‘modern’. We prefer to refer to the two approaches to design as state variable methods and transform 

methods.

The transform methods of design are powerful methods of practical design. Most control systems are 

designed using variations of these methods. An important property of these methods is robust ness. The 

resultant closed-loop system characteristics tend to be insensitive to small inaccuracies in the system 

model. This property is very important because of the difficulty in finding an accurate linear model of a 

physical system and also, because many systems have significant nonlinear operations.

The state variable methods appear to be much more dependent on having an accurate system model for 

the design process. An advantage of these methods is that the system representation provides a complete 

(internal) description of the system, including possible internal oscillations or instabilities that might be 

hidden by inappropriate cancellations in the transfer function (input/output) description. The power of 

state variable techniques is especially apparent when we design controllers for systems with more than 

one control input or sensed output. Howe ver, in this chapter, we will illustrate the state variable design 

methods using Single-Input, Single-Output (SISO) systems. Methods for Multi-Input, Multi-Output 

(MIMO) design are discussed in Chapter 8.

In this chapter, we present a design method known as pole placement or pole assignment. This method is 

similar to the root-locus design in that, the closed-loop poles may be placed in desired locations. However, 

pole-placement design allows all closed-loop poles to be placed in desirable locations, whereas the root-

locus design procedure allows only the two dominant poles to be placed. There is a cost associated with 

placing all closed-loop poles, however, because placing all closed-loop poles requires measurement and 

feedback of all the state variables of the system.

Chapter 7
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In many applications, all the state variables cannot be measured because of cost considerations, or  

because of the lack of suitable transducers. In these cases, those state variables that cannot be measured  

must be estimated from the ones that are measured. Fortunately, we can separate the design into two 

phases. During the first phase, we design the system as though all states of the system will be measured. 

The second phase is concerned with the design of the state estimator. In this chapter, we consider both 

phases of the design process, and the effects that the state estimator has on closed-loop system operation.

Figure 7.1 shows how the state-feedback control law and the state estimator fit together, and how the 

combination takes the place of, what we have been previously referring to as, dynamic compensa tion. We 

will see in this chapter that the estimator-based dyna mic compensators are very similar to the classical 

compensators of Chapter 4, in spite of the fact that they are arrived at by entirely different means.

u y+

–

Plant

Control law

Compensation

Estimator

Sensor

k

x

r
kR

State vector
estimateConstant

gain matrix

Fig. 7.1 

7.2 Stability Improvement by State Feedback

An important aspect of feedback system design is the stability of the control system. Whatever we want 

to achieve with the control system, its stability must be assured. Sometimes the main goal of feedback 

design is actually to stabilize a system if it is initially unstable, or to improve its stability if transient 

phenomena do not die out sufficiently fast.

The purpose of this section is to investigate how the stability properties of linear systems can be improved 

by state feedback.

Consider the single-input linear time-invariant system with nth-order state differential equation

  x(t) = Ax(t) + bu(t) (7.1)

If we suppose that all the n state variables x1, x2, ..., xn can be accurately measured at all times, it is 

possible to implement a linear control law of the form

 u(t) = – k1x1(t) – k2x2(t) –   – knxn(t) = – kx(t) (7.2)

where  k = [k1 k2   kn]
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is a constant state-feedback gain matrix. With this state-feedback control law, the closed-loop system is 

described by the state differential equation

  x(t) = (A – bk) x(t) (7.3)

and the characteristic equation of the closed-loop system is

 | sI – (A – bk) | = 0 (7.4)

When evaluated, this yields an nth-order polynomial in s contain ing the n gains k1, k2, ..., kn. The control-

law design then consists of picking the gains so that the roots of Eqn. (7.4) are in desirable locations. 

In the next section, we find that under a mildly restrictive condition (namely, the system (7.1) must be 

completely controllable), all the eigenvalues of (A – bk) can be arbitrarily located in the complex plane 

by choosing k suitably (with the restriction that complex eigenvalues occur in complex-conjugate pairs). 

If all the eigenvalues of (A – bk) are placed in 

the left-half plane, the closed-loop system is, 

of course, asymptotically stable; x(t) will decay 

to zero irrespective of the value of x(0)—the 

initial perturbation in the state. The system 

state is thus maintained at zero value in spite of 

disturbances that act upon the system. Systems 

with this property are called regulator systems. 

The origin of state space is the equilibrium 

state of the system.

Control configuration for a state regulator is 

shown in Fig. 7.2. In this structure, there is 

no command input (r = 0). Control systems 

in which the output must follow the command 

signals (called servo systems) will be 

considered later.

Selection of desirable locations for the closed-

loop poles requires some iteration by the 

designer. Some of the issues in their selection will be discussed later in this chapter. For now, we will 

assume that the desired locations are known, say,

 s = l1, l2, …, ln

Then the desired characteristic equation is

 (s – l1)(s – l2)   (s – ln) = 0 (7.5)

The required elements of k are obtained by matching coefficients in Eqns (7.4) and (7.5), thus forcing 

the system characteristic equation to be identical with the desired equation. An example should clarify 

this pole-placement idea.

Example 7.1

Consider the problem of designing an attitude control system for a rigid satellite. Satellites usually require 

attitude control so that antennas, sensors, and solar panels are properly oriented. For example, antennas 

–

u

+

+

+

Plant

+

k1

k2

kn

x1

x2

xn

Fig. 7.2 
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are usually pointed towards a particular location 

on the earth, while solar panels need to be oriented 

towards the sun for maximum power generation. To 

gain an insight into the full three-axis attitude-control 

system, we often consider one axis at a time. Figure 

7.3 depicts this case. The angle q  that describes the 

satellite orientation, must be measured with respect to 

an ‘inertial’ reference, that is, a reference that has no 

angular acceleration. The control signal comes from 

the reaction jets that produce a torque T(t) (= Fd) 

about the mass center.

The satellite is assumed to be in frictionless environ-

ment. If T(t) is the system input and q (t) is the system 

output, we have

 T(t) = J 
d t

dt

2

2

q( )

where J is the moment of inertia of the satellite. 

Normalizing, we define

 u = T(t)/J

and obtain

   q = u  or 
q( )

( )

s

U s
 = 

1
2s

This is a reasonably accurate model of a rigid satellite in a frictionless environment, and is useful in  

examples because of its simplicity.

Choosing x1 = q and x2 =  q  as state variables, we obtain the following state equation for the system.

  x = Ax + bu = 
0 1

0 0

È

Î
Í

˘

˚
˙  x + 

0

1

È

Î
Í
˘

˚
˙  u (7.6)

To stabilize the system, the input signal is chosen to be of the form

 u(t) = – k1x1(t) – k2x2(t) = – kx(t)

The state equation for the closed-loop system (Fig. 7.4), then becomes

  x = (A – bk)x = 
0 1

0 0

0

1
1 2

È

Î
Í

˘

˚
˙ -

È

Î
Í
˘

˚
˙

Ê

ËÁ
ˆ

¯̃
[ ]k k  x = 

0 1

1 2-
È

Î
Í

˘

˚
˙

k k
 x

The characteristic equation of the closed-loop system is

 |sI – (A – bk)| = s2 + k2s + k1 = 0 (7.7)

Suppose that the design specifications for this system require z = 0.707 with a settling time of  

1 sec 
4

1 4
zw

zw
n

n= =
Ê
ËÁ

ˆ
¯̃

or . The closed-loop pole locations needed are at s = – 4 ± j4. The desired 

characteristic equation is

 (s + 4 + j4) (s + 4 – j4) = s2 + 8s + 32 (7.8)

F

d

Inertial reference

Gas jet

q

Fig. 7.3 
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u

Satellite

– –

1 1
s s

x2 x1

k2

k1

Fig. 7.4 

Equating the coefficients with like powers of s in Eqns (7.7) and (7.8) yields

 k1 = 32, k2 = 8

The calculation of the gains using the technique illustrated in this example, becomes rather tedious when 

the order of the system is larger than three. There are, however, ‘canonical’ forms of the state variable 

equations where the algebra for finding the gains is especially simple. One such canonical form—useful 

in control-law design—is the controllable canonical form. Consider a system represented by the transfer 

function

 
Y s

U s

( )

( )
 = 

b b b

a a

1
1

2
2

1
1

s s

s s

n n
n

n n
n

- -

-

+ + +

+ + +

 

 

A companion-form realization of this transfer function is given below (refer to Eqns (5.54)):

  x = Ax + bu

 y = cx 
(7.9)

where

 A = 

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 

 

    

 

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; b = 

0

0

0

1

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 c = [bn bn–1   b2 b1]

The matrix A in Eqns (7.9) has a very special structure: the coefficients of the denominator of the transfer 

function preceded by minus signs, form a string along the bottom row of the matrix. The rest of the matrix 

is zero except for the superdiagonal terms, which are all unity. It can easily be proved that the pair (A,b) 

is completely controllable for all values of ai’s. For this reason, the companion-form realization given by 

Eqns (7.9) is referred to as the controllable canonical form.
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One of the advantages of the controllable canonical form is that the controller gains can be obtained from 

it, just by inspection. The closed-loop system matrix

 A – bk = 

0 1 0 0

0 0 1 0

0 0 0 1

1 1 2 2 3 1

 

 

    

 

 - - - - - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚- -a a a an n n nk k k k

˙̇
˙
˙
˙
˙
˙

has the characteristic equation

 sn + (a1 + kn)sn–1 +   + (an – 2 + k3)s2 + (an–1 + k2)s + an + k1 = 0

and the controller gains can be found by comparing the coeffi cients of this characteristic equation with  

Eqn. (7.5).

We now have the basis for a design procedure. Given an arbitrary state variable model and a desired 

characteristic polynomial, we transform the model to controllable canonical form and solve for the 

controller gains, by inspection. Since these gains are for the state in the controllable canonical form, 

we must transform the gains back to the original state. We will develop this pole-placement design 

procedure in the subsequent sections.

7.3 NECESSARY AND SUFFICIENT CONDITIONS FOR

Consider the linear time-invariant system (7.1) with state-feedback control law (7.2); the resulting 

closed-loop system is given by Eqn. (7.3). In the following, we shall prove that a necessary and sufficient 

condition for arbitrary placement of closed-loop eigenvalues in the complex plane (with the restriction 

that complex eigenvalues occur in complex-conjugate pairs), is that the system (7.1) is completely 

controllable. We shall first prove the sufficient condition, i.e., if the system (7.1) is completely 

controllable, all the eigenvalues of (A – bk) in Eqn. (7.3) can be arbitrarily placed.

In proving the sufficient condition on arbitrary pole-placement, it is convenient to transform the state 

equation (7.1) into the controllable canonical form (7.9). Let us assume that such a transformation exists 

and is given by

 x  = Px (7.10)

  = 

p p p

p p p

p p p

n

n

n n nn

11 12 1

21 22 2

1 2

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 x = 

p

p

p

1

2

 

n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 x

 pi = [pi1 pi2   pin]; i = 1, 2, ..., n

Under the transformation (7.10), system (7.1) is transformed to the following controllable canonical 

model:

  x  = A x b+ u  (7.11)
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where

 A = PAP
–1 = 

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 

 

    

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; b = Pb = 

0

0

0

1

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 | sI – A | = sn + a1 sn–1 +   + an–1 s + an = |sI – A|

(Characteristic polynomial is invariant under equivalence trans formation)

The first equation in the set (7.10) is given by

 x1  = p11 x1 + p12 x2 +   + p1n xn = p1x

Taking the derivative on both sides of this equation, we get

  x1 = p1  x = p1Ax + p1bu

But  x1  (= x2 ) is a function of x only as per the canonical model (7.11). 

Therefore,

 p1b = 0 and x2  = p1Ax

Taking derivative on both sides once again, we get

 p1Ab = 0 and x3  = p1A
2
x

Continuing the process, we obtain

 p1A
n –2

b = 0 and xn  = p1A
n –1

x

Taking derivative once again, we obtain

 p1 An –1
b = 1

Thus

 x  = Px = 

p

p A

p A

1

1
1

1

 
n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 x

where p1 must satisfy the conditions

 p1b = p1Ab =   = p1A
n –2

b = 0, p1A
n – 1

b = 1

From Eqn. (7.11), we have

 Pb = 

0

0

0

1

 

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 = 

p b

p Ab

p A b

p A b

1

1

1
2

1
1

 
n

n

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
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or

 p1[b Ab   An –2
b A

n –1
b] = [0 0   0 1]

This gives

 p1 = [0 0   0 1]U –1

where

 U = [b Ab   An–1
b]

is the controllability matrix, which is nonsingular because of the assumption of controllability of the 

system (7.1).

 Therefore, the controllable state model (7.1) can be transformed to the canonical form (7.11) by the 

transformation.

 x  = Px (7.12)

where P = 

p

p A

p A

1

1

1
1

 

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; p1 = [0 0   0 1]U–1

Under the equivalence transformation (7.12), the state-feedback control law (7.2) becomes

 u = – kx = – k x  (7.13)

where  k  = kP
–1 = [ ]k k kn1 2  

With this control law, system (7.11) becomes

  x  = (A bk ) x-

  = 

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

1 1 2 2 3 2 1 1

 

 

      

 - - - - - - - - - -- - -a a a a an n n nk k k k kkn

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

x  (7.14)

 |sI – (A bk )- | = sn + (a1 + kn )sn–1 + (a2 + kn-1 )sn–2 +   + (an–1 + k2 ) s + (an + k1 ) (7.15)

  Since the coefficients ki  are arbitrarily chosen real numbers, the coefficients of the characteristic 

polynomial of (A – bk) can be given any desired values. Hence, the closed-loop poles can be placed at 

any desired locations in the complex plane (subject to conjugate pairing: coefficients of a characteristic 

polynomial will be real only if the complex poles are present in conjugate pairs).

Assume that the desired characteristic polynomial of (A – bk), and hence (A bk)- , is

sn + a1 sn –1 +   + an

From Eqn. (7.15), it is obvious that this requirement is met if k  is chosen as

 k = [an – an an–1 – an–1   a1 – a1]
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Transforming the feedback controller (7.13) to the original coordinates, we obtain

 k = k P = [an – an an–1 – an–1   a1 – a1]P (7.16)

This proves that if (7.1) is controllable, the closed-loop poles can be arbitrarily assigned (sufficient 

condition).

We now derive the necessary condition by proving that if the system (7.1) is not completely controllable, 

then there are eigenvalues of (A – bk) that cannot be controlled by state feed back.

It was shown in Section 5.9 that an uncontrollable system can be transformed into controllability 

canonical form (Eqn. (5.123c))

 
 

 
x

x

1

2

È

Î
Í

˘

˚
˙  = 

A A

0 A

c 12

22

È

Î
Í

˘

˚
˙  

x

x

1

2

È

Î
Í

˘

˚
˙ + 

b

0

cÈ

Î
Í

˘

˚
˙  u = A x b+ u

where the pair ( , )A bc c
 is completely controllable.

The set of eigenvalues of A  is the union of the sets of eigen values of Ac  and A22 . In view of the form 

of b , it is obvious that the matrix A22  is not affected by the introduction of any state feedback of the 

form u = – k x . Therefore, the eigenvalues of A22  cannot be controlled. This proves the necessary 

condition.

7.4 STATE REGULATOR DESIGN

Consider the nth-order, single-input linear time-invariant system

  x(t) = Ax(t) + bu(t) (7.17)

with state-feedback control law

 u(t) = – kx(t) (7.18)

The resulting closed-loop system is

  x(t) = (A – bk) x(t) (7.19)

The eigenvalues of (A – bk) can be arbitrarily placed in the complex plane (with the restriction that 

complex eigenvalues occur in complex-conjugate pairs) by choosing k suitably if, and only if, the system 

(7.17) is completely controllable.

This important result on pole placement was proved in the previous section. The following design steps 

for pole placement, emerge from the proof.

Step 1 From the characteristic polynomial of matrix A:

  |sI – A| = sn + a1 sn–1 +   + an–1 s + an (7.20)

 determine the values of a1, a2, ..., an–1, an.

Step 2 Determine the transformation matrix P that transforms the system (7.17) into controllable 

canonical form:
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 P = 

p

p A

p A

1

1

1

 

n-1

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; 
p U

U [b Ab A b]

1
1

1

= [0 0 0 1]

=

 

 

-

-n
 (7.21)

Step 3 Using the desired eigenvalues (desired closed-loop poles) l1, l2, ..., ln, write the desired 

characteristic polynomial:

 (s – l1)(s – l 2)   (s – ln) = sn + a1 sn–1 +   + an–1 s + an (7.22)

 and determine the values of a1, a2,  , an–1, an.

Step 4 The required state-feedback gain matrix is determined from the following equation:

 k = [an – an an–1 – an–1   a1 – a1] P (7.23)

There are other approaches also, for the determination of the state-feedback gain matrix k. In what 

follows, we shall present a well-known formula, known as the Ackermann’s formula, which is convenient 

for computer solution.

From Eqns (7.23) and (7.21), we get

 k = [an – an an–1 – an–1   a1 – a1] 

[ ]

[ ]

[ ]

0 0 0 1

0 0 0 1

0 0 0 1

1

1

1 1
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U A

U A

-

-

- -
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Í
Í
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˘

˚

˙
˙
˙
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˙n

  = [0 0   0 1]U–1 [(a1 – a1)An–1 + (a2 – a2)An–2 +   + (an – an)I] (7.24)

The characteristic polynomial of matrix A is (Eqn. (7.20))

 |sI – A | = sn + a1s n–1 + a2sn–2 +   + an–1s + an

Since the Cayley–Hamilton theorem states that a matrix satisfies its own characteristic equation, we have

A
n + a1A

n –1 + a2A
n –2 +   + an –1A + anI = 0

Therefore, A
n = – a1A

n–1 – a2A
n –2 –   – an –1A – anI (7.25)

From Eqns (7.24) and (7.25), we get

 k = [0 0   0 1]U–1 e(A) (7.26a)

where

 e(A) = An + a1A
n–1 + a2A

n –2 +   + an–1A + anI (7.26b)

 U = [b Ab   An–1
b] (7.26c)

Equations (7.26) describe the Ackermann’s formula for the deter mination of the state-feedback gain matrix 

k.
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Example 7.2

Recall the inverted pendulum of Example 5.15, shown in Fig. 5.16, in which the object is to apply a force 

u(t) so that the pendulum remains balanced in the vertical position. We found the linear ized equations 

governing the system to be

  x  = Ax + bu

where  x = [q  q  z  z ]T

 A = 

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î
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Í
Í
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˘

˚

˙
˙
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; b = 

0

1 4458

0

0 9639

-
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Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

z(t) = horizontal displacement of the pivot on the cart

q (t) = rotational angle of the pendulum

It is easy to verify that the characteristic polynomial of matrix A is

 | sI – A| = s4 – 16.3106s2

Since there are poles at 0, 0, 4.039, and – 4.039, the system is quite unstable, as one would expect from 

physical reasoning.

Suppose we require a feedback control of the form

 u(t) = – kx = – k1x1 – k2x2 – k3x3 – k4x4,

such that the closed-loop system has the stable pole configura tion given by multiple poles at –1. We  

verified in Example 5.16 that the system under consideration is a controllable system; therefore, such 

a feedback gain matrix k does exist. We will determine the required k by using the design equations 

(7.17)–(7.23).

The controllability matrix

 U = [b Ab A
2
b A

3
b] = 

0 1 4458 0 23 5816

1 4458 0 23 5816 0

0 0 9639 0 1 5379

0 9639 0 1 5

- -
- -

. .

. .

. .

. . 3379 0

È
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 U
–1 = 

0 0 0750 0 1 1500

0 0750 0 1 1500 0

0 0 0470 0 0 0705

0 0470 0 0 070

. .

. .

. .

. .

- -
- 55 0

È

Î

Í
Í
Í
Í

˘

˚

˙
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˙
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Therefore,

 p1 = [– 0.0470 0 – 0.0705 0]
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˚

˙
˙
˙
˙
˙

 = 

- -
- -

-
-

È

Î

Í
Í
Í
Í

0 0470 0 0 0705 0

0 0 0470 0 0 0705

0 6917 0 0 0

0 0 6917 0 0

. .

. .

.

.

˘̆

˚

˙
˙
˙
˙

 |sI – A| = s4 + a1 s3 + a2 s2 + a3 s + a4 = s4 + 0s3 – 16.3106s2 + 0 s + 0

 |sI – (A – bk) | = s4 + a1 s3 + a2 s2 + a3 s + a4 = (s + 1)4 = s4 + 4s3 + 6s2 + 4s + 1

 k = [a4 – a4 a3 – a3 a2 – a2 a1 – a1]P

  = [1 4 22.3106 4]P = [–15.4785 –2.9547 –0.0705 –0.2820]

This feedback control law yields a stable closed-loop system so that the entire state vector, when disturbed 

from the zero state, returns asymptotically to this state. This means that not only is the pendulum balanced  

(q Æ 0), but that the cart returns to its origin as well (z Æ 0).

Example 7.3

Let us use Ackermann’s formula to the state-regulator design problem of Example 7.1 (satellite-attitude 

control system). The plant model is given by (Eqn. (7.6))

  x = Ax + bu = 
0 1

0 0

È

Î
Í

˘

˚
˙  x + 

0

1

È

Î
Í

˘

˚
˙  u

The desired characteristic polynomial is (Eqn. (7.8))

 s2 + a1s + a2 = s2 + 8s + 32

To use Ackermann’s formula (7.26) to calculate the gain matrix k, we first evaluate U–1 and e(A):

 U = [b Ab] = 
0 1

1 0

È

Î
Í

˘

˚
˙ ; U–1   = 

0 1

1 0

È

Î
Í

˘

˚
˙

 e(A) = A2 + a1A + a2I = 
0 1

0 0

È

Î
Í

˘

˚
˙  

0 1

0 0

È

Î
Í

˘

˚
˙  + 8 

0 1

0 0

È

Î
Í

˘

˚
˙  + 32 

1 0

0 1

È

Î
Í

˘

˚
˙  = 

32 8

0 32

È

Î
Í

˘

˚
˙

Now using Eqn. (7.26a), we obtain

 k = [0 1] U–1 e(A) = [0 1] 
0 1

1 0

È

Î
Í

˘

˚
˙  

32 8

0 32

È

Î
Í

˘

˚
˙  = [32 8]

The solution is seen to be the same as that obtained in Example 7.1.

Comments

1. Through the pole-placement design procedure described in the present section, it is always possible to 

stabilize a completely controllable system by state feedback, or to improve its stabili ty by assigning the 

closed-loop poles to locations in the left-half complex plane. The design procedure, however, gives no 

guidance as to where, in the left-half plane, the closed-loop poles should be located.
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It appears that we can choose the magnitude of the real part of the closed-loop poles to be arbitrarily large, 

making the system re sponse arbitrarily fast. However, to increase the rate at which the plant responds, 

the input signal to the plant must become larger, requiring large values of gains. As the magnitudes of 

the signals in a system increase, the likelihood of the system enter ing nonlinear regions of operation, 

increases. For very large signals, this nonlinear operation will occur for almost every physical system. 

Hence, the linear model that is used in design no longer accurately models the physical system.

Thus, the selection of desired closed-loop poles requires a proper balance of bandwidth, overshoot,  

sensitivity, control effort, and other design requirements. If the system is of sec ond-order, then the 

system dynamics (response characteristics) can be precisely correlated to the locations of the desired 

closed-loop poles. For higher-order systems, the location of the closed-loop poles and the response 

characteristics are not easily correlated. Hence, in determining the state-feedback gain matrix k for a 

given system, it is desirable to examine, by computer simulations, the response characteristics for several 

different matrices k (based on several different characteristic equations), and choose the one that gives 

the best overall performance.

2. For the case of single-input systems, the gain matrix k, which places the closed-loop poles at the 

desired locations, is unique.

If the dynamic system under consideration

  x = Ax + Bu

has more than one input, that is, B has more than one column, then the gain matrix K in the control law

 u = – Kx

has more than one row. Since each row of K furnishes n gains (n is the order of the system) that can be 

adjusted, it is clear that in a controllable system there will be more gains available—than are needed—to 

place all of the closed-loop poles. This is a benefit: the designer has more flexibility in the design; 

it is possible to specify all the closed-loop poles and still be able to satisfy other requirements. How 

should these other requirements be specified? The answer to this question may well depend on the 

circumstances of the particular application. A number of results using the design freedom in multi-input 

systems to improve robustness of the control system, have appeared in the literature. We will not be able 

to accommodate these results in this book.

The non-uniqueness in the design of state-feedback control law for multi-input systems, is removed by 

optimal control theory which is discussed in Chapter 8.

7.5 DESIGN OF STATE OBSERVERS

The pole-placement design procedure introduced in the preceding sections results in control law of the 

form

 u(t) = – kx(t) (7.27)

which requires the ability to directly measure the entire state vector x(t). Full state-feedback control 

for many second-order systems, requires feedback of position and rate variables which can easily be 

measured. However, for most of the higher-order systems, full state measurements are not practical. 
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Thus, either a new approach that directly accounts for the non-availability of the entire state vector 

(Chapter 8) is to be devised, or a suita ble approximation of the state vector must be determined. The latter 

approach is much simpler in many situations.

The purpose of this section is to demonstrate the estimation of all the state variables of a system, from 

the measurements that can be made on the system. If the estimate of the state vector is denoted by x̂, it 

would be nice if the true state in the control law given by Eqn. (7.27), could be replaced by its estimate

 u(t) = – kx̂ (t) (7.28)

This indeed is possible, as we shall see in the next section.

A device (or a computer program) that estimates the state variables is called a state observer, or simply an 

observer. If the state observer estimates all the state variables of the system, regardless of whether some 

state variables are available for direct measurement, it is called a full-order state observer. However, if 

accurate measurements of certain states are possible, we may estimate only the remaining states, and 

the accurately measured signals are then used directly for feedback. The result ing observer is called a 

reduced-order state observer.

7.5.1 Full-Order State Observer

Consider a process described by the state equation

  x(t) = Ax(t) + bu(t) (7.29a)

where A and b are, respectively, n × n and n × 1 real constant matrices. The measurement y(t) is related 

to the state by the equation

 y(t) = cx(t) (7.29b)

where c is 1 ¥ n real constant matrix. Without loss of generali ty, the direct transmission part has been 

assumed to be zero.

One method of estimating all the state variables that we may consider, is to construct a model of the plant 

dynamics

  ̂x(t) = Ax̂(t) + bu(t) (7.30)

where x̂  is the estimate of the actual state 

x. We know A, b and u(t), and hence this 

estimator is satisfactory if we can obtain 

the correct initial condition x(0) and set 

x̂(0) equal to it. Figure 7.5 depicts this 

‘open-loop’ estimator. However, it is 

precisely the lack of information on x(0) that 

requires the construction of an estimator. 

If  ̂x(0) π x(0), the estimated state x̂(t) 

obtained from the open-loop scheme of 

Fig. 7.5 would have a continually growing 

error or an error that goes to zero too slowly, to be of any use. Furthermore, small errors in our knowl-

edge of the system (A, b), and the disturbances that enter the system, but not the model, would also cause 

the estimate to slowly diverge from the true state.

u

Plant

Model

y

y

c

c

x

x

x Ax b= + u

x Ax b= + u

Fig. 7.5 
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In order to speed up the estimation process and provide a useful state estimate, we feed back the 

difference between the measured and the estimated outputs—and correct the model continuously with 

this error signal. This scheme, commonly known as ‘Luenberger state observer’, is shown in Fig. 7.6, 

and the equation for it is

  ̂x(t) = A x̂(t) + bu(t) + m(y(t) – ŷ (t)) (7.31)

where m is an n ¥ 1 real constant gain matrix.

The state error vector

  x(t) = x(t) – x̂(t) (7.32)

Differentiating both sides, we get

   x(t) =  x(t) –  ̂x(t)

Substituting for  x (t) and  ̂x(t) from Eqns (7.29) and (7.31) re spectively, we get

   x(t) = Ax(t) + bu(t) – Ax̂(t) – bu(t) – mc(x(t) – x̂(t))

  = (A – mc)  x(t) (7.33)

The characteristic equation of the error is given by

 | sI – (A – mc) | = 0 (7.34a)

If m can (we hope) be chosen so that (A – mc) has stable and reasonably fast roots,  x(t) will decay to 

zero irrespective of  x(0). This means that x̂(t) will converge to x(t) regardless of the value of x̂(0), and 

furthermore, the dynamics of the error can be chosen to be faster than the open-loop dynamics. Note 

that Eqn. (7.33) is independent of applied control. This is a conse quence of assuming A, b and c to be 

identical in the plant and the observer. Therefore, the estimation error  x converges to zero and remains 

there, independent of any known forcing function u(t) on the plant and its effect on the state x(t). If we 

u
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do not have a very accurate model of the plant (A, b, c), the dynamics of the error are no longer governed 

by Eqn. (7.33). However, m can typically be chosen so that the error system is stable and the error is 

acceptably small, even with small modeling errors and disturbance inputs.

The selection of m can be approached in exactly the same fashion as the selection of k in the control law 

design. If we specify the desired location of the observer-error roots as

 s = l1, l2, …, ln,

the desired observer characteristic equation is

 (s – l1) (s – l2)   (s – ln) = 0 (7.34b)

and one can solve for m by comparing coefficients in Eqns (7.34a) and (7.34b). However, as we shall see 

shortly, this can be done only if the system (7.29) is completely observable.

The calculation of the gains using this simple technique becomes rather tedious when the order of the 

system is larger than three. As in the controller design, there is an observable canonical form for which 

the observer design equations are particularly simple. Consider a system represented by the transfer 

function

 
Y s

U s

( )

( )
 = 

b b b

a a

1
1

2
2

1
1

s s

s s

n n
n

n n
n

- -

-

+ + +

+ + +

 

 

A companion-form realization of this transfer function is given below (refer to Eqns (5.56)):

  x = Ax + bu (7.35)

 y = cx

where

 A = 

0 0 0

1 0 0

0 1 0

0 0 1

1

2

1

 

 

 

    

 

-
-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

a

a

a

a

n

n

n ; b = 

b

b

b

b

n

n

n

-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1

2

1

 

; c = [0 0   0 1]

It can easily be proved that the pair (A,c) is completely ob servable for all values of ai’s. For this reason, 

the companion form realization given by Eqn. (7.35) is referred to as observa ble canonical form.

One of the advantages of the observable canonical form is that the observer gains m can be obtained from 

it, just by inspection. The observer-error matrix is

 (A – mc) = 

0 0 0

1 0 0

0 1 0

0 0 1

1

1 2

2 3

1

 

 

 

    

 

- -
- -
- -

- -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

-

-

a

a

a

a

n

n

n

n

m

m

m

m

˙̇
˙
˙
˙
˙
˙

which has the characteristic equation

 sn + (a1 + mn) sn –1 +   + (an –2 + m3)s2 + (an –1 + m2) s + an + m1 = 0

and the observer gains can be found by comparing the coefficients of this equation with Eqn. (7.34b).
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A procedure for observer design, therefore, consists of transforming the given state variable model 

to observable canonical form, solving for the observer gains, and transforming the gains back to the 

original state.

We can, however, directly use the equations of the control-law design for computing the observer gain 

matrix m, if we examine the resemblance between the estimation and control problems. In fact, the 

two problems are mathematically equivalent. This property is called duality. The design of a full-order 

observer requires the determination of the gain matrix m such that (A – mc) has desired eigenvalues 

li ; i = 1, 2, ..., n. This is mathematically equivalent to designing a full state-feedback controller for the 

‘transposed auxiliary system’,

  y (t) = ATy (t) + cTh(t) (7.36a)

with feedback

 h(t) = – mTy (t) (7.36b)

so that the closed-loop auxiliary system 

  y (t) = (AT – cT
m

T)y (t) (7.37)

has eigenvalues li; i = 1, 2, ..., n.

Since

 det W = det WT,

one obtains

 det [sI – (AT – cT
m

T)] = det [sI – (A – mc)]

i.e., the eigenvalues of (AT – cT
m

T) are same as the eigenvalues of (A – mc).

By comparing the characteristic equation 

of the closed-loop system (7.19) and 

that of the auxiliary system (7.37), we 

obtain the duality relations given in Table 

7.1 between the control and estimation 

problems. The Ackermann’s control-

design formula given by Eqns (7.26) 

becomes the observer-design formula if 

the substi tutions of Table 7.1 are made.

A necessary and sufficient condition for determination of the observer gain matrix m for the desired 

eigenvalues of (A – mc), is that the auxiliary system (7.36) be completely controllable. The controllability 

condition for this system is that the rank of

[cT A
T
c

T   (AT)n–1 cT]

is n. This is the condition for complete observability of the original system defined by Eqns (7.29). This 

means that a necessary and sufficient condition for estimation of the state of the system defined by Eqns 

(7.29), is that the system be complete ly observable.

Again by duality, we can say that for the case of single-output systems, the gain matrix m, which places 

the observer poles at desired locations, is unique. In the multi-output case, the same pole configuration 

Table 7.1

Control Estimation

A A
T

b c
T

k m
T
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can be achieved by various feedback gain matrices. This non-uniqueness is removed by optimal control 

theory which is discussed in Chapter 8.

Example 7.4

We will consider the satellite-attitude control system of Example 7.3. The state equation of the plant is

  x = Ax + bu

with  A = 
0 1

0 0

È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í

˘

˚
˙

 x1 = q, the orientation of the satellite; x2 =  q

We assume that the orientation q can be accurately measured from the antenna signal. Therefore,

 y = cx(t)

with  c = [1 0]

Let us design a state observer for the system. We choose the observer to be critically damped with a 

settling time of 0.4 sec 
4

0 4 10
zw

zw
n

n= =
Ê
ËÁ

ˆ
¯̃

. ; . To satisfy these specifications, the observer poles will 

be placed at s = – 10, – 10.

The transposed auxiliary system is given by

  y  = ATy + cTh; h = – mTy

The desired characteristic equation of the closed-loop auxiliary system is

 s2 + a1s + a2 = (s + 10)(s + 10) = s2 + 20s + 100

To apply Ackermann’s formula given by Eqns (7.26), we compute

 U
–1 = [cT A

T
c

T]–1 = 
1 0

0 1

È

Î
Í

˘

˚
˙

 e(AT) = (AT)2 + a1A
T + a2I

  = 
0 0

1 0

È

Î
Í

˘

˚
˙

0 0

1 0

È

Î
Í

˘

˚
˙  + 20 

0 0

1 0

È

Î
Í

˘

˚
˙  + 100 

1 0

0 1

È

Î
Í

˘

˚
˙  = 

100 0

20 100

È

Î
Í

˘

˚
˙

The observer gain matrix is given by the equation

 m
T = [0 1] 

100 0

20 100

È

Î
Í

˘

˚
˙  = [20 100]

Therefore,  m = 
20

100

È

Î
Í

˘

˚
˙
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Example 7.5

Consider once again the inverted-pendulum system of Example 7.2. Suppose that the only output 

available for measurement is z(t), the position of the cart. The linearized equations governing this system 

are

  x  = Ax + bu; y = cx

where  A = 

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b = 

0

1 4458

0

0 9639

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

; c = [0 0 1 0]

We verified in Example 5.18 that this system is completely observable. In the following, we design a  

full-order observer for this system. We choose the observer pole locations as – 2, – 2 ± j1, – 3. The 

corresponding characteristic equation is

 s4 + 9s3 + 31s2 + 49s + 30 = 0

The transposed auxiliary system is given by

  y (t) = ATy (t) + cTh(t); h(t) = – mTy (t)

We will determine the gain matrix m using the design equations (7.17)–(7.23).

The controllability matrix

 U = [cT A
T
c

T (AT)2
c

T (AT)3
c

T] = 

0 0 1 0637 0

0 0 0 1 0637

1 0 0 0

0 1 0 0

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

 U
–1 = 

0 0 1 0

0 0 0 1

0 9401 0 0 0

0 0 9401 0 0

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

Therefore,

 p1 = [0 – 0.9401 0 0]

 P = 

p

p A

p A

p A

1

1

1
2

1
3

( )

( )

( )

T

T

T

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 = 

0 0 9401 0 0

0 9401 0 0 0

0 15 3333 0 1

15 3333 0 1 0

-
-

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

.

.

 | sI – AT| = s4 + a1s3 + a2s2 + a3s + a4 = s4 + 0s3 – 16.3106s2 + 0s + 0

 | sI – (AT – cT
m

T)| = s4 + a1s3 + a2s2 + a3s + a4 = s4 + 9s3 + 31s2 + 49s + 30
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 m
T = [a4 – a4 a3 – a3  a2 – a2  a1 – a1] P

  = [30 49 47.3106 9] P = [–184.0641 –753.6317 9 47.3106]

Therefore,    m = 

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

184 0641

753 6317

9

47 3106

.

.

.

With this m, the observer

  ̂x = (A – mc) x̂  + bu + my

will process the cart position y(t) = z(t) and input u(t), to continuously provide an estimate x̂(t) of the 

state vector x(t); and any errors in the estimate will decay at least as fast as e–2t.

7.5.2 Reduced-Order State Observer

The observer developed in the previous subsection reconstructs the entire state vector. However,  

the measurements usually available are some of the states of the plant. For example, for the satellite-

attitude control problem considered in the previous subsection, the meas urement is orientation of the 

satellite, which is x1(t). The measurement of a state, in general, will be more accurate than any estimate 

of the state based on the measurement. Hence, it is not logical in most cases to estimate states that we are 

measuring. One possible exception is the case in which a measurement is very noisy. The state observer 

for this case may furnish some benefi cial noise filtering.

Since we will not usually want to estimate any state that we are measuring, we prefer to design an 

observer that estimates only those states that are not measured. This type of observer is called a reduced-

order state observer. We develop design equations for such an observer in this subsection. We consider 

only the case of one measurement. It is assumed that the state variables are always chosen such that the 

state measured is x1(t); we can do this without loss of generality. The output equation then is given by

 y(t) = x1(t) = cx(t)

where c = [1 0 0   0]

To derive the reduced-order observer, we partition the state vector into two parts: one part is x1 which 

is directly measured and the other part is xe, representing the state variables that need to be estimated:

 x(t) = 
x t

te

1( )

( )x

È

Î
Í

˘

˚
˙

If we partition the system matrices accordingly, the complete description of the system is given by

 
 

 

x

e

1

x

È

Î
Í

˘

˚
˙  = 

a e

e ee

11 1

1

a

a A

È

Î
Í

˘

˚
˙  

x

e

1

x

È

Î
Í

˘

˚
˙  + 

b

e

1

b

È

Î
Í

˘

˚
˙  u (7.38a)

 y = [1 0] 
x

e

1

x

È

Î
Í

˘

˚
˙  (7.38b)

The dynamics of the unmeasured state variables are given by

  xe  = Aee xe + a be ex u1 1 +
known input
     

 (7.39)
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where the two rightmost terms are known and can be considered as an input into the xe dynamics. Since 

x1 = y, measured dynamics are given by the scalar equation

  x1  =  y = a11 y + a1e xe + b1u (7.40)

If we collect the known terms of Eqn. (7.40) on one side, we get

  
       
y a y b u- -11 1

known measurement

 = a1exe (7.41)

Note that Eqns (7.39) and (7.41) have the same relationship to the state xe that the original equations (7.38) 

had to the entire state x. Following this line of reasoning, we can establish the following substitutions in 

the original observer-design equations, to obtain an (reduced-order) observer of xe:

 x ¨ xe

 A ¨ Aee

 bu ¨ ae1y + beu

 y ¨  y  – a11y – b1u 
(7.42)

 c ¨ a1e

Making these substitutions into the equation for full-order observer (Eqn. (7.31)), we obtain the equation 

of the reduced-order observer:

  ̂xe  = Aee x̂e  + a be ey u1 +
input

     
 + m (  

       
y a y b u- -11 1

measurement

 – a1e x̂ e) (7.43)

If we define the estimation error as

  xe = xe – x̂e  (7.44)

the dynamics of error are given by subtracting Eqn. (7.43) from Eqn. (7.39):

   xe = (Aee – ma1e)  xe  (7.45)

Its characteristic equation is given by

 | sI – (Aee – ma1e) | = 0 (7.46)

We design the dynamics of this observer by selecting m so that Eqn. (7.46) matches a desired reduced-

order characteristic equation. To carry out the design using state regulator results, we form a ‘transposed 

auxiliary system’

  y (t) = AT
ee y (t) + aT

1e h(t)

 h(t) = – mTy (t) 
(7.47)

Use of Ackermann’s formula given by Eqns (7.26) for this auxili ary system gives the gains m of the 

reduced-order observer. We should point out that the conditions for the existence of the reduced-order 

observer are the same as for the full-order ob server—namely observability of the pair (A, c).

Let us now look at the implementational aspects of the reduced-order observer given by Eqn. (7.43). This 

equation can be rewrit ten as

  ̂xe = (Aee – ma1e) x̂e  + (ae1 – ma11)y + (be – mb1)u + m  y  (7.48)
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The fact that the reduced-order observer requires the derivative of y(t) as an input, appears to present 

a practical difficulty. It is known that differentiation amplifies noise, so if y is noisy the use of  y is 

unacceptable. To get around this difficulty, we define the new state as

 x¢e =D  x̂e – my (7.49a)

Then, in terms of this new state, the implementation of the reduced-order observer is given by

 ¢ xe = (Aee – ma1e) x̂e  + (ae1 – ma11)y + (be – mb1)u (7.49b)

and  y  no longer appears directly. A block-diagram representation of the reduced-order observer is 

shown in Fig. 7.7.

y

u

+

m
a me1 – a11

b me – b1
+ + +

+x¢e x¢e xe
Ún – 1

n – 1 parallel
integrators

A maee – 1e

Fig. 7.7 

Example 7.6

In Example 7.4, a second-order observer for the satellite-attitude control system was designed with the 

observer poles at s = – 10, – 10. We now design a reduced-order (first-order) observer for the system with 

observer pole at s = – 10.

The plant equations are
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From Eqn. (7.46), we find the characteristic equation in terms of m:

 s – (0 – m) = 0

We compare it with the desired equation

 s + 10 = 0

which yields,

 m = 10

The observer equations are (refer to Eqns. (7.49))

  ¢x2  = – 10 x̂2  + u

 x̂2  = ¢x2  + 10y

This completes the design of the reduced-order observer which estimates the angular velocity of the 

satellite from the measure ment of the angular position.

7.6
 THE SEPARATION PRINCIPLE

In Sections 7.2–7.4, we studied the design of control laws for systems in which the state variables are all 

accessible for measurement. We promised to overcome the difficulty of not being able to measure all the 

state variables by the use of an observer to estimate those state variables that cannot be measured. Then 

in Section 7.5, we studied the design of observers for systems with known inputs, but not when the state 

estimate is used for the purpose of control. We are now ready to combine the state-feedback control law 

with the observer to obtain a compensator for linear systems in which not all the state variables can be 

measured.

Consider the completely controllable and completely observable system defined by the equations

  x = Ax + bu 
(7.50)

 y = cx

Suppose we have designed a state-feedback control law

 u = – kx (7.51)

using the methods of Section 7.4. And also suppose we have de signed a full-order observer

  ̂x = A x̂  + bu + m(y – c x̂) (7.52)

using the methods of Section 7.5.

For the state-feedback control based on the observed state x̂,

 u = – k x̂  (7.53)

The control system based on combining the state-feedback control law and state observer, has the 

configuration shown in Fig. 7.8. Note that the number of state variables in the compensator is equal to 

the order of the embedded observer and hence is equal to the order of the plant. Thus, the order of the 

overall closed-loop system, when a full-order observer is used in the compensa tor, is 2n for a plant of 
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order n. We are interested in the dynamic behavior of the 2nth-order system comprising the plant and the 

compensator. With the control law (7.53) used, the plant dynamics become

  x = Ax – bk x̂ = (A – bk)x + bk(x – x̂) (7.54)

The difference between the actual state x and observed state x̂, has been defined as the error  x:

  x = x – x̂

Substitution of the error vector into Eqn. (7.54) gives

  x = (A – bk)x + bk  x  (7.55)

Note that the observer error was given by Eqn. (7.33), repeated here

   x = (A – mc)  x  (7.56)

Combining Eqns (7.55) and (7.56), we obtain

 
 

  
x

x

È
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Í

˘

˚
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A bk bk
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-
-
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Í
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È
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˙  (7.57)

Equation (7.57) describes the dynamics of the 2n-dimensional system of Fig. 7.8. The characteristic 

equation for the system is

 | sI – (A – bk)| |sI – (A – mc)| = 0

In other words, the poles of the combined system consist of the union of control and observer roots. This 

means that the design of the control law and the observer can be carried out indepen dently. Yet, when they 

are used together, the roots are unchanged. This is a special case of the separation principle, which holds 

in much more general contexts and allows for the separate design of control law and estimator in certain 

stochastic cases.

To compare the state-variable method of design with the transform methods discussed in earlier chapters, 

we obtain the transfer function model of the compensator used in the control system of Fig. 7.8. The state 

variable model for this compensator is ob tained by including the feedback law u = – kx̂  (since it is part 

of the compensator) in the observer equation (7.52).

  ̂x = (A – bk – mc) x̂  + my (7.58)

 u = – k x̂

yu x
c

SensorPlant

Compensator

–k
x

x Ax b= + u

x Ax b= + u

+ ( – )m cxy

Control law Observer

Fig. 7.8 
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The formula for conversion of state variable model to the trans fer function model is given by Eqn. (5.28). 

Applying this result to the model given by Eqn. (7.58), we obtain

 
U s

Y s

( )

( )-
 = D(s) = k(sI – A + bk + mc)–1

m (7.59)

Figure 7.9 shows the block diagram representation of the system with observer-based controller.

–
Plant

R s( ) = 0
D s( )

U s( ) Y s( )

 Fig. 7.9 

Note that the poles of D(s) in Eqn. (7.59) were neither specified nor used during the state-variable design 

process. It may even happen that D(s) has one or more poles in the right-half plane; the compensator, in 

other words, could turn out to be unstable. But the closed-loop system, if so designed, would be stable. 

There is, however, one problem if the compensator is unstable. The open-loop poles of the system are 

the poles of the plant and also the poles of the compensator. If the latter are in the right-half plane, then 

the closed-loop poles may be in the right-half plane when the loop gain becomes too small. Robustness 

considerations put certain restrictions on the use of unstable compensators to stabilize a system.

Example 7.7

In this example, we study the closed-loop system obtained by implementing the state-feedback control 

law of Example 7.3 and state-observer design of Examples 7.4 and 7.6, for the attitude control of a 

satellite. The plant model is given by

  x = Ax + bu; y = cx

with

 A = 
0 1

0 0

È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

In Example 7.3, the gain matrix required to place the closed-loop poles at s = – 4 ± j4 was calculated to 

be

 k = [32 8]

If both the state variables are available for feedback, the control law becomes

 u = – kx = – [32 8]x

resulting in the closed-loop system

  x = (A – bk)x = 
0 1

32 8- -
È

Î
Í

˘

˚
˙ x
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Figure 7.10a shows the response of the system to an initial condition x(0) = [1 0]T. Assume now that 

the state-feedback control law is implemented using a full-order observer. In Exam ple 7.4, the observer 

gain matrix was calculated to be

 m = 
20

100

È

Î
Í

˘

˚
˙

0

0.5

(a)

(b)

(c)

0.8

t (sec)

1.0

– 0.5

1

0.2 0.4 0.6

Fig. 7.10  

The state variable model of the compensator, obtained by cascading the state-feedback control law and 

the state observer, is obtained as (refer to Eqns (7.58))

  ̂x = (A – bk – mc) x̂  + my = 
-
- -

È

Î
Í

˘

˚
˙

20 1

132 8
x̂  + 

20

100

È

Î
Í

˘

˚
˙  y

 u = – k x̂  = – [32 8] x̂

The compensator transfer function is (refer to Eqn. (7.59))

 D(s) = 
U s

Y s

( )

( )-
 = k(sI – A + bk + mc)–1

m = 
1440 3200

28 2922

s

s s

+

+ +
The state variable model of the closed-loop system can be con structed as follows:

  x1  = x2

  x2  = u = – 32 x̂1  – 8 x̂2

  ̂x1  = – 20 x̂1  + x̂2  + 20y = – 20 x̂1  + x̂2 + 20x1

  ̂x2  = – 132 x̂1  – 8 x̂2  + 100x1
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Therefore,
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Figure 7.10b shows the response to an initial condition

[1 0 0 0]T

Consider now the implementation of state-feedback control law using reduced-order observer. In  

Example 7.6, the following model was obtained to estimate the state x2 (state x1 is directly measured and 

fed back, and is not estimated using an observer):

 ˆ ¢x2 = x ¢2 + 10y

 ¢ x2 = –10 x̂2  + u

The control law is given by

 u = – 32x1 – 8 x̂2

From these equations, the following transfer function model of the compensator is obtained:

 
U s

Y s

( )

( )-
 = 

112 2 86

18

( . )s

s

+
+

The reduced-order compensator is precisely the lead network; this is a pleasant discovery, as it shows 

that the classical and state variable methods can result in exactly the same type of compensa tion.

The state variable model of the closed-loop system with the reduced-order compensator is derived below.

  x1  = x2

  x2 = u = – 32x1 – 8 x̂2  = – 32x1 – 8(x ¢2 + 10x1) = – 112x1 – 8x ¢2
  ¢x2  = – 10 x̂2  + u = – 10 x̂2  – 32x1 – 8 x̂2

  = – 18(x ¢2 + 10x1) – 32x1 = – 18x ¢2 – 212x1

Therefore,
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Figure 7.10c shows the response to an initial condition

[1 0 0]T

Comments

1. Underlying the separation principle is a critical assumption, namely, that the observer includes an 

exact dynamic model of the plant—the process under control. This assumption is almost never valid in 

reality. In practical systems, the precise dynamic model is rarely known. Even that which is known about 
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the real process dynamics, is often too complicated to include in the observer. Thus, the observer must, in 

practice, be configured to use only an approximate model of the plant. This encounter with the real world 

does not vitiate the separation principle, but means that the effect of an inaccurate plant model must be 

considered. If the design achieved through use of the separation principle is robust, it will be able to 

tolerate uncertainty of the plant dynamics. Doyle and Stein [124] have proposed a ‘design adjust ment 

procedure’ to improve robustness with observers.

2. One of the considerations in the design of a gain matrix k in the state-feedback control law, is that the 

resulting control signal u must not be too large; the use of large control effort in creases the likelihood of 

the system entering nonlinear regions of operation. Since the function of the observer is only to process 

data, there is no limitation on the size of the gain matrix m for its realization. (Nowadays, it is all but 

certain that the entire compensator would be realized by a digital compu ter. With floating-point numerics, 

a digital computer would be capable of handling variables of any reasonable dynamic range). Though 

the realization of observer may impose no limitation on the observer dynamics, it may, nevertheless, be 

desirable to limit the observer speed of response (bandwidth). Remember that real sensors are noisy, 

and much of the noise occurs at relatively high frequencies. By limiting the bandwidth of the observer, 

we can attenuate and smoothen the noise contribution to the compensa tor output—which is the control 

signal.

3. The desired closed-loop poles, to be generated by state feedback are chosen to satisfy the performance 

requirements. The poles of the observer are usually chosen so that the observer response is much faster 

than the system response. A rule of thumb is to choose an observer response at least two to five times 

faster than the system response. This is to ensure a faster decay of estimation errors compared with the 

desired dynamics, thus causing the closed-loop poles generated by state feedback to dominate the total 

response. If the sensor noise is large enough to be a major concern, one may decide to choose the observer 

poles to be slower than two times the system poles, which would yield a system with lower bandwidth 

and more noise-smoothing. However, the total system response in this case will be strongly influenced 

by the observer poles. Doyle and Stein [124] have shown that the commonly suggested approach of 

‘speeding-up’ observer dynamics will not work in all cases. They have suggested that procedures which 

drive some observer poles towards stable plant zeros and the rest towards infinity achieve the desired 

objective.

4. A final comment concerns the reduced-order observer. Due to the presence of a direct transmission 

term (refer to Fig. 7.7), the reduced-order observer has much higher bandwidth from sensor to control, 

compared with the full-order observer. Therefore, if sensor noise is a significant factor, the reduced-order 

observer is less attractive, since the potential savings in complexity is more than offset by the increased 

sensitivity to noise.

7.7 SERVO DESIGN: INTRODUCTION OF THE
 REFERENCE INPUT BY FEEDFOR WARD CONTROL

In the state regulator design studied in Section 7.4, the characteristic equation of the closed-loop system 

is chosen so as to give satisfactory transients to disturbances. However, no mention is made of a reference 

input or of design considerations to yield good transient response with respect to command changes. In 
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general, these considerations should be taken into account in the design of a control system. This can be 

done by proper introduction of the reference input into the system equations.

Consider the completely controllable SISO linear time-invariant system with nth-order state variable 

model

  x(t) = Ax(t) + bu(t)

 y(t) = cx(t) 
(7.60)

We assume that all the n state variables can be accurately measured at all times. Implementation of 

appropriately designed control law of the form

 u(t) = – kx(t)

results in a state regulator system; any perturbation in the system state will asymptotically decay to the 

equilibrium state x = 0.

Let us now assume that for the system given by Eqns (7.60), the desired steady-state value of the 

controlled variable y(t) is a constant reference input r. For this servo system, the desired equilibrium 

state xs is a constant point in state space and is governed by the equations

 cxs = r (7.61)

We can formulate this command-following problem as a ‘shifted regulator problem’, by shifting the origin 

of the state space to the equilibrium point xs. Formulation of the shifted regulator problem is as follows.

Let us be the needed input to maintain x(t) at the equilibrium point xs, i.e. (refer to Eqns (7.60)),

 0 = Axs + bus (7.62)

 Assuming for the present that a us exists that satisfies Eqns (7.61)–(7.62), we define shifted input, 

shifted state, and shifted controlled variable as

  u(t) = u(t) – us

  x(t) = x(t) – xs (7.63)

  y(t) = y(t) – r

The shifted variables satisfy the equations

   x = A  x  + b  u

  y = c x  
(7.64)

This system possesses a time-invariant asymptotically stable control law

  u = – k  x  (7.65)

The application of this control law ensures that

 x Æ 0 (x(t) Æ xs, y(t) Æ r)

In terms of the original state variables, total control effort

 u(t) = – kx(t) + us + kxs (7.66)

Manipulation of Eqn. (7.62) gives

 (A – bk)xs + b(us + kxs) = 0 or xs = – (A – bk)–1
b(us + kxs)

or cxs = r = – c(A – bk)–1
b(us + kxs)
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This equation has a unique solution for (us + kxs):

 (us + kxs) = Nr

where N is a scalar feedforward gain, given by

 (N)–1 = – c(A – bk)–1
b (7.67)

The control law (7.66), therefore, takes the form

 u(t) = – kx(t) + Nr (7.68)

The block diagram of Fig. 7.11 shows the configuration of feed back control system with feedforward 

compensation for nonzero equilibrium state.

x

w

+

–

N Plant

k

r u y

Fig. 7.11 

Example 7.8

The system considered in this example is the attitude control system for a rigid satellite. The plant 

equations are (refer to Example 7.1)

 x = Ax + bu; y = cx

where

 A = 
0 1

0 0

È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

 x1(t) = position q (t); x2(t) = velocity  q (t)

The reference input r = qr  is a step function. The desired steady state is

xs = [qr 0]T,

which is a non-null state.

As the plant has integrating property, the steady-state value us of the input must be zero (otherwise the 

output cannot stay con stant). For this case, the shifted regulator problem may be formulated as follows:

 x1  = x1 – qr;  x2  = x2

Shifted state variables satisfy the equation

  x = A  x  + bu
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The state-feedback control

u = – k  x

results in dynamics of  x  given by

  x = (A – bk)  x

In Example 7.1, we found that the eigenvalues of (A – bk) are placed at the desired locations – 4 ± j4 

when

k = [k1 k2] = [32 8]

The control law expressed in terms of the original state varia bles is given as

u = – k1  x1  – k2  x2  = – k1x1 – k2x2 + k1qr = – kx + k1qr

As t approaches infinity,  x  Æ 0 (x Æ [qr 0]T), and u Æ 0.

Figure 7.12 shows a configuration for attitude control of the satellite.

In fact, control configuration of the form shown in Fig. 7.12 may be used for any SISO plant with 

integrating property.

u

– –

+ +qr k1
1 1

ss

x2 y = =x1 q

k2

Fig. 7.12 

7.8 STATE FEEDBACK WITH INTEGRAL CONTROL

Control configuration of Fig. 7.12 produces a generalization of proportional and derivative feedback 

but it does not include integral control unless special steps are taken in the design process. One way to 

introduce integral control is to augment the state vector with the desired integral. More specifically, for 

the system (7.60), we can feedback the state x as well as the integral of the error in output by augmenting 

the plant state x with the extra ‘integral state’ z, defined by the equation

 z(t) = 

0

t

Ú (y(t) – r)dt (7.69a)

where r is the constant reference input of the system. Since z(t) satisfies the differential equation

  z(t) = y(t) – r = cx(t) – r (7.69b)

it is easily included by augmenting the original system (7.60) as follows:

 
 

 

x

z

È

Î
Í

˘

˚
˙  = 

A 0

c 0

È

Î
Í

˘

˚
˙  

x

z

È

Î
Í

˘

˚
˙  + 

b

0

È

Î
Í

˘

˚
˙  u + 

0

-
È

Î
Í

˘

˚
˙

1
 r (7.70)
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Since r is constant, in the steady state  x  = 0,  z  = 0, provided that the system is stable. This means that 

the steady-state solutions xs, zs and us must satisfy the equation
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1
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Substituting this for the last term in Eqn. (7.70), gives
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Now define new state variables as follows, representing the deviations from the steady state:

  x = 
x x-

-
È

Î
Í

˘

˚
˙

s

sz z
;  u  = u – us (7.72a)

In terms of these variables, Eqn. (7.71) becomes

   x = Ax b  + u  (7.72b)

 A = 
A 0

c 0
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Î
Í

˘

˚
˙ , b  = 

b

0
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Î
Í

˘

˚
˙

The significance of this result is that, by defining the deviations from steady state as state and control  

variables, the design problem has been reformulated to be the standard regulator problem, with  x  = 0 as 

the desired state. We assume that an asymptotically stable solution to this problem exists, and is given by

 u  = – k  x

Partitioning k appropriately and using Eqns (7.72a) yields

k = [kp ki]

 u – us = – [kp ki] 
x x-

-
È

Î
Í

˘

˚
˙

s

sz z
 = – kp(x – xs) – ki(z – zs)

The steady-state terms must balance, therefore,

 u = – kp x – ki z = – kp x – ki 

0

t

Ú (y(t) – r)dt (7.73)

The control, thus, consists of proportional state feedback and integral control of output error. At steady-

state,   x  = 0; there fore,

  lim
t

  z(t) Æ 0 or lim
t

 y(t) Æ r

Thus, by integrating action, the output y is driven to the no-offset condition.

This will be true even in the presence of constant disturbances acting on the plant. Block diagram of  

Fig. 7.13 shows the configuration of feedback control system with proportional state feedback and 

integral control of output error.
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Example 7.9

Suppose the system is given by

 
Y s

U s

( )

( )
 = 

1

3s +
with a constant reference command signal. We wish to have integral control with closed-loop poles at  

wn = 5 and z = 0.5, which is equivalent to asking for a desired characteristic equa tion

s2 + 5s + 25 = 0

The plant model is

  x  = – 3x + u; y = x

Augmenting the plant state x with the integral state z—defined by the equation

 z(t) = 

0

t

Ú (y(t) – r)dt

we obtain
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In terms of state and control variables representing deviations from the steady state:
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x x

z z

s

s

-
-

È

Î
Í

˘

˚
˙ ;  u  = u – us

the state equation becomes
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or s2 + (3 + k1)s + k2 = s2 + 5s + 25

Therefore,

 k = [2 25] = [kp ki] 

The control

 u = – kp x – ki z = – 2x – 25  

0

t

Ú(y(t) – r)dt

The control configuration is shown in Fig. 7.14, along with a disturbance input w. This system will 

behave according to the desired closed-loop roots (wn = 5, z = 0.5) and will exhibit the characteristics of 

integral control: zero steady-state error to a step r and zero steady-state error to a constant disturbance w.

r

– –

+ +
+

w

y
25

2

1 1

s + 3s

Fig. 7.14 

7.9
 STATE FEEDBACK

This section covers the key results on the pole-placement design, and state observers for discrete-time  

systems. Our discussion will be brief because of the strong analogy between the discrete-time and 

continuous-time cases. Consider the discretized model of the given plant:

 x(k + 1) = Fx(k) + gu(k) 
(7.74)

 y(k) = cx(k)

where x is the n ¥ 1 state vector, u is the scalar input, y is the scalar output; F, g, and c are, respectively, 

n ¥ n, n ¥ 1 and 1 ¥ n real constant matrices; and k = 0, 1, 2, … .

We will carry out the design of digital control system for the plant (7.74) in two steps. One step assumes 

that we have all the elements of the state vector at our disposal for feedback purposes. The next step is to 

design a state observer which estimates the entire state vector, when provided with the measurements of 

the system indicated by the output equation in (7.74).

The final step will consist of combining the control law and the observer, where the control law 

calculations are based on the estimated state variables rather than the actual state.
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7.9.1 State Regulator Design

Consider the nth-order, single-input, linear time-invariant system (7.74) with state-feedback control law

 u(k) = – kx(k) (7.75)

where

 k = [k1 k2   kn]

The resulting closed-loop system is

 x(k + 1) = (F – gk)x(k) (7.76)

If all the eigenvalues of (F – gk) are placed inside the unit circle in the complex plane, the state x(k) will 

decay to the equilibrium state x = 0 irrespective of the value of x(0)—the initial perturbation in the state.

A necessary and sufficient condition for arbitrary placement of closed-loop eigenvalues (with the 

restriction that complex eigen values occur in conjugate pairs), is that the system (7.74) is completely 

controllable.

The characteristic equation of the closed-loop system is

 |zI – (F – gk)| = 0 (7.77a)

Assuming that the desired characteristic equation is

 (z – l1)(z – l2)   (z – ln) = zn + a1zn–1 +   + an –1z + an = 0 (7.77b)

the required elements of k are obtained by matching coefficients in Eqns (7.77a) and (7.77b).

The calculation of the gains using this method becomes rather tedious when the order of the system is 

greater than three. The algebra for finding the gains becomes especially simple when the state variable 

equations are in controllable canonical form. A design procedure based on the use of controllable 

canonical state variable model, is given below (refer to Eqns (7.20)–(7.23)).

Step 1 From the characteristic polynomial of matrix F:

  | zI – F| = zn + a1zn–1 +   + an–1 z + an (7.78)

 determine the values of a1, a2, ..., an.

Step 2 Determine the transformation matrix P that transforms the system (7.74) into controllable 

canonical form:

 P = 

p

p F

p F

1

1

1
1

 

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; 
p U

U g Fg F g

1
1

1

0 0 0 1=

=

-

-

[ ]

[ ]

 

 n
 (7.79)

Step 3 Using the desired eigenvalues (desired closed-loop poles) l1, l2, ..., ln, write the desired 

characteristic polynomial:

 (z – l1)(z – l2)   (z – ln) = zn + a1 zn–1 +   + an–1 z + an, (7.80)

 and determine the values of a1, a2,  , an–1, an.



 Pole-Placement Design and State Observers 471

Step 4  The required state-feedback gain matrix is determined from the following equation:

 k = [an – an an–1 – an–1   a1 – a1]P (7.81)

 The Ackermann’s formula given below is more convenient for compu ter solution (refer to Eqns 

(7.26)).

 k = [0 0   0 1 ]U–1e(F) (7.82)

 where e(F) = Fn + a1F
n–1 +   + an–1 F + anI

 U = [g Fg   Fn–1
g]

Example 7.10

Consider the problem of attitude control of a rigid satellite. A state variable model of the plant is (refer 

to Eqn. (7.6))

  x  = Ax + bu = 
0 1

0 0

È

Î
Í

˘

˚
˙ x + 

0

1

È

Î
Í

˘

˚
˙  u

where x1 = q is the attitude angle and u is the system input.

The discrete-time description of the plant (assuming that the input u is applied through a zero-order hold 

(ZOH)) is given below (refer to Section 6.3).

 x(k + 1) = Fx(k) + gu(k) (7.83)

where F = eAT = 
1

0 1

TÈ

Î
Í

˘

˚
˙ ; g = 

0

T

Ú eAt bdt = 
T

T

2 2/È

Î
Í
Í

˘

˚
˙
˙

The characteristic equation of the open-loop system is

 | zI – F| = 
z T

z

- -
-

1

0 1
 = (z – 1)2 = 0

With the control law

 u(k) = – kx(k) = – [k1 k2] x(k)

the closed-loop system becomes

 x(k + 1) = (F – gk)x(k)

The characteristic equation of the closed-loop system is

 |zI – (F – gk)| = z2 + (Tk2 + (T 2/2)k1 – 2) z + (T 2/2)k1 – Tk2 + 1 = 0 (7.84a)

We assume that T = 0.1 sec, and the desired characteristic roots of the closed-loop system are z1.2 = 

0.875 – ± 17.9º.

Note that these roots correspond to z = 0.5, and wn = 3.6 (refer to Eqns (4.15)):

 z1, 2 = e nT-zw
 e

j Tn± -w z1 2

The desired characteristic equation is then (approximately)

 z2 – 1.6z + 0.70 = 0 (7.84b)
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Matching coefficients in Eqns (7.84a) and (7.84b), we obtain

 k1 = 10, k2 = 3.5

7.9.2 Design of State Observers

The control law designed in the last subsection assumed that all states were available for feedback. 

Since, typically, not all states are measured, the purpose of this subsection is to show how to determine 

algorithms which will reconstruct all the states, given measurements of a portion of them. If the state is 

x, then the estimate is x̂  and the idea is to let u = – kx̂; replacing the true states by their estimates in the 

control law.

An estimation scheme employing a full-order observer is shown in Fig. 7.15, and the equation for it is

 x̂(k + 1) = Fx̂(k) + gu(k) + m(y(k) – cx̂(k)) (7.85)

where m is an n ¥ 1 real constant gain matrix. We will call this a prediction observer because the estimate 

x̂ (k + 1) is one sam pling period ahead of the measurement y(k).

g

m

F

c

c
+

+

+ +

Observer

–

u k( )
x Fx g( + 1) = ( ) + ( )k k u k

x( )k y k( )

x( + 1)k x( )k y k( )

n-parallel
unit delayers

Fig. 7.15 

A difference equation describing the behavior of the error is obtained by subtracting Eqn. (7.85) from 

Eqn. (7.74):

  x(k + 1) = (F – mc)  x(k) (7.86)

where

  x = x – x̂
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The characteristic equation of the error is given by

 | zI – (F – mc)| = 0 (7.87a)

Assuming that the desired characteristic equation is

 (z – l1)(z – l2) � (z – ln) = 0, (7.87b)

the required elements of m are obtained by matching coefficients in Eqns (7.87a) and (7.87b). A necessary 

and sufficient condition for the arbitrary assignment of eigenvalues of (F – mc), is that the system (7.74) 

is completely observable.

The problem of designing a full-order observer is mathematically equivalent to designing a full state-

feedback controller for the ‘transposed auxiliary system’

 y (k + 1) = FTy (k) + cTh(k) (7.88a)

with feedback

 h(k) = – mTy (k) (7.88b)

so that the closed-loop auxiliary system

 y (k + 1) = (FT – cT
m

T)y (k) (7.88c)

has eigenvalues li; i = 1, 2, ..., n.

This duality principle may be used to design full-order state observers by Ackermann’s formula (7.82), 

or by design procedure given in Eqns (7.78)–(7.81).

Current Observer

The prediction observer given by Eqn. (7.85) arrives at the state estimate x̂(k) after receiving 

measurements up through y(k – 1). Hence the control u(k) = – k x̂(k)  does not utilize the information  on 

the current output y(k). For higher-order systems controlled with a slow computer, or any time the sample 

rates are fast compared to the computation time, this delay between making a measurement and using it 

in control law may be a blessing. In many systems, however, the computation time required to evaluate 

Eqn. (7.85) is quite short—compared to the sample period—and the control based on prediction observer 

may not be as accurate as it could be.

An alternative formulation of the state observer is to use y(k) to obtain the state estimate x̂(k). This can 

be done by separating the estimation process into two steps. In the first step we determine x(k + 1), an 

approximation of x(k + 1) based on x̂(k) and u(k), using the model of the plant. In the second step, we 

use y(k + 1) to improve x(k + 1). The improved x(k + 1) is x̂(k + 1). The state observer based on this 

formulation is called the current ob server. The current observer equations are given by

 x(k + 1) = Fx̂(k) + gu(k) (7.89a)

 x̂(k + 1) = x(k + 1) + m[y(k + 1) – cx(k + 1)] (7.89b)

In practice, the current observer cannot be implemented exactly because it is impossible to sample, 

perform calculations, and output with absolutely no time elapse. However, the errors introduced due to 

computational delays will be negligible if the computation time is quite short—compared to the sample 

period.
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The error equation for the current observer is similar to the error equation for the prediction observer, 

given in (7.86). The current-estimate error equation is obtained by sub tracting Eqns (7.89) from (7.74).

 x(k + 1) = x(k + 1) – x̂(k + 1)

  = Fx(k) + gu(k) – F x̂(k) – gu(k) – mc[x(k + 1) – x(k + 1)]

  = F  x(k) – mcF  x(k) = (F – mcF)  x(k) (7.90)

Therefore, the gain matrix m is obtained exactly as before, except that c is replaced by cF.

Reduced-Order Observer

The observers discussed so far, are designed to reconstruct the entire state vector, given measurements 

of some of the states. To pursue an observer for only the unmeasured states, we partition the state 

vector into two parts: one part is x1 which is directly measured, and the other part is xe, representing the 

state varia bles that need to be estimated. If we partition the system ma trices accordingly, the complete 

description of the system (7.74) is given by

 
x k
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1 1

1

( )
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+
+
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Í

˘

˚
˙

x
 = 

f e

e ee

11 1

1

f

f F
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Í

˘

˚
˙  

x k

ke

1( )

( )x

È

Î
Í

˘

˚
˙  + 
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e

1

g

È

Î
Í

˘

˚
˙  u(k) (7.91a)

 y(k) = [1 0] 
x k

ke

1( )

( )x

È

Î
Í

˘

˚
˙  (7.91b)

The portion describing the dynamics of unmeasured states is

 xe(k + 1) = Fee xe(k) + f ge ex k u k1 1( ) ( )+
known input

        (7.92)

The measured dynamics are given by the scalar equation

 y k f y k g u k( ) ( ) ( )+ - -1 11 1

known measurement
            = f1exe(k) (7.93)

Equations (7.92) and (7.93) have the same relationship to the state xe that the original equation (7.74) had 

to the entire state x. Following this reasoning, we arrive at the desired observer by making the following 

substitutions into the observer equations:

 x ¨ xe

 F ¨ Fee

 gu(k) ¨ fe1 y(k) + geu(k) (7.94)

 y(k) ¨ y(k + 1) – f11y(k) – g1u(k)

 c ¨ f1e

Thus, the reduced-order observer equations are

       x̂e(k + 1) = Fee x̂e(k) + f ge ey k u k1 ( ) ( )+
input

        + m  (7.95)

Subtracting Eqn. (7.95) from (7.92) yields the error equation

  xe(k + 1) = (Fee – mf1e)  xe(k) (7.96)
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where

  xe = xe – x̂e

The characteristic equation is given by

 |zI – (Fee – mf1e)| = 0 (7.97)

We design the dynamics of this observer by selecting m so that Eqn. (7.97) matches a desired reduced-

order characteristic equation. The design may be carried out directly or by using duality principle.

7.9.3

If we implement the state-feedback control law using an estimated state vector, the control system can be 

completed. A schematic of such a scheme, using a prediction observer1, is shown in Fig. 7.16. Note that 

by the separation principle, the control law and the state observer can be designed separately, and yet 

used together.

The portion within the dotted line in Fig. 7.16 corresponds to dynamic compensation. The state variable 

model of the compensator is obtained by including the state-feedback control (since it is a part of the 

compensator) in the observer equations, yielding

 x̂(k + 1) = (F – gk – mc) x̂(k) + my(k) (7.98)

 u(k) = – kx̂(k)

Fig. 7.16 

The formula for conversion of a discrete-time state variable model to the transfer function model is given 

by Eqn. (6.3). Applying this result to the model (7.98), we obtain

 
U z

Y z

( )

( )-
 = D(z) = k(zI – F + gk + mc)–1

m (7.99)

 1 We will design the compensator only for the prediction ob server case. The other observers give very similar 

results.
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Example 7.11

As an example of complete design, we will add a state observer to the satellite-attitude control 

considered in Example 7.10. The system equations of motion are (refer to Eqn. (7.83))

 x(k + 1) = Fx(k) + gu(k) = 
1

0 1

TÈ

Î
Í

˘

˚
˙  x(k) + 

T

T

2 2/È

Î
Í
Í

˘

˚
˙
˙

 u(k)

We assume that the position state x1 is measured and the velocity state x2 is to be estimated; the 

measurement equation is, there fore,

 y(k) = cx(k) = [1 0] x(k)

We will design a first-order observer for the state x2(k).

The partitioned matrices are

 
f f

f F

e

e ee

11 1

1

È

Î
Í
Í

˘

˚
˙
˙

 = 
1

0 1
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˙
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From Eqn. (7.97), we find the characteristic equation in terms of m:

z – (1 – mT) = 0

For the observer to be about four times faster than the control, we place the observer pole at 

 z = 0.5 (@ (0.835)4); therefore, 1 – mT = 0.5

For: T = 0.1 sec, m = 5. The observer equation is (refer to Eqn. (7.95))

 x̂2(k + 1) = x̂2(k) + Tu(k) + m(y(k + 1) – y(k) – 
T 2

2
 u(k) – T x̂2 (k))

  = 0.5 x̂2 (k) + 5(y(k + 1) – y(k)) + 0.075u(k)

Substituting for u(k) from the control law (refer to Example 7.10)

 u(k) = – 10y(k) – 3.5 x̂2(k), (7.100a)

we obtain

 x̂2(k + 1) = 0.2375 x̂2(k) + 5y(k + 1) – 5.75y(k) (7.100b)

The two difference equations (7.100a) and (7.100b) complete the design and can be used to control the 

plant to the desired speci fications.

To relate the observer-based state-feedback design to a classical design, one needs to compute the 

z-transform of Eqns (7.100a) and (7.100b), obtaining

 
U z

Y z

( )

( )-
 = 

27 5 0 818

0 2375

. ( . )

.

z

z

-
-

The compensation looks very much like the classical lead compen sation that would be used for 1/s2 plant.

7.9.4 Servo Design

Let us assume that for the system given by Eqns (7.74), the desired steady-state value for the controlled 

variable y(k) is a constant reference input r. For this servo system, the desired equilibrium state xs is a 



 Pole-Placement Design and State Observers 477

constant point in state space, and is governed by the equation

 cxs = r (7.101a)

We formulate this command-following problem as a ‘shifted regulator problem’ by shifting the origin of 

the state space to the equilibrium point xs. Let us be the needed input to maintain x(k) at the equilibrium 

point xs, i.e. (refer to Eqns (7.74)),

 xs = Fxs + gus (7.101b)

Assuming for the present, that a us exists that satisfies Eqns (7.101a)–(7.101b), we define shifted input, 

shifted state, and shifted controlled variable as

  u(k) = u(k) – us

  x(k) = x(k) – xs (7.102)

  y(k) = y(k) – r

The shifted variables satisfy the equations

  x(k + 1) = F  x(k) + g  u(k) (7.103)

  y(k) = c  x(k)

This system possesses a time-invariant asymptotically stable control law (assuming {F, g} is controllable)

  u = – k  x

The application of this control law ensures that

  x(k) Æ 0 (x(k) Æ xs; y(k) Æ r) 

In terms of the original state variables, total control effort

 u(k) = –kx(k) + us + kxs (7.104)

Manipulation of Eqn. (7.101b) gives

 (F – gk – I)xs + g(us + kxs) = 0

or  xs = – (F – gk – I)–1
g(us + kxs)

or  cxs = r = – c(F – gk – I)–1
g(us + kxs)

This equation has a unique solution for (us + kxs):

 (us + kxs) = Nr

where N is a scalar feedforward gain, given by

 (N)–1 = – c(F – gk – I)–1
g (7.105)

The control law (7.104), therefore, takes the form

 u(k) = – kx(k) + Nr (7.106)

7.9.5 State Feedback with Integral Control

In the following, we study a control scheme for the system (7.74) where we feedback the state x as well 

as the integral of the error in the output.
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One way to introduce an integrator is to augment the plant state vector x with the ‘integral state’ v that 

integrates the di fference between the output y(k) and the constant reference input r. The ‘integral state’ 

v is defined by

 v(k) = v(k – 1) + y(k) – r (7.107a)

This equation can be rewritten as follows:

 v(k + 1) = v(k) + y(k + 1) – r = v(k) + c[Fx(k) + gu(k)] – r

  = cFx(k) + v(k) + cgu(k) – r (7.107b)

From Eqns (7.74) and (7.107b), we obtain
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 r (7.108)

Since r is constant, in the steady state x(k + 1) = x(k) and v(k + 1) = v(k) provided that the system is 

stable. This means that the steady-state solutions xs, vs and us must satisfy the equa tion
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Substituting this for the last term in Eqn. (7.108) gives

  x(k + 1) = F x (k) + g  u(k) (7.109)

where

  x  = 
x x-

-
È

Î
Í

˘

˚
˙

s

sv v

;  u  = u – us

 F  = 
F

cF

0

1
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˚
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˙

The significance of this result is that by defining the deviations from steady state as state and control  

variables, the design problem has been reformulated to be the standard regulator problem, with  x  = 0 as 

the desired state. We assume that an asymptotically stable solution to this problem exists and is given by

  u(k) = – k  x(k)

Partitioning k appropriately and using Eqn. (7.109) yields

 k = [kp ki]

 u – us = – [kp ki] 
x x-

-
È

Î
Í

˘

˚
˙

s

sv v

 = – kp(x – xs) – ki(v – vs)

The steady-state terms must balance, therefore,

 u(k) = – kpx(k) – kiv(k) (7.110)

At steady state,  x(k + 1) –  x(k) = 0; therefore,

 v(k + 1) – v(k) = 0 = y(k) – r, i.e., y(k) Æ r

The block diagram of Fig. 7.17 shows the control configuration.
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Fig. 7.17 

Example 7.12

Consider the problem of digital control of a plant described by the transfer function

 G(s) = 
1

3s +
Discretization of the plant model gives
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For a sampling interval T = 0.1 sec,

 Gh0G(z) = 
0 0864

0 741

.

.z -

The difference equation model of the plant is

 y(k + 1) = 0.741y(k) + 0.0864u(k)

The plant has a constant reference command signal. We wish to design a PI control algorithm that results 

in system response characteristics: z = 0.5, wn = 5. This is equivalent to asking for the closed-loop poles 

at

 z1,2 = e en nT j T- ± -zw w z1 2

 = 0.7788 – ± 24.82º = 0.7068 ± j0.3269

The desired characteristic equation is, therefore,

 (z – 0.7068 – j0.3269)(z – 0.7068 + j0.3269) = z2 – 1.4136z + 0.6065 = z2 + a1z + a2 = 0

Augmenting the plant state y(k) with the ‘integral state’ v(k) defined by

 v(k) = v(k – 1) + y(k) – r,

we obtain
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In terms of state variables representing deviations from the steady state:

  x = 
y ys

s

-
-

È

Î
Í

˘

˚
˙

v v

,

the state equation becomes

  x(k + 1) = F x (k) + g  u (k)

where

 F  = 
0 741 0

0 741 1

.

.

È

Î
Í

˘

˚
˙ ; g  = 

0 0864

0 0864

.

.

È

Î
Í

˘

˚
˙

By Ackermann’s formula (7.82),

 k = [0 1]U–1e( F )

where

 e( F ) = F
2  + a1 F  + a2I = 

0 108 0

0 2425 0 1929

.

. .

È

Î
Í

˘

˚
˙

 U
–1 = [ ]g F g

-1
 = 

0 0864 0 064

0 0864 0 15

1
. .

. .

È

Î
Í

˘

˚
˙

-

 = 
1

7 43 10 3. ¥ -  
0 15 0 064

0 0864 0 0864

. .

. .

-
-

È

Î
Í

˘

˚
˙

This gives

 k = [1.564 2.243]

The control algorithm is given by

 u(k) = – 1.564y(k) – 2.243v(k)

7.10 DEADBEAT CONTROL BY STATE
 FEEDBACK AND DEADBEAT OBSERVERS

A completely controllable and observable SISO system of order n is considered.

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k) 
(7.111)

With the state-feedback control law

 u(k) = – kx(k) (7.112a)

the closed-loop system becomes

 x(k + 1) = (F – gk)x(k) (7.112b)

with the characteristic equation

 | zI – (F – gk) | = 0 (7.112c)

The control-law design consists of picking the gains k so that Eqn. (7.112c) matches the desired 

characteristic equation

 zn + a1zn –1 +   + an–1z + an = 0
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A case of special interest occurs when a1 = a2 =   = an–1 = an = 0, that is, desired characteristic 

equation is

 zn = 0 (7.113)

By the Cayley–Hamilton theorem (a matrix satisfies its own char acteristic equation),

 (F – gk)n = 0

This result implies that the force-free response of closed-loop system (7.112b),

 x(k) = (F – gk)k
x(0) = 0 for k ≥ n

In other words, any initial state x(0) is driven to the equilib rium state x = 0 in (at most) n steps. The 

feedback control law that assigns all the closed-loop poles to origin is, therefore, a deadbeat control law. 

A state observer de fined by the equation

 x̂(k + 1) = F x̂(k) + gu(k) + m[y(k) – c x̂(k)] (7.114)

gives an estimate x̂ (k) of the state x(k); the observer design procedure consists of picking the gains m 

so that the error system

  x(k + 1) = (F – mc)  x(k) (7.115)

has the desired characteristic equation. A case of special interest occurs when all the observer poles (i.e., 

eigenvalues of (F – mc)) are zero. In analogy with the deadbeat control law, we refer to observers with 

this property as deadbeat observers.

Comments

The concept of deadbeat performance is unique to discrete-time systems. By deadbeat control, any 

nonzero error vector will be driven to zero in (at most) n sampling periods if the magnitude of the scalar 

control u(k) is unbounded. The settling time depends on the sampling period T. If T is chosen very small, 

the settling time will also be very small, which implies that the control signal must have an extremely 

large magnitude. The designer must choose the sampling period for which an extremely large control  

magnitude is not required in normal operation of the system. Thus, in deadbeat control, the sampling 

period is the only design parame ter.

Example 7.13

The system considered in this example is the attitude control system for a rigid satellite. 

The plant equations are (refer to Example 7.10)

 x(k + 1) = Fx(k) + gu(k)

where

 F = 
1

0 1

TÈ

Î
Í

˘

˚
˙ ; g = 

T

T

2 2/È

Î
Í
Í

˘

˚
˙
˙

 x1(k) = position state q ; x2(k) = velocity state w
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The reference input r = qr, a step function. The desired steady state

 xs = [qr 0]T

which is a non-null state.

As the plant has integrating property, the steady-state value us of the input must be zero (otherwise the 

output cannot stay constant). For this case, the shifted regulator problem may be formulated as follows:

  x1  = x1 – qr;  x2  = x2

Shifted state variables satisfy the equations

  x(k + 1) = F  x(k) + gu(k)

The state-feedback control

 u(k) = – k  x(k)

results in the dynamics of  x  given by

  x(k + 1) = (F – gk)  x(k)

We now determine the gain matrix k such that the response to an arbitrary initial condition is deadbeat. 

The desired characteris tic equation is

 z2 = 0

Using Ackermann’s formula (7.82), we obtain

 k = [0 1]U–1 e (F)

where

 e(F) = F2 = 
1 2

0 1

TÈ

Î
Í

˘

˚
˙ ; U–1 = [g Fg]–1 = 

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 3

2

1 1

2

2

2

T T

T T

This gives

 k = 
1 3

22T T

È

ÎÍ
˘

˚̇

For  T = 0.1 sec, k = [100 15]

The control law expressed in terms of original state variables is given as

 u(k) = – k1  x1 (k) – k2  x2 (k) = – 100(x1(k) – qr) – 15x2(k)

Example 7.14

Reconsider the problem of attitude control of a satellite. For implementation of the design of the 

previous example, we require the states x1(k) and x2(k) to be measurable. Assuming that the output 

y(k) = x1(k) is the only state variable that can be meas ured, we design a state observer for the system. It 

is desired that the error vector exhibits deadbeat response. The measurement equation is

 y(k) = cx(k) = [1 0]x(k)
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The prediction observer for the system is given as

 x̂(k + 1) = F x̂(k) + gu(k) + m(y(k) – c x̂(k))

The gains m may be calculated by solving the state regulator design problem for the ‘transposed auxiliary 

system’

 y (k + 1) = FTy (k) + cTh(k)

 h(k) = – mTy (k)

The desired characteristic equation is

 z2 = 0

Using Ackermann’s formula, we obtain

 m
T = [0 1]U–1e (FT)

where

 e (FT) = (FT)2 = 
1 0

2 1T

È

Î
Í

˘

˚
˙ ; U–1 = [cT F

T
c

T]–1 = 
1 1

0 1

-È

Î
Í

˘

˚
˙

/

/

T

T

This gives

 m
T = [2 1/T]

For T = 0.1 sec, m = 
2

10

È

Î
Í

˘

˚
˙

REVIEW EXAMPLES

Review Example 7.1

DC motors are widely used in speed-control drives. In most applications, the armature voltage of 

the motor is controlled in a closed-loop feedback system. Figure 7.18a shows a plant model of a speed 

control system.

The state variables of the plant can be chosen as the motor shaft velocity w (t), and the armature current 

ia(t). If both the state variables are used in feedback, then two voltages proportional, respectively, to these 

two state variables must be generated. The generation of the voltage proportional to w(t) can be achieved 

by use of a tachogenerator. A voltage proportional to ia(t) can be generated by inserting a sampling 

resistor Rs in the armature circuit, as shown in Fig. 7.18a. It may, however, be noted that if Rs is very 

small, the voltage across Rs may consist largely of noise; and if Rs is large, the voltage is more accurate, 

but a considerable amount of power is wasted in Rs and the efficiency of the system is re duced.

In modern speed-control drives, thyristor rectifier is used as a power amplifier [5]. The thyristor rectifier 

is supplied by an exter nal single-phase or three-phase ac power, and it amplifies its input voltage u, to 

produce an output voltage ea, which is supplied to the armature of the dc motor. The state-feedback 

control, requiring the feedback of both the motor-shaft velocity and the armature current can, in fact, be 

effectively used to provide current-limiting protective feature to prevent damage to the thyristors.
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–

(a)

(b)
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Kt

Rs
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Fig. 7.18 

The voltage u is fed to the driver of the thyristor rectifier. The driver produces time-gate pulses that 

control the conduction of the thyristors in the rectifier module. The rectified output voltage ea depends 

on the firing angle of the pulses relative to the ac supply waveform. A linear relationship between the 

input voltage u and the output voltage ea can be obtained when a proper firing control scheme is used. 

The time constants associated with the rectifier are negligibly small. Neglecting the dynamics of the 

rectifier, we get

 ea(t) = Kr u(t)

where Kr is the gain of the rectifier.

Figure 7.18b shows the functional block diagram of the plant with

 B = viscous-friction coefficient of motor and load;

 J = moment of inertia of motor and load;
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 KT = motor torque constant;

 Kb = motor back-emf constant;

 TL = constant load torque;

 La = armature inductance; and

 Ra + Rs = armature resistance.

As seen from Fig. 7.18b, the plant is a type-0 system. A control law of the form

 u(t) = – kx + Nr

can shape the dynamics of the state variables x1(t) = w (t) and x2(t) = ia(t) with zero steady-state error in 

w (t) to constant reference input r. The closed-loop system will, however, be a type-0 system resulting 

in steady-state errors to constant dis turbances. We assume that steady-state performance specifications 

require a Type-1 system. Hence we employ state feedback with integral control. A block diagram of the 

control configuration is shown in Fig. 7.19.

u
Plant+

w
Kt

wr er + +

– –

k1
Kt

k3
sKt

ia

Rsk2/Rs

Kt

Fig. 7.19 

The state equations of the plant are

 J  x1  + Bx1 = KT x2 – TL

 La  x2  + (Ra + Rs)x2 = Kr u – Kbx1

or   x  = Ax + bu + g TL

where

 A = 

-

- -
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

B

J

K

J

K

L

R R

L

T

b

a

a s

a

( )
 ; b = 

0

K

L

r

a

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g  = 
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

0

J

Let the parameter values be such that these matrices become

 A = 
-
- -

È

Î
Í

˘

˚
˙

0 5 10

0 1 10

.

.
; b = 

0

100

È

Î
Í

˘

˚
˙  ; g = 

-È

Î
Í

˘

˚
˙

10

0

We define an additional state variable x3 as

 x3 = 

0

t

Ú (w – r) dt,



486  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

i.e.,   x3  = w – r = x1 – r

Augmenting this state variable with the plant equations, we obtain

  x  = A x  + b u + Gw

where

 x  = [x1 x2 x3]T; w = [TL r]T

 A  = 

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 5 10 0

0 1 10 0

1 0 0

.

. ; b  = 

0

100

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; G = 

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

10 0

0 0

0 1

The controllability matrix

 U = [b A b A b]
2

  = 

0 1 000 10 500

100 1 000 9 900

0 0 1 000

, ,

, ,

,

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The determinant of U is nonzero. The pair ( A, b ) is, therefore, com pletely controllable and the conditions 

for pole placement by state feedback and integral control, are satisfied.

The characteristic polynomial of the closed-loop system is given by

 | |sI (A bk)- -  = 

s

k s k k

s

+ -
+ + +
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 5 10 0

0 1 100 10 100 100

1 0

1 2 3

.

.

  = s3 + (10.5 + 100k2) s2 + (6 + 50k2 + 1,000k1)s + 1,000k3 (7.116a)

Let the desired characteristic polynomial be

 s3 + 87.5 s2 + 5,374.5 s + 124,969 = (s + 35.4)(s + 26.05 + j53.4)(s + 26.05 – j53.4) (7.116b)

The quadratic term has a natural frequency wn = 59.39 rad/sec, and a damping ratio z = 0.44.

Matching the corresponding coefficients of Eqns (7.116a) and (7.116b), we obtain

 k1 = 5.33, k2 = 0.77, k3 = 124.97

With these values of the feedback gains, the state variable model of the closed-loop system becomes

 

 

 

 

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 

-
- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 5 10 0

533 1 87 12497

1 0 0

.

.  

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 + 

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

10 0

0 0

0 1

 
T

r

LÈ

Î
Í

˘

˚
˙

At steady state,  x  = 0 and, therefore, the motor velocity x1 = w (t) will approach the constant reference 

set point r as t approaches infinity, independent of the disturbance torque TL.
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Review Example 7.2

One of the most common uses of feedback control is to position an inertia load using an electric 

motor. The inertia load may consist of a very large, massive object such as a radar antenna or a small 

object such as a precision instrument. Armature-controlled dc motors are used in many applications for 

position ing the load.

We consider here a motor-driven inertia system described by the following equations (refer to Eqns 

(5.14)).

 u(t) = Ra ia(t) + Kb w (t) = Ra ia(t) + Kb

d t

dt

q( )

 KT ia(t) = J 
d t

dt

w( )
 = J

d t

dt

2

2

q( )

where

 u = applied armature voltage;

 Ra = armature resistance;

 ia = armature current;

 q = angular position of the motor shaft;

 w = angular velocity of the motor shaft;

 Kb = back emf constant;

 KT = motor torque constant; and

 J = moment of inertia referred to the motor shaft.

Taking x1 = q, and x2 =  q  = w as the state variables, we obtain the following state variable equations for 

the system.

  x1  = x2

  x2  = –
K K

JR

T b

a

x2 + 
K

JR

T

a

 u = – a x2 + b u

Assume that the physical parameters of the motor and the load yield a = 1, b = 1. Then

  x = Ax + bu

where

 A = 
0 1

0 1-
È

Î
Í

˘

˚
˙  ; b = 

0

1

È

Î
Í

˘

˚
˙

The discrete-time description of this system, with sampling period T = 0.1 sec, is given by the following 

equations (refer to Section 6.3).

 x(k + 1) = Fx(k) + gu(k) (7.117)

where

 F = eAT = 
1 0 0952

0 0 905

.

.

È

Î
Í

˘

˚
˙ ; g = 

0

T

Ú eAt bdt = 
0 00484

0 0952

.

.

È

Î
Í

˘

˚
˙
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In this model, x1(k) is the shaft position and x2(k) is the shaft velocity. We assume that x1(k) and x2(k) can 

easily be measured using shaft encoders.

We choose the control configuration of Fig. 7.20 for digital positioning of the load; qr is a constant 

reference command. In terms of the error variables

 �x1(k) = x1(k) – qr; �x2(k) = x2(k) (7.118)

the control signal

 u(k) = – k1 �x1(k) – k2 �x2(k) = – k �x(k) (7.119)

where the gain matrix

 k = [k1 k2]

PlantZOH
++

––

qr
k1

u k( ) q

w

T = 0.1 sec

T = 0.1 sec

k2

x2( )k

x1( )k

Fig. 7.20 

The dynamics of the error-vector �x(k) are given by the equations

 �x1 (k + 1) = x1(k + 1) – qr = x1(k) + 0.0952 x2(k) + 0.00484 u(k) – qr

  = �x1(k) + 0.0952 �x2(k) + 0.00484 u(k)

 �x2(k + 1) = 0.905 �x2(k) + 0.0952 u(k)

or �x(k + 1) = F �x(k) + gu(k)

where F and g are given by Eqn. (7.117).

Substituting for u(k) from Eqn. (7.119), we obtain the following closed-loop model of the error dynamics:

 �x(k + 1) = (F – gk) �x(k)

  = 
1 0 00484 0 0952 0 00484

0 0952 0 905 0 0952

1 2

1 2

- -

- -

È

Î
Í

˘

˚
˙

. . .

. . .

k k

k k
�x(k) (7.120)

The characteristic equation is

 | zI – (F – gk)| = z2 + (0.00484k1 + 0.0952k2 – 1.905)z + 0.00468k1 – 0.0952k2 + 0.905 = 0 (7.121a)

We choose the desired characteristic-equation zero locations, to be

 z1, 2 = 0.888 ± j0.173 = 0.905 – ± 11.04º

Note that this corresponds to z = 0.46 and wn = 2.17 (refer to Eqns (4.15)):

 z1, 2 = e en nT j T- ± -zw w z1 2
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The desired characteristic equation is given by

 (z – 0.888 – j0.173)(z – 0.888 + j0.173) = z2 – 1.776z + 0.819 = 0 (7.121b)

Equating coefficients in Eqns (7.121a) and (7.121b) yields the equations

 0.00484k1 + 0.0952k2 = – 1.776 + 1.905

 0.00468k1 – 0.0952k2 = 0.819 – 0.905

These equations are linear in k1 and k2 and upon solving, yield

 k1 = 4.52, k2 = 1.12

The control law is, therefore, given by

 u(k) = – k1  x1 (k) – k2  x2 (k) = – 4.52(x1(k) – qr) – 1.12x2(k)

The implementation of this control law, requires the feedback of the states x1(k) and x2(k). If we measure 

x1(k) using a shaft encoder and estimate x2(k) using a state observer, the control configuration will take 

the form shown in Fig. 7.21.

The state-feedback control has been designed for z = 0.46, wn = 2.17; zwn @ 1 sec. The reduced-order 

observer for estimating velocity x2(k) from measurements of position x1(k) is a first-order system; we 

choose the time constant of this system to be 0.5 sec. Hence, the desired pole location3 in the observer 

design problem is

z = e–T/t = e–0.1/0.5 = 0.819

The observer characteristic equation is then

 z – 0.819 = 0 (7.122)

–
Plant

Observer

ZOH
–

++qr
k1

u k( ) q

T = 0.1 sec

k2
x2( )k x1( )k

Fig. 7.21 

From the plant state equation (7.117), and Eqns (7.91), the partitioned matrices are seen to be

                                f11 = 1, f1e = 0.0952, fe1 = 0, Fee = 0.905, g1 = 0.00484, ge = 0.0952

The observer equation is (refer to Eqn. (7.95))

 x̂2(k + 1) = 0.905 x̂2(k) + 0.0952u(k) + m(q (k + 1) – q(k) – 0.00484u(k) – 0.0952 x̂2(k))

  = (0.905 – m(0.0952)) x̂2 (k) + mq (k + 1) – mq(k) + (0.0952 – m(0.00484))u(k)  

   (7.123)

 3 The pole at s = – 1/t is mapped to z = e–T/t; T = sampling interval.
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The characteristic equation is given by

 z – (0.905 – 0.0952m) = 0

Comparing the coefficients with those of Eqn. (7.122), we obtain

 m = 0.903

Substituting in Eqn. (7.123), we get

 x̂2(k + 1) = 0.819 x̂2(k) + 0.903q (k + 1) – 0.903q(k) + 0.0908u(k)

The control system is implemented as follows. A measurement q (k) is made at t = kT. The observer state 

is calculated from

 x̂2(k) = 0.819 x̂2(k – 1) + 0.903q(k) – 0.903q(k – 1) + 0.0908u(k – 1)

Then the control input is calculated, using

 u(k) = – 4.52(q(k) – qr) – 1.12 x̂2(k)

PROBLEMS

 7.1 Consider an nth-order Single-Input, Single-Output system

   �x = Ax + bu; y = cx 

  and assume that we are using feedback of the form

   u = – kx + r

  where r is the reference input signal.

  Show that the zeros of the system are invariant under state feed back.

 7.2 A regulator system has the plant

   �x  = 

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 x + 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 u; y = [1 0 0] x

 (a) Design a state-feedback controller which will place the closed-loop poles at – 2 ± j3.464,

– 5. Give a block diagram of the control configuration.

 (b) Design a  full-order state observer; the observer-error poles are required to be located at 

– 2 ± j3.464, – 5. Give all the relevant observer equations and a block diagram description of 

the observer structure.

 (c) The state variable x1(which is equal to y) is directly meas urable and need not be observed. 

Design a reduced-order state observer for the plant; the observer-error poles are required to 

be located at – 2 ± j3.464. Give all the relevant observer equa tions.

 7.3 A regulator system has the plant

   �x = Ax + bu; y = cx

  with

   A = 

0 0 6

1 0 11

0 1 6

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

1

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]
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 (a) Compute k so that the control law u = – kx, places the closed-loop poles at – 2 ± j3.464, – 5. 

Give the state variable model of the closed-loop system.

 (b) For the estimation of the state vector x, we use an observer defined by

    ̂x = (A – mc) x̂  + bu + my

  Compute m so that the eigenvalues of (A – mc) are located at – 2 ± j3.464, – 5.

 (c) The state variable x3 (which is equal to y) is directly measurable and need not be observed. 

Design a reduced-order observer for the plant; the observer-error poles are required to be 

located at – 2 ± j3.464. Give all the relevant observer equa tions.

 7.4 Consider the system

    x = Ax + Bu; y = cx + du

  where

   A = 
- -È

Î
Í

˘

˚
˙

2 1

1 0
; B = 

1 0

1 1

È

Î
Í

˘

˚
˙ ; c = [0 1]; d = [2 0]

  Design a full-order state observer so that the estimation error will decay in less than 4 seconds.

 7.5 Consider the system

    x  = 
1 0

0 0

È

Î
Í

˘

˚
˙  x + 

1

1

È

Î
Í

˘

˚
˙ u; y = [2 – 1] x

  Design a reduced-order state observer that makes the estimation error to decay at least as fast as 

e–10t.

 7.6 Consider the system with the transfer function

   
Y s

U s

( )

( )
 = 

9

92s -
 (a) Find (A, b, c) for this system in observable canonical form.

 (b) Compute k so that the control law u = – kx places the closed-loop poles at – 3 ± j3.

 (c) Design a full-order observer such that the observer-error poles are located at – 6 ± j6. Give 

all the relevant observer equations.

 (d) Suppose the system has a zero such that

   
Y s

U s

( )

( )
 = 

9 1

92

( )s

s

+

-
  Prove that if u = – kx + r, there is a feedback matrix k such that the system is unobservable.

 7.7 The equation of motion of an undamped oscillator with fre quency w 0 is

     y  + w0
2 y = u

 (a) Write the equations of motion in the state variable form with x1 = y and x2 =  y as the state 

variables.

 (b) Find k1 and k2 such that u = – k1x1 – k2x2 gives closed-loop characteristic roots with wn = 2w0 

and z = 1.

 (c) Design a second-order observer that estimates x1 and x2, given measurements of x1. Pick 

the characteristic roots of the state-error equation with wn = 10w0 and z = 1. Give a block 

diagram of the observer-based state-feedback control system.
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 (d) Design a first-order observer that estimates x2, given meas urements of x1. The characteristic 

root of the state-error equa tion is required to be located at –10w0. Give a block diagram of 

the observer-based state-feedback control system.

 7.8 A regulator system has the plant

    x = 
0 1

20 6 0.

È

Î
Í

˘

˚
˙  x + 

0

1

È

Î
Í

˘

˚
˙  u; y = [1 0] x

 (a) Design a control law u = – kx so that the closed-loop system has eigenvalues at –1.8 ± j2.4.

 (b) Design a full-order state observer to estimate the state vector. The observer matrix is required 

to have eigenvalues at – 8, – 8.

 (c) Find the transfer function of the compensator obtained by combining (a) and (b).

 (d) Find the state variable model of the complete observer-based state-feedback control system.

 7.9 A regulator system has the double integrator plant

   
Y s

U s

( )

( )
 = 

1
2s

 (a) Taking x1 = y and x2 =  y  as state variables, obtain the state variable model of the plant.

 (b) Compute k such that u = – kx gives closed-loop characteristic roots with wn = 1, z = 2 2/ .

 (c) Design a full-order observer that estimates x1 and x2, given measurements of x1. Pick the 

characteristic roots of the state-error equation with wn = 5, z = 0.5.

 (d) Find the transfer function of the compensator obtained by combining (b) and (c).

 (e) Design a reduced-order observer that estimates x2 given measurements of x1; place the single 

observer pole at s = – 5.

 (f) Find the transfer function of the compensator obtained by combining (b) and (e).

 7.10 A servo system has the Type-1 plant described by the equa tion

    x = Ax + bu; y = cx

  where

   A = 

0 1 0

0 1 1

0 0 2

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

 (a) If u = – kx + Nr, compute k and N so that the closed-loop poles are located at –1 ± j1, – 2; 

and y( ) = r, a constant reference input.

 (b) For the estimation of the state vector x, we use a full-order observer

    ̂x = (A – mc) x̂  + bu + my

  Compute m so that observer-error poles are located at – 2 ± j2, – 4.

 (c) Replace the control law in (a) by u = – k x̂ + Nr, and give a block diagram of the observer-

based servo system.

 7.11 A plant is described by the equation

    x = 
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
 x + 

1

1

È

Î
Í

˘

˚
˙  u; y = [1 3] x
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  Add to the plant equations an integrator  z  = y – r (r is a constant reference input) and select gains 

k, ki so that if u = – kx – ki z, the closed-loop poles are at – 2, –1 ± j 3 . Give a block diagram of 

the control configuration.

 7.12 Figure P7.12 shows the block diagram of a position control system employing a dc motor in 

armature control mode; q (rad) is the motor shaft position,  q(rad/sec) is the motor shaft veloci ty, 

ia (amps) is the armature current, and KP (volts/rad) is the sensitivity of the potentiometer. Find 

k1, k2 and k3 so that the dominant poles of the closed-loop system are characterized by z = 0.5, 

wn = 2, nondominant pole is at s = –10; and the steady-state error to constant reference input is zero.

0.1

1

u

s

+

qr

KP

– – – –

+ +k1

KP

1 1

0.1 + 1s s + 1

x3 = ia x2 = q x1 = q

KP

k3

k2

Fig. P7.12

 7.13 A dc motor in armature control mode has been used in speed control system of Fig. P7.13 

employing state-feedback with inte gral control; w (rad/sec) is the motor shaft velocity, ia (amps) 

is the armature current and Kt (volts/(rad/sec)) is the tachogenerator constant. Find k1, k2 and k3 so 

that the closed-loop poles of the system are placed at –1 ± j 3 , –10; and the steady-state error 

to constant reference input is zero.

u

1 1
+

0.1

– ––

wr

Kt

+ + +k1

Kt

k3

sKt 0.1 + 1s s + 1

x2 = ia x1 = w

Kt

k2

Fig. P7.13
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 7.14 The control law u = – kx – k1qr for position control system of Fig. P7.12 is to be replaced by 

u = – k x̂  + k1qr where x̂  is the estimate of the state vector x given by the observer system

    ̂x  = (A – mc) x̂  + bu + mq

  Find the gain matrix m which places the eigenvalues of (A – mc) at – 3 ± j 3 , – 10. Give a block 

diagram of the observer-based posi tion control system.

 7.15 Consider the position control system of Fig. P7.15 employing a dc motor in armature control 

mode with state variables defined on the diagram. Full state-feedback is employed, with position 

feedback being obtained from a potentiometer, rate feedback from a tachogenerator and current 

feedback from a voltage sample across a resistance in the armature circuit. KA is the amplifier 

gain. Find the adjustable parameters KA, k2, and k3 so that the closed-loop poles of the system are 

placed at – 3 ± j3, – 20.

Pot

Tacho

–

+

–

–

qr KP

k1 = 1
x1 = KPq

KA

La Ra

ia

k3

k2

x3 = 0.1ia

x2 = Ktq

0.1 W

J B,

Fig. P7.15

  Given:

  Potentiometer sensitivity, KP = 1 volt/rad

  Tachogenerator constant, Kt = 1 volt/(rad/sec)

  Armature inductance, La = 0.005 H

  Armature resistance, Ra = 0.9 W
  Moment of inertia of motor and load, J = 0.02 newton-m/(rad/sec2)

  Viscous-friction coefficient of motor and load, B = 0

  Back emf constant, Kb = 1 volt/(rad/sec)

  Motor torque constant, KT = 1 newton-m/amp



 Pole-Placement Design and State Observers 495

 7.16 Consider the position control system of Fig. P7.16 employing a dc motor in the field control 

mode, with state variables defined on the diagram. Full state-feedback is employed with position 

feedback being obtained from a potentiometer, rate feedback from a tachogenerator and current 

feedback from a voltage sample across a resistor connected in the field circuit. KA is the amplifier 

gain.

  Find the adjustable parameters KA, k2, and k3 so that the closed-loop system has dominant poles 

characterized by z = 0.5, wn = 2, and the third pole at s = – 10.

  Given:

  Potentiometer sensitivity, KP = 1 volt/rad

  Tachogenerator constant, Kt = 1 volt/(rad/sec)

  Field inductance, Lf = 20 H

  Field resistance, Rf = 99 W
  Moment of inertia of motor and load, J = 0.5 newton-m/(rad/sec2)

  Viscous-friction coefficient of motor and load, B = 0.5 newton-m/(rad/sec)

  Motor torque constant, KT = 10 newton-m/amp

Pot

Tacho

–

+
–

–

qr
KP

KA

Rf
Ia

k1 = 1
x1 = KPq

Lf

k3

k2
x2 = Ktq

x3 = if

1 W

J B,

Fig. P7.16

 7.17 Figure  P7.17 shows control configuration of a Type-1 servo system. Both the state variables x1 

and x2, are assumed to be measurable. It is desired to regulate the output y to a constant value 

r = 5. Find the values of k1, k2 and N so that

 (i) y( ) = r = 5; and

 (ii) the closed-loop characteristic equation is

   s2 + a1s + a2 = 0.
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 7.18 A speed control system, employing a dc motor in the armature control mode, is described by the 

following state equations:

   
d t

dt

w( )
 = – 

B

J
t

K

J
i t

J
TT

a Lw( ) ( )+ -
1

   
di t

dt

a ( )
 = – 

K

L
t

R

L
i t

L
u tb

aw( ) ( ) ( )- +
1

  where

   ia(t) = armature current, amps;

   u(t) = armature applied voltage, volts;

   w (t) = motor velocity, rad/sec;

   B = viscous-friction coefficient of motor and load = 0;

   J = moment of inertia of motor and load = 0.02 newton-m/(rad/sec2);

   KT = motor torque constant = 1 newton-m/amp;

   Kb = motor back emf constant = 1 volt/(rad/sec);

   TL = constant disturbance torque (magnitude not known);

   L = armature inductance = 0.005 H; and

   R = armature resistance = 1 W.

  The design problem is to find the control u(t) such that

 (i) lim
( )

t

adi t

dt
 = 0 and lim

( )

t

d t

dt

w
 = 0, and (ii) lim

t
w (t) = constant set-point r.

  Show that the control law of the form

   u(t) = – k1w (t) – k2ia(t) – k3

0

t

Ú (w (t) – r)dt

  can meet these objectives. Find k1, k2, and k3 so that the closed-loop poles are placed at 

–10 ± j10, –300. Suggest a suitable scheme for implementation of the control law.

r u+

–
N

s

b

s s( + )a

y = x1

k2

k1

x2

Fig. P7.17
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 7.19 Figure P7.19 shows a process consisting of two interconnect ed tanks. h1 and h2 representing 

deviations in tank levels from their steady-state values H1  and H2 , respectively; q represents 

deviation in the flow rate from its steady-state value Q . The flow rate q is controlled by signal 

u via valve and actuator. A disturbance flow rate w enters the first tank via a returns line from 

elsewhere in the process. The differential equations for levels in the tanks are given by

    h1 = – 3h1 + 2h2 + u + w

   
 h2 = 4h1 – 5h2

 (a) Compute the gains k1 and k2 so that the control law u = – k1h1(t) – k2h2(t) places the closed-

loop poles at – 4, – 7.

 (b) Show that the steady-state error in the output y(t) = h2(t), in response to constant disturbance 

input w, is nonzero.

 (c) Add to the plant equations, an integrator  z(t) = y(t) and select gains k1, k2 and k3 so that the 

control law u = – k1h1(t) – k2h2(t) – k3z(t) places the closed-loop poles at –1, –2, – 7. Find the 

steady-state value of the output in response to constant disturbance w. Give a block diagram 

depicting the con trol configuration.

Actuator
u

w

Q q+

H1 + h1 H2 + h2

Fig. P7.19

 7.20 The plant of a servo system is described by the equations

    x = Ax + bu + bw; y = cx

  where

   A = 
-

-
È

Î
Í

˘

˚
˙

3 2

4 5
; b = 

1

0

È

Î
Í

˘

˚
˙ ; c = [0 1]

  w is a disturbance input to the system.

  A control law of the form u = – kx + Nr is proposed; r is a constant reference input.

 (a) Compute k so that the eigenvalues of (A – bk) are – 4, – 7.

 (b) Choose N so that the system has zero steady-state error to reference input, i.e., y( ) = r.

 (c) Show that the steady-state error to a constant disturbance input w, is nonzero for the above 

choice of N.
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 (d) Add to the plant equation, an integrator equation (z(t) being the state of the integrator):

      z(t) = y(t) – r

  and select gains k1, k2 and k3 so that the control law u = – k1x1(t) – k2 x2(t) – k3 z(t) places the 

eigenvalues of closed-loop system matrix at – 1, – 2, – 7.

 (e) Draw a block diagram of the control scheme employing integral control and show that the 

steady-state error to constant distur bance input, is zero.

 7.21 Consider a plant consisting of a dc motor, the shaft of which has the angular velocity w (t) and 

which is driven by an input voltage u(t). The describing equation is

    w (t) = – 0.5 w (t) + 100 u(t) = Aw(t) + bu(t)

  It is desired to regulate the angular velocity at the desired value w0 = r.

 (a) Use control law of the form u = – Kw (t) + Nr. Choose K that results in closed-loop pole with 

time constant 0.1 sec. Choose N that guarantees zero steady-state error, i.e., w( ) = r.

 (b) Show that, if A changes to A + dA subject to (A + dA – bK) being stable, then the above 

choice of N will no longer make w ( ) = r. Therefore, the system is not robust under changes 

in system parameters.

 (c) The system can be made robust by augmenting it with an inte grator

    z = w – r

  where z is the state of the integrator. To see this, first use a feedback of the form u = – K1w(t) – K2z(t) 

and select K1 and K2 so that the characteristic polynomial of the closed-loop system becomes D(s) = 

s2 + 11s + 50. Show that the resulting system will have w ( ) = r no matter how the matrix A 

changes so long as the closed-loop system remains asymptotically stable.

 7.22 A discrete-time regulator system has the plant

   x(k + 1) = 

0 1 0

0 0 1

4 2 1- - -

È
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Í
Í
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˘

˚
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˙
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˘

˚

˙
˙
˙

 u(k)

  Design a state-feedback controller which will place the closed-loop poles at – 1
2

 ± j 1
2

, 0. Give a 

block diagram of the control configu ration.

 7.23 Consider a plant defined by the following state variable model:

   x(k + 1) = Fx(k) + Gu(k); y(k) = cx(k) + du(k)

  where

   F = 

1
2

1 0

1 0 1

0 0 0
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È
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˘

˚
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; c  = [1 0 0]; d = [0 4]

  Design a prediction observer for the estimation of the state vector x; the observer-error poles are 

required to lie at – 1
2

 ± j 1
4

, 0. Give all the relevant observer equations and a block diagram 

description of the observer structure.

 7.24 Consider the system defined by

   x(k + 1) = 

0 1 0

0 0 1
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  Determine the state-feedback gain matrix k such that when the control signal is given by u(k) =

– kx(k), the closed-loop system will exhibit the deadbeat response to any initial state x(0). Give 

the state variable model of the closed-loop system.

 7.25 Consider the system

   x(k + 1) = 
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.
 x(k) + 

0

1

È

Î
Í

˘

˚
˙  u(k); y(k) = [1 1] x(k)

  Design a current observer for the system; the response to the initial observer error is required to 

be deadbeat. Give all the relevant observer equations.

 7.26 Consider the plant defined in Problem 7.24. Assuming that only y(k) = x2(k) is measurable, design 

a reduced-order observer such that the response to the observer error is deadbeat. Give all the 

relevant observer equations.

 7.27 A discrete-time regulator system has the plant

   x(k + 1) 
2 1

1 1

-
-

È

Î
Í

˘

˚
˙  x(k) + 

4

3

È

Î
Í

˘

˚
˙  u(k); y(k) = [1 1] x(k) + 7u(k)

 (a) Design a state-feedback control algorithm u(k) = –kx(k) which places the closed-loop 

characteristic roots at ± j 1
2

.

 (b) Design a prediction observer for deadbeat response. Give the relevant observer equations.

 (c) Combining (a) and (b), give a block diagram of the control configuration. Also obtain state 

variable model of the observer-based state-feedback control system.

 7.28 A regulator system has the plant with transfer function

   
Y z

U z

( )

( )
 = 

z

z z

-

- -+ +

2

1 11 0 8 1 0 2( . ) ( . )

 (a) Find (F, g, c) for the plant in controllable canonical form.

 (b) Find k1 and k2 such that u(k) = – k1x1(k) – k2x2(k) gives closed-loop characteristic roots at 

0.6 ± j0.4.

 (c) Design a first-order observer that estimates x2, given meas urements of x1; the response to 

initial observer error is re quired to be deadbeat.

 (d) Give a z-domain block diagram of the closed-loop system.

 7.29 Consider the system

   x(k + 1) = Fx(k) + gu(k); y(k) = cx(k)

  where

   F = 
0 16 2 16

0 16 1 16

. .

. .- -
È

Î
Í

˘

˚
˙ ; g = 
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˙

1

1
; c = [1 1]

 (a) Design a state-feedback control algorithm which gives closed-loop characteristic roots at 

0.6 ± j 0.4.

 (b) Design a reduced-order observer for deadbeat response.

 (c) Find the transfer function of the compensator obtained by combining (a) and (b). Give a 

block diagram of the closed-loop system showing the compensator in the control loop.
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 7.30 A double integrator plant is to be controlled by a digital computer employing state feedback. 

Figure P7.30 shows a model of the control scheme. Both the state variables x1 and x2 are as sumed 

to be measurable.

 (a) Obtain the discrete-time state variable model of the plant.

 (b) Compute k1 and k2 so that the response y(t) of the closed-loop system has the parameters: 

z = 0.5, wn = 4.

 (c) Assume now that only x1 is measurable. Design a prediction observer to estimate the state 

vector x; the estimation error is required to decay in a deadbeat manner.

 (d) Find the transfer function of the compensator obtained by combining (b) and (c).

s
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u k( )

– –

1 – e–sT 1 1
s s

x1 = yx2

T = 0.1 sec

T = 0.1 sec

k2

k1

Fig. P 7.30

 7.31 Figure P7.31 shows the block diagram of a digital positioning system. The plant is a dc motor 

driving inertia load. Both the position q, and velocity  q , are measurable.

 (a) Obtain matrices (F, g, c) of the discrete-time state variable model of the plant.

 (b) Compute k1 and k2 so that the closed-loop system positions the load in a deadbeat manner in 

response to any change in step command qr.

 (c) Assume now that the position q is measured by a shaft encoder and a second-order state 

observer is used to estimate the state vector x from plant input u and measurements of q. 

s s

Plant

qr + +

– –
k1

u k( ) 1 – e–sT 1 1

s + 1

x2 = w x1 = q

x2( )k

x1( )k

k2
T = 0.1 sec

T = 0.1 sec

Fig. P7.31
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Design a deadbeat observer. Give a block diagram of the observer-based digital positioning 

system.

 (d) Design a first-order deadbeat observer to estimate velocity w from measurements of 

position q.

 7.32 A continuous-time plant described by the equation

    y = – y + u + w

  is to be controlled by a digital computer; y is the output, u is the input, and w is the disturbance 

signal. Sampling interval T = 1 sec.

 (a) Obtain a discrete-time state variable model of the plant.

 (b) Compute K and N so that the control law

   u(k) = – Ky(k) + Nr

  results in a response y(t) with time constant 0.5 sec, and y( ) = r (r is a constant reference 

input).

 (c) Show that the steady-state error to a constant disturbance input w is nonzero for the above 

choice of the control scheme.

 (d) Add to the plant equation, an integrator equation (v(k) being the integral state)

   v(k) = v(k – 1) + y(k) – r

  and select gains K1 and K2 so that the control law

   u = – K1y(k) – K2v(k)

  results in a response y(t) with parameters: z = 0.5, wn = 4.

 (e) Give a block diagram depicting the control configuration employing integral control and 

show that the steady-state error to constant disturbance w, is zero.
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Linear Quadratic Optimal Control 
through Lyapunov Synthesis

8.1 INTRODUCTION

It should be obvious by now that stability plays a major role in control systems design. We have earlier 

introduced, in Chapters 2 and 5, the concept of stability based on the dynamic evolution of the system 

state in response to arbitrary initial state, representing initial energy storage. State variable model

  x(t) = Ax(t); x(t = 0) =
D x

0 (8.1)

is most appropriate to study dynamic evolution of the state x(t), in response to the initial state x0 with zero 

external input. At the origin of the state space,  x(t) = 0 for all t; the origin is, thus, the equilibrium point 

of the system and xe = 0 is the equilibrium state. This system is marginally stable if, for all possible initial 

states, x0, x(t) remains thereafter within finite bounds for t > 0. This is true if none of the eigenvalues of 

A are in the right half of the complex plane, and eigenvalues on the imaginary axis, if any, are simple 

(A multiple eigenvalue on the imaginary axis would have a response that grows in time and could not be 

stable). Furthermore, the system is asymptotically stable if for all possible initial states x0, x(t) eventually 

decays to zero as t approaches infinity. This is true if all the eigenvalues of A are inside the left half of 

the complex plane.

A.M. Lyapunov considered the stability of general nonlinear systems described by state equation of the 

form 

  x(t) = f(x (t)); x(0) =
D x0 (8.2)

We assume that the equation has been written so that x = 0 is an equilibrium point, which is to say that 

f (0) = 0, i.e., the system will continue to be in equilibrium state xe = 0 for all time. This equilibrium point 

is said to be stable in the sense of Lyapunov, if we are able to select a bound on initial condition x0, that 

will result in state trajectories x(t), that remain within a chosen finite limit. The system is asymptotically 

stable at x = 0, if it is stable in the sense of Lyapunov and, in addition, the state x(t) approaches zero as 

time t approaches infinity.

No new results are obtained by the use of Lyapunov’s method for the stability analysis of linear time-

invariant systems. Simple and powerful methods discussed in earlier chapters are adequate for such 

Chapter 8
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systems. However, Lyapunov functions supply certain performance indices and synthesis data for linear 

time-invariant systems. Chapter 10 will demonstrate the use of Lyapunov functions in variable structure 

sliding mode control, and model reference adaptive control. In this chapter, we introduce the concept of 

Lyapunov stability and the role it plays in optimal control design.

The Lyapunov’s method of stability analysis, in principle, is the most general method for determination of 

stability of nonlinear systems. The major drawback which seriously limits its use in practice, is the difficulty 

often associated with the construction of the Lyapunov function required by the method. Guidelines 

for construction of Lyapunov functions for nonlinear systems are given in Chapter 9. For linear time- 

invariant systems of main concern in this chapter, the quadratic function (refer to Section 5.2) is adequate 

for demonstrating Lyapunov stability. The concept of Lyapunov stability, and working knowledge 

required for synthesis of linear time-invariant systems, will be provided here, in this chapter, before 

we start the discussion on optimal control. Detailed account of Lyapunov stability will be given later in 

Chapter 9.

8.2 THE CONCEPT OF LYAPUNOV STABILITY

8.2.1

We shall confine our attention to systems described by state equation of the form 

  x(t) = f(x(t)); f(0) = 0; x(0) =D x0 (8.3)

Note that the origin of the state space has been taken as the equilibrium state of the system, i.e.,

x
e = 0

The system described by Eqn. (8.3) is stable in the sense of Lyapunov, if we are able to select a bound 

on initial conditions x0, that will result in state trajectories that remain within a chosen finite limit. More 

formally, the system described by Eqn. (8.3) is stable in the sense of Lyapunov at x = 0 if, for every real 

number e > 0, there exists a real number d  > 0 such that ||x(0)|| < d results in ||x(t)|| < e for all t ≥ 0; 

||x|| = a norm of vector x (refer to Section 5.2). The system is asymptotically stable at x = 0 if it is stable 

in the sense of Lyapunov and, in addition, the state x(t) approaches zero as time t approaches infinity. 

Responses that are stable in the sense of Lyapunov, and asymptotically stable, are shown in Fig. 8.1.

To prove stability results for systems described by equations of the form (8.3), Lyapunov introduced a 

function that has many of the properties of energy. The basic Lyapunov stability result is given below.

8.2.2

For the system (8.3), sufficient conditions of stability are as follows.

Theorem 8.1 Suppose that there exists a scalar function V (x) which satisfies the following 

properties:

 (i) V (x) > 0; x π 0   

 (ii) V (0) = 0 (8.4)
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 (iii) V (x) is continuous and has continuous partial derivatives with respect to all components of x.

 (iv)  V (x) £ 0 along trajectories of Eqn. (8.3).

We call V (x) having these properties, a Lyapunov function for the system. Properties (i) and (ii) mean 

that, like energy, V(x) > 0 if any state is different from zero, but V(x) = 0 when the state is zero. Property 

(iii) ensures that V(x) is a smooth function and, generally, has the shape of a bowl near the equilibrium.

A visual analysis may be obtained by considering the surface

V(x1, x2) = 1
2

p1x2
1 + 1

2
p2x2

2; p1 > 0, p2 > 0 

This is a paraboloid (a solid generated by rotation 

of parabola about its axis of symmetry) surface as 

shown in Fig. 8.2. The value V (x1, x2) = ki (a con-

stant) is represented by the intersection of V (x1, x2) 

surface and the plane z = ki. This intersection results 

in a closed curve, an oval. If one plots a trajectory 

from the point (x0
1, x0

2, V(x0)), the trajectory crosses 

the ovals V(x1, x2) = ki for successively smaller val-

ues of V(x1, x2), and moves towards the point cor-

responding to V(x1, x2) = 0, which is the equilibrium 

point. Figure 8.2 shows a typical trajectory.

Property (iv) guarantees that any trajectory moves 

in a way, so as never to climb higher on the bowl, 

than where it started out. If property (iv) was 

made stronger so that  V (x) < 0 for x π 0, then 

the trajectory must be drawn to the origin (The 

trajectory in Fig. 8.2, in fact, corresponds to this 

case, i.e.,  V (x) < 0).

The Lyapunov stability theorem states that, given the system of equations  x = f (x) with f (0) = 0, if 

there exists a  Lyapunov function for this equation, then the origin is stable in the sense of Lyapunov; in 

addition, if   V (x) < 0, x π 0, then the stability is asymptotic.

|| ( )|| <x t e

x( )t

x(0)
0

|| (0)|| <x d

|| ( )|| <x t e

0

x(0)

x( )t

(a) (b)

|| (0)|| <x d

Fig. 8.1 
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This theorem on asymptotic stability and stability in the sense of Lyapunov applies in a local sense if 

the region ||x(0)|| < d  is small (refer to Fig. 8.1); the theorem applies in the global sense when the region 

includes the entire state space. The value of Lyapunov function for global stability becomes infinite with 

infinite deviation (i.e., V(x) Æ  as ||x|| Æ ).

The determination of stability through Lyapunov analysis centers around the choice of a Lyapunov 

function V(x). Unfortunately, there is no universal method for selecting the Lyapunov function which is 

unique for a given nonlinear system. Several techniques have been devised for the systematic construction 

of  Lyapunov functions; each is applicable to a particular class of systems. If a Lyapunov function cannot 

be found, it in no way implies that the system is unstable. It only means that our attempt in trying to 

establish the stability of an equilibrium state has failed. Therefore, faced with specific systems, one has 

to use experience, intuition, and physical insights to search for an appropriate Lyapunov function. An 

elegant and powerful Lyapunov analysis may be possible for complex systems if engineering insight and 

physical properties are properly exploited. In spite of these limitations, Lyapunov’s method is the most 

powerful technique available today for the stability analysis of nonlinear systems.

For linear time-invariant systems of main concern in this chapter, the quadratic function (refer to 

Section 5.2) is adequate for demonstrating Lyapunov stability. Consider the function

 V(x) = xT Px (8.5)

where P is a symmetric positive definite matrix. The quadratic function (8.5) satisfies properties (i), (ii) 

and (iii) of a Lyapunov function. We need to examine property (iv), the derivative condition, to study the 

stability properties of the system under consideration.

Discrete-Time Systems: In the following, we extend the Lyapunov stability theorem to discrete-time 

systems:

 x (k + 1) = f(x(k)); f(0) = 0 (8.6)

Our discussion will be brief because of the strong analogy between the discrete-time and continuous- 

time cases.

Theorem 8.2 Suppose that there exists a Lyapunov function V (x(k)) which satisfies the following 

properties:

 (i) V (x) > 0; x π 0   

 (ii) V (0) = 0 

 (iii) V (x) is a smooth function; it is continuous for all x. 
(8.7)

 (iv) DV (x(k)) = [V(x(k + 1)) – V(x(k))] £ 0 along trajectories of Eqn. (8.6). 

The Lyapunov stability theorem states that, given the system of equations, x (k + 1) = f(x (k)); f(0) = 0, if 

there exists a Lyapunov function for this equation, then the origin is stable in the sense of Lyapunov; in 

addition, if DV(x(k)) < 0 for x π 0, then the stability is asymptotic.

8.3 LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS

As has been said earlier, the Lyapunov theorems give only sufficient conditions on the stability of the  

equilibrium state of a nonlinear system and, furthermore, there is no unique way of constructing a 
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Lyapunov function. For a linear system, a Lyapunov function can always be constructed and both the 

necessary and sufficient conditions on stability established.

8.3.1

Consider a linear system described by the state equation

  x = Ax (8.8)

where A is n ¥ n real constant matrix.

Theorem 8.3 The linear system (8.8) is globally asymptotically stable at the origin if, and only if, 

for any given symmetric positive definite matrix Q, there exists a symmetric positive definite matrix P, 

that satisfies the matrix equation

 A
T
P + PA = – Q (8.9)

Proof Let us first prove the sufficiency of the result. Assume that a symmetric positive definite matrix 

P (refer to Section 5.2) exists, which is the unique solution of Eqn. (8.9). Consider the scalar function

V(x) = xT
Px

Note that

V(x) > 0 for x π 0 and V(0) = 0

The time derivative of V(x) is

 V (x) =  x
T
Px + xT

P  x

Using Eqns (8.8) and (8.9), we get

  V (x) = xT
A

T
Px + xT

PAx

  = xT(AT
P + PA)x = – xT

Qx

Since Q is positive definite,  V (x) is negative definite. Norm of x may be defined as (Eqn. (5.6b))

||x || = (xT
Px)1/2

Then

V(x) = ||x ||2

V(x)  as ||x || 

Therefore, the system is globally asymptotically stable at the origin.

To prove the necessity of the result, the reader is advised to refer to [105] where the proof has been  

developed in the following two parts:

 (i) If (8.8) is asymptotically stable, then for any Q there exists a matrix P satisfying (8.9).

 (ii) If Q is positive definite, then P is also positive definite.

Comments

 (i) The implication of Theorem 8.3 is that if A is asymptotically stable and Q is positive definite, 

then the solution P of Eqn. (8.9) must be positive definite. Note that it does not say that if A is 

asymptotically stable and P is positive definite, then Q computed from Eqn. (8.9) is positive 

definite. For an arbitrary P, Q may be positive definite (semidefinite) or negative definite 

(semidefinite).
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 (ii) Since matrix P is known to be symmetric, there are only n(n + 1)/2 independent equations in (8.9) 

rather than n2.

 (iii) In very simple cases, Eqn. (8.9), called the Lyapunov equation, can be solved analytically, 

but usually numerical solution is required. A number of computer programs for this purpose are  

available [152–154].

 (iv) Since Theorem 8.3 holds for any positive definite symmetric matrix Q, the matrix Q in Eqn. (8.9) 

is often chosen to be a unit matrix.

 (v) If  V (x) = – xT
Qx does not vanish identically along any trajectory, then Q may be chosen to be 

positive semidefinite.

A necessary and sufficient condition that  V (x) does not vanish identically along any trajectory (meaning 

that  V (x) = 0 only at x = 0), is that

 r 

H

HA

HA

 

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 = n; Q = HT
H (8.10)

where r (.) stands for rank of a matrix.

This can be proved as follows. Since  V (x) can be written as

  V (x)  = – xT
Qx = – xT

H
T
Hx,

  V (x)  = 0 means that Hx = 0

Differentiating with respect to t, gives

H  x = HAx = 0

Differentiating once again, we get

HA  x = HA
2
x = 0

Repeating the differentiation process and combining the equations, we obtain

 

H

HA

HA

 

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 x = 0

A necessary and sufficient condition for x = 0 to be the only solution of this equation is given by (8.10).

Example 8.1

Let us determine the stability of the system described by the following equation:

 x = Ax 

with

A = 
- -

-
È

Î
Í

˘

˚
˙

1 2

1 4
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We will first solve Eqn. (8.9) for P for an arbitrary choice of real symmetric positive definite matrix Q. 

We may choose Q = I, the identity matrix. Equation (8.9) then becomes

A
T
P + PA = – I

or 
-
- -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

- -
-

È1 1

2 4

1 2

1 4

11 12

12 22

11 12

12 22

p p

p p

p p

p p ÎÎ
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

1 0

0 1
 (8.11)

Note that we have taken p12 = p21. This is because the solution matrix P is known to be a positive definite 

real symmetric matrix for a stable system.

From Eqn. (8.11), we get

 – 2 p11 + 2 p12  = – 1

 – 2 p11 – 5 p12 + p22  = 0

 – 4 p12 – 8 p22  = – 1

Solving for pij’s, we obtain

P = 
p p

p p

11 12

12 22

23
60

7
60

7
60

11
60

È

Î
Í

˘

˚
˙ =

-

-

È

Î
Í
Í

˘

˚
˙
˙

Using Sylvester’s test (Section 5.2), we find that P is positive definite. Therefore, the system under 

consideration is globally asymptotically stable at the origin.

In order to illustrate the arbitrariness in the choice of Q, consider

 Q = 
0 0

0 1

È

Î
Í

˘

˚
˙  (8.12)

This is a positive semidefinite matrix. This choice of Q is permissible since it satisfies the condition 

(8.10), as is seen below.

 Q = 
0 0

0 1

0

1

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙  [0 1] = HT

H

 r 
H

HA

È

Î
Í

˘

˚
˙  = r 

0 1

1 4–

È

Î
Í

˘

˚
˙  = 2

It can easily be verified that with the choice of Q given by Eqn. (8.12), we derive the same conclusion 

about the stability of the system as obtained earlier with Q = I.

8.3.2

Consider a linear system described by the state equation

 x(k + 1) = Fx(k)   (8.13)

where F is n ¥ n real constant matrix.

Theorem 8.4 The linear system (8.13) is globally asymptotically stable at the origin if, and only if, 

for any given symmetric positive definite matrix Q, there exists a symmetric positive definite matrix P, 

that satisfies the matrix equation 

 F
T PF – P = – Q  (8.14)
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Proof Let us first prove the sufficiency of the result. Assume that a symmetric positive definite 

matrix P exists, which is the unique solution of Eqn. (8.14). Consider the scalar function

V(x) = xT
Px

Note that

V(x) > 0 for x π 0 and V(0) = 0

The difference

 DV(x) = V(x(k + 1)) – V(x(k))

  = xT(k + 1)Px(k + 1) – xT(k)Px(k)

Using Eqns (8.13) – (8.14), we get

 DV(x) = xT(k)FT
PFx(k) – xT(k)Px(k)

  = xT(k)[FT
PF – P]x(k) = – x

T(k)Qx(k)

Since Q is positive definite, DV(x) is negative definite. Further V(x)  as ||x || . Therefore, the 

system is globally asymptotically stable at the origin.

The proof of necessity is analogous to that of continuous-time case (refer to [105]).

Comments

 (i) In very simple cases, Eqn. (8.14), called the discrete Lyapunov equation, can be solved analytically, 

but usually a numerical solution is required. A number of computer programs for this purpose are 

available [152–154].

 (ii) If DV(x(k)) = –x
T(k)Qx(k) does not vanish identically along any trajectory, then Q may be chosen 

to be positive semidefinite. 

A necessary and sufficient condition that DV(x(k)) does not vanish identically along any trajectory 

(meaning that DV(x(k)) = 0 only at x = 0), is that

 r 

H

HF

HF

 

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 = n; Q = HT
H   (8.15)

where r (.) stands for rank of a matrix.

Example 8.2

Let us determine the stability of the system described by the following equation:

 x(k + 1) = Fx(k)

with

 F = 
- -

-
È

Î
Í

˘

˚
˙

1 2

1 4
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We will first solve Eqn. (8.14) for P for an arbitrary choice of real symmetric positive definite matrix Q. 

We may choose Q = I, the identity matrix. Equation (8.14) then becomes

F
T
PF – P = – I

or 
-
- -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

- -
-

È

Î
Í

˘

˚
˙ -

È1 1

2 4

1 2

1 4

11 12

12 22

11 12

12 22

p p

p p

p p

p pÎÎ
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

1 0

0 1

or – 2p12 + p22 = – 1

 2p11 + p12 – 4p22 = 0

 4p11 + 16p12 + 15p22 = – 1

Solving for pij’s, we obtain

P = 
p p

p p

11 12

12 22

43
60

11
30

11
30

4
15

È

Î
Í

˘

˚
˙ =

-

-

È

Î
Í
Í

˘

˚
˙
˙

Using Sylvester’s test (Section 5.2) we find that P is negative definite. Therefore, the system under 

consideration is unstable.

8.4 PARAMETER OPTIMIZATION AND
 OPTIMAL CONTROL PROBLEMS

In previous chapters, we encountered various methods for design ing feedback control laws, ranging from 

root-locus and Bode-plot techniques to pole-placement by state feedback and state estima tion. In each 

case, the designer was left with decisions regard ing the locations of closed-loop poles. We have given 

a fairly complete treatment of these design techniques for linear time-invariant single-variable systems.

Here in this chapter, a somewhat different approach to design is taken. The performance of the system 

is measured with a single scalar quantity—the performance index. A configuration of the controller is 

selected and free parameters of the controller that optimize (minimize or maximize as the case may be) 

the performance index are determined. In most industrial control problems, the nature of the performance 

index is such that the design process requires its minimization.

The design approach based on parameter optimization consists of the following steps:

 (i) Compute the performance index J as a function of the free parameters k1, k2, …, kn, of the system 

with fixed configuration:

   J = J(k1, k2, …, kn) (8.16)

 (ii) Determine the solution set ki of the equations:

   
∂
∂

J

ki

 = 0; i = 1, 2, …, n (8.17)

  Equations (8.17) give the necessary conditions for J to be mini mum. From the solution set of these 

equations, find the subset that satisfies the sufficient conditions, which require that the Hes sian 

matrix given below is positive definite.
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 H = 

∂

∂
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∂ ∂
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∂ ∂
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 (8.18)

  Since 
∂

∂ ∂

2J

k ki j

 = 
∂

∂ ∂

2J

k kj i

,

  the matrix H is always symmetric.

 (iii) If there are two or more sets of ki satisfying the necessary as well as sufficient conditions of 

minimization of J, then compute the corresponding J for each set. The set that gives the smallest 

J is the optimum set.

Selection of an appropriate performance index is as much a part of the design process, as the minimization 

of the index. We know that the performance of a control system can be adequately specified in terms of 

settling time, peak overshoot, and steady-s tate error. The performance index could then be chosen as

J =D  K1(settling time) + K2(peak overshoot) + K3(steady-state error)

where the Ki are weighing factors.

Although the criterion seems reasonable, it is not trackable analytically. A compromise must be made 

between specifying a performance index which includes all the desired system characteristics, and a 

performance index which can be minimized with a reasonable amount of computation.

In the following, we present several performance indices which include the desired system characteristics 

and, in addition, have good mathematical trackability. These indices often involve integrating some 

function of system error over some time interval when the system is subjected to a standard command or 

disturbance such as step. A common example is the integral of absolute error (IAE) defined by

IAE =D 

0

Ú |e(t)| dt

If the index is to be computed numerically, the infinite upper limit can be replaced by the limit tf , where 

tf is large enough so that e(t) is negligible for t > tf . This index is not unreasonable since both the fast 

but highly oscillatory systems and the sluggish systems will give large IAE value (refer to Fig. 8.3). 

Minimization of IAE by adjusting system parameters will provide acceptable relative stability and speed 

of response. Also, a finite value of IAE implies that the steady-state error is zero.

Another similar index is the integral of time multiplied by absolute error (ITAE), which exhibits the 

additional useful features that the initial large error (unavoidable for a step input) is not heavily weighted, 

whereas errors that persist are more heavily weighted.

ITAE =D 
0

Ú  t |e(t)| dt
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The integral of square error (ISE) and integral of time multiplied by square error (ITSE) indices are 

analogous to IAE and ITAE criteria, except that the square of the error is employed for three reasons: 

(i) in some applications, the squared error represents the system’s power consumption, (ii) squaring the 

error weighs large errors more heavily than small errors, and (iii) the squared error is much easier to 

handle analytically.

 ISE =D 
0

Ú e2(t) dt

 ITSE =D 
0

Ú te2(t) dt

The system whose design minimizes (or maximizes) the selected performance index with no constraints 

on controller configuration is, by definition, optimal.

The difference between parameter optimization and optimal control problems is that no constraint on 

controllers is imposed on the latter. In optimal design, the designer is permitted to use con trollers of 

any degree and any configuration, whereas in parame ter optimization the configuration and the type of 

controllers are predetermined. Since there is no constraint imposed on con trollers, optimal design results 

in a better system, i.e., lower value of the performance index.

However, because of considerations other than minimization of the performance index, one may not 

build an optimal control system. For example, optimal solutions to the problem of control of a linear 

time-invariant plant may result in a nonlinear and/or time-varying system. Hardware realization of such 

an optimal control law may be quite difficult and expensive. Also, in many control problems, the optimal 

solution gives an open-loop control system which is successful only in the absence of meaningful 

disturbances. In practical systems, then, it may be more sensible to seek suboptimal control laws: we 

select a feedback control configuration and the type of controller, based on considerations of cost, 

availability of components, etc., and then determine the best possible values of the free parameters of 

the controller that minimize the given performance index. Modifications in control configuration and the 

type of controller are made until a satisfactory system is obtained—which has performance character-

istics close to the optimal control system we have worked out in theory.

r
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There exists an important class of optimal control problems for which quite general results have been 

obtained. It involves control of linear systems with the objective of minimizing the integral of a quadratic 

performance index. An important feature of this class of problems is that optimal control is possible by 

feedback controllers. For linear time-invariant plants, the optimal control results in a linear time-invariant 

closed-loop system. The implementation of optimal control is, therefore, simple and less expensive. 

Many problems of industrial control belong to this class of problems—linear quadratic optimal control 

prob lems.

As we shall see later in this chapter, the linear quadratic optimal control laws have some computational 

advantage, and a number of useful properties. The task of the designer shifts to the one of specifying 

various parameters in the performance index.

In the previous chapters, we have been mostly concerned with the design of single-variable systems. 

Extensions of the root-locus method and the Bode/Nyquist-plot design to multivariable cases have 

been reported in the literature. However, the design of multivariable systems using these techniques is 

much more compli cated than the single-variable cases. Design of multivariable systems through pole-

placement can also be carried out; the computations required are however highly complicated.

The optimal control theory provides a simple and powerful tool for designing multivariable systems. 

Indeed, the equations and computations required in the design of optimal single-variable systems and 

those in the design of optimal multivariable systems are almost identical. We will use, therefore, in 

this chapter, the Multi-Input, Multi-Output (MIMO) state variable model in the formulation of optimal 

control problem.

The objective set for the rest of this chapter is the presentation of simple, and analytically solvable, optimal 

control and parameter optimization problems. This will provide insight into optimal and suboptimal 

structures and algorithms that may be applied in practical cases. For detailed study, specialized books 

on optimal control [109–124] should be consulted. A moderate treatment of the sub ject is also available 

in reference [105].

Commercially available software [152–154] may be used for solving complex optimal/suboptimal control 

problems.

8.5 QUADRATIC PERFORMANCE INDEX

A commonly used performance criterion is the integral square error (ISE):

 J = 

0

Ú  [y(t) – yr]
2 dt (8.19a)

  = 

0

Ú e2(t) dt (8.19b)

where yr is the command or set-point value of the output, y(t) is the actual output, e(t) = y(t) – yr is the 

error of the system.

This criterion, which has good mathematical trackability proper ties, is acceptable in practice, as a 

measure of system perfor mance. The criterion penalizes positive and negative errors equally. It penalizes 
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heavily on large errors; hence, a small J usually results in a system with small overshoot. Since the 

integration is carried out over [0, ), a small J limits the effect of small error lasting for long time and, 

thus, results in a small settling time. Also, a finite J implies that the steady-state error is zero.

The optimal design obtained by minimizing the performance index given by Eqns (8.19) may be  

unsatisfactory, because it may lead to excessively large magnitudes of control signals. A more realistic 

solution to the problem is reached, if the performance index is modified to account for physical constraints 

like saturation in physical devices. Therefore, a more realistic performance index is of the form

 J = 

0

Ú e2(t) dt (8.20a)

subject to the following constraint on control signal u(t), 

 max |u(t)| £ M (8.20b)

for some constant M. The constant M is determined by the linear range of the plant.

Although the criterion expressed in (8.20) can be used in the design, it is not convenient to work with. In 

a number of prob lems, u2(t) is a measure of the instantaneous rate of expenditure of energy. To minimize 

energy expenditure, we minimize

 

0

Ú u2(t) dt (8.21)

We would, very much, like to replace the performance criterion given by (8.20) by the following quadratic 

performance index:

 J = 

0

Ú [e2(t) + u2(t)] dt

To allow greater generality, we can insert a real positive con stant l to obtain

 J = 

0

Ú [e2(t) + l u2(t)] dt (8.22)

By adjusting the weighting factor l, we can weigh the relative importance of the system error and the 

expenditure of energy. By increasing l, i.e., by giving sufficient weight to control effort, the amplitude of 

the control signal, which minimizes the overall performance index, may be kept within practical bounds,  

although at the expense of the increased system error. Note that as l Æ 0, the performance index 

reduces to the integral square error criterion. In this case, the magnitude of u(t) will be very large and the 

constraint given by (8.20b) may be violated. If l Æ , the performance index reduces to the one given 

by Eqn. (8.21), and the optimal system that minimizes this J is one with u = 0. From these two extreme 

cases, we conclude that if l is properly chosen, then the constraint of Eqn. (8.20b) will be satisfied.

Example 8.3

For the system of Fig. 8.4, let us compute the value of K that minimizes ISE for the unit-step input.
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For the system under consideration,

 
E s

R s

( )

( )
 = 

s

s K+
For unit-step input,

 E(s) = 
1

s K+

Therefore,  e(t) = e–Kt

 ISE = 

0

Ú e2(t) dt = 
1

2K

Obviously, the minimum value of ISE is obtained as K Æ . This is an impractical solution, resulting in 

excessive strain on the physical components of the system.

Sound engineering judgment tells us that we must include the ‘cost’ of the control effort in our 

performance index. The quadrat ic performance index

J = 

0

Ú [e2(t) + u2(t)] dt

may serve the objective.

From Fig. 8.4, u(t) = K e(t) = K e–Kt

Therefore,

J = 
1

2 2K

K
+

The minimum value of J is obtained when

∂
∂

J

K
 = – 

1

2

1

22K
+  = 0 or K = 1

Note that

∂

∂

2

2

J

K
 = 

1
3K

 > 0

The minimum value of J is 1.

This solution, which weighs error and control effort equally, seems to be acceptable.

The following performance index assigns larger weight to error minimization:

J = 

0

Ú [e2(t) + lu2(t)] dt; l = 0.5

For the system under consideration,

J = 
1

2 2K

K
+ l

–

r + e K u 1
s

y

Controller Plant

Fig. 8.4 
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∂
∂

J

K
 = 0 gives

 K = 2 , Jmin = 0.707

When l is greater than unity, it means that more 

importance is given to the constraint on amplitude 

of u(t) compared to the performance of the system. 

A suitable value of l is chosen so that relative 

importance of the system performance is contrasted 

with the importance of the limit on control effort. 

Figure 8.5 gives a plot of the performance index 

versus K for various values of l.

Example 8.4

Consider the liquid-level system shown in Fig. 8.6. h represents the deviation of liquid head from the 

steady-state value H.

The pump controls the liquid head h by supplying liquid at a rate (Qi  + qi) m
3/sec to the tank. We shall 

assume that the flow rate qi is proportional to the error in liquid level (desired level – actual level). Under 

these assumptions, the system equations are [155]:

(i)  A 
dh

dt
 = qi – 

rgh

R

where  A = area of cross-section of the tank;

 R = total resistance offered by the tank outlet and pipe (R =D incremental change in pressure 

across the restriction/incremental change in flow through the restriction);

 r = density of the liquid; and

 g = acceleration due to gravity.

Desired
level

Controller
Actual level

Measurement
system

Qi + qi

H h+

RPump

Fig. 8.6 

J

2

1

0 0.5 1 1.5 2 K

l = 1

l = 0.5

l = 0

Fig. 8.5 
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(ii)  qi = Ke

where e =   error in liquid level and K = gain constant

Let A = 1, and 
R

gr
 = 1. Then

H s

Q si

( )

( )
 = 

1

1s +
The block diagram representation is given in Fig. 8.7. The output y(t) = h(t) is the deviation in liquid 

head from steady-state value. Therefore, the output y(t) is itself the error which is to be minimized. Let 

us pose the problem of computing the value of K that minimizes the ISE for the initial condition y(0) = 1.

e
K

qi = u +

y(0)

+
+ y t h t( ) = ( )

Process

Ú
– –

Fig. 8.7 

From Fig. 8.7, we get

Y(s) = 
s

s K

y

s+ +
Ê
ËÁ

ˆ
¯̃1

0( )
 = 

1

1s K+ +
Therefore,

 y(t) = e–(1 + K)t

 ISE = 

0

Ú y2(t) dt = 
1

2 1( )+ K

Obviously, the minimum value of ISE is obtained as K Æ .

This is an impractical solution, resulting in excessive strain on the physical components of the system. 

Increasing the gain means, in effect, increasing the pump size.

Now, consider the problem of minimization of

 J = 

0

Ú [y2(t) + u2(t)] dt

From Fig. 8.7, we have

 u(t) = – Ky(t)

Therefore,

 u(t) = – Ke–(1 + K)t
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 J = 
1

2 1( )+ K
 + 

K

K

2

2 1( )+

 
∂
∂

J

K
 = 0 gives K = 2 1-( )

Note that

 
∂

∂

2

2

J

K
 = 

2

1 3( )+ K
 > 0

The minimum value of J is 2 1-( ) .

8.5.1 State Regulator Problem

The performance index given by Eqn. (8.22), is a translation of the requirement of regulation of the 

system output, with constraints on amplitude of the input applied to the plant. We now extend the 

proposed performance index for the control problem where all the state variables of the system are to be 

regulated. We use multi variable formulation of the plant model.

Consider the control problem where the objective is to maintain the system state given by the n ¥ 1 state 

vector x(t), near the desired state xd (which, in many cases, is the equilib rium point of the system) for 

all time.

Relative to the desired state xd, (x(t) – xd) can be viewed as the instantaneous system error. If we transform 

the system coordinates such that the desired state becomes the origin of the state space, then the new state 

x(t) is itself the error.

One measure of the magnitude of the state vector x(t) (or of its distance from the origin) is the norm 

||x(t)|| defined by

||x(t)||2 = xT(t)x(t)

Therefore,

J = 

0

Ú [xT(t)x(t)] dt = 

0

Ú [x 2
1 (t) + x 2

2  (t) +   + x 2
n (t)] dt

is a reasonable measure of the system transient response.

In practical systems, the control of all the states of the system is not equally important. To be more 

general,

 J = 

0

Ú [xT(t)Qx(t)]dt (8.23)

with Q as n ¥ n real, symmetric, positive definite (or positive semidefinite) constant matrix, can be used 

as a performance measure. The simplest form of Q one can use is the diagonal matrix:

 Q = 

q

q

qn

1

2

0 0

0 0

0 0

 

 

   

 

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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The ith entry of Q represents the weight the designer places on the constraint on the state variable xi(t). 

The larger the value of qi relative to the other values of q, the more control effort is spent to regular xi(t).

The design obtained by minimizing the performance index of the form (8.23) may be unsatisfactory in 

practice. A more realistic solution is obtained if the performance index is modified by adding a penalty 

term for physical constraints on the p ¥ 1 control vector u(t). One of the ways of accomplishing this is to 

introduce the following quadratic control term in the performance index:

 J = 

0

Ú [uT(t)Ru(t)] dt (8.24)

where R is p ¥ p real, symmetric, positive definite,1 constant matrix.

By giving sufficient weight to control terms, the amplitudes of control signals which minimize overall 

performance index may be kept within practical bounds, although at the expense of in creased error in 

x(t).

For the state regulator problem, a useful performance measure is, therefore2,

 J = 
1
2

0

Ú [xT(t)Qx(t) + uT(t)Ru(t)] dt (8.25)

8.5.2 Output Regulator Problem

In the state regulator problem, we are concerned with maintaining the n ¥ 1 state vector x(t) near the 

origin of the state space for all time. In the output regulator problem, on the other hand, we are concerned 

with maintaining the q ¥ 1 output vector y(t) near origin for all time. A useful performance measure for 

the output regulator problem is

 J = 1
2

0

Ú [yT(t)Qy(t) + uT(t)Ru(t)] dt (8.26a)

where Q is a q ¥ q positive definite (or positive semidefinite) real, symmetric constant matrix, and R is a 

p ¥ p positive defi nite, real, symmetric, constant matrix.

Substituting y = Cx in Eqn. (8.26a), we get

 J = 
1
2

0

Ú  (xT
C

T
QCx + uT

Ru) dt (8.26b)

Comparing Eqn. (8.26b) with Eqn. (8.25) we observe that the two indices are identical in form; Q in 

Eqn. (8.25) is replaced by CT
QC in Eqn. (8.26b). If we assume that the plant is completely observable, 

then C cannot be zero; CT
QC will be positive definite (or positive semidefinite) whenever Q is positive 

definite (or positive semidefinite).

Thus, the solution to the output regulator problem directly follows from that of the state regulator problem.

 1 As we shall see in Section 8.7, positive definiteness of R is a necessary condition for the existence of the optimal 

solution to the control problem.

 2 Note that multiplication by 1/2 does not affect the minimization problem. The constant helps us in mathematical 

manipulations as we shall see later in Section 8.7.
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8.6 CONTROL CONFIGURATIONS

8.6.1 State Regulator

Consider the plant represented by linear state equations of the form

  x(t) = Ax(t) + Bu(t); x(0) =D x0 (8.27a)

 y(t) = Cx(t) (8.27b)

where x(t) is the n ¥ 1 state vector, u(t) is the p ¥ 1 input vector, y(t) is the q ¥ 1 output vector; A, B and 

C are, respectively, n ¥ n, n ¥ p and q ¥ n real constant matrices. We will assume that the null state x = 0 

is the desired state; x(t) is thus system-error vector at time t.

We shall be interested in selecting the controls u(t) which quickly move the system state x(t) to the null 

state x = 0 for any initial perturbation x0. The control problem is, thus, to determine u(t) which minimizes 

performance index of the form

 J = 1
2

0

Ú [xT(t)Qx(t) + uT(t)Ru(t)] dt (8.28)

where Q is a positive definite (or positive semidefinite), real, symmetric constant matrix, and R is a 

positive definite, real, symmetric, constant matrix.

An important feature (proved later in Section 8.7) of this class of problems, is that optimal control is 

possible by feedback control law of the form

 u(t) = – Kx(t) (8.29a)

where K is a p ¥ n constant matrix, or

 

u

u

up

1

2
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 (8.29b)

If the unknown elements of the matrix K are 

determined so as to minimize the performance 

index given by Eqn. (8.28), then the control 

law given by Eqns (8.29) is optimal. The 

configuration of the optimal closed-loop control 

system is represented by the block diagram of 

Fig. 8.8. As we shall see later in this chapter, 

controllability of the plant (8.27) and positive 

definiteness of matrix Q in the performance 

index (8.28), are sufficient conditions for the 

existence of asymptotically stable (x(t) Æ 0 as 

t Æ ) optimal solution to the control problem.

It may be noted that the optimal solution obtained by minimizing the performance index (8.28) may not 

be the best solution in all circumstances. For example, all the elements of the matrix K may not be free; 

Disturbance w

Input u Output y

State x

–

+0
Plant

K

Fig. 8.8 
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some gains are fixed by the physical constraints of the system and are, therefore, relatively inflexible. 

Similarly, if all the states x(t) are not accessible for feedback, one has to go for a state observer whose 

complexity is comparable to that of the system itself. It is natural to seek a procedure that relies on the 

use of feedback from the accessible state variables only, constraining the gain elements of matrix K 

corresponding to the inaccessible state variables, to have zero value (Section 8.9). Thus, whether one 

chooses an optimal or suboptimal solution depends on many factors in addition to the performance 

required out of the system.

8.6.2

Implementation of the optimal control law given by Eqns (8.29) requires the ability to directly measure 

the entire state vector x(t). For many systems, full state measurements are not practical. In Section 7.5, 

we found that the state vector of an observable linear system can be estimated using a state observer 

which operates on input and output measurements. We assumed that all inputs can be specified exactly 

and all outputs can be meas ured with unlimited precision. The dynamic behavior of the ob server was 

assumed to be specified in terms of its characteris tic equation.

Here, we are concerned with the optimal design of the state ob server for the multivariable system given 

by Eqns (8.27).

We postulate the existence of an observer of the form

  ̂x(t) = Ax̂(t) + Bu(t) + M[y(t) – Cx̂(t)] (8.30)

where x̂ is the estimate of state x and M is an n × q real constant gain matrix. The observer structure is 

shown in Fig. 8.9, which is of the same form as that considered in Section 7.5. The estimation error is 

given by

  x(t) = x(t) – x̂(t) (8.31a)

Plant

xu y

Ún

Cx Ax Bu= +

A

B
+

+ +

+

x
C

y

n-parallel
integrators

M

Observer

x –

Fig. 8.9 
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From Eqns (8.27) and (8.30), we have

   x(t) = (A – MC)  x(t) (8.31b)

To design gain matrix M, we may use the duality between control and estimation problems, developed in 

Section 7.5. (refer to Table 7.1). As per the duality principle, the problem of determination of gain matrix 

M for the optimal state observer, is mathematically equivalent to designing optimal state regulator for the 

‘trans posed auxiliary system’ (refer to Eqns (7.36))

  y (t) = ATy (t) + CTg(t) (8.32a)

The design problem is to determine n ¥ q gain matrix M such that

 g (t) = – MTy (t) (8.32b)

minimizes a quadratic performance index of the form

 J = 
1
2

0

Ú (y T
Q0y  + gT

R0g) dt (8.33)

where Q0 is a positive definite (or positive semidefinite), real, symmetric constant matrix, and R0 is a 

positive definite, real, symmetric, constant matrix.

The solution to this problem exists if the auxiliary system (8.32) is completely controllable. This 

condition is met, if the original system (8.27) is completely observable.

The separation principle (refer to Section 7.6) allows for the separate designs of state-feedback control 

law and state ob server; the control law and the observer are then combined as per the configuration of 

Fig. 8.10. The weighting matrices Q0 and R0, for the observer design, can be assumed to be equal to the 

weighting matrices Q and R, respectively, of the 

control-law design. Generally, however, one would 

design a faster observer in comparison with the 

regulator, i.e., for Q0 = Q, the elements of R0 are 

chosen smaller than those of R.

The above solution, to the state estimation problem 

based on duality between the control and estima-

tion, can be formalized by using “Optimal Filtering 

Theory”. The formal development of the result ex-

tends beyond the scope of this text [105]. We may, 

however, use the term “optimal filter” for the state 

observer designed by the procedure given here in 

the text.

An optimal filter whose weighting matrices Q0 and R0 are determined by the “spectral properties” of the 

exogenous noise signals is termed a Kalman filter [105].

8.6.3

The control configuration of Fig. 8.8, implicitly assumes that the null state x = 0 is the desired equilibrium 

state of the system. It is a state regulator with zero command input.

u
Plant

x

Sensor
y

C

–K
x

x Ax Bu M y Cx= + + ( – )

Control law Observer

x Ax Bu= +

Fig. 8.10 
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In servo systems, where the output y(t) is required to track a constant command input, the equilibrium 

state is a constant point (other than the origin) in state space. This servo problem can be formulated as a 

‘shifted regulator problem’, by shifting the origin of the state space to the equilibrium point. Formulation 

of the shifted regulator problem for single-input systems was given in Section 7.7. Extension of the 

formulation to the multi-input case is straightforward.

8.6.4

In a state-feedback control system (which is a generalization of proportional plus derivative feedback), 

it is usually required that the system have one or more integrators within the closed loop. This will lead 

to zero steady-state error when the command input and disturbance have constant steady-state values. 

Unless the plant to be controlled has integrating property, it is generally necessary to add one or more 

integrators within the loop.

For the system (8.27), we can feedback the state x as well as the integral of the error in output by 

augmenting the plant state x with the extra ‘integral state’. For single-input systems, the problem of 

state feedback with integral control was formulated as a state regulator problem in Section 7.8. This was 

done by augmenting the plant state with ‘integral state’, and shifting the origin of the state space to the 

equilibrium point. Multivariable generalization of state feedback with integral control is straightforward.

8.7 OPTIMAL STATE REGULATOR

The parameter optimization problem, as explained earlier, refers to the problem of obtaining the 

optimum values of free parameters in a predetermined control configuration.  In optimal control design, 

the designer is permitted to use controllers of any degree and any configuration. Optimal solutions to the 

problem of control of a linear time-invariant plant, may result in a nonlinear and/or time-varying system 

[105]. Also, in many control problems, the optimal solution gives an open-loop control system [105].

For an important class of control problems, which involves control of linear time-invariant plants with 

the objective of minimizing the integral of a quadratic performance index, the optimal control is possible 

by state-feedback control that results in a linear time-invariant closed-loop system. Many problems of 

industrial control belong to this class of problems—linear quadratic optimal control problems.

To prove this important result, we consider the optimal control problem for a linear multivariable 

completely controllable plant

  x = Ax + Bu (8.34)

where x is the n ¥ 1 state vector, u a p ¥ 1 input vector; A and B are, respectively, n ¥ n and n ¥ p real 

constant matrices, and the null state x = 0 is the desired steady state.

The objective is to find the optimal control law that minimizes the following performance index, subject 

to the initial conditions x(0) =D x0:

  J = 1
2

0

( )x Qx u Ru
T T dt+Ú  (8.35)
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where Q is n ¥ n positive definite, real, symmetric, constant matrix, and R is p ¥ p positive definite, real, 

symmetric, constant matrix.

Since the (A, B) pair is completely controllable3, there exists a state-feedback control law

 u = – Kx (8.36)

where K is p ¥ n real, constant, unconstrained gain matrix, that results in an asymptotically stable closed-

loop system (refer to Section 7.3)

  x(t) = (Ax – BKx) = (A – BK)x (8.37)

This implies that there is a Lyaponov function V T= 1
2

x Px  for the closed-loop system (8.37); that is, for 

some positive definite matrix P, the time derivative dV/dt evaluated on the trajectories of the closed-loop 

system is negative definite. We now state and prove a condition for u = – Kx (t) to be optimal [35].

Theorem 8.5 If the state-feedback controller u = – Kx (t) is such that it minimizes the function 

 f (u) = 
dV

dt

T T+ +( )1
2

x Qx u Ru , (8.38)

and the minimum value of f (u) = 0 for some V T= 1
2

x Px, then the controller is optimal.

Proof We can represent (8.38) as (denoting minimizing u by u*)

  
dV

dt

T T

u u

x Qx u Ru
=

+ + =
*

* *
  
1

2

1
2

0

Hence

  
dV

dt

T T

u u

x Qx u Ru
=

= +
*

* *
 - 

1

2

1

2

Integrating both sides with respect to time from 0 to , we obtain

V V dtT T
x x x Qx u Ru( )( ) - ( )( ) - +( )Ú0 1

2
0

= * *

Because, by assumption, the closed-loop system is asymptotically stable, we have x( ) = 0; therefore,

V dtT T T
x x Px x Qx u Ru0 0 01

2
1
2

0
( )( ) = ( ) ( ) = +( )Ú * *

Thus, if a linear stabilizing controller satisfies the hypothesis of the theorem, then the value of the 

performance index (8.35) for such a controller is 

J T
u x Px

*( ) = ( ) ( )1
2

0 0

 3 The controllability of the (A, B) pair is not a necessary condition for the existence of the optimal solution. If the 

(A, B) pair is not completely controllable, we can transform the plant model to controllability canonical form 

given in Eqn. (5.123c). It decomposes the model into two parts: the controllable part and the uncontrollable part. 

If the uncontrollable part is stable, then the model is said to be stabilizable. Stabilizability of the (A, B) pair is 

a necessary condition for the existence of optimal solution.
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Since u* minimizes the function in (8.38) and the minimum value is zero, for any u different from u*, the 

value of the function will be greater than/equal to zero. 

  
dV

dt

T T

u u

x Qx u Ru
=

+ +( ) ≥
ˆ

ˆ ˆ1
2

0

or

  
dV

dt

T T

u u

x Qx u Ru
=

+( )
ˆ

ˆ ˆ≥ -
1
2

Integrating both sides with respect to time from 0 to , yields

V dtT T
x x Qx u Ru0 1

2
0

( )( ) £ +( )Ú ˆ ˆ

implying that 

J Ju u
*( ) ( )Ä ˆ

for any ˆ .*
u uπ  Therefore, the controller u* is optimal.

It follows from the above theorem that the synthesis of optimal control law involves finding an appropriate 

Lyapunov function, or equivalently, the matrix P. The matrix P is found by minimizing 

  f
dV

dt

T T
u x Qx u Ru( ) = + +1

2
1
2

 (8.39)

We first apply to (8.39) the necessary conditions for unconstrained minimization.

∂
∂

+
Ê
ËÁ

ˆ
¯̃ =u

Ru
u u

dV

dt

T T1
2

1
2

x Qx u 0+
*

=

Differentiating the above yields

∂
∂

+
Ê
ËÁ

ˆ
¯̃

∂
∂ ( +( )+

u
Ru

u
x Px x Px

dV

dt

T T T T T1
2

1
2

1
2

1
2

1
2

x Qx + u x Qx + u=   TT

T T T

T T T T

Ru

u
x Px Ru

u
x PAx x PBu R

)
∂

∂
+( )

∂
∂

+ +

=

=

 1
2

1
2

1
2

1
2

x Qx + u

x Qx + u uu

B P x Ru B Px Ru

( )
+ += = =T T T

0

Hence, a candidate for an optimal control law has the form

 u
*
 = –R

–1
 B

T
Px = –Kx (8.40)

where K = R
–1

B
T
P

Note that 
∂

∂
( ) =

∂
∂

+( ) = =
2

2
u

u
u

B P x Ru R Rf T T T , a positive definite matrix.



526  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Thus, the second-order sufficiency condition, for u* to minimize (8.39), is satisfied.

We now turn our attention to finding an appropriate P.  The optimal closed-loop system has the form

 x A BR B P x x x= ( ) ( ) =– ;–1 T     D
0 0

Our optimal controller satisfies the equation 

dV

dt

T T

u u

x Qx u Ru
=

+ + =
*

* *1
2

1
2

0

that is,

x PAx x PBu x Qx u Ru
T T T T+ + + =* * *1

2
1
2

0

We substitute u* given by (8.40) into the above equation, and represent it as 

  
1
2

1 1
2

1
2

1 0x A P PA x x PBR B Px x Qx x PBR B Px
T T T T T T T+( ) + + =-

- -

Factoring out x yields
1
2

0x (A P + PA + Q PBR B P x
T T T– –1 ) =

The above equation should hold for any x. For this to be true, we have to have

  A P + PA + Q PBR B P
T T– –1( ) = 0  (8.41)

The above equation is referred to as algebraic Riccati equation. In conclusion, the synthesis of the 

optimal linear state-feedback controller, minimizing the performance index 

J dtT T= +( )Ú1
2

0
x Qx u Ru

subject to

 x Ax Bu x x= + ( ) =; D
0 0

requires solving the matrix Riccati equation given by (8.41).

Controllability of (A, B) pair and positive definiteness of Q are sufficient conditions for the existence 

of asymptotically stable optimal solution to the control problem. This implies that there is a Lyapunov 

function V T= 1
2

x Px  for the closed-loop system (8.37); that is, for positive definite matrix P, the time 

derivative evaluated on the trajectories of the closed-loop system,

 
dV

dt
 =  V = - -1

2
1
2

x Qx u Ru
T T

  = +-
1
2

x Q K RK x
T T( )  (8.42)

is always negative definite.

We now study the effect of choosing a positive semidefinite Q in the performance index J. If Q is positive 

semidefinite and in addition the following rank condition is satisfied,
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 r 

H

HA

HA

�

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

 = n; Q = HT
H, (8.43)

then �V (x) < 0 for all x π 0.

We prove this result by contradiction: the rank condition is satisfied but �V (x) = 0 for some x π 0. 

Substituting Q = HT
H in Eqn. (8.42), we obtain (refer to Eqns (5.6))

�V (x) = – 1
2

(xTHT
Hx + xTKT

RKx) = – 
1
2 [||Hx||2 + || ||Kx R

2 ]

Therefore, Hx = 0 and Kx = 0 should be simultaneously satisfied. Kx = 0 reduces the closed-loop system 

(8.37) to the open-loop system

�x = Ax

From the condition

Hx = 0

we obtain

H �x = HAx = 0

Continuing the process of taking derivative, we get

 HA
2
x = 0

  �

 HA
n – 1

x = 0

or  

H

HA

HA

�

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 x = Vx = 0

Since r[V] = n, Vx = 0 only when x = 0. This proves the result.

Let us see an alternative interpretation of the rank condition (8.43). The rank condition implies that the 

system

�x = Ax + Bu

with the ‘auxiliary output’

y (t) = Hx(t)

is completely observable. Since the performance index

 J = 
1
2

0

Ú (xTQx + uT
Ru)dt = 

1
2

0

Ú (xTHT
Hx + uT

Ru) dt

  = 
1
2

0

Ú (y Ty  + uT
Ru)dt,
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the observability of the pair (A, H) implies that all the modes of the state trajectories are reflected in 

the performance index. A finite value of J, therefore, ensures that unstable modes (if any) have been 

stabilized4 by the control u = – Kx.

The observability condition is always satisfied when the matrix Q is positive definite.

The design steps may now be stated as follows:

 (i) Solve the matrix Riccati equation (8.41) for the positive definite matrix P.

 (ii) Substitute this matrix P into Eqn. (8.40); the resulting equation gives optimal control law.

This is a basic and well-known result in the theory of optimal control. Once the designer has  

specified Q and R, representing his/her assessment of the relative importance of various terms in the 

performance index, the solution of Eqn. (8.41) specifies the optimal control law (8.40). This yields the 

optimal closed-loop system. If the resulting transient response is unsatisfactory, the designer may alter 

the weighting matrices Q and R, and try again. 

Comments

 (i) The matrix R has been assumed to be positive definite. This is a necessary condition for the 

existence of the optimal solu tion to the control problem, as seen from Eqn. (8.40).

 (ii) We have assumed that the plant (8.34) is completely control lable, and the matrix Q in performance 

index J, given by Eqn. (8.35), is positive definite. These are sufficient conditions for the existence 

of asymptotically stable optimal solution to the control problem. The requirement on matrix Q, 

may be relaxed to a positive semidefinite matrix with the pair (A,H) completely observable, where 

Q = HT
H.

 (iii) It is important to be able to find out whether the sought-after solution exists or not, before we 

start working out the solution. This is possible only if necessary conditions for the existence of 

asymptotically stable optimal solution are estab lished. A discussion on this subject entails not only 

controlla bility and observability, but also the concepts of stabilizability and detectability. Basic 

ideas about these concepts have been given in footnotes of this chapter; a detailed discussion is 

beyond the scope of this book.

 (iv) Equation (8.41) is a set of n2 nonlinear algebraic equa tions. Since P is a symmetric matrix, we 

  need to solve only 
n n( )+1

2
 equations. 

 (v) The solution of Eqn. (8.41) is not unique. Of the several possible solutions, the desired answer is 

obtained by enforcing the requirement that P be positive definite. The positive defi nite solution of 

Eqn. (8.41) is unique.

 (vi) In very simple cases, the Riccati equation can be solved analytically, but usually a numerical 

solution is required. A number of computer programs for the purpose are available [152–154]. 

Appendix A provides some MATLAB support.

 4 Observability canonical form for a state model which is not completely observable, is given in Eqn. (5.124c). It 

decomposes the model into two parts: the observable part and the unobservable part. If the unobservable part is 

stable, then the model is said to be detectable.

   In the optimization problem under consideration, the observability of the pair (A, H) is not a necessary 

condition for the existence of a stable solution. If the pair (A, H) is detectable, then the modes of state trajectories, 

not reflected in J, are stable and a finite value of J will ensure asymptotic stability of the closed-loop system. 
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 (vii) Note that the optimal state regulator requires that all the parameters of matrix K in the control 

law (8.36), are free parameters. However, all the parameters of matrix K may not be available for 

adjustments. The gain elements of matrix K, corresponding to inaccessible state variables, may 

be constrained to zero value (otherwise, a state observer will be required). Also, some gains may 

be fixed by physical constraints of the system. This leads to the parameter optimization problem: 

optimization of free parameters in the matrix K. The difference between parameter optimization 

and optimal control problems is that no constraint on controllers is imposed on the latter. A 

solution to parameter optimization (suboptimal control) problem will be given in Section 8.9.

Example 8.5

Consider the problem of attitude control of a rigid satellite which was discussed in Example 7.1. An attitude 

control system for the satellite that utilizes rate feedback is shown in Fig. 8.11; q (t) is the actual attitude, 

qr(t) is the reference attitude which is a step function, and u(t) is the torque developed by the thrusters.

qr +

–

k1
+

–

u x2 1
s

1
s

k2

y = = qx1

Fig. 8.11 

The state variable model of the system is 

  x  = Ax + Bu 

 y = Cx 
(8.44)

with

A = 
0 1

0 0

È

Î
Í

˘

˚
˙ ; B = 

0

1

È

Î
Í

˘

˚
˙ ; C = [1 0]

The problem is to obtain the optimal control law

u = – k1(x1 – qr) – k2x2; x1 = q, x2 =  q

that minimizes the performance index

 J = 

0

Ú [(qr – q)2 + u2] dt (8.45)

In terms of the shifted state variables

 x1  = x1 – qr;  x2  = x2 
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the state equation becomes

   x = A  x  + Bu (8.46)

where A and B are given by Eqns (8.44).

Now, the problem is to find optimal values of the parameters k1 and k2, such that the control law

 u = – k1  x1  – k2  x2

minimizes the performance index

 J = 

0

Ú (  x1
2  + u2)dt (8.47)

The Q and R matrices are

 Q = 
2 0

0 0

È

Î
Í

˘

˚
˙ ; R = 2

Note that Q is positive semidefinite matrix.

Q = HT
H = 

2

0

È

Î
Í
Í

˘

˚
˙
˙

 [ ]2 0

The pair (A,H) is completely observable. Also, the pair (A,B) is completely controllable. Therefore, 

sufficient conditions for the existence of asymptotically stable optimal solution are satis fied. 

The matrix Riccati equation is 

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or 
0 0

1 0

0 1

0 0

11 12

12 22

11 12

12 22

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

p p

p p

p p

p p

 – 
p p

p p

p p

p p

11 12

12 22

1
2

11 12

12 22

0

1
0 1

2 0

0 0

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È
[ ] [ ]

ÎÎ
Í

˘

˚
˙  = 

0 0

0 0

È

Î
Í

˘

˚
˙

Upon simplification, we get 

 
- p12

2

2
 + 2 = 0

 p11 – 
p p12 22

2
 = 0

  
- p22

2

2
 + 2p12 = 0

Solving these three simultaneous equations for p11, p12, and p22, requiring P to be positive definite, we 

obtain

P = 
2 2 2

2 2 2

È

Î
Í
Í

˘

˚
˙
˙
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The optimal control law is given by

 u = – R–1
B

T
P  x(t) = – [ ] [ ]1

2

1

2

0 1
2 2 2

2 2 2

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙

 

 

x

x
 

  = –  x1 (t) – 2 2 x (t) = – (x1 – qr) – 2 x2 

It can easily be verified that the closed-loop system is asymp totically stable.

Example 8.6

Consider the liquid-level system of Fig. 8.6. In Example 8.4, we designed an optimal regulator for this 

process by direct parameter optimization. In the following, we use the Riccati equation for designing the 

optimal regulator. The state equation of the pro cess is 

 
dy

dt
 = – y + u (8.48)

where

 y = deviation of the liquid head from the steady state; and 

 u = rate of liquid inflow.

The performance index

J = 

0

Ú (y2 + u2) dt

For this design problem,

A = –1, B = 1, Q = 2, R = 2

The Riccati equation is 

ATP + PA – PBR–1BTP + Q = 0

or – P – P – 
P2

2
 + 2 = 0

Solving for P, requiring it to be positive definite, we get 

P = 2 2 1-( )
The optimal control law is 

u = – R–1BTPy(t) = – 2 1-( )  y(t)

Substituting in Eqn. (8.48), we get the following equation for the closed-loop system:

dy

dt
 = – 2 y
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Obviously, y(t) Æ 0 for any initial displacement 

y(0).

Assume now that a constant disturbance due to 

the pump enters the system as shown in Fig. 8.12. 

This Type-0 regulator system cannot reject the 

disturbance; there will be a steady-state offset 

in the liquid head y. Let us introduce integral 

control to elimi nate this offset.

Defining the integral state z by

 z(t) = y(t),

we get the following augmented system:

 
 

 

y

z

È

Î
Í

˘

˚
˙  = 

-È

Î
Í

˘

˚
˙

1 0

1 0
 

y

z

È

Î
Í

˘

˚
˙  + 

1

0

È

Î
Í

˘

˚
˙ u (8.49)

Now the design problem is to obtain the control law

 u = – k1y(t) – k2z(t)

that minimizes

 J = 

0

Ú (y2 + u2)dt

The Q and R matrices are

 Q = 
2 0

0 0

È

Î
Í

˘

˚
˙ , R = 2

The state equation (8.49) is completely controllable, satisfying one of the sufficient conditions for the 

existence of the optimal solution.

The matrix Q is positive semidefinite;

Q = HT
H = 

2

0
2 0

È

Î
Í
Í

˘

˚
˙
˙

[ ]

The pair 
-È

Î
Í

˘

˚
˙ ÈÎ ˘̊

Ê

ËÁ
ˆ

¯̃

1 0

1 0
2 0,  is not completely observable. Therefore, the other sufficient condition for 

the existence of the asymptotically stable optimal solution is not satisfied. It can easily be veri fied that a 

positive definite solution to the matrix Riccati equation does not exist in this case; the chosen matrix Q 

cannot give a closed-loop stable optimal system.

We now modify the performance index to the following:

J = 

0

Ú (y2 + z2 + u2)dt

( 2 – 1)

Disturbance w

Process
y

–

+
+

u

Fig. 8.12 
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The Q and R matrices are

Q = 
2 0

0 2

È

Î
Í

˘

˚
˙ , R = 2

Since Q is positive definite matrix, the asymptotically stable optimal solution exists.

The matrix Riccati equation is 

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or  
-È

Î
Í

˘

˚
˙

1 1

0 0
 

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  + 

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  

-È

Î
Í

˘

˚
˙

1 0

1 0

 – 
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  

1

0

È

Î
Í

˘

˚
˙  [ ]1

2  [1 0] 
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  + 

2 0

0 2

È

Î
Í

˘

˚
˙  = 

0 0

0 0

È

Î
Í

˘

˚
˙

From this equation, we obtain the following three simultaneous equations:

 – 2p11 + 2p12 – 1
2

p2
11 +  2 = 0

 – p12 + p22 – 
p p11 12

2
 = 0

  
- p12

2

2
 + 2 = 0

Solving for p11, p12 and p22, requiring P to be positive defi nite, we obtain

P = 
2 2

2 4

È

Î
Í

˘

˚
˙

The gain matrix 

K = [k1 k2] = R–1
B

T
P = [ ]1

2  [1 0]  
2 2

2 4

È

Î
Í

˘

˚
˙  = [1 1]

Therefore, 

u = – y(t) – z(t) = – y(t) – 

0

Ú y(t)dt

The block diagram of Fig. 8.13 shows the configu-

ration of the optimal control system employing 

state-feedback and integral control. It is a Type-1 

regulator system.

Since at steady state

  z(t) Æ 0,

therefore, 

 y(t) Æ 0,

and there will be no steady-state offset in the liquid head y, even in the presence of constant disturbances 

acting on the plant.

Ú
+ u

Process
y

– –

Fig. 8.13 
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8.8 OPTIMAL DIGITAL CONTROL SYSTEMS

This section covers the key results on the design of optimal controllers for discrete-time systems. Our  

discussion will be brief because of the strong analogy between the discrete-time and continuous-time 

cases.

Consider the discretized model of the given plant:

 x(k + 1) = Fx(k) + Gu(k); x(0) =D x0

 y(k) = Cx(k) 
(8.50)

where x is the n ¥ 1 state vector, u is the p ¥ 1 input vector, y is the q ¥ 1 output vector; F, G, and C 

are, respectively, n ¥ n, n ¥ p, and q ¥ n real constant matrices; and k = 0, 1, 2, … . We will assume that 

the null state x = 0 is the desired steady state; x(k) is, thus, the system-error vector at t = kT , where T 

is the sampling interval. The state variable model (8.50) is assumed to be completely controllable and 

observable.

We shall be interested in selecting the controls u(k); k = 0, 1, …, which minimize a performance index 

of the form 

 J = 1
2

0k =
Â  [xT(k)Qx(k) + uT(k)Ru(k)] (8.51)

where Q is an n ¥ n positive definite, real, symmetric, constant matrix (or a positive semidefinite, real, 

symmetric, constant matrix with the restriction that the pair (F,H) is observable, where HT
H = Q), and R 

is a p ¥ p positive definite, real, symmetric, constant matrix. This criterion is the discrete analog of that 

given by Eqn. (8.25); a summation replaces integration.

An important feature (proved later in this section) of this class of problems is that optimal control is 

possible by feedback control law of the form (refer to Fig. 8.14)

 u(k) = – Kx(k) (8.52)

where K is a p ¥ n constant matrix. If the unknown elements of matrix K are determined so as to 

minimize the performance index given by Eqn. (8.51), the control law given by Eqn. (8.52) is optimal.

The control problem stated above, as we know, is a 

state regula tor design problem. The equations devel-

oped below for the state regulator design, can also 

be used for servo design by an appropriate transfor-

mation of the state variables (refer to Section 7.9 for 

details). State regulator design equations can also be 

used for state-feedback control schemes with inte-

gral control. This is done by the augmentation of the 

plant state with integral state and appropriate trans-

formation of the state variables (refer to Section 7.9 

for details).

In the following, we develop state regulator design equations through Lyapunov synthesis. 

With the linear feedback control law (8.52), the closed-loop system is described by

 x(k + 1) = (F – GK)x(k) (8.53)

x Fx Gu( + 1) = ( ) + ( )k k k

u( )k

K

–

u( )k

Plant

Fig. 8.14 
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We will assume that a matrix K exists such that (F – GK) is a stable matrix. The controllability of the 

model (8.50) is suffi cient to ensure this. This implies that there exists a Lyapunov function V(x(k)) 

= 1
2

x
T(k) Px(k) for the closed-loop system (8.53). Therefore, the first forward difference, DV(x(k)) = 

V (x (k + 1)) – V(x(k)), evaluated on the trajectories of the closed-loop system, is negative definite. We 

now state and prove a condition for u(k) = – Kx(k) to be optimal [35].

Theorem 8.6 If the state-feedback controller u(k) = – Kx(k) is such that it minimizes the function

 f (u) = D ( )( ) + ( ) ( ) + ( ) ( )V k k k k kT T
x x Qx u Ru1

2
1
2

 (8.54)

and the minimum value of f (u) = 0 for some V k kT= ( ) ( )1
2

x Px , then the controller is optimal.

Proof We can represent (8.54) as (denoting minimizing u by u*)

D ( )( ) + ( ) ( ) + ( ) ( ) =
=

V k k k k kT T
x x Qx u Ru

u u*

* *1
2

1
2

0  

Hence  

V k V kx x
u u

+( )( ) ( )( ) =
1 -

*
 = – 1

2
1
2

x Qx u Ru
T Tk k k k( ) ( ) ( ) ( )- * *

We sum both sides from k = 0 to  to get 

V V k k k kT T

k

x x x Qx u Ru( )( ) ( )( ) = ( ) ( ) + ( ) ( )( )Â- -0 1
2

0

* *

=

Because, by assumption, the closed-loop system is stable, we have x( ) = 0. Hence

V k k k kT T T

k

x x Px x Qx u Ru0 0 01
2

1
2

0

( )( ) = ( ) ( ) = ( ) ( ) + ( ) ( )( )Â * *

=

Thus, if a linear stabilizing controller satisfies the hypothesis of the theorem, then the value of the 

performance index (8.51) resulting from applying the controller is

J T
u x Px

*( ) = ( ) ( )1
2

0 0

Since u* minimizes the function in (8.54) and the minimum value is zero, for any u different from u*, the 

value of the function will be greater than/equal to zero. 

 D ( )( ) + ( ) ( ) + ( ) ( ) ≥
=

V k k k k kT T
x x Qx u Ru

u û
ˆ ˆ1

2
1
2

0

or,

 

D ( )( ) ( ) ( ) ( ) ( )
=

V k k k k kT T
x x Qx u Ru

u û
– – ˆ ˆ≥ 1

2
1
2

Summing the above from k = 0 to , yields

 V k k k kT T

k

x x Qx u Ru0 1
2

1
2

0

( )( ) £ ( ) ( ) + ( ) ( )( )Â ˆ ˆ ;

=
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that is,

J Ju u
*( ) £ ( )

for any ˆ .*
u uπ  Therefore, the controller u* is optimal.

Finding an optimal controller involves finding an appropriate quadratic Lyapunov function V(x(k)) = 

1
2

x Px
T k k( ) ( ) , which is used to construct the optimal controller. We first find u* that minimizes the 

function

 

f k V k k k k k

k k

T T

T

u x x Qx u Ru

x Px

( )( ) = D ( )( ) + ( ) ( ) + ( )
= +( ) +(

1
2

1
2

1
2

1 1

( )

)) - ( ) ( ) + ( ) ( ) + ( )
= ( ) + ( )( )

1
2

1
2

1
2

1
2

x Px x Qx u Ru

Fx Gu

T T T

T

k k k k k k

k k

( )

PP Fx Gu

x Px x Qx u Ru

k k

k k k k k kT T T

( ) + ( )( )
( ) ( ) + ( ) ( ) + ( )-

1
2

1
2

1
2

( )                                  
 

(8.55)

Necessary condition for unconstrained minimization is 
∂

∂
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃x

f g
f

x
g

g

x
f( )T =

 
∂

∂
∂ +

∂
+

f k

k

k k

k
k k

( ( ))

( )

( ( ) ( ) )

( )
[ ( ( ) ( ))]

u

u

Fx Gu

u
P Fx Gu= 1

2

  +
∂ +

∂
+ +

∂
∂

1
2

1
2

( ( ( ) ( )) )

( )
[ ( ) ( )]

( ( ) ( ))

(

P Fx Gu

u
Fx Gu

u Ru

u

k k

k
k k

k k

k

T

))

 = 
1
2

1
2

G P Fx Gu G P Fx Gu Ru
T Tk k k k k( ( ) ( )) ( ( ) ( )) ( )+ + + +

 = GT
P(Fx(k) + Gu(k)) + Ru(k)

 = G
T
 PFx(k) + (R + G

T
PG)u(k) = 0

The matrix R + GT
PG is positive definite, and therefore, it is invertible. Hence

 u R G PG G PFx Kx
* k k kT T( ) = - +( ) ( ) = - ( )

-1
 (8.56)

where K R G PG G PF= +( )-
T T

1

We next check if u* satisfies the second-order sufficient condition for a relative minimizer of the function 

(8.55).

∂

∂

∂ +( )È
Î

˘
˚

∂

2

2

f k

k

k k

k

T T
( ( ))

( )

( ) ( )

( )

u

u

G PFx R G PG u

u
=

 = R + G
T
PG; a positive-definite matrix

that is, u* satisfies the second-order sufficient condition for a relative minimizer of the function (8.55).

The optimal controller (8.56) can be constructed if we have found an appropriate positive definite matrix 

P. Our next task is to devise a method that would allow us to compute the desired matrix P. For this, we 

first find the equation describing the closed-loop system driven by the optimal controller (8.56):

 x F GS G PF x
1k kT+( ) = ( ) ( )-1 –  (8.57)

where  S = R + GT
PG
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Our controller satisfies the hypothesis of Theorem (8.6), that is

 
1
2

1
2

1
2

1
2

1 1x Px x Px x Qx u Ru
T T T Tk k k k k k k k+( ) +( ) - ( ) ( ) + ( ) ( ) + ( ) =* *( ) 00

or, 

 
1
2

1
2

1
2

x F GS G PF P F GS G PF x x Px x
1 1T T T T T Tk k k k k( )[ ] [ ] ( ) ( ) ( )- - - ( ) +- -

QQx

x F PGS RS G PF x

( )

( )[ ] ( )

k

k kT T T
       +

1

2

- - =1 1 0

or,

  
1
2

1
2

1 1
2

1
x F PFx x F PGS G PFx x F PGS G PF

T T T T T T T Tk k k k k( ) ( ) ( ) ( ) ( )- -- -
xx

x F PGS G PGS G PFx x Px

( )

( ) ( ) ( ) ( )

k

k k k kT T T T T
       + - +- -1

2

1 1 1
2

1
2

xx Qx

x F PGS RS G PFx

T

T T T

k k

k k

( ) ( )

( ) ( )       + =- -1

2

1 1 0
or, 

 
1
2

1
2

1
2

1
x F PFx x Px x Qx x F PGS G PF

T T T T T T Tk k k k k k k( ) ( ) ( ) ( ) ( ) ( ) ( )- + - -
xx

x F PGS R G PG S G PFx

( )

( ) ( ) ( )

k

k kT T T T
       + + =- -1

2

1 1 0
or, 

 
1
2

1
2

1
2

1
x F PFx x Px x Qx x F PGS G PF

T T T T T T Tk k k k k k k( ) ( ) ( ) ( ) ( ) ( ) ( )- + - -
xx

x F PGS G PFx

( )

( ) ( )

k

k kT T T
       + =-1

2

1 0
or,

 
1
2

1 0[ ( )[ ] ( )]x F PF P Q F PGS G PF x
T T T Tk k- + - =-

The above equation should hold for any x. For this to be true we have to have

 F PF P Q F PG R G PG G PF 0
T T T T- + - +( ) =

-1

 (8.58)

This equation is called the discrete algebraic Riccati equation.

The discrete matrix Riccati equation given in (8.58), is one of the many equivalent forms which satisfy 

the optimal regulator design. The analytical solution of the discrete Riccati equation is possible only for 

very simple cases. A number of computer programs for the solution of the discrete Riccati equation are 

available [152–154]. Appendix A provides some MATLAB support.

Example 8.7

Consider the problem of digital control of a plant described by the transfer function

G(s) = 
1

1s +
Discretization of the plant model gives

Gh0G(z) = 
Y z

U z

( )

( )
 = Z 

1 1

1

-Ê
ËÁ

ˆ
¯̃ +

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-e

s s

sT

 = (1 – z–1) Z 
1

1s s( )+
È

Î
Í

˘

˚
˙  = 

1-

-

-

-

e

z e

T

T

For a sampling interval T = 1 sec,

Gh0G(z) = 
0 632

0 368

.

.z -
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The difference equation model of the plant is 

 y(k + 1) = 0.368 y(k) + 0.632 u(k) (8.59)

The design specifications are given below.

 (i) Minimize

 J = 1
2

0k =
Â [  y2(k) +  u2(k)]

  where  y and  u are, respectively, the deviations of the output and the control signal from their 

steady-state values.

 (ii) For a constant yr , y( ) = yr, i.e., there is zero steady-state error.

For this design problem, we select the feedback plus feedforward control scheme shown in Fig. 8.15. The 

feedback gain K is ob tained from the solution of the shifted regulator problem, as is seen below.

yr
N

+

–

u k( ) 0.632
– 0.368z

y k( )

K

Fig. 8.15 

Let ys and us be the steady-state values of the output and the control signal, respectively. Equation (8.59) 

at steady state becomes

ys = 0.368 ys + 0.632 us

The state equation (8.59) may equivalently be expressed as 

  y (k + 1) = 0.368  y (k) + 0.632  u(k)

where

  y = y – ys;  u  = u – us

In terms of this equivalent formulation, the optimal control problem is to obtain

 u (k) = – K  y(k)

so that 

J = 1
2

0k =
Â [  y

2(k) +  u 2(k)]

is minimized.

For this shifted regulator problem,

F = 0.368, G = 0.632, Q = 1, R = 1
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The Riccati equation (8.58) gives

 P = Q + FTPF – FTPG(R + GTPG)–1GTPF

  = 1 + (0.368)2P – (0.368)P(0.632)[1 + (0.632)2P]–1(0.632)P(0.368)

  = 1 + 0.135P – 
0 054

1 0 4

2.

.

P

P+

Solving for P, requiring it to be positive definite, we obtain, 

P = 1.11

Feedback gain (refer to Eqn. (8.56))

K = (R + GTPG)–1GTPF = 0.18

The feedforward gain (refer to Eqn. (7.105)) N, is given by

1

N
 = – C(F – GK – I )–1G = – [0.368 – 0.632 (0.18) – 1]–1 (0.632)

or N = 
0 746

0 632

.

.
 = 1.18

The optimal control sequence (refer to Eqn. (7.106))

u(k) = – Ky(k) + Nyr = – 0.18 y(k) + 1.18 yr

Substituting in Eqn. (8.59), we obtain

 y(k + 1) = 0.254 y(k) + 0.746 yr

At steady state,

 y( ) = ys = 
0 746

0 746

.

.
 yr = yr

8.9 CONSTRAINED STATE FEEDBACK CONTROL

In classical control theory, as we have seen in Chapters 1–4, output feedback controller is the common 

control structure. These controllers are designed in the context of an input-output transfer function 

model. When we move to a state variable model for the system, we have time-domain information about 

the internal structure of the system, available in the form of a state vector. To investigate a link between 

the state information and output feedback, we set up an output feedback regulator system. 

The system equations are

    x u x = +
¥ ¥

A x
( ) ( )

; ( )
n p1 1

0B   =D x0 

   y x
( )q¥

=
1

C  (8.60)

and the output feedback control law is 

  u K y( ) ( )t t= – 0   (8.61)
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If we now progress this analysis for the closed-loop system, we substitute for the control law in system 

equations.  This gives

  x A BK= ( )– 0C x  (8.62)

The design problem can be stated through the closed-loop characteristic polynomial D(s) that specifies 

the poles of the closed-loop system (eigenvalues of the matrix (A – BK0C)):

D( )s s sn n
n= + + +-a a1

1
 

The problem is to choose the available controller gain matrix K0 so that the specified characteristic 

polynomial D(s) equals the characteristic polynomial of the matrix (A – BK0C):

 s s sn n
n+ + + = - -( )-a a1

1
0 I A BK C    (8.63)

The output feedback in a state variable framework does not necessarily have sufficient degrees of free-

dom to satisfy this design requirement.  The output feedback gain K0 will have p ¥ q parameters to tune 

n coefficients of the closed-loop characteristic polynomial. In most real systems, the order of the system 

n will be very much greater than the number of measurements q and/or control p.  The important issue 

here is that the output vector is only a partial view of the state vector.

With full state feedback, a closed-form solution to the pole-placement problem exists under mildly  

restrictive condition on controllability of the system. In case of single-input systems, the solution is 

unique (given earlier in Chapter 7). In case of multi-input systems, the solution is not unique.  In fact, 

there is lot of freedom available in the choice of state-feedback gain matrix; this freedom is utilized to 

serve other objectives on system performance [105].

With partial state feedback (output feedback), a closed-form solution to the pole-placement problem may 

not exist. The designer often solves the problem numerically; tuning the output feedback gain matrix 

by trial and error to obtain approximate pole-placement solution and checking the acceptability of the 

approximation by simulation.

The output feedback law is restricted in design achievements, while the state-feedback law is able to give 

total control over system dynamics.  In fact, as we have seen, the design flexibility of the state-feedback law 

is supported by deep technical results to guarantee the design properties.  However, this design flexibility of 

state feedback is achieved because it has been assumed that we can access each state variable. In practice, 

this means that we must have a more complicated system where we include an observer which provides  

us with the state information. Since an observer incorporates model of the process, dependence on very 

accurate representation of the process being controlled for accurate state information, is obvious. We 

know that industrial process models are not usually so well known or accurate. Therefore, inclusion of 

an observer is bound to deteriorate the robustness properties of the feedback system.

Therefore, in spite of excellent design flexibility in state feedback, we are, many a times, forced to look 

at the alternatives, not so excellent in terms of design flexibility but not dependent on inclusion of an 

observer. Constrained state feedback is an interesting alternative. Here, we set the gains of the state-

feedback gain matrix corresponding to unmeasurable states, to zero and try to exploit the rest of the gains 

to achieve the desired properties of the closed-loop system. This, in fact, may also be viewed as an output 

feedback problem where the state x passes through an appropriately selected output matrix C to give the 

output variables in the vector y.
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The constrained state-feedback control law is not supported by deep technical results and does not 

guarantee the design properties; nonetheless, it yields robust feedback control systems for many industrial 

control problems. Existence of a control law that stabilizes the feedback system is a pre-requisite of 

the design algorithm. Unfortunately, general conclusions for existence of a stabilizing control law with 

constrained state feedback cannot be laid down; therefore, one resorts to numerical methods to establish 

the existence.

In the following, we outline a procedure for the design of constrained state-feedback control law that 

minimizes a quadratic performance index. By constrained state feedback we mean that all the parameters 

of the matrix K are not available for adjustments. Some of them may have zero values (output feedback). 

The procedure described below is equally applicable to situations wherein some of the parameters of K 

have fixed values.

Let us consider the system (8.60). It is desired to minimize the following performance index:

 J = 
1
2

0

Ú (xT
Qx + uT

Ru) dt (8.64)

where Q is n ¥ n positive definite, real, symmetric, constant matrix, and R is p ¥ p positive defi nite, real, 

symmetric, constant matrix.

We shall obtain a direct relationship between Lyapunov functions and quadratic performance measures, 

and solve the constrained parameter-optimization problem using this relationship. We select the feedback 

control configuration described by the control law

 u = – K0C x = – Kx (8.65)

where K is p × n matrix which involves adjustable parameters. With this control law, the closed-loop 

system becomes

  x = Ax – BKx = (A – BK)x (8.66)

All the parameters of the matrix K are not available for adjustments. Some of them have fixed values 

(zero values). We will assume that a matrix K satisfying the imposed constraints on its parameters exists 

such that (A – BK) is a stable matrix.

The optimization problem is to determine the values of free parameters of the matrix K so as to minimize 

the performance index given by Eqn. (8.64).

Substituting the control vector u from Eqn. (8.65) in the perfor mance index J of Eqn. (8.64), we have

 J = 
1
2

0

Ú (xT
Qx + xT

K
T
RKx)dt

  = 
1
2

0

Ú x
T(Q + KT

RK)xdt (8.67)

Let us assume a Lyapunov function

V(x(t)) = 
1
2

0

Ú x
T(Q + KT

RK)xdt
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Note that the value of the performance index for system trajec tory starting at x(0) is V(x(0)).

The time derivative of the Lyapunov function is

  V (x) = 1
2

x
T (Q + K RK)x

T

t

  = 1
2

x
T( ) [Q + KT

RK]x( ) – 1
2

x
T(t) [Q + KT

RK] x(t)

Assuming that the matrix (A – BK) is stable, we have from Eqn. (8.66),

x( ) Æ 0

Therefore,

  V (x) = – 1
2

x
T(Q + KT

RK)x (8.68)

Since  V (x) is quadratic in x and the plant equation is linear, let us assume that V(x) is also given by the 

quadratic form:

 V(x) = 1
2

x
T
Px (8.69)

where P is a positive definite real, symmetric, constant matrix. Therefore,

  V (x) = 1
2

( )  x Px x Px
T T+

Substituting for  x  from Eqn. (8.66), we get

 V (x) = 1
2

x
T[(A – BK)T P + P(A – BK)]x

Comparison of this result with Eqn. (8.68) gives

1
2

x
T[(A – BK)T

P + P(A – BK)]x = – 1
2

x
T(Q + KT

RK)x

Since the above equality holds for arbitrary x(t), we have

  (A – BK)T P + P(A – BK) + KT
RK + Q = 0 (8.70)

This equation is of the form of Lyapunov equation defined in Section 8.3. In Eqn. (8.70) we have n2 

nonlinear algebraic equations. However, since n ¥ n matrix P is symmetric, we need to solve only 

n n( )+1

2
 equations for the elements pij of the matrix P. The solution will give pij as functions of the 

feedback matrix K.

As pointed out earlier, V(x(0)) is the value of the performance index for the system trajectory starting at 

x(0). From Eqn. (8.69), we get,

 J = 1
2

x
T(0) Px(0) (8.71)

A suboptimal control law may be obtained by minimizing J with respect to the available elements kij of 

K, i.e., by setting

 
∂

∂
[ ( ) ( )]x Px

T

ijk

0 0
 = 0 (8.72)

If for the suboptimal solution thus obtained, the matrix (A – BK) is stable, then the minimization of J 

as per the procedure described above gives the correct result. From Eqn. (8.68) we observe that for a 
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positive definite Q,  V (x) < 0 for all x π 0 (note that KT
RK is non-negative definite). Also Eqn. (8.69) 

shows that V(x) > 0 for all x π 0 if P is positive definite. Therefore, minimization of J with respect to 

kij (Eqn. (8.72)) will lead to a stable closed-loop system if the optimal kij result in a posi tive definite 

matrix P.

One would like to examine the existence of a solution to the optimization problem before actually 

starting the optimization procedure. For the problem under consideration, existence of K that minimizes 

J is ensured if, and only if, there exists a K satisfying the imposed constraints on the parameters, such 

that  (A – BK) is asymptotically stable. The question of existence of K has, as yet, no straightforward 

answer. We resort to numerical trial-and-error to find a stabilizing matrix K (such a matrix is required 

by numerical algorithms for optimization of J [105]). Failure to do so does not mean that a suboptimal 

solution does not exist.

Also note that the solution is dependent on initial condition (Eqn. (8.72)). If a system is to operate satis-

factorily for a range of initial disturbances, it may not be clear which is the most suitable for optimization.

The dependence on initial conditions can be avoided by averaging the performance obtained for a linearly 

independent set of initial conditions. This is equivalent to assuming the initial state x (0) to be a random 

variable, uniformly distributed on the surface of an n-dimensional sphere, i.e.,

E T{ ( ) ( )}x x I0 0 =

where E{.} denotes the expected value.

We define a new performance index

  ˆ ( ) ( )

{ ( ) (

J E J E

E trace

T

T

= { } = { }
=

1
2

1
2

0 0

0 0

x

P

Px

x x               ( )))}

{ ( ) ( )})               (

              

=

=

1
2

1

0 0trace E T
P xx

22
trace     P

 (8.73)

Reference [105] describes a numerical algorithm for the minimization of Ĵ .  When feedback matrix K 

is unconstrained, the resulting value of J is optimal; J(optimal) < J (suboptimal).  

As we have seen earlier in this chapter, the optimal solution is independent of initial conditions. It is 

computationally convenient to use Riccati equation (8.41) for obtaining optimal control law (8.40).

Consider now the discretized model of the given plant:

 x(k + 1) = Fx(k) + Gu(k); x(0) =D x0

 y(k) = Cx(k) 
(8.74)

where x is the n ¥ 1 state vector, u is the p ¥ 1 input vector, y is the q ¥ 1 output vector; F, G, and C are, 

respectively, n ¥ n, n ¥ p, and q ¥ n real constant matrices; and k = 0, 1, 2, . . .   . 

We shall be interested in selecting the controls u(k); k = 0, 1, . . ., which minimize a performance index 

of the form 

 J = 1
2

0k =
Â [xT(k)Qx(k) + uT(k)Ru(k)] (8.75)
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where Q is an n ¥ n positive definite, real, symmetric, constant matrix, and R is a p ¥ p positive definite, 

real, symmetric, constant matrix.

The constrained state-feedback control law is

 u(k) = – K0C x (k) = – Kx(k) (8.76)

where K is a p × n constant matrix. 

With the linear feedback control law (8.76), the closed-loop system is described by

 x(k + 1) = (F – GK)x(k) (8.77)

We will assume that a matrix K exists such that (F – GK) is a stable matrix. 

Substituting for the control vector u(k) from Eqn. (8.76) in the performance index J given by Eqn. (8.75), 

we get

 J = 1
2

0k =
Â x

T(k) [Q + KT
RK]x(k) (8.78)

Let us assume a Lyapunov function

 V(x(k)) = 1
2

i k=
Â x

T(i) [Q + KT
RK]x(i) (8.79)

Note that the value of the performance index for system trajectory starting at x(0) is V(x(0)). The 

difference

 V(x(k + 1)) – V(x(k)) = DV(x(k)) = – 1
2

x
T(k)[Q + KT

RK]x(k) (8.80)

(Note that x( ) has been taken as zero under the assumption of asymptotic stability of the closed-loop 

system).

Since DV(x(k)) is quadratic in x(k) and the plant equation is linear, let us assume that V(x(k)) is also given 

by the quadratic form

 V(x(k)) = 1
2

x
T(k) Px(k) (8.81)

where P is a positive definite, real, symmetric, constant matrix.

Therefore,

DV(x(k)) = 1
2

x
T(k + 1)Px(k + 1) – 1

2
x

T(k)Px(k)

 Substituting for x(k + 1) from Eqn. (8.77), we get

DV(x(k)) = 1
2

x
T(k) [(F – GK)T

P(F – GK) – P]x(k)

Comparing this result with Eqn. (8.80), we obtain

 (F – GK)T
P(F – GK) – P + KT

RK + Q = 0 (8.82)

This equation is of the form of Lyapunov equation defined in Section 8.3.

Since V(x(0)) is the value of the performance index, we have

 J = 1
2

x
T(0)Px(0) (8.83)
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Assuming x(0) to be a random variable uniformly distributed on the surface of n-dimensional sphere, the 

problem reduces to minimization of 

 Ĵ trace= 1
2

P  (8.84)

Reference [105] describes a numerical algorithm for this minimization problem.

REVIEW EXAMPLES

Review Example 8.1

Using the Lyapunov equation, determine the stability range for the gain K of the system shown in 

Fig. 8.16.

K
s + 1

1
+ 2s

1
s

x3 x2 x1r +

–

Fig. 8.16

Solution The state equation of the system is

 

 

 

x

x

x K

x

x
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2

3

0 1 0

0 2 1

0 1

È

Î

Í
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Í

˘

˚

˙
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= -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

++
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0

K

r

For the investigation of asymptotic stability, we consider the system

 x = Ax

with

A = 

0 1 0

0 2 1

0 1

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙K

Clearly, the equilibrium state is the origin.

Let us choose a Lyapunov function

V(x) = xT
Px

where P is to be determined from the Lyapunov equation

A
T
P + PA = – Q
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The matrix Q could be chosen as identity matrix. However, we make the following choice for Q:

Q = 

0 0 0

0 0 0

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

This is a positive semidefinite matrix which satisfies the condition (8.10) as is seen below.

 Q = 

0 0 0

0 0 0

0 0 1

0

0

1

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

[ ]  = HT
H

 r 

H

HA

HA
2

0 0 1

0 1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r K

K K

 = 3

With this choice of Q, as we shall see, manipulation of the Lyapunov equation for its analytical solution 

becomes easier.

Now let us solve the Lyapunov equation

A
T
P + PA = – Q

or 

0 0

1 2 0

0 1 1

11 12 13

12 22 23

13 23 33

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙

K p p p

p p p

p p p ˙̇
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
- -

È

Î

Í
Í
Í

˘p p p

p p p

p p p K

11 12 13

12 22 23

13 23 33

0 1 0

0 2 1

0 1˚̊

˙
˙
˙

 = 

0 0 0

0 0 0

0 0 1-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Solving this equation for pij’s, we obtain

P = 

K K

K

K

K

K

K

K

K

K

K

K

K K

2 12

12 2

6

12 2
0

6

12 2

3

12 2 12 2

0
12 2

6

12 2

+
- -

- - -

- -

È

Î

Í
Í
Í
Í
ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

For P to be positive definite, it is necessary and sufficient that

(12 – 2K) > 0 and K > 0 or 0 < K < 6

Thus for 0 < K < 6, the system is asymptotically stable.

Review Example 8.2

Consider the system described by the equations

 x1(k + 1) = 2x1(k) + 0.5x2(k) – 5

 x2(k + 1) = 0.8x2(k) + 2

Investigate the stability of the equilibrium state using Lyapunov equation.
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Solution The equilibrium state xe = 
x

x

e

e

1

2

È

Î
Í
Í

˘

˚
˙
˙

 can be determined from the equations

 xe
1 = 2xe

1 + 0.5xe
2 – 5

 xe
2  = 0.8xe

2 + 2

Solving, we get

 
x

x

e

e

1

2

0

10

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙

Define

  x1 (k) = x1(k)  – xe
1

  x2(k) = x2(k) – xe
2

In terms of the shifted variables, the system equations become

 
 

 

 

 

x k

x k

x k

x k

1

2

1

2

1

1

2 0 5

0 0 8

( )

( )

.

.

( )

( )

+
+

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

or  x(k +1) = F  x(k) (8.85)

Clearly  x  = 0 is the equilibrium state of this autonomous system. 

Let us choose a Lyapunov function

V(  x) =  x
T
P  x

where P is to be determined from the Lyapunov equation

F
T
PF – P = – I

or 
2 0

0 5 0 8

2 0 5

0 0 8

11 12

12 22

11 12

12 2. .

.

.

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ -

p p

p p

p p

p p 22

È

Î
Í

˘

˚
˙  = 

-
-

È

Î
Í

˘

˚
˙

1 0

0 1

Solving for pij’s, we get

P = 
-È

Î
Í
Í

˘

˚
˙
˙

1
3

5
9

5
9

1225
324

By applying the Sylvester’s test for positive definiteness, we find that the matrix P is not positive definite. 

Therefore, the origin of the system (8.85) is not asymptotically stable.

In terms of the original state variables, we can say that the equilibrium state

x
e = [0 10]T of the given system is not asymptotically stable.

Review Example 8.3

Referring to the block diagram of Fig. 8.17, consider that G(s) = 100/s2 and R(s) = 1/s. Determine the 

optimal values of parameters k1 and k2 such that

J = 

0

Ú [e2(t) + 0.25u2(t)]dt

is minimized.
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R s( ) + E s( ) +
k1

U s( )
G s( )

Y s( )

– –

sk2

Fig. 8.17

Solution From Fig. 8.17, we obtain

   y(t) = 100u(t); y(0) =  y(0) = 0

 u(t) = k1[r – y(t) – k2
 y(t)]

In terms of the state variables

  x1(t) = y(t) – r

  x2(t) =  y (t),

the state variable model of the system becomes 

   x = 
0 1

0 0

È

Î
Í

˘

˚
˙  x  + 

0

100

È

Î
Í

˘

˚
˙ u;  x(0) = 

-È

Î
Í

˘

˚
˙

1

0

 u = – k1
 x1  – k1k2

 x2  = – K  x  (8.86)

where 

K = [k1 k1k2]

The optimization problem is to find K such that

J = 

0

Ú (  x1
2  + 0.25u2)dt

is minimized.

Note that 

A = 
0 1

0 0

È

Î
Í

˘

˚
˙ ; B = 

0

100

È

Î
Í

˘

˚
˙ ; Q = 

2 0

0 0

È

Î
Í

˘

˚
˙ ; R = 0.5

The matrix Riccati equation is 

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or

0 0

1 0

È

Î
Í

˘

˚
˙  

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  + 

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  

0 1

0 0

È

Î
Í

˘

˚
˙

– 
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  

0

100

È

Î
Í

˘

˚
˙  [ ]

.
1

0 5
 [0 100] 

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙  + 

2 0

0 0

È

Î
Í

˘

˚
˙  = 

0 0

0 0

È

Î
Í

˘

˚
˙
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Solving for p11, p12, and p22, requiring P to be positive defi nite, we obtain

P = 
2 10 10

10 10

1 2

2 3

¥È

Î
Í
Í

˘

˚
˙
˙

- -

- -

The feedback gain matrix

 K = R–1
B

T
P

  = 1
0 5.

 [0 100] 
2 10 10

10 10

1 2

2 3

¥È

Î
Í
Í

˘

˚
˙
˙

- -

- -
 = [2 0.2]

From Eqn. (8.86), we obtain

[k1 k1k2] = [2 0.2] or k1 = 2, k2 = 0.1

Review Example 8.4

Figure 8.18 shows the optimal control configuration of a position servo system.

Both the state variables—angular position q and angular velocity  q—are assumed to be measurable. 

qr ++
k1

u 20
+ 2s

1
s

x1 = qx2 = q

k2

– –

Fig. 8.18 

It is desired to regulate the angular position to a unit-step function qr. Find the optimum values of the 

gains k1 and k2 that minimize

J = 

0

Ú [(x1 – qr)
2 + u2]dt

Solution The state variable description of the system, obtained from Fig. 8.18, is given by

  x = 
0 1

0 2-
È

Î
Í

˘

˚
˙  x + 

0

20

È

Î
Í

˘

˚
˙ u

 y = x1

In terms of the shifted state variables

  x1 = x1 – qr

  x2 = x2,
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the state variable model becomes

   x = A  x + Bu (8.87)

with

A = 
0 1

0 2-
È

Î
Í

˘

˚
˙ , B = 

0

20

È

Î
Í

˘

˚
˙

The design problem is to determine optimal control

 u = – k1  x1  – k2  x2  (8.88)

that minimizes

 J = 

0

Ú (  x1
2  + u2)dt

For this J, 

 Q = 
2 0

0 0

È

Î
Í

˘

˚
˙ ; R = 2

The matrix Q is positive semidefinite;

Q = HT
H = 

2

0

È

Î
Í
Í

˘

˚
˙
˙

 [ ]2 0

The pair (A,H) is completely observable. Also, the pair (A,B) is completely controllable. Therefore, the 

sufficient conditions for the existence of asymptotically stable optimal closed-loop system are satisfied.

The matrix Riccati equation is 

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or 
0 0

1 2

0 1

0 2

11 12

12 22

11 12

12 22-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚

p p

p p

p p

p p
˙̇

 – 
p p

p p

p p

p p

11 12

12 22

1
2

11 12

12 22

0

20
0 20

2 0

0

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +[ ] [ ]

00

È

Î
Í

˘

˚
˙  = 

0 0

0 0

È

Î
Í

˘

˚
˙

or 
0 2

2 2 4

11 12

11 12 12 22

p p

p p p p

-
- -

È

Î
Í

˘

˚
˙  – 

200 200

200 200

12
2

12 22

12 22 22
2

p p p

p p p

È

Î
Í
Í

˘

˚
˙
˙

 + 
2 0

0 0

È

Î
Í

˘

˚
˙  = 

0 0

0 0

È

Î
Í

˘

˚
˙

or 2 – 200 P 2
12 = 0

 2p12 – 4p22 – 200p2
22 = 0

 p11 – 2p12 – 200p12 p22 = 0

The positive definite solution of the Riccati equation is 

P = 
0 664 0 1

0 1 0 0232

. .

. .

È

Î
Í

˘

˚
˙
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The optimal gain matrix

K = R–1
B

T
P = [1 0.232]

The minimum value of J for an initial condition  x (0) = [–1 0]T, is 

J = 1
2

 x
T (0)P  x(0) = 

p11

2
 = 0.332

It can easily be verified that the optimal closed-loop system is stable.

Review Example 8.5

Figure 8.19a illustrates a typical sampled-data system. The transfer functions G(s) and Gh0(s) of the 

controlled plant and the hold circuit, respectively, are known. The data-processing unit D(z) which 

operates on the sampled error signal e(k) is to be designed.

Assuming the processing unit D(z) to be simply an amplifier of gain K, let us find K so that the sum 

square error

J = [ ( ) . ( )]e k u k

k

2 2

0

0 75+
=

Â
is minimized.

Solution From Fig. 8.19a, we have

Gh0(s)G(s) = 
1

2

- -e

s

sT

Therefore,

Gh0G(z) = (1 – z–1) Z  
1
2s

È

ÎÍ
˘

˚̇
 = 

1

1z -

Figure 8.19b shows an equivalent block diagram of the sampled-data system.

r = unit step T = 1 sec

+

–

e t( )
D z( ) Gh0 = G =

1 – e–sT

s

1
s

y t( )

(a)

r + e k( )
K

u k( ) 1
– 1z

y k( )

(b)

–

Fig. 8.19 
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From this figure, we obtain the following state variable model:

 y(k + 1) = y(k) + u(k)

 u(k) = – K [y(k) – r] 
(8.89)

 In terms of the shifted state variable,

  x (k) = y(k) – r,

the state equation becomes 

  x (k + 1) =  x (k) + u(k) (8.90)

The problem is to obtain optimal control sequence

u(k) = – K  x (k)

that minimizes the performance index

 J = 
k =
Â

0

[  x2(k) + 0.75u2(k)]

For this problem, 

 F = 1, G = 1, Q = 2, R = 1.5

The Riccati equation is (refer to Eqn. (8.58))

 P = Q + FTPF – FTPG(R + GTPG)–1GTPF

  = 2 + P – 
P

P

2

1 5. +

Solving for P, requiring it to be positive definite, we get 

P = 3

The optimal control (refer to Eqn. (8.56))

u(k) = – K  x (k)

where

K = (R + GTPG)–1GTPF = 
P

P1 5. +
 = 

2

3
.

PROBLEMS

 8.1 Consider the linear  system

   x = 
0 1

1 2- -
È

Î
Í

˘

˚
˙  x

  Using  Lyapunov analysis, determine the stability of the equilibrium state.
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 8.2 Using  Lyapunov analysis, determine the stability of the equilibrium state of the system

    x = Ax

  with A = 
0 1

1 1-
È

Î
Í

˘

˚
˙

 8.3 Consider the system described by the equations

    x1 = x2

    x2 = – x1 – x2 + 2

  Investigate the stability of the equilibrium state. Use Lyapunov analysis.

 8.4 A linear system is described by the state equation

   x = Ax

  where

  A = 
-

-
È

Î
Í

˘

˚
˙

4 4

2 6

K K

K K

  Using Lyapunov analysis, find restrictions on the parameter K to guarantee the stability of the 

system.

 8.5 Consider the system of Fig. P8.5. Find the restrictions on the parameter K to guarantee system 

stability. Use Lyapunov’s analysis.

K
s + 1

1
+ 1s

1
+ 1s

–

x1 x2 x3

Fig. P8.5

 8.6 Consider the linear system

  x(k + 1) = 
0 5 1

1 1

.

- -
È

Î
Í

˘

˚
˙ x(k)

  Using  Lyapunov analysis, determine the stability of the equilibrium state.

 8.7 Using Lyapunov analysis, determine the stability of the equilibrium state of the system

  x(k + 1) = Fx(k)

  with

  F = 
0 0 5

0 5 1

.

.- -
È

Î
Í

˘

˚
˙

 8.8 Consider the system shown in Fig. P8.8. Determine the optimal feedback gain matrix K, such that 

the following performance index is minimized:

  J = 
1
2

0

Ú (xT
Qx + 2u2)dt; Q = 

2 0

0 2

È

Î
Í

˘

˚
˙
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–K

u 1
s

1
s

x2 x1

Fig. P8.8

 8.9 The matrix Q in Problem 8.8 is replaced by the following positive semidefinite matrix:

  Q = 
2 0

0 0

È

Î
Í

˘

˚
˙

  Show that sufficient conditions for the existence of the asymp totically stable optimal control 

solution are satisfied. Find the optimal feedback matrix K.

 8.10 Test whether sufficient conditions for the existence of the asymptotically stable optimal control 

solution for the plant

   x = 
0 0

0 1

È

Î
Í

˘

˚
˙ x + 

1

1

È

Î
Í

˘

˚
˙ u

  with the performance index

  J = 

0

Ú (x2
1 + u2) dt

  are satisfied. Find the optimal closed-loop system, if it exists, and determine its stability. 

 8.11 Consider the plant

    x = 
-È

Î
Í

˘

˚
˙

1 0

1 0
x + 

1

0

È

Î
Í

˘

˚
˙ u

  with the performance index

   J = 

0

Ú (x2
1 + u2) dt

  Test whether an asymptotically stable optimal solution exists for this control problem.

 8.12 Consider the system described by the state model:

    x = 
0 1

0 2-
È

Î
Í

˘

˚
˙ x + 

0

20

È

Î
Í

˘

˚
˙ u

   y = [1 0] x

  Find the optimal control law that minimizes 

   J = 
1
2

0

Ú [(y(t) – 1)2 + u2] dt
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 8.13 Determine the optimal control law for the system

    x = 
0 1

0 0

È

Î
Í

˘

˚
˙ x + 

0

1

È

Î
Í

˘

˚
˙ u

   y = 
1 0

0 2

È

Î
Í

˘

˚
˙ x

  such that the following performance index is minimized:

   J = 

0

Ú (y 2
1 + y 2

2 + u2)dt

 8.14 Consider the plant

    x = Ax + Bu

   y = Cx

   A = 
0 1

0 1-
È

Î
Í

˘

˚
˙ , B = 

0

1

È

Î
Í

˘

˚
˙ , C = [1 0]

  with the performance index

   J = 

0

Ú (x2
1 + x 2

2 + u2) dt

  Choose a control law that minimizes J. Design a state observer for implementation of the control 

law; both the poles of the state observer are required to lie at s = – 3.

 8.15 Figure P8.15 shows the optimal control configuration of a position servo system. Both the state 

variables—angular position q and angular velocity  q—are assumed to be measurable.

  It is desired to regulate the angular position to a constant value qr = 5. Find optimum values of the 

gains k1 and k2 that minimize

   J = 

0

Ú [(x1 – qr)
2 + 

1
2 u2] dt

  What is the minimum value of J?

qr

– –

+
k1

u 1
+ 5s

1
s

x2 = q x1 = q

k2

+

Fig. P8.15

 8.16 Consider now that for the position servo system of Problem 8.15, the performance index is

   J = 

0

Ú [(x1 – qr)
2 + ru2]dt
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  For r = 1
10

, 1
100

, and 1
1000

, find the optimal control law that minimizes the given J. Determine 

closed-loop poles for various values of r and comment on your result.

 8.17 In the control scheme of Fig. P8.17, the control law of the form u = – Ky + Nyr has been used; yr 

is the constant command input.

u
N

yr + +

–

+

w

1

+ 1s

y

K

Fig. P8.17

 (a) Find K such that

   J = ( )� �y u dt2 2

0

+Ú
  is minimized; �y  and �u  are, respectively, the deviations of the output and the control signal 

from their steady-state values.

 (b) Choose N so that the system has zero steady-state error, i.e., y( ) = yr.

 (c) Show that the steady-state error to a constant disturbance input w, is nonzero for the above 

choice of N.

 (d) Add to the plant equation, an integrator equation (z(t) being the state of the integrator),

   �z (t) = y(t) – yr

  and select gains K and K1 so that if u = – Ky – K1z, the perfor mance index

   J = ( )� � �y z u dt2 2 2

0

+ +Ú
  is minimized.

 (e) Draw a block diagram of the control scheme employing integral control and show that the 

steady-state error to constant distur bance w, is zero.

 8.18 Consider a plant consisting of a dc motor, the shaft of which has the angular velocity w (t), and 

which is driven by the input voltage u(t). The describing equation is 

  �w (t) = – 0.5w (t) + 100u(t) = Aw(t) + Bu(t)

  It is desired to regulate the angular velocity at the desired value w0 = r.

 (a) Use the control law of the form u(t) = – Kw (t) + Nr.

  Choose K that minimizes J = ( )� �w
2 2

0

100+Ú u dt; �w  and �u are, respectively, the deviations 

  of the output and the control signal, from their steady-state values.
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  Choose N that guarantees zero steady-state error, i.e.,

  w ( = w0 = r.

 (b) Show that if A changes to A + dA, subject to (A + dA – BK) being stable, then the above 

choice of N will no longer make w ( ) = r. Therefore, the feedforward-feedback control 

system is not robust under changes in system parameters. 

 (c) The system can be made robust by augmenting it with an inte grator:

   z = w – r

  where z is the state of the integrator. To see this, first use the feedback of the form u = – Kw (t) – 

K1z(t) and select K and K1 so that

  J = ( )   w 2 2 2

0

100+ +Ú z u dt

  is minimized. Show that the resulting system will have w ( ) = r, no matter how the matrix A 

changes, so long as the closed-loop system remains asymptotically stable.

 8.19 Consider the system

   x(k + 1) = 0.368 x(k) + 0.632 u(k)

  Using the discrete matrix Riccati equation, find the control sequence

   u(k) = – Kx(k)

  that minimizes the performance index

   J = [ ( ) ( )]x k u k

k

2 2

0

+
=

Â
 8.20 Consider the sampled-date system shown in Fig. P8.20.

 (a) Find K so that

   J = 
1
2

2 2

0

[ ( ) ( )]  y k u k

k

+
=
Â

  is minimized;  y  and  u are, respectively, the deviations of the output and the control signal, 

from their steady-state values.

 (b) Find the steady-state value of the output.

 (c) To eliminate steady-state error, introduce a feedforward controller. The control scheme now 

becomes u(k) = – Ky(k) + Nr. Find the value of N so that y( ) = r.

r = unit step T = 0.5 sec

–

+
K

u
Gh0 =

1 – e–sT

s G =
1
+ 1s

y

Fig. P8.20
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 8.21 A plant is described by the state equation 

  x(k + 1) = 0.5x(k) + 2u(k) = Fx(k) + Gu(k)

 (a) Find K such that if u(k) = – Kx(k) + Nr, the performance index

  J = 
1
2

2 2

0

[ ( ) ( )]  x k u k

k

+
=

Â  

  is minimized; r is a constant reference input, and  x  and  u are, respectively, the deviations in 

state and control signal, from their steady-state values.

 (b) Find N so that x( ) = r, i.e., there is no steady-state error.

 (c) Show that the property of zero steady-state error is not robust with respect to changes in F.

 (d) In order to obtain robust steady-state accuracy with respect to changes in F, we may use 

integral control in addition to state feedback. Describe through block diagram, the structure 

of such a control scheme.
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Part III
Nonlinear Control Systems: Conventional and 
Intelligent

In this part of the book, we will explore tools and techniques for attacking control problems that contain 

significant nonlinearities.

Nonlinear control system design has been dominated by linear control techniques, which rely on the key 

assumption of a small range of operation for the linear model to be valid. This tradition has produced 

many reliable and effective control systems. However, the demand for nonlinear control methodologies 

has recently been increasing for several reasons.

First, modern technology, such as applied in high-performance aircraft and high-speed high-accuracy  

robots, demands control systems with much more stringent design specifications, which are able to 

handle nonlinearities of the controlled systems more accurately. When the required operation range is 

large, a linear controller is likely to perform very poorly or to be unstable, because the nonlinearities in 

the system cannot be properly compensated for. Nonlinear controllers, on the other hand, may directly 

handle the nonlinearities in large range operation. Also, in control systems there are many nonlinearities 

whose discontinuous nature does not allow linear approximation.

Second, controlled systems must be able to reject disturbances and uncertainties confronted in real-world 

applications. In designing linear controllers, it is usually necessary to assume that the parameters of the 

system model are reasonably well known. However, many control problems involve uncertainties in 

the model parameters. This may be due to a slow time variation of the parameters (e.g., of ambient air 

pressure during an aircraft flight), or to an abrupt change in parameters (e.g., in the inertial parameters 

of a robot when a new object is grasped). A linear controller, based on inaccurate values of the model 

parameters, may exhibit significant performance degradation or even instability. Nonlinearities can be 

intentionally introduced into the controller part of a control system, so that model uncertainties can be 

tolerated. 

Third, advances in computer technology have made the implementation of nonlinear controllers a 

relatively simple task. The challenge for control design is to fully utilize this technology to achieve the 

best control system performance possible.

Thus, the subject of nonlinear control is an important area of automatic control. Learning basic techniques 

of nonlinear control analysis and design can significantly enhance the ability of control engineers to deal 

with practical control problems, effectively. It also provides a sharper understanding of the real world, 

which is inherently nonlinear.
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NONLINEAR SYSTEMS ANALYSIS

No universal technique works for the analysis of all nonlinear control systems. In linear control, one can 

analyze a system in the time domain or in the frequency domain. However, for nonlinear control systems, 

none of these standard approaches can be used, since direct solutions of nonlinear differential equations 

are generally difficult, and frequency-domain transformations do not apply.

While the analysis of nonlinear control systems is difficult, serious efforts have been made to develop 

appropriate theoretical tools for it. Many methods of nonlinear control system analysis have been  

proposed. Let us briefly describe some of these methods before discussing their details in the following 

chapters.

Phase-Plane Analysis

Phase-plane analysis, discussed in Chapter 9, is a method of studying second-order nonlinear systems. 

Its basic idea is to solve a second-order differential equation and graphically display the result as a 

family of system motion trajectories on a two-dimensional plane, called the phase plane, which allow 

us to visually observe the motion patterns of the system. While phase-plane analysis has a number of 

important advantages, it has the fundamental disadvantage of being applicable only to systems which 

can be well approximated by a second-order dynamics. Because of its graphical nature, it is frequently 

used to provide intuitive insights about nonlinear effects.

Lyapunov Theory

In using the Lyapunov theory to analyze the stability of a nonlinear system, the idea is to construct 

a scalar energy-like function (a Lyapunov function) for the system, and to see whether it decreases. 

The power of this method comes from its generality; it is applicable to all kinds of control systems. 

Conversely, the limitation of the method lies in the fact that it is often difficult to find a Lyapunov 

function for a given system. 

Although Lyapunov’s method is originally a method of stability analysis, it can be used for synthesis 

problems. One important application is the design of nonlinear controllers. The idea is to somehow 

formulate a scalar positive definite function of the system states, and then choose a control law to make 

this function decrease. A nonlinear control system thus designed, will be guaranteed to be stable. Such a 

design approach has been used to solve many complex design problems, e.g., in adaptive control  and in 

sliding mode control (discussed in Chapter 10). The basic concepts of Lyapunov theory have earlier been 

presented in Chapter 8. Lyapunov theory is elaborate in Chapter 9, wherein guidelines for construction 

of Lyapunov functions for nonlinear systems are given.

The describing function method, discussed in Chapter 9, is an approximate technique for studying 

nonlinear systems. The basic idea of the method is to approximate the nonlinear components in nonlinear 

control systems by linear “equivalents”, and then use frequency-domain techniques to analyze the 

resulting systems. Unlike the phase-plane method, it is not restricted to second-order systems. Rather, 
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the accuracy of describing function analysis improves with an increase in the order of the system. 

Unlike Lyapunov method, whose applicability to a specific system hinges on the success of a trial-and-

error search for a Lyapunov function, its application is straightforward for a specific class of nonlinear  

systems.

NONLINEAR CONTROL DESIGN

As in the analysis of nonlinear control systems, there is no general method for designing nonlinear 

controllers. What we have is a rich collection of alternative and complementary techniques, each of them 

best applicable to particular classes of nonlinear control problems.

Trial-and-Error

Based on the analysis methods, one can use trial-and-error to synthesize controllers. The idea is to 

use the analysis tools to guide the search for a controller, which can then be justified by analysis and 

simulations. The phase-plane method, the describing function method, and Lyapunov analysis can all 

be used for this purpose. Experience and intuition are critical in this process. However, for complex 

systems, trial-and-error often fails.

Feedback linearization discussed in Chapter 10, can be used as a nonlinear design methodology. The 

basic idea is to first transform a nonlinear system into a linear system using feedback, and then use the 

well-known and powerful linear design techniques to complete the control design. The approach has 

been used to solve a number of practical nonlinear control problems. It applies to important classes of 

nonlinear systems.

Variable Structure Sliding Mode Control

In pure model-based nonlinear control (such as the basic feedback linearization control approach), the 

control law is designed based on a nominal model of the physical system. How the control system will 

behave in the presence of model uncertainties is not clear at the design stage. In robust nonlinear control 

(e.g., variable structure sliding mode control), on the other hand, the controller is designed based on the 

consideration of both the nominal model and some characterization of the model uncertainties. Sliding 

mode control techniques, discussed in Chapter 10, have proven very effective in a variety of practical 

control problems.

Adaptive control is an approach to deal with uncertain systems or time-varying systems. Although the 

term “adaptive” can have broad meanings, current adaptive control designs apply mainly to systems with 

known dynamic structure but unknown constant or slowly-varying parameters. Adaptive controllers, 

whether developed for linear systems or for nonlinear systems, are inherently nonlinear.
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Systematic theories exist for the adaptive control of linear systems. Frequently used adaptive control 

structures are discussed in Chapter 10.

Gain-Scheduling

Gain-scheduling is an attempt to apply the well-developed linear control methodology to the control of 

nonlinear systems. The idea of gain-scheduling is to select a number of operating points which cover 

the range of system operation. Then, at each of these points, the designer makes a linear time-invariant 

approximation to the plant dynamics, and designs a linear controller for each linearized plant. Between 

operating points, the parameters of the compensators are then interpolated, or scheduled; thus resulting 

in a global compensator.

Intelligent Control

In order to handle the complexities of nonlinearities and accommodate the demand for high-performance 

control systems, intelligent control takes advantage of the computational structures—fuzzy systems 

and neural networks—which are inherently nonlinear; a very important property, particularly if the 

underlying physical mechanisms for the systems are highly nonlinear. Whereas classical control is rooted 

in the theory of differential equations, intelligent control is largely rule-based because the dependencies 

involved in its deployment are much too complex to permit an analytical representation. To deal with 

such dependencies, the mathematics of fuzzy systems and neural networks integrates the experience and 

knowledge gained in the operation of a similar plant, into control algorithm. The power of fuzzy systems 

lies in their ability (i) to quantify linguistic inputs, and (ii) to quickly give a working approximation of 

complex, and often unknown, system input-output rules. The power of neural networks is in their ability 

to learn from data. There is a natural synergy between neural networks and fuzzy systems that makes 

their hybridization a powerful tool for intelligent control and other applications. Intelligent control is one 

of the most serious candidates for the future control of the large class of nonlinear, partially known, and 

time-varying systems.

With no agreed upon scientific definition of intelligence, and due to space limitations, we will not venture 

into the discussion of what intelligence is. Rather, we will confine our brief exposition in Chapters 11-14 

to intelligent machines—neural networks, support vector machines, fuzzy interference systems, genetic 

algorithms, reinforcement learning—in the context of applications in control.
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9.1 INTRODUCTION

Because nonlinear systems can have much richer and complex behaviors than linear systems, their analysis 

is much more difficult. Mathematically, this is reflected in two aspects. Firstly, nonlinear equations, 

unlike linear ones, cannot, in general, be solved analytically, and therefore, a complete understanding of 

the behavior of a nonlinear system is very difficult. Secondly, powerful mathematical tools like Laplace 

and Fourier transforms do not apply to nonlinear systems. As a result, there are no systematic tools for 

predicting the behavior of nonlinear systems. Instead, there is a rich inventory of powerful analysis tools, 

each best applicable to a particular class of nonlinear control problems [125–129].

Perhaps the single most valuable asset to the field of engineering is the simulation tool—constructing a 

model of the proposed or actual system and using a numerical solution of the model to reveal the behavior 

of the system. Simulation is the only general method of analysis applicable to finding solutions of linear 

and nonlinear differential and difference equations. Of course, simulation finds specific solutions; that is, 

solutions to the equations with specific inputs, initial conditions, and parametric conditions. It is for this 

reason that simulation is not a substitute for other forms of analysis. Important properties such as stability 

and conditional stability are not proven with simulations. When the complexity of a system precludes the 

use of any analytical approach to establish proof of stability, simulations will be the only way to obtain 

necessary information for design purposes. A partial list of the simulation programs available today is 

contained in references [151–154].

This chapter also does not provide a magic solution to the analysis problem. In fact, no universal analytical 

technique exists that can cater to our demand on analysis of the effects of nonlinearities. Our focus in this 

chapter, is only on some important categories of nonlinear systems for which significant analysis (and  

design) can be done.

For the so-called separable systems, which comprise a linear part defined by its transfer function, and 

a nonlinear part defined by a time-independent relationship between its input and output variables, the 

describing function method is most practically useful for analysis. It is an approximate method but 

Nonlinear Systems Analysis

Chapter 9
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experience with real systems and computer simulation results shows adequate accuracy in many cases. 

Basically, the method is an approximate extension of frequency response methods (including Nyquist 

stability criterion) to nonlinear systems.

In terms of mathematical properties, nonlinearities may be categorized as continuous and discontinuous. 

Because discontinuous nonlinearities cannot be locally approximated by linear functions, they are also 

called “hard” nonlinearities. Hard nonlinearities (such as saturation, backlash, or coulomb friction) are 

commonly found in control systems, both in small range and large range operations. Whether a system 

in small range operation should be regarded as nonlinear or linear depends on the magnitude of the hard 

nonlinearities and on the extent of their effects on the system performance.

The continuous or so-called “soft” nonlinearities are present in every control system, though not visible 

because these are not separable. Throughout the book, we have neglected these nonlinearities in our 

derivations of transfer function and state variable models. For example, we have assumed linear restoring 

force of a spring, a constant damping coefficient independent of the position of the mass, etc. In practice, 

none of these assumptions is true for a large range operation. Also, there are situations, not covered 

in this book, wherein the linearity assumption gives too small range of operation to be useful; linear 

design methods cannot be applied for such systems. If the controlled systems are not too complex and 

the performance requirements are not too stringent, the linearity assumptions made in this book, give 

satisfactory results in practice.

Describing function analysis is applicable to separable hard nonlinearities. For this category of nonlinear 

systems, as we shall see later in this chapter, the predictions of describing function analysis usually are a 

good approximation to actual behavior when the linear part of the system provides a sufficiently strong 

filtering effect. Filtering characteristics of the linear part of a system improve as the order of the system 

goes up. The ‘low pass filtering’ requirement is never completely satisfied; for this reason, the describing 

function method is mainly used for stability analysis and is not directly applied to the optimization of 

system design.

Phase-Plane Analysis

Another practically useful method for nonlinear system analysis is the phase-plane method. While phase-

plane analysis does not suffer from any approximations and hence can be used for stability analysis as 

well as optimization of system design, its main limitation is that it is applicable to systems which can be 

well approximated by second-order dynamics. Its basic idea is to solve second-order differential equation 

and graphically display the result as a family of system motion trajectories on a two-dimensional plane, 

called the phase plane, which allows us to visually observe the motion patterns of the system. The 

method is equally applicable to both hard and soft nonlinearities.

Lyapunov Stability Analysis

The most fundamental analysis tool is the concept of a Lyapunov function and its use in nonlinear 

stability analysis. The power of the method comes from its generality. It is applicable to all kinds of 

control systems; systems with hard or soft nonlinearities, and of second-order or higher-order. The 

limitation of the method lies in the fact that it is often difficult to find a Lyapunov function for a given 

system.
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The aim of this chapter is to introduce the two classical, yet practically important tools—the describing 

function method and the phase-plane method—for a class of nonlinear systems. The two methods are 

complementary to a large extent, each being available for the study of the systems which are most likely 

to be beyond the scope of the other. The phase-plane analysis applies primarily to systems described by 

second-order differential equations. Systems of order higher than the second are likely to be well filtered and  

tractable by the describing function method.

The use of Lyapunov functions for stability analysis of nonlinear systems is also given in this chapter.

9.2 SOME COMMON NONLINEAR SYSTEM BEHAVIORS

As a minimum, it is important to be aware of the main characteristics of nonlinear behavior, only to 

permit recognition if these are encountered experimentally or in system simulations.

The previous chapters have been predominantly concerned with the study of linear time-invariant control 

systems. We have observed that these systems have quite simple properties, such as the following:  

  a linear system �x = Ax , with x being the vector of states and A being the system matrix, has a 

unique equilibrium point (if A is nonsingular; normally true for feedback system matrices);

  the equilibrium point is stable if all eigenvalues of A have negative real parts, regardless of initial 

conditions;

  the transient response is composed of the natural modes of the system, and the general solution 

can be solved analytically; and

  in the presence of the external input u(t), the system response has a number of interesting 

properties: (i) it satisfies the principle of superposition, (ii) the asymptotic stability of the system 

implies bounded-input, bounded-output stability, and (iii) a sinusoidal input leads to a sinusoidal 

output of the same frequency.

The behavior of nonlinear systems, however, is much more complex. Due to the lack of superposition 

property, nonlinear systems respond to external inputs and initial conditions quite differently from linear 

systems. Some common nonlinear system properties are as follows [126]:

 (i) Nonlinear systems frequently have more than one equilibrium point. For a linear system, stability 

is seen by noting that for any initial condition, the motion of a stable system always converges to 

the equilibrium point. However, a nonlinear system may converge to an equilibrium point starting 

with one set of the initial conditions, and may go to infinity starting with another set of initial 

conditions. This means that the stability of nonlinear systems may depend on initial conditions. 

In the presence of a bounded external input, unlike linear systems, stability of nonlinear systems 

may also be dependent on the input value.

 (ii) Nonlinear systems can display oscillations of fixed amplitude and fixed period without external 

excitation. These oscillations are called limit cycles. Consider the well-known Van der Pol’s 

differential equation 

My B y y Ky M B K�� �+ - + = > > >( ) ; , ,2 1 0 0 0 0    (9.1) 

  which describes physical situations in many nonlinear systems. It can be regarded as describing 

a mass-spring-damper system with a position-dependent damping coefficient B(y2 – 1). For 
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large values of y, the damping coefficient 

is positive and the damper removes 

energy from the system. This implies 

that the system motion has a convergent 

tendency. However, for small values of y, 

the damping  coefficient is negative and 

the damper adds energy into the system. 

This suggests that the system motion has a 

divergent tendency. Therefore, because the 

nonlinear damping varies with y, the system 

motion can neither grow unboundedly 

nor decay to zero. Instead, it displays a 

sustained oscillation independent of initial 

conditions, as illustrated in Fig. 9.1. 

  Of course, sustained oscillations can also be found in linear systems, e.g., in the case of marginally 

stable linear systems. However, the oscillation of a marginally stable linear system has its amplitude 

determined by its initial conditions, and such a system is very sensitive to changes in system 

parameters (a slight change in parameters is capable of leading either to stable convergence or 

to instability). In nonlinear systems, on the other hand, the amplitude of sustained oscillations 

is independent of the initial conditions, and limit cycles are not easily affected by parameter 

changes.

 (iii) A nonlinear system with a periodic input may exhibit a periodic output whose frequency is either 

a subharmonic or a harmonic of the input frequency. For example, an input of frequency of 10 Hz 

may result in an output of 5 Hz for the subharmonic case or 30 Hz for the harmonic case.

 (iv) A nonlinear system can display jump resonance, a form of hysteresis, in its frequency response. 

Consider a mass-spring-damper system 

My By K y K y�� �+ + +1 2
3 = F cos wt; M > 0, B > 0, K1 > 0, K2 > 0 (9.2)

  Note that the restoring force of the spring 

is assumed to be nonlinear. If in an 

experiment, the frequency w  is varied and 

the input amplitude F is held constant, 

frequency-response curve of the form 

shown in Fig. 9.2, may be obtained. As 

the frequency w is increased, the response 

y follows the curve through the points A, 

B and C. At point C, a small change in 

frequency results in a discontinuous jump 

to point D. The response then follows the 

curve to point E upon further increase in 

frequency. As the frequency is decreased 

from point E, the response follows the 

curve through points D and F. At point F, 

a small change in frequency results in a 

0
t

y t( )

Fig. 9.1 Responses of Van der Pol oscillator

A

F

C
B

D

E

| |Y( )jw

w

Fig. 9.2 Frequency response of a system with 
jump resonance
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discontinuous jump to point B. The response follows the curve to point A for further decrease in 

frequency. Observe from this description that the response never actually follows the segment CF. 

This portion of the curve represents a condition of unstable equilibrium.

9.3 COMMON NONLINEARITIES IN CONTROL SYSTEMS

In this section, we take a closer look at the nonlinearities found in control systems. Consider the typical 

block diagram of closed-loop system shown in Fig. 9.3. It is composed of four parts: a plant to be 

controlled, sensors for measurements, actuators for control action, and a control law usually implemented 

on a computer. Nonlinearities may occur in any part of the system.

Controller Actuator Plant

Sensor

–

+ y t( )r t( )

Fig. 9.3 General diagram of a control system

Saturation is probably the most commonly encountered nonlinearity in control systems. It is often 

associated with amplifiers and actuators. In transistor amplifiers, the output varies linearly with the 

input, only for small amplitude limits. When the input amplitude gets out of the linear range of the 

amplifier, the output changes very little and stays close to its maximum value. Figure 9.4a shows a linear-

segmented approximation of saturation nonlinearity.

Most actuators display saturation characteristics. For example, the output torque of a servo motor  

cannot increase infinitely, and tends to saturate due to the properties of the magnetic material. Similarly, 

valve-controlled hydraulic actuators are saturated by the maximum flow rate.

Deadzone

A deadzone nonlinearity may occur in sensors, amplifiers and actuators. In a dc motor, we assume that 

any voltage applied to the armature windings will cause the armature to rotate if the field current is 

maintained constant. In reality, due to static friction at the motor shaft, rotation will occur only if the 

torque provided by the motor is sufficiently large. This corresponds to a so-called deadzone for small  

voltage signals. Similar deadzone phenomena occur in valve-controlled pneumatic and hydraulic 

actuators. Figure 9.4b shows linear-segmented approximation of deadzone nonlinearity.
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Backlash

A backlash nonlinearity commonly occurs in mechanical components of control systems. In gear trains, 

small gaps exist between a pair of mating gears (refer to Fig. 9.4c). As a result, when the driving gear 

rotates a smaller angle than the gap H, the driven gear does not move at all, which corresponds to the 

deadzone (OA segment in Fig. 9.4c); after contact has been established between the two gears, the driven 

gear follows the rotation of the driving gear in a linear fashion (AB segment). When the driving gear 

rotates in the reverse direction, by a distance of 2H, the driven gear again does not move, corresponding 

to the segment BC in Fig. 9.4c. After the contact between the two gears is re-established, the driven gear 

linearly follows the rotation of the driving gear in the reverse direction (CD segment). Therefore, if the 

driving gear is in periodic motion, the driven gear will move in the fashion represented by the closed 

path EBCD.

Fig. 9.4
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A critical feature of backlash, a form of hysteresis, is its multivalued nature. Corresponding to each 

input, two output values are possible; which one of the two occurs depends on the history of the input.

In any system where there is a relative motion between contacting surfaces, there are several types of 

friction: all of them nonlinear—except the viscous components. Coulomb friction is, in essence, a drag 

(reaction) force which opposes motion, but is essentially constant in magnitude, regardless of velocity 

(Fig. 9.4d). The common example is an electric motor, in which we find Coulomb friction drag due to 

the rubbing contact between the brushes and the commutator.

In this book we have primarily covered the following three modes of control:

 (i) proportional control;

 (ii) integral control; and 

 (iii) derivative control. 

Another important mode of feedback control is the on–off control. This class of controllers have only two 

fixed states rather than a continuous output. In its wider application, the states of an on–off controller may 

not, however, be simply on and off but could represent any two values of a control variable. Oscillatory 

behavior is a typical response characteristic of a system under two-position control, also called bang-

bang control. The oscillatory behavior may be avoided using a three-position control (on–off controller 

with a deadzone). Figure 9.4e shows the characteristics of on–off controllers.

The on–off mode of control results in a variable structure system whose structure changes in accordance 

with the current value of its state. A variable structure system can be viewed as a system composed of 

independent structures, together with a switching logic between each of the structures. With appropriate 

switching logic, a variable structure system can exploit the desirable properties of each of the structures 

the system is composed of. Even more, a variable structure system may have a property that is not a 

property of any of its structures. The variable structure sliding mode control law is usually implemented 

on a computer. The reader will be exposed to simple variable structure systems in this chapter; details to 

follow in Chapter 10.

We may classify the nonlinearities as inherent and intentional. Inherent nonlinearities naturally come with 

the system’s hardware (saturation, deadzone, backlash, Coulomb friction). Usually such nonlinearities 

have undesirable effects, and control systems have to properly compensate for them. Intentional 

nonlinearities, on the other hand, are artificially introduced by the designer. Nonlinear control laws, such  

as bang-bang optimal control laws and adaptive control laws (refer to Chapter 10), are typical examples 

of intentional nonlinearities.

9.4 DESCRIBING FUNCTION FUNDAMENTALS

Of all the analytical methods developed over the years for nonlinear systems, the describing function 

method is generally agreed upon as being the most practically useful. It is an approximate method, 
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but experience with real systems and computer simulation results, shows adequate accuracy in many 

cases. The method predicts whether limit cycle oscillations will exist or not, and gives numerical 

estimates of oscillation frequency and amplitude when limit cycles are predicted. Basically, the method 

is an approximate extension of frequency-response methods (including Nyquist stability criterion) to 

nonlinear systems.

To discuss the basic concept underlying the describing function analysis, let us consider the block 

diagram of a nonlinear system shown in Fig. 9.5, where the blocks G1(s) and G2(s) represent the linear 

elements, while the block N represents the nonlinear element.

N
yx+

–

r = 0
G2( )sG1( )s

Fig. 9.5 A nonlinear system

The describing function method provides a “linear approximation” to the nonlinear element based on 

the assumption that the input to the nonlinear element is a sinusoid of known, constant amplitude. The 

fundamental harmonic of the element’s output is compared with the input sinusoid, to determine the 

steady-state amplitude and phase relation. This relation is the describing function for the nonlinear 

element. The method can, thus, be viewed as ‘harmonic linearization’ of a nonlinear element.

The describing function method is based on the Fourier series. A review of the Fourier series will be in 

order here.

9.4.1 Fourier Series

We begin with the definition of a periodic signal. A signal y(t) is said to be periodic with the period T if 

y(t + T ) = y(t) for every value of t. The smallest positive value of T for which y(t + T) = y(t), is called 

fundamental period of y(t). We denote the fundamental period as T0. Obviously, 2T0 is also a period of 

y(t), and so is any integer multiple of T0.

A periodic signal y(t) may be represented by the series [31]:

 y(t) = 
a0

2
 + 

n =
Â

1

[an cosnw0t + bn sinnw0t] (9.3a)

  = 
a0

2
 + 

n =
Â

1

 Yn sin(nw0t + fn) (9.3b)

where  an = 
2

0T
 

0

0T

Ú y(t) cosnw0t dt; n = 0, 1, 2, ... (9.3c)

 bn = 
2

0T
 

0

0T

Ú y(t) sinnw0t dt; n = 1, 2, ... (9.3d)
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 Yn = a bn n
2 2+  (9.3e)

 fn = tan–1 
a

b

n

n

Ê
ËÁ

ˆ
¯̃

 (9.3f )

In Eqn. (9.3b), the term for n = 1 is called fundamental or first harmonic, and always has the same 

frequency as the repeti tion rate of the original periodic waveform; whereas n = 2, 3, ..., give second, third, 

and so forth harmonic frequencies as integer multiples of the fundamental frequency.

Introducing a change of variable to y = w0t, we obtain the fol lowing alternative equations for the 

coefficients of Fourier series (w0 = 2p/T0):

 an = 
1

0

2

p

p

Ú y(t) cosnw0t d(w0t); n = 0, 1, 2, ... (9.4a)

 bn = 
1

0

2

p

p

Ú y(t) sinnw0t d(w0t); n = 1, 2, ... (9.4b)

Certain simplifications are possible when y(t) has a symmetry of one type or another.

 (i) Even symmetry: y(t) = y(–t) results in

   bn = 0; n = 1, 2, ... (9.4c)

 (ii) Odd symmetry: y(t) = –y(–t) results in

   an = 0; n = 0, 1, 2, ...   (9.4d)

 (iii) Odd half-wave symmetry: y(t ± T0/2) = –y(t) results in 

   an = bn = 0; n = 0, 2, 4, ... (9.4e)

9.4.2

Let us assume that input x to the nonlinearity in Fig. 9.5 is sinusoidal, i.e.,

x = X sin w t 

With such an input, the output y of the nonlinear element will, in general, be a nonsinusoidal periodic 

function which may be expressed in terms of Fourier series as follows (refer to Eqns (9.3)–(9.4)): 

y = Y0 + A1cos w t + B1sin w t + A2 cos 2w t + B2sin 2w t + �

The nonlinear characteristics listed in the previous section, are all odd-symmetrical/odd half-wave 

symmetrical; the mean value Y0 for all such cases is zero and therefore, the output

y = A1cos w t + B1sin w t + A2 cos 2w t + B2sin 2w t + �

In the absence of an external input (i.e., r = 0 in Fig. 9.5), the output y of the nonlinear element N is 

fed back to its input, through the linear elements G2(s) and G1(s) in tandem. If G2(s)G1(s) has low-pass 

characteristics (this is usually the case in control systems), it can be assumed, to a good degree of 

approximation, that all the higher harmonics of y are filtered out in the process, and the input x to the 

nonlinear element N is mainly contributed by the fundamental component (first harmonic) of y, i.e., x 

remains sinusoidal. Under such conditions, the second and higher harmonics of y can be thrown away for 
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the purpose of analysis, and the fundamental component of y, i.e.,

y1 = A1cos w t + B1sin w t

need only be considered.

The above procedure heuristically linearizes the nonlinearity since, for a sinusoidal input, only a 

sinusoidal output of the same frequency is now assumed to be produced. This type of linearization, called 

the first-harmonic approximation, is valid for large signals as well, so long as the filtering condition is 

satisfied.

We can write y1(t) in the form

 y1(t) = A1sin(w t + 90°) + B1sin w t = Y1 sin(w t + f1)  (9.5a)

where, by using phasors,

 Y1–f1 =  B1 + jA1 = B A1
2

1
2+  – tan–1(A1/B1)  (9.5b)

The coefficients A1 and B1 of the Fourier series are given by (refer to Eqns 9.3)

 A1  = 
1

0

2

p

p

Ú y cos w t d(w t)  (9.5c)

 B1  = 
1

0

2

p

p

Ú y sinw t d(w t)  (9.5d)

As we shall see shortly, the amplitude Y1 and the phase shift f1 are both functions of X, but independent 

of w. We may combine the amplitude ratio and the phase shift in a complex equivalent gain N(X), such 

that

 N(X) = 
Y X

X
X

B jA

X

1
1

1 1( )
( )– =

+
f  (9.6)

Under first-harmonic approximation, the nonlinear element is completely characterized by the function 

N(X); this function is usually referred to as the describing function of the nonlinearity.

The describing function differs from a linear system transfer function, in that its numerical value will vary 

with input amplitude X. Also, it does not depend on frequency w (there are, however, a few situations 

in which the describing function for the nonlinearity is a function of both, the input amplitude X, and 

the frequency w (refer to [128–129]). When embedded in an otherwise linear system (Fig. 9.6), the 

describing function can be combined with the ‘ordinary’ sinusoidal transfer function of the rest of the 

system, to obtain the complete open-loop function. However, we will get a different open-loop function 

for every different amplitude X. We can check all of these open-loop functions for closed-loop stability, 

using Nyquist stability criterion.

–

+ x y
N X( ) G2( )jw

r = 0
G1( )jw

Describing
function

Fig. 9.6 
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It is important to remind ourselves here that the simplicity in analysis of nonlinear systems using 

describing functions, has been achieved at the cost of certain limitations; the foremost being the 

assumption that in traversing the path through the linear parts of the system from nonlinearity output 

back to nonlinearity input, the higher harmonics will have been effectively low-pass filtered, relative to 

the first harmonic. When the linear part of the system does indeed provide a sufficiently strong filtering 

effect, then the predictions of describing function analysis, usually, are a good approximation to actual 

behavior. Filtering characteristics of the linear part of the system improve as the order of the system goes 

up.

The ‘low-pass filtering’ requirement is never completely satisfied; for this reason, the describing function 

method is mainly used for stability analysis and is not directly applied to the optimization of system 

design. Usually, the describing function analysis will correctly predict the existence and characteristics 

of limit cycles. However, false indications cannot be ruled out; therefore, the results must be verified 

by simulation. Simulation, in fact, is an almost indispensable tool for analysis and design of nonlinear 

systems; describing function and other analytical methods, provide the background for intelligent 

planning of the simulations.

We will limit our discussion to separable nonlinear systems with reference input r = 0, and with 

symmetrical nonlinearities (listed in Section 9.3) in the loop. Refer to [128–129] for situations wherein 

dissymmetrical nonlinearities are present, and/or the reference input is nonzero.

9.5 DESCRIBING FUNCTIONS OF
 COMMON NONLINEARITIES

Before coming to the stability study by the describing function method, it is worthwhile to derive the  

describing functions of some common nonlinearities. Our first example is an on–off controller with a 

deadzone as in Fig. 9.7. If X is less than deadzone D, then the controller produces no output; the first 

harmonic component of the Fourier series is, of course, zero, and the describing function is also zero. If 

X  > D, the controller produces the ‘square wave’ output y. One cycle of this periodic function of period 

2p is described as follows:

 0 ; 0 £ wt < a

                                           M ; a £ wt < (p – a)

                                          y = 

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô

 0 ; (p – a) £ wt < (p + a) (9.7)

 – M ; (p + a) £ wt < (2p - a)

 0 ; (2p - a) £ wt £ 2p

where X sina = D; or a = sin–1(D/X).

This periodic function has odd symmetry:

 y(w t) = – y(–w t)

Therefore, the fundamental component of y is given by (refer to Eqn. (9.4d))

 y1 = B1sinw t
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where B1 = 
1

0

2

p

p

Ú y sinw t d(w t)

Due to the symmetry of y (refer to Fig. 9.7), the coefficient B1 can be calculated as follows:

B1 = 
4

0

2

p

p

Ú y sinw t d(w t) = 
4 4

2
M

t d t
M

p
w w

p
a

a

p

sin ( ) cosÚ =   (9.8)

Since A1 (the Fourier series cosine coefficient) is zero, the first harmonic component of y is exactly in 

phase with X sinwt, and the describing function N(X) is given by (refer to Eqns (9.6)–(9.8))

 N(X) = 

0

4
1

2

;

;

X

M

X X
X

<

- Ê
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ˆ
¯̃

≥

Ï

Ì
Ô

Ó
Ô
Ô

D

D
p

D  (9.9)

For a given controller, M and D are fixed and the describing function is a function of input amplitude 

X, which is graphed in Fig. 9.8a, together with peak location and value, found by standard calculus 
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maximization procedure. Note that for a given X, N(X) is just a pure real positive number, and thus, plays 

the role of a steady-state gain in a block diagram of the form shown in Fig. 9.6. However, this gain term 

is unusual in that it changes when X changes.

2M

pD
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Re

Im
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Fig. 9.8 

A describing function N(X) may be equivalently represented by a plot of

 - = - – -
1 1

1
N X N X

N X
( ) ( )

( / ( ))
 (9.10)

as a function of X on the polar plane. We will use this form of representation in the next section for 

stability analysis.

Rearrangement of Eqn. (9.9) gives

 - = -
-

1

4 1N X M

X

X( )

( / )

( / )

pD D

D

2

2
 (9.11)

Figure 9.8b gives the representation on the polar plane, of the describing function for an on–off controller 

with deadzone. It may be noted that though the points A and B lie at the same place on the negative real 

axis, they belong to different values of X/D.

We choose as another example the backlash, since its behavior brings out certain features not encountered 

in our earlier example. The characteristics of backlash nonlinearity, and its response to sinusoidal input, 
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are shown in Fig. 9.9. The output y is again a periodic function of period 2p ; one cycle of this function 

is described as follows:

 x – H ; 0 £ w t < p /2  

 X – H ; p /2 £ w t < (p – b )

                                              y = 

Ï

Ì
Ô
Ô

Ó
Ô
Ô

 x + H ; (p – b ) £ w t < 3p/2 (9.12)

 – X + H ; 3p /2 £ w t < (2p – b )

 x – H ; (2p – b ) £ w t £ 2p 

where X sinb = X – 2H; or b = sin–1
1

2
-Ê

ËÁ
ˆ
¯̃

H

X
.

Fig. 9.9 Fourier-series analysis of backlash

The periodic function does not possess odd symmetry:

y(w t) π – y(–w t),

but possesses odd half-wave symmetry:

y(w t ± p) = – y(w t)

Therefore, the fundamental component of y is given by (refer to Eqn. (9.4e))

 y1 = A1cosw t + B1 sinw t

where  A1 = 
1

0

2

p

p

Ú y cosw t d(w t)
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B1 = 
1

0

2

p

p

Ú y sinw t d(w t)

Due to the symmetry of y, only the positive half-wave need be considered (Fig. 9.9):
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 It is clear that the fundamental component of y will have a phase shift with respect to X sinwt (a feature 

not present in our earlier example). The describing function N(X) is given by (refer to Eqns (9.6), (9.12), 

(9.13))

 N(X) = 
1

X
(B1 + jA1) = 

1

2

1

2
2 2

p

p
b b b+ + -È

ÎÍ
˘

˚̇
sin cosj    (9.14)

 b = sin–1 1
2

-Ê
ËÁ

ˆ
¯̃

H

X

Note that N(X) is a function of the nondimensional ratio H/X; we can thus tabulate or plot a single graph 

of N(X) that will be usable for any numerical value of H (refer to Table 9.1, and Fig. 9.10).

Table 9.1

H/X |–1/N(X)| –(–1/N(X))

0.000 1.000 180.0

0.050 1.017 183.5

0.125 1.066 188.5

0.200 1.134 193.4

0.300 1.259 199.7

0.400 1.435 206.0

0.500 1.687 212.5

0.600 2.072 219.3

0.700 2.720 226.7

0.800 4.024  235.1

0.850 5.330 239.9

0.900 7.946 245.6

0.925 10.560 248.9

0.950 15.800 252.8

0.975 31.500 257.9

We have so far given illustrative derivations of describing functions for on–off controller with deadzone, 

and backlash. By similar procedures, the describing functions of other common nonlinearities can be  

derived; some of these are tabulated in Table 9.2.
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Table 9.2

Nonlinearity Describing function (input = X sinw t)
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9.6 STABILITY ANALYSIS BY
 THE DESCRIBING FUNCTION METHOD

Consider the linear system of Fig. 9.11a. Application of Ny quist stability criterion1 to this system 

involves the following steps.

 (i) Define the Nyquist contour in the s-plane that encloses the entire right-hand side (unstable region) 

of the s-plane (Fig. 9.11b).

 (ii) Sketch the Nyquist plot, which is the locus of KG(s)H(s), when s takes on values along the Nyquist 

contour (Fig. 9.11c).
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Fig. 9.11 

 1 Chapter 10 of reference [155].
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 (iii) The characteristic equation of the system is 

  1 + KG(s)H(s) = 0

 or 

  KG(s)H(s) = –1 (9.15)

  The stability of the closed-loop system is determined by investi gating the behavior of the Nyquist 

plot of KG(s)H(s) with respect to the critical point (–1 + j0) in the KG(s)H(s)-plane.

  For the predominant case of systems wherein open-loop transfer function KG(s)H(s) has no poles 

in the right half of the s-plane, the Nyquist stability criterion is stated below as

  If the Nyquist plot of the open-loop transfer function KG(s)H(s) corresponding to the Nyquist 

contour in the s-plane, does not encircle the critical point (–1 + j0), the closed-loop system is 

stable.

 (iv) The characteristic equation (9.15) may be rearranged as follows:

 G(s)H(s) = –1/K (9.16)

  For the linear system with open-loop transfer function KG(s)H(s), we can count the number of 

encirclements of (–1/K + j0) point if the Nyquist plot of G(s)H(s) is constructed (Fig. 9.11d).

 (v) When the Nyquist plot of G(s)H(s) passes through (–1/K + j0) point, the number of encirclements is 

indeterminate. This corre sponds to the condition where 1 + KG(s)H(s) has zeros on the imaginary 

axis (i.e., the closed-loop system has poles on the imaginary axis). The gain corresponding to this 

situation, will yield oscillatory behavior (we have assumed that the zeros are nonrepeated).

 (vi) The most commonly occurring situation in control system design is that the system becomes 

unstable if the gain increases past a certain critical value. Stability condition for such systems, 

becomes

 | G( jw)H( jw) | < 1/K at –G( jw)H( jw)  = –180º

  The stability may, therefore, be examined from polar plot (plot of G( jw)H( jw)  on polar plane 

with w varying from 0 to ) only (Fig. 9.11e).

Consider now a nonlinear system of Fig. 9.12. N(X) is the describing function of the nonlinear element 

and G(s) is the transfer function of the linear part of the system. G(s) is assumed to have no poles in the 

right half of the s-plane.

The validity of the block diagram shown in Fig. 9.12 is based on the assumption that the input to the 

nonlinearity is a pure sinusoid x = X sinw t. This necessarily requires that r is zero, since nonzero values 

of the system input, usually result in the nonlinearity input signal containing components in addition to 

the assumed sine wave. So, the describing function approach is applicable when the input r is zero and 

the system is excited by some initial conditions. For different values of the initial conditions, a signal 

of the form x = X sinw t will be generated 

at the input of an odd-symmetrical/odd 

half-wave symmetrical nonlinearity, with 

X varying from 0 to . This is true only 

if the linear part of the system possesses 

the required low-pass characteristics. For 

situations where the nonlinearity input 

–

+ x
N( )X G( )s

r = 0

Fig. 9.12 A nonlinear system
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signal contains components in addition to X sinw t (such as r not being zero), the method of dual-input 

describing functions may be useful (refer to [128–129]).

For a given X, N(X) in Fig. 9.12 is just a real/complex number; the condition (9.16) therefore, becomes

 G(s) = – 1/N(X)   (9.17)

This modified condition differs from the condition (9.16), in the fact that the critical point (–1/K + j0), 

now becomes the critical locus – 1/N(X) as a function of X. The stability analysis can be carried out by 

examining the relative position of the following plots on polar plane.

 (i) Plot of G( jw) with w varying from 0 to , called the polar plot of G( jw) (note that the Nyquist 

plot is the plot of G( jw) with w varying from  –  to + ).

 (ii)  Plot of  – 1/N(X) with X varying from 0 to . 

When the critical points of – 1/N(X) lie to the left of the polar plot of G( jw) (or are not encircled by the 

Nyquist plot of G( jw)), the closed-loop system is stable; any disturbances which appear in the system 

will tend to die out. Conversely, if any part of the  –1/N(X) locus lies to the right of the polar plot of G( jw) 

(or is enclosed by the Nyquist plot of G( jw)), it implies that any disturbances which are characterized 

by the values of X corresponding to the enclosed critical points, will provide unstable operations. The 

intersection of G( jw) and – 1/N(X) loci, corresponds to the possibility of a periodic oscillation (limit 

cycle) characterized by the value of X on the  – 1/N(X) locus, and the value of w on the G( jw) locus.

Figure 9.13a shows a G( jw) plot superimposed on a – 1/N(X) locus. The values of X, for which the

– 1/N(X) locus lies in the region to the right of an observer traversing the polar plot of G( jw) in the direction 

of increasing w, correspond to unstable conditions. Similarly, the values of X, for which the  –1/N(X) locus 

lies in the region to the left of an observer traversing the polar plot of G( jw) in the direction of increasing 

w, correspond to the stable conditions. The locus of  –1/N(X) and the polar plot of G( jw) intersect at the 

point A(w = w2, X = X2), which corresponds to the condition of limit cycle. The system is unstable for 

X < X2 and is stable for X > X2. The stability of the limit cycle can be judged by the perturbation 

technique described below.

Im Im
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G j( )-plotw
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– 1
( )N X
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Fig. 9.13 
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Suppose that the system is originally operating at A under the state of a limit cycle. Assume that a slight 

perturbation is given to the system, so that the input to the nonlinear element increases to X3, i.e., the 

operating point is shifted to B. Since B is in the range of stable operation, the amplitude of the input to 

the nonlinear element progressively decreases, and hence the operating point moves back towards A. 

Similarly, a perturbation which decreases the amplitude of input to the nonlinearity, shifts the operating 

point to C which lies in the range of unstable operation. The input amplitude now progressively increases 

and the operating point again returns to A. Therefore, the system has a stable limit cycle at A.

Figure 9.13b shows the case of an unstable limit cycle. For systems having G( jw) plots and – 1/N(X) loci 

as shown in Figs 9.14a and 9.14b, there are two limit cycles; one stable and the other unstable.

Describing function method usually gives sufficiently accurate information about stability and limit  

cycles. This analysis is invariably followed by a simulation study.

The transfer function G(s) in Fig. 9.12, when converted to state variable formulation, takes the form

 �x(t) = Ax(t) + bu(t); x(0) =D x0

 y(t) = cx(t)

where

 x(t) = n ¥ 1 state vector for nth order G(s);

 u(t) = input to G(s);

 y(t) = output of G(s); A = n ¥ n matrix; b = n ¥ 1 column matrix; and c = 1 ¥ n row matrix.

In Appendix A we use MATLAB Software SIMULINK to obtain response of nonlinear systems of the 

form given in Fig. 9.12 with zero reference input and initial state x0.
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Example 9.1

Let us investigate the stability of a with system on–off controller, shown in Fig. 9.15. Using the describing 

function of an on–off nonlinearity given in Table 9.2, we have

  - = -
1

4N E

E

( )

p  (9.18)

where E is the maximum amplitude of the sinusoidal signal e. Figure 9.16 shows the locus of – 1/N(E) 

as a function of E, and the plot of G( jw) for K = 5. Equation (9.17) is satisfied at A since the two graphs 

intersect at this point.

–

+ e

–1

1
u yr = 0

G( ) =s
K

s s( + 1)(0.1 + 1)2

Fig. 9.15 

The point of intersection on the G( jw) plot gives a numerical value w1 for the frequency of the limit cycle; 

whereas, the same point on the – 1/N(E) locus gives us the predicted amplitude E1 of the oscillation. As 

an observer traverses the G( jw) plot in the direction of increasing w, the portion O-A of the –1/N(E) 

locus lies to its right and the portion A-C lies to its left. Using the arguments presented previously, we 

can conclude that the limit cycle is a stable one.

Since – 1/N(E) is a negative real number, it is clear that intersection occurs at  – 180° phase angle. The 

frequency w1 that gives –G( jw1) = – 180° is 10.95 rad/sec. Furthermore, at point A

O
C

E

Re

Im

K = 5

K > 5
G j( )w

w

–1
( )N E

A E( , )1 w1

B E( , )2 w2

5

Fig. 9.16 Stability analysis of the system in Fig. 9.15
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 |G( jw1)| = -
1

1N E( )

At w1 = 10.95, |G( jw1)| = 0.206 and, therefore, (refer to Eqn. (9.18)).

 - =
1

41

1

N E

E

( )

p
 = 0.206

This gives E1 = 0.262.

The describing function analysis, thus predicts a limit cycle (sustained oscillation)

y(t) = – e(t) = – 0.262 sin 10.95t

For K > 5, the intersection point shifts to B (Fig. 9.16) resulting in a limit cycle of amplitude E2 > E1 and 

frequency w2 = w1. It should be observed that the system has a limit cycle for all positive values of 

gain K.

To gain some further insight into on–off control behavior and describing function analysis, let us modify 

the system of Fig. 9.15 by letting the linear portion be of second-order with

G(s) = 
5

1 0 1 1( )( . )s s+ +

Figure 9.17 shows the plot of G( jw) superimposed 

on the locus of – 1/N(E). The intersection of the two 

graphs is now impossible, since the phase angle of 

neither G( jw) nor – 1/N(E), can be more lagging than 

–180°. Describing function analysis thus seems 

to predict no limit cycling, whereas, the fact that 

the control signal u must be either +1.0 or –1.0 

dictates that the system oscillate. One possible 

interpretation to this analysis would be that the 

second-order linear system provides less of the low-

pass filtering assumed in the describing function 

method, than did the third-order system and thus 

the approximation has become inaccurate, to the 

point of predicting no limit cycle when actually 

one occurs. Another interpretation would be that 

the curves actually do ‘intersect’ at the origin, 

predicting a limit cycle of infinite frequency and infinitesimal amplitude. This latter interpretation, even 

though it predicts a physically impossible result, agrees with the rigorous mathematical solution of the 

differential equations: for some nonzero initial value of y, we find that y(t) oscillates about zero, with 

ever-decreasing amplitude and ever-increasing frequency. We will examine this solution on the phase 

plane in a later section.

Let us now modify the system of Fig. 9.15 by giving the controller a deadzone D, as shown in 

Fig. 9.18. The –1/N(E) locus for this type of controller is given by Fig. 9.8b. Plots of G( jw) for different 

values of K, superimposed on – 1/N(E) locus, are shown in Fig. 9.19. From this figure, we observe 

Im

5

Re

E

–1
( )N E

G j( )w

w

Fig. 9.17 
system with second–order plant 
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that for K = K1, the G( jw) plot crosses the 

negative real axis at a point to the right 

of – p D/2, such that no intersection takes 

place between the graphs of G( jw) and  

– 1/N(E), and therefore, no limit cycle 

results. With such a gain, the –1/N(E) 

locus lies entirely to the left of the G( jw) 

plot; the system is, therefore, stable, i.e., 

it has effectively positive damping. 

If the gain K is now increased to a value 

K2, such that the G( jw) plot intersects the  

–1/N(E) locus at the point A (i.e., on the 

negative real axis at –p D/2), then there 

exists a limit cycle. Now, suppose that the 

system is operating at the point A. Any 

increase in the amplitude of E takes the 

operating point to the left so that it is not 

enclosed by the G( jw) plot, which means 

that the system has positive damping. This 

reduces E till the operating point comes 

back to A. Any decrease in the amplitude 

of E again takes the operating point to the 

left of the G( jw) plot, i.e., the system has positive damping which further reduces E, finally driving the 

system to rest. Since random disturbances are always present in any system, the system under discussion 

cannot remain at A. Therefore, the limit cycle represented by A is unstable.

When the gain K is further increased to K3, the graphs of G( jw) and –1/N(E) intersect at two points B 

and C. By arguments similar to those advanced earlier, it can be shown that the point B represents an 

unstable limit cycle and C represents a stable limit cycle. It may be noted that though the points B and C 

lie at the same place on the negative real axis, they belong to different values of E/D.

It is also clear that limit cycling is predicted only for deadzone D smaller than the value given by

pD
2

 = |G( jw1)|

where w1 is the frequency at which the plot G( jw) intersects the negative real axis. A deadzone in on–off 

controllers appears to be a desirable feature to avoid limit cycling. However, as we shall see later in this 

chapter, a large value of D would cause the steady-state performance of the system to deteriorate.

Example 9.2

Figure 9.20a shows a block diagram for a servo system consisting of an amplifier, a motor, a gear train, 

and a load (gear 2 shown in the diagram includes the load element). It is assumed that the inertia of the 

gears and load element is negligible compared with that of the motor, and backlash exists between gear 

1 and gear 2. The gear ratio between gear 1 and gear 2 is unity.

Fig. 9.18 
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Fig. 9.19 Stability analysis of the system of Fig. 9.18
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Fig. 9.20 A servo system with backlash in gears

The transfer function of the amplifier-motor combination, is 

given by 5/s(s + 1) and the backlash amplitude is given as unity 

(H = 1).

From the problem statement, the block diagram of the system 

may be redrawn as shown in Fig. 9.20b. Let us investigate the 

stability of this system. The –1/N(X) locus for the backlash 

nonlinearity is given by Fig. 9.10 (Table 9.1). Plot of G( jw) 

superimposed on –1/N(X) locus is shown in Fig. 9.21. As seen 

from this figure, there are two intersections of the two loci. 

Applying the stability test for the limit cycle reveals that point 

A corresponds to a stable limit cycle and point B corresponds to 

an unstable limit cycle. The stable limit cycle has a frequency 

of 1.6 rad/sec and an amplitude of 2 (the unstable limit cycle 

cannot physically occur). To avoid limit-cycle behavior, the 

gain of the amplifier must be decreased sufficiently, so that the 

entire G( jw) plot lies to the left of –1/N(X) locus.

Note that checking for an intersection must be done graphi-

cally/numerically, since no analytical solution for limit-cycle 

amplitude or frequency is possible. A computer program that 

tabulates G( jw) and –1/N(X) is useful in searching for intersec-

tions and is not difficult to write. Once the general region of an 

intersection is found, we can use smaller increments of H/X and 

w to pinpoint the intersection, as accurately as we wish.

9.7

The free motion of any second-order nonlinear system can always be described by an equation of the 

form

 �� � � �y g y y y h y y y+ + =( , ) ( , ) 0  (9.19)

The state of the system, at any moment, can be represented by a point of coordinates ( , )y y�  in a system 

of rectangular coordinates. Such a coordinate plane is called a ‘phase plane’.

In terms of the state variables

 x y x y1 2= =, , �   (9.20a)

–1
( )N X

Re

Im
–1

1
X

B

A

G j( )w

w = 1.6

1
X

= 0.5

w

Fig. 9.21 Stability analysis of the 
system of Fig. 9.20
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second-order system (9.19) is equivalent to the following canonical set of state equations:

  

�

�

x
dx

dt
x

x
dx

dt
g x x x h x x x

1
1

2

2
2

1 2 2 1 2 1

= =

= = - -( , ) ( , )

 (9.20b)

By division, we obtain a first-order differential equation relating the variables x1 and x2:

 dx

dx

g x x x h x x x

x

2

1

1 2 2 1 2 1

2

= -
+( , ) ( , )  (9.21)

Thus, we have eliminated the independent variable t from the set of first-order differential equations given 

by (9.20b). In Eqn. (9.21), we consider x1 and x2 as independent and dependent variables, respectively.

For a given set of initial conditions {x1(0),x2(0)}, the solution to Eqn. (9.21) may be represented by a 

single curve in the phase plane, for which the coordinates are x1 and x2. The curve traced out by the state 

point {x1(t),x2(t)}, as time t is varied from 0 to , is called the phase trajectory, and the family of all 

possible curves for different initial conditions is called the phase portrait. Normally, a finite number of 

trajectories, defined in a finite region, is considered a portrait.

One may obviously raise the question that when time solutions x1(t) and x2(t), as time t is varied from 

0 to , may be obtained by direct integration of Eqns (9.20b) analytically or numerically, where is the 

necessity of drawing phase portraits? In fact, as we shall see, the phase portraits provide a powerful 

qualitative aid for investigating system behavior and the design of system parameters, to achieve a desired 

response. Furthermore, the existence of limit cycles is sharply brought into focus by the phase portrait.

Figure 9.22a shows the output response, and the corresponding phase trajectory, for a linear second-

order servo system described by the differential equation

��y + 2z �y + y = 0; y(0) = y0, �y(0) = 0, 0 < z < 1

In terms of the state variables x1 = y and x2 = �y, the system model is given by the equations

�x1 = x2; �x2 = –2z x2 – x1; x1(0) = y0, x2(0) = 0

The origin of the phase plane (x1 = 0, x2 = 0) is the equilibrium point of the system since, at this point, 

the derivatives �x1 and �x2 are zero (the system continues to lie at the equilibrium point unless otherwise 

disturbed). The nature of the transient can be readily inferred from the phase trajectory of Fig. 9.22; 

starting from the point P, i.e., with initial deviation but no initial velocity, the system returns to rest, i.e., 

to the origin, with damped oscillatory behavior.

Consider now the well-known Van der Pol’s differential equation (refer to Eqn. (9.1))

��y – m(1 – y2) �y + y = 0

which describes physical situations in many nonlinear systems. It terms of the state variables x1 = y and 

x2 = �y, we obtain

�x1 = x2; �x2 = m(1 – x1
2)x2 – x1

Origin of the phase plane is the equilibrium point of the system. Figure 9.23 shows phase portraits for  

(i) m > 0; and (ii) m < 0. In the case of m > 0, we observe that for large values of x1(0), the system response 
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is damped and the amplitude of x1(t) = y(t) decreases till the system state enters the limit cycle, as shown 

by the outer trajectory. On the other hand, if initially x1(0) is small, the damping is negative, hence 

the amplitude of x1(t) = y(t) increases till the system state enters the limit cycle, as shown by the inner 

trajectory. The limit cycle is a stable one, since the paths in its neighborhood converge towards the limit 

cycle. Figure 9.23 shows an unstable limit cycle for m < 0.

The phase plane for second-order systems is indeed a special case of phase space or state space defined 

for nth-order systems. Much work has been done to extend this approach of analysis to third-order 

systems. Though a phase trajectory for a third-order system can be graphically visualized through its 

projections on two planes, say (x1, x2) and (x2, x3) planes, this complexity causes the technique to lose 

its major power of quick graphical visualization of the total system response. The phase trajectories are, 

therefore, generally restricted to second-order systems only.

Stable
limit
cycle

Unstable
limit
cycle

x2 = yx2 = y

x1 = y x1 = y

(ii) m < 0(i) m > 0

Fig. 9.23 A second-order nonlinear system on the phase plane

For time-invariant systems, the entire phase plane is covered with trajectories with one, and only one, 

curve passing through each point of the plane, except for certain critical points through which, either  

infinite number or none of the trajectories pass. Such points (called singular points) are discussed later 

in Section 9.9.

0

y

t Pt4

t1

t3

t2

x2 = y

t = 0
x1 = yt4t3

t2

t1

y0

Fig. 9.22 A second-order linear system on the phase plane
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If the parameters of a system vary with time, or if a time-varying driving function is imposed, two or more 

trajectories may pass through a single point in a phase plane. In such cases, the phase portrait becomes 

complex and more difficult to work with and interpret. Therefore, the use of phase-plane analysis is 

restricted to second-order systems with constant parameters and constant or zero input. However, it 

may be mentioned that investigators have made fruitful use of the phase-plane method in investigating 

second-order time-invariant systems under simple time-varying inputs, such as ramp. Some simple time-

varying systems have also been analyzed by this method. Our discussion will be limited to second-order 

time-invariant systems with constant or zero input.

From the above discussion, we observe that the phase-plane analysis applies primarily to systems 

described by second-order differential equations. In the case of feedback control systems, systems of 

order higher than the second, are likely to be well filtered and tractable by the describing-function method  

discussed earlier in this chapter. The two methods of the phase plane and of the describing function are, 

therefore, complementary to a large extent; each being available for the study of the systems which are 

most likely to be beyond the scope of the other.

9.8 CONSTRUCTION OF PHASE PORTRAITS

Today, phase portraits are routinely computer-generated. However, of course (as, for example, in the case 

of root locus for linear systems), it is still practically useful to learn how to roughly sketch phase portraits 

or quickly verify the plausibility of computer outputs.

For some special nonlinear systems, particularly piecewise linear systems (whose  phase portraits can 

be constructed by piecing together the phase portraits of the related linear systems), phase portraits can 

be constructed analytically. Analytical methods are useful for systems modeled by differential equations 

that can be easily solved. If the system of differential equations cannot be solved analytically, we can 

use graphical methods. A number of graphical methods for constructing phase-plane trajectories are now 

available; we will describe in this section, the method of isoclines.

9.8.1

Most nonlinear systems cannot be easily solved by analytical techniques. However for piecewise linear 

systems, an important class of nonlinear systems, this method can be conveniently used, as shown in the 

following examples.

Example 9.3

In this example, we consider a model of a satellite shown in Fig. 7.3. We assume that the satellite is 

rigid and is in a frictionless environment. It can rotate about the reference axis as a result of torque T 

applied to the satellite about its mass center by firing the thrusters (T = Fd ). The system input is the 

applied torque T and the system output is the attitude angle q. The satellite’s moment of inertia is J. The 

input-output model of the system is 

 J
d

dt
T

2

2

q
=  (9.22a)
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We assume that when the thrusters fire, the thrust is constant; that is, T = A, a constant greater than or less 

than zero. In terms of output variable y (= q), we obtain the equation

 J ��y = A  (9.22b)

In terms of the state variables x1 = y and x2 = �y, the state equations become

 �x1 = x2; �x2 =  
A

J
 (9.22c)

Elimination of t by division, yields the equation of the trajectories:

 
dx

dx

2

1

 = 
A

Jx2

 (9.23)

or J x2 dx2 = A dx1

This equation is easily integrated; the general solution is

 x1(t) = 
Jx t

A

2
2

2

( )
 + C  (9.24a)

where C is a constant of integration and is determined by initial conditions, i.e.,

 C = x1(0) – 
Jx

A

2
2 0

2

( )
 (9.24b)

For an initial state point (x1(0), x2(0)), the trajectory is a parabola passing through the point x1 = C on the 

x1-axis where C is defined by Eqn. (9.24b).

A family of parabolas in the (x1, x2) plane is shown in Fig. 9.24a for A > 0. As time t increases, each 

trajectory is described in the clockwise direction, as indicated by the arrows. The direction of the phase 

trajectories is dictated by the relationship �x1 =  x2; x1 increases with time in the upper half of the phase 

plane and the state point, therefore, moves from left to right (Æ); in the lower half of the phase plane, x1 

decreases with time and the state point must, therefore, move from right to left (¨).

The time interval between two points of a trajectory is given by Dt = Dx1/x2av. The trajectories may be 

provided with a time scale by means of this equation. This operation is, however, often unnecessary since 

the phase portrait is mainly used to display the general features of the system transients.

Fig. 9.24 Phase potraits for system (9.22)
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The phase portrait for A < 0 is shown in Fig. 9.24b. In the special case of A = 0 (no driving torque), the 

integration of the trajectory equation (9.23) gives x2(t) = x2(0). The trajectories are, therefore, straight 

lines parallel to x1-axis.

Example 9.4

Consider now the equation

 J B T�� �q q+ =  (9.25a)

corresponding to a torque T driving a load comprising inertia J and viscous friction B. For a constant 

torque, the equation may be expressed as

  t �� �y y A+ =  (9.25b)

where y = q is the system output and A represents normalized torque; a constant greater than or less than 

zero. The equivalent system is

 �x1 = x2; t �x2 = A – x2  (9.25c)

Let us take a new variable z such that

A – x2 = z; dx2 = – dz

Eliminating the time variable by division, we obtain

1
11

t

dx

dz

A z

z

A

z
= -

-
= -

This first-order equation is readily integrated.

1

t
x1 = z – A ln z + C

or 
1

t
x1(t) = A – x2(t) – A ln(A – x2(t)) + C (9.26a)

where the constant of integration C is determined by the initial conditions, i.e.,

 C = 
1

t
x1(0) – A + x2(0) + A ln(A – x2(0))   (9.26b)

Therefore, the trajectory equation becomes

 
1

t
(x1 – x1(0)) = – (x2 – x2(0)) – A ln

A x

A x

-
-

Ê
ËÁ

ˆ
¯̃

2

2 0( )
 (9.26c)

The phase portrait is shown in Fig. 9.25a for A > 0.
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For the case of initial state point at the origin (x1(0) = x2(0) = 0), Eqn. (9.26c) reads

 
1

t
x1 = – x2 – A ln

A x

A

-Ê
ËÁ

ˆ
¯̃

2   (9.26d)

The phase trajectory described by this equation is shown in Fig. 9.25a as the curve G0. It is seen that the 

trajectory is asymptotic to the line x2 = A, which is the final velocity.

A

A

x y2 =

x y1 =

G0

K < 0 K = 0 K > 0

(a) > 0A (b) < 0A

x1

x2

Fig. 9.25 Phase portraits for system (9.25)

For an initial state point (x1(0), x2(0)), the trajectory will have the same shape as the curve G0, except 

that it is shifted horizontally—so that it passes through the point (x1(0), x2(0)). This is obvious from 

Eqn. (9.26c) which can be written as

 
1

t
(x1 – K) = – x2 – A ln

A x

A

-Ê
ËÁ

ˆ
¯̃

2

where K = x1(0) + t x2(0) + t A ln
A x

A

-Ê
ËÁ

ˆ
¯̃

2 0( )

For an initial state point (x1(0), x2(0)), the trajectory is G0, shifted horizontally by K units. The phase 

portrait for A < 0 is shown in Fig. 9.25b. In the special case of A = 0, the phase portrait consists of a 

family of straight lines of slope –1/t.

9.8.2

Consider a time-invariant second-order system described by equations of the form (refer to Eqns (9.20b))

 �x x1 2=  (9.27)

 
�x f x x2 1 2= ( , )
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The equation of the trajectories is

 dx

dx

f x x

x

2

1

1 2

2

=
( , )  (9.28)

At a point ( , )* *x x1 2  in the phase plane, the slope m* of the tangent to the trajectory can be determined 

from

 f x x

x
m

( , )* *

*

*1 2

2

=  (9.29)

An isocline is defined to be the locus of the points corresponding to a given constant slope m of the 

trajectories, on the phase plane. All trajectories passing through the points on the curve

 f (x1, x2) = mx2 (9.30)              

will have the same tangent slope m at the points on the curve; the curve, thus, represents an isocline 

corresponding to trajectories of slope m. All trajectories crossing this isocline will have tangent slope m 

at the points on the isocline.

The idea of the method of isoclines is to construct several isoclines and a field of local tangents m. Then, 

the trajectory passing through any given point in the phase plane, is obtained by drawing a continuous 

curve following the directions of the field.

Consider the Van der Pol equation (refer to Eqn. (9.1))

 �� �y y y y+ - + =m( )2 1 0  (9.31)

With x1 = y and and x2 = �y, the equation of the trajectories becomes 

dx

dx

x x x

x

2

1

1
2

2 1

2

1
=
- - -m( )

Therefore, the points on the curve

- - -
=

m( )x x x

x
m1

2
2 1

2

1

all have the same slope m. The isocline equation becomes

x
x

x m
2

1

1
2

=
- -( )m m

By taking m of different values, different isoclines can be obtained. Short line segments are drawn on 

the isoclines to generate a field of tangent directions. A trajectory starting at any point can be constructed  

by drawing short lines from one isocline to another at average slope corresponding to the two adjoining 

isoclines, as shown in Fig. 9.26.

Of course, the construction is much simpler if isoclines are straight lines.
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Example 9.5

The satellite in Example 9.3, is now placed in a feedback configuration in order to maintain the attitude 

q at  0°. This feedback control system, called an attitude control system, is shown in Fig. 9.27. When q 
is other than 0°, the appropriate thruster will fire to force q towards 0°. When q = x1 is greater than 0°, 

u (torque T) = –U, and the trajectories of Fig. 9.24b (corresponding to A < 0) apply. When q = x1 is less 

than 0°, u (torque T ) = U, and the trajectories of Fig. 9.24a (corresponding to A > 0) apply. Note that 

the switching of u occurs at x1 = 0. Thus the line x1 = 0 (the x2-axis) is called the switching line. From 

this discussion we see that Fig. 9.28a illustrates a typical trajectory for the system corresponding to the 

initial condition (x0
1, x0

2). The system response is thus a periodic motion. Figure 9.28b shows many closed 

curves for different initial conditions.

U

–U

Satellite

–

1
s

1
s

u t( )

x1x2

q = yq

Fig. 9.27 

m = 0

–3 –2 1 2 3

Initial point

2

–3

3

Field of
tangent
directions

Isocline

Trajectory

–2

m = –1

m = –1

m = 0

a = tan–1m

x2

x1

m = 1

Fig. 9.26 
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Switching
line

Each curve
parabolic

x2

( , )x x0
1

0
2

x1

x2

x1

(a) (b)

Fig. 9.28 Typical trajectories for the system of Fig. 9.27

By controlling the switching line in the phase plane, we can control the performance of the attitude 

control system. This simple control strategy leads to a robust nonlinear control structure: the variable 

structure sliding mode control. The details will follow later in this chapter.

In the following, we obtain the phase portrait of the closed-loop system of Fig. 9.27 using the method of 

isoclines. The purpose here is to illustrate the method of isoclines. 

The state equations are 

 
�x x1 2=

 
�x U x2 1= – sgn

where sgn
;

;
x

x

x
1

1

1

1 0

1 0
=

>
- <
È

Î
Í

Then m
dx

dx

U x

x
= =

-2

1

1

2

sgn

Suppose that U is normalized to a value of unity for convenience. Then 

  x
m

x2 1

1
= – sgn

For x1 > 0, sgn x1 = 1, and the isocline equation is 

 x
m

2

1
= - ; x1 > 0

For x1 < 0, sgn x1 = –1, and the isocline equation is

 x
m

2

1
= ; x1 < 0

Given in Fig. 9.29, is the phase plane showing the isoclines and a typical phase trajectory. Note the 

parabolic shape, as was determined analytically earlier in this example.
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Fig. 9.29 The isoclines and a typical trajectory for the system of Fig. 9.27

9.9 SYSTEM ANALYSIS ON THE PHASE PLANE

In the phase-plane analysis of nonlinear systems, two points should be kept in mind:

  Phase-plane analysis of nonlinear systems is related to that of linear systems because the local 

behavior of a nonlinear system can be approximated by a  linear system behavior.

  Yet, nonlinear systems can display much more complicated patterns on the phase plane, such as 

multiple equilibrium points, and limit cycles.

Consider a time-invariant second-order system described by equations of the form (refer to Eqns (9.27))

 �x x1 2= ; �x f x x2 1 2= ( , )  (9.32)

Elimination of independent variable t gives the equation of the trajectories of phase plane (refer to 

Eqn. (9.28)):

 
dx

dx

f x x

x

2

1

1 2

2

=
( , )

 (9.33)                                                            

In this equation, x1 and x2 are independent and dependent variables, respectively. Integration of the 

equation, analytically, graphically or numerically, for various initial conditions, yields a family of phase 

trajectories which displays the general features of the system transients.

9.9.1 Singular Points

Every point (x1, x2) of the phase plane has associated with it, the slope of the trajectory which passes 

through that point. The slope m at the point (x1, x2) is given by the equation

m = 
dx

dx

f x x

x

2

1

1 2

2

=
( ),
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With the function f (x1, x2) assumed to be single valued, there is usually a definite value for this slope 

at any given point in phase plane. This implies that the phase trajectories will not intersect. The only 

exceptions are the singular points at which the trajectory slope is indeterminate: 

 
dx

dx

f x x

x

2

1

1 2

2

0

0
= =

( ),
 (9.34a)

Many trajectories may intersect at such points. This indeterminacy of the slope accounts for the adjective 

‘singular’.

Singular points are very important features on the phase plane. Examination of the singular points can 

reveal a great deal of information about the properties of a system. In fact, the stability of linear systems 

is uniquely characterized by the nature of their singular points. For nonlinear systems, besides singular 

points, there may be more complex features such as limit cycles.

We need to know the following:

 (i) Where will the singular points be and how many will be there?

 (ii) What is  the behavior of trajectories  (i.e., the system) in  the vicinity of a singular point?

The first question is answered by our definition of the singular point. There will be singular points at all 

the points of the phase plane for which the slope of the trajectory is undefined. These points are given by 

the solution of the equations

 x2 = 0; f (x1, x2) = 0 (9.34b)   

Singular points of the nonlinear system (9.32), thus, lie on the x1-axis of the phase plane.

Since at singular points on the phase plane, � �x x1 2 0= = , these points, in fact, correspond to the equilibrium 

states of the nonlinear system. We know a nonlinear system often has multiple equilibrium states.

To determine the behavior of the trajectories in the vicinity of a singular point (equilibrium state of the 

nonlinear system), we first linearize the nonlinear equations at the singular point, and then determine the 

nature of  phase trajectories around the singular point by linear system analysis. If the singular point of 

interest is not at the origin, by defining the difference between the original state and the singular point 

as a new set of state variables, one can always shift the singular point to the origin. Therefore, without 

loss of generality, we can simply consider Eqns (9.32) with a singular point at 0. Using Taylor series 

expansion, Eqns (9.32) can be rewritten as

 �x = x2 

 �x2 = ax1 + bx2 + g2 (x1, x2) 

where g2  contains higher-order terms.

In the vicinity of the origin, the higher-order terms can be neglected and, therefore, the nonlinear system 

trajectories essentially satisfy the linearized equations

 �x1 = x2 

 �x2 = ax1 + bx2

Transforming these equations into a scalar second-order equation, we get

 
�� �x ax bx1 1 1= +

Therefore, we will simply consider the second-order linear system described by

  �� �y y yn n+ + =2 02zw w  (9.35a)
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The characteristic roots of this equation are assumed to be l1 and l2: 

�� �y y y s sn n+ + - -2 02
1 2zw w l l= =( ) ( )  (9.35b)

The corresponding canonical state model is

 �x1  = x2; �x2  = –2zwn x2 – w2
n x1   (9.35c)

and the differential equation of the trajectories is

 dx

dx

x x

x

n n2

1

2
2

1

2

2
=
- -zw w  (9.35d)

By inspection of this equation, it is easily seen that at x1 = x2 = 0, the slope dx2 /dx1 is indeterminate:

dx

dx

2

1

0

0
=

In the following, we discuss the behavior of the trajectories in the vicinity of this point with undefined 

slope (the singular point).

According to the values of l1 and l2, one is led to distinguish between the six types of singular points 

shown in Fig. 9.30. Let us examine each of these cases in detail.

Stable System with Complex Roots

 l1  = – a + jb , l2 = – a – jb; a > 0, b > 0

The response  y(t)  = C1e–a tsin(b t + C2) (9.36)

where the constants C1 and C2 are determined by the initial conditions.

(a) Stable focus (c) Center

(e) Unstable node (f) Saddle point(d) Stable node

(b) Unstable focus

x y1 =

x y2 =

x y2 =

x y1 =

x y2 =

x y1 =

x y2 =

x y1 =

x2 = l2 1x
x2 = l1 1x

x2 = l1 1xx2 = l2 1x

x y2 =

x y1 =

x y2 =

x y1 =

Fig. 9.30 Phase portraits for system (9.35)
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Using Eqn. (9.36), we can construct a phase portrait on the (x1, x2)-plane with x1 = y and x2 = �y. A typical 

phase trajectory is shown in Fig. 9.30a which is a logarithmic spiral into the singular point. This type of 

singular point is called a stable focus.

Unstable System with Complex Roots

 l1  = a + jb , l2 = a – jb ; a > 0, b > 0

The response  y(t)  = C1ea
 
t sin(b t + C2) (9.37)

The transient is an exponentially increasing sinusoid; the phase trajectory on the (x1 = y, x2 = �y)-plane is 

a logarithmic spiral expanding out of the singular point (Fig. 9.30b). This type of singular point is called 

an unstable focus.

Marginally Stable System with Complex Roots

 l1  = jb , l2 =  – jb; b > 0

The response  y(t)  = C1 sin(b t + C2) (9.38)

The phase trajectories are closed curves (elliptical), concentric with the singular point (Fig. 9.30c). This 

type of singular point is called a center, or a vortex.

Stable System with Real Roots

Assume that l1 and l2 are two real, distinct roots in the left half of the s-plane; l1 is the root with the 

smaller modulus. The response

 y(t) = C1 e tl1  + C2 e tl2   (9.39a)

It is an overdamped system. The phase portrait in the vicinity of the singular point on the (x1 = y, 

x2 = �y)-plane is shown in Fig. 9.30d. Such a singular point is called a stable node.

The phase portrait has two straightline trajectories, defined by the equations

 x2(t) = l1 x1(t); x2(t) = l2x1(t) (9.39b)

It can easily be verified that these trajectories satisfy the differential equation of the given system.

The transient term e tl2  decays faster than the term e tl1 . Therefore, as t increases indefinitely, 

x1 Æ C1 e tl1  Æ 0, and x2 Æ l1C1e tl1  Æ 0, so that all the trajectories are tangential at the origin to the 

straightline trajectory x2(t) = l1x1(t). The other straightline trajectory, x2(t) = l2 x1(t), is described only if 

the initial conditions are such that x2(0) = l2 x1(0). 

For stable systems with repeated real roots, the two straightline trajectories coalesce into a single 

trajectory, again with the slope determined by the root value.

Assume that l1 and l2 are two real distinct roots in the right half of the s-plane; l1 is the smaller root. 

The phase portrait in the vicinity of the singular point on the (x1 = y, x2 = �y )-plane is shown in Fig. 9.30e. 

Such a singular point is called an unstable node. 
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All trajectories emerge from the singular point and go to infinity. The trajectories are tangential at the origin 

to the straightline trajectory, x2(t) = l1x1(t).

 

The phase portrait in the vicinity of the singular point on the (x1 = y, x2 = �y)-plane is shown in Fig. 9.30f. 

Such a singular point is called a saddle.

There are two straightline trajectories with slopes defined by the root values. The straightline due to the 

negative root, provides a trajectory that enters the singular point, while the straightline trajectory due 

to the positive root, leaves the singular point. All other trajectories approach the singular point adjacent 

to the incoming straightline, then curve away and leave the vicinity of the singular point, eventually 

approaching the second straightline asymptotically.

Example 9.6

Consider the nonlinear system shown in Fig. 9.31. The nonlinear element is an on–off controller with 

deadzone whose characteristics are shown in Fig. 9.31.

u
1

–1

–1
1

e+

–

r = const y1
( + 1)s s

Fig. 9.31 

The differential equation governing the dynamics of the system is given by

 ��y  + �y  = u;  or  ��e  + �e  = – f (e) (9.40)

where  e = r – y; r is constant, and

  f(e) = 

+ >
- < <

- < -

Ï

Ì
Ô

Ó
Ô

1 1

0 1 1

1 1

;

;

;

e

e

e

Choosing the state variables x1 = e and x2 = �e , we obtain the following first-order equations:

�x1 = x2; �x2 = – x2 – f(x1)

These equations are same as Eqns (9.25c) with t = 1 and A = – f(x1).

The phase plane may be divided into three regions:

 (i) Region I (defined by x1 > 1): The trajectories in this region are given by the equation (refer to 

Eqn. (9.26c): t = 1, A = – 1)
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   x1 – x1(0) = – (x2 – x2(0)) + ln
1

1 0

2

2

+
+

Ê
ËÁ

ˆ
¯̃

x

x ( )
 (9.41a)

  The trajectories are asymptotic to the ordinate –1.

 (ii) Region II (defined by –1 < x1 < 1): The trajectories in this region are given by the equation (refer  to

Eqn. (9.26c): t = 1, A = 0)

   x1 – x1(0) = – (x2 – x2(0))   (9.41b)

  The trajectories are straightlines of slope –1.

 (iii)  Region III (defined by x1 < –1): The trajectories in this region are given by the equation (refer to 

Eqn. (9.26c): t = 1, A = 1)

 x1 – x1(0) = – (x2 – x2(0)) – ln
1

1 0

2

2

-
-

Ê
ËÁ

ˆ
¯̃

x

x ( )
 (9.41c)

The trajectories are asymptotic to the ordinate +1.

For a step input r = 3 and zero initial conditions, the initial point of the phase trajectory is located at P in 

Fig. 9.32. The figure also shows a phase trajectory, constructed using Eqns (9.41).

It is important to note that a small deadzone region is not always undesirable in on–off controllers. Let us 

investigate the behavior of the system of Fig. 9.31 using on–off with (no deadzone) as a controller. For 

such a controller, the width of region II (corresponding to deadzone) in the phase plane, reduces to zero. 

The phase trajectory of such a system with r = 3 is shown in Fig. 9.33 : e(t) oscillates about the origin, 

with ever-decreasing amplitude and ever-increasing frequency.

Comparison of Figs 9.32 and 9.33 reveals that deadzone in on–off controller characteristic helps to  

reduce system oscillations, thereby reducing settling time. However, the on–off controller with deadzone 

drives the system to a point within the deadzone width. A large deadzone would of course cause the 

steady-state performance of the system to deteriorate.

Region III

1

– 1

– 1

1 2 3

P

Region IRegion II

Deadzone

x2

x1

Fig. 9.32 A typical trajectory for the system in 
Fig. 9.31

–1

1

1 2 3

P x2

x2

Fig. 9.33 Phase trajectory for the system in 
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Example 9.7

Let us investigate the performance of a second-order position control system with Coulomb friction. 

Figure 9.34 is a model for a motor position servo with Coulomb friction on the motor shaft. The dynamics 

of the system is described by the following differential equation:

K e – Tc sgn ( )�y  = Jy��  + By�

where Tc is the Coulomb frictional torque.

r = const +

–

e +

–

y
K

y1
+Js B

Tc

1
s

Fig. 9.34 

For constant input r, �y = – �e  and ��y  = – ��e .

Therefore,

 J ��e  + B �e  + Tc sgn ( )�e  + Ke  = 0

or  
J

B
e e

T

B
e

K

B
ec�� � �+ + +sgn( )  = 0 (9.42)

Letting J/B = t, we get

 t �� � �e e
T

B
e

K

B
ec+ + +sgn( )  = 0  (9.43)

In terms of state variables

 x1 = e; x2 = �e

we get the following description of the system:

 �x1  = x2; t �x2  = - - -
K

B
x x

T

B
xc

1 2 2sgn( )   (9.44)

The singular points are given by the solution of the equations (refer to Eqns (9.34b))

0 = x2; 0 = - - -
K

B
x x

T

B
xc

1 2 2sgn( )

The solution gives

x1 = – 
T

K

c sgn(x2)

Thus, there are two singular points. Their location can be interpreted physically—they are at a value of 

e = x1, such that |Ke| = |Tc|, i.e., the drive torque is exactly equal to the Coulomb-friction torque. We note 

that both the singular points are on the x1-axis (x2 ∫ 0), and that the singular point given by x1 = Tc /K is 
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related to the lower-half phase plane (x2 negative), and the singular point given by x1 = – Tc /K is related 

to the upper-half phase plane (x2 positive).

Let us now investigate the stability of the singular points. For �e  > 0, Eqn. (9.43) may be expressed as

 t
d

dt
e

T

K

d

dt
e

T

K

K

B
e

T

K

c c c
2

2
+Ê

ËÁ
ˆ
¯̃
+ +Ê

ËÁ
ˆ
¯̃
+ +Ê

ËÁ
ˆ
¯̃  = 0  (9.45)

This is a linear second-order system with the singular point at (– Tc /K, 0) on the (e, �e)-plane. The 

characteristic equation of this system is given by

l2 + 
1

t
l

t
+

K

B
 = 0

Let us assume the following parameter values for the system under consideration:

 (K/B) = 5, t = 4 (9.46)

With these parameters, the roots of the characteristic equation are complex-conjugate with negative real 

parts; the singular point is, therefore, a stable focus (refer to Fig. 9.30a).

Let us now investigate the system behavior when large inputs are applied. Phase trajectories may be 

obtained by solving the following second-order differential equations for given initial state points (refer 

to Eqns (9.35b)–(9.36)).

Region I (defined by x2 > 0):

4 5 0 1 2 1�� � �z z z z x
T

K
x xc+ + = = + =; ;

Region II (defined by x2 < 0):

4 5 0 1 2 1�� � �z z z z x
T

K
x xc+ + = = =; ;–

Figure 9.35 shows a few phase trajectories. It is observed that for small as well as large inputs, the 

resulting trajectories terminate on a line along the x1-axis from – Tc/K to +Tc /K, i.e., the line joining the 

Tc /K

x2

– Tc /K
x1

Fig. 9.35 Phase portrait for the system in Fig. 9.34
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singular points. Therefore, the system with Coulomb friction is stable; however, there is a possibility of 

large steady-state error.

9.9.2 Limit Cycles

In the phase portrait of the nonlinear Van der Pol equation, shown in Fig. 9.26, one observes that there is 

a closed-curve in the phase portrait. Trajectories inside the curve—and those outside the curve—all tend 

to this curve, while a motion started on this curve will stay on it forever. This curve is an instance of the  

so-called ‘limit cycle’ phenomenon. Limit cycles are unique features of nonlinear systems.

On the phase plane, a limit cycle is defined as an isolated closed curve. The trajectory has to be both 

closed, indicating the periodic nature of motion, and isolated, indicating the limiting nature of the cycle 

(with neighboring trajectories converging to or diverging from it). Thus, while there are many closed 

curves in the satellite system in Example 9.5, these are not limit cycles because they are not isolated.

A limit cycle is stable if all trajectories in the vicinity of the limit cycle converge to it as t Æ  

(Fig. 9.23a). A limit cycle is unstable if all trajectories in the vicinity of the limit cycle diverge from it 

as  t Æ (Fig. 9.23b).

9.10 SIMPLE VARIABLE STRUCTURE SYSTEMS

The purpose of this section is to informally introduce the reader to variable structure sliding mode 

control systems. Formal introduction to sliding mode control will appear later in Section 10.5.

A variable structure system is a dynamical system, whose structure changes in accordance with the 

current value of its state. A variable structure system can be viewed as a system composed of independent 

structures, together with a switching logic between each of the structures. With appropriate switching 

logic, a variable structure system can exploit the desirable properties of each of the structures the system 

is composed of. Even more, a variable structure system may have a property that is not a property of any 

of its structures. We illustrate the above ideas with two numerical examples.

Example 9.8

We consider a double integrator model

 ��e u= –  (9.47)

having two structures corresponding to u = –1 and u = +1 (refer to Fig. 9.36).

r = const +

–

e
Switching
function

s

1

–1

u ys ( , )e e 1

s2

Fig. 9.36 A simple variable structure system
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Choosing x1 = e and  x2 = �e  as state variables, we have

 �x x1 2=  (9.48)

 �x2 = - u  

The trajectories corresponding to the structure u = –1 are given by (refer to Eqns (9.24))

 x t x t x x1
1
2 2

2
1

1
2 2

20 0( ) ( ) ( ) ( )= + -  (9.49a)

and the trajectories corresponding to the structure u = +1 are given by

 x t x t x x1
1
2 2

2
1

1
2 2

20 0( ) ( ) ( ) ( )= - + +  (9.49b) 

The phase-plane portraits of the two structures are shown in Figs 9.37a and 9.37b; the individual 

structures are families of parabolas. Neither of the structures is asymptotically stable; each structure is 

unstable. However, by choosing a suitable switching logic between the two structures, we can make the 

resulting variable structure system, asymptotically stable.

Suppose the structure of the system is changed at any time the system’s trajectory crosses the vertical 

axis of the state plane, that is,

 u = 
+ >

- <

Ï
Ì
Ó

1 0

1 0

1

1

if

if

x

x
   (9.50)

A phase portrait of the system (9.48) with the switching logic specified by (9.50) is shown in Fig. 9.37c; 

the system always enters into a limit cycle (In fact, we are familiar with the switching function given by 

(9.50); it is on–off switching.

To achieve asymptotic stability, we redesign the switching logic. We note that one trajectory of each 

family in Figs 9.37a and 9.37b goes through the origin. Segments A-O and B-O of these two trajectories 

terminating at the origin form the curve shown by the thick line in Fig. 9.38.

B

O

A

O

(c)(a) = – 1u
(b) = + 1u

a < 0
a = 0
a > 0

b > 0
b = 0

b < 0

x2

u = –1 u = +1

x2

x1

x1

x1

x2

a = (0) –x1
x
2
2(0)

2

x
2
2(0)

2
b = (0) +x1

Fig. 9.37 Phase trjectories for the system of Fig. 9.36
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The following switching logic seems to give an optimal control performance.

 (i) If the initial state point lies at P1 on 

the segment A-O (Fig. 9.38), the 

state point (x1(t), x2(t)) is driven 

to the origin along a segment of a 

parabola corresponding to u = +1.

 (ii) If the initial point lies at P2 on 

the segment B-O (Fig. 9.38), the 

state point (x1(t), x2(t)) is driven 

to the origin along a segment of a 

parabola corresponding to u = –1.

 (iii) If the initial state point lies above 

or below the curve A-O-B, then 

only one switching is required to 

drive the state point to the origin. 

Consider the initial state point at 

P3, which is above the curve A-O-B 

(Fig. 9.38). The state point (x1(t), x2(t)) follows a parabola corresponding to u = +1 till it reaches 

the segment B-O. This is followed by switching of the control to –1, and driving of the state point 

to the origin along B-O with u = –1.  

 (iv) Consider the initial point at P4, which is below the curve A-O-B (Fig. 9.38). The state point 

(x1(t), x2(t)) follows a parabola corresponding to u = –1 till it reaches the segment A-O. This is 

followed by switching of the control to +1, and driving of the state point to the origin along A-O with 

u = +1.

 The double integrator model with the switching strategy described above is in fact an on–off closed-loop 

control system shown in Fig. 9.36, in which the controller is actuated by a signal which is a function 

s e e, �( ) of the error and its first derivative. The differential equation describing the dynamics of the 

system is given by

 �� ��y u e u= = -or  (9.51a) 

where e = r – y; r is constant, x1 = e and x2 = �e are state variables and 

 u = 
+ >
- <
Ï
Ì
Ó

1 0

1 0

1 2

1 2

; ( , )

; ( , )

s

s

x x

x x
  (9.51b)

It is also clear from Fig. 9.38 that, for all initial conditions, the state point is driven to the origin along 

the shortest-time path with no oscillations (the output reaches the final value in minimum time with no 

ripples, and stays there; this type of response is commonly called a deadbeat response). Such bang-bang 

control systems provide optimal control (minimum-time control) [105].

The equation of optimal switching curve A-0-B can be obtained from Eqns (9.49) by setting (refer to 

Fig. 9.37)

x
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Fig. 9.38 
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This gives  x t x t x t1
1
2 2 2( ) ( ) ( )= -   (9.52a)

Let us define the switching function s s( , ) ( , )e e x x� = 1 2 as 

  s ( , ) ( ) ( ) ( )x x x t x t x t1 2 1
1
2 2 2= +  (9.52b)

s (x1, x2) > 0 implies that the state point (x1, x2) lies above the curve A-O-B. s (x1, x2) = 0 and x2 > 0 

implies that the state point (x1, x2) lies on the segment A-O. s (x1, x2) = 0 and x2 < 0 implies that the state 

point (x1, x2) lies on the segment B-O. s (x1, x2) < 0 implies that the state point (x1, x2) lies below the 

segment A-O-B.

In terms of the optimal switching function s (x1, x2), the control law becomes

 u(t) = 

+ >
- <
- <

1 0

1 0 0

1 0

1 2

1 2 2

1 2

when

when = and

when

s

s

s

( , )

( , ) ( )

( , )

x x

x x x t

x x

++ >

Ï

Ì
Ô
Ô

Ó
Ô
Ô 1 0 01 2 2when = ands ( , ) ( )x x x t

                            (9.53)

The optimal switching may be realized by a computer. It accepts the state point (x1, x2) and computes 

the switching function given by Eqn. (9.52b). It then manipulates the on–off controller to produce the 

optimal control components according to Eqn. (9.53).

Example 9.9

In this example, we discuss a suboptimal method of switching the on–off controller in Fig. 9.36. The 

advantage of the method described below, is that implementation of the switching function is simple. The 

cost paid is in terms of increase in settling time compared to the optimal solution.

Consider the following suboptimal switching function:

s ( , )e e e K eD� �= +

The system equations now become

�� �e u u e K eD= = sgn +- ; ( ) 
In the state variable form ( , )x e x e1 2= = � ,

� �x x x x K xD1 2 2 1 2= = - +; ) sgn(

The phase plane is divided into two regions by the switching line 

 x1 + KD x2 = 0 (9.54)

The trajectory equation for the region defined by x1 + KD x2 < 0, is (refer to Eqn. (9.49a))

x t x t x x1
1
2 2

2
1

1
2 2

20 0( ) ( ) ( )= + - ( )
and the trajectory equation for the region defined by x1 + KD x2 > 0, is (refer to Eqn. (9.49b))

x t x t x x1
1
2 2

2
1

1
2 2

20 0( ) ( ) ( ) ( )= - + +
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In each half of the phase plane 

separated by the switching line 

(9.54), the system trajectories would 

be parabolas. Assume that the system 

under consideration starts with initial 

conditions corresponding to point A 

in Fig. 9.39. The on–off controller 

switches when the representative point 

reaches B. By geometry of the situation, 

we see that the trajectory resulting 

from the reversal of the drive at point 

B, will bring the representative point 

on a parabola passing much closer to 

the origin. This will continue until the 

trajectory intersects the switching line 

at a point closer to the origin than the 

points A1 and A2 which are points of 

intersection of the switching line with 

parabola passing through the origin. In 

Fig. 9.39, point C corresponds to this situation. Here, an instant after the on–off controller is switched, 

the system trajectory will recross the switching line and the on–off controller must switch back. The on–

off controller will, thus, chatter while the system stays on the switching line. In a second-order system, 

the chattering frequency will be infinite and amplitude will be zero; the representative point, thus, slides 

along the switching line. It can easily be verified that with KD = 0 (on–off controller switching on the 

vertical axis), the system always enters into a limit cycle. The switching process given by the switching 

line (9.54) has, thus, converted the oscillating system into an asymptotically stable one; though the goal 

has been achieved in a suboptimal way.

9.11 LYAPUNOV STABILITY DEFINITIONS

The general state equation for a nonlinear system can be expressed as

 �x = f(x(t), u(t), t); x(t0) =D x
0  (9.55)

where x is the n ¥ 1 state vector, u is the p ¥ 1 input vector, and

f (·) = 

f

f

fn

1

2

( )

( )

( )

◊
◊

◊

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

�

is the n ¥ 1 function vector.

Suppose that all the states of the system (9.55) settle to constant values (not necessarily zero values) for 

a constant input vector u(t) = uc. The system is then said to be in an equilibrium state corresponding to 

A
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Slope = –

Region II

x2

x1

A1

A2

1
KD

Region I

x K x+ < 021 D

u = –1
x K x+ > 021 D

u = + 1

Fig. 9.39 
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the input uc. The state trajectories converge to a point in state space, called the equilibrium point. At this 

point, no states vary with time. Thus, we have the following definition of equilibrium point (equilibrium 

state).

If for any constant input vector u(t) = uc, there exists a point x(t) = xe = constant in state space, such that 

at this point �x (t) = 0 for all t, then this point is called an equilibrium point of the system corresponding 

to the input uc. Applying this definition to the system (9.55), any equilibrium point must satisfy

 f(xe, uc, t) = 0  for all t (9.56)

The number of solutions depends entirely upon the nature of f (·) and no general statement is possible.

Example 9.10

Consider the nonlinear system described by the state equations:

 �x1 = x2

 �x2 = – x1 – x2
1
 – x2

The equilibrium states of this system are given by the solutions of the following set of equations (refer 

to Eqn. (9.56)):

 �xe
1 = x2

e = 0

 �xe
2 = – x1

e  – (x1
e)2 – x2

e = 0

From the first equation, x2
e is equal to zero. From the second equation,

(x1
e)2 + x1

e = x1
e(x1

e + 1) = 0

which has the solutions x1
e = 0 and x1

e = – 1. Thus, there are two equilibrium states, given by

x
e1 = 

0

0

È

Î
Í
˘

˚
˙ ,  xe2 = 

-È

Î
Í

˘

˚
˙

1

0
 

In the stability analysis of a system, we are usually concerned with the following two notions of stability:

 (i) when a relaxed system (x(t0) = 0) is excited by a bounded input, the output must be bounded; and 

 (ii) in an unforced system (u = 0) with arbitrary initial conditions, the system state must tend towards 

the equilibrium point in state space.

We have seen earlier in Chapter 5 that the two notions of stability defined above are essentially equivalent 

for linear time-invariant systems.

Unfortunately in nonlinear systems, there is no definite correspondence between the two notions. Most 

of the important results obtained, thus far, concern the stability of nonlinear autonomous2 systems:

 �x(t) = f(x(t));  x(t0) =D x0  (9.57)

in the sense of second notion above.

 2 An unforced (i.e., u = 0) and time-invariant system is called an autonomous system.
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It may be noted that even for this class of systems, the concept of stability is not clear cut. The linear 

autonomous systems have only one equilibrium state (the origin of the state space), and their behavior 

about the equilibrium state completely determines the qualitative behavior in the entire state space. In 

nonlinear systems, on the other hand, system behavior for small deviations about the equilibrium point 

may be different from that for large deviations. Therefore, local stability does not imply stability in the 

overall state space, and the two concepts should be considered separately.

Secondly, the set of nonlinear equations (refer to Eqns (9.56)–(9.57)),

 f(xe) = 0  (9.58)

may result in a number of solutions (equilibrium points). Due to the possible existence of multiple 

equilibrium states, the system trajectories may move away from one equilibrium state to the other as time 

progresses. Thus, it appears that in the case of nonlinear systems, it is simpler to speak of system stability 

relative to the equilibrium state rather than using the general term ‘stability of a system’.

We shall confine our attention to nonlinear autonomous systems described by state equation of the form

 �x(t) = f(x(t)); f(0) = 0; x(0) =D x0  (9.59)

Note that the origin of the state space has been taken as the equilibrium state of the system. There is no 

loss in generality in this assumption, since any nonzero equilibrium state can be shifted to the origin by 

appropriate transformation. Further, we have taken t0 = 0 in Eqn. (9.59), which is a convenient choice 

for time-invariant systems.

For nonlinear autonomous systems, local stability may be investigated through linearization in the 

neighborhood of the equilibrium point. The validity of determining the stability of the unperturbed 

solution near the equilibrium points from the linearized equations was developed independently by 

Poincaré and Lyapunov in 1892. Lyapunov designated this as the first method. This stability determination 

is applicable only in a small region near the equilibrium point.

The region of validity of local stability is generally not known. In some cases, the region may be too small 

to be of any use practically; while in others the region may be much larger than the one assumed by the 

designer—giving rise to systems that are too conservatively designed. We, therefore, need information 

about the domain of stability. The ‘second method of Lyapunov’ (also called the ‘direct method of 

Lyapunov’) is used to determine stability in-the-large. We first present direct method of Lyapunov; the 

linearization method is described in Section 9.14.

The concept of stability formulated by Russian mathematician A.M. Lyapunov is concerned with the 

following question:

If a system with zero input is perturbed from the equilibrium point xe at t = 0, will the state x(t) return to 

x
e, remain ‘close’ to xe, or diverge from xe?

Lyapunov stability analysis is, thus, concerned with the boundedness of the free (unforced) response of 

a system. The free response of a system is said to be stable in the sense of Lyapunov at the equilibrium 

point xe if, for every initial state x(t0) which is sufficiently close to xe, x(t) remains near xe for all t. It is 

asymptotically stable at xe if x(t), in fact, approaches xe as t .

In the following, we give mathematically precise definitions of different types of stability with respect to 

the system described by Eqn. (9.59).
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The system described by Eqn. (9.59) is stable in the sense of Lyapunov at the origin if, for every real 

number e > 0, there exists a real number d(e) > 0 such that ||x(0)|| < d results in ||x(t) ||  < e for all t ≥ 0.

This definition uses the concept of the vector norm. The Euclidean norm for a vector with n components 

x1, x2, . . ., xn is (refer to Eqn. (5.6a))

||x|| = (x1
2  + x2

2 + � + xn
2)1/2

||x|| £ R defines a hyper-spherical region S(R) of radius R, surrounding the equilibrium point xe = 0. 

In terms of the Euclidean norm, the above definition of stability implies that for any S(e) that we may 

designate, the designer must produce S(d) so that the system state, initially in S(d), will never leave S(e). 

This is illustrated in Fig. 9.40a.

0 0

S( )d

S( )e

S( )e S( )d

x( )t

x(0) x(0)

(a) (b)

Fig. 9.40 

Note that this definition of stability permits the existence of continuous oscillation about the equilibrium 

point. The state-space trajectory for such an oscillation is a closed path. The amplitude and frequency of 

the oscillation may influence whether it represents acceptable performance.

Example 9.11

Consider a linear oscillator described by the differential equation

��y(t) + w2 y(t) = 0

where w is the frequency of oscillations.

Define the state variables as

x1(t) = y(t), x2(t) = �y(t)

This gives the state equations

 �x1(t)  = x2(t)

 �x2(t)  = – w2 x1(t)
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From these equations, we obtain the following 

equation for state trajectory:

dx

dx

x

x

2

1

2 1

2

= - w   or   x2
2 + w2 x1

2 = c2; c = constant

Several state trajectories for various values of c, 

corresponding to various initial conditions of x1 and 

x2, are shown in Fig. 9.41. For a specified value of e, 

we can find a closed state trajectory whose maximum 

distance from the origin is e. We then select a value of 

d which is less than the minimum distance from that 

curve to the origin. The d (e) so chosen, will satisfy 

the conditions that guarantee stability in the sense of Lyapunov.

The system (9.59) is asymptotically stable at the origin if

 (i) it is stable in the sense of Lyapunov, i.e., for each S(e) there is a region S(d ) such that trajectories, 

starting within S(d ), do not leave S(e) as t ; and 

 (ii) each trajectory starting within S(d ) converges to the origin as t  (Fig. 9.40b).

Local and Global Stability

The definitions of asymptotic stability and stability in the sense of Lyapunov apply in a local sense 

(stability in-the-small) if the region S(d ) is small. When the region S(d ) includes the entire state space, 

the definitions of asymptotic stability and stability in the sense of Lyapunov are said to apply in a global 

sense (stability in-the-large).

9.12 LYAPUNOV STABILITY THEOREMS

The Lyapunov stability analysis is based upon the concept of 

energy, and the relation of stored energy with system stability. 

We first give an example to motivate the discussion.

Consider the spring-mass-damper system of Fig. 9.42. The 

governing equation of the system is 

 �� �x Bx Kx1 1 1+ +  = 0

A corresponding state variable model is

 �x1 = x2

 �x2  = – Kx1 – Bx2  
(9.60)

At any instant, the total energy V in the system consists of the kinetic energy of the moving mass, and the 

potential energy stored in the spring.

x1

x2

Fig. 9.41 State trajectories

B

K

x1

M = 1

Fig. 9.42 A spring-mass-damper 
system
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 V(x1, x2) = 
1
2 2

2 1
2 1

2x Kx+  (9.61)

Thus  V(x)  > 0  when x π 0

 V(0)  = 0

This means that the total energy is positive unless the system is at rest at the equilibrium point xe = 0, 

where the energy is zero.

The rate of change of energy is given by

 �V x x( , )1 2  =  
d

dt
V x x

V

x

dx

dt

V

x

dx

dt
Bx( , )1 2

1

1

2

2
2
2= + = -

∂

∂

∂

∂
 (9.62)

Case I: Positive Damping (B > 0)

Let (x1
0, x2

0) be an arbitrary initial state of the system of Fig. 9.42. The solution of the differential equations 

(9.60) corresponding to this initial state, gives the state trajectory x(t) for t > 0. Since the linear system 

(9.60) is stable under the condition of positive damping, x(t) 0 as t .

Let us study the relation of stored energy with system stability. The initial energy in the system is

V(x1
0, x2

0) = 1
2
 (x2

0)2 + 1
2
 K(x1

0)2

As per Eqn. (9.62), the rate of change of energy is negative and, therefore, system energy V(x1, x2) 

continually decreases along the trajectory x(t), t > 0. There is only one exception; when the representative 

point x(t) of the trajectory reaches x2 = 0 points in the state plane, the rate of change of energy becomes 

zero. However, as seen from Eqns (9.60), �x2 = – Kx1 at the points where x2 = 0. The representative 

point x(t), therefore, cannot stay at the points in the state plane where x2 = 0 (except at the origin). It 

immediately moves to the points at which the rate of change of energy is negative and the system energy, 

therefore, continually decreases from its initial value V(x1
0, x2

0) along the trajectory x(t), t > 0, till it 

reaches a value V = 0 at the equilibrium point xe = 0.

A visual analogy may be obtained by considering the surface

 V(x1, x2) = 1
2
 x2

2  + 1
2
 Kx1

2 (9.63)

This is paraboloid (a solid generated by rotation of parabola about its axis of symmetry) surface as 

shown in Fig. 9.43. The value V(x1, x2) = ki (a constant) is represented by the intersection of the surface 

V(x1, x2) and the plane z = ki. The projection of this intersection on the (x1, x2)-plane is a closed curve, an 

oval, around the origin. There is a family of such closed curves in the (x1, x2)-plane for different values of 

ki. The closed curve corresponding to V(x1, x2) = k1, lies entirely inside the closed curve corresponding to 

V(x1, x2) = k2 if k1 < k2. The value V(x1, x2) = 0 is the point at the origin. It is the innermost curve of the 

family of closed curves, representing different levels on the paraboloid for V(x1, x2) = ki.

If one plots a state-plane trajectory starting from the point (x1
0, x2

0), the representative point x(t) crosses 

the ovals for successively smaller values of V(x1, x2), and moves towards the point corresponding to 

V(x1, x2) = 0, which is the equilibrium point. Figure 9.43 shows a typical trajectory.



 Nonlinear Systems Analysis 615

Note also that V(x) given by Eqn. (9.63) is radially unbounded 
3, i.e., V(x)  as || x || . The ovals 

on the (x1, x2)-plane extend over the entire state plane and, therefore, for any initial state x0 in the entire 

state plane, the system energy continually decreases from the value V(x0) to zero.

Case II: Zero Damping (B = 0)

Under the condition of zero damping, Eqns (9.60) become

 �x = Ax

with A = 
0 1

0-
È

Î
Í

˘

˚
˙

K

The eigenvalues of A lie on the imaginary axis in the complex plane; the system response is, therefore, 

oscillatory in nature.

From Eqn. (9.62) we observe that when B = 0, the rate of change of energy �V (x1, x2) vanishes identically 

along any trajectory; the system energy V(x1, x2) = V(x1
0, x2

0) for all t ≥ 0. The representative point x(t) 

cannot cross the V-contours in Fig. 9.43; it simply moves along one of these contours.

In the example given above, it was easy to associate the energy function V with the given system. 

However, in general, there is no obvious way of associating an energy function with a given set of 

equations describing a system. In fact, there is nothing sacred or unique about the total energy of the 

system which allows us to determine system stability in the way described above. Other scalar functions 

of the system state can also answer the question of stability. This idea was introduced and formalized by 

the mathematician A.M. Lyapunov. The scalar function is now known as the Lyapunov function and the 

method of investigating stability using Lyapunov’s function is known as the Lyapunov’s direct method.

V k= 1

V k= 2

V k= 3

V k= 3

V k= 2

V k= 1

x2

x1

x2

x1

k1 < <k k2 3

t1 < <t t2 3

z V= ( )x

(a) (b)

t1

t2

t3

( , )x x0
1

0
2

Fig. 9.43 

 3 Use of the norm definition given by Eqn. (5.6b) immediately proves this result. 
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In Section 5.2, we introduced the concept of sign definiteness of scalar functions. Let us examine here 

the scalar function V(x1, x2, ..., xn) =D V(x) for which V(0) = 0 and the function is continuous in a certain 

region surrounding the origin in state space. Due to the manner in which these V-functions are used 

later, we define the sign definiteness with respect to a region around the origin represented as ||x|| £ K 

(a positive constant) where ||x|| is the norm of x.

A scalar function V(x) is said to be positive 

definite in the region ||x||  £ K (which includes the origin of the state space), if V(x) > 0 at all points of the 

region except at the origin, where it is zero.

A scalar function V(x) is said to be negative 

definite if [ – V(x)] is positive definite.

A scalar function V(x) is said to be positive 

semidefinite in the region ||x || < K, if its value is positive at all points of the region except at finite number 

of points, including origin, where it is zero. 

A scalar function V(x) is said to be 

negative semidefinite if [ – V(x)] is positive semidefinite.

A scalar function V(x) is said to be indefinite in the region 

||x|| < K, if it assumes both positive and negative values, within this region.

For all x in the state plane:

 (i) V(x) = x2
1 + x2

2 is positive definite;

 (ii) V(x) = (x1 + x2)2 is positive semidefinite;

 (iii) V(x) = – x2
1 – (x1 + x2)2 is negative definite; and

 (iv) V(x) = x1x2 + x2
2 is indefinite.

An important class of scalar functions is a quadratic form:

V(x) = xT
Px

where P is a real, symmetric constant matrix. In this form, the definiteness of V is usually attributed to 

P. We speak of the positive (negative) definite and the positive (negative) semidefinite P depending upon 

the definiteness of V(x) = xT
Px.

Tests for checking definiteness of a matrix were described in Section 5.2. We consider an example here:

P = 

10 1 2

1 4 1

2 1 1

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

As per Sylvester’s test, the necessary and sufficient condition for P to be positive definite is that all the 

successive principal minors of P be positive.
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Applying Sylvester’s test to the given P, we obtain

 10  > 0

  
10 1

1 4
  > 0

 

10 1 2

1 4 1

2 1 1

-
-

- -
 > 0

Since all the successive principal minors of the matrix P are positive, V(x) = xT
Px is a positive definite 

function.

In the following, we state, without proof, the basic Lyapunov stability results. For proof refer to [105].

For the autonomous system (9.59), sufficient conditions of stability are as follows:

Suppose that there exists a scalar function V(x) which, for some real number e > 0, satisfies the following 

properties for all x in the region ||x|| £ e :

 (i) V(x) > 0; x π 0  

 (ii) V(0) = 0   

¸
˝
˛   

(i.e., V(x) is positive definite function)

 (iii) V(x) has continuous partial derivatives with respect to all components of x.

  Then the equilibrium state xe = 0 of the system (9.59) is

 (iva) asymptotically stable if �V(x) < 0, x π 0, i.e., �V(x) is a negative definite function; and

 (ivb) asymptotically stable in-the-large if �V(x) < 0, x π 0, and in addition V(x)  as ||x|| 

Example 9.12

Consider a nonlinear system described by the equations

 �x1  = x2 – x1(x2
1
 + x2

2) (9.64)

 �x2  = – x1 – x2(x2
1 + x2

2) 

Clearly, the origin is the only equilibrium state.

Let us choose the following positive definite scalar function as a possible Lyapunov function:

 V(x) = x2
1
 + x2

2 (9.65)

Time derivative of V(x) along any trajectory, is given by

 �V (x)  = 
dV x x

dt

V

x

dx

dt

V

x

dx

dt

( , )1 2

1

1

2

2= +
∂

∂

∂

∂

  = 2x1�x1 + 2x2 �x2 = –2(x2
1 + x2

2)2 (9.66)

which is negative definite. This shows that V(x) is continually decreasing along any trajectory; hence 

V(x) is a Lyapunov function. By Theorem 9.1, the equilibrium state (at the origin) of the system (9.64) 

is asymptotically stable.
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Further, V(x)  as ||x|| , i.e., V(x) becomes infinite with infinite deviation from the equilibrium 

state. Therefore, as per condition (ivb) of Theorem 9.1, the equilibrium state of the system (9.64) is 

asymptotically stable in-the-large. 

Although Theorem 9.1 is a basic theorem of Lyapunov stability analysis, it is somewhat restrictive  

because �V (x) must be negative definite. This requirement can be relaxed to �V (x) £ 0 (a negative 

semidefinite �V (x)) under proper conditions. This relaxed requirement is sufficient if it can be shown that 

no trajectory can stay forever at the points or on the line other than the origin, at which �V (x) = 0. This is 

the case for the system of Fig. 9.42 as described at the beginning of this section.

If, however, there exists a positive definite function V(x) such that �V (x) is identically zero along a 

trajectory, the system will remain in that trajectory and will not approach the origin. The equilibrium 

state at the origin, in this case, is said to be stable in the sense of Lyapunov.

Theorem 9.2 For the autonomous system (9.59), sufficient conditions of stability are as follows.

Suppose that there exists a scalar function V(x) which, for some real number e > 0, satisfies the following 

properties for all x in the region ||x|| £ e:

( ) ( ) ;

( ) ( )
( , ( )

i

ii
i.e is positive definite fu

V

V
V

x x 0

0
x

> π

=

¸
˝
˛

0

0
nnction)

 (iii) V(x) has continuous partial derivatives with respect to all components of x.

  Then the equilibrium state xe = 0 of the system (9.59) is

 (iva) asymptotically stable if �V (x) < 0,  x π 0, i.e., �V (x) is a negative definite function; or if 
�V (x) £ 0 (i.e., �V (x) is negative semidefinite) and no trajectory can stay forever at the points or on 

the line other than the origin, at which �V (x) = 0;

 (ivb) asymptotically stable in-the-large if conditions (iva) are satisfied, and in addition V(x)  as 

||x|| and

 (ivc) stable in the sense of Lyapunov if �V (x) is identically zero along a trajectory.

Example 9.13

Consider the linear feedback system shown 

in Fig. 9.44 with r(t) = 0. We know that the 

closed-loop system will exhibit sustained 

oscillations.

The differential equation for the error signal 

is

 ��e + a 2e = Ky = – Ke

Taking e and �e as state variables x1 and x2, respectively, we obtain the following state equations:

 �x1 = x2 
(9.67)

 �x2 = – (K + a 2)x1

ye+

–

r = 0 K

s2 + a
2

G( ) =s

Fig. 9.44 Linear feedback system



 Nonlinear Systems Analysis 619

Let us choose the following scalar positive definite function as a possible Lyapunov function:

 V(x) = x2
1 + x2

2  (9.68)

Then �V (x) becomes

�V (x) = 2x1 �x1 + 2x2 �x2 = 2[1 – (K + a 2)]x1x2

�V (x) is indefinite. This implies that V(x), given by Eqn. (9.68), is not a Lyapunov function and stability 

cannot be determined by its use (the system is known to be stable in the sense of Lyapunov as per the 

stability definition given in Section 9.11).

We now test

 V(x) = p1x2
1 + p2 x

2
2; p1 > 0, p2 > 0

for Lyapunov properties. Conditions (i)–(iii) of Theorem 9.2 are obviously satisfied.

 �V (x) = 2p1x1x2 – 2p2(K + a 2)x1x2

If we set p1 = p2(K + a 2),  �V (x) = 0 and, as per Theorem 9.2, the equilibrium state of the system (9.67) 

is stable in the sense of Lyapunov.

Example 9.14

Reconsider the system of Fig. 9.44 with

 G(s) = 
K

s s( )+ a

If the reference variable r(t) = 0, then the differential equation for the actuating error will be

 ��e  + a �e + Ke = 0

Taking e and �e as state variables x1 and x2 respectively, we obtain the following state equations:

 �x1 = x2  

 �x2 = – K x1 – a x2 

(9.69)

A candidate for a Lyapunov function is

V(x) = p1x2
1
 + p2 x

2
2; p1 > 0, p2 > 0,

which is a positive definite function.

Its derivative is

�V (x) = 2(p1 x1�x1 + p2 x2 �x2) = 2(p1 – p2 K)x1x2 – 2 p2a x2
2

If we take p1 = Kp2 with K > 0, a > 0, we obtain

�V (x) = –2a p2 x2
2

which is negative semidefinite.

The condition �V (x) = 0 exists along the x1-axis where x2 = 0. A way of showing that �V (x), being negative 

semidefinite, is sufficient for asymptotic stability is to show that x1-axis is not a trajectory of the system 

differential equation (9.69). The first equation yields �x1 = 0 or x1 = c. The x1-axis can be a trajectory only 
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if x2 = 0 and �x2 = 0. Since on x1-axis, �x2 = – Kc π 0, x1-axis is not a trajectory, and the equilibrium state 

at the origin of the system (9.69) is asymptotically stable.

Further, since V(x)  as ||x||  the equilibrium state is asymptotically stable in-the-large.

This result, obtained by Lyapunov’s direct method, is readily recognized as being correct either from the 

Routh stability criterion or from the root locus.

Example 9.15

Consider the system described by the state equations

 �x1  = x2

 �x2  = – x1 – x2

Let us choose,

 V(x) = x2
1
 + x2

2
 

which is a positive definite function; V(x)  as ||x|| 

This gives
�V (x) = 2 x1 �x1 + 2 x2 �x2 = –2x2

2

which is negative semidefinite. As per the procedure described in the earlier example, it can be established 

that �V (x) vanishes identically only at the origin. Hence, by Theorem 9.2, the equilibrium state at the 

origin is asymptotically stable in-the-large.

To show that a different choice of a Lyapunov function yields the same stability information, let us 

choose the following positive definite function as another possible Lyapunov function:

V(x) = 1
2
[(x1 + x2)2 + 2 x2

1
 + x2

2]

Then �V (x) becomes

 �V (x)  = (x1 + x2)( �x1 + �x2) + 2x1�x1 + x2 �x2

  = (x1 + x2)(x2 – x1 – x2) + 2x1x2 + x2 (–x1 – x2) = – (x2
1

 + x2
2)

which is negative definite. Since V(x)  as || x || , by Theorem 9.2, the equilibrium state at the 

origin is asymptotically stable in-the-large.

Instability

It may be noted that instability in a nonlinear system can be established by direct recourse to the instability 

theorem of the direct method. The basic instability theorem is presented below.

For the autonomous system (9.59), sufficient conditions for instability are as follows.

Suppose that there exists a scalar function W(x) which, for some real number e > 0, satisfies the following 

properties for all x in the region ||x || e :

 (i) W(x) > 0; x π 0;

 (ii) W(0) = 0; and

 (iii) W(x) has continuous partial derivatives with respect to all components of x.
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Then the equilibrium state xe = 0 of the system (9.59) is unstable if  �W (x) > 0, x π 0, i.e., �W(x) is a positive 

definite function.

 Note that it requires as much ingenuity to devise a suitable W function, as to devise a Lyapunov function 

V. In the stability analysis of nonlinear systems, it is valuable to establish conditions for which the 

system is unstable. Then the regions of asymptotic stability need not be sought for such conditions, and 

the analyst is saved from this fruitless effort.

9.13 LYAPUNOV FUNCTIONS FOR 
NONLINEAR SYSTEMS

The determination of stability through Lyapunov’s direct method centers around the choice of a positive 

definite function V(x), called the Lyapunov function. Unfortunately, there is no universal method for 

selecting the Lyapunov function which is unique for a given nonlinear system. Some Lyapunov functions 

may provide better answers than others. Several techniques have been devised for the systematic 

construction of Lyapunov functions; each is applicable to a particular class of systems.

In addition, if a Lyapunov function cannot be found, it in no way implies that the system is unstable 

(stability theorems presented in the earlier section, merely provide sufficient conditions for stability). 

It only means that our attempt in trying to establish the stability of an equilibrium state of the system 

has failed. Also, if a certain Lyapunov function provides stability for a specified parameter region, this 

does not necessarily mean that leaving that region will result in system instability. Another choice of 

Lyapunov function may lead to a larger stability region.

Further, for a given V-function, there is no general method which will allow us to ascertain whether it 

is positive definite. However, if V(x) is in quadratic form in xi’s, we can use simple tests given in 

Section 5.2 to ascertain definiteness of the function.

In spite of all these limitations, Lyapunov’s direct method is the most powerful technique available today 

for the stability analysis of nonlinear systems. Many mathematical methods for constructing Lyaunov 

functions are available in the literature. Two of these methods—“Krasovskiis Method”, and the “Variable 

Gradient Method”—are simple and systematic ways of constructing Lyapunov functions. However, the 

mathematical approach of these methods, though effective for simple systems, is often of little use for 

complex dynamic equations.

Therefore, faced with specific systems, one has to use experience, intuition, and physical insights to 

search for an appropriate Lyapunov function. An elegant and powerful Lyapunov analysis may be 

possible for complex systems if engineering insight and physical properties are properly exploited [126].

Example 9.16

Consider a nonlinear system governed by the equations:

 �x1 = – x1 + 2x2
1
 x2

 �x2 = – x2
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Note that x = 0 is the equilibrium point.

A candidate for a Lyapunov function is

V = p11x2
1
 + p22 x

2
2 ; p11 > 0, p22 > 0

which is a positive definite function.

Then

 
dV

dt
 = 2p11x1�x1 + 2p22 x2 �x2

  = 2p11x1(– x1 + 2x2
1x2) + 2p22x2(–x2)

   = – 2p11x2
1(1 – 2x1x2) – 2p22 x

2
2

dV/dt is negative definite if

 1 – 2x1x2 > 0 (9.70)

Therefore, for asymptotic stability we require that the condition (9.70) is satisfied. The region of state 

space where this condition is not satisfied is possibly the region of instability. Let us concentrate on the 

region of state space where this condition is satisfied. The limiting condition for such a region is

1 – 2x1x2 = 0

The dividing lines lie in the first and the third quadrants and are rectangular hyperbolas as shown in  

Fig. 9.45. In the second and the fourth quadrants, the inequality is satisfied for all values of x1 and x2. 

Figure 9.45 shows the regions of stability and possible instability. Since the choice of the Lyapunov 

function is not unique, it may be possible to choose another Lyapunov function for the system under 

consideration which yields a larger region of stability.

Fig. 9.45 Stability regions for the nonlinear system of Example 9.16



 Nonlinear Systems Analysis 623

9.13.1 The Krasovskii Method

In the following, we describe the Krasovskii Method of constructing Lyapunov functions for nonlinear 

systems [105].

Consider the nonlinear autonomous system

 �x  = f(x); f(0) = 0  (9.71)

 f  = [ f1 f2 � fn ]
T; x = [ x1 x2 � xn ]

T

We assume that f(x) has continuous first partial derivatives.

We define a Lyapunov function as

 V(x) = fT(x)Pf(x) (9.72)

where P = a symmetric positive definite matrix.

Now,

 �V (x)  = �fT (x)P f(x) + fT(x)P�f (x) (9.73a)

where �f (x)  = 
∂

∂

f x

x

x( ) d

dt
 = J(x)f(x);

 J(x) = 

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

n

n

n n n

1

1

1

2

1

2

1

2

2

2

1 2

�

�

� � �

�
xxn

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

 (9.73b)

is the Jacobian matrix of f(x).

Substituting �f (x) in Eqn. (9.73a), we have

 �V (x) = fT(x)[JT(x)P + PJ(x)]f(x) (9.74a)

Let Q = – [JT(x)P + PJ(x)] (9.74b)

Since V(x) is positive definite, for the system to be asymptotically stable at the origin, �V (x) should be 

negative definite, or equivalently, Q should be positive definite. If, in addition, V(x)  as ||x || ,  

the system is asymptotically stable in-the-large.

Example 9.17

As an illustration of the Krasovskii method, 

consider the nonlinear system shown in  

Fig. 9.46, where the nonlinear element is described 

as

u = g(e) = e3

+

–

e yur = 0
g(.)

K

s s( + 1)

Fig. 9.46 A nonlinear system
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The system is described by the differential equation

�� �e e+  = – Ke3; K > 0

Defining x1 = e and x2 = �e , we get the following state equations:

 �x1 = f1(x) = x2  (9.75)

 �x2 = f2(x) = – x2 – Kx3
1

The equilibrium point lies at the origin.

Now J(x) = 

∂

∂

∂
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∂

∂
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f
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Let P  = 
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙

For P to be positive definite,

 p11 > 0 (9.76a)

 p11 p22 – p2
12

  > 0 (9.76b)

The matrix

 Q  = – [JT(x)P + PJ(x)]

  = – 
0 3

1 1

0 1
1
2

11 12

12 22

11 12
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È
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Í
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˚
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6 3

3 2

12 1
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11 12 22 1
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11 12 22 1
2

12 22

p K x p p p K x

p p p K x p p( ) ˙̇

For the system (9.75) to be asymptotically stable at the origin, Q should be positive definite, i.e.,

 6p12 Kx1
2 > 0 (9.76c)

 – 12p12 Kx1
2(p12 – p22) – (p11 – p12 – 3p22 K x1

2)2 > 0 

or     12p12 K x1
2(p22 – p12) > (p11 – p12 – 3p22Kx1

2)2 (9.76d) 

Choose p12 > 0. Inequality (9.76c) then yields the 

condition x1
2 > 0, which is always met.

Choose, p11 = p12, and p22 = b p12 with b > 1. 

Inequalities (9.76a) and (9.76b) are satisfied, and 

inequality (9.76d) gives the condition

12(b – 1) > 9b2Kx1
2 or x1

2 < 
4

3

1 1
2K b b

-
Ê

Ë
Á

ˆ

¯
˜

It can easily be shown that the largest value of x1 

occurs when b = 2. Therefore,

–

x1

x2

1

3K

1

3K

Fig. 9.47 Stability region of the nonlinear 
system of Fig. 9.46
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 x1
2 < 

1

3K
 or – 

1

3

1

3
1

K
x

K
< <

This region of asymptotic stability is illustrated in Fig. 9.47.

9.13.2 The Variable Gradient Method

In searching for a Lyapunov function, we can approach the problem in a backward manner. We begin 

with an assumed form for the derivative �V (x), and go back to choose the parameters of V (x) so as to 

make �V (x) negative definite. This is a useful idea in searching for a Lyapunov function. A procedure that 

exploits this idea is known as the variable gradient method.

 To describe the procedure, let V (x) be a scalar function of x, and the vector function

 g(x) = gradient of V(x) = 
∂
∂

∂
∂
∂
∂

∂
∂

È

Î

Í
Í
Í
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 (9.77)

 The derivative �V (x) along the trajectories of Eqn. (9.71) is given by

 �V (x) = 
∂
∂

+
∂
∂

+ +
∂
∂

V

x
x

V

x
x

V

x
x

n
n

1
1

2
2� � � �  

          
= ( ) ( )g x x g x f x( ) = ( ) ( )

T T�
 (9.78)

The idea now is to try to choose a vector function g(x), such that it would be a gradient of a positive 

definite scalar function V(x) and, at the same time, �V (x) would be negative definite. However, for a 

vector function g(x) to be gradient of a scalar V(x), the Jacobian matrix of g(x) (refer to Eqn. (9.73b))

∂
∂

∂
∂
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∂
∂
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∂
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∂

∂
∂
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=
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1 2
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˙
˙
˙
˙
˙
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must be symmetric, i.e.,

    
∂
∂

=
∂

∂
" =

g

x

g

x
i j ni

j

j

i

, , , ...,1 2  (9.79)

This is so because the Hessian matrix (refer to Eqn.(8.18))
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∂
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= .

Under the constraints (9.79), we start by choosing g(x) such that (g(x))Tf (x) is negative definite. The 

function V(x) is then computed from the integral

 V d g y y y dyi n i

i

n

( ( ) , ,...,x) g y

0

= =

=

T
y

x x

Ú ÂÚ ( )1 2

10

 (9.80a)

The integration is taken over any path joining the origin to x (The line integral of a gradient vector is 

independent of the path [125]). Usually, this is done along the axes; that is

 

V g y dy g x y dy

g

x x

n

( , , , ..., , , , ...,x) = ( ) + ( )Ú Ú1 1 1

0

2 1 2 2

0

0 0 0 0 0

1 2

+ +� xx x x y dyn n n

xn

1 2 1

0

, ,..., ,-( )Ú
 (9.80b)

 By leaving some parameters of g(x) undetermined, one would try to choose them to ensure that V(x) is 

positive definite.

Example 9.18

Let us use the variable gradient method to find a Lyapunov function for the nonlinear system

  

�

�

x x

x x x x

1 1

2 2 1 2
2

=

= +

–

–
 

(9.81)

We assume the following form for the gradient of the undetermined Lyapunov function.

 g(x) = 
g

g

a x a x

a x a x

1

2

11 1 12 2

21 1 22 2
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x

x

È
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˘
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+
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˙= ; aij may be functions of x  (9.82)

The function has to satisfy the constraints (9.79):

∂
∂

=
∂
∂

g
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g
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2

1

, i.e., a x
a

x
a x

a

x
12 2

12

2
21 1

21

1

+
∂
∂

= +
∂
∂

If the coefficients are chosen to be

a11 = a22 = 1; a12 = a21 = 0
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then

g1(x) = x1 and g2(x) = x2

and 

 �V (x) = ( )g x f x( ) ( )
T

         = – x2
1 – x 2

2 (1 – x1x2) (9.83)

Thus, if (1 – x1x2) > 0, then �V  is negative definite. The function V(x) can be computed as

V y dy y dy
x x

x x

x( ) = + =
+

Ú Ú1 1

0

2 2

0

1
2

2
21 2

2
 (9.84)

 This is a positive definite function and, therefore, the asymptotic stability of the origin in the region  

1 > x1x2 is guaranteed.

 Note that (9.84) is not the only Lyapunov function obtainable by the variable gradient method. A different 

choice of aij’s may lead to another Lyapunov function for the system.

9.14 LYPUNOV’S LINEARIZATION METHOD AND
 LOCAL STABILITY

Lyapunov’s original work, first published in 1892, included two methods for stability analysis; the so-

called Lyapunov’s first method (linearization method) and Lyapunov’s second method (direct method).  The 

linearization method draws conclusions about a nonlinear system’s local stability around an equilibrium 

point from the stability properties of its linear approximation. The direct method is not restricted to local 

motion and determines the stability of a nonlinear system (directly without linearization) by constructing 

a scalar function for a system and examining the function’s time variation. We have so far discussed 

Lyapunov’s second method/direct method. In the following discussion, the key results of Lyapunov’s first 

method/linearization method are presented.

 (i) If the linearized system �x = Ax is strictly stable (i.e., if all the eigenvalues of A are strictly in the 

left half of the complex plane), then the equilibrium point of the actual nonlinear system �x = f(x) 

is locally asymptotically stable.

 (ii) If the linearized system is unstable (i.e., if at least one eigenvalue of A is strictly in the right half 

of the complex plane), then the equilibrium point is locally unstable for the nonlinear system.

 (iii) If the linearized system has all eigenvalues of A in the left half of the complex plane, but also 

has at least one eigenvalue having zero real part, then one cannot conclude anything from the 

linear approximation (the equilibrium point may be stable in the sense of Lyapunov, locally 

asymptotically stable or locally unstable for the nonlinear system.

 While the proof of these results are not detailed here, intuitive justification is obvious. If the linearized 

system is strictly stable or strictly unstable, then, since the approximation is valid ‘not too far’ from the 

equilibrium, the nonlinear system itself is locally stable or locally unstable. However, if the linearized 

system has roots with zero real parts, the higher-order terms in Taylor series expansion (refer to 

Eqns (5.11)) can have decisive effect on whether the nonlinear system is stable or unstable. Simple 

nonlinear systems may be globally asymptotically stable while their linear approximations have roots 
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with zero real parts; one simply cannot infer any stability property of a nonlinear system from its linear 

approximation with roots having zero real parts.  

Today, Lyapunov’s linearization method has come to represent the theoretical justification of linear 

control, while Lyapunov’s direct method has become the most important tool for nonlinear system 

analysis and design. Lyapunov’s linearization method shows that linear control design is a matter of 

consistency; one must design a controller such that the system remain in its ‘linear range’. It also stresses 

on major limitations of linear design, i.e., how large is the linear range from stability considerations? 

Such questions motivate a deeper approach to nonlinear system analysis.

REVIEW EXAMPLES

Review Example 9.1

Figure 9.48 shows the input-output waveforms of a saturating element or a limiter.

For small input signals (X < S), the output is proportional to the input. However, if the input amplitude is 

sufficiently large to cause saturation (X > S), the output is a clipped sine wave. One cycle of the output, 

which is a periodic function of period 2p, is described as follows:

  K x; 0 £ w t < a
  KS; a £ w t < (p – a)

                                                 y =   K x; (p – a) £ w t < (p + a)

   – KS; (p + a) £ w t < (2p – a)

  K x; (2p – a) £ w t £ 2p

where a = sin–1(S/X)

This periodic function has odd symmetry:

y(w t) = – y(– w t)

Therefore, the fundamental component of y is given by (refer to Eqn. (9.4d))

y1 = B1sinw t

where  B1 = 
1

0

2

p

p

Ú  y sinw t  d(wt)

Due to symmetry of y (refer to Fig. 9.48), the coefficient B1 can be calculated as follows:

B1 = 
4 4
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2
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q q
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q q q q
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 (9.85)

The describing functions given by Eqn. (9.85) and nonlinearity 4 in Table 9.2, have a common term of  

the form

 Nc(z) = 
2 1 1

1
11

2

p
sin- + - Ê
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ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙z z z

 (9.86)
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0
S x
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y y

Slope = K
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p a–

p a+

2p a–

2p a+

3p a–

wt

p a– 2p a+

p a+ 2p a–

wt

a

Fig. 9.48 
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In terms of Nc(z), the describing function (9.85) may be expressed as

 N(X) = KNc 

X

S

Ê
ËÁ

ˆ
¯̃

  (9.87)

The function Nc(z) is listed in Table 9.3.

Table 9.3 Values of Nc(z) given by Eqn. (9.86)

z Nc (z) z Nc (z) z Nc (z)

1.0 1.000 6.0 0.211 11.0 0.116

1.5 0.781 6.5 0.195 11.5  0.111

2.0 0.609 7.0 0.181 12.0 0.106

2.5  0.495 7.5 0.169 12.5 0.102

3.0 0.416 8.0 0.159 13.0 0.0978

3.5 0.359 8.5 0.149 14.0 0.0909

4.0 0.315  9.0 0.141 15.0 0.0848

4.5 0.281  9.5 0.134 19.0 0.0670

5.0 0.253 10.0 0.127 25.0 0.0509

5.5 0.230 10.5 0.121 30.0 0.0424

50.0 0.0255

100.0 0.0127

Review Example 9.2

Consider the nonlinear system of Fig. 9.49a, with a saturating amplifier having gain K in its linear 

region. Determine the largest value of gain K for the system to stay stable. What would be the frequency, 

amplitude and nature of the limit cycle for a gain K = 3?

(a)

+ e y

–

r = 0

S = 1

1

(1 + 2 )(1 + )s s s
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Fig. 9.49 

Solution It is convenient to regard the amplifier to have unit gain and the gain K to be attached to the 

linear part. From Eqn. (9.87), we obtain, for S = 1 and K = 1, N(E) = Nc (E); the function Nc(E) is listed 

in Table 9.3.

The locus of – 1/N(E) thus starts from (– 1 + j0) and travels along the negative real axis for increasing E, 

as shown in Fig. 9.49b. Now, for the equation

KG ( jw) = –1/N(X)

to be satisfied, G( jw) must have an angle of – 180°:

 –G( jw) = – 90° – tan–1 2w – tan–1w = –180°

This gives

 
2

1 2 2

w w

w

+

-
 = tan 90° =   or w = 1/ 2 rad/sec.

The largest value of K for stability is obtained when KG( jw) passes through (–1 + j0), i.e., 

| ( ) |
/

KG jw
w=1 2  = 1 or 

K

1

2
3

3

2

Ê
ËÁ

ˆ
¯̃ ( )Ê

ËÁ
ˆ

¯̃

 = 1 or K = 3/2

For K = 3, KG( jw) plot intersects – 1/N(X) locus, resulting in a limit cycle at (w1, E1) where w1 = 1/ 2, 

while E1 is obtained from the relation

| –1/N(E1)| = |3G( jw1)| = 2 or |N(E1)| = 0.5

From Table 9.3, we obtain

E1 @ 2.5
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Applying the stability test for the limit cycle reveals that point A in Fig. 9.49b corresponds to a stable 

limit cycle.

Review Example 9.3

Consider the servomechanism of Fig. 9.50, having a deadzone nonlinearity in the feedback loop. 

With x1 = y and x2 = �y , we get

�

�

x x

x

x x

x x x

x x x

1 2

2

2 1

2 1 1

2 1 1

1 1

2 1 1

2 1 1

=

=

- - < <
- - - >
- - + < -

Ï

Ì
Ô

Ó

;

( );

( );ÔÔ

1

–1

–

e u

Plant

y

Slope = 2

1
( + 1)s s

Fig. 9.50 

The phase plane may be divided into three regions:

Region I (defined by –1 < x1 < 1) The isocline equation is

m
x

x
=
-

= -2

2

1

Since m is the slope of phase trajectories, all trajectories in Region I have a slope of –1. Typical trajectories 

are shown in Fig. 9.51.

Region II (defined by x1 > 1) The isocline equation is

 m
x x

x
=
- - -( )2 1

2

2 1

or

 x
x

m
2

12 1

1
=
- -( )

+

The isoclines are straightlines intersecting the x1-axis at x1 = 1, with slope equal to –2/(m + 1). Some of 

these isoclines are shown in Fig. 9.51.
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Region III (defined by x1 < –1) The isocline equation is

x
x

m
2

12 1

1
=
- +( )

+
These isoclines are straightlines intersecting the x1-axis at x1 = –1, with slope equal to –2/(m + 1). Some 

of these isoclines are shown in Fig. 9.51. 

Some typical phase trajectories are also shown in Fig. 9.51. Note that for the given system, we have an 

equilibrium zone,  –1 £ x1 £ 1, with x2 = 0. The system comes to rest at any point within this zone.

Review Example 9.4

Consider the nonlinear system

  �x1 = – x1 – x2
2

 �x2 = – x2

Investigate the stability of the equilibrium points.

Solution The given system is

 �x = f(x) 

or  �x1 = f1(x) = – x1 – x2
2 

 �x2 = f2(x) = – x2

Clearly, x = 0 is the only equilibrium point.

–1
1

x1

x2m = –1
m = 0

m = 1

m =

m = –3 m = –2

m = –1

m = –2
m = –3

m =

m = 0
m = 1

Fig. 9.51 Isoclines and typical trajectories for the system of Fig. 9.50
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In the following, we apply Krasovskii method to determine sufficient conditions for asymptotic stability, 

in the vicinity of the equilibrium point.

A candidate for a Lyapunov function is

V(x) = fT(x)Pf(x)

Selecting P = I may lead to a successful determination of the conditions for asymptotic stability in the 

vicinity of the equilibrium point.

With this choice of Lyapunov function, we have (refer to Eqns (9.74))

 �V (x) = fT(x)[JT(x) + J(x)]f(x)

where

 J(x) = 

∂

∂

∂

∂

∂

∂

∂

∂

f

x

f

x

f

x

f

x

1

1
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2

2
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2
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˘

˚

˙
˙
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 = 
- -

-
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Í

˘

˚
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1 2

0 1

2x

The matrix

 Q = – [JT(x) + J(x)] = 
2 2

2 2

2

2

x

x

È

Î
Í

˘

˚
˙

Using Sylvester’s criterion (Section 5.2), we find that the matrix 

Q is positive definite if

4 – 4x2
2 > 0 or | x2 |  < 1

The shaded region in Fig. 9.52 is the region of asymptotic 

stability. It is, however, not the largest region. Another choice 

of Lyapunov function for the system under consideration, may 

lead to a larger region of asymptotic stability in the vicinity of 

the equilibrium point.

PROBLEMS

 9.1  For a sinusoidal input x = X sin w t, find the output waveforms for each of the nonlinearities listed 

in Table 9.2. By Fourier-series analysis of the output waveforms, derive the describing function 

for each entry of the table.

 9.2  Consider the system shown in Fig. P9.2. 

Using the describing-function analysis, 

show that a stable limit cycle exists for 

all values of K > 0. Find the amplitude 

and frequency of the limit cycle when  

K = 4, and plot y(t) versus t.

 9.3 Consider the system shown in Fig. P9.3. 

Use the describing function technique 

–1

0

1

x1

x2

Fig. 9.52

–

e
M

yK

s s(1 + )2

Fig. P9.2
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to investigate the possibility of limit cycles in this system. If a stable limit cycle is predicted, 

determine its amplitude and frequency.

0.1

1
e

–

y5

(0.1 + 1)s s 2

Fig. P9.3

 9.4 Using the describing-function analysis, prove that no limit cycle exists in the system shown in Fig. 

P9.4. Find the range of values of the deadzone of the on–off controller for which limit cycling will 

be predicted.

–

e
1

0.2

y5

( + 1)(0.1 + 1)s s 2

Fig. P9.4

 9.5 Consider the system shown in Fig. P9.5. Using the describing-function technique, show that a 

stable limit cycle cannot exist in this system for any K > 0.

–

e

Slope = 1

1

yK

s s(1 + )2

Fig. P9.5

 9.6 Consider the system shown in Fig. P9.6. Using the describing-function analysis, investigate the 

possibility of a limit cycle in the system. If a limit cycle is predicted, determine its amplitude and 

frequency, and investigate its stability.

Fig. P9.6
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 9.7 An instrument servo system used for positioning a load, may be adequately represented by the 

block diagram in Fig. P9.7a. The backlash characteristic is shown in Fig. P9.7b. Show that the 

system is stable for K = 1. If the value of K is now raised to 2, show that limit cycles exist. 

Investigate the stability of these limit cycles. Determine the amplitude and frequency of the stable 

limit cycle.

  Given:

H/X 0 0.1 0.2 0.5 0.7 0.8 0.9 0.95 1.0

|N(X)| 1 0.954 0.882 0.593  0.367 0.249 0.126 0.063 0

–N(X) 0 –6.7° –13.4° –32.5° –46.6° –55.1° –65.6° –72.8° –90°

–

e x y

Slope = 1 y

H = 1

xK

s s s( + 1)(0.5 + 1)
N X( )

(a) (b)

Fig. P9.7

 9.8 Determine the kind of singularity for each of the following differential equations. Also locate the 

singular points on the phase plane.

 (a) �� �y y+ 3  + 2 y = 0 (b) �� �y y+ 5  + 6 y = 6 (c) �� �y y- 8  + 17 y = 34

 9.9 An undamped pendulum is described by the differential equation

  ml2 ��q  + mgl sin q = 0

  where mg is the weight of the pendulum, and l is its length. Show that this nonlinear system 

has two equilibrium points: q = 0, and q = p. Develop linear state models using Taylor series 

approximation around the two equilibrium points, and therefrom identify the kind of singularity 

at each point.

 9.10 A linear second-order servo is described by the equation

   ��y + 2zwn �y + w2
n y = w2

n

  where wn = 1, y(0) = 2.0, �y(0) = 0

  Determine the singular points when (i) z = 0,  (ii) z = 0.15. Construct the phase trajectory in each 

case.

 9.11 Consider the block diagram of a system, shown in Fig. P9.11.

 (a) Derive state variable model with x1 = e and x2 = �e .

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points 

(if any) and some isoclines.
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0.1
0.1 yr = const +

–

e 7
( + 1)s s

Fig. P9.11

 9.12 Consider the block diagram of a system, shown in Fig. P9.12.

 (a) Derive state variable model with x1 = e and x2 = �e.

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points 

(if any) and some isoclines.

0.1

Slope
= 1 yr = const +

–

e 7
( + 1)s s

Fig. P9.12

 9.13 Consider the block diagram of a system, shown in Fig. P9.13.

 (a)  Derive state variable model with x1 = e and x2 = �e .

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points 

(if any) and some isoclines.

– 0.1

y

0.1

+

–

er = const 7
( + 1)s s

Fig. P9.13

 9.14 Consider the block diagram of a system, shown in Fig. P9.14.

 (a)  Derive state variable model with x1 = e and x2 = �e .

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points 

(if any) and some isoclines.
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0.1

y

0.1

+

–

er = const 7
( + 1)s s

Fig. P9.14

 9.15 Consider the block diagram of a system, shown in Fig. P9.15.

 (a) Derive state variable model with x1 = e and x2 = �e.

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points 

(if any) and some isoclines.

y+ +

– –

r = const e y

0.1 sgn y

1
s

1
s

Fig. P9.15

 9.16 The position control system shown in Fig. P9.16 has Coulomb friction Tc sgn( �q) at the output 

shaft. Prove that the phase trajectories on (e, �e /wn)-plane are semicircles, with the center on 

horizontal axis at +Tc /K for �e < 0 and –Tc /K for �e  > 0.

+

–

e
J

Motor

vqR = const
T = vK1

q
KA

Tc

Fig. P9.16

  Examine the phase trajectory corresponding to qR = unit step, �q(0)  = q (0) = 0; and find the value 

of the steady-state error. What is the largest possible steady-state error which the system in Fig. 

P9.16 can possess?

  Given:

wn = K J/  = 1.2 rad/sec; Tc /K = 0.3 rad

  where K = KAK1.
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 9.17 Consider the nonlinear system with deadzone shown in Fig. P9.17. Using the method of isoclines, 

sketch some typical phase trajectories with and without deadzone, and comment upon the effect 

of deadzone on transient and steady-state behavior of the system.

–

e

Slope = 2

1
u y1

( + 1)s s

Fig. P9.17

 9.18 Consider the system shown in Fig. P9.18 in which the nonlinear element is a power amplifier 

with gain equal to 1.0, which saturates for error magnitudes greater than 0.4. Given the initial 

condition: e(0) = 1.6, �e (0) = 0, plot phase trajectories with and without saturation, and comment 

upon the effect of saturation on the transient behavior of the system. Use the method of isoclines 

for construction of phase trajectories. 

0.4

0.4
ye

–

u 1
( + 1)s s

Fig. P9.18

 9.19 (a) A plant with model G(s) = 1/s2 is placed in a feedback configuration as in Fig. P9.19a. 

Construct a trajectory on the (e, �e) plane with r = 2 and y(0) = �y(0) = 0. Show that the system 

response is a limit cycle. What 

is the switching line of this 

variable structure system?

 (b) To the feedback control 

system of Fig. P9.19a, we add 

a derivative feedback with 

gain KD as in Fig. P9.19b. 

Show that the limit cycle gets 

eliminated by the introduction 

of derivative-control term. 

What is the switching line of 

this variable structure system?

 (c)  Show that if KD is large, the 

trajectory may slide along the 

switching line towards the 

origin.

+

–

er = const
1

u y

(a)

1

s2

r = const +

–

e +

–

1
u y

(b)

1

s2

sKD

Fig. P9.19
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 9.20 A position control system comprises of a dc servo motor, potentiometer error detector, an on–off 

controller, and a tachogenerator coupled to the motor shaft.

  The following equations describe the system:

  Reaction torque = �� �q q+ 0 5.

  Drive torque = 2 sgn(e + 0.5 �e); e =  qR – q

 (a) Make a sketch of the system showing how the hardware is connected.

 (b) Construct a phase trajectory on (e, �e)-plane with e(0) = 2 and �e(0) = 0, and comment upon 

the transient and steady-state behavior of the system.

 (c) What is the switching line of the variable structure system?

 9.21 (a) Describe the system of Fig. P9.21a on the (e, �e)-plane, and show that with the on–off control-

ler switching on the vertical axis of the phase plane, the system oscillates with increasing 

frequency and decreasing amplitude. Obtain a phase trajectory with (e(0) = 1.4, �e(0) = 0) as 

the initial state point.

 (b) Introduce now a deadzone of ±0.2 in the on–off controller characteristic. Obtain a phase 

trajectory for the modified system with (e (0) = 1.4, �e(0) = 0) as the initial state point and 

comment upon the effect of deadzone.

 (c) The on–off controller with deadzone is now controlled by the signal e e+( )1
3

� , combining 

proportional and derivative control (Fig. P9.21b). Draw the switching line on the phase plane 

and construct a phase trajectory with (e(0) = 1.4, �e(0) = 0) as the initial state point. What is 

the effect of the derivative-control action?

Fig. P9.21

 9.22 Consider the second-order system

�x1 = x2 ; �x2 = – u

  It is desired to transfer the system to the origin in  minimum time from an arbitrary initial state. 

Use the bang-bang control strategy with |u| = 1. Derive an expression for the optimum switching 

curve. Construct a phase portrait showing a few typical minimum-time trajectories.
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 9.23 A plant with model G(s) = 
1

1s s( )+
 is placed in a 

  feedback configuration as shown in Fig. P9.23.  

It is desired to transfer the system from any initial 

state to the origin in minimum time. Derive an 

expression for optimum switching curve and 

construct a phase portrait on the (e, �e)-plane 

showing a few typical minimum-time trajectories.

 9.24 Consider the nonlinear system described by the equations

 �x1 = x2

 �x2 = – (1 –  |x1|)x2 – x1

  Find the region in the state plane for which the equilibrium state of the system is asymptotically 

stable.

 9.25 Check the stability of the equilibrium state of the system described by

 �x1 = x2

 �x2 = – x1 – x2
1
 x2

  Show that the Lyapunovs linearization method fails while the Lyapunovs direct method can easily 

solve this problem.

 9.26 Consider a nonlinear system described by the equations 

 �x1 = – 3x1 + x2

 �x2 =  x1 – x2 – x3
2

  Using the Krasovskii method for constructing the Lyapunov function with P as identity matrix, 

investigate the stability of the equilibrium state.

  Find a region of asymptotic stability using Krasovskii method.

 9.27 Check the stability of the system described by

 �x1 = – x1+ 2x2
1x2

 �x2 = – x2 

  by use of the variable gradient method.

 9.28 Develop a linearized state model for the Van der Pol’s differential equation

��y + m (y2 – 1) �y + y = 0; m = 1

  and therefrom determine the local stability of the nonlinear system using Lyapunov’s first method.

 9.29 Consider the nonlinear system described by the equations

 �x1 = x1 (x2
1 + x2

2 – 1) – x2

 �x2 = x1 + x2 (x2
1 + x2

2 – 1)                                                                                                            

  Investigate the stability of this nonlinear system around its equilibrium point at the origin.

 9.30 Consider a nonlinear system described by the differential equation

��x + [K1 + K2( �x)2] �x + x = 0

Check the stability of the equilibrium state of this system when (i) K1 > 0 and K2 > 0; 

(ii) K1 < 0 and K2 < 0; and (iii) K1 > 0 and K2 < 0.

Fig. P9.23
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10.1 INTRODUCTION

In the previous chapter, we covered tools and techniques for the analysis of control systems containing 

nonlinearities. In the present chapter, we will discuss the deliberate introduction of nonlinearities into 

the controller for performance improvement over that of a simpler linear controller. Although there are 

numerous techniques, several of the most common are illustrated with examples, to give the reader an 

idea of the general approach to designing nonlinear controllers.

 If the system is only mildly nonlinear, the simplest approach might be to ignore the nonlinearity in 

designing the controller (i.e., to omit the nonlinearity in the design model), but to include its effect in 

evaluating the system performance. The inherent robustness of the feedback control law designed for the 

approximating nonlinear system is relied upon to carry it over to the nonlinear system.

 When a system is significantly nonlinear, it is traditionally dealt with by linearization (refer to Eqns 

(5.11)) about a selected operating point using Taylor series. We design a linear controller based on 

first-order approximation. If the controller works effectively, the perturbations in actual state about the 

equilibrium state will be small; if the perturbations are small, the neglected higher-order terms will be 

small and can be regarded as a disturbance. Since the controller is designed to counteract the effects of 

disturbances, the presence of higher-order terms should cause no problems. This reasoning cannot be 

justified rigorously, but, nevertheless, it usually works. Needless to say, it may not always work; so it is 

necessary to test the design that emerges, for stability and performance—analytically, by Lyapunov’s 

stability analysis for example, and/or by simulation.

 In many systems, the nonlinearity inherent in the plant is so dominant that the linearization approach 

described above can hardly meet the stringent requirements on systems’ performance. This reality, 

inevitably, promotes the endeavor to develop control approaches that will more or less incorporate 

the nonlinear dynamics into the design process. One such approach is feedback linearization. Unlike 

the first-order approximation approach, wherein the higher-order terms of the plant are ignored, this 

approach utilizes the feedback to render the given system, a linear input-output dynamics. On the basis 

of the linear system thus obtained, linear control techniques can be applied to address design issues.

The roughness of the linearization approach based on first-order approximation, can be viewed from two 

perspectives. First, it neglects all higher-order terms. Second, the linear terms depend on the equilibrium 

Nonlinear Control Structures
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point. These two uncertainties may explain why this linearization approach is incapable of dealing with 

the situation where the system operates over wide dynamic regions. Although the feedback linearization 

may overcome the first drawback, its applicability is limited, mainly because it rarely leads to a design 

that guarantees the system performance over the whole dynamic regime. This is because feedback 

linearization is often performed locally—around a specific equilibrium point. The resulting controller is 

of local nature. Another remedy to linearization based on first-order approximation, is to design several 

control laws corresponding to several operating points that cover the whole dynamics of the system. 

Then these linear controllers are pieced together to obtain a nonlinear control law. This approach is 

often called gain scheduling. Though this approach does not account for the higher-order terms, it does 

accommodate the variation of the first-order terms with respect to the equilibrium points.

Adaptive control theory provides an effective tool for the design of uncertain systems. Unlike fixed-

parameter controllers (e.g., H -theory-based robust controller), adaptive controllers adapt (adjust) their 

behavior on-line to the changing properties of the controlled processes.

If a fixed-parameter automatic control system is used, the plant-parameter variations directly affect the 

capability of the design to meet the performance specifications under all operating conditions. If an adaptive 

controller is used, the plant-parameter variations are accounted for at the price of increased complexity of 

the controller. Adaptive control is certainly more complex than fixed-parameter control, and carries with 

it more complex failure mechanisms. In addition, adaptive control is both time-varying and nonlinear,  

increasing the difficulty of stability and performance analysis. It is this tradeoff, of complexity versus 

performance, that must be examined carefully in choosing the control structure.

The main distinctive feature of variable structure systems (VSS), setting them apart as an independent 

class of control systems, is that changes can occur in the structure of the system during the transient 

process. The structure of a VSS is changed intentionally in accordance with some law of structural 

change; the times at which these changes occur (and the type of structure formed) are determined not by 

a fixed program, but in accordance with the current value of the states of the system.

The basic idea of feedback linearization in Section 10.2 is the algebraic transformation of the dynamics 

of a nonlinear system to that of a linear system, on which linear control designs can in turn be applied. 

Sections 10.3–10.5 show how to reduce, or practically eliminate, the effects of model uncertainties on the  

stability and performance of feedback controllers using so-called adaptive and variable structure systems.  

The chapter concentrates on nonlinear systems represented in continuous-time form. Even though most 

control systems are implemented digitally, nonlinear physical systems are continuous in nature and are 

hard to discretize meaningfully, while digital control systems may be treated as continuous-time systems 

in analysis and design if high sampling rates are used. Thus, we perform nonlinear system analysis and 

controller design in continuous-time form. However, of course, the control law is generally implemented 

digitally.

The objective set for this chapter is to make the reader aware of the nonlinear control structures commonly 

used for dealing with practical control problems in industry. The chapter is not intended to train the 

reader on designing nonlinear control systems. For a comprehensive treatment of the subject, refer to 

Slotine and Li[126].
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10.2 FEEDBACK LINEARIZATION

In this section, we describe basic concepts of feedback linearization intuitively with the help of an 

example. Mathematical tools from differential geometry, which are useful to generalize these concepts 

to a broad class of nonlinear systems, are not presented here for want of space; Slotine and Li [126], and 

Zak [35] are good references for this subject.

In its simplest form, feedback linearization amounts to 

cancelling the nonlinearities in a nonlinear system, so that 

the closed-loop dynamics is in a linear form. This very 

simple idea is demonstrated in the following example of 

control design for a two-link robot.

A two-link planar robot-arm manipulator, used extensively 

for simulations in the literature, is shown in Fig. 10.1. This 

arm is simple enough to simulate, yet has all the nonlinear 

effects common to general robot manipulators.

To determine the arm dynamics, we assume that the link 

masses m1 and m2 are concentrated at the ends of the links 

of lengths l1 and l2, respectively. We define the angle of the 

first link q1 with respect to an inertial frame, as depicted 

in Fig. 10.1. The angle of the second link q2 is defined with respect to the orientation of the first link. 

Torques t1 and t2 are applied by the actuators to control the angles q1 and q2, respectively.

Let us derive the dynamics of the two-link arm from first principles using Lagrange’s equation of 

motion [38]:

 
d

dt

L L∂

∂
-

∂

∂
=

 p p
s ; p = [q1 q2]T; s = [t1 t2]T (10.1)

with the Lagrangian L defined in terms of the kinetic energy K and potential energy P as

 L = K P( , ) ( )p p p -  (10.2)

For link 1, we have the positions and velocities:
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The kinetic and potential energies, for link 1, are 
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For link 2, we have the positions and velocities:
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q q q

q q q
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Fig. 10.1 A two-link robot
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Therefore, kinetic energy for link 2 is
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The potential energy for link 2 is
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The Legrangian for the entire arm is
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 Equation (10.1) is a vector equation comprised of two scalar equations. The individual terms needed to 

write down these two equations are
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According to Lagrange’s equation (10.1), the arm dynamics are given by the two coupled nonlinear 

differential equations
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Writing the arm dynamics in vector form, yields
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One may write the dynamics of the two link arms completely as 

  M V G( ) ( , ) ( )p p p p p s   + + =  (10.4)

where the symmetric inertia matrix
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This is a special form of state model called ‘Brunovsky canonical form’. Many systems, like the robot 

arm, are naturally in the Brunovsky form. Moreover, it is often possible to transform general state models 

to Brunovsky form. This is accomplished by finding a suitable state-space transformation followed by an 

input transformation [126].

Defining the state vector as 
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 (10.5)

we get the following state equations: 
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The control law  
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linearizes the system (10.6) to yield 
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or  
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which may be completely expressed as 
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A two-step design procedure follows.

Step 1 Use linear system design techniques to select a feedback control u(t) using the linear model 

(10.10).

Step 2 Compute the required arm torques from (10.7):  

  t = - +-
g x f x u

1( )[ ( ) ]  (10.11) 

This is a nonlinear feedback control law that guarantees desired behavior. It relies on computing the 

torque s using Eqn. (10.7), that makes the nonlinear dynamics (10.6) equivalent to the linear dynamics 

(10.10); this is termed feedback linearization. 

Let us consider a specific design problem: tracking the desired motion trajectory pd (t).

Define the tracking error as 

 e(t) = pd(t) – p(t) (10.12)

Therefore,      

           e e( ) ( ) ( ) ( ) ( ) ( )t t t t t td d= ; =p p p p- -    (10.13)

Defining    x e x e1 2= and =,  (10.14)

we can write robot-arm dynamics (10.10) in the form
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The control law 

 s p= - - +-
g x f x u

1( )[ ( ) ]  
d  (10.16)

linearizes the system (10.15) to yield 
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The following design procedure may be used.
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Use linear quadratic regulator design to select a feedback control u(t), that stabilizes the tracking error 

system (10.17). The performance measure 

 J = dt+Ú ( )� �x Qx u Ru
T T

0
 (10.18)

with Q R= =diag diag1 0 1 1 0 1 0 005 0 005, . , , . ; . , .{ } { }   
penalizes the joint angles q1 and q2 much more strongly than the control inputs, to achieve high speed 

and accuracy. The feedback control law is of the form 

 u K x K x

x x

= - -

= -[ ] - [ ]
1 1 2 2

11 12 1 21 22 2

� �

� �K K K K

  (10.19)

The computed-torque controller then becomes (refer to (10.16))

  s p= - + + +-
g x f x K x K x

1
1 1 2 2( )[ ( ) ]� �

��

d  (10.20)

The computed-torque controller is shown in Fig. 10.2, which has a multiloop structure; with a nonlinear 

inner feedback linearization loop and an outer tracking loop. Simulation of this controller for the two-

link robot arm (m1 = 1, m2 = 1, l1 = 1, l2 = 1, g = 9.8; qd1(t) = sin(p t), qd2(t) = cos (p t)) was done 

using MATLAB (refer to Problems A.18 and A.22 in Appendix A). Figures 10.3 show the tracking 

performance.

Fig. 10.2 Computed-torque controller

Unlike the linearization approach which ignores all higher-order terms of the plant, the feedback 

linearization approach utilizes the feedback, to render the given system a linear input-output dynamics. 

Then, on the basis of the linear system thus obtained, linear control techniques can be applied to 

address design issues. Finally, the resulting nonlinear control law is implemented to achieve the desired 

dynamical behavior.

The main drawback of this technique is that it relies on exact cancellation of nonlinear terms to get 

linear input-output behavior (This is equivalent to cancellation of the nonlinearity with its inverse). 

Consequently, if there are errors or uncertainty in the model of the nonlinear terms, the cancellation is no 

longer exact. Therefore, the applicability of such model-based approaches to feedback control of actual 

systems is quite limited, because they rely on the exact mathematical models of system nonlinearities.

If the functions f(x) and g–1 (x) are not exactly known in the control scheme of Fig. 10.2, we may explore 

the option of constructing their estimates by two neural networks. We shall study this option of intelligent 

control in Chapter 11.
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10.3 MODEL REFERENCE ADAPTIVE CONTROL

When we use a model of the plant as the basis of a control system design, we are tacitly assuming that 

this model is a reasonable representation of the plant. Although the design model almost always differs 

from the true plant in some details, we are confident that these details are not important enough to 

invalidate the design.

There are many applications, however, for which a design model cannot be developed with a reasonable 

degree of confidence. Moreover, most dynamic processes change with time. Parameters may vary because 
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Fig. 10.3 Desired and actual trajectories
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of normal wear, aging, breakdown, and changes in the environment in which the process operates. The 

feedback mechanism provides some degree of immunity to discrepancies between the physical plant and 

the model that is used for the design of the control system. But sometimes, this is not enough. A control 

system designed on the basis of a nominal design model may not behave as well as expected, because the 

design model does not adequately represent the process in its operating environment.

How can we deal with processes that are prone to large changes, or for which adequate design models 

are not available? One approach is brute force, i.e., high loop-gain: as the loop-gain becomes infinite, the 

output of the process tracks the input with vanishing error. Brute force rarely works, however, for well-

known reasons—dynamic instability, control saturation, and susceptibility to noise and other extraneous 

inputs.

In robust control design methods, model uncertainties are captured in a family of perturbed plant models, 

where each member of the family may represent the nominal plant, but which member does so, remains 

unknown. A robust controller satisfies the design requirements in connection with all the members of the 

family. Robust control design techniques are sophisticated and make it possible, for the control system 

design, to tolerate substantial variations in the model. But the price of achieving immunity to model 

uncertainties may be a sacrifice in performance. Moreover, robust control design techniques are not 

applicable to processes for which no (uncertainty) design model is available.

The adaptive control theory provides another approach to the design of uncertain systems. Unlike the 

fixed-parameter controller, adaptive controllers adjust their behavior on-line, in real-time, to the changing 

properties of the controlled processes. For example, in some control tasks, such as those in robot 

manipulations, the systems to be controlled have parameter uncertainty at the beginning of the control 

operation. Unless this uncertainty is gradually reduced on-line by an adaptation or estimation mechanism, 

it may cause inaccuracy or instability for the control systems. In many other tasks, such as those in 

power systems, the system dynamics may have well-known dynamics at the beginning, but experience 

unpredictable parameter variations as the control operation goes on. Without continuous ‘redesign’ of the 

controller, the initially appropriate controller design may not be able to control the changing plant well. 

Generally, the basic objective of adaptive control is to maintain consistent performance of a system in 

the presence of uncertainty or unknown variation in plant parameters. Since such parameter uncertainty, 

or variation occurs in many practical problems, adaptive control is useful in many industrial contexts. 

These include the following:

Robots have to manipulate loads of various sizes, weights, and mass distributions. It is very restrictive to 

assume that the inertial parameters of the loads are well known before a robot picks them up and moves 

them away. If controllers with constant gains are used, and the load parameters are not accurately known, 

motion of the robot can be either inaccurate or unstable. Adaptive control, on the other hand, allows 

robots to move loads of unknown parameters with high speed and high accuracy.

Ship Steering

On long courses, ships are usually put under automatic steering. However, the dynamic characteristics 

of a ship strongly depend on many uncertain parameters, such as water depth, ship loading, and wind 

and wave conditions. Adaptive control can be used to achieve good control performance under varying 

operating conditions.
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The dynamic behavior of an aircraft depends on its altitude, speed, and configuration. The ratio of 

variations of some parameters can lie between 10 to 50 in a given flight. Adaptive control can be used to 

achieve consistent aircraft performance over a large flight envelope.

Process Control

Models for metallurgical and chemical processes are usually complex and also hard to obtain. The 

parameters characterizing the processes vary from batch to batch. Furthermore, the working conditions 

are usually time-varying (e.g., reactor characteristics vary during the reactor’s life, the raw materials 

entering the process are never exactly the same, atmospheric and climatic conditions also tend to change). 

In fact, process control is one of the most important application areas of adaptive control.

Adaptive control has also been applied to other areas, such as power systems.

The concept of controlling a process that is not well understood, or one in which the parameters are 

subject to wide variations, has a history that predates the beginning of modern control theory. The early 

theory was empirical, and was developed before digital computer techniques could be used for extensive 

performance simulations. Prototype testing was one of the few techniques available for testing adaptive 

control. At least one early experiment had disastrous consequences. As the more mathematically rigorous 

areas of control theory were developed starting in the 1960s, interest in adaptive control faded for a time, 

only to be reawakened in the late 1970s with the discovery of mathematically rigorous proofs of the 

convergence of some popular adaptive control algorithms. This interest continues unabated [130–136].

Many, apparently different, approaches to adaptive control have been proposed in the literature. Two 

schemes in particular have attracted much interest: ‘Self-Tuning Regulator’ (STR), and ‘Model Reference 

Adaptive Control’ (MRAC). These two approaches actually turn out to be special cases of a more general 

design philosophy.

In the following, we describe model reference adaptive control (MRAC); the discussion on self-tuning 

regulator is given in the next section.

Generally, a model reference adaptive control system can be schematically represented by Fig. 10.4. 

It is composed of four parts: a plant/process containing unknown parameters, a reference model for 

compactly specifying the desired output of the control system, a feedback control law containing 

adjustable parameters, and an adaptation mechanism for updating the adjustable parameters.

Controller Process

Adjustment
mechanism

Model

Controller parameters

Control
signal

y

Command
signal

ym

Fig. 10.4
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The plant is assumed to have a known structure, although the parameters are unknown. For linear plants, 

this means that the number of poles and the number of zeros are assumed to be known, but that the 

locations of these poles and zeros are not.

A reference model is used to specify the ideal response of the adaptive control system to the external 

command. Intuitively, it provides the ideal plant response, which the adaptation mechanism should seek 

in adjusting the parameters. The choice of the reference model is part of the adaptive control system 

design. This choice should reflect the performance specifications in the control tasks, such as rise time, 

setting time, overshoot or frequency-domain characteristics.

The controller is usually parameterized by a number of adjustable parameters (implying that one may 

obtain a family of controllers by assigning various values to the adjustable parameters). The controller 

should have perfect tracking capacity in order to allow the possibility of tracking convergence. That is, 

when the plant parameters are exactly known, the corresponding controller parameters should make 

the plant output identical to that of the reference model. When the plant parameters are not known, the 

adaptation mechanism will adjust the controller parameters, so that perfect tracking is asymptotically 

achieved. If the control law is linear in terms of the adjustable parameters, it is said to be linearly 

parameterized. Existing adaptive control designs normally require linear parameterization of the 

controller—in order to obtain adaptation mechanisms with guaranteed stability and tracking convergence.

The adaptation mechanism is used to adjust the parameters in the control law. In MRAC systems, the 

adaptation law searches for parameters such that the response of the plant under adaptive control, becomes 

the same as that of the reference model, i.e., the objective of the adaptation is to make the tracking error 

converge to zero. Clearly, the main difference from conventional control, lies in the existence of this 

mechanism. The main issue in adaptation design is to synthesize an adaptation mechanism which will 

guarantee that the control system remains stable and the tracking error converges to zero—even if the 

parameters are varied. Many formalisms in nonlinear control can be used to this end, such as Lyapunov 

theory, hyperstability theory, and passivity theory[126]. In this section, we shall use Lyapunov theory.

Thus, the desired performance in an MRAC (Fig. 10.4) is given in terms of a reference model, which,  

in turn, gives the desired response to the command signal. The inner control loop is an ordinary feedback 

loop composed of the plant and the controller; the parameters of the controller are adjusted by the outer 

loop in such a way that the error between the plant and model outputs becomes small. The key problem 

is to determine the adjustment mechanism so that a stable system, which brings the error to zero, is 

obtained.

From the block diagram of Fig. 10.4, one may jump to the false conclusion that MRAC has an answer to 

all control problems with uncertain plants. Before using such a scheme, important theoretical problems 

such as stability and convergence have to be considered. Since adaptive control schemes are both time-

varying and nonlinear, stability and performance analysis becomes very difficult. Many advances have 

been made in proving stability under certain (sometimes limited) conditions. However, not much ground 

has been gained in proving performance bounds.

10.3.1 Lyapunov Stability of Non-Autonomous Systems

In Chapters 8 and 9, we studied Lyapunov analysis of autonomous systems. An adaptive control system 

is a non-autonomous system because the parameters involved in its dynamic equations vary with time. 

Although many of the ideas in Chapters 8 and 9  can be similarly applied to the non-autonomous case, the 
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conditions required in the treatment of non-autonomous systems are more restrictive. Scalar functions 

with explicit time-dependence, V(x, t), are required while in autonomous system analysis, time-invariant 

functions V(x) suffice. Asymptotic stability analysis of non-autonomous systems is generally harder than 

that of autonomous systems since it is usually very difficult to find Lyapunov functions with a negative 

definite derivative. When  V (x, t) is only negative semidefinite, Lyapunov theorems on asymptotic 

stability are not applicable.

Lyapunov Theorem for Non-Autonomous Systems

If, in a certain neighborhood of the equilibrium point 0, there exists a scalar function V(x, t ) with 

continuous partial derivatives such that

  V(x, t) is positive definite, and

   V (x, t) is negative semidefinite,

then the equilibrium point 0, is stable in the sense of Lyapunov [126].

Similar to the case of autonomous systems, if in a certain neighborhood of the equilibrium point, V(x, t) 

is positive definite and  V (x, t ), its derivative along the system trajectories, is negative semidefinite, then  

V(x, t)  is called a Lyapunov function for the non-autonomous system.

The theorem stated above establishes stability in the sense of Lyapunov, and not asymptotic stability of 

the origin. An important and simple result which partially remedies this situation is Barbalat’s lemma. 

Barbalat’s lemma is a purely mathematical result concerning the asymptotic properties of functions and 

their derivatives. When properly used for non-autonomous systems, it may lead to satisfactory solution 

for many asymptotic stability problems.

Barbalat’s Lemma

Before describing Barbalat’s lemma itself, let us clarify a few points concerning the asymptotic properties 

of functions and their derivatives. Given a differentiable function f (t), the following facts are important 

to keep in mind [126]:

  If f is lower bounded (for some l > 0, the region defined by f (t) < l is bounded) and decreasing 

( f £ 0), then it converges to a limit. This is a standard result in calculus.

  The fact that f (t) converges as t , does not imply that  f t( ) Æ 0. For example, while the 

function, f (t) = e–t sin(e2t ) Æ 0, its derivative  f t( ) is unbounded.

Given that a function tends towards a finite limit, what additional requirement can guarantee that its 

derivative actually converges to zero? Barbalat’s lemma indicates that the derivative itself should have 

some smoothness properties; it should be uniformly continuous.

A function  f t( ) is uniformly continuous if one can always find a dR for a given R > 0, such that for any 

ti and t Œ[0, dR], we have
  f t f t Ri i( ) ( )+ - <t

Uniform continuity of a function is often difficult to assert from the above definition. A more convenient 

approach is to examine the function’s derivative. A very simple sufficient condition for a differentiable 

function to be uniformly continuous, is that its derivative must be bounded. Thus, if the function f (t) is twice 

differentiable, then its derivative  f t( ) is uniformly continuous if its second derivative   f t( ) is bounded. 

This can easily be seen from the finite difference theorem:
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For all ti and all ti + t, there exists t ¢ (between ti and ti + t ), such that

    f t f t f t t ti i i i( ) ( ) ( )[( ) ]+ - = ¢ + -t t

If  R1 > 0 is an upper bound on the function   f , then

  f t f t Ri i( ) ( )+ - £t t1

For t Œ[0, dR] and dR = R/R1, we have

  f t f t Ri i( ) ( )+ - <t

which is the definition of uniform continuity.

We can now state the Barbalat’s lemma (for proof, refer to [35, 126]):

If a differentiable function f (t) has a finite limit, and if   f t( ) is uniformly continuous, then  f t( ) Æ 0 as  

t .

To apply Barbalat’s lemma to the analysis of non-autonomous systems, one typically uses the following 

immediate corollary:

If a scalar function V (x, t ) satisfies the following conditions:

  V (x, t) is lower bounded, 

   V (x, t ) is negative semidefinite, and

   V (x, t ) is uniformly continuous in time,

then  V (x, t) Æ 0 as t 

10.3.2

We illustrate the design methodology of MRAC through a simple example. Consider a system with the 

plant model of the form

 
 y a y b u y yp p p p p p= - + =; ( )0 0D

 (10.21)

where u is the control variable, and yp is the measured state (output); ap and bp are unknown coefficients.

 Assume that it is desired to obtain a closed-loop system described by

  y a y b r y ym m m m m m= - + =; ( )0 0D    (10.22)

am and bm are known coefficients of the reference model.

 When the parameters of the plant are known, the following control law gives perfect model following:

 u(t) = br (t) – ayp(t)  (10.23)

with the parameters

 b
b

b
a

a a

b

m

p

m p

p

= =
-

,   (10.24)

An MRAC which can find the appropriate gains a(t) and b(t) when parameters ap and bp are not known, 

may be obtained as follows (Fig. 10.5).
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Fig. 10.5

Introduce the error variable

 e(t) = yp (t) – ym (t) (10.25a)

The rate of change of the error is given by
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Notice that the error goes to zero if the parameters a(t) and b(t) are equal to the ones given by (10.24). 

We will now attempt to construct a parameter adjustment mechanism that will drive the parameters a(t) 

and b(t) to appropriate values, such that the resulting control law (10.23) forces the plant output yp(t) to 

follow the model output ym(t). For this purpose, we introduce the Lyapunov function,
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where g  > 0.

This function is zero when e(t) is zero and the controller parameters a(t) and b(t) are equal to the optimal 

values given by (10.24). The derivative of V is

 
dV

dt
e t

de t

dt
b a t a a

da t

dt
b b t b

db t
p p m p m= + + - + -( )

( )
[ ( ) ]

( )
[ ( ) ]

(1 1

g g

))

dt

 = - + + - -È
ÎÍ

˘
˚̇

+a e t b a t a a
da t

dt
y t e t b bm p p m p p

2 1 1
( ) [ ( ) ]

( )
( ) ( ) [ (

g
g

g
tt b

db t

dt
r t e tm) ]

( )
( ) ( )- +È

ÎÍ
˘
˚̇

g

If the parameters are updated as

 

db t

dt
r t e t
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( ) ( )= – g
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( ) ( ),= g  (10.26)

we get

 
dV

dt
a e tm= - 2 ( )
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Thus, the adaptive control system is stable in the sense of Lyapunov, i.e., the signals e, a and b are bounded. 

To ensure that tracking error goes to zero, we compute second time derivative of Lyapunov function:

d V

dt
a e t

de t

dt
m

2

2
2= - ( )

( )

From (10.25b), it follows that

 
d V

dt
a e t a e t a a b a t y t b b t b r tm m m p p p p m

2

2
2= - - + - - + -( )[ ( ) ( ( )) ( ) ( ( ) ) ( ))]

 = f (e, a, b, yp, r)

Since all the parameters are bounded, and yp(t) = e(t) + ym(t) is bounded,   V  is also bounded, which, in 

turn, implies that  V is uniformly continuous. Therefore, the asymptotic convergence of the tracking error 

e(t) is guaranteed by Barbalat’s lemma.

Figure 10.6 shows the simulation (refer to Problem A.19 in Appendix A) of MRAC system with ap = 1, 

bp = 0.5, am = 2 and bm = 2. The input signal is a square wave with amplitude 1. The adaptation gain g  = 

2. The closed-loop system is close to the desired behavior, after only a few transients. The convergence 

rate depends critically, on the choice of the parameter g.
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Fig. 10.6

Plots in Fig. 10.6 were generated by simulating the following sets of equations:

 (i)  y t y t r t ym m m( ) ( ) ( ); ( )= - + =2 2 0 0

  This gives ym(t).

 (ii)  y t y t u t yp p p( ) ( ) . ( ); ( )= - + =0 5 0 0

   u(t) = b(t)r(t) – a(t)yp (t)
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db t

dt
r t e t b

( )
( ) ( ); ( ) .= - =2 0 0 5

  
da t

dt
y t e t ap

( )
( ) ( ); ( )= =2 0 1

          e t y t y tp m( ) ( ) ( )= -

 From this set of equations, we obtain u(t) and yp(t).

10.4 SYSTEM IDENTIFICATION AND GENERALIZED

10.4.1

The types of models that are needed for the design methods presented in this book, can be grouped 

into two categories: transfer function model and state variable model. If we have a transfer function 

description, we can obtain an equivalent state variable description and vice versa. These equivalent 

models are described by certain parameters—the elements of F, g, c matrices of the state model
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k k u k
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1 x
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or the parameters ai and bj of the transfer function 
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1 2
1
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1

 

 

The category of such models gives us the parameteric description of the plant. The other category of 

models such as frequency-response curves (Bode plots, polar plots, etc.), time-response curves, etc., 

gives nonparametric description of the plant.

Plant models can be obtained from the first principles of physics. In many cases, however, it is not possible 

to make a complete model only from physical knowledge. In these circumstances, the designer may turn 

to the other source of information about plant dynamics—the data taken from experiments directly 

conducted to excite the plant, and to measure the response. The process of constructing models from 

experimental data is called system identification. In this section, we restrict our attention to identification of 

discrete parametric models, which includes the following steps:

 (i) Experimental planning

 (ii) Selection of model structure 

 (iii) Parameter estimation

Experimental Planning

The choice of experimental conditions for parameter estimation is of considerable importance. It is clear 

that the best experimental conditions are those that account for the final application of the model. This 

may occur naturally in some cases; e.g., in adaptive control (discussed later in this section) the model is 
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adjusted under normal operating conditions. Many ‘classic’ methods depend strongly on having specific 

input, e.g., sinusoid or impulse. There could be advantages in contriving such an artificial experiment 

if it subjects the system to a rich and informative set of conditions, in the shortest possible time. A 

requirement on the input signal is that it should sufficiently excite all the modes of the process.

One broad distinction in identification methods is between on-line and off-line experimentation. The 

on-line methods give estimates recursively, as the measurements are obtained, and are the only alternative 

if the identification is going to be used in an adaptive controller.

The model structures are derived from prior knowledge of the plant. In some cases the only a priori 

knowledge is that the plant can be described as a linear system in a particular range. It is, then, natural to 

use general representations of linear systems.

Consider a SISO dynamic system with input {u(t)} and output {y(t)}. The sampled values of these 

signals can be related through the linear difference equation

 y k n y k n y k u k m u k m u kn m( ) ( ) ( ) ( ) ( ) ( );+ + + - + + = + + + - + + +a a b b b1 1 2 11 1  nn m≥  (10.27)

ai and bj are constant (unknown) parameters.

The number of parameters to be identified, depends on the order of the selected model, i.e., n in Eqn. 

(10.27). The calculations can be arranged so that it is possible to make a recursion in the number of 

parameters in the model. The methods of model-order selection are usually developed for the off-line 

solution.

The unknown process is not completely a black box. Some information about its dynamic behavior is 

known from basic principles and/or plant experience. Therefore, some estimate of the model’s order, and 

some initial values for the unknown parameters, will be available. The more we know about the process, 

the more effective the postulated model will be. Consequently, we should use all available information 

for its development. The order of the postulated model is a very important factor. Remember, that 

complex models of high order will not necessarily produce better controller designs and may burden the 

computational effort, without tangible results.

Equation (10.27) may be expressed as

y k y k y k n u k m n u k m n u kn m( ) ( ) ( ) ( ) ( ) (+ - + + - = + - + + - - + + +a a b b b1 1 2 11 1  -- n)

or

 y k y k y k n u k d u k d u k nn n d( ) ( ) ( ) ( ) ( ) (+ - + + - = - + - - + + -- +a a b b b1 1 2 11 1  )) (10.28)

d = n – m ≥ 0 is the relative degree or control delay.

We shall use operator notation for conveniently writing linear difference equations. Let z–1 be the 

backward shift (or delay) operator:

 z y k y k- = -1 1( ) ( ) (10.29)

Then Eqn. (10.28) can be written as 

A z y k B z u k( ) ( ) ( ) ( )- -=1 1

where A(z–1) and B(z–1) are polynomials in the delay operator:

A z z zn
n( )- - -= + + +1

1
11 a a 
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B z z z zd
n d

n d( ) ( )
( )- - -

- +
- -= + + +1

1 2
1

1b b b 

We shall present the parameter-estimation algorithms for the case of d = 1 without any loss of generality; 

the results for any value of d easily follow.

For d = 1, we get the input-output model structure

 A z y k B z u k( ) ( ) ( ) ( )- -=1 1
 (10.30)

where

 A z z zn
n( )- -= + + +1

1
11 a a 

-

 B z z z zn
n( )- - - -= + + +1

1
1

2
2b b b 

In the presence of the disturbance, model (10.30) takes the form

 A z y k B z u k k( ) ( ) ( ) ( ) ( )- -= +1 1 e  (10.31)

where e (k) is some disturbance of unspecified character.

The model (10.31) describes the dynamic relationship between the input and output signals, expressed 

in terms of the parameter vector 

 p = [ ... ... ]a a b b1 1n n
T

 (10.32)

Introducing the vector of lagged input-output data,

 e( ) [ ( ) ( ) ( ) ( )];k y k y k n u k u k n= - - - - - -1 1   (10.33)

Eqn. (10.31) can be rewritten as

 y k k k( ) ( ) ( )= +e p e  (10.34)

A model structure should be selected (i) that has a minimal set of parameters and is yet equivalent to  

the assumed plant description; (ii) whose parameters are uniquely determined by the observed data; and  

(iii) which will make subsequent control design simple.

The dynamic relationship between the input and output of a scalar system is given by the model (10.34). 

Ignoring random effects e (k) on data collection, we have

 y k k( ) ( )= e p  (10.35)

where e(k) is given by Eqn. (10.33) and p is given by Eqn. (10.32).

Using the observations
{ ( ), ( ),..., ( ), ( ), ( ),..., ( )}u u u N y y y N0 1 0 1

we wish to compute the values of ai and bj in parameter vector p, which will fit the observed data.

Thus, solving the parameter-estimation problem requires techniques for selecting a parameter estimate, 

which best represents the given data. For this, we require some idea of the goodness of the fit of a 

proposed value of p to the true p°. Because, by the very nature of the problem, p° is unknown, it is 

unrealistic to define a direct parameter error between p and p°. We must define the error in a way that can 

be computed from {u(k)} and {y(k)}.
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Let e(k,p) be the equation error comprising the extent to which the equations of motion (10.35) fail to be 

true for a specific value of p when used with the specific actual data:

 e k y k k( , ) ( ) ( )p e p= -  (10.36)

A simple criterion representing the goodness of fit, of a proposed value of p, is given by

 J e k

k

N

( ) ( , )p p= Â 2

1=

 (10.37)

The method called the Least Squares  Method, based on minimizing the sum of the squares of the error, 

is a very simple and effective method of parameter estimation. 

Since y(k) depends on past data up to n earlier periods, the first error we can form is e(n,p); the subsequent 

errors being e(n + 1, p), ..., e(N, p):

 e n y n n( , ) ( ) ( )p e p= -

  e n y n n( , ) ( ) ( )+ = + - +1 1 1p e p

 �

  e N y N N( , ) ( ) ( )p e p= -
In vector-matrix notation, 

  e y( , ) ( ) ( )N N Np F p= -  (10.38)

where  e

y

( , ) [ ( , ) ( , ) ( , )]

( ) [ ( ) ( ) ( )]

N e n e n e N

N n n N

T

T T T T

p p p p

F e e e

= +

= +

1

1

 

 

(( ) [ ( ) ( ) ( )]N y n y n y N T= +1  

Note that e is (N – n + 1) ¥ 1 vector, y is (N – n + 1) ¥ 1 vector, F is (N – n + 1) ¥ 2n matrix and p is 

2n ¥ 1 vector.

The principle of least squares says that the parameters should be selected in such a way that the 

performance measure

 J e k N N

k n

N
T( ) ( , ) ( , ) ( , )p p p p= =Â 2

=

e e  (10.39)

is minimized

The performance measure J (p) can be written as

 J N N N NT( ) [ ( ) ( ) ] [ ( ) ( ) ]p F p F p= y y- -

 = y y y y
T T T T T TN N N N N N N N( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )- - +p F F p p F F p

 = y y y
T T T T T TN N N N N N N N( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y – –p F F p p F F p+

 + -- -
y y y

T T T T T TN N N N N N N N N N( ) ( )( ( ) ( )) ( ) ( ) ( ) ( )( ( ) ( )) (F F F F F F F F1 1 NN N) ( )y

(Note that we have simply added and subtracted the same terms under the assumption that [FT(N) F(N)] 

is invertible).

Hence 

 J N N N N N NT T T( ) ( )[ ( ( )( ( ) ( )) ( )] ( )p F F F F= - -
y y1 1

 + - ¥-( ( ( ) ( )) ( ) ( )) ( ) ( )p F F F F FT T T TN N N N N N1
y  ( ( ( ) ( )) ( ) ( )p F F F- -T TN N N N1

y
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 The first term in this equation is independent of p, so we cannot reduce J via this term. Hence, to get the 

smallest value of J, we choose p so that the second term is zero. Denoting the value of p that achieves the 

minimization of J by p̂, we notice that 

  ˆ [ ( ) ( )] ( ) ( )p F F F= -T TN N N N1
y  (10.40a)

where

   = ( )
= -

P y

P

( ) ( )

( ) [ ( ) ( ) ]

N N N

N N N

T

T

F

F F 1

 (10.40b)

The least squares calculation for p̂ given by (10.40) is a ‘batch’ calculation since one has a batch of 

data from which the matrix F, and vector y, are composed according to (10.38). In many cases, the 

observations are obtained sequentially. If the least squares problem has been solved for N observations, 

it seems to be a waste of computational resources to start from scratch when a new observation is 

obtained. Hence, it is desirable to arrange the computations in such a way that the results obtained for 

N observations can be used in order to get the estimates for (N + 1) observations. The algorithm for 

calculating the least-squares estimate recursively is discussed below.

Let ˆ ( )p N  denote the least-squares estimate based on N measurements. Then from (10.40)

 ˆ ( ) [ ( ) ( )] ( ) ( )p F F FN N N N NT T= -1
y

It is assumed that the matrix [ ( ) ( )]F FT N N  is nonsingular for all N. When an additional measurement is 

obtained, a row is added to the matrix F and an element is added to the vector y. Hence,

 F
F

e
( )

( )

( )
; ( )

( )

( )
N

N

N
N

N

y N
+

+
È

Î
Í

˘

˚
˙ +

+
È

Î
Í

˘

˚
˙1

1
1

1
= =y

y

The estimate p̂ N +( )1  based on N + 1 measurements, can then be written as 

 ˆ ( ) [ ( ) ( )] ( ) ( )

[ ( ) ( ) ( )

p F F F

F F e e

N N N N N

N N N

T T

T T

+ = + + + +

= + +

-1 1 1 1 1

1

1
y

(( )] [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ]

N N N N y N

N N N

T T

T

+ + + +

+ = + +

-

-

1 1 1

1 1 1

1

1

F e

F F

y

P

 

(10.41)

Then from (10.41), we obtain

  P P( ) [ ( ) ( )]N N N NT+ = + +( ) +- -1 1 11 1e e  (10.42)

We now need the inverse of a sum of two matrices. We will use the well-known matrix inversion lemma1 

for this purpose.

 1 Matrix inversion lemma is proved below.

  [A BCD A A B C DA B DA

I + BCDA B C DA

+ - +

- +

- - - - - -

- - -

ÈÎ ˘̊Ï
Ì
Ó

¸
˝
˛

]
1 1 1 1

1
1

1 1
=

11
1

1 1 1 1
1

1

1 1

B DA BCDA B C DA B DA

I BCDA BC C DA

ÈÎ ˘̊ ÈÎ ˘̊
- - - - - - -

- -

- +

+ - -=
-- - - - -

- -

[ ][ ]-

+ -

1 1 1
1

1

1 1

B C DA B DA

I BCDA BCDA

I

=

=
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Let A, C and C–1+ DA
–1

B be nonsingular square matrices; then

 [ ] [ ]A BCD A A B C DA B DA+ = - +- - - - - - -1 1 1 1 1 1 1
 (10.43)

To apply (10.43) to (10.42), we make the associations

 A = P–1(N)

 B = eT(N + 1)

 C = 1

 D = e(N + 1)

Now, the following result can easily be established.

P P P P P( ) ( ) ( ) ( )[ ( ) ( ) ( )] ( ) ( )N N N N N N N N NT T+ = - + + + ¥ + +-1 1 1 1 11e e e e1

Substituting the expression for P (N + 1) into (10.41), we obtain

 ˆ ( ) { ( ) ( ) ( )[ ( ) ( ) ( )]p e e eN N N N N N NT T+ = - + + + + ¥-1 1 1 1 1 1
P P P

  e F e( ) ( )}[ ( ) ( ) ( ) ( )]N N N N N y NT T+ + + +1 1 1P y

 = + + + - + ¥P y P P( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N N N N N y N N NT T TF e e1 1 1    

  [ ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( )1 1 1 11+ + + + - ¥-e e e FN N N N N N N NT T
P P y P   

 e e e e eT T TN N N N N N N y N( )[ ( ) ( ) ( )] ( ) ( ) ( ) ( )+ + + + + ¥ + +-1 1 1 1 1 1 11
P P

 = ˆ ( ) ( ) ( )[ ( ) ( ) ( )]p e e eN N N N N NT T+ + + + + ¥-
P P1 1 1 1 1       

 [ ( ) ( ) ( )] ( ) ( ) ( )1 1 1 1 1+ + + + - + ¥e e eN N N y N N NT T
P P   

 [1 + e(N + 1)P(N)eT(N + 1)]–1e(N + 1)p̂(N) – P(N) ¥

 e e e e eT T TN N N N N N N y N( )[ ( ) ( ) ( )] ( ) ( ) ( ) ( )+ + + + + + +-1 1 1 1 1 1 11
P P

This gives

 ˆ( ) ˆ ( ) ( )[ ( ) ( ) ˆ ( )]

( ) ( ) ( )[

p p e p

e e

N N N y N N N

N N NT

+ = + + - +

= + +

1 1 1

1 1

K

K P (( ) ( ) ( )]

( ) [ ( ) ( )] ( )

N N N

N N N N

T+ +
+ = - +

-1 1

1 1 1

1
P

P K P

e

e

 (10.44a)

(10.44b)

(10.44c)

Equations (10.44) give the recursive least squares algorithm. Notice that for a single-output system, no 

matrix inversion is required.

The Eqns (10.44) have a strong intuitive appeal. The estimate p̂(N + 1) is obtained by adding a correction 

to the previous estimate p̂(N). The correction is proportional to y(N + 1) –e(N + 1)p̂(N) where the 

term e(N + 1)p̂(N) is the expected output at the time N + 1, based on the previous data e(N + 1) and 

the previous estimate p̂(N). Thus, the next estimate of p is given by the old estimate corrected by a 

term, linear in error, between the observed output y(N + 1) and the predicted output e(N + 1)p̂(N). The 

components of the vector K(N) are weighting factors that show how the correction and the previous 

estimate should be combined.

Replacing N by recursive parameter k in Eqns (10.44), we rewrite the recursive least squares (RLS) 

algorithm as

 ˆ ( ) ˆ ( ) ( )[ ( ) ( ) ˆ ( )]p p e pk k k y k k k+ = + + - +1 1 1K  (10.45a)

 K P P( ) ( ) ( )[ ( ) ( ) ( )]k k k k k kT T= + + + + -e e e1 1 1 1 1  (10.45b)

 P K P( ) [ ( ) ( )] ( )k k k k+ = - +1 1 1e  (10.45c)
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Any recursive algorithm requires some initial value to be started up. In (10.44), we require p̂(N) and P(N) 

(equivalently, in (10.45) we require p̂(k) and P(k)). We may collect a batch of N > 2n data values, and 

solve the batch formula once for P(N) and p̂(N).

However, it is more common to start the recursion at k = 0 with P(0) = a I and p̂(0) = 0, where a  is some 

large constant. You may pick P(0) = aI, but choose p̂(0) to be the best guess that you have, at what the 

parameter values are.

We have presented the least squares method ignoring random effects on data collection, i.e., e(k) in 

Eqn. (10.34) has been neglected. If e(k) is white noise, the least squares estimate given by (10.45) 

converges to the desired value. However, if e(k) is colored noise, the least squares estimation usually 

gives a biased (wrong mean value) estimate. This can be overcome by using various extensions of the 

least squares estimation.

We have seen that parameter estimation can be done either on-line or off-line. Off-line estimation may 

be preferable if the parameters are constant, and there is sufficient time for estimation before control. 

However, for parameters which vary (even though slowly) during operation, on-line parameter estimation 

is necessary to keep track of the parameter values. Since problems in the adaptive control context usually 

involve slowly time-varying parameters, on-line estimation methods are, thus, more relevant.

The main purpose of the on-line estimators is to provide parameter estimates for self-tuning control.

10.4.2 Self-Tuning Regulator

If the plant is imperfectly known, perhaps because of random time-varying parameters or because of the 

effects of environmental changes on the plant’s dynamic characteristics, then the initial plant model and 

the resulting control design will not be sufficient to obtain an acceptable performance for all time. It then 

becomes necessary to carry out plant-identification and control-design procedures continuously, or at 

intervals of time, depending on how fast the plant parameters change. This ‘self-design’ property of the 

system, to compensate for unpredictable changes in the plant, is the aspect of performance that is usually 

considered in defining an adaptive control system.

The identification of the dynamic characteristics of the plant should be accomplished without affecting 

the normal operation of the system. To identify the plant model, we must impose a control signal on the 

plant and analyze the system response. Identification may be made from normal operating data of the plant 

or by use of test (additional) signals, such as sinusoidal ones of small amplitude. The plant should be 

in normal operation during the test; the test signals imposed should not unduly disturb normal outputs. 

Furthermore, inputs and system noise should not confuse the test. Normal inputs are ideal as test signals 

since no difficulties with undesired outputs, or confusing inputs, will arise. However, identification with 

normal inputs is only possible when they have adequate signal characteristics (bandwidth, amplitude, 

and so on) for proper identification.

Once the plant has been identified, a decision must be made about how the adjustable parameters 

(controller characteristics) should be varied to maintain acceptable performance. The control signals are 

then modified according to the plant identification and control decision. The three functions:

 (i) plant identification, 

 (ii) control design based on the identification results, and

 (iii) actuation based on the control design
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can easily by implemented using a digital computer. Figure 10.7a shows a block diagram representation 

of the adaptive control scheme. The system obtained is called a Self-Tuning Regulator (STR) because it 

has facilities for tuning its own parameters. The regulator can be thought of as being composed of the 

following two loops: 

 (i) The inner loop is the conventional feedback control loop consisting of the plant and the regulator.

 (ii) The parameters of the regulator are adjusted on-line by the outer loop, which is composed of the 

recursive-parameter estimator and design calculations.

Design

Estimation

Process parameters

Controller
parameters

Command
signal

Control
signal

Output
ProcessController

Fig. 10.7 (a) Block diagram of a self-tuning regulator

A self-tuning regulator, therefore, consists of a recursive parameter estimator (plant identifier) coupled 

with a control-design procedure, such that the currently estimated parameter values are used to provide 

feedback-controller coefficients. At each sampling, an updated parameter estimate is generated and 

a controller is designed, assuming that the current parameter estimate is actually the true value. The 

approach of using the estimates as if they were the true parameters for the purpose of design, is called 

certainty equivalence adaptive control.

From the block diagram of Fig. 10.7a, one may jump to the false conclusion that such regulators can be 

switched on and used blindly without any a priori considerations; the only requirement being a recursive 

parameter estimation scheme and a design procedure. We have, no doubt, an array of parameter-estimation 

schemes and an array of controller-design methods for plants with known parameters. However, all the 

possible combinations may not have a self-tuning property, which requires that the performance of the 

regulator coincides with the performance that would be obtained, if the system parameters were known 

exactly. Before using a combination, important theoretical problems, such as stability and convergence, 

have to be tackled. There are cases wherein self-tuning regulators have been used profitably, though 

some of their properties have not been fully understood theoretically; on the other hand, bad choices have 

been disastrous in some other cases.

So far, only a small number of available combinations have been explored from the stability, convergence, 

and performance points of view. It is a striking fact, uncovered by Astrom and Wittenmark [132], that 

in some circumstances a combination of simple least-squares estimation and minimum-variance control 

has a self-tuning property. The same is true for some classes of pole-shifting regulators. Computer-based  

controllers incorporating these concepts are now commercially available.

10.4.3

Clarke, Mothadi and Tuffs [120,121] proposed an alternative—Generalized Predictive Control (GPC), 

to pole placement and minimum variance designs used in self-tuning regulators. The argument for 
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introducing GPC in a self-tuning context was that it was based on a more flexible criterion than minimum 

variance controllers without requiring an excessive amount of computations. Although it originated in 

an adaptive control context, GPC has many attractive features which definitely makes it worthwhile 

considering even for non-adaptive control structures. We first consider the GPC approach for a non-

adaptive control structure.

The generalized predictive control (GPC) differs in at least three ways from the control design methods 

considered so far in this book.

 (i) In linear quadratic control (Chapter 8), the cost function is defined over the time interval [0, ):

J = 
1

2
[ ( ) ( )]e k u k

k

2 2

0

+Â r
=

; e(k) = y – yr

  where y(k) is the actual output, yr is the reference/command value, u(k) is the control signal, and 

r is a weighting factor.

  We call this control problem an infinite-horizon problem. Note that ‘infinite horizon’ does not 

necessarily mean that infinite amount of time is required for the control u(k) to achieve the desired 

performance; it just means that there is no fixed deadline on time yielding the desired performance.  

In fact, as we know, a good design yields stability and steady-state accuracy in seconds.

  The other design methods considered in this book so far (e.g., PID, Pole-Placement) are also 

based on infinite-horizon assumption, though this is not explicitly visible as in linear quadratic 

control.

 (ii) The control design methods considered so far are all off-line design methods; the design 

calculations are carried out in one shot before implementation (unless the design is a part of the 

MRAC/Self-Tuning loops).

 (iii) The design in these methods is based on a fixed model of the plant.  A model, however, is always an 

approximation of the system under consideration.  With time, the parameters of the model become 

more and more inaccurate because of internal/external disturbances. Therefore, the control law 

u(k) calculated at k = 0 would become more and more inaccurate when considered further in the 

future, if adequate provision is not built-in to account for the changes in the model. This, in fact, is 

the essence of feedback control; the error signal is a measure of the internal/external disturbances, 

and hence changes in the model; the control law u(k) is forced to be a function of the error signal.

In GPC, we use the concepts of finite horizon, sequential design (on-line design), and the control strategy 

has open-loop structure.  The GPC approach can be described as follows:

 (1) Assume the measured (actual) value of the current system output is y(k). With the data known 

up to time k, the value of the output y(k + j) is predicted over a certain time horizon, called the 

prediction horizon N; j = 1, 2,…, N. This ‘output prediction’ is based on the explicit use of the 

fixed plant model, and depends on the future values of the control variable u(k + j) within a control 

horizon Nu; j = 1, 2,…, Nu; Nu £ N. If Nu < N, then u(k + j) = u(k + Nu); j = Nu + 1,…, N.

 (2) A reference trajectory r(k + j); j = 1,…, N, is defined which describes the desired system trajectory 

over the prediction horizon. 

 (3) The vector of future controls u(k + j) is computed such that a cost function of the following form 

is minimized:

 J = 

j

N

=1

Â [ ( ) ( )]k j r k j u k j

j

Nu

+ - + + -( )ÈÎ ˘̊Â2 2

1

1r D +

=

 (10.46)ŷ
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  where ŷ(k + j) is the predicted output sequence obtained with the data known up to time k, 

Du(k + j –1) is a future control increment (Du(k) = u(k) – u(k – 1)) obtained from minimization 

of cost function J, and r is a weighting factor. The horizons (N, Nu) and the weighting factor (r) 

are design parameters. The reference trajectory r(k + j) can be a known constant, or known future 

variations.

 (4) Once the minimization is achieved, the first optimized control action u(k) is applied to the plant, 

and the resulting plant output is measured. This measurement of the plant output is used as initial 

state of the model to perform the next iteration.

 Steps 1 to 4 are repeated at each sampling instant. The block diagram of the GPC scheme is shown in 

Fig.10.7b.

The following prime characteristics distinguish GPC approach from other design methods:

  At each sample, the control signal is determined to achieve a desired behavior in the following N 

steps.  This is called a receding horizon strategy.

  As per the principle of optimality (Chapter 14), the first element u(k) of the sequence of controls is 

optimal if the sequence, at every sample instant, had been determined to optimize the cost function 

(10.46) with N = . This is because our control problem is an infinite-horizon problem. Therefore, 

using finite-horizon structure in GPC is an approximation, necessitated by the requirement of 

reducing the computational time for calculating u(k + j) on-line.

  The GPC scheme of Fig. 10.7b is apparently an open-loop structure; therefore, one may doubt 

the robustness features of the scheme. The robustness is, in fact, built in the receding horizon 

and on-line properties of the scheme: at every decision step, the generalized predictive controller 

observes the state of the true system, synchronizes the estimate that it has with this, and tries to 

find the best sequence of actions given the updated state.

For the problem formulation with cost function (10.46), predictions ŷ(k + j) are based on the measured 

values of y(k), y(k – 1),…, and not on the predicted values ŷ(k), ŷ(k – 1),…. This virtually amounts to a 

feedback loop, a source of measure of the internal/external disturbances.

Most real-world dynamical systems are inherently nonlinear. It provides motivation for the application 

of GPC strategies, given nonlinear model of the plant. However, in many situations, on-line nonlinear 

optimization problem makes implementation of GPC scheme impractical. For many nonlinear systems, a 

linearized model is acceptable when the system is working around the operating point. The GPC scheme 

with a linear predictive model is a powerful design method in the toolkit of control practitioners.

As the control variables in a GPC scheme are calculated based on the predicted output, the model needs 

to be able to reflect the dynamic behavior of the system as accurately as possible. The non-adaptive 

control scheme of Fig. 10.7b, when inserted in an adaptive loop such as self-tuning mode of Fig. 10.7a, 

will yield an improved performance.

The derivation that follows, employs a linear predictive model.

When considering regulation about a particular operating point, even a nonlinear plant generally admits 

a locally-linearized model (refer to Eqns (10.30)–(10.32)):

 A z y k B z u k k( ) ( ) ( ) ( ) ( )- -= - +1 1 1 e  (10.47a)
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where A and B are polynomials in the backward shift operator z–1:

 A z z zn
n( )- - -= + + +1

1
11 a a  (10.47b)

 B z z zn
n( )- - -= + + +1

1 2
1b b b  (10.47c)

e (k) = some disturbance of unspecified character.

Fig. 10.7 
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The leading elements b 1, b2, ..., of the polynomial B are set to zero to account for the dead-time of the 

plant; and the trailing elements bn, bn–1,…, are set to zero if the degree of polynomial B is less than n.

Principal disturbances encountered in industrial applications are accommodated by modeling e (k) as a 

white noise sequence independent of past control inputs. To obtain a controller with integral action, it is 

further assumed that the term e(k) is modeled as integrated white noise:

 e
x

( )
( )

k
k

z
=

- -1 1
  (10.48)

when x(k) is an uncorrelated random sequence. Combining with (10.47a), we obtain

 A z y k B z u k k( ) ( ) ( ) ( ) ( )/- -= - +1 1 1 x D  (10.49)

where D is the differencing operator (1 – z–1).

Considering the time instant k + j, model (10.47) equivalently reads

 A z y k j B z u k j k j( ) ( ) ( ) ( ) ( )- -+ = + - + +1 1 1D D x   (10.49a)

To systematically derive a j-step ahead predictor of output, the model is reorganized by introduction of 

the following identity (Diophantine equation).

 1 1 1 1= +- - - -DA z E z z F zj
j

j( ) ( ) ( )  (10.50a)

where Ej and Fj are polynomials uniquely defined, given the polynomial A and the prediction interval j;

 deg( ) deg( ) deg( ) :E j F A nj j= - = =1 and

  Ej = e e z e z
j j

j
j j

0 1
1

1
1( ) ( ) ( ) ( )+ + +-

-
- -

  (10.50b)

 Fj = f f z f z
j j

n
j n

0 1
1( ) ( ) ( )+ + +- -

  (10.50c)

Multiplying Ej to both sides of (10.49) and using the identity (10.50a) gives

   ( ) ( ) ( ) ( )1 1- + = + - + +-z F y k j E B u k j E k jj
j j jD x

or  y k j E B u k j F y k E k jj j j( ) ( ) ( ) ( )+ = + - + + + D 1 x  (10.51)

Given that the sequence of future control inputs (i.e., u(k + i ) for i > 1) is known, and measured output 

data up to time k is available, the optimal predictor for y(k + j ) is the expectation conditioned on the 

information gathered up to time k (since Ej is of degree j – 1, the noise components are all in the future):

  ˆ( | ) ( – ) ( )y k j k G u k j F y kj j+ = + +D 1  (10.52a)

where Gj = EjB is a polynomial of order n + j – 1

  = + + + +
+g g z g z

j j
n j

j n j
0 1

1
1

1( ) ( ) ( ) ( )-
-

- -
  (10.52b)

By multiplying B/AD to both sides of identity (10.50a), we obtain 

 Gj = 
B

A
z F

B

A

j
jD D

– –  

  = 
B

A
z f f z f z

B

A

j j j
n

j n

D D
– – ( ) ( ) – ( ) –

0 1
1+ + +ÈÎ ˘̊  (10.52c)
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The polynomial 
B

A

B z

A z zD
=

( )

( )( )

-

- --

1

1 11
 represents the z-transform of the response y(k) of the process to 

unit-step input.

 Step response = g0 + g1z–1 +   + gj–1z–( j–1) + gj z
– j +   (10.52d)

It is obvious that the first j terms in Gj are same as the j coefficients of the step response of the process.  

This gives us one way of computing Gj for the prediction equation (10.52a). Both Gj and Fj may be 

computed by recursion of the Diophantine equation (10.50a), as is explained below.

With  A defined as DA, we have from (10.50a)

 1 = +E A z Fj
j

j
 –  (10.53a)

Since  A is monic, the solution to

 1 1
1

1= +E A z F –

is obviously

 
E F z A1 11 1= =; [ ]-  

Assume now that the solution to (10.53a) for some j exists, and consider the equation for j + 1:

  1 1
1

1= ++
+

+E A z Fj
j

j
 –( )  (10.53b)

Subtracting the two gives

  0 1
1

1= ++ +
 A E E z z F Fj j

j
j j[ ] [ ]- -- -

 (10.54a)

Since deg (Ej + 1 – Ej) = deg (Ej + 1) = j, it turns out to be good idea to define

 E E E e zj j j j
j

+
+= +1

1 1–
( ) –

 (10.54b)

where e j
j( )+1

 specifies the coefficient to z–j in the polynomial Ej + 1. Using this, (10.54a) can be rewritten 

as 

  0 1
1

1= + ++
+  AE z z F F Aej

j
j j j

j– – ( )
[ – ]  (10.54c)

By again exploiting that  A is monic, it is evident that E j = 0, leading to 

 E E e zj j j
j j

+
+= +1

1( ) -  

Consequently,

 z F F Aej j j
j– ( )

–1
1

1
0+

++ = 

or

  F z F Aej j j
j

+
+=1

1
[ ]

( )-  

Comparing the coefficients, we obtain

  e j
j( )+1

 = f
j

0
( )

 fi
j( )+1

 = f f i ni
j

i
j

+ + =1 1 0 0 1
( ) ( )

, , , ,-  …a

   A = 1+ a a1
1z zn

n- -+º+
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The following equations provide a summary of the recursions of Diophantine equation:

 Ej +1 =  Ej + f z
j j

0
( ) -  (10.55a)

  fi
j( )+1  = f f i ni

j
i

j
+ + =1 1 0 0 1
( ) ( )

, , , ,-  …a  (10.55b)

with

  fn
j

+1
( ) = 0 

 E1 = 1, and F1 = z ( )1 -  A  (10.55c)

The only unknown quantities in the prediction equation (10.52a) are now the future control inputs. In 

order to derive the control law, it is necessary to separate these from the part of the expression containing 

known (past) data.

  ˆ( ) ( – ) ( ) ( ) ( )y k G g u k F y k g u k+ = + +1 1 0 1 0D D  (10.56a)

  ˆ( )y k j+  = z G G u k F y k G u k j j Nj
j j j

– [ – ] ( ) ( ) ( – );1 1 1D D+ + + < £  (10.56b)

where G g g z g zj j
j= + + +0 1

1
1

1–
–

–( – )
  (10.56c) 

Deriving the Control Law

First the predictions derived above are expressed in the following vector notation.

  ŷ u= G i +  (10.57)

where

  ŷ = [ ŷ(k + 1) ŷ(k + 2) ... ŷ(k + N)]T

  u = [Du(k) Du(k + 1) ... Du(k + Nu – 1)]T

 i = [j (k + 1)  j(k + 2) ...j(k + N)]T

with j (k + j ) = z j–1
[ ] ( ) ( ).G G u k F y kj j j- D +

G is a matrix of dimension N ¥ Nu:

  G =
∑ ∑

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

g

g g

g

g g gN N N Nu

0

1 0

0

1 2

0 0

0

 

 

    

 

   

 – – – ˙̇

 (10.58)

With the reference trajectory expressed in the form of a vector

 r = [r(k + 1)  r(k + 2)   r(k + N)]T,

the expression of the cost function of (10.46) can be written as

  J = ( ) ( )G i G i    u r u r u u+ + - +- T r T  (10.59)
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The sequence of future controls is determined by setting the derivative of the cost function to zero:

 
∂
∂
J

 u
 = 2 2G (G iT   u r u)+ +– ) r

  = 2 2 2G G G iT T  u r u+ +( – ) r = 0

or

   u I r= [G G G iT + r ] ( )– –1 T  (10.60)

The matrix involved in the inversion is of the much reduced dimension Nu ¥ Nu. In particular, if Nu = 1 

(as is usefully chosen for a ‘simple’ plant), this reduces to a scalar computation.

10.4.4

Consider a first-order system with a plant model of the form

 y k f y k gu k y y( ) ( ) ( ); ( )+ = + =1 0 0D  (10.61)

where u is the control variable and y is the measured state (output); f and g are unknown coefficients.

An especially simple adaptive controller results by combining the least squares method of parameter 

estimation with the generalized predictive controller. The least squares parameter-estimation algorithm 

requires relatively small computational effort and has a reliable convergence, but is applicable only 

for small noise-signal ratios. Several applications have shown that the combination of least squares 

parameter estimation with generalized predictive control gives good results.

Let us assume that for the system given by Eqn. (10.61), the desired steady-state value for the controlled 

variable y(k) is a constant reference input r. We select the generalized predictive control parameters: 

r = 0.1, N = 4, Nu = 1.

If the system parameters were known, the feedback controller should take the form (10.60). Since  

the parameters are assumed to be unknown, the least squares error estimates will be used in place of the 

true values of f ° and g° of the parameters f and g. The parameter estimates f̂  and ĝ are derived from 

the input-output measurements.

To simulate the system (refer to Problem A.20 in Appendix A), the data values were obtained from  

Eqn. (10.61) assuming the true parameters

f ° = 1.1052; g° = 0.0526

and sampling interval T = 0.1 sec.

With the initial estimate ˆ ( )p 0
0

0
=

È

Î
Í

˘

˚
˙ , P(0) = a I with large value of a , we use Equations (10.45) to 

generate the new parameter estimate, and implement the generalized predictive control law. The plot of 

Fig. 10.8 was generated using this procedure. The input signal is a square wave with amplitude 10. The 

closed-loop system is close to the desired behavior after a few transients.

10.4.5

As described above, MRAC control and STR arise from different perspectives; with the parameters 

in MRAC systems being updated so as to minimize the tracking errors between the plant output and 
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reference model output, and the parameters in STR systems being updated so as to minimize the data-

fitting error in input-output measurements. However, there are strong relations between the two design 

methodologies. Comparing Figs 10.4 and 10.7a, we note that the two kinds of systems have both an inner 

loop for control and an outer loop for parameters estimation. From a theoretical point of view, it can 

actually be shown that MRAC and STR systems can be put under a unified framework.

The two methods can be quite different in terms of analysis and implementation. Compared with MRAC 

systems, STR systems are more flexible because of the possibility of coupling various controllers with 

various estimators (i.e., the separation of control and estimation). However, the stability and convergence 

of self-tuning regulators are generally quite difficult to guarantee, often requiring the signals in the system 

to be sufficiently rich so that the estimated parameters converge to the true parameters. If the signals are 

not very rich (for example, if the reference signal is zero or a constant), the estimated parameters may not 

be close to the true parameters, and the stability and convergence of the resulting control system may not 

be guaranteed. In this situation, one must either introduce perturbation signals in the input, or somehow 

modify the control law. In MRAC systems, however, the stability and tracking error convergence are 

usually guaranteed—regardless of the richness of the signals.

10.5 SLIDING MODE CONTROL

As discussed earlier, modeling inaccuracies can have strong adverse effects on nonlinear control systems. 

Therefore, any practical design must address them explicitly. A major approach to dealing with model  

uncertainly is adaptive control, which we have discussed earlier in this chapter. Another major approach 

is the variable structure sliding mode control, which is the subject of this section.

For the class of problems to which it applies, sliding mode controller design provides a systematic 

approach to the problem of maintaining stability and consistent performance in the face of modeling 

30
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imprecisions. Sliding mode control has been successfully 

applied to robot manipulators, underwater vehicles, automotive 

engines, high-performance electric motors, and power systems.

We have, informally, already introduced the reader to variable 

structure sliding mode control systems in Section 9.10 (revisiting 

this section will be helpful). In the following, a formal 

introduction is presented. For a detailed account of the subject, 

refer to Slotine and Li [126], and Zak [35].

Consider a simple pendulum of mass M, suspended by a 

string of length l having negligible mass. Let q be the angular 

displacement as shown in Fig. 10.9. t represents the torque 

applied at the point of suspension, which will be considered 

to be the control input to the system. Ignoring the effects of 

friction, the system can be represented mathematically as

 J t Mgl t t  q q t( ) sin ( ) ( )+ =

where g is the acceleration due to gravity, and J = Ml2 is the moment of inertia.

By appropriate scaling, the essential dynamics of the system are captured by

    y t y t u t( ) sin ( ) ( )= - +a  (10.62)

where a is a positive scalar

Ignoring the nonlinear sine term, we get the following linear approximation of the pendulum equation:

   y t u t( ) ( )=  (10.63a)

Choosing x1 = y and x2 =  y as state variables, we have

 x = [x1 x2]T

  x t x t1 2( ) ( )= ;

  x t u t2 ( ) ( )=  

(10.63b)

The linear control methodologies (pole placement, optimal control) attempt to minimize, in some sense, 

the transfer functions relating the disturbances to the outputs of interest. Here we explore discontinuous 

control (variable structure control, refer to Section 9.10) methodology for disturbance rejection. The 

system with two control structures, corresponding to u = + 1 and u = – 1, is considered. The variable 

structure law governing the dynamics is given by

  u t
x x

x x
( )

( , )

( , )
=

if

if

- >
+ <

Ï
Ì
Ó

1 0

1 0

1 2

1 2

s

s
 (10.64a)

where the switching function is defined by

 s l( , )x x x x1 2 1 2= +  (10.64b)

l is a positive design scalar. The reason for the use of the term ‘switching function’ is clear, since the 

function in Eqns (10.64) is used to decide which control structure is in use at any point (x1, x2) in the 

phase plane. The expression in Eqn. (10.64a) is usually written more concisely as

 u t t( ) sgn( ( ))= - s  (10.64c)

where sgn (◊) is the sign function. This function exhibits the property that

Fig. 10.9 
pendulum
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s s ssgn( ) =

Figure 10.10a shows typical trajectories (parabolas) for u = ± k, and a typical switching line. Close to 

the origin, on either side of the switching line, the trajectories point towards the line; an instant after the 

control structure changes, the system trajectory will recross the switching line and the control structure 

must switch back. Intuitively, high-frequency switching between the two control structures will take 

place as the system trajectories repeatedly cross the line. This high frequency motion is described as 

chattering. If infinite-frequency switching were possible, the motion would be trapped or constrained 

to remain on the line. The motion when confined to the switching line satisfies the differential equation 

obtained from rearranging s (x1, x2) = 0, namely

 x2 = – l x1 (10.65a)

or   y t y t( ) ( )= -l  (10.65b)

This represents a first-order decay and the trajectories will ‘slide’ along the switching line to the origin. 

Such a dynamical behavior is described as sliding mode and the switching line is termed the sliding 

surface. During sliding motion, the system behaves as a reduced-order system which is apparently 

independent of the control. The choice of the sliding surface, represented in our example by the 

parameter l, governs the performance response whilst the control law itself, is designed to guarantee 

that trajectories are driven to the ‘region’ of the sliding surface where the sliding motion takes place. 

To achieve this objective, the control action is required to satisfy certain conditions, called reachability 

conditions.

To develop the reachability conditions and the region of sliding motion, we consider the system (10.63b) 

with u given by (10.64), i.e., u = ± 1 corresponding to the two control structures. Figure 10.10b shows 

typical trajectories of the control system with these control structures, and a typical switching line. 

x
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x2
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u k= –

x1
—s
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s = 0 s > 0

s = 0

s < 0

s > 0

—s

—s
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Assume that the system under consideration starts with initial conditions corresponding to point A in Fig. 

10.10b. The control switches when the representative point reaches B. By geometry of the situation, we 

see that the trajectory, resulting from the reversal of the control at point B, will bring the representative 

point on a parabola much closer to the origin. This will continue until the trajectory intersects the 

switching line at a point closer to the origin than the points A1 and A2 which are points of intersection of 

the switching line s (x1, x2), with parabolas passing through the origin: x x x1
1
2 2 2= – | | . The coordinates 

of the points A1 and A2 are obtained as -Ê
ËÁ

ˆ
¯̃

2 2
2l l

, and 2 2
2l l

,
-Ê

ËÁ
ˆ
¯̃

, respectively. The region where the 

sliding motion takes place, is a part of the switching line between the points A1 and A2 as is seen below.

 s s s l( ) ( ) ( )t t x x   = +1 2

  = s l( )x u2 +
  = s l s( sgn ( ))x2 -

  = l s sx2 -

Since 

 ls l sx x2 2£

we have         

  s s l s s( ) ( )t t x £ -2

 £ -s l( )x2 1

A

B

C

x2

A1

A2

x1

u = –1
u = 1

s ( , ) = 0x x1 2

Fig. 10.10

For values of x2 satisfying the inequality

 l x2 1< , (10.66a)

we have 

 s s( ) ( )t t < 0; 
(10.66b)

  s
s

s( ) ( )t
d

dt

T
T= =

∂
∂

Ê
ËÁ

ˆ
¯̃ —

x

x
x
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Inequality (10.66b) is equivalently expressed by the following two conditions:

 lim lim ( )
s s

s s
Æ Æ+ +

= — <
0 0

0  T
x

and lim lim ( )
s s

s s
Æ Æ

= — >
0 0

0
- -

  T
x  

(10.67) 

These conditions, called reachability conditions, ensure that when l |x2| < 1, the system trajectories on 

either side of the line s (x1, x2) = 0 point towards the line. This is illustrated in Fig. 10.10a.

The control action, rather than prescribing the dynamic performance, ensures, instead, that the reachability 

conditions are satisfied. The choice of the sliding surface governs the system performance. It should be 

noted that the control action required to satisfy reachability conditions is discontinuous in nature.

The double-integrator system of Eqns (10.63) is a linear approximation of the pendulum dynamics given 

in Eqn. (10.62). An alternative interpretation is that the nonlinear term a sin y(t) is a disturbance or 

uncertainly in the nominal double-integrator system. The key result is that, in finite time, the phase 

portrait intercepts the sliding surface and is forced to remain there. The significance of this is that, once 

sliding is established, the double-integrator system and the pendulum behave in an identical fashion, 

namely,

 y t y t( ) ( )= -l

The effect of disturbance or uncertainty in the nominal double-integrator system has been completely 

rejected. As such, the closed-loop system is robust, i.e., it is insensitive to mismatches between the model 

used for control law design, and the plant on which it will be implemented. The control action applied to 

the plant does not utilize any knowledge of the uncertainty.

The concepts of sliding mode control, developed through an example, are summarized below.

10.5.1

The problem is to regulate a dynamic system subject to parameter uncertainties and nonlinearities. A 

controller is sought to force the system to reach, and subsequently remain on, a predefined surface (called 

the sliding surface) within the state space. The dynamical behavior of the system, when confined to the 

surface, is called the sliding motion. The advantages of obtaining such a motion are two fold: firstly, there 

is a reduction in order; and, secondly, the sliding motion is insensitive to parameter variations. The latter 

property of invariance towards uncertainty makes the methodology an attractive one for designing robust 

control for uncertain systems.

The design approach comprises the following two components:

  The design of a sliding surface in the state space, so that the reduced-order sliding motion satisfies 

the specifications imposed on the design.

  The synthesis of a control law, discontinuous about the sliding surface, such that the trajectories 

of the closed-loop motion are directed towards the surface.

The closed-loop dynamical behavior obtained for using a variable structure control law, comprises two 

distinct types of motion. The initial phase, often referred to as the reaching phase, occurs whilst the states 

are being driven towards the sliding surface. This motion is, in general, affected by the disturbances 

present. Only when the states reach the surface, and the sliding motion takes place, does the system 

become insensitive to uncertainty.
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A sliding mode will exist if, in the vicinity of the sliding surface, the state velocity vectors are directed 

towards the surface. In such a case, the sliding surface attracts trajectories when they are in its vicinity; 

and, once a trajectory intersects the sliding surface, it will stay on it thereafter.

A hyper surface

 S x x xn: ( , , , ) ( )s s1 2 0… = =x  (10.68a)

is attractive if

 (i) any trajectory starting on the surface remains there; and

 (ii) any trajectory starting outside the surface tends to it at least asymptotically.

The following conditions (called reachability conditions) ensure that the motion of the state trajectory 

x(t) of the single-input dynamical system

  x = f (x, u, t) (10.68b)

on either side of the sliding surface s (x) = 0, is towards the surface.

lim ; lim  s s
s sÆ Æ+

< >
0 0

0 0and
-

in some domain W of the state space

The two conditions may be combined to give

s s < 0

in the neighborhood of the sliding surface, i.e.,

 lim
s

s
s

Æ
<

0
0

d

dt
 (10.68c)

In the sliding mode, the trajectory remains on the hyper surface S for all times after hitting S, and so in 

the sliding mode we require

 
d

dt

T
s s

= = 0
∂
∂

Ê
ËÁ

ˆ
¯̃x

x 

 s ( )x = 0 (10.69)

In general, if the reachability conditions are satisfied globally, i.e., W is the entire state space, then, since 

1
2

2 0
d

dt
s s s= < ,

it follows that

 V ( )s s= 1
2

2  (10.70)

is a Lyapunov function for s (t).

Extension of these concepts to the multi-input situations is straightforward.

We illustrate these concepts through the design of a sliding mode controller for a two-link robot.
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10.5.2

The plant model, derived earlier in Section 10.2, is given by Eqns (10.6):

   
x1 2= =p x

    x f x g x2 = = +p s( ) ( )  
(10.71)

where

x
x
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q1 and q2 are the angles of the two links, defined in Fig. 10.1, and t1 and t2 are the torques applied by the 

actuators to control the angles q1 and q2, respectively.

The design of a variable structure sliding mode controller consists of the following two phases:

  Sliding (switching) surface design so as to achieve the desired system behavior, when restricted to 

the surface.

  Selecting feedback gains of the controller, so that the closed-loop system is stable to the sliding 

surface.

Let us consider a specific design problem for the two-link robot under study: tracking the desired  motion  

trajectory pd (t).

Define the tracking error as

 e( ) ( ) ( )t t td= -p p  (10.72a)

Therefore,          e e( ) ( ) ( ); ( ) ( ) ( )t = - = -p p p pd dt t t t t  (10.72b)

Defining    x x1 2= e and = e, we can write robot dynamics (10.71) in the form (refer to Eqns (10.15))

    

    

x x

x f x g x

1 2

2

=

= p sd - -( ) ( )

 
(10.73)

Here, we use linear sliding surface (although we can use nonlinear sliding surface as well) defined by 

the equation

 r k( )   x x I x 0= +1 2 =  (10.74a)

or 
s
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˙=  (10.74b)

Note that 

  s l l q q q q1 1 11 21 1 1 1 1 1( ) ( ) ( )     x = x x d d+ = - + -  
(10.75)

 s l l q q q q2 2 12 22 2 2 2 2 2( ) ( ) ( )     x = + = - + -x x d d

We have assumed the coefficient of  x21 to be unity, without loss of generality. If this were not the case, 

we could divide both sides of s1 0( ) x =  by the coefficient of  x21, to ensure that coefficient of  x21 is 1. The 

same argument applies to the selection of unity coefficient of  x22.
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We now combine equations of the plant and that of the sliding surface (Eqns (10.73) and (10.74)).

  x2 = –k  x1

Therefore,

   x1 = –k  x1 (10.76)

The above equation describes the system dynamics in sliding (observe the order-reduction of system 

dynamics in sliding). The response of the system in sliding is completely specified by an appropriate 

choice of the parameters l1 and l2 of the switching surface. While in sliding, the system is not affected 

by model uncertainties.

After designing a sliding surface, we construct a feedback controller. The controller objective is to  

drive the plant state to the sliding surface, and maintain it on the surface for all subsequent time. We 

use a generalized Lyapunov approach in constructing the controller. Specifically, we use a distance 

measure, V T= = +1
2

1
2 1

2
2
2r r ( )s s , from the sliding surface r as a Lyapunov function candidate. Then, 

we select the controller so that the time derivative of the chosen Lyapunov function candidate, evaluated 

on the solution of the controlled system, is negative-definite with respect to the switching surface; thus, 

ensuring the motion of the state trajectory to the surface, as it is illustrated in Fig. 10.10a. Our goal is to 

find s so that

     
d

dt

T T1
2

0r r r r= <  (10.77)

r r r k r k sT T T
d d

        = =1 2[ ] ( ) ( ( ) ( ) )x Ix x x x f x g x+ - + - -[ ]1 1 2
 

We consider the controller structure of the form 
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 (10.78)

where k1 > 0 and k2 > 0 are the gains to be determined so that the condition r rT  < 0 is satisfied. To 

determine these gains, we substitute s, given by (10.78), into the expression r rT  .

  r rT k

k
 = -

È

Î
Í

˘

˚
˙[ ]

sgn ( )

sgn ( )
s s

s

s
1 2

1 1

2 2

  = - -s s s s1 1 1 2 2 2k ksgn( ) sgn( ) = –k1|s1|–k2|s2| < 0

Thus, the sliding surface r( ) = x 0 is asymptotically attractive. The larger the values of gains, the faster 

the trajectory converges to the sliding surface. Note that tolerance of sliding mode control to model  

imprecision and disturbances, is high; satisfying asymptotic stability requirement, despite the presence 

of uncertainties, ensures asymptotic tracking.

Simulation of this controller for the two-link robot arm (m1 = 1, m2 = 1, l1 = 1, l2 = 1, g = 9.8; qd1(t) = 

sin (pt), qd2 (t) = cos(p t)) was done using MATLAB (refer to Problem A.21 in Appendix A). Figures 10.11 

show the tracking performance.
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PROBLEMS

 10.1 The system
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sin

                          

  can be transformed to Brunovsky form by differentiating y(t) repeatedly, and substituting state 

derivatives from the given system equations, until the control input u(t) appears:

    

     

y x x x x

y x x x x x

= =

=

1 1 2 3

1 2 1 2 3

+
+ +

  =

=

sin
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  Defining variables as z y z y1 2∫ ∫, ,   we obtain

   

 

z z

z f g u

1 2

2

=
= +( ) ( )x x

  This may be converted to a linear system by redefinition of the input as 

  v( ) ( ) ( ) ( )t f g u t∫ +x x

  so that

  u t
g

f t( )
( )

( ( ) ( ))∫ - +
1

x
x v

  for then one obtains

    z z z1 2 2= =; v

  which is equivalent to     

    y = v                        

  With a PD tracking control                             

  v =    y K e K ed D P+ +
  where tracking error is defined as 

  e t y t y t y td d( ) ( ) ( ); ( )∫ -   is the desired trajectory;

  the closed-loop system becomes          

     e K e K eD P+ + = 0        

  The complete controller implied by this feedback linearization technique, is given by                   

  u t
g

f y K e K ed D P( )
( )

( ( ) )=
1

x
x- + + +   

 (a) Draw the structure of the feedback linearization controller showing PD outer loop and 

nonlinear inner loop.



682  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (b) Select gains KP and KD so that the closed-loop system has a natural frequency of wn =

10 rad/sec, and a damping ratio of z = 0.707.

 (c) Suppose that it is desired for the plant output y(t) to follow the trajectory yd = sin (2p t). 

Simulate the system and plot actual output y(t), desired output yd(t), and the tracking error 

e(t); given x(0) = [1 1 1]T.

 10.2 One useful method for specifying system performance is by means of a model that will produce 

the desired output for a given input. The model need not be actual hardware. It can only be a 

mathematical model simulated on a computer. In a model reference control system, the outputs 

of the model and that of the plant are compared and the difference is used to generate the control 

signals.

  Consider a nonlinear, time-varying plant described by
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  where a(t) is time-varying and b is a positive constant. 

  Assume the reference model equation to be    
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  The error vector        

  e = -x xm

  Define a function 

  V T( )e e Pe=

  where P is positive-definite, real, symmetric matrix.

  Then  V (e) is defined as   

   V MT
m
T

m( ) ( )e e A P PA e= + + 2
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m
v

  The assumed V(e) function is a Lyapunov function if 

 (i) A P PA Q
m

T
m+ = -  is a negative-definite matrix; and 

       (ii) the control u can be chosen to make the scalar quatity M nonpositive.

 Choosing the matrix Q to be 
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 (a) Draw a block diagram representing the structure of the model reference adaptive control 

system.

 (b) For the parameters: a(t) = 0.2 sint, b = 8, z = 0.7, wn = 4; simulate the closed-loop system 

and plot x x e( ), ( ), ( ).t t tm  and 

 10.3 Consider the adaptive control design problem for a plant, approximately represented by a first-

order differential equation

   y a y b up p= +–

  where y(t) is the plant output, u(t) is its input, and ap and bp are constant plant parameters (unknown 

to the adaptive controller). The desired performance of the control system is specified by a first-

order reference model

   y a y b rm m m m= - +

  where am and bm are known constant parameters, and r(t) is a bounded external reference signal. 

Using Lyapunov synthesis approach, formulate a control law, and an adaptation law, such that the 

resulting model-following error y(t) – ym(t), asymptotically converges to zero.

  Simulate the MRAC system with ap = 1, bp = 2, am = 3 and bm = 3, adaptation gain g  = 1.5; initial 

values of both parameters of the controller are chosen to be 0, indicating no a priori knowledge, 

and the initial conditions of the plant and the model are both zero. Use two different reference 

signals in the simulation: r (t) = 2, and r (t) = 2 sin (3t).

 10.4 The following data were collected from a cell concentration sensor, measuring absorbance in a 

biochemical stream. The input u is the flow rate deviation (in dimensionless units) and the sensor 

output y is given in volts. The flow rate (input) is piecewise constant between sampling instants. 

The process is not at steady-state initially; so y can change even though u = 0. Fit a first-order 

model

  y k a y k b u k( ) ( ) ( )= 1 11 1- + -

  to the data using the least-squares approach. Plot the model response and the actual data.
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Time(sec) u y

0 0 3.000

1 3 2.456

2 2 5.274

3 1 6.493

4 0 6.404

5 0 5.243

6 0 4.293

7 0 3.514

8 0 2.877

9 0 2.356

10 0 1.929

 10.5 Step test data have been obtained for the off-gas CO2 concentration response—obtained by 

changing the feed rate to a bioreactor. At k = 0, a unit-step change in input u occurs, but the output 

change at the first sample (k = 1) is not observed until the next sampling instant. The data is given 

in the table below.

  Estimate the model parameters in the second-order difference equation

  y k a y k a y k b u k b u k( ) ( ) ( ) ( ) ( )= 1 2 1 21 2 1 2- + - + - + -

  from the input-output data using the least-squares approach. Plot the model response and the 

actual data.

k 0 1 2 3 4 5 6 7 8 9 10

y(k) 0 0.058 0.217 0.360 0.488 0.6 0.692 0.772 0.833 0.888 0.925

 10.6 The following data were collected for a process:

Time(sec) Input u Output y

 0 1 4.0000

1 1 –2.0000

2 0 –1.0000

3 1 8.5000

4 1 –9.7500

5 1 1.6250

6 1 21.0625

7 0 –30.8438

8 1 7.1406

9 0 51.9766

10 1 –89.2461
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  Fit a second-order model

  y k a y k a y k b u k b u k( ) ( ) ( ) ( ) ( )+ - + - = - + -1 2 1 21 2 1 2

  to the data using the least-squares approach. Plot the model response and the actual data.

  Simulate a self-tuner based on least squares estimation of the parameters of the model, and the 

pole-placement design given in Chapter 7. The system is required to track a constant input of 

amplitude 10; the dynamics specified as z = 0.5, wn = 1.

 10.7 Consider a nonlinear system described by the equation

     x a t x x u+ ( ) cos2 3 =

  where a(t) in unknown but satisfies 

  1 2£ £a t( )

  With the nominal value of a(t) = 1.5, we have

     x f u f x x= + -; . cos= 1 5 32

  In order to have the system track x(t) = xd(t) = sin (p t /2), we define a sliding surface

  s l= =    x x x x xd+ -;

  We then have

             s l l= - + = + - +x x x f u x xd d

  Selecting 

  u f x x k kd= - + - - >    l ssgn( ); ,0

  we get

   s s= - k sgn( )

  We consider the function V = 1
2

2s . Note that V is positive-definite with respect to the sliding 

surface (s = 0). The time derivative of V, evaluated on the trajectories of the closed-loop system, 

is

  V

k k

.

sgn( ) | |

= ss

s s s

 

= - = - < 0

  Thus, the sliding surface is asymptotically attractive, and the system, restricted to the sliding 

surface, can be made asymptotically stable by an appropriate choice of the parameter l of the 

sliding surface.

  Simulate the system, and plot tracking error and control law with

   l = = = +2 0 1 1, . , ( ) | sin |k a t t
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11.1 TOWARDS INTELLIGENT SYSTEMS

Man has always dreamed of creating machines with human-like attributes. In this technological world, 

there are machines that have emulated several human functions with tremendous capacity and capabilities. 

Robots in manufacturing, mining, agriculture, space, ocean exploration, and health sciences, are just a 

few examples.

At present, these machines are more or less ‘slaves’ to the ‘commands’. One of the tenets of recent 

research in robotics and systems science is that intelligence can be cast into a machine. This is, perhaps, 

an ultimate challenge to science—to create intelligent systems that emulate human intelligence.

Human intelligence possesses robust attributes with complex sensory, control, affective (emotional 

processes), and cognitive (thought processes) aspects of information processing and decision making. 

Biological neurons, over one hundred billion in number, in our central nervous system (CNS), play 

a key role in these functions. Essentially, CNS acquires information from the external environment 

through various natural sensory mechanisms such as vision, hearing, touch, taste, and smell. It integrates 

the information and provides appropriate interpretation through the cognitive computing. The cognitive 

process then advances further towards some attributes such as learning, recollection, and reasoning, 

which results in appropriate actions through muscular control.

Recent progress in information-based technology has significantly broadened the capabilities and 

application of computers. Today’s computers, however, are merely being used for the storage and 

processing of numerical data. If we wish to emulate in a machine (computer), some of the cognitive 

functions (learning, remembering, reasoning, perceiving, etc.) of humans, we have to generalize the 

definition of information and develop new mathematical tools and hardware that must deal with the 

simulation and processing of cognitive information. Mathematics, as we know it today, was developed 

for the understanding of physical processes, whereas the process of cognition does not necessarily 

follow these mathematical laws. Then what is cognitive mathematics? This is a difficult and challenging 

question to answer. However, scientists have realized that if we re-examine some of the ‘mathematical 

aspects’ of our thinking process and ‘hardware aspects’ of ‘the neurons’—the principle element of the 

brain—we may succeed to some extent in the emulation process. 

Intelligent Control with Neural 
Networks/Support Vector Machines

Chapter 11
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Biological neuronal processes are enormously complex, and the progress made in the understanding of 

the field through experimental observations is limited and crude. Nevertheless, it is true that this limited 

understanding of the biological processes has provided a tremendous impetus to the emulation of certain 

human learning behaviors, through the fields of mathematics and systems science. In neuronal informa-

tion processing, there are a variety of complex mathematical operations and mapping functions involved, 

that, in synergism, act as a parallel-cascade computing structure. As system scientists, our objective is 

that, based upon this limited understanding of the brain, we create an intelligent cognitive system that 

can aid humans in various decision-making tasks. New computing theories under the category of neural 

networks, have been evolving. Hopefully, these new computing methods with the neural network archi-

tecture as the basis, will be able to provide a thinking machine—a low-level cognitive machine for which 

the scientists have been striving for so long. 

The cognitive functions of the brain, unlike the computation functions of the computer, are based upon 

relative grades of information acquired by the neural sensory systems. The conventional mathematical 

tools, whether deterministic or probabilistic, are based upon some absolute measure of information. Our 

natural sensors acquire information in the form of relative grades rather than in absolute numbers. The 

‘perceptions’ and ‘actions’ of the cognitive process also appear in the form of relative grades. The theory 

of fuzzy logic, which is based upon the notion of graded membership, provides mathematical power for 

the emulation of the higher-order cognitive functions—the thought and perception process. A marriage 

between the two evolving disciplines—neural networks and fuzzy logic—may provide a tremendous 

impetus to the theory for the important field of cognitive information.

The subject of intelligent systems is in an exciting state of research and we believe that we are slowly 

progressing towards the development of truly intelligent systems. The present-day versions of intelligent 

systems are not truly intelligent; however, the loose usage of the term ‘intelligent’ acts as a reminder that 

we have a long way to go.

11.2 INTRODUCTION TO SOFT COMPUTING AND
 INTELLIGENT CONTROL SYSTEMS

Complex dynamic systems have been integral and critical components of modern society. The 

unprecedented rate at which computers, networks, and other technologies are being developed, ensures 

that our dependence on such systems will continue to increase. While advances in science and technology 

have enabled us to design and build complex systems, comprehensive understanding of how to control 

and optimize them is clearly lacking. The mere existence of complex systems does not necessarily mean 

that they are operating under the most desirable conditions with enough robustness to withstand the 

limits of disturbances that inevitably arise.

Many problem-solving nonlinear control structures (refer to Chapter 10) have been developed over the 

past forty years—Feedback Linearization, Model-Reference Adaptive Control, Self-Tuning Control, 

Generalized Model Predictive Control, Sliding Mode Control, etc. These structures fall short of the 

requirements of modern complex systems. While extensions and modifications to these conventional 

architectures continues to be popular, other approaches are being explored as well.
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The conventional methods of control design use mathematical models derived by the application of 

physical laws. The goal of mathematical modeling is to provide a set of equations that purports to 

describe interrelations between the system quantities as well as the relations between these quantities 

and external inputs. We can use different types of equations and their combinations, like algebraic, 

differential (ordinary/partial), difference, integral, or functional equations. A mathematical model can 

be viewed as a mathematical representation of the significant relevant aspects of a physical system 

(significance and relevance being in relation to an application where the model is to be used).

Whenever devising algebraic, differential, difference equations (or any other model from application 

of physical laws) is feasible, using a reasonable number of equations that can solve the given problem 

in a reasonable time, at a reasonable cost, and with reasonable accuracy, there is no need to look for an 

alternative. Today, however, there are a large number of instances in diverse fields, including control 

systems, wherein at least one of these criteria is not satisfied; one, therefore seeks other avenues to solve 

the given problem.

Since the inception of the notion of fuzzy logic in 1965, we started thinking about the quantitative and 

qualitative aspects of control mechanisms, and introduced the notion of intelligent control systems. This 

logic is capable of emulating certain functional elements of human intelligence. In partnership with other 

mathematical tools such as neural networks, the field of fuzzy logic is responsible for creation of a new 

field—the field of soft computing. In this decade, the field of soft computing has become a new emerging 

discipline in providing solutions to complex industrial and management problems—problems that are 

deeply surrounded by both qualitative and quantitative uncertainties. The elements of this emerging field 

provide some mathematical strength in the emulation of human-like intelligence and in the creation of 

systems that we call intelligent systems. 

The conventional field of control is based on the traditional mathematical concepts. The mathematics 

through which we develop scientific and engineering techniques, is based upon some precise, quantitative 

aspects and rigorous concepts. Such quantitative aspects and rigorous concepts are beautiful, but they fail 

to formulate the imprecise and qualitative nature of our cognitive behavior—the intelligence.

What is the character of human intelligence? Is it precise, quantitative, rigorous, and computational? The 

answer is negative. We are very bad at calculations or any kind of computing. A negligible percentage 

of human beings can multiply two three-digit numbers in their heads. The basic function of human 

intelligence is to ensure survival in nature, not to perform precise calculations. The human brain can 

process millions of visual, acoustic, olfactory (concerned with smelling), tactile (the sense of touch), 

and motor data, and it shows astonishing abilities to learn from experience, generalize from learned 

rules, recognize patterns and make decisions. We want to transfer some of the human mental faculties 

of learning, generalizing, memorizing, and predicting into our models, algorithms, smart machines and 

intelligent artificial systems, in order to enable them to survive in highly technological environment, that 

is, to solve given tasks based on previous experience with reasonable accuracy, at reasonable cost, and 

in a reasonable amount of time.

The basic premises of soft computing are as follows: 

  The real world is pervasively imprecise and uncertain.

  The precision and certainty carry a cost.
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The guiding principle of soft computing, which follows from these premises is as follows:

  Exploit tolerance for imprecision, uncertainty, and partial truth, to achieve tractability, robustness, 

and low solution costs.

The guiding principle of soft computing differs strongly from that of classical hard computing which 

requires precision, certainty, and rigor. Many contemporary problems do not lend themselves to 

precise solutions within the framework of classical hard computing; for instance, recognition problems 

(handwriting, speech, objects, and images), computer graphics, mobile robot coordination, and data 

compression. To be able to deal with such problems, there is often no choice but to accept solutions 

that are suboptimal and inexact. In addition, even when precise solutions can be obtained, their cost is 

generally much higher than that of solutions which are imprecise and yet yield results within the range 

of acceptability.

Soft computing is not a single methodology, it is an evolving collection of methodologies for the 

representation of ambiguity in human thinking. The core methodologies of soft computing are: fuzzy 

logic, neural networks, and evolutionary computation. These methodologies have their strengths and 

weaknesses. For example, fuzzy logic is most effective when human solution is available. In this context, 

fuzzy logic is employed as a programming language that serves to translate a human solution into the 

language of fuzzy IF-THEN rules. Neural networks do not require the availability of a human solution, 

but can be trained by exemplification. The primary contribution of evolutionary computation, which 

is inspired by genetic evolution in humans and animals, is algorithms for systematized random search 

for obtaining the best possible solution in a huge solution space. Evolutionary algorithms are a class of 

global optimization techniques.

As real-life problems become more varied and more complex, we find that no single soft-computing 

methodology suffices to deal with them. To conceive, design, analyze, and use intelligent systems, 

we frequently have to employ the totality of soft computing tools that are available. The constituent 

methodologies in soft computing are, for the most part, complementary and synergistic rather than 

competitive. What this means is that in many applications, it is advantageous to employ the constituent 

methodologies in combination rather than in a stand-alone mode. In Chapters 11–14, we will employ soft 

computing methodologies—in stand-alone and hybrid modes—to obtain solutions to control problems, 

called intelligent control systems.

Some other general terms used in the literature with reference to intelligent systems are as follows. 

Soft computing is serving as the foundation for the emerging field of computational intelligence (the 

field is sometimes referred to as machine intelligence). When a machine (which almost always means 

a computer system) improves its performance at a given task over time without reprogramming, it can 

be said to have learned something. Machine learning is the key to machine intelligence, just as human 

learning is the key to human intelligence.

There is a significant overlap in the fields of soft computing, computational intelligence, machine 

learning, and machine intelligence. The meaning of various terms can change quickly and unpredictably 

depending on the context in which they are used. However, the loose definitions given here will serve 

our purpose in this book.
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11.3 BASICS OF MACHINE LEARNING

When a computer program improves its performance at a given task over time, it can be said to have 

learned something. We will accept automatic performance improvement with experience at a given task 

as a rough-and-ready definition of machine learning, without delving too deeply into the philosophical 

implications. In general, to have a well-defined learning problem, we must identify the following three 

components [149]: 

  the sources of experience;

  the class of tasks; and 

  the measures of performance to be improved.

11.3.1 The Training Experience

Attempting to incorporate human-like abilities into software solutions is not an easy task. Only recently, 

after an attempt to analyze an ocean of data obtained from various sensors, it became clear how complex 

are the problems our senses routinely solve, and how difficult it is to replicate in software even the 

simplest aspects of human information processing. How, for example, can one make machines ‘see’, 

where ‘see’ means to recognize different objects and classify them into classes. For smart machines to 

recognize or to make decisions, they must be trained first on a set of training examples. Each new smart 

machine (software) should be able to learn the problem in its areas of operation.

In machine learning applications, there are two major sources of training experience:

  Experimental data (examples, samples, measurements, patterns, observations—expressed in the 

form of numerical data).

  Structured human knowledge (experience, expertise, heuristics). 

Structured human knowledge is a form of training experience that is based on the existence of a human 

solution to the problem. However, the mere existence of human solution in some linguistic form is not 

sufficient. One must be able to articulate to structure the human solution in the language of a learning 

machine, for example, in the form of IF-THEN rules. The key idea is that the structured human knowledge 

describes the operation of the process of interest from the standpoint of some (human expert) operator 

of the process, and captures the empirical knowledge of operation of that process that has been acquired 

through direct experience with the actual operation of the process.

When the experience is available directly in a raw form (numerical data), i.e., no expert is available to 

help the learning machine, the machine by itself is required to extract the knowledge from the numerical 

data. The numerical training examples typically consist of observed values of system states: x(1), x(2), …, 

x
(P), and the response to each state: y(1), y(2), …, y(P). Each state x(p) is characterized by n state variables 

of the system: x(p): {x1
(p),…, xn

(p)}; p = 1, 2,…, P. We have assumed a scalar response.

In general, learning is most reliable when the training examples represent the distribution of examples 

over which the final system performance must be measured. If training experience consists of data that 

lies in region S of state space, then S must be fully representative of situations over which the algorithm 

will later be used. Current theory of machine learning rests on the crucial assumption that the distribution 

of training examples is identical to the distribution of unseen examples—the data the machine has not 
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seen during its training phase. Despite our need to make this assumption in order to obtain theoretical 

results, it is important to keep in mind that the assumption is often violated in practice.

11.3.2 The Class of Tasks

In the system-science framework, a set {x
(p), y(p)}; p = 1, ..., P of training data pairs typically contains 

the inputs x(p) and the desired output y(p). The design of a particular type of learning machine depends on 

the type of the outcome. In control applications, for example, y is a continuous-variable, and in pattern 

recognition applications, y is a categorical variable (class label).

Patterns are represented by feature vectors, x(p), in feature space 

(state space). The main goal is to divide the feature space into regions assigned to the classes of patterns. 

If a feature vector falls into a certain region, the associated pattern is assigned to the corresponding class.

It is a problem of interpolation: we fit a mathematical function 

describing a curve, so that the curve passes, as close as possible, through all of the data points.

The learning task is inferring input-output functional dependencies from a set of training examples, in 

order to predict future outcomes from observed data. The prediction of continuous variables (function 

approximation tasks) is known as regression, and the prediction of categorical variables (pattern 

recognition tasks) is known as classification. Of fundamental importance in closed-loop control 

applications is the regression property of learning machines. Our focus in this chapter will be on this 

property. It is a supervised learning task.

Supervised Learning

Function approximation is a supervised learning problem where there is an input x, an output y, and the 

task is to learn the mapping from the input to the output. The approach in machine learning is that we 

assume a parametric model of the form: ŷ  = g(x|p), where g(◊) is the model and p are its parameters. 

The machine learning program optimizes the parameters, p, such that the error is minimized, that is, 

our estimates, ŷ, are as close as possible to the correct values, y, given in the training set. The name 

‘supervised learning’, refers to the dependence of the ‘learner’ on the ‘supervisor’ to select informative 

states, and to provide actual/observed output for each state.

Note that the supervised-learning task is to learn function g(x|p), called the target function; the only 

information available is a training data set {x
(p), y (p); p = 1, 2, ..., P}. A learning algorithm that at best 

guarantees that the learned target function g(◊) fits the training data well, is not our design objective. Our 

aim is to use the machine for predicting output values for the data beyond the training data; for the data 

that the machine has not seen during its training phase. The actual/observed output for the unseen data is 

not known, and we aim to use the prediction of the machine for decision making.

Traditional mathematical models (differential/difference equations) are based on the application of 

physical laws, and employ hard computing. In machine learning, on the other hand, analytical models 

(target functions g(◊)) are based on direct empirical experience, and employ soft computing. Naturally, if 

the physics of the problem is well understood and a traditional mathematical model is feasible, one need 

not resort to machine learning methods.
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 Lacking information on the physics of the problem, our assumption is that the best ‘model’ for prediction 

is the model that is induced by the observed training data. Inductive learning methods formulate a model 

based on soft-computing methodologies by finding empirical regularities over the training examples, and 

these regularities induce the approximation of the target function well over other unseen examples. The 

inductive learning hypothesis is as follows:

Any model found to approximate the target function well over a sufficiently large set of training examples, 

will also approximate the target function well over other unobserved examples. It generalizes from the 

specific training examples, hypothesizing a general function that covers these examples and other cases 

beyond the training examples.

 Soft-computing methodologies provide many alternative structures for realizing the target function g(◊). 
The two most commonly used structures are neural networks and fuzzy logic.

Unsupervised Learning

Another machine learning application is concerned with unsupervised learning. In supervised learning, 

the aim is to learn a mapping from the input to an output whose correct values are provided by a supervisor. 

In unsupervised learning, there is no such supervisor and we only have input data. The goal is to unravel 

the underlying similarities, and cluster ‘similar’ input vectors together. A major issue in unsupervised 

learning is that of defining ‘similarity’ between two input vectors and choosing an appropriate measure 

for it.

Reinforcement Learning

In some applications, the output of the system is a sequence of actions. In such cases, a single action is 

not important; what is important is the policy —the sequence of correct actions to reach the goal. There 

is no such thing as the best action in any intermediate state; an action is good if it is part of a good policy. 

In such a case, the machine learning program should be able to assess the goodness of policies and 

learn from past good action sequences to be able to generate a policy. Such learning methods are called 

reinforcement learning algorithms.

Reinforcement learning is an on-line learning procedure that rewards an action for its good output result 

and punishes it for a bad output result. The evaluation of an output as good or bad depends on the specific 

problem and the environment. For a control system, if the system continues to be in the desired region in 

state space after an action, the output is judged as good, otherwise it is considered as bad. The reward/

penalty of an action is the reinforcement signal.

The adaptation of creatures to their environments results from the interaction of two processes, namely, 

evolution and learning. Evolution is a slow stochastic process at the population level that determines 

the basic structures of a species. Evolution operates on biological entities, rather than on individuals 

themselves. At the other end, learning is a process of gradually improving an individual’s adaptation 

capability to its environment by tuning the structure of the individual.
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 Evolution is based on the Darwinian model, also called the principle of natural selection, or survival 

of the fittest, while learning is based on the human cognitive faculties. Evolutionary algorithms are 

stochastic search methods that employ a search technique based on the Darwinian model, whereas neural 

networks and fuzzy systems are learning methods based on human learning model.

 Combinations of learning and evolution, embodied by evolving neural networks and evolving fuzzy 

systems, have better adaptability to a dynamic environment.

11.3.3 The Performance Measures

The design of a learning machine for optimal performance requires careful consideration of several 

factors that influence the machine’s performance. Performance is not just measured as the accuracy 

achieved by the machine, but aspects such as computational complexity and convergence characteristics 

are just as important.

 In the following we present performance measures for a learning machine under three subheadings: 

accuracy, computational complexity, and convergence.

Accuracy

The accuracy of a learning machine is dependent on its generalization capability.

The aim of machine learning is rarely to replicate the training data but the 

prediction for new cases. That is, we would like to be able to generate the right output for an input 

outside the training set; one for which the correct output is not known but is to be predicted for decision 

making. How well a model trained on the training set predicts the right output for unseen examples in 

operational situation, is called generalization.

 We assume that all the data (training data + new data in operational situation) are generated independently 

from some unknown (but fixed) probability distribution W(x, y). This is a standard assumption in learning 

theory; data generated this way is commonly referred to as iid (independent and identically distributed). 

Our goal is to find a function g(◊) that will generalize well to unseen examples, that is, g(x) = y for 

examples (x, y) other than the training examples, generated from W(x, y).

 Generalization is a very important aspect of machine learning. Since it is a measure of how well the 

machine interpolates to points not used during training, the ultimate objective of machine learning is to 

produce a learner with low generalization error, that is to minimize the true risk function

 EG(W, p) = ( ( | ) ) ( , )g y d yx p -Ú 2 W x  (11.1)

where p are adjustable parameters of the learning machine model.

Since W(x, y) is generally not known, p are found through minimization of the empirical risk function 
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over a finite training data set

  D : {x
(p), y(p); p = 1, 2, ..., P} ~ W (x, y) (11.3)

When P , then empirical error ET Æ generalization error EG.
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 The aim of machine learning is, therefore, to learn the examples in the training set well, while providing 

good generalization to examples not included in the training set. It is hoped that a small empirical 

(training) error will also give a small true (generalization) error.

We can measure the generalization ability of a machine if we have access to data outside 

the training set. We simulate this by dividing, often randomly, the training set we have into two parts. 

We use one part for training (i.e., for building a learning machine) and the other part, called the test 

set/validation set, is used for testing the generalization ability. In the validation set, for each input x, 

the output y is known, but these pairs of data are unknown to the machine, since they have not been 

used during training. The inputs from the validation set are given to the trained machine. The machine 

outputs predictions , ŷ, which are then compared with the actual values, y ; the empirical error is then 

calculated as a measure of generalization capability of the machine. Assuming large enough training and 

test sets, the machine that is the most accurate on the test set is the best. After training and testing, the 

machine is ready for use with the learned parameters ‘frozen’. The machine with low empirical error is 

expected to give reasonable outputs for the data it has not seen before. Research shows a dependence 

of generalization error on the size of the training set, the machine architecture, and the number of free 

parameters in the machine model.

The learning machine design aims at 100% accuracy in predicting the training examples. 

While this is sometimes a reasonable design strategy, in fact it can lead to difficulties when there is noise 

in the training data, or the number of training examples is too small to produce a representative sample 

of W(x, y). In either of these cases, this design approach can produce a machine that overfits the training 

examples. We will say that a machine overfits the training examples if some other machine that fits the 

training examples less well actually performs better on the test data.

 Overfitting of a training set means that the machine memorizes the training examples, and consequently 

loses the ability to generalize. That is, machines that overfit cannot predict correct output for data patterns 

not seen during training. Overfitting occurs when machine architecture is too complex (a neural network 

with large number of weights, a fuzzy logic model with large number of rules, etc.), compared to the 

complexity of the function underlying the data. If we have a machine model that is too complex, the data 

is insufficient to constrain it and we may end up with bad prediction function. Or if there is noise in the 

data, an over complex model may learn not only the underlying function but also the noise in the data 

and may make it a bad fit. This is called overfitting. In such a case, having more training data helps but 

only up to certain point.

 Figure 11.1 illustrates the impact of overfitting in a typical application of machine learning. The horizontal 

axis of the plot indicates the complexity of the machine. The vertical axis indicates the accuracy of 

predictions made by the machine. The solid line shows the accuracy of the machine over the training 

examples, where the broken line indicates the accuracy measured over the test examples. Predictably, 

the accuracy of the machine over the training examples increases monotonically as the machine grows in 

complexity. However, the accuracy over the test examples first increases then decreases.

 If the machine is trained for too long, the excess free parameters start to memorize all the training 

patterns, including the noise contained in the training set. Figure 11.2 presents an illustration of training 

and generalization errors as a function of training time. From the start of the training, both the training 

and generalization errors decrease— usually exponentially. In the case of oversized machines, there is a 
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point at which the training error continuous to decrease, while the generalization error starts to increase. 

This is the point of overfitting. The training should stop as soon as an increase in generalization error is 

observed.

 Machine learning tasks based on real-world data are unlikely to find the noise-free data assumption 

tenable. Also W(x, y) is generally unknown; empirical evidence shows that the available finite amount 

of data is insufficient to represent the distribution of total data in operational situations. Therefore, 

whenever the prediction comes from inductive learning, it will not, in general, be provably correct. The 

question is how to improve the generalization performance. A great deal of research has gone into clever 

engineering tricks and heuristics to aid in the design of learning machines which will not overfit on a 

given data set, consequently giving a better generalization performance.

Fig. 11.1 Impact of machine complexity

Fig. 11.2 
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The computational complexity of a learning machine is directly influenced by the following design 

choices:

1. The machine architecture

The learning machine architecture (soft computing methodologies) is an evolving collection of 

representations of the target function in the learning task. Some of the important architectures we will 

be exploring in the book are

  neural networks;

  fuzzy logic models; and

  kernel functions (support vector machines).

These architectures are all competitive for a given learning task. Computational complexity of these 

models are varied, but we have to balance complexity with accuracy. The more complex models of 

these architectures usually yield better accuracy, but only up to a point; a trade-off is thus required in the 

selection of architecture.

2. The size of free parameters

The larger the size of the parameter vector p of a model, the more calculations are needed to predict 

outputs after training, and the more learning calculations are needed for training-patterns presentation.

3. The training set size

The larger the training set size, the more patterns are presented for training. Therefore, the total number 

of learning calculations increases.

4. Complexity of optimization method

As will be discussed later in this book, sophisticated optimization algorithms have been developed 

to obtain optimum values of machine model parameters. Optimization improves accuracy. This 

sophistication comes, however, at the cost of increased computational complexity.

An acceptable trade-off between computational complexity and accuracy is a very important issue in the 

design of learning systems.

Convergence

Convergence characteristics of a learning machine can be described by the ability of the machine to 

converge to specified error levels (usually considering the generalization error). While convergence 

analysis is an empirical approach, rigorous theoretical analysis has been done for some learning machine 

architectures.

11.4 A BRIEF HISTORY OF NEURAL NETWORKS

Historically, research in artificial neural networks was inspired by the desire to produce artificial systems 

capable of sophisti cated ‘intelligent’ processing similar to the human brain. The science of artificial 



 Intelligent Control with Neural Networks/Support Vector Machines 697

neural networks made its first significant appearance in 1943 when Warren McCulloch and Walter 

Pitts pub lished their study in this field. They suggested a simple neuron model (known today as MP 

artificial neural model) and implemented it as an electrical circuit. In 1949, Donald Hebb highlighted 

the connection between psychology and physiology, pointing out that a neural pathway is reinforced 

each time it is used. Hebb’s learn ing rule, as it is sometimes known, is still used and quoted today. 

Improvements in hardware and software in the 1950s ushered in the age of computer simulation. It 

became possible to test theories about nervous system functions. Research expanded; neural network 

terminology came into its own. 

The perceptron is the earliest of the neural network paradigms. Frank Rosenblatt built this learning 

machine device in hardware in 1958 and caused quite a stir.

The perceptron has been a fundamental building block for more powerful models, such as the ADALINE 

(ADAptive LINear Elements) and MEDALINE (Multiple ADALINEs in parallel), developed by Ber nard 

Widrow and Marcian Hoff in 1959. Their learning rule, sometimes known as Widrow–Hoff rule, was 

simple yet elegant.

Affected by the predominately rosy outlook of the time, some people exaggerated the potential of neural 

networks. Biological comparisons were blown out of proportion. In 1969, in the midst of many outrageous 

claims, Marvin Minsky and Seymour Papert published ‘Perceptrons’, an influential book condemning 

Rosen blatt’s perceptron. The limitations of the perceptron were sig nificant; the charge was that it could 

not solve any ‘interestin g’problems. It brought to a halt, much of the activity in neural network research.

Nevertheless, a few dedicated scientists such as Teuvo Kohonen and Stephen Grossberg, continued 

their efforts. In 1982, John Hopfield introduced a recurrent-type neural network that was based on the 

interaction of neurons through a feedback mechanism. His approach was based on Hebb’s learning rule. 

The back-propaga tion learning rule arrived on the neural-network scene at approx imately the same time 

from several independent sources (Werbos; Parker; Rumelhart, Hinton and Williams). Essentially, a 

refinement of the Widrow–Hoff learning rule, the backpropagation learning rule provided a systematic 

means for training multilayer net works, thereby overcoming the limitations presented by Minsky. 

Minsky’s appraisal has proven excessively pessimistic; networks now routinely solve many of the 

problems that he posed in his book.

Research in the 1980s triggered the present boom in the scientifi c community. New and better models are 

being proposed, and the limitations of some of the ‘old’ models are being chipped away. A number of 

today’s technological problems are in areas where neural-network technology has demonstrated potential: 

speech processing, image processing and pattern recognition, time-series prediction, real-time control and 

others.

As the research on neural networks is evolving, more and more types of networks are being introduced, 

while still less emphasis is being placed on the connection to the biological neural network. In fact, the 

neural networks that are most popular today have very little resemblance to the brain, and one might 

argue that it would be more fair to regard them simply as a discipline under statis tics.

The application of artificial neural networks in closed-loop control, has recently been rigorously studied. 

One property of these networks, central to most control applications, is that of function approximation. 

Such networks can generate input/output maps which can approximate any continuous function with the 

required degree of accuracy. This emerging technology has given us control design techniques that do 
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not depend on parametrized mathematical models. Neural networks are used to estimate the unknown 

nonlinear functions; the controller formulation uses these estimated results.

When neural networks are used for control of systems, it is important that results and claims are based 

on firm analytical foundations. This is especially important when these control systems are to be used in 

areas where the cost of failure is very high. For example, when human life is threatened, as in aircrafts, 

nuclear plants, etc. It is also true that without a good theoret ical framework, it is unlikely that the research 

in the disci pline will progress very far, as intuitive invention and tricks cannot be  counted on to provide 

good solutions to controlling complex systems under a high degree of uncertainty. Strong theo retical 

results guaranteeing control system properties such as stability are still to come, although promising 

results have been reported recently of progress in special cases. The potential of neural networks in 

control systems clearly needs to be further explored and both, theory and applications, need to be further 

developed.

The rest of the chapter gives a gentle introduction to the appli cation of neural networks in control 

systems. A single chapter can in no way do justice to the multitude of interesting neural network results, 

that have appeared in literature. Not only would space be required, but in the time required to detail 

current results, new results would certainly arise. Instead of trying to cover a large spectrum of such a 

vast field, we will focus on what is generally regarded as the core of the subject. This chapter is meant to 

be a stepping-stone that could lead interested readers on to other books for additional information on the 

current status, and future trends of the subject.

11.5 NEURON MODELS

A discussion of anthropomorphism to introduce neural network technology may be worthwhile—as 

it helps explain the terminology of neural networks. However, anthropomorphism can lead to misun-

derstanding when the metaphor is carried too far. We give here a brief description of how the brain 

works; a lot of details of the complex electrical and chemical processes that go on in the brain, have been 

ignored. A pragmatic justification for such a simplifi cation is that by starting with a simple model of the 

brain, scientists have been  able to achieve very useful results.

11.5.1 Biological Neuron

To the extent a human brain is understood today, it seems to operate as follows: bundles of neurons, or 

nerve fibers, form nerve structures. There are many different types of neurons in the nerve structure, each 

having a particular shape, size and length depending upon its function and utility in the nervous system. 

While each type of neuron has its own unique features needed for specific purposes, all neurons have two 

important structural components in common. These may be seen in the typical biological neuron shown 

in Fig. 11.3. At one end of the neuron are a multitude of tiny, filament-like appendages called dendrites, 

which come together to form larger branches and trunks where they attach to soma, the body of the nerve 

cell. At the other end of the neuron is a single fila ment leading out of the soma, called an axon, which 

has extensive branching on its far end. These two structures have special electrophysiological properties 

which are basic to the function of neurons as information processors, as we shall see next. 
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Synaptic
terminals

Fig. 11.3 A typical biological neuron

Neurons are connected to each other via their axons and den drites. Signals are sent through the axon of one 

neuron to the dendrites of other neurons. Hence dendrites may be represented as the inputs to the neuron, 

and the axon as its output. Note that each neuron has many inputs through its multiple dendrites, whereas it 

has only one output through its single axon. The axon of each neuron forms connections with the dendrites 

of many other neurons, with each branch of the axon meeting exactly one den drite of another cell at what 

is called a synapse. Actually, the axon terminals do not quite touch the dendrites of the other neurons, 

but are separated by a very small distance of between 50 and 200 angstroms. This separation is called 

the synaptic gap.

A conventional computer is typically a single processor acting on explicitly programmed instructions. 

Programmers break tasks into tiny components, to be performed in sequence rapidly. On the other hand, 

the brain is composed of ten billion or so neurons. Each nerve cell can interact directly with up to 

200,000 other neurons (though 1000 to 10,000 is typical). In place of explicit rules that are used by a 

conventional computer, it is the pattern of connections between the neurons, in the human brain, that 

seems to embody the ‘knowledge’ required for carrying out various information-processing tasks. In 

human brain, there is no equiva lent of a CPU that is in overall control of the actions of all the neurons.

The brain is organized into different regions, each responsible for different functions. The largest parts of 

the brain are the cerebral hemispheres, which occupy most of the interior of the skull. They are layered 

structures; the most complex being the outer layer, known as the cerebral cortex, where the nerve cells 

are extremely densely packed to allow greater interconnectivity. Interaction with the environment is 

through the visual, auditory and motion control (muscles and glands) parts of the cortex.

In essence, neurons are tiny electrophysiological information-processing units which communicate with 

each other through elec trical signals. The synaptic activity produces a voltage pulse on the dendrite which 

is then conducted into the soma. Each dendrite may have many synapses acting on it, allowing massive 

intercon nectivity to be achieved. In the soma, the dendrite potentials are added. Note that neurons are 

able to perform more complex func tions than simple addition on the inputs they receive, but con sidering  

a simple summation is a reasonable approximation.

When the soma potential rises above a critical threshold, the axon will fire an electrical signal. This 

sudden burst of elec trical energy along the axon is called axon potential and has the form of an electrical 
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impulse or spike that lasts about 1 msec. The magnitude of the axon potential is constant and is not relat-

ed to the electrical stimulus (soma potential). However, neurons typically respond to a stimulus by firing 

not just one but a barrage of successive axon potentials. What varies is the fre quency of axonal activity. 

Neurons can fire between 0 to 1500 times per second. Thus, information is encoded in the nerve signals 

as the instantaneous frequency of axon potentials and the mean frequency of the signal.

A synapse couples the axon with the dendrite of another cell. The synapse releases chemicals called 

neurotransmitters, when its potential is raised sufficiently by the axon potential. It may take the arrival 

of more than one spike before the synapse is triggered. The neurotransmitters that are released by the 

synapse diffuse across the gap and chemically activate gates on the dendrites, which, when open, allow 

charged ions to flow. It is this flow of ions that alters the dendritic potential and provides voltage pulse 

on the dendrite, which is then conducted into the neighboring neuron body. At the synaptic junction, 

the number of gates that open on the dendrite depends upon the number of neurotransmitters released. 

It also appears that some synapses excite the dendrites they affect, whilst others serve to inhibit it. This 

corresponds to altering the local potential of the dendrite in a positive or negative direction.

Synaptic junctions alter the effectiveness with which the signal is transmitted; some synapses are good 

junctions and pass a large signal across, whilst others are very poor, and allow very little through.

Essentially, each neuron receives signals from a large number of other neurons. These are the inputs to 

the neuron which are ‘weighted’. That is, some signals are stronger than others. Some signals excite (are 

positive), and others inhibit (are negative). The effects of all weighted inputs are summed. If the sum is 

equal to or greater than the threshold for the neuron, the neuron fires (gives output). This is an ‘all-or-

nothing’ situation. Because the neuron either fires or doesn’t fire, the rate of firing, not the amplitude, 

conveys the magnitude of information.

The ease of transmission of signals is altered by activity in the nervous system. The neural pathway 

between two neurons is suscep tible to fatigue, oxygen deficiency, and agents like anesthet ics. These 

events create a resistance to the passage of impulses. Other events may increase the rate of firing. This 

ability to adjust signals is a mechanism for learning.

After carrying a pulse, an axon fiber is in a state of complete non-excitability for a certain time called 

the refractory period. For this time interval, the nerve does not conduct any signals, regardless of the 

intensity of excitation. Thus, we may divide the time scale into consecutive intervals, each equal to the 

length of the refractory period. This will enable a discrete-time description of the neurons’ performance 

in terms of their states at discrete-time instances. 

11.5.2

Artificial neurons bear only a modest resemblance to real things. They model approximately three of the 

processes that biological neurons perform (there are at least 150 processes performed by neurons in the 

human brain).

An artificial neuron

 (i) evaluates the input signals, determining the strength of each one;

 (ii) calculates a total for the combined input signals and com pares that total to some threshold level; 

and 

 (iii) determines what the output should be.
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Inputs and Outputs

Just as there are many inputs (stimulation levels) to a biological neuron, there should be many input 

sig nals to our artificial neuron (AN). All of them should come to our AN simultaneously. In response, 

a biological neuron either ‘fires’ or ‘doesn’t fire’ depending upon some threshold level. Our AN will 

be allowed a single output signal, just as is present in a biological neuron: many inputs, one output  

(Fig. 11.4).

Inputs

Output

Fig. 11.4 Many inputs, one output model of a neuron

Each input will be given a relative weighting, which will affect the impact of that input (Fig. 11.5). This 

is something like varying synaptic strengths of the biological neurons—some inputs are more important 

than others in the way they combine to produce an impulse. Weights are adaptive coeffi cients within the 

network, that determine the intensity of the input signal. In fact, this adaptability of connection strength 

is precisely what provides neural networks their ability to learn and store information, and, consequently, 

is an essential element of all neuron models.

Inputs Connection
weightsx1

x2

xn

w1

w2

wn

Total input

Sw xi i

Fig. 11.5 A neuron with weighted inputs

Excitatory and inhibitory inputs are represented simply by posi tive or negative connection weights,  

respectively. Positive inputs promote the firing of the neuron, while negative inputs tend to keep the 

neuron from firing. 

Mathematically, we could look at the inputs and the weights on the inputs as vectors. 
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The input vector
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and the connection weight vector

 w
T = [w1 w2 ... wn] (11.4b)

The total input signal is the product of these vectors. The result is a scalar
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Although most neuron models sum their input signals in basically the same manner, as described above, 

they are not all identical in terms of how they produce an output response from this input. Artificial 

neurons use an activation function, often called a transfer function, to compute their activation as a 

function of total input stimulus. Several differ ent functions may be used as activation functions, and, in 

fact, the most distinguishing feature between existing neuron models is precisely which transfer function 

they employ.

We will, shortly, take a closer look at the activation functions. We first build a neuron model, assuming 

that the transfer function has a threshold behavior, which is, in fact, the type of response exhibited  

by biological neurons: when the total stimulus exceeds a certain threshold value q, a constant output 

is produced, while no output is generated for input levels below the threshold. Figure 11.6a shows this 

neuron model. In this diagram, the neuron has been represented in such a way that the correspondence 

of each element with its biological counterpart may be easily seen.

Equivalently, the threshold value can be subtracted from the weighted sum and the resulting value 

compared to zero; if the result is positive, then output a 1, else output a 0. This is shown in Fig. 11.6b; 

note that the shape of the function is the same but now the jump occurs at zero. The threshold effectively 

adds an offset to the weighted sum.

An alternative way of achieving the same effect is to take the threshold out of the body of the model 

neuron, and connect it to an extra input value that is fixed to be ‘on’ all the time. In this case, rather than 

subtracting the threshold value from the weighted sum, the extra input of +1 is multiplied by a weight 

and added in a manner similar to other inputs—this is known as biasing the neuron. Figure 11.6c shows 

a neuron model with a bias term. Note that we have taken constant input ‘1’ with an adaptive weight ‘b’ 

in our model.

The first formal definition of a synthetic neuron model, based on the highly simplified considerations 

of the biological neuron, was formulated by McCulloch and Pitts (1943). The two-port model (inputs-

activation value-output mapping) of Fig. 11.6 is essentially the MP neuron model. It is important to look 

at the features of this unit—which is an important and popular neural network building block.
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It is a simple unit, thresholding a weighted sum of its inputs to get an output. It specifically does not 

take any ac count of the complex patterns and timings of the actual nervous activity in real neural  

systems, nor does it have any of the complicated features found in the body of biological neurons. This  

ensures its status as a model, and not a copy of a real neuron.

The MP artificial neuron model involves two important processes:

 (i) Forming net activation by combining inputs. The input values are amalgamated by a weighted 

additive process to achieve the neuron activation value a (refer to Fig. 11.6c).

Fig. 11.6 The MP neuron model 
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 (ii) Mapping this activation value a into the neuron output ŷ. This mapping from activation to output 

may be characterized by an ‘activation’ or ‘squashing’ function.

For the activation functions that implement input-to-output compression or squashing, the range of the 

function is less than that of the domain. There is some physical basis for this desira ble characteristic. 

Recall that in a biological neuron, there is a limited range of output (spiking frequencies). In the MP 

model, where DC levels replace frequencies, the squashing function serves to limit the output range. 

The squashing function shown in Fig. 11.7a limits the output values to {0, 1}, while that in Fig. 11.7b 

limits the output value to {–1, 1}. The activation function of Fig. 11.7a is called unipolar, while that in 

Fig. 11.7b is called bipolar (both positive and negative responses of neurons are produced).

y

1

0 a

y

1

a

(b) Bipolar squashing function

–1

(a) Unipolar squashing function

Fig. 11.7

11.5.3

From the above discussion, it is evident that the artificial neuron is really nothing more than a simple 

mathematical equation, for calculating an output value from a set of input values. From now onwards, we 

will be more on a mathematical footing; the reference to biological similarities will be re duced. Therefore, 

names like a processing element, a unit, a node, a cell, etc., may be used for the neuron. A neuron model 

(a pro cessing element/a unit/a node/a cell of our neural network), will be represented as follows:

The input vector

 x = [x1 x2 ... xn]T;

the connection weight vector

 w
T = [w1 w2 ... wn];

the unity-input weight b (bias term), and the output ŷ of the neuron are related by the following equation:

 ŷ = s (wT
x + b) = s w x bi i

i

n

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

=1

 (11.5)

where s (◊) is the activation function (transfer function) of the neuron.

The weights are always adaptive. We can simplify our diagram as in Fig. 11.8a; adaptation need not be 

specifically shown in the diagram.
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y

Fig. 11.8

The bias term may be absorbed in the input vector itself as shown in Fig. 11.8b.

 ŷ = s (a)

  = s w xi i

i

n

=0

Â
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ; w0 = b, x0 = 1 (11.6a)

  = s w x wi i

i

n

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â 0

1=

 = s (wT
x + w0) (11.6b)

In the literature, this model of an artificial neuron is also referred to as a perceptron (the name was given 

by Rosenblatt in 1958).

The expressions for the neuron output ŷ are referred to as the cell recall mechanism. They describe how 

the output is recon structed from the input signals and the values of the cell param eters.

The artificial neural systems under investigation and experimen tation today, employ a variety of activation 

functions that have more diversified features than the one presented in Fig. 11.7. Below, we introduce the 

main activation functions that will be used later in this chapter.

The MP neuron model shown in Fig. 11.6 used the hard-limiting activation function. When artificial 

neurons are cascaded to gether in layers (discussed in the next section), it is more common to use a soft-

limiting activation function. Figure 11.9a shows a possible bipolar soft-limiting semilinear activation 

1

–1

(a)

a a0

1

s ( )a s ( )a

(b)

Fig. 11.9
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function. This function is, more or less, the ON-OFF type, as before, but has a sloping region in  

the middle. With this smooth thresholding function, the value of the output will be practical ly 1 if the 

weighted sum exceeds the threshold by a huge margin and, conversely, it will be practically –1 if the 

weighted sum is much less than the threshold value. However, if the threshold and the weight ed sum are 

almost the same, the output from the neuron will have a value somewhere between the two extremes. This 

means that the output from the neuron can be related to its inputs in a more useful and informative way. 

Figure 11.9b shows a unipolar soft-limiting function.

For many training algorithms (discussed in later sections), the derivative of the activation function 

is needed; therefore, the activation function selected must be differentiable. The logistic or sigmoid 

function, which satisfies this requirement, is the most commonly used soft-limiting activation function. 

The sigmoid function (Fig. 11.10a):

 s (a) = 
1

1 + -e al
 (11.7)

is continuous and varies monotonically from 0 to 1 as a varies from –  to . The gain of the sigmoid, 

l, determines the steepness of the transition region. Note that as the gain approaches infin ity, the sigmoid 

approaches a hard-limiting nonlinearity. One of the advantages of the sigmoid is that it is differentiable. 

This property had a significant impact historically, because it made it possible to derive a gradient search 

learning algorithm for networks with multiple layers (discussed in later sections).

Fig. 11.10

The sigmoid function is unipolar. A bipolar function with similar characteristics is a hyperbolic tangent 

(Fig. 11.10b):

 s (a) = 
1

1

1
2

-

+
( )

-

-
e

e
a

a

a

l

l
l= tanh  (11.8)

The biological basis of these activation functions can easily be established. It is known that neurons 

located in different parts of the nervous system have different characteristics. The neurons of the ocular 

motor system have a sigmoid characteristic, while those located in the visual area have a Gaussian 

characteristic. As we said earlier, anthropomorphism can lead to misunderstanding when the metaphor is 

carried too far. It is now a well-known result in neural network theory that a two-layer neural network is 

capable of solving any classification problem. It has also been shown that a two-layer network is capable of 

solving any nonlinear function approximation problem [138, 141]. This result does not require the use of 

sigmoid nonlinearity. The proof assumes only that nonlinearity is a continuous, smooth, monotonically 
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increas ing function that is bounded above and below. Thus, numerous alternatives to sigmoid could be 

used, without a biological justification. In addition, the above result does not require that the nonlinearity 

be present in the second (output) layer. It is quite common to use linear output nodes since this tends to 

make learning easier. In other words,

 s (a) = l a; l > 0 (11.9)

is used as an activation function in the output layer. Note that this function does not ‘squash’ (compress) 

the range of output.

Our focus in this chapter will be on two-layer perceptron net works with the first (hidden) layer having 

log-sigmoid

 s (a) = 
1

1 + -e a
 (11.10a)

or tan-sigmoid s (a) = 
1

1

-

+

-

-
e

e

a

a
 (11.10b)

activation function, and the second (output) layer having linear activation function

 s (a) = a (11.11)

The log-sigmoid function has historically been a very popular choice, but since it is related to the tan-

sigmoid by the simple transformation

 s log-sigmoid = (stan-sigmoid + 1)/2 (11.12)

both of these functions are in use in neural network models.

We have so far described two classical neuron models:

  perceptron—a neuron with sigmoidal activation function (sigmoidal function is a softer version of 

the original perceptron’s hard limiting or threshold activation function); and

  linear neuron—a neuron with linear activation function.

11.6 NETWORK ARCHITECTURES

In the biological brain, a huge number of neurons are intercon nected to form the network and perform 

advanced intelligent activities. The artificial neural network is built by neuron models. Many different 

types of artificial neural networks have been proposed, just as there are many theories on how biological 

neural processing works. We may classify the organization of the neural networks largely into two types: 

a feedforward net and a recurrent net. The feedforward net has a hierarchical structure that consists 

of several layers, without interconnection between neurons in each layer, and signals flow from input 

to output layer in one direction. In the recurrent net, multiple neurons in a layer are interconnected to 

organize the network. In the following, we give typical characteristics of the feedforward net and the 

recurrent net, respectively. 

11.6.1 Feedforward Networks

A feedforward network consists of a set of input terminals which feed the input patterns to a layer or 

subgroup of neurons. The layer of neurons makes independent computations on data that it receives, and 

passes the results to another layer. The next layer may, in turn, make its independent computations and 

pass on the results to yet another layer. Finally, a subgroup of one or more neurons determines the output 
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from the network. This last layer of the network is the output layer. The layers that are placed between 

the input terminals and the output layer are called  hidden layers.

Some authors refer to the input terminals as the input layer of the network. We do not use that convention 

since we wish to avoid ambiguity. Note that each neuron in a network makes its computa tion based 

on the weighted sum of its inputs. There is one exception to this rule: the role of the ‘input layer’ is 

somewhat different as units in this layer are used only to hold input data, and to distribute the data to 

units in the next layer. Thus, the ‘input layer’ units perform no function—other than serving as a buffer, 

fanning out the inputs to the next layer. These units do not perform any computation on the input data, 

and their weights, strictly speaking, do not exist.

The network outputs are generated from the output layer units. The output layer makes the network 

information available to the outside world. The hidden layers are internal to the network and have no 

direct contact with the external environment. There may be from zero to several hidden layers. The 

network is said to be fully connected if every output from a single node is channeled to every node in 

the next layer.

The number of input and output nodes needed for a network will depend on the nature of the data  

presented to the network, and the type of the output desired from it, respectively. The number of neurons 

to use in a hidden layer, and the number of hidden layers required for processing a task, is less obvious. 

Further comments on this question will appear in a later section.

A Layer of Neurons

A one-layer network with n inputs and q neurons is shown in Fig. 11.11. In the network, each input xi;

i = 1, 2, ..., n is connected to the jth neuron input through the weight wji; j = 1, 2, ..., q. The jth neuron 

has a summer that gathers its weighted inputs to form its own scalar output

i

n

=1

Âwji xi + wj0; j = 1, 2, ..., q

Finally, the jth neuron outputs ŷj through its activation function s (◊):

 ŷj = s
i

n

ji i jw x w

=1

0Â +
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ; j = 1, 2, ..., q (11.13a)

  = s (wj
T
x + wj0); j = 1, 2, ..., q (11.13b)

where weight vector wj is defined as

 wj
T = [wj1 wj2 ...wjn] (11.13c)

Note that it is common for the number of inputs to be different from the number of neurons (i.e., n π q). 

A layer is not con strained to have the number of its inputs equal to the number of its neurons.

 In vector-matrix notation, the layer shown in Fig. 11.11 has q ¥ 1 output vector

  ŷ = 

ˆ

ˆ

ˆ

,

y

y

yq

1

2

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (11.14a)
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Fig. 11.11

q ¥ n weight matrix
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w w w
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and q ¥ 1 bias vector

 w0 = 

w

w

wq

10

20

0

 

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (11.14c)

Note that the row indices on the elements of matrix W indicate the destination neuron for the weight, and 

the column indices indicate which source is the input for that weight. Thus, the indices in wji say that the 

signal from the ith input is connect ed to the jth neuron.

The activation vector is 

Wx + w0 = 

w x +

w x +

w x

1 10

2 20

0

T

T

q
T

q

w

w

w

 

+

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The outputs are

 ŷ1 = s (w1
T
x + w10)

 ŷ2 = s (w2
T
x + w20)

            

 ŷq = s (wq
T
x + wq0)

Introducing the nonlinear matrix operator G, the mapping of the input space x to output space ŷ, 

implemented by the network, can be expressed as (Fig. 11.12)

 ŷ  = G(Wx + w0) (11.15a)

where   G(◊) =D 

s

s

s

( )

( )

( )

◊
◊

◊

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0 0

0 0

0 0

 

 

    

 

  (11.15b)

Note that the nonlinear activation functions s (◊) 
on the diagonal of the matrix operator G, operate 

componentwise on the activation vector of each 

neuron.

The input and output vectors x and ŷ are often 

called input and output patterns, respectively. The 

mapping of the input pattern to an output pattern as given by (11.15), is of the feedforward and 

instantaneous type since it involves no time delay between input x and the output ŷ.

Neural networks normally have at least two layers of neurons, with the first layer neurons having 

nonlinear and differentiable activation functions. Such networks, as we will see shortly, can approximate 

^x G ( + )Wx w0 y

Fig. 11.12 



 Intelligent Control with Neural Networks/Support Vector Machines 711

any continuous function. In real life, we are faced with nonlinear problems, and multilayer neural 

network structures have the capability of providing solutions to these problems.

If the relationship between the input and output signals is linear, or can be treated as such, a single layer 

neural network having linear neurons is the best solution. “Adaptive Linear Element” (Adaline) is the 

name given to a neuron with linear activation function and a learning rule for adapting the weights. 

Single-layer adaline networks have a capacity for a wide range of applications, whenever the problem at 

hand can be treated as linear. 

A two-layer NN, depicted in Fig. 11.13, has n inputs and two layers of neurons, with the first layer 

having m neurons that feed into the second layer having q neurons. The first layer is known as the hidden 

layer, with m the number of hidden-layer neurons; the second layer is known as the output layer, with 

q the number of output-layer neurons. It is common for different layers to have different numbers of 

neurons. Note that the outputs of the hidden layer are inputs to the following layer (output layer); and 

the network is fully connect ed. Neural networks with multiple layers are called Multi-layer Perceptrons 

(MLP); their computing power is significantly enhanced over the one-layer NN.

 All continuous functions (exhibiting certain smoothness) can be approximated to any desired accuracy 

with a network of one hidden layer of sigmoidal hidden units, and a layer of linear output units [141]. Does  

it mean that there is no need to use more than one hidden layer and/or mix different types of activation 

func tions? This is not quite true. It may be that the accuracy can be improved using a more sophisticated 

network architecture. In particular, when the complexity of the mapping to be learned is high, it is 

likely that the performance can be improved. However, since implementation and training of the network 

become more complicated, it is customary to apply only a single hidden layer of similar activation 

functions, and an output layer of linear units. Our focus is on two-layer feedforward neural networks with 

s ( )◊
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xn
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s ( )◊

1 1

z1
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Fig. 11.13
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sigmoidal/hyperbolic tangent hidden units and linear output units. This is probably the most commonly 

used network architecture, as it works quite well in many practical applications.

Defining the hidden-layer outputs zl allows one to write

 zl = s w x wli i l

i

n

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â 0

1=

; l = 1, 2, …, m (11.16)

  = s (wl
T
x + wl0)

where 

 w
T
l =D [wl1 wl2 ... wln]

In vector-matrix notation, the hidden layer in Fig. 11.13 has m ¥ 1 output vector

 z = 

z

z
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,  (11.17a)

m × n weight matrix
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and m × 1 bias vector 
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 (11.17c)

The output

 z = G(Wx + w0) (11.18a)

where G(◊) =D 
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 (11.18b)

Defining the second-layer weight matrix as

 V = 

v v v

v v v

v v v
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 Intelligent Control with Neural Networks/Support Vector Machines 713

and bias vector as
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, (11.19b)

one may write the NN output as

 ŷj = v z vjl l j

l

m

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â 0

1=

; j = 1, 2, ..., q (11.20)

  = vj
T
z + vj0

where  vj
T =D [vj1 vj 2 ... vjm]

The output vector 

 ŷ =
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 (11.21a)

is given by the expression 

 ŷ = Vz + v0

  = V(G(Wx + w0) + v0) (11.21b)

Figure 11.14 shows the input–output map.

11.6.2 Recurrent Networks

The feedforward networks (Figs 11.11–11.14) implement fixed-weight mappings from the input space to 

the output space. Because the networks have fixed weights, the state of any neuron is solely determined 

by the input to the unit, and not the initial and past states of the neurons. This independence of initial and 

past states of the network neurons limits the use of such networks because no dynamics are involved. The 

maps implemented by the feedforward networks of the type shown in Figs 11.11–11.14, are static maps.

To allow initial and past state involvement along with serial processing, recurrent neural networks utilize 

feedback. Recurrent neural networks are also characterized by use of nonlinear processing units; thus, 

such networks are nonlinear dynamic systems (Networks of the form shown in Figs 11.11–11.14 are 

nonlinear static systems).

The architectural layout of a recurrent network takes many different forms. We may have feedback from 

the output neurons of a feedforward network to the input terminals. Yet another possible form is feedback 

from the hidden neurons of the network to the input terminals. When the feedforward network has two 

or more hidden layers, the possible forms of feedback expand even further. Recurrent networks have a 

rich repertoire of architectural layouts.

Fig. 11.14 
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It should be noted that many real-world problems, which one might think would require recurrent 

architectures for their solution, turn out to be solvable with feedforward architectures as well. A 

multilayer feedforward network, which realizes a static map can represent the input/output behavior of 

a dynamic system. For this to be possible, one must provide the neural network with information about 

the history of the system—typically, delayed inputs and outputs. How much history is needed, depends 

on the desired accuracy. There is a trade-off between accuracy and computational complexity of training, 

since the number of inputs used, affects the number of weights in the neural network—and subsequently, 

the training time (Section 11.11 will give more details). One sometimes starts with as many delayed 

signals as the order of the system, and then modifies the network accordingly. It also appears that using 

a two hidden-layer network—instead of one hidden layer—has certain compu tational advantages. The 

number of neurons in the hidden layer(s) is typically chosen based on empirical criteria, and one may 

iterate over a number of networks to determine a neural network that has a reasonable number of neurons 

and accomplishes the desired degree of approximation.

From numerous practical applications published over the past decade, there seems to be substantial  

evidence that multilayer feedfor ward networks possess an impressive ability to perform reasonably well 

in most cases of practical interest. Lately, there have also been some theoretical results that attempt to 

explain the reasons for the success [138].

Our focus is on two-layer feedforward neural networks with sigmoidal/hyper bolic tangent hidden units 

and linear output units. This is probably the most commonly used network architecture as it works quite 

well in many practical applications.

11.7 FUNCTION APPROXIMATION WITH
 NEURAL NETWORKS

Of fundamental importance in NN closed-loop control applications is the universal function 

approximation property of NNs having at least two layers (one-layer NNs do not generally have a 

universal approximation capability).

The basic universal approximation result says [141] that any smooth function f(x) can be approximated 

arbitrarily closely on a compact set using a two-layer NN with appropriate weights. This result has been 

shown using sigmoid activations, RBF activa tions, and others. Specifically, let f(x) be a smooth function; 

x = [x1 x2 ... xn]T, f(◊) = [f1(◊) f2(◊) ... fq(◊)]T, S be a com pact set in n-dimensional state space and eN be a 

positive number. There exists a two-layer NN (Eqn. (11.21b)) such that

f(x) = V(G(Wx + w0) + v0) + e

with ||e|| < eN for all x Œ S, for some (sufficiently large) number m of hidden-layer neurons. The value 

e (generally a function of x), is called the NN function approximation error, and it decreases as the 

hidden-layer size m increases. We say that on the compact set S, f(x) is ‘within eN of the NN functional 

range’. Approxima tion results have also been shown for smooth functions with a finite number of 

discontinuities.

Note that in this result, the activation functions are not needed on the NN output layer (i.e., the output 

layer activation func tions are linear). It also happens that the bias terms nj0 on the output layers are not 

needed, though the hidden layer bias terms w 0 are required.
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Note further that, though the result says ‘there exists an NN that approximates f(x)’, it does not show how 

to determine the re quired number of units in the hidden layer. The issue of finding the required number of 

units in the hidden layer such that an NN does indeed approximate a given function f(x) closely enough, is 

not an easy one (If the function approximation is to be carried out in the context of a dynamic closed-loop 

feedback control scheme, the issue is thornier and is discussed in subsequent sections). This issue has been  

addressed in the literature [138, 141], and a significant result has been derived about the approximation 

capabilities of two-layer networks when the function to be approxi mated exhibits a certain smoothness. 

Unfortunately, the result is difficult to apply for selecting the number of hidden units. The guidelines 

to select the appropriate number of hidden neurons are rather empirical at the moment. To avoid large 

number of neurons and the corresponding inhibitively large training times, the smaller number of 

hidden layer neurons are often used in the first trial. One increases accuracy by adding more hidden 

neu rons. Excessively large number of hidden units may lead to poor generalization, a key feature of the 

performance of NN.

Because of the above-mentioned results, one might think that there is no need for using more than  

one hidden layer, and/or different types of activation functions. This is not quite true: it may be that 

accuracy can be improved using a more sophisticated network architecture. In particular, when the 

complexity of the mapping to be learned is high (e.g., functions with discontinuities), it is likely that 

the performance can be improved. Experimental evidence tends to show that using a two hidden-layer 

network for continuous functions has sometimes advantages over a one hidden-layer network, as the 

former requires short er training times.

11.7.1 The Basic Learning Mechanism

Each processing element (neuron) in a neural network has a number of inputs (xi), each of which must 

store a connection weight (wji). The element sums up the weighted input (wji xi) and com putes one, and 

only one, activation signal (aj). The output signal is a function (s (◊)) of the weighted sum. Figure 11.15 

summarizes how a processing element works.

The function s (◊) remains fixed for the life of the processing element. It is generally decided upon as 

part of the design, and it cannot be changed dynamically. In other words, the transfer function currently 

cannot be adjusted or modified during the operation or running of the network.

However, the weights (wji) are variables. They 

can be dynamically adjusted to produce a 

given output (yj). This dynamic modifica tion 

of the variable weights is the very essence of 

learning. At the level of a single processing 

element, this self-adjustment is very simple. 

When many processing elements do it collec-

tively, we say it resembles ‘intelligence’. The 

meaningful infor mation is in the modified 

weights. The ability of an entire neural 

network to adapt itself (change the wji values) to achieve a given output (yj), is its uniqueness.

Pairs of inputs and outputs are applied to the neural network. These pairs of data are used to teach or train 

the network, and as such are referred to as the training set. Knowing what output is expected from each 

Fig. 11.15 A processing element
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input, the network automatically adjusts or adapts the strengths of the connections between processing  

elements. The method used for the adjusting process is called the learning rule.

Neural networks deal only with numeric input data. Therefore, we must convert or encode information 

from the external environment to numeric data form. Addi tionally, it is often necessary to scale data. 

Inhibitory inputs are just as important as excitatory inputs. The input scheme should adequately allow 

for both the types (allow positive and negative weights). A provision is also usually made for constant-

source input to serve as an offset or bias term for the transfer or activation function.

The numeric output data of a neural network will, likewise, require decoding and scaling to make it 

compatible with the external environment.

Important characteristics of the network depend on:

 (i) the transfer or activation functions of the processing ele ments; 

 (ii) the structure of the network (number of neurons, layers and interconnections); and 

 (iii) the learning rules of the network.

11.7.2 Supervised Learning Rules

These rules compute the necessary 

change in the connection weights by 

presenting the network given input 

pattern, comparing the obtained 

response with a desired response 

known a priori and then changing 

the weights in the direction of 

decreasing error. More clearly, in the 

supervised learning mode, a neural 

network is supplied with a sequence 

of examples (x(1), y(1)), (x(2), y(2)), ..., (x(p), y(p)), ..., of desired input-output pairs. When each input x(p) is 

fed into the neural net work, the corresponding desired output y( p) is also supplied to the neural network. 

As shown in Fig. 11.16, the difference between the actual neural network (NN) output ˆ ( )
y

p  and the 

desired output y(p) is measured in the error-signal generator, which then produces error signals for the 

NN to correct its weights in such a way that the actual output will move closer to the desired output. In 

the subsequent sections, commonly used learning rules (algorithms) are presented.

11.8 LINEAR LEARNING MACHINES

Linear mathematical functions are the best understood, and the simplest for neural network (NN) 

learning. The classical NN literature has developed methods for linear function learning; we will refer to 

the associated NN structures as linear learning machines. These techniques, which include both efficient 

iterative procedures and theoretical analysis of their generalization properties, provide the framework 

within which the construction of more complex (nonlinear) functions will be developed in the subsequent 

Fig. 11.16 
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sections. In this section, we present algorithms for training linear machines. These algorithms will be 

relevant to the study of multilayer neural networks and support vector machines in later sections.

For learning problems with a scalar output, only one neuron (perceptron) constitutes the linear learning 

machine. For multiple outputs (represented by vector y), single layer of perceptrons gives us the required 

structure. We present the algorithms for the scalar-output case; extension to vector-output case is 

straightforward.

11.8.1 Least Squares Algorithm

Consider the simple case of a single neuron with linear activation function. Figure 11.17 is a schematic 

diagram of such a network. An input signal x = [x1, x2, ..., xn]T, comprising features and augmented by a 

constant input component (bias), is applied to the neuron; weighted and summed to give an output signal 

ŷ:

 ŷ = w x wi i

i

n

+Â 0

1=

 

(11.22a)
  = wT  + w0

where w
T  = w w wn1 2

...[ ]  

Defining (n + 1) ¥ 1 vector 

 x = 1 1 2x x xn
T

...[ ]
and 1 ¥ (n + 1) vector 

 w
T = w w w wn0 1 2

... ,[ ]
we can express Eqn. (11.22a) as 

 ŷ = w x
T  (11.22b)

Fig. 11.17 Learning scheme for a linear neuron
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The learning task is to find the weights of the neuron (estimate the parameters of the proposed linear model 

(11.22a)) using a finite number of measurements, observations, or patterns. The learning environment, 

thus, comprises a training set of measured data (patterns):

 {x
( p), y( p); p = 1, 2, ..., P}

consisting of an input vector x and output or system response y, and the orresponding learning rule for 

the adaptation of the weights (In the following discussion, learning algorithm is given for the case of one 

neuron only, and the desired output is a scalar variable. The extension of the algorithm for y, a vector, is 

straightforward). The choice of a performance criterion, or the measure of goodness of the estimation, 

depends primarily on the data, and on the desired simplicity of the learning algorithm. In the neural 

network field, the most widely used performance criterion (cost function) is the sum of error squares:

 E = 
1
2

2

1

1
2

2

1

e yp

p

P
p p

p

P
( ) ( ) ( )( ) = -( )Â Â

= =

 (11.23)

(The constant ½ is used for computational convenience only. It gets cancelled out by the differentiation 

required in the error minimization process).

It is obvious that network equation (11.22b) is exactly a linear model with (n + 1) linear parameters. So 

we can employ the least-squares methods, discussed in Chapter 10, to minimize the error in the sense of 

least squares.

A matrix of input vectors x( p); p = 1, 2, ..., P (called the data matrix X) and vector y of the desired outputs 

y( p); p = 1, 2, ..., P, are introduced as follows:

 X = 

Ê 1 1 1

1
1

1
2

1

2
1

2
2

2

1 2

 

 

 

   

 

x x x

x x x

x x x

P

P

n n n
P

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )ËË

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

ÈÎ ˘̊= x x x
( ) ( ) ( )1 2  P

 (11.24a)

 y = y y y P
T

( ) ( ) ( )1 2
 ÈÎ ˘̊

The weights w are required to satisfy the following equations (refer to Eqn. (11.22b)):

 y(1) = w x
T ( )1

 y(2) = w x
T ( )2

   

 y(P) = w x
T P( )

Therefore, 

[ y(1) y(2) .... y(P)] = w x x x
T P[ ]( ) ( ) ( )1 2  

 y
T = w X

T

or y
P ¥1

 = X w
P n

T

n¥ + + ¥( ) ( )1 1 1

ŷ
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In the least squares sense, the best or optimal w that minimizes E results from the equation (refer to 

Eqns (10.38–10.40))

 w = ( ) [ ... ]XX X
T

n
Tw w w w- =1

0 1 2y  (11.24b)

From a computational point of view, the calculation of optimal weights requires the pseudo-inverse of 

the P ¥ (n + 1) matrix X.

An alternative solution to this type of problem is the ‘Recursive Least Squares’ (RLS) algorithm (refer to 

Eqns (10.45)). For the learning problem in hand, the steps given in Table 11.1 implement the algorithm.

Table 11.1 

Given is a set of P measured data points that are used for training:

{x
( p), y(p); p = 1, 2, …, P}

consisting of the input pattern vector x and the desired response y;

x = [1 x0 x1 x2 ... xn]T

The weight vector 

w
T = [w0 w1 w2 ... wn]

is to be constructed.

 Perform the following training steps for p = 1, 2, …, P.

Step 1 Set the iteration index k = 0. Initialize the weight vector w 00( ) =  and the matrix P(0) = 

  aI(n+1), where a should be very large number, say, of the order of 108 to 1015.

Step 2 Apply the next (p = 1 for the first one) training pair x
( ) ( ),p py{ } to the linear neuron.

Step 3 Calculate the error for the applied data pair: e k y k k kT( ) ( ) ( ) ( ).+ = + - +1 1 1x w

Step 4 Calculate the vector K(k).

K( ) ( ) ( )[ ( ) ( ) ( )]k k k k k kT= + + + + -
P x x P x1 1 1 1 1

Step 5 Calculate the updated weight vector.

w w( ) ( ) ( ) ( )k k k e k+ = + +1 1K

Step 6 Find the matrix P(k + 1) 

P P x P( ) ( ) ( ) ( ) ( )k k k k kT+ = - +1 1K

Step 7 Stop the adaptation of the weights if the error is smaller than the predefined value. Otherwise set 

k Æ k + 1 and go back to step 2.

11.8.2 Gradient Descent Algorithm

We have shown how, for a linear neuron, the weight values which minimize the sum-of-squares error 

function can be found explicitly in terms of the pseudo-inverse of a matrix. It is important to note that 

this result is possible only for the case of a linear neural network, with a sum-of-squares error function as 

the performance criterion. If a nonlinear activation function, such as a sigmoid, is used, or if a different 

error function is considered, then a closed-form solution is no longer possible. However, if the activation 

function is differentiable, as is the case of the sigmoid, the derivatives of the error function with respect to 



720  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the weight parameters can easily be evaluated. These derivatives can then be used in a variety of gradient-

based optimization algorithms for finding the minimum of the error function. Here we consider one of 

the simplest of such algorithms, the steepest descent algorithm, for a single linear neuron. We will later 

extend the algorithm to multilayer neural networks with sigmoidal/linear units.

 For a linear neuron of Fig.11.17, the training set comprises the pairs

{x
(p), y(p); p = 1, 2, ..., P}

The performance criterion (refer to Eqn.(11.23)) is 

  E

p

P

=
1

2
=1

Â (y(p) – ŷ (p))2 = 
1

2

2

1

( )( )e p

p

P

=

Â  (11.25)

where (refer to Eqn.(11.22a))

  ˆ ( ) ( ) ( )y w x w wp
i i

p T p

i

n

=

=

+ = +Â 0 0

1

w x  (11.26)

 To understand the gradient descent algorithm, it is helpful to visualize the error space of possible weight 

vectors and the associated values of the performance criterion (cost function). For linear neuron, the error 

surface is parabolic with a single global minimum.

 Gradient descent search determines a weight vector that minimizes the cost function by starting with 

an arbitrary initial weight vector, then repeatedly modifying it in small steps. At each step, the weight 

vector is altered in the direction that produces the steepest descent along the error surface. This process 

continues until the global minimum error is reached.

 Let wi(k) be the weights on the iteration index k, and the associated cost function is E(k). The search 

direction given by –(∂E(k)/∂wi(k)), takes us iteratively towards the minimum point according to the rule

 wi(k + 1) = wi(k) – h 
∂
∂

E k

w ki

( )

( )
 (11.27)

where h, the positive step-size parameter, is taken as less than 1, and is called the learning rate.

The two most useful training protocols are batch and incremental. In batch training, all patterns are 

presented to the network before learning takes place. The cost function E(k) for the batch training is 

given by Eqn.(11.25). A variation of this approach is to update weights for each of the training pairs. This 

is known as incremental mode of training. We first consider the incremental mode.

Incremental Training

For the incremental training, the cost function at iteration k, is 

 E(k) = 
1

2
( ( )y p - ŷ ( )) [ ( )]( )k e kp2 21

2
=  (11.28a)

for the training pair (x(p), y(p),) with 

  ˆ ( ) ( ) ( )( ) ( )
y k w k x w kp

i i
p

i

n

=

=

+Â 0

1

 (11.28b)
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Note that the components xi
(p)   of the input vector x(p), and the desired output y(p) are not functions of the 

iteration index k.

 The gradients with respect to weights and bias are computed as follows:

∂
∂

∂
∂

-
∂
∂

-

E k

w k
e k

e k

w k
e k

k

w k

e

i

p
p

i

p
p

i

( )

( )
( )

( )

( )
( )

( )

( )

( )
( )

( )
( )

= =

= (( ) ( )

( ) ( )

( )
( )

( ) ( )

( )

p

i
i i

p

i

n

p
i

p

k
w k

w k x w k

e k x

∂
∂

+
È

Î

Í
Í

˘

˚

˙
˙

-

∂

Â 0

1=

=

EE k

w k
e kp( )

( )
( )( )

∂
-

0

=

 The gradient descent algorithm becomes

 wi (k + 1) = wi(k) + h e(p)(k) xi
(p)  ; p = 1, 2, ..., P; i = 1, 2, ..., n (11.29a)

 w0(k + 1) = w0(k) + h e(p)(k) (11.29b)

In terms of vectors, this algorithm may be expressed as

 w(k + 1) = w(k) + h e(p)(k) x (p); p = 1, 2, ..., P (11.30a)

 w0(k + 1) = w0(k) + h e(p)(k) (11.30b)

Incremental training algorithm iterates over the training examples p =1, 2, …, P; at each iteration, altering 

the weights as per Eqns (11.30). The sequence of these weight updates iterated over all the P training 

examples, provides a reasonable approximation to the gradient descent with respect to the batch of data. 

By making the value of h reasonably small, incremental gradient descent can be made to approximate 

true gradient descent arbitrarily closely.

 At each presentation of the data (x(p), y(p)), one step of training algorithm is performed which updates 

both the weights and the bias. An epoch is defined as one complete run through all the P associated pairs. 

When an epoch has been completed, the pair (x(1), y(1)) is presented again and another run through all the 

P pairs is performed. It is hoped that after many epochs, the output error will be small enough.

Note that the approach of teaching the network one fact at a time from one data pair does not work. 

All the weights set so meticulously for one fact, could be drastically altered in learning the next fact. 

The network has to learn everything together, finding the best weight settings for the total set of facts. 

Therefore, with incremental training, the training should stop only after an epoch has been completed.

Batch Training

Our true interest lies in learning to minimize the total error over the entire batch of training examples. 

All P pairs are presented to the linear unit (one at a time) and a cumulative error is computed, after all 

pairs have been presented. At the end of this procedure, the neuron weights and bias are updated once. 

The result is as follows:

 w(k + 1) = w( ) ( )( )k e kp

p

P

+
È

Î

Í
Í

˘

˚

˙
˙Âh

=1

x
(p) (11.31a)

ŷ
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 w0(k + 1) = w k e kp

p

P

0

1

( ) ( )( )+ Âh
=

 (11.31b)

 In batch training, the iteration index corresponds to the number of times the set of P pairs is presented 

and the cumulative error is compounded. That is, k corresponds to epoch number.

 Compared with the incremental mode, the batch mode is an inherent averaging process. This leads to a 

better estimate of the gradients; thus to more well-behaved convergence. Both the incremental and batch 

training modes are commonly used in practice; the error surface in the MLP network case, as we will see 

shortly, may contain multiple local minima, and incremental training can sometimes avoid falling into 

these local minima.

The sum of error squares over all the training pairs is accumulated in the incremental mode of learning. 

After the learning epoch (the sweep through all the training patterns) is completed (p = P), the total error 

EP is compared with the acceptable (desired) value Edes; learning is terminated if EP < Edes. Otherwise a 

new learning epoch is started. In the batch mode, weight updating is performed after the presentation of 

all the training examples that constitute an epoch. The error EP is compared with Edes after each iteration 

of a learning epoch.

The sum of error squares is not good as stopping criterion because EP increases with the increase of the 

number of data pairs. The more data, the larger is EP. Scaling of the error function gives a better stopping 

criterion. The root mean square error (RMSE) is a widely used scaled error function:

ERMS = 
1 2

1
P

e p

p

P

( )( )

=

Â
There will be no need to change the learning algorithm derived earlier. Training is performed using sum-

of-error squares as the cost function (performance criterion), and RMSE is used as a stopping criterion 

at training. However, if desired, for the batch mode the learning algorithm with average square error:

Eav = 
1

2

2

1
P

e p

p

P

( )( )

=

Â

may be used as the cost function for training the network.

11.9 TRAINING THE MULTILAYER PERCEPTRON

In the previous section, we dealt with the training of a linear neuron using least squares algorithm and 

gradient descent algorithm. Both of these algorithms can easily be extended to a network with a layer 

of linear neurons.

 For real-world problems, one has no previous knowledge of what kind of dependency function between 

input x and output y is most suitable; a linear function may not lead to satisfactory performance. Trial-
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and-error design of a nonlinear function is a difficult task, but inescapable necessity. What we seek is a 

clever choice of the nonlinearity. This is the approach of Multi-Layer Perceptron (MLP) networks. MLP 

networks can at least in principle, provide the optimal solution to an arbitrary function approximation 

problem.

 Consider the two-layer network shown in Fig. 11.13. There is nothing magical about this network; it 

implements linear functions in a space where the inputs have been mapped nonlinearly using sigmoidal 

transformation. It is natural to ask whether every nonlinear function can be implemented by a network 

of this form. The answer is ‘yes’—any continuous function from input to output can be implemented 

by a network of the form of Fig. 11.13, given sufficient number of hidden units. If x is fed to the input 

terminals (including the bias), the ‘activation’ propagates in the feedforward direction, and the output 

values of the hidden units are calculated. Each hidden unit is a perceptron by itself and applies the 

nonlinear sigmoid to its weighted sum. If the hidden units’ outputs were linear, the hidden layer would 

be of no use for function approximation; linear combination of linear combinations is another linear 

combination.

One is not limited to MLP networks of the form of Fig. 11.13. More hidden layers with their own weights 

can be placed after the first layer with sigmoid hidden units, thus calculating nonlinear transformations 

of the first layer of hidden units and implementing more complex functions of the inputs. In practice, 

we rarely go beyond one hidden layer since analyzing a network with many hidden layers is quite 

complicated; but sometimes when the hidden layer contains too many hidden units, it may be sensible to 

go to multiple hidden layers, preferring ‘long and narrow’ networks to ‘short and flat’ networks.

The key power provided by MLP networks is that they admit simple gradient-based training algorithms. 

This is made possible because sigmoid is a continuous and differentiable function, with a useful property 

that its derivative is easily expressed in terms if its output.

 Consider a sigmoidal neuron of Fig. 11.8. The activation 

  a = w x wi i

i

n

+Â 0

1=

 (11.32a)

and the output

  ˆ ( )y a
e a

= =s
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1 + -
 (11.32b)
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11.9.1

 We aim to derive the backpropagation algorithm for setting the weights based on training patterns, for the 

two-layer perceptron network of Fig. 11.13, which is frequently used in practice. Extension of the results 

derived in this section to more general perceptron networks is straightforward.
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 Backpropagation is one of the simplest and most general method for supervised training of MLP 

networks. It is a natural extension of the gradient descent algorithm derived in the previous section for a 

linear neuron. The gradient descent algorithm worked for the linear unit because the error, proportional 

to the square of the difference between the actual output and the desired output, could be evaluated in 

terms of input terminals-to-output layer weights. Similarly, in a two-layer network, it is a straightforward 

matter to find out how the error depends on hidden-to-output layer weights. In fact, this dependency is 

analogous to the linear unit case.

 But how should the input terminals-to-hidden layer weights be learned; the ones governing the nonlinear 

transformation of the input vectors? If the ‘proper’ outputs for hidden units were known for any input, 

the input terminals-to-hidden layer weights could be adjusted to approximate it. However, there is no 

explicit ‘supervisor’ to state what the hidden units’ output should be. The power of back propagation is 

that it allows us to calculate an ‘effective’ error for each hidden unit, and thus derive a learning rule for 

input terminals-to- hidden layer weights.

 We begin by defining the cost function for incremental training (iterating through the training examples 

one at a time):

 E(k) = 
1
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where ˆ ( )
yj

p  is evaluated using the equations
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These equations directly follow from Eqns ((11.28), (11.20), (11.16)), with the difference that now we 

have a layer of q linear units, rather than a single linear unit.

 For each training example p, every weight vj ; j = 1, ..., q;   = 1, ..., m, is updated by adding to it Dvj :

  Dvj  = – h 
∂

∂
E k

v kj

( )

( ) 

 (11.34a)

  vj (k + 1) = vj  (k) – h
∂

∂
E k

v kj

( )

( ) 

 (11.34b)

With linear activation function in the output layer, the update rule becomes

  vj (k + 1) = vj (k) + h ej
(p)(k) z 

(p)(k) (11.34c)

  vj0(k + 1) = vj0(k) + h ej
(p)(k) (11.34d)

We now consider the hidden layer of the network. Unlike the output nodes, the desired outputs of the 

hidden nodes are unknown. The backpropagation algorithm for a given input-output pair (x(p), y(p)) 

performs two phases of data flow. First the input pattern x(p) is propagated from the input terminals to 

the output layer; and as a result of the forward flow of the data, it produces an output ŷ
(p). Then the error 
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signals e(p) resulting from the difference between y(p) and ŷ
(p) are backpropagated from the output layer 

to the hidden layer, to update the weights w i. Error backpropagation may be computed by expanding the 

error derivative using the chain rule, as follows:

  w k w k
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and the update rule becomes

 w i (k + 1) = w i(k) + hd 
(p)(k)xi

(p) (11.35e)

where backpropagated error
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1 - Â  (11.35f)

 w 0(k + 1) = w 0(k) + hd 
(p)(k) (11.35g)

The backpropagation algorithm consists of repeating the following iterative procedure until the neural 

network output error has become sufficiently small.
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Present input vector x(p) to the MLP, and compute the MLP output using
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with initial weights w 0
(0), w i

(0), vj0
(0), vj 

(0), randomly chosen.

  (11.36c)
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 vj (k + 1) = vj (k) + h ej
(p)(k) z 

(p)(k)  (11.36e)

 vj0(k + 1) = vj0(k) + h ej
(p)(k) (11.36f)

 w i (k + 1) = w i(k) + h d 
(p)(k) xi

(p)(k) (11.36g)

 w 0 (k + 1) = w 0(k) + h d 
(p)(k) (11.36h)

Batch training algorithm follows on the similar lines.

11.9.2 Improvements on Gradient Descent

There are many sorts of training algorithms for NN; the basic type we have discussed in the previous 

subsection is the backpropaga tion training algorithm. Though the backpropagation algorithm enjoys great  

success, one must remember that it is a gradient-based technique, so that the usual caveats associated 

with step sizes, local minima and so on, must be kept in mind while using it.

The NN weights and biases are typically initialized to small random (positive and negative) values. A 

typical error surface graph in 1-D is shown in Fig. 11.18, which shows a local minimum and a global 

minimum. If the weight is initialized as shown in Case 1, there is a possibility that the gradient descent 

might find the local minimum. Several authors have determined better techniques to initialize the weights 

than the random selection, particularly for the multilayer NN. Among these are Nguyan and Widrow, 

whose techniques are used, for instance, in MATLAB. Such improved initialization techniques can also 

significantly speed up convergence of the weights to their final values.

An improved version of gradient descent is given by Momentum Gradient Algorithm. Momentum allows 

a network to respond, not only to the local gradient, but also to recent trends in error surface. The 

learning rule with the inclusion of a momentum term can be written as (refer to Eqns (11.34a – 11.35a))

 Dw i(k) = –h
∂

∂
E k

w ki

( )

( ) 

 + a Dw i(k – 1); 0 £ |a | £ 1 (11.37)
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Without momentum, a network may get stuck 

in a shallow local minimum; adding mementum 

can help the NN ‘ride through’ local minima. 

(Case 1 in Fig. 11.18 may not get stuck in local 

minimum while learning with momentum). 

In the MATLAB Neural Network Toolbox are 

some examples which show that learning with 

momentum can significantly speed up and 

improve the performance of backpropagation.

Only small learning constants h guarantee a true 

gradient descent. The price of this guarantee 

is an increased total number of learning steps 

that need to be made to reach a satisfactory 

solution. It is desirable to monitor the progress 

of learning so that h can be increased at appropriate stages of training to speed up the minimum seeking.

When broad minima yield small gradient values, then a larger value of h will result in a more rapid 

convergence. However, for problems with steep and narrow minima, if the learning rate h is too large, then 

the NN can overshoot the minimum cost value, jumping back and forth over the minimum, and failing  

to converge, as shown in Fig. 11.18, Case 2. Adapting the learning rates can significantly speed up the 

con vergence of the weights.

All the refinements: selecting better initial conditions, using learning with momentum, and using an  

adaptive learning rate, are available in the MATLAB NN Toolbox. 

In practice, the gradient method is quite slow. Other methods are available which converge much faster. 

In most applications, it is therefore difficult to justify using the gradient method. Never theless, the method 

has gained a remarkable popularity in the neural network community. The primary properties in favor of 

the method are the simplicity at which it is implemented, and the modest requirement of data storage. In 

most situations, the drawback associated with slow convergence motivates the use of more sophisticated 

methods.

The category of fast algorithms uses standard numerical optimiza tion techniques. Three types of 

numerical optimization techniques for neural network training have been incorporated in MATLAB: 

Conjugate gradient; quasi-Newton; and Levenberg–Marquardt.

The reader is advised to refer to the literature [137–143] for details on improvements suggested above.

11.10 RADIAL BASIS FUNCTION NETWORKS

Radial basis function (RBF) networks have gained considerable attention as an alternative to Multi-Layer 

Perceptrons (MLP) trained by the backpropagation algorithm. Both MLP networks and RBF networks 

are the basic constituents of feedforward neural networks.

An RBF neuron uses radially symmetric activation function f (||x – c||), i.e., the argument of the function 

is the Euclidean distance of the input vector x from a center c, which justifies the name radial basis 

function (RBF). Function f(◊) can take various forms; the Gaussian form is more widely used.

Fig. 11.18 
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A Gaussion basis function is typically parameterized by two parameters: the center which defines its 

position, and a spread parameter that determines its shape. The spread parameter is equal to the standard 

deviation s in case of a one-dimensional Gaussian function (do not confuse the standard deviation 

parameter s with the sigmoidal activation function s (◊)). In the case of a multivariate input vector x, the 

parameters that define the shape of the hyper-Gaussian function are elements of a covariance matrix S. 

With the selection of the same spread parameter s for all components of the input vector, the covariance 

matrix S = diag(s2).

The input vector

x = [x1 x2 ... xn]T

and the output f (◊) of an RBF (Gaussian) neuron are related by the following equation.

  f s
s

( ) exp
||

x c
x c

, , =
||2

-
-Ê

ËÁ
ˆ

¯̃2 2
 (11.38)

where c is the center and s is the spread parameter of the Gaussian function.

Unlike sigmoidal neuron, there are no connection weights between the input terminals and the RBF unit 

(refer to Fig. 11.19); the center c and the spread parameter s represent the weights.

RBF networks are structurally equivalent 

to the two-layer perceptron network shown 

in Fig. 11.13. Both have one hidden layer 

with a nonlinear activation function, and an 

output layer containing one or more neurons 

with linear activation functions. In an RBF 

network, one does not augment, both the 

n-dimensional input vector x and the hidden 

layer output vector with the bias term +1.

The architecture of an RBF network is presented in Fig. 11.20. The network consists of n inputs x1, x2, ..., 

xn; and a hidden layer of m nonlinear processing units (refer to Eqn. (11.38)):

  f s
s

   
 

 

( ) exp
||

x c
x c

, , =
||2

-
-Ê

Ë
Á

ˆ

¯
˜

2 2
;   = 1, 2, ..., m (11.39a) 

The output of the network is computed as a weighted sum of the outputs of the RBF units:

  ˆ ( , , )y wj j

m

=

=

 

 

   

1

Â f sx c ; j = 1, 2, ..., q (11.39b)

where wj  is the connection weight between the RBF unit   and the j th component of the output vector.

It follows from equations (11.39) that the parameters (c , s , wj ) govern the mapping properties of the 

RBF neural network. It has been shown [141] that the RBF network can fit any arbitrary function with 

just one hidden layer.

In the RBF network, the output of each RBF node is the same for all input points x having the same 

Euclidean distance from the respective centers ci, and decreases exponentially with the distance. In 

contrast, the output of each sigmoidal node in a multilayer perceptron network saturates to the same 

Fig. 11.19 
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value with increasing w xi i

i

Â . In other words, the activation responses of the nodes are of a local nature 

in the RFB and of a global nature in the multilayer perceptron networks.

This intrinsic difference has important repercussions for both the convergence speed and the generalization 

performance. In general, multilayer perceptrons learn slower than their RBF counterparts. In contrast, 

multilayer perceptrons exhibit improved generalization properties, especially for the regions that are not 

represented sufficiently in the training set.

Training RBF Networks

 There are two sets of parameters governing the mapping properties of RBF networks: the weights wj ; 

j = 1, 2, ..., q;   = 1, 2, ..., m, in the output layer, and the parameters {c , s } of the radial basis functions. 

We select an appropriate cost function:

 E =  (11.40)

 The estimation of the weights wj , the centers c , and the variances s 2
  becomes a typical task of nonlinear 

optimization process:
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k is the iteration index.

Fig. 11.20
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The computational complexity of such a scheme is prohibitive for a number of practical situations. When 

obtaining gradient information is difficult or expensive, we may use genetic algorithm for the nonlinear 

optimization problem (discussed later in Chapter 13).

Several alternative schemes have been proposed for training RBF networks. Some of these schemes learn 

only the centers c  of the RBF units, and therefrom determine the spread parameters s . The basic idea is 

to ensure suitable overlapping of the basis functions. A rule of thumb is to take s  equal to, or a multiple 

of, the average distance to the several nearest neighbors of c  (||c +1 – c ||).

Once the centers and the spread parameters are chosen, the weights wj  in the output layer of the network 

in Fig. 11.20, can be determined as follows. Output neuron j is driven by the signals f (x, c , s ) produced 

by the layer of RBF neurons, which are themselves driven by the input vector (stimulus) x applied to 

the input terminals. Supervised learning may be visualized as learning with the help of a ‘supervisor’ 

having knowledge in the form of input-output examples {x
(p), y(p); p = 1, 2, ..., P}. For known RBF 

centres and spread parameters, this knowledge may be translated (refer to Eqns (11.39a)) in the form : 

{e(p), y(p); p = 1, ..., P}. Neuron j in the output layer is driven by the vector e(p). By virtue of the built-in 

knowledge, the supervisor is able to provide the neural network with a desired response yj
(p) from e(p). The 

network parameters wj  are adjusted under the combined influence of the training vector e(p) and the error 

ej
(p) = yj

(p)
 – ŷj

(p), which is the difference between the desired response yj
(p) and the actual response ˆ ( )

yj
p

(refer to Eqns (11.39b)) of the network. The least squares estimation or the gradient descent algorithm 

(refer to Section 11.7) may be used for learning the weights wj .

Although there exist some cases in which the nature of the problem suggests a 

specific choice for the centers, in the general case, these centers may be selected randomly from the 

training set. Provided that the training set is distributed in a representative manner over the space of all 

the patterns (input vectors), this seems to be a reasonable way to choose the m centers.

If the centers are not preselected, they have to be estimated during the 

training phase along with the weights wj . This can be achieved by unraveling the clustering (unsupervised 

learning) properties of the data, and choosing a representative of each cluster as the corresponding center. 

The Self-Organizing Map (SOM), developed by Kohonen, is an unsupervised, clustering network. Proper 

clusters are formed by discovering the similarities and dissimilarities among the input data [141].

These techniques of RBF network training are used in MATLAB.

11.11 SYSTEM IDENTIFICATION WITH
 NEURAL NETWORKS

The main goal of the present chapter is to describe approaches to neural-network-based control that are 

found to be practically applicable to a reasonably wide class of unknown nonlinear sys tems. Systems  

identification is an integral part of such a con trol system design and, consequently, it calls for considerable 

attention as well. The system identification is necessary to establish a model based on which the 

controller can be designed, and it is useful for tuning and simulation before applying the controller to the 

real system. In this section, attention is drawn to iden tification of neural network models for nonlinear 

dynamic systems from a series of measurements on the systems.
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We give here a generic working procedure for system identifica tion with neural networks. Time-invariant 

nonlinear dynamic systems with scalar input and scalar output are considered here. Extension to the case 

of vector input and vector output is straight forward.

The multilayer feedforward network is straightforward 

to employ for the discrete-time modeling of dynamic 

systems for which there is a nonlinear relationship between 

the system’s input and out put. Let k count the multiple 

sampling periods so that y(k) specifies the present output 

while y(k – 1) signifies the output observed at the previous 

sampling instant, etc. It is assumed that the output of the 

dynamic system at discrete-time instances can be described 

as a function of number of past inputs and outputs:

 y(k) = f (y(k – 1), ..., y(k – n), u(k – 1), ..., u(k – m)); n ≥ m 

(11.42)

A multilayer network can be used for approximating f (◊) if 
the inputs to the network are chosen as the n past outputs 

and m past inputs of the dynamic system.

When attempting to identify a model of a dynamic system, 

it is a common practice to follow the procedure depicted in 

Fig. 11.21.

11.11.1 Experiment

The primary purpose of an experiment is to produce a set of examples of how the dynamic system to be 

identified responds to various control inputs (These examples can later be used to train neural network to 

model the system). The experiment is particularly important in relation to nonlinear modeling; one must 

be extremely careful to collect a set of data that describes how the system behaves over its entire range 

of operation. The following issues must be considered in relation to acquisition of data (For detailed 

information, refer to [131]).

Sampling Frequency

The sampling frequency should be chosen in accordance with the desired dynamics of the closed-loop 

system consisting of controller and the system. A high sampling frequency permits a rapid reference 

tracking and a smoother control signal, but the problems with numerical ill-conditioning will become 

more pronounced. Consequently, the sampling frequency should be selected as a sensible compromise.

Input Signals

While for identification of linear systems, it is sufficient to apply a signal containing a finite number of 

fre quencies, a nonlinear system demands, roughly speaking, that all combinations of frequencies and 

amplitudes in the system’s oper ating range are represented in the signal. As a consequence, the necessary 

Experiment

Select
model structure

Validate model

Train model

Accepted

Not accepted

Fig. 11.21 
cedure
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size of the data set increases dramatically with the number of inputs and outputs. Unfortunately, there is 

no obvious remedy to this curse of dimensionality.

Before an input signal is selected, it is important to identify the operating range of the system. Special 

care must be taken not to excite dynamics that one does not intend to incorporate in the model (e.g.,  

mechanical resonances).

Processing the Data

Intelligent processing of the data is often much more important than trying a large number of different 

model structures and training schemes. Many different types of process ing can be considered for 

extracting the most valuable informa tion from the measured data, and to make it suitable for neural-

network modeling. Some suggestions are given in the following paragraphs.

Filtering is widely used for removing from the measured signals, noise, periodic disturbances, offsets, 

and the effects of ‘unin teresting’ dynamics. When high-frequency noise/disturbances cause problems, it 

is recommended to remove them by using an analog presampling filter to avoid an aliasing phenomenon. 

Offset, drift, and low-frequency disturbances can be removed by filtering the data after sampling.

Sometimes, a large number of input-output pairs from a small regime of entire operating range, 

dominates the data set. When training on such a data set, it is likely that the model obtained will be very 

accurate in the regime that was over-represented at the expense of poor performance outside the regime. 

A little ‘surgery’ on the data set might be necessary here to eliminate redundant information. Apart from 

obtaining a more equal weight ing of the information, a reduction of the data set size also has the benefit 

that training times will be reduced.

It is also recommended to remove outliers from the data set (or, alternatively, insert interpolated values 

of the output signal). Outliers will often have a fatal impact on the training model.

Before training, it is often useful to scale all the signals so that they always fall within a specified 

range, say [–1, 1]. Another approach for scaling is to normalize the mean and stan dard deviation of the 

training set, e.g., to zero mean and unity standard deviation. The signals are likely to be measured in 

different physical units, and without scaling there is a tendency that the signal of largest magnitude will 

be too dominating. Moreover, scaling makes the training algorithm numerically robust and leads to faster 

convergence.

11.11.2

The model structure selection is basically concerned with the following two issues:

  Selecting an internal network architecture

  Selecting the inputs to the network

An often-used approach is to let the internal architecture be feedforward multilayer network. Probably 

the most commonly used network architecture is a two-layer feedforward network with sigmoidal/ 

hyperbolic tangent hidden units and linear output units. This architecture works quite well in many 

practical applications. In our presentation, we use this architecture. However, the reader is referred to 

more fundamental textbooks/research papers for a treatment of other types of neural networks in the 

control loop.
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The input structure we use here consists of a number of past inputs and outputs (refer to Fig. 11.22):
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where ŷ is the predicted value of the output y at sampling in stant t = kT (T = sampling interval),

p = {n  w i} is the vector containing the adjustable parameters in the neural network (weights), 

e is the regression vector which contains past outputs and past inputs (regressors’s dependency on the 

weights is ig nored):

 e(k) = [y(k – 1)   y(k – n) u(k – 1)   u(k – m)]T (11.43b)

  = [f1(k) f2(k)   fN (k)]T
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Fig. 11.22 Input structure

Often, it is of little importance that the network architecture has selected vector p too small or too large. 

However, a wrong choice of lag space, i.e., the number of delayed signals used as regressors, may have 

a disastrous impact on some control appli cations. Too small obviously implies that essential dynamics 

will not be modeled, but too large can also be a problem. From the theory of linear systems, it is known 

that too large a lag space may manifest itself as common factors in the identified transfer function. An 

equivalent behavior must be expected in the nonlin ear case. Although it is not always a problem, common 

factors (corresponding to hidden modes) may lead to difficulties in some of the controller designs.

It is necessary to determine both, a sufficiently large lag space and an adequate number of hidden units. 

While it is difficult to apply physical insight towards the determination of number of hidden units, it can 

often guide the proper lag space. If the lag space is properly determined, the model structure selection 

problem is substantially reduced. If one has no idea regarding the lag space, it is sometimes possible to 

determine it empiri cally.
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11.11.3 Training

Assume now, that a data set has been acquired and that some model structure has been selected. According 

to the identification procedure in Fig. 11.21, the next step is to apply the data set to pick ‘the best’ model 

among the candidates contained in the model structure. This is the training stage. The training can be 

computationally intensive, but it is generally one of the easiest stages in the identification. It is not very 

difficult to implement a training algorithm in a computer, but one might as well resort to one of the many 

available software packages, e.g., MATLAB.

The training procedure can be rephrased in more formal terms. An experiment is performed on the time-

invariant nonlinear dynamic system to collect a set of data, that describes how the system behaves over 

its entire range of operation:

Experimental data: {[u(t), y(t)]; t = 1,2,3,...}  (11.44a)

From the experimental data, we generate the training data. Since the system is assumed to be time-

invariant, the experimental data could be equivalently represented as 

{[u(t), y(t)]; t = – n + 1, – n + 2,...,0,1,2,...}

The following P pairs {e(k), y(k); k = 1,2,...,P}, are used for training the neural network (refer to Eqns 

(11.43)):

 e(1) = [y (0) y (–1) y(1– n) u(0)   u(1 – m)]T; y(1)

 e(2) = [y(1) y(0) y(2– n) u(1) u(2 – m)]T; y(2) (11.44b)

    e(P) = [y(P – 1)   y(P – n)   u(P – 1)   u(P – m)]T; y(P)

The purpose of the training is to determine a mapping from the data set to the set of candidate models

  ˆ ( | ) [ ( ), ]y k g kp e p=   (11.45)

so that a model is obtained which provides predictions that are in some sense close to the true outputs 

of the system. The most commonly used measure of closeness for this type of problems is specified in 

terms of a mean square error criterion

 J(p) = 
1

2
1

P
k

P

=
Â[y(k) – ŷ(k |p)]2  (11.46)

The most appealing feature of mean square error criterion is the simplicity with which a weight 

update rule can be derived. The principle of the gradient (descent) iterative search method, is that at 

each iteration, the weights are modified along the oppo site direction of the gradient. That is, the search 

direction is selected as –
∂
∂
J

p
.

 p(i +1) = p(i) – h(i) ∂

∂

J
ip( )

 (11.47)

When applying the gradient method to the training of multilayer feedforward networks, it is useful to 

order the computations in a fashion that utilizes the particular structure of the network. The method, called  

the backpropagation algorithm, was discussed in Section 11.9. Batch method of the backpropagation 

algorithm refers to the fact that each iteration on the parameter vector requires an evaluation of the entire 

data set.
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It is sometimes useful to identify a system online, simul taneously, with the acquirement of measurements. 

Adaptive control is an example of such an application. In this case, a model must be identified and a 

control system designed online, because the dynamics of the system to be controlled vary with time. 

Obviously batch methods are unsuitable in such applications as the amount of computation, required in 

each iteration, might exceed the time available within one sampling interval. Moreover, old data will be 

obsolete when the system to be identified is time-dependent. 

In a recursive algorithm, one input-output pair from the training set, [e(k), y(k)], is evaluated at a time 

and used for updating the weights. In the neural network community, this is frequently referred to as 

incremental or online backpropagation (refer to Section 11.9).

11.11.4

In the validation stage, the trained model is evaluated to clari fy if it represents the underlying system  

adequately. Ideally, the valida tion should be performed in accordance with the intended use of the model. 

As it turns out, this is often rather difficult. For instance, if the intention is to use the model for designing a 

control system, the validation ought to imply that a controller was designed and its performance tested in 

practice. For most applications, this level of ambition is somewhat high, and it is common to apply a series 

of simple ‘standard’ tests instead of concentrating on investigating particular properties of the model.  

Although this is less than ideal, it is good as a preliminary validation to quickly exclude really poor 

models.

Most of the tests require a set of data that was not used during training. Such a data set is commonly 

known as test or validation set. It is desirable that the test set satisfies the same de mands as the training 

set, regarding representation of the entire operating range.

A very important part of the validation is to simply inspect the plot, comparing observed outputs to 

predictions. Unless the sig nal-to-noise ratio is very poor, it can show the extent of over fitting as well as 

possible systematic errors.

If the sampling frequency is high, compared to the dynamics of the system, a visual inspection of the 

predictions will not reveal possible problems. Some scalar quantities (correlation functions) to measure 

the accuracy of the predictions, have been suggested. Reliable estimates of the average generalization 

error are also useful for validation purposes, but their primary application is for model structure selection. 

The estimates are good for rapidly comparing different model structures to decide which one is likely 

to be the best.

11.12 CONTROL WITH NEURAL NETWORKS

Neural-network-based control constitutes a very large research field, and it is difficult to give a clear 

overview of the entire field. Here, in this section, an attempt has been made to outline a feasible path 

through the ‘jungle’ of neural network solutions. A completely automatic procedure for control system 

design is not realistic; the emphasis is on the guidelines for working solu tions.

It is believed that one of the most important lessons to be learnt from the numerous automatic control 

applications developed over the past half century, is that simple solutions actually solve most problems 



736  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

quite well. Regardless of the fact that all systems, to some extent, exhibit a nonlinear behavior, it turns 

out that they can often be controlled satisfactorily with simple linear controllers. When neural networks 

are introduced as a tool for improving the performance of control systems for a general class of unknown 

nonlinear systems, it should be done in the same spirit. A consequence of this philosophy is that our 

focus is on simple control structures that yield good performance in practice.

11.12.1 Inverse Model of the System used as Controller

When neural networks were originally proposed for controlling unknown nonlinear systems, one of 

the first methods being report ed was on training a network to act as the inverse of the system, and use 

this as a controller. This, in fact, amounts to linearization (the input-output transfer function unity) of 

the nonlinear system by properly compensating for the nonlinearity involved (refer to Section 10.2). 

Explained in brief, the basic principle is as follows:

Assume that the system to be controlled can be described by 

 y(k) = f1[y(k – 1), ..., y(k – n), u(k – 1),..., u(k – m)] (11.48)

Perform an experiment on the system to collect a set of data, that describes how the system behaves over 

its entire range of opera tion:

 {[u(k), y(k)], k = 1, 2, 3, ... } (11.49)

Using identification procedures described in the earlier section, we can infer a neural network model of 

the system using this data set.

An inverse model of the system can be inferred from the data set

 {[y(k), u(k)], k = 1, 2, 3, ... } (11.50)

The output of the inverse model is u(k):

 u(k) = f2[(y(k + 1), y(k), ..., y(k – n + 1), u(k – 1),..., u(k – m + 1)] (11.51)

The inverse model can be used as controller for the system. Let the ‘desired’ closed-loop system behave 

as

 
Y z

R z

( )

( )
 = M(z) = z–1; y (k + 1) = r(k) (11.52)

Substitute in Eqn. (11.51), the output y(k + 1) by the desired output—the re ference, r(k). If the network 

represents the exact inverse, the control input produced by it will drive the system output at time k + 1 to 

r(k). The principle is illustrated in Fig. 11.23a.

The most straightforward way of training a network as the inverse of a system, is to approach the 

problem as a system-identifi cation problem analogous to the one considered in the previous section—an 

experiment is performed, a network architecture is selected, and the network is trained off-line. The 

difference from system identification lies in the choice of regressors and network output. They are now 

selected as shown in a functional relation (11.51). The network is then trained to minimize the criterion

 J = 
1

2
1

P
k

P

=
Â  [u(k) – û(k |p)]2 (11.53)

We will call this procedure, the general training procedure for an inverse model.
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This is basically an off-line procedure. After this training phase, the structure for an on-line operation 

looks like the one shown in Fig. 11.23b, that is, the neural network representing the inverse of the plant 

precedes the plant. The trained neural network should be able to take the desired output value yd = r as 

its input, and produce appropriate û as an input to the plant.

The practical relevance of using an inverse model of the system as a controller is limited, due to a 

number of serious inconven iences. The control scheme will typically result in a poor robustness with a 

high sensitivity to noise and high-frequency disturbances (corresponding to unity forward-path transfer 

function in the linear case). In addi tion, one will often encounter a very active control signal, which 

may adversely affect the system/actuators. If the system is linear, this occurs when its zeros are situated 

close to the unit circle. In the nonlinear case, there is no unique set of zeros, but, of course, a similar 

phenomenon exists.

If the inverse model is unstable (corresponding to zeros of the system outside the unit circle in the linear 

case), one must anticipate that the closed-loop system becomes unstable. Unfortunately, this situa tion 

occurs quite frequently in practice. Discretization of linear continuous-time models under quite common 

circumstances, can result in zeros outside the unit circle—regardless that the continuous-time model has 

no zeros, or all zeros are in the left half of the plane. In fact, for a model with a pole excess of at least 

two, one or more zeros in the discretized model will con verge to the unit circle, or even outside, as the 

sampling frequen cy is increased. It must be expected that a similar behavior can also be found in discrete 

models of nonlinear systems.

Fig. 11.23
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Another problem with the design arises when the system to be controlled is not one-to-one, since then a 

unique inverse model does not exist. If this non-uniqueness is not reflected in the training set, one can, 

in principle, yield a particular inverse which might be adequate for controlling the system. Most often, 

however, one will end up with a useless, incorrect inverse model.

Despite these drawbacks, in a number of domains (stable systems, and one-to-one mapping plants), this 

general training architecture is a viable alternative.

11.12.2

Many of the problems mentioned in the previous subsection can be taken care of by em ploying a control 

structure of the form shown in Fig. 11.24. The feedforward control is used for improving the reference 

tracking, while feedback is used for stabilizing the system and for sup pressing disturbances.

Fig. 11.24

An inverse model is trained as discussed earlier (refer to Eqn. (11.51)):

 u(k) = f [y(k + 1), y(k), ..., y(k – n + 1), u(k – 1), ..., u(k – m + 1)] (11.54)

The feedforward component of the control input is then composed by substituting all system outputs by 

corresponding reference values:

 uff (k) = f [r(k + 1), ..., r(k – n + 1), uff (k – 1), ..., uff(k – m + 1)] (11.55)

If the complete reference trajectory is known in advance, imple mentation of the scheme is particularly 

easy. It is then possible to compute the contribution from the feedforward controller beforehand, and 

store the entire sequence of control inputs {uff} for use in the computer program implementing the 

control system.

Although a neural network feedforward can be useful for optimiz ing many control systems, one must 

be careful not to use it uncritically. An inaccurate feedforward control may actually harm, rather than 

enhance, performance.

11.12.3

In the context of training inverse models, which are to be used as controllers, the trained inverse model, 

somehow, ought to be validated in terms of performance of the final closed-loop system. This points out 
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a serious weakness asso ciated with the general training procedure for an inverse model: the criterion 

(11.53) expresses the objective to minimize the discrepancy between the network output and a sequence 

of ‘true’ control inputs. This is not really a relevant objective. In practice, it is not possible to achieve 

zero generalization error and consequently, the trained network will have certain inaccuracies. Although 

these are reaso nably small in terms of the network output being close to the ideal control signal, there 

may be large deviations between the reference and the output of the system when the network is ap plied 

as controller for the system. The weakness lies in the fact that the training procedure is not goal directed. 

The goal is that, in some sense, the system output should follow the reference signal closely. It would be 

more desirable to minimize a criteri on of the following type:

 J = 
1

2
1

P
k

P

=
Â[r(k) – y(k)]2 (11.56a)

which clearly is goal directed. Unfortunately, the minimization of this criterion is not easily carried out 

off-line, considering that the system output, y(k), depends on the output of the in verse model, u(k – 1).

Inspired by the recursive training algorithms, the network might alternatively be trained to minimize

 Jk = Jk –1 + [r(k) – y(k)]2 (11.56b)

This is an on-line approach and, therefore, the scheme consti tutes an adaptive controller.

Assuming that Jk –1 has already been minimized, the weights at time k are adjusted according to

 p̂(k) = p̂(k – 1) – h 
de k

d

2 ( )

p
 (11.57a)

where e(k) = r(k) – y(k) (11.57b)

and 
de k

d

2 ( )

p
 = – 

dy k

d

( )

p
 e(k) (11.57c)

By application of the chain rule, the gradient 
dy k

d

( )

p
 can be calculat ed:

 
dy k

d

( )

p
 = 

∂
∂ -

y k

u k

( )

( )1

du k

d

( )-1

p
 (11.58a)

Jacobians of the system, 
∂

∂ -
y k

u k

( )

( )1
, are required. These are generally unknown since the system is 

unknown. To overcome this problem, a forward model of the system is identified to provide estimates 

of the Jacobians:

 
∂

∂ -
y k

u k

( )

( )1
 ª 

∂
∂ -

ˆ ( )

( )

y k

u k 1
 (11.58b)

The forward model is obtained by the system identification proce dure described in the earlier section. 

Fortunately, inaccuracies in the forward model need not have a harmful impact on the training. The 

Jacobian is a scalar factor and, in the simplified algorithm (11.57), will only change the step-size of the 

algorithm. Thus, as long as the Jacobians have the correct sign, the algorithm will converge if the step-

size parameter is sufficiently small. We will call this procedure the specialized training procedure for the 

inverse model.
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The deadbeat character, appearing when inverse models are used directly as controllers, will often result 

in an unnecessarily fast response to reference changes. An active control signal may even harm the system 

or the actuators. Consequently, it might be desirable to train the network to achieve some prescribed low-

pass behavior of the closed-loop system. Say, have the closed-loop system following the model:

 ym(k) = 
B z

A z
r km

m

( )

( )
( )

-

-

1

1
 (11.59)

The polynomials Am and Bm are selected arbitrarily, by the design er.

The control design is, in this case, related to ‘Model Reference Adaptive System’ (MRAS); a popular 

type of adaptive controller (discussed earlier in Section 10.3).

Since this specialized training is an on-line approach, the combination of having many weights to adjust 

and having only the slow convergence of a gradient method, will often be disastrous. Before the weights 

are properly adjusted, the system may have been driven outside the operating range with possibly serious 

consequences. Often general training can be used to provide a decent initialization of the network so that 

the specialized training is only used for ‘fine tuning’ of the controller.

The simplified specialized training is quite easily implemented with the backpropagation algorithm 

(refer to Fig. 11.25). This algorithm is applied on the inverse model NN2:

u(k – 1) = f [y(k + 1), y(k), ..., y(k – n + 1), u(k – 2),..., u(k – m)]

^

e
+

–

u

r

+

–

y

Reference
model

ym

Model

NN 1
forward
model

∂y u/∂
y

System
NN 2

inverse
model

eu

Fig. 11.25 Specialized training
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by assuming the following ‘virtual’ error eu(k) on the output of the controller:

de k

d

dy k

d
e k

k

u k

du k

d
e k

du k

d

2

1

1 1( ) ( )
( )

( )

( )

( )
( )

( )

p p p p
= =

∂
∂

=- -
-

-
-

-
ee k

u k
e ku u( )

( )
( ) -

∂
∂

-1

p

where eu(k) =
∂

∂ -
ˆ( )

( )

y k

u k 1
e(k) (11.60)

  
∂

∂
+ -ˆ( )

( – )

( ( – ) ) – ( ( ))y k

u k

NN u k NN u k

1

1 1 1 1
 

e

e

A better estimate of the derivative is obtained as follows:

For a multilayer feedforward network (NN 1) with one hidden layer of sigmoid units and a linear output 

(Fig. 11.22),

 ŷ(k) = v w k w v

M

i i

i

N

 s f
 

  

= =
Â Â +

Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
1

0

1

0( )  (11.61a)

 e(k) = [y(k – 1), ..., y(k – n), u(k – 1), ..., u(k – m)] (11.61b)

The derivative of the output with respect to the regressor fi(k), is given by

 
∂
∂

ˆ( )

( )

y k

kif
 = v w ai

M

  

 

¢
=

Â s ( )

1

 (11.62a)

  = v w a ai

M

  

 

s s( ) [ ( )]1

1

-
=

Â

where a = w k wi i

i

N

 f ( )

=
Â +

1

0 
 (11.62b)

We can obtain ∂ ∂ˆ( )/ ( – )y k u k 1 from this relation.

11.13 SUPPORT VECTOR MACHINES

Support vector machine (SVM) theory provides the most principled approach to the design of neural 

networks. Statistical learning theory provides a sound mathematical basis for the formulation of support 

vector machines. SVM theory applies to pattern classification and nonlinear regression, using any one of 

the following network architectures: RBF networks, MLPs with a single hidden layer, and polynomial 

machines. For each of these feedforward networks, we may use the support vector learning algorithm to 

implement the learning process using a given set of training data; automatically determining the required 

number of hidden units.

Our interest in control problems is more on nonlinear regression. To explain how a support vector  

machine works for regression problems, it is perhaps easiest to start with the case of linearly separable 

patterns that could arise in the context of binary pattern classification. In this context, the main idea 

of a support vector machine is to construct a hyperplane as the decision surface in such a way that the 

ŷ
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margin of separation between Class 1 and Class 2 examples is maximized. We will then take up the more 

difficult case of linearly nonseparable patterns. With the material on how to find the optimal hypersurface 

for linearly nonseparable patterns at hand, we will formally describe the construction of a support vector 

machine for real-life (nonlinear) pattern recognition task. As we shall see shortly, basically the idea of a 

support vector machine hinges on the following two mathematical operations:

 (i) Nonlinear mapping of input patterns into high-dimensional feature space.

 (ii) Construction of optimal hyperplane for linearly separating the features discovered in Step (i).

The final stage of our presentation will be to extend these results for application to nonlinear regression 

problems. 

11.13.1

Our presentation on SVM begins with the easiest classification problem: binary classification of linearly 

separable data (separating functions will be hyperplanes). The presentation will gradually increase in 

complexity.

Let the set of training (data) examples D be 

 D  = {(x1, y1), (x2, y2), ..., (xP, yP)} (11.63) 

where xi i i in
T= [ ]x x x1 2

…  is an n-dimensional input vector (pattern with n-features) for the ith 

example in a real-valued space X yn
iÕ ¬ ;  is its class label (output value), and yi Œ + -{ }1 1, . +1 denotes 

Class 1 and –1 denotes Class 2.

To build a classifier, SVM finds a linear function of the form 

 f (x) = wT
x + b (11.64)

so that the input vector xi is assigned to Class 1 if f (xi) ≥ 0, and to Class 2 if f(xi) < 0, i.e., 

 y
b

b
i

T
i

T
i

=
If

If

+ + ≥

- + <

Ï
Ì
Ô

ÓÔ

1 0

1 0

w x

w x
 (11.65)

Hence f (x) is a real-valued function f X n: .Õ ¬ Æ ¬  

w = [ ] ¬w w w1 2  …
n

T nŒ  is called the weight vector and b Œ¬ is called the bias.

In essence, SVM finds a hyperplane

 w
T
x + b = 0  (11.66)

that separates Class 1 and Class 2 training examples. This hyperplane is called the decision boundary or 

decision surface. Geometrically, the hyperplane (11.66) divides the input space into two half spaces: one 

half for Class 1 examples and the other half for Class 2 examples. Note that hyperplane (11.66) is a line 

in a two-dimensional space and a plane in a three-dimensional space.

For linearly separable data, there are many hyperplanes (lines in two-dimensional feature space;  

Fig. 11.26) that can perform separation. How can one find the best one? The SVM framework provides 

good answer to this question. Among all the hyperplanes that minimize the training error, find the one 
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with the largest margin—the gap between the data points of the 

two classes. This is an intuitively acceptable approach: select the 

decision boundary that is far away from both the classes (Fig. 11.27). 

Large-margin separation is expected to yield good classification on 

previously unseen data, i.e., good generalization.

From linear algebra, we know that in w
T
x + b = 0, w defines a 

direction perpendicular to the hyperplane. w is called the normal 

vector (or simply normal) of the hyperplane. Without changing the 

normal vector w, varying b moves the hyperplane parallel to itself. 

Note also that wT
x + b = 0 has an inherent degree of freedom. We 

can rescale the hyperplane to kw
T
x + kb = 0 for k Œ  ¬+(positive real 

number), without changing the hyperplane.

x2 Separating line
(decision boundary)

x2

Class 2

(a) Large margin separation (b) Small margin separation

Class 1 Class 1

Class 2

Separating
line

x1 x1

Fig. 11.27

Since SVM maximizes the margin between Class 1 and Class 2 data points, let us find the margin.  

The linear function f (x) = wT
x + b gives an algebraic measure of the distance from x to the hyperplane 

w
T
x + b = 0. We can express x as 

 x x
w

w
= N r+

|| ||
 (11.67)

where xN is the normal projection of x onto the hyperplane and r is the desired algebraic distance 

(Fig. 11.28). Since by definition, f bN
T

N( ) ,x w x= =+ 0  it follows that 

 f b r bT T
N( )

|| ||
x w x= =+ +Ê

ËÁ
ˆ
¯̃

+w x
w

w

  = = =r r r
T

w w

w

w

w
w

|| ||

(|| ||)

|| ||
|| ||

2

or r
f

=
( )

|| ||

x

w
 (11.68)
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Fig. 11.26 Possible decision 
boundaries 
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Now consider a Class 1 data point x
( ) ,1 1+( ) that is closest to the hyperplane wT

x + b = 0 (Fig. 11.28). 

The distance d (1) of this data point from the hyperplane is 

  d
f bT

( )
( ) ( )( )

|| || || ||

1
1 1

= =
+x

w

w x

w
 (11.69a)

Similarly

  d
f bT

( )
( ) ( )( )

|| || || ||

2
2 2

= =
+x

w

w x

w
 (11.69b)

where (x(2), –1) is a Class 2 data point closest to the hyperplane wT
x + b = 0.

Fig. 11.28

We define two parallel hyperplanes H(1) and H(2) that pass through x(1) and x(2), respectively. H(1) and 

H
(2) are also parallel to the hyperplane wT

x + b = 0. We can rescale w and b to obtain (this rescaling, as 

we shall see later, simplifies the quest for significant patterns, called support vectors)

  H

H

(1) (1)

(2) (2)

w x

w x

T

T

b

b

+ = +

+ = -

1

1

 
(11.70)

such that

  w x

w x

T
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T
i

b y

b y

i
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+ ≥ +

+ £ - -

1 1

1 1

       if   =

    if   =

 
(11.71a)

or equivalently 

 y bi
T

w xi +( ) ≥ 1  (11.71b)

which indicates that no training data fall between hyperplanes H(1) and H(2). The distance between the 

two hyperplanes is the margin M. In the light of rescaling given by (11.70),

 d d( ) ( )

|| ||
;

|| ||

1 21 1
=  

w w
=

-
  (11.72)
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where the ‘–’ sign indicates that x(2) lies on the side of the hyperplane wT
x + b = 0 opposite to that where 

x
(1) lies. From Fig. 11.28, it follows that 

 M =
2

|| ||w
 (11.73)

Equation (11.73) states that maximizing the margin of separation between classes is equivalent to 

minimizing the Euclidean norm of the weight vector w.

Since SVM looks for the separating hyperplane that minimizes the Euclidean norm of the weight vector, 

this gives us an optimization problem. A full description of the solution method requires a significant 

amount of optimization theory, which is beyond the scope of this book. We will only use relevant results 

from optimization theory, without giving formal definitions, theorems or proofs (refer to [29] for details).

Our interest here is in the following nonlinear optimization problem with inequality constraints:

 

minimize    

subject to    

f

g i mi

( )

( ) ; , ,

x

x ≥ =0 1 …  (11.74)

where x = [ ]x x xn
T

1 2
… ,  and the functions f and gi are continuously differentiable.

The optimality conditions are expressed in terms of the Lagrangian function

 L f gi i

i

m

x, ( ) ( )k( ) - Â=  

=

x xl
1

  (11.75)

where k = [ ]l l1 m
T  is a vector of Lagrange multipliers.

An optimal solution to the problem (11.74) must satisfy the following necessary conditions, called 

Karush–Kuhn–Tucker (KKT) conditions:

 (i) 
∂ ( )

∂

L x,k

x j

 = 0; j = 1, ..., n

 (ii) gi (x) ≥ 0; i = 1, ..., m (11.76)

 (iii) li ≥ 0; i = 1, ..., m

 (iv) li gi (x) = 0; i = 1, ..., m

In view of condition (iii), the vector of Lagrange multipliers belongs to the set { ,k k    Œ ¬ ≥m
0}. Also 

note that condition (ii) is the original set of constraints.

Our interest, as we will see shortly, is in convex functions f and linear functions gi. For this class of 

optimization problems, when there exist vectors x0 and k0 such that the point (x0, k0) satisfies the KKT 

conditions (11.76), then x0 gives the global minimum of the function f (x), with the constraint given in 

(11.74).

Let 

L L*
*( max ( ( ) min (x x) x

x
= =

¬ ¬k
k) k k)

Œ Œm n
, L L ,,  and  

It is clear from these equations that for any x Œ¬n and k Œ¬m,

L L L*
*( ( (k k))£ £x x, )
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and thus, in particular

L*
*( ) ( )k £ L x

This holds for any x Œ¬nand k Œ¬m; so it holds for the k that maximizes the left-hand side, and the 

x that minimizes the right-hand side. Thus

max min ( min max (
k k

k) k)
Œ Œ Œ Œ¬ ¬ ¬ ¬

£
m n n mx x

xL Lx, ,

The two problems, min-max and max-min, are said to be dual to each other. We refer to the min-max 

problem as the primal problem. The objective to be minimized, L*(x), is referred to as the primal function. 

The max-min problem is referred to as the dual problem, and L*(k) as the dual function. The optimal primal 

and dual function values are equal when f is a convex function and gi are linear functions. The concept of 

duality is widely used in the optimization literature. The aim is to provide an alternative formulation of 

the problem which is more convenient to solve computationally and/or has some theoretical significance. 

In the context of SVM, the dual problem is not only easy to solve computationally, but also crucial for 

using kernel functions to deal with nonlinear decision boundaries. This will be clear later in this section.

The nonlinear optimization problem defined in (11.74) can be represented as min-max problem, as is 

seen below.

For the Lagrangian (11.75), we have

L*(x) = max ( ) ( )
k Œ¬

-
È

Î
Í
Í

˘

˚
˙
˙

Âm
f gi i

i

m

x xl
=1

Since gi(x) ≥ 0 for all i, li = 0 (i = 1,…, m) would maximize the Lagrangian. Thus

L*( ( )x) = f x

Therefore, our original constrained problem (11.74) becomes the min-max primal problem:

minimize   

subject to   =  

x
)

Œ¬

≥

n

g i mi

L*(

( ) ; , ,

x

x 0 1 …

The concept of duality gives the following formulation for max-min dual problem:

maximize
k k

k)
Œ¬ ≥m ,

*(
0

L

More explicitly, this nonlinear optimization problem with dual variables k, can be written in the form:

 maximize min

=
k ≥ ¬

-
È

Î
Í
Í

˘

˚
˙
˙

Â
0 x

x x
Œ n

f gi i

i

m

( ) ( )l
1

 (11.77)

Let us now state the learning problem in SVM. 

Given a set of linearly separable training examples, 

D = {( , ), ( , ), ( , )},x x x1 1 2 2y y yP P…,
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learning is to solve the following constrained minimization problem:

 minimize       

subject to       

f

y b iT

(

( ) ;

w w w

w x

) =

+ ≥

1
2

1 1

T

i i = ,, ,… P

 (11.78)

This formulation is called the hard-margin SVM. Solving this problem will produce the solutions for w 

and b, which in turn, give us the maximal margin hyperplane wT
x + b = 0 with the margin 2/||w ||.

The objective function is quadratic and convex in parameters w, and the constraints are linear in parameters 

w and b. The dual formulation of this constrained optimization problem is obtained as follows.

First we construct the Lagrangian:

 L(w, b, k) = 1
2

1

1w w w x
T

i i
T

i

i

P

y b- + -Âl [ ( ) ]

=

 (11.79)

The KKT conditions are as follows:

 (i) 
∂
∂

L

w
 = 0 ; which gives w = li i i

i

P

y x

=1

Â  

  
∂
∂

L

b
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i

P

y

=1

Â  = 0

 (ii) yi (w
T
xi + b) – 1 ≥ 0; i = 1, ..., P 

(11.80)

 (iii) li ≥ 0 ; i = 1,..., P

 (iv) li [yi (w
T
xi + b) – 1] = 0; i = 1, ...,P

From condition (i) of KKT conditions (11.80), we observe that the solution vector has an expansion in 

terms of training examples. Note that although the solution w is unique (due to the strict convexity of the 

function f (w)), the dual variables li need not be. There is a dual variable li for each training data point. 

Condition (iv) of KKT conditions (11.80) shows that for data points not on the margin hyperplanes (i.e., 

H
(1) and H(2)), l i = 0:

y bi
T

i i( )w x + - > fi =1 00      l

For data points on the margin hyperplanes, li ≥ 0:

y bi
T

i i( )w x + - fi ≥1 0= 0      l

However, the data points on the margin hyperplanes with li = 0 do not contribute to the solution w, as 

is seen from condition (i) of KKT conditions (11.80). The data points on the margin hyperplanes with 

associated dual variables li > 0 are called support vectors, which give the name to the algorithm, support 

vector machines.

To postulate the dual problem, we first expand Eqn. (11.79), term by term, as follows:

   L(w, b, k) = 1
2

1 11

w w w x
T

i i
T

i

i

P

i i i

i

P

i

P

y b y- - +Â ÂÂl l l
= ==

 (11.81)

Transforming from the primal to its corresponding dual can be done by setting to zero the partial 

derivatives of the Lagrangian (11.81) with respect to the primal variables (i.e., w and b), and substituting 
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the resulting relations back into the Lagrangian. This is simply to substitute condition (i) of KKT 

conditions (11.80) into the Lagrangian (11.81) to eliminate the primal variables; which gives us the dual 

objective function.

The third term on the right-hand side of Eqn. (11.81) is zero by virtue of condition (i) of KKT conditions 

(11.80). Furthermore, from this condition we have

w
T
w = l l li i

T
i

i

P

i

P

i j i j i
T

j

j

P

y y yw x w x

= = =

=

1 1 1

Â Â Â
Accordingly, minimization of function L in Eqn. (11.81) with respect to primal variables w and b, gives 

us the following dual objective function:

 L*(k) = l l li

i

P

i
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i j i j i
T

j
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y y-Â Â Â
= = =1

1
2

1 1

w x  (11.82)

We may now state the dual optimization problem.

Given a set of linearly separable training examples{(xi, yi)}
P
i=1, find the dual variables {li}

P
i=1, that 

maximize the objective function (11.82) subject to the constraints

  li yi

i

P

=

=

1

0Â  (11.83)

  li ≥ 0; i = 1,..., P

This formulation is dual formulation of the hard-margin SVM. 

Having solved the dual problem numerically (using MATLAB’s quadprog function, for example), the 

resulting optimum li values are then used to compute w and b. w is computed using condition (i) of KKT 

conditions (11.80):

  w x=

=

li yi

i

P

i

1

Â  (11.84a)

and b is computed using condition (iv) of KKT conditions (11.80). For support vectors {xs, ys}, this 

condition becomes li > 0, and 

y bs
T

s( )w x + = 1

Instead of depending on one support vector to compute b, in practice all support vectors are used to 

compute b, and then their average is taken on the final value for b. This is because the values of li are 

computed numerically and can have numerical errors.

 b = 
1 1

1
N ySV s

T
s

s

NSV

-È

Î
Í

˘

˚
˙Â w x ;

=

 NSV = total number of support vectors (11.84b)

11.13.2

The linear separable case is the ideal situation. In practice, however, the training data is almost always 

noisy, i.e., containing errors due to various reasons. For example, some examples may be labeled 
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incorrectly. Furthermore, practical problems may have some degree of randomness. Even for two 

identical input vectors, their labels may be different.

For SVM to be useful, it must allow noise in the training data. However, with noisy data, the linear SVM 

algorithm presented earlier, will not find a solution because the constraints cannot be satisfied. For example, 

in Fig. 11.29, there is a Class 2 point (circle) in the Class 1 region, and a Class 1 point (square) in the  

Class 2 region. However, in spite of the couple of mistakes, the decision boundary seems to be good. But 

the hard margin classifier presented previously cannot be used, because all the constraints.

y b i Pi i( ) , ,w x
T + ≥ =1; 1 …

cannot be satisfied.

wTx + = 0bx2

Class 2

w

xl

z l

||
||

w

z j

||
||

w

b
||

||
wxj

Class 1
x1

Fig. 11.29 xj and xl are error data points

So the constraints have to be modified to permit mistakes. To allow errors in data, we can relax the 

margin constraints by introducing slack variables, zi (≥ 0), as follows: 
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Thus, we have the new constraints
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…  
(11.85)

The geometric interpretation is shown in Fig. 11.29.

We also need to penalize the errors in the objective function. A natural way is to assign an extra cost for 

errors, to change the objective function to 

1
2

1

0w w
T

i

i

P

C C+
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ≥Âz

=

;

where C is a user specified penalty parameter. This parameter is a trade-off parameter between margin 

and mistakes.
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The new optimization problem becomes

   minimize       

subject to    

1
2

=

w w

w x

T
i

i

P

i
T

i i

C

y b

+

+ ≥ -

Âz

z

1

1( ) ;; , ,

; , ,

 

                                     

i P

ii

=
≥ =

1

0 1

…

…z PP

 

(11.86)

This formulation is called the soft-margin SVM.

Proceeding in the manner similar to that described earlier for separable case, we may formulate the dual 

problem for nonseparable patterns as follows.

The Lagrangian

 L(w, b, y, k, l) = 1
2

1 1 1

1w w w x
T

i

P

i

i

P

i
T

i i i

i

P

C y b+ - + - + -Â Â Âz l z m zi

= =

i

=

[ ( ) ]  (11.87)

where l i, mi ≥ 0 are the dual variables.

The KKT conditions for optimality are as follows:

 (i) 
∂
∂

L

w
 = w – li i i

i

P

y x =Â 0

1=

 

  
∂
∂
L

b
 = -Âli i

i

P

y =

=

0

1

  
∂
∂

L

zi

 = C – li – mi = 0; i = 1 ,..., P

 (ii) yi (w
T
xi + b) – 1 + zi ≥ 0; i = 1,..., P (11.88)

  zi ≥ 0; i = 1,..., P

 (iii) li ≥ 0; i = 1,..., P

  mi ≥ 0; i = 1,..., P

 (iv) li(yi(w
T
xi + b) –1 + zi) = 0; i = 1,..., P

  mizi = 0; i = 1,..., P 

We substitute the relations in condition (i) of KKT conditions (11.88) into the Lagrangian (11.87)  

to obtain dual objective function. From the relation C – li – mi = 0, we can deduce that li £ C because 

mi ≥ 0. Thus the dual formulation of the soft-margin SVM is

 maximize L* (k) = l l li

i

P

i j i j

j

P

i
T

j

i

P

y y

= ==1

1
2

11

Â ÂÂ- x x

 subject to =

; =

=

l

l

i i

i

P

i

y

C i P

1

0

0 1

Â
£ £ , ,…

 (11.89)
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Interestingly, zi and mi are not in the dual objective function; the objective function is identical to that for 

the separable case. The only difference is the constraint l i £ C (inferred from C – li – mi = 0 and mi ≥ 0).

The dual problem (11.89) can also be solved numerically, and the resulting li values are then used to 

compute w and b. The weight vector w is computed using Eqn. (11.84a).

The bias parameter b is computed using condition (iv) of KKT conditions (11.88):

 l zi i i iy b( ( ) )w x
T + - +1  = 0 (11.90a)

 mi z i = 0 (11.90b)

Since we do not have values for zi, we have to get around it. li can have values in the interval 0 £ li £ C. 

We will separate it into the following three cases:

li = 0

We know that C – li – mi = 0. With li = 0, we get mi = C. Since mizi = 0 (Eqn. (11.90b)), this implies 

that zi = 0; which means that the corresponding ith pattern is correctly classified without any error (as it 

would have been with hard-margin SVM). Such patterns may lie on margin hyperplanes or outside the 

margin. However, they don’t contribute to the optimum value of w, as is seen from Eqn. (11.84a).

0 < li < C

We know that C – li – mi = 0. Therefore, mi = C – li, which means mi > 0. Since mizi = 0 (Eqn. (11.90b)), this 

implies that zi = 0. Again the corresponding ith pattern is correctly classified. Also from Eqn. (11.90a), 

we see that for zi = 0 and 0 1< < +li i iC y b, ( ) ; =w x
T  so the corresponding patterns are support vectors.

li = C

It can easily be seen that zi π 0 in this case. But zi ≥ 0 is a constraint of the problem. So zi > 0; which 

means that the corresponding pattern is mis-classified or lies inside the margin.

We can use support vectors, as in Eqn. (11.84b), to compute the value of b.

The following points need attention of the reader:

  One of the most important properties of SVM is that the solution is sparse in li. Most training data 

points are outside the margin area and their li’s in the solution are 0. The data points on the margin 

having li = 0, also do not contribute to solution. Only those data points that are on the margin 

hyperplanes with 0 < li < C (support vectors) and inside the margin (errors; li = C) contribute to 

solution. Without this sparsity property, SVM would not be practical for large data sets.

  The final decision boundary is

w
T
x + b = 0 

   Substituting for w and b from Eqns (11.84), we obtain 

   l l li i i

i

P
T

i i i
T

j
SVj

P

s
s s s

T
s

s

y b y
N y

yx x x x x x

= = =

=

1 1

1 1Â Â
Ê

Ë
ÁÁ

ˆ
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˜̃ + + -

1111

P

s

N

i

P SV

ÂÂÂ
È

Î
Í
Í

˘

˚
˙
˙==

 = 0 (11.91)

  We notice that w and b do not need to be explicitly computed. As we will shortly see, this is crucial 

for using kernel functions to handle nonlinear decision boundaries.
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  Finally, we still have the problem of determining the parameter C. The value of C is usually chosen 

by trying a range of values on the training set to build multiple classifiers and then testing them 

on validation set before selecting the one that gives the best classification result on the validation 

set.

11.13.3 Nonlinear SVM 

The SVM formulations discussed so far, require that Class 1 and Class 2 examples can be linearly 

represented, i.e., the decision boundary must be a hyperplane. However, for many real-life data sets, the 

decision boundaries are nonlinear. To deal with nonlinearly separable data, the same formulation and 

solution techniques as far the linear case are still used. We only transform the input data from its original 

space into another space (usually, a much higher dimensional space) so that a linear decision boundary 

can separate Class 1 and Class 2 examples in the transformed space, which is called the feature space. 

The original data space is called the input space.

Through a nonlinear mapping e, the original data set {(x1, y1),...,(xP, yP)}becomes

  {e (x1, y1),...,e(xP, yP)} (11.92)

Figure 11.30 illustrates the process. In the input space, the training examples cannot be linearly separated; 

in the feature space, they can be separated linearly.

With the transformation, the optimization problem in (11.86) becomes

 

minimize  

subject to    

1
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w w
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T
i

i
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i i

C

y b i

+
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 (11.93) 

Fig. 11.30
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The corresponding dual is

 

minimize  *

= ==

L k e e( ) = -Â ÂÂl l li

i

P

i j i j
T

i j

j

P

i

P

y y

1

1
2

11

( ( ( ))x x)

 subject to 

=

li i

i

P

y

1

Â = 0 (11.94)

 0 1£ £li C i P; , ,= …  

The potential problem with this approach is that it may suffer from the curse of dimensionality. The 

number of dimensions in the feature space can be huge with some useful transformations, even with 

reasonable number of attributes in the input space. Fortunately, explicit transformations can be avoided 

if we notice that for the dual problem (11.94), the construction of the decision boundary only requires the 

evaluation of e eT
i j( )x x ( ) in the feature space. With reference to (11.91), we have the following decision 

boundary in feature space:

  li j
T

i j

j

P

i

P

y be e( ( )x x) 

==

+ =ÂÂ 0

11

 (11.95) 

Thus, if we have to compute e eT
i j(x x) ( ) in the feature space using the input vectors xi and xj directly, 

then we would not need to know the feature vector e(x) or even the mapping e itself. In SVM, this is done 

through the use of kernel functions, denoted by K:

   K i j
T

i j( , ) ( ( )x x x x= e e)  (11.96) 

Commonly used kernels include the following:

 Polynomial of degree d : K(xi, xj) = (xT
i xj + 1)d 

 Gaussian RBF : K(xi, xj) = exp || ||- -Ê
ËÁ

ˆ
¯̃

1

2 2

2

s
x xi j  

(11.97)

We replace e eT
i j( ( )x x)  in (11.94) and (11.95) with kernel. We would never need to explicitly know what 

e is.

However, how do we know that a kernel function is indeed a dot product in some feature space? This 

question is answered by a theorem, called the Mercer’s theorem, which we will not discuss here. The 

kernels in (11.97) satisfy this theorem. Refer to [138,141] for details.

11.13.4

Suppose we are given training data

{( , ), , ( , ; ,x x x1 1y y yP P
n

… )}    Œ Œ¬ ¬

where xi Œ¬n are the input patterns, as in classification problems; and yi Œ¬  now has continuous 

values. Our goal is to find a function f (x) that has at most e deviation (where e is a prescribed parameter) 

from the actually obtained targets yi for all the training data, and at the same time, is as flat as possible. In 

other words, we do not care about errors as long as they are less than e, but will not accept any deviation 

larger than this.
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For pedagogical reasons, we begin by describing the case of linear functions f, taking the form 

  f b bT n( ) ; ,x w x w=  + ¬ ¬Œ Œ  (11.98)

Flatness in the case of (11.98) means that one seeks small w. One way to ensure this is to minimize the 

Euclidean norm, i.e., ||w||2, This additional requirement on performance (in addition to the constraint on 

maximum allowable error in estimate of yi) improves generalization.

Formally we can write this problem as a constrained optimization problem:

  

minimize     

subject to       

    

1
2

w w
T

i
T

iy b i P- - £ =w x e ; , ,1 …

                  w x
T

i ib y i P+ - £ =e ; , ,1 …  

(11.99)

The tacit assumption in (11.99) is that a function f given by (11.98) actually exists that approximates all 

pairs (xi, yi) with e precision, or in other words, that the constrained optimization problem is feasible. 

It should be noted that the optimization problem cannot accommodate data points with errors larger 

than e; constraints cannot be satisfied for such data points. For SVM to be useful, it must allow noise in 

the training data. Analogously to the ‘soft margin’ classifier described earlier, one can introduce slack 

variables zi, zi
* to cope with otherwise infeasible constraints of the optimization problem (11.99). Hence 

we arrive at the following formulation:

  

minimize     

subject to     

1
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=

w w

xw

T
i i

i

P

i
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i

C

y b

+ +( )
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Â z z *
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ee z
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1
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…     w x PP

i Pi i                     =z z, ; , ...,* ≥ 0 1

 (11.100)

The constant C > 0 determines the trade-off between the flatness of f given by (11.98), and the amount 

by which deviations larger than e are tolerated.

The formulation (11.100) corresponds to dealing with a so-called e-insensitive loss (error) function, 

described below as

 y y y y y f

y y
i i

i i i i

i i

- =
- £ =

- -

Ï
Ì
Ô

ÓÔ
ˆ | ˆ | ; ˆ ( )

| ˆ |
e

e

e

D
D0 if

otherwise

x
 (11.101)

This loss function defines an e-insensitive tube (Fig. 11.31); the loss (error) is equal to zero for training 

data points inside the tube (| | ),yi i- £ e  the loss is zi for data ‘above’ the tube y yi i i- - =( )ˆ e z  and zi
* 

for data ‘below’ the tube ( )*
i i iy- - =e z . Only the data points outside the tube contribute to the loss 

(error), with deviations penalized in a linear fashion.

As with procedures applied to SVM classifiers, the constrained optimization problem (11.100) is solved 

by forming the Lagrangian:

ŷ

ŷ
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 (11.102)

where w, b, zi and zi
* are the primal variables, and li, li

*, mi, mi
* ≥ 0 are the dual variables.

The KKT conditions are as follows:
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∂
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 (iv) l e z
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Substituting the relations in condition (i) of KKT conditions (11.103) yields the dual objective function. 

The procedure is parallel to what has been followed earlier. The resulting dual optimization problem is

 

maximize  *

= =

L ( ) ( ) ( ) (* * *k k, = - + + - - -Â Âe l l l l l li i
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P

i i

i
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* *) (l l-ÂÂ )x x

== 11
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=

( )*l li i

i
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- =Â 0
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                l li i C, [ , ]* Œ 0

 (11.104)

From condition (i) of KKT conditions (11.103), we have 

 w x= -( )Â l li i i

i

P
*

=1

 (11.105)

Thus the weight vector w is completely described as a linear combination of the training patterns xi. 

One of the most important properties of SVM is that the solution is sparse in li, li
*. For  the 

second factor in the following KKT conditions:

  (11.106)

are nonzero; hence l li i, *
 have to be zero. This equivalently means that all the data points inside the 

e-insensitive tube (a large number of training examples belong to this category) have corresponding 

l li i, * equal to zero. Further, from (11.106) it follows that only for , the dual variables l li i, *  

may be nonzero. Since there can never be a set of dual variables l li i, *  which are both simultaneously 

nonzero, as this would require slacks in both directions (‘above’ the tube and ‘below’ the tube), we have 

l li i¥ =* .0

From KKT conditions (11.103), it follows that 

  C

C

i i

i i

-( ) =

- =

l z

l z

0

0( )* *

 (11.107)

Thus the only samples (xi, yi) with corresponding l li i C, * = lie outside the e-insensitive tube around f. 

For l li i C, ( , ),* Œ 0  we have zi, zi
*= 0 and moreover the second factor in (11.106) has to vanish. Hence b 

can be computed as follows:

  b y C

b y

i
T

i i

i
T

i i

= - - ( )
= - +

w x

w x

e l

e l

    for    

    for    
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Œ

0

0

,

,
* CC( )

 
(11.108)
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All data points with l li i C, ( , )* Œ 0 are used to compute b, and then their average is taken as the final 

value for b.

The examples that come with nonvanishing dual variables li, li
* are called support vectors.

The next step is to make SVM algorithm nonlinear. This would be achieved by simply preprocessing the 

training patterns xi by a map e into some feature space, and then applying the standard SVM algorithm.

All pattern-recognition/function approximation (classification/regression) problems when solved using 

SVM algorithms presented in this section, are basically quadratic optimization problems. Attempting 

MATLAB functions for SVM algorithms discussed in this section, will be a rich learning experience for 

the reader.

REVIEW EXAMPLES

Review Example 11.1

A high performance drive system consists of a motor and a controller integrated to perform a precise 

mechanical maneuver. This requires the shaft speed, and/or position of the motor to clearly follow a 

specified trajectory, regardless of unknown load varia tions and other parameter uncertainties.

A backpropagation neural network can be trained to emulate the unknown nonlinear plant dynamics by 

presenting a suitable set of input/output patterns generated by the plant. Once system dynam ics have been 

identified using a neural network, many convention al control techniques can be applied to achieve the  

desired objective of trajectory tracking.

In this example, we study a neural-network-based identification and control strategy for trajectory 

control of a dc motor.

DC Motor Model

Although it is not mandatory to obtain a motor model if a neural network (NN) is used in the motor-control 

system, it may be worth doing so, from the analytical perspective, in order to establish the foundation of the 

NN structure. We will use input/output patterns generated by simulation of this model for training of NN 

(In a real life situation, experimentally generated input/output patterns will be used for training).

 The dc motor dynamics are given by the following equations (refer to Fig. 11.32):

 va(t) = Raia(t) + La
di

dt

a  + eb(t) (11.109)

 eb(t) = Kbw (t) (11.110)

 TM(t) = KTia(t) (11.111)

  = J 
d t

dt

w ( )
 + Bw (t) + TL(t) + TF (11.112)
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where

 va(t) = applied armature voltage (volts);

 eb(t) = back emf (volts);

 ia(t) = armature current (amps);

 Ra = armature winding resistance (ohms);

 La = armature winding inductance (henrys);

 w(t) = angular velocity of the motor rotor (rad/sec);

 TM(t) = torque developed by the motor (newton-m);

 KT = torque constant (newton-m/amp);

 Kb = back emf constant (volts/(rad/sec));

 J = moment of inertia of the motor rotor with attached mechanical load (kg-m2);

 B = viscous-friction coefficient of the motor rotor with attached mechanical load ((newton-m)/ 

(rad/sec));

 TL(t) = disturbance load torque (newton-m); and 

 TF = frictional torque (newton-m).

The load torque TL(t) can be expressed as

 TL(t) = y (w) (11.113)

where the function y (◊) depends on the nature of the load.

For most propeller driven or fan type loads, the function y (◊) takes the following form:

 TL(t) = mw2(t)[sgnw(t)] (11.114)

where m is a constant.

DC motor drive system can be expressed as single-input, single-output system by combining Eqns 

(11.109)–(11.110):

i

Ra La

ia( )t

eb( )t

va( )t
TM

w( )t
TF TL( )t

J B,

Fig. 11.32
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 LaJ
d t

dt

2

2

w ( )
+ (RaJ + LaB)

d t

dt

w( )
 + (RaB + KbKT)w(t) 

                    + La
dT t

dt

L ( )
 + Ra[TL(t) + TF] + KTva(t) = 0 (11.115)

The discrete-time model is derived by replacing all continuous differentials with finite differences.

 LaJ w w w( ) ( ) ( )k k k

T

+ - + -È

ÎÍ
˘

˚̇

1 2 1
2

 + (RaJ + LaB)
w w( ) ( )k k

T

+ -È

ÎÍ
˘

˚̇

1

 + (RaB + KbKT)w (k) + La
T k T k

T

L L( ) ( )- -È

ÎÍ
˘

˚̇

1
 + RaTL(k) + RaTF + KTva(k) = 0 (11.116)

 TL(k) = mw2(k)[sgnw (k)] (11.117)

 TL(k – 1) = mw2(k – 1)[sgnw (k)] (11.118)

 T = sampling period

w (k) =D w(t = kT); k = 0, 1, 2, ...

Manipulation of Eqns (11.116)–(11.118) yields

 w (k + 1)  = K1w (k) + K2w(k – 1) + K3[sgnw(k)]w2(k) + K4[sgnw (k)]w2(k – 1) + K5va(k) + K6 (11.119)

where K1 = 
2 2L J T R J L B T R B K K

L J T R J L B

a a a a b T

a a a

+ + - +
+ +

( ) ( )

( )

 K2 = – 
L J

L J T R J L B

a

a a a+ +( )
 

 K3 = – 
T L R T

L J T R J L B

a a

a a a

( )

( )

m m+
+ +

 (11.120)

 K4 = 
T L

L J T R J L B

a

a a a

m

+ +( )

 K5 = 
K T

L J T R J L B

T

a a a

2

+ +( )

 K6 = – 
T R T

L J T R J L B

F a

a a a

2

+ +( )

The following parameter values are associated with the dc motor

 J = 0.068 kg-m2

 B = 0.03475 newton-m/(rad/sec)

 Ra = 7.56 W
 La = 0.055 H

 KT = 3.475 newton-m/amp 

(11.121)

 Kb = 3.475 volts/(rad/sec)
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 m = 0.0039 newton-m/(rad/sec)2

 TF = 0.212 newton-m

 T = 40 msec = 0.04 sec

With these motor parameters, the constants K1, K2, K3, K4, K5 and K6 become

 K1 = 0.34366

 K2 = –0.1534069

 K3 = –2.286928 × 10–3 
(11.122)

 K4 = 3.5193358 × 10–4

 K5 = 0.2280595

 K6 = –0.105184

Equation (11.119) can be manipulated to obtain the inverse dynamic model of the drive system as

 va(k) = f [w (k + 1), w(k), w(k – 1)] (11.123)

The right-hand side of Eqn. (11.123) is a nonlinear function of the speed w and is given by

f(w(k + 1), w (k), w(k – 1))

   = 
1

5K
[w(k + 1) – K1w (k) – K2w (k – 1) – K3{sgnw (k)}w2(k) – K4{sgnw (k)}w2(k – 1) – K6] (11.124)

which is assumed to be unknown (It is assumed that the only available qualitative a priori knowledge 

about the plant is a rough estimate of the order of the plant). A neural network is trained to emulate the 

unknown function f (◊). The values w (k + 1), w(k) and w(k – 1), which are the independent variables of 

f (◊), are selected as the inputs to the NN. The corresponding target f(w (k + 1), w (k), w(k – 1)) is given 

by Eqn. (11.124). This quantity is also equal to the armature voltage va(k), as seen from Eqn. (11.123). 

Randomly generated input patterns of [w (k + 1), w(k), w(k – 1)] and the corresponding target va(k), 

are used for off-line training. The training data is generated within the constrained operating space. In 

conforming with the mechanical and electrical hardware limitations of the motor, and with a hypothetical 

operating scenario in mind, the following con strained operating space is defined:

– 30 < w (k) < 30 rad/sec

 |w (k – 1) – w (k)| < 1.0 rad/sec (11.125)

 |va(k)| < 100 volts 

The estimated motor armature voltage given by the NN identifier is 

 v̂a (k – 1) = N(w (k), w(k – 1), w(k – 2)) (11.126)

Trajectory Control of DC Motor using Trained NN

The objective of the control system is to drive the motor so that its speed w (k) follows a reference 

(prespecified) trajectory wr(k). A controller topology is presented in Fig. 11.33. The NN trained to 

emulate inverse dynamics of the dc motor, is used to estimate the motor armature voltage v̂a (k), which 
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enables accurate trajectory control of the shaft speed w(k). Refer to Appendix B for realization of the 

controller.

Review Example 11.2

In this example, we study a neural-network–based identification and control strategy for temperature 

control of a water bath.

The plant consists of a laboratory 7-liter water bath as depicted in Fig. 11.34. A personal computer reads 

the temperature of the water bath through a link consisting of a diode-based tempera ture sensor module 

(SM) and an 8-bit A/D converter. The plant input, produced by the computer, is limited between 0 and 

5 volts, and controls the duty cycle for a 1.3 kW heater via a pulse-width-modulation (PWM) scheme.

z–1

z–2

wr ( + 1)k
va( )k w ( + 1)k

NN
inverse
model

DC
motor

Plant

Controller

Fig. 11.33

Computer

A/D

SM

Stirrer

PWM

u

h

D/A

Fig. 11.34 Water bath control system
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The temperature of water in a stirred tank is described by the equation 

 C
dy t

dt

( )
 = 

Y y t

R

0 - ( )
 + h(t) (11.127)

where y(t) is the temperature of water in the tank (ºC), h(t) is the heat flowing into the tank through 

the base heater (watts), Y0 is the temperature of the surroundings (assumed constant, for simplicity), C 

denotes the tank thermal capacity (Joules/ºC), and R is the thermal resistance between tank borders and 

surroundings. Assuming R and C as essentially constant, we can obtain discrete-time description of the 

thermal system as follows:

 x(t) =D y(t) – Y0 
(11.128)

  x t( ) = – 
1

RC
x(t) + 

1

C
h(t) = –a x(t) + b h(t)

The discrete-time state equation (sampling period = T ):

 x(k + 1) = F x(k) + gh(k) 
(11.129)

where F = e–aT; g = b
0

T

Ú e–at dt = 
b

a
[1 – e–aT]

We modify this model to include a saturating nonlinearity, so that the water temperature cannot exceed 

some limitation. The nonline ar plant model then becomes (obtained from real plant by experimen tation)

 y(k + 1) = F y(k) + 
g

y k1 0 5 40+ exp [ . ( ) ]-
u(k) + (1 – F)Y0 (11.130)

 a = 1.00151 × 10–4

 b = 8.67973 × 10–3 (11.131)

 Y0 = 25ºC

 T = 30 sec

 u = input to the PWM, limited between 0 and 5 volts.

With these parameters, the simulated system is equivalent to a SISO temperature control system of a water 

bath, that exhibits linear behavior up to about 70ºC and then becomes nonlinear and saturates at about 

80ºC.

The task is to learn how to control the plant described in Eqn. (11.130), in order to follow a specified 

reference yr(k), minimiz ing some norm of error e(k) = yr(k) – y(k) through time. It is assumed that the 

model in Eqn. (11.130) is unknown; the only available qualitative a priori knowledge about the plant is 

a rough estimate of the order of the plant.

A neural network is trained to emulate the inverse dynamics of the plant. Assume that at instant k + 1, 

the current output y(k + 1), the P – 1 previous values of y, and P previous values of u are all stored in 

memory. Then the P pairs (xT(k – i), u(k – i)); i = 0, 1, ..., P – 1, xT(k) = [y(k + 1), y(k)], can be used as 

patterns for training the NN at time k + 1. A train of pulses is applied to the plant and the corresponding 

input/output pairs are recorded. The NN is then trained with reasonably large sets of data, chosen from 

the experimentally obtained data bank, in order to span a considerable region of the control space (We 

will use input/output patterns generated by simulation of the plant model for training the NN).
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A controller topology is presented in Fig. 11.35. It is assumed that the complete reference trajectory yr(k) 

is known in advance. The feedforward component of the control input is then composed by substituting all 

system outputs by corresponding reference values. Refer to Appendix B for realization of the controller.

NN
inverse
model

PID
controller

Plant

+ +
+

–

Water
bath

z–1

uff ( )k

yr( + 1)k

ufb ( )k

u k( ) y k( + 1)

Dynamic
feedforward

Fig. 11.35

PROBLEMS

 11.1 It is believed that the output y of a plant is linearly related to the input u; that is,

ŷ w u w= +1 2

 (a) What are the values of w1 and w2 if the following measurements are obtained:

  u = 2, y = 5, u = –2, y = 1.

 (b) One more measurement is taken: u = 5, 

y = 7. Find a least-squares estimate of 

w1 and w2 using all the three measure-

ments.

 (c) Find the unique minimal sum of error 

squares in this linear fit to the three 

points.

 11.2 Consider the network in Fig. P11.2. An input 

signal x comprising features and augmented 

by a constant input component (bias) is 

applied to the network with linear activation 

function. The network gives the output ŷ .

 (a) Organize the weights as row vectors:

   wj
T

 = [wj1 wj2
...wjn wj0];

   j = 1, 2, …, q

  and write the equations (model) that this network represents.

1

.

.

.

.

.

.

x1

x2

xn

w11

w12

w1n

w10

y1

y2

yq

Fig. P11.2
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 (b) The learning environment comprises a training set of P data pairs {x
( p), y(p); p = 1, 2, ..., P} 

consisting of the input vector x and output vector y.

   Prove that the gradient descent learning rule for the network is

wj (k + 1) = wj (k) + hej (k) x

  where k is the iteration index, h is the learning rate parameter, and e y yj j j= - ˆ  

 11.3 Consider the RBF network shown in Fig. 11.20. There are two sets of parameters governing the 

mapping properties of this network: the weights wji; i = 1,2,...m; j = 1,2,...,q, in the output layer 

and the center ci of the radial basis functions. The simplest form of RBF network training is with 

fixed centers. In particular, they are commonly chosen, in a random manner, as a subset of the 

input data set. A sufficient number of centres randomly selected from the input data set, would 

distribute according to the probability density function of the training data, thus providing an 

adequate sampling of the input space. Because the centers are fixed, the mapping performed 

by the hidden layer is fixed as well. Derive gradient descent training algorithm to determine the 

appropriate settings of the weights in the network output layer so that the performance of the 

network mapping is optimized.

 11.4 It is desired to design a one-layer NN with one input x and one output ŷ that associates input 

x(1) = –3 with the target output y(1) = 0.4, and input x(2) = 2 with the target output y(2) = 0.8. 

Determine the parameters w and w0 of the network 

   ŷ = s (wx + w0)

  with unipolar sigmoidal (log-sigmoid) activation function, that minimize the error

   E = y y( ) ( ) ( ) ( )1 1
2

2 2
2

-( ) + -( )È
ÎÍ

˘
˚̇

 11.5 Streamline the notation in Chapter 11 for a three-layer NN. For instance, define Wh1 as weights of 

Hidden layer 1 with m nodes; Wh2 as weights of Hidden layer 2 with p nodes; and V as weights of 

output layer with q nodes.

 Input variables : xi; i = 1, ..., n

 Outputs of hidden layer 1 : z ;   = 1, ..., m

 Outputs of hidden layer 2 : tr; r = 1, ..., p

 Outputs of output layer : ŷj; j = 1, ..., q

 Desired outputs : yj

 Learning constant : h

  Derive the backpropagation algorithm for the three-layer network, assuming the output layer has 

linear activation and the two hidden layers have unipolar sigmoidal activations.

 11.6 Consider a four-input single-node perceptron with a bipolar sigmoidal function (tan-sigmoid)

s (a) = 
2

1
1

+
-

-e a

  where ‘a’ is the activation value for the node.

 (a) Derive the weight update rule for {wi} for all i. The learn ing rate h = 0.1. Input variables:

xi; i = 1, 2, 3, 4. Desired output is y.

 (b) Use the rule in part (a) to update the perceptron weights incrementally for one epoch. The set 

of input and desired output patterns is as follows:

ŷ ŷ
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 x
(1) = [1 –2 0 –1]T, y(1) = –1

 x
(2) = [0 1.5 –0.5 –1]T, y(2) = –1

 x
(3) = [–1 1 0.5 –1]T, y(3) = 1

  The initial weight vector is chosen as

w
T
0 = [1 –1 0 0.5]

  The perceptron does not possess bias term.

 (c) Use the training data and initial weights given in part (b) and update the perceptron weights 

for one epoch in batch mode.

 11.7 We are given the two-layer backpropagation network shown in Fig. P11.7.

 (a) Derive the weight update rules for {n } and {w i} for all i and  . Assume that activation 

function for all the nodes is a unipolar sigmoid function

s (a) = 
1

1+ -e a

  where ‘a’ represents the activation value for the node. The learning constant h = 0.1. The 

desired output is y.

y

1

1

1

x1
w11

w12

w21

x2
w22

w10

w20

s ( )◊

s ( )◊

z1

n1

n2

z2

n0

s ( )◊

S

S

S

Fig. P11.7

 (b) Use the equations derived in part (a) to update the weights in the network for one step with 

input vector x = [1 0]T, desired output y = 1, and the initial weights:

 w10 = 1, w11 = 3, w12 = 4, w20 = –6, w21 = 6, w22 = 5

 n0 = –3.92, n1 = 2, and n2 = 4

 (c) As a check, compute the error with the same input for initial weights and updated weights 

and verify that the error has de creased.

 11.8 We are given the two-layer backpropagation network in Fig. P11.8.

  Derive the weight update rules for {n } and {w } for all  . Assume that activation function for all 

the nodes is a bipolar sigmoid function

s (a) = 
2

1
1

+
-

-e a

  where ‘a’ is the activation value for the node. The learning constant is h = 0.4. The desired output 

is y.
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y
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 11.9 We are given the two-layer back propagation network shown in Fig.P11.9.

Fig. P11.9

 (a) Derive the weight update rules in incremental mode for {v } and {w i} for all i and  ; the 

iteration index is k. Assume that the activation function for all nodes in the hidden layer is 

s (a) = 
1

1+ -e a 

  and the activation function for the node in the output layer is 

s ( )a  = 
e e

e e

a a

a a

-

+

-

-

  The learning constant h = 0.2. The desired output is y. 

 (b) Use the equations derived in part (a) to update the weights in the network for one step with 

input vector x = [0.5 –0.4]T, desired output y = 0.15, and the initial weights:

  w11 = 0.2, w12 = 0.1, w21 = 0.4, w22 = 0.6, w31 = 0.3, w32 = 0.5; v1 = 0.1, v2 = 0.2 and v3 = 0.1. 
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12.1 INTRODUCTION

 In the previous chapter, we were mostly concerned with learning from experimental data (examples, 

samples, measurements, patterns, or observations). Our emphasis was on the following machine learning 

problem setting:

 There is some unknown dependency (mapping, function) y = f(x) between some high-dimensional input 

vector x and a scalar output y (or vector output y). The only information available about the underlying 

dependency is a training data set {x
(p), y(p); p = 1,2,…,P}. We employed neural networks to learn this 

dependency. The number of neurons, their link structure, and the corresponding weights were the subjects 

of learning procedure.

 It may be noted that depending upon the problem, the neural-network weights have different physical 

meanings, and sometimes it is hard to find any physical meaning at all. Neural network learning is, thus, 

a ‘block box’ design situation (Fig. 12.1a) in which the process is entirely unknown but there are known 

examples {x
(p), y(p); p = 1,2,…,P}. The knowledge (information) is available only in the form of data 

pairs; the neural network is required to be trained using this knowledge before the machine could be used 

for prediction.

 A large amount of data can constitute a proportionally large amount of information. But this comes with 

a level of uncertainty. As we come to know more, we also know how much we do not know, and our 

awareness of the concept of complexity seems to increase. We tend to forego some precise data and allow 

uncertainty to creep into our perception. This is when we start describing things in a slightly vague and 

fuzzy manner.

 Consider, for example, a real-life situation in process industry. Control of large and complex processes 

is facilitated by using distributed computer control systems (DCCS). Acquisition of process data, i.e., 

collection of instantaneous values of process variables, and status messages of plant control facilities 

(valves, pumps, motors, etc.) needed for efficient direct digital control; processing of collected data; 

plant hardware monitoring, system check and diagnosis; closed-loop control and logic control func-

tions; etc., are the routine tasks of DCCS. Enormous amount of data (constituting a proportionally large 

amount of information) is, thus, generated. Closed-loop control design using machine learning paradigm 

Chapter 12

Fuzzy Logic and  
Neuro-Fuzzy Systems
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based on the knowledge (information) embedded in the data, is feasible. This approach is, however, sel-

dom used in process industry.

 In a man–machine control system, an experienced process operator employs, consciously or 

subconsciously, a set of IF-THEN rules to control a process. The operator estimates the important 

process variables (such as error, rate of change of error) at discrete time instants, and based on this 

information, s/he manipulates the control signal. The estimation of the process variables is not done in 

numerical form; it is rather done in linguistic form. For example, s/he may categorize the variable ‘error’ 

into the following labels:

‘error is negative’

‘error is near zero’

‘error is positive’

Analogously, s/he defines the categories of ‘rate of change of error’ and ‘change of control’.

 The categories (linguistic labels) of the process variables are, in general, vague and qualitative. 

Their purpose is to describe in a qualitative way control strategies based on human experience and 

understanding. A commonly used way of expressing the knowledge (information) based on human 

experience and understanding is through IF-THEN rules. A typical rule in this kind of knowledge base 

will be of the form:

IF error is near zero AND rate of change of error is near zero THEN change of control is zero

Fig. 12.1 Neural networks and fuzzy logic models as examples of ‘black box’ ‘white box’, and 
‘grey box’ modeling approaches [138]
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 Process operators have no difficulties with understanding and interpreting this kind of rules because 

they have the background to hearing problems and solutions described like this. However, providing 

a computer with the same level of understanding is a difficult task. How can we represent ‘expert 

knowledge’ that uses vague and ambiguous terms, in a computer? Can it be done at all?

 In the label ‘near zero’, the word near seems to be comprehended effortlessly by the human brain, but 

what of computing systems? What does near mean in the context of process control? The range –0.1 to 

+0.1 or the range –1 to +1, or …? Is there a way we can make number crunching systems understand 

this? If it is ascertained in a machine that any error less than or equal to | 1 | means near zero, and 

anything outside this range is negative/positive, then does it mean that 1.001 is not ‘near zero’ while 1 is 

‘near zero’? This is an exaggeration in the real world.

 The rule-base representing the expert knowledge can be significantly improved if we consider more 

categories for process variables. For example, linguistic label ‘positive’ may be subdivided into positive 

small, positive medium, and positive large. The increased granularity of the categories results in finer 

formulated rules. There is, however, a trade-off between accuracy and complexity.

 Fuzzy logic deals with how we can capture the essence of human comprehension and embed it on the 

system, allowing for a gradual transition from one category to another. This comprehension as per Lofti 

Zadeh, the founder of the fuzzy logic concept, confers a higher machine intelligence level to computer 

systems.

 In the previous chapter, our focus was on machine learning problem setting based on the knowledge 

(information) available in the form of numerical data. Our focus in this chapter is on another machine 

learning problem setting where language serves as a way of expressing imprecise knowledge, and 

the tolerance for imprecision about the vague environment we live in. Most human knowledge is 

imprecise, uncertain and usually expressed in linguistic terms. In addition, human ways of reasoning 

are approximate, nonquantitative and linguistic in nature. Fuzzy logic is a tool for transforming such 

linguistically expressed knowledge into workable algorithm called a fuzzy logic model. In its newest 

incarnation, fuzzy logic is called ‘computing with words’.

 The point of departure in fuzzy logic is the existence of human solution. If there is no human solution, 

there will be no knowledge to model and, consequently, no sense in applying fuzzy logic. However, the 

existence of human solution is not sufficient. One must be able to articulate to structure the human solu-

tion in the language of fuzzy IF-THEN rules. Almost all structured human knowledge can be expressed 

in the form of IF-THEN rules. The fuzzy logic modeling is thus a ‘white box’ design situation in which 

the solution to the problem is known, that a, structured human knowledge (experience, expertise, heuris-

tics) about the process exists (Fig. 12.1b). Interpretability of the fuzzy logic model for decision making 

is an important characteristic of this setting of machine learning problems.

Neural networks and fuzzy logic models are modeling tools. They perform in the same way after the 

learning stage of neural networks or the embedding of human knowledge about some specific task in 

fuzzy logic structure, is finished. Whether the more appropriate tool for solving a given problem is a 

neural network or a fuzzy logic model, depends upon the availability of previous expert knowledge (in 

linguistic form) about the system to be modeled and the amount of measured data. The less previous 

expert knowledge exists, the more likely it is that a neural network approach will be used to attempt a 

solution. The more knowledge available, the more suitable the problem will be for fuzzy logic modeling. 
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 Through integration of the techniques of fuzzy logic models and neural networks, we can reap the 

benefits of both the fuzzy logic models and the neural networks. One such integrated system, a neuro-

fuzzy system, transforms the burden of designing fuzzy logic systems to the training and learning of 

neural networks. That is, the neural networks provide learning abilities to the fuzzy logic systems. 

Neuro-fuzzy systems are functionally fuzzy logic models; they only utilize learning ability of neural 

networks to realize the key components of the fuzzy logic model. Integrated systems may also be formed 

by incorporating fuzzy logic into the neural network models. In such an integration, called a fuzzy-

neural network, the numerical parameters (such as input-output data, weights, etc.) of a neural network 

are fuzzified. Fuzzy-neural networks are fuzzified neural networks, and thus are functionally neural 

networks.

 Instances involving some knowledge and some data correspond to ‘grey box’ design situation 

(Fig. 12.1c) covered by the paradigm of neuro-fuzzy and fuzzy-neural models.

 Embedding existing structured human knowledge into fuzzy logic models and neuro-fuzzy models, will 

be the subject of discussion in this chapter.

12.2

In a man–machine system, there arises the problem of processing information with the ‘vagueness’ that 

is characteristic of man. We consider here a real-life situation in process control.

The basic structure of a feedback control system is shown in Fig. 12.2a. G represents the system to 

be controlled (plant or process). The purpose of the controller D is to guarantee a desired response 

of the output y. The process of keeping the output y close to the set-point (reference input) yr, despite 

the presence of disturbances, fluctuations of the system parameters, and noisy measurements, is called 

regulation. The law governing corrective action of the controller is called the control algo rithm. The 

output of the controller is the control action u.

The general form of the control law (implemented using a digital computer) is 

 u(k) = f(e(k), e(k – 1), ..., e(k – m), u(k – 1), ..., u(k – m)) (12.1)

providing a control action that describes the relationship bet ween the input and the output of the 

controller. In Eqn. (12.1), e = yr  – y represents the error between the desired set-point yr and the output 

of the controlled system; parameter m defines the order of the controller; and f (◊) is, in general, a 

nonlinear function. k is an index representing sampling instant; T is the sampling interval used for digital 

implementation (Fig. 12.2b). To distinguish control law (12.1) from the control schemes based on fuzzy 

logic/neural networks, we shall call this, conventional control law.

A common feature of conventional control is that the control algorithm is analytically described by 

equations—algebraic, difference, differential, and so on. In general, the synthesis of such control 

algorithms requires a formalized analytical descrip tion of the controlled system by a mathematical 

model. The con cept of analyticity is one of the main paradigms of conventional control theory. We will 

also refer to conventional control as model-based control.

When the underlying assumptions are satisfied, many of the model-based control techniques provide good 

stability, robustness to model uncertainties and disturbances, and speed of response. However, there are 
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many practical deficiencies of these control algorithms. It is, generally, difficult to accurately represent a 

complex process by a mathematical model. If the process model has parameters whose values are partially 

known, ambiguous or vague, the control algorithms that are based on such incomplete informa tion will not, 

usually, give satisfactory results. The environment with which the process interacts may not be completely 

predicta ble, and it is normally not possible for a model-based algorithm to accurately respond to a 

condition that it did not anticipate. Skilled human operators are, however, controlling complex plants 

quite successfully on the basis of their experience, without having quantitative models.

 Regulatory control objectives, typical of many industrial appli cations, are

 (1) to remove any significant errors in process output y(t) by appropriate adjustment of the controller 

output u(k);

 (2) to prevent process output from exceeding some user-specified constraint yc, i.e., for all t, y(t) 

should be less than or equal to yc; and

 (3) to produce smooth control action near the set-point, i.e., minor fluctuations in the process output 

are not passed further to the controller.

A conventional PI controller uses an analytical expression of the following form to compute the control 

action:

 u(t) = K ¢c e t
T

e d
I

( ) ( )+
È

Î
Í

˘

˚
˙Ú

1
t t  (12.2)

where K ¢c is the controller gain, and TI is integral or reset time.

When this expression is differentiated, we obtain

  u(t) = ¢K ec  (t) + 
K

T

c

I

¢
e(t)

e yu

–

D G

Controller

+yr

Plant

(a) Basic structure of a feedback control system

(b) Basic structure of a digital control system

Fig. 12.2
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The discrete-time version of this equation may be written as 

 
u k u k

T

( ) ( )- -1
 = K ¢c

e k e k

T

K e k

T

c

I

( ) ( ) ( )- -È

ÎÍ
˘

˚̇
+

¢1

or  Du(k) = Kcv(k) + KI e(k) (12.3)

where

 Du(k) = incremental change in control variable = u(k) – u(k – 1);

 e(k) = error variable = yr – y(k); and

 v(k) = time rate of change of error1 = 
e k e k

T

( ) ( )- -1
.

The control objectives, listed earlier, would require variable gains when the process output is in different 

regions around the set-point. Figure 12.3 illustrates the type of control action de sired; Du should be ‘near 

zero’ in the set-point region, very large in the constraint region, and normal in between.

Set-point
region

Smooth u

Normal
region

Time

Constraint
region

yc

yr

u

u uÆ max

Fig. 12.3

A simple PI controller is inherently incapable of achieving all of the above control objectives, and has to 

be implemented with addition al (nonlinear) control laws for set-point and constraint regions, making the 

control scheme a complex adaptive control scheme which would allow the desired gain modification when 

required.

On the other hand, an experienced process operator can easily meet all the three control objectives. An 

expert operator employs, consciously or subconsciously, a set of IF-THEN rules to control a process 

 1 A PD controller in position form is 

u(k) = Kce(k) + KDv(k)

  We see that PD controller in position form is structurally related to PI controller in incremental form.
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(Fig. 12.4). He estimates the error e(k) and time rate of change of error v(k) at a specific time instant, 

and based on this information he changes the control by Du(k).

 A typical production rule of the rule-base in Fig. 12.4 is of the form:

 IF (process state) THEN (control action) (12.4)

instead of an analytical expression defining 

the control variable as a function of process 

state. The ‘process state' part of the rule is 

called the rule premise (or antecedent), and 

contains a description of the process state at 

the kth sampling instant. This description is 

done in terms of particular values of error 

e(k), velocity (time rate of change of error) 

v(k), and the constraint. The ‘control action’, part of the rule is called the conclusion (or consequent), and 

contains a description of the control variable which should be produced given the particular process state 

in the rule antecedent. This description is in terms of the value of the change-in-control, Du(k).

Negative values of e(k) mean that the current process output y(k) has a value above the set-point yr, since 

e(k) = yr – y(k) < 0. The magnitude of a negative value describes the magnitude of the difference yr – y. 

On the other hand, positive values of e(k) express the knowledge that the current value of the process 

output y(k) is below the set-point yr. The magnitude of such a positive value is the magnitude of the 

difference yr – y.

Negative values of v(k) mean that the current process output y(k) has increased compared with its previous 

value y(k  – 1), since v(k) = –  (y(k) – y(k – 1))/T < 0. The magnitude of such a negative value describes 

the magnitude of this increase. Positive values of v(k) express the knowledge that y(k) has decreased its 

value when compared to y(k – 1). The magnitude of such a value is the magni tude of the decrease.

Positive values of Du(k) mean that the value of the control u(k – 1), has to be increased to obtain the value 

of the control for the current sampling time k. A value with a negative sign means a decrease in the value 

of u(k – 1). The magnitude of such a value is the magnitude of increase/decrease in the value u(k – 1).

The possible combinations of positive/negative values of e(k) and v(k) are as follows:

 (1) positive e, negative v

 (2) negative e, positive v

 (3) negative e, negative v

 (4) positive e, positive v

The combination (positive e(k), negative v(k)) implies that y < yr, since e(k) = yr – y(k) > 0; and

 y > 0, since v(k) = – (y(k) – y(k – 1))/T < 0. This means that the current process output y(k) is below the 

set-point and the controller is driving the system upward, as shown by point D in Fig. 12.5. Thus, the 

current process output is approaching the set-point from below. The combination (negative e(k), positive 

v(k)) implies that y > yr, and  y < 0. This means that the current process output is above the set-point 

and the controller is driving the system downward, as shown by point B in Fig. 12.5. Thus the current 

process output is approaching the set-point from above. The combination (nega tive e(k), negative v(k)) 

implies that y > yr and  y > 0. This means that the current process output y(k) is above the set-point and 

the controller is driving the system upward, as shown by point C in Fig. 12.5. Thus the process output 

Fig. 12.4 
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is moving further away from the set-point and approaching overshoot. The combina tion (positive e(k), 

positive v(k)) implies that y < yr and  y < 0. This means that the current process output is below the 

set-point and the controller is driving the system downward, as shown by point A in Fig. 12.5. Thus the 

process output is moving further away from the set-point and approaching undershoot.

0.5

0

A

B

C

D

1.5

2

k5 10 15 20 25 30 35 40

yr

y k( )

Fig. 12.5

In a man–machine control system of the type shown in Fig. 12.4, experience-based knowledge of the 

process operator and/or control engineer is instrumental in changing the control by Du(k), for a given 

estimate of error e(k) and time rate of change of error v(k). 

 (i) If both e(k) and v(k) (positive or negative) are small (or zero), it means that the current value of the 

process output variable y(k) has deviated from the set-point but is still close to it. The amount of 

change Du(k) in the previous control u(k – 1) should also be small (or zero) in magnitude, which 

is intended to correct small deviations from the set-point.

 (ii) Consider the situation when e(k) has large negative value (which implies that y(k) is significantly 

above the set-point). If v(k) is positive at the same time, this means that y is moving towards the 

set-point. The amount of change Du to be introduced is intended to either speed up or slow down 

the approach to the set-point. For example, if y(k) is much above the set-point (e(k) has a large 

negative value) and it is moving towards the set-point with a small step (v(k) has small positive 

value), then the magnitude of this step has to be significantly increased (Du(k) Æ large negative 

value).

 (iii) e(k) has either a small value (positive, negative, zero) or a large positive value, which implies that 

y(k) is either close to the set-point or significantly below it. If v(k) is positive at the same time, 

this means that y is moving away from the set-point. Then, a positive change Du(k) in the previous 

control u(k – 1) is required to reverse this trend and make y start moving towards it, instead of 

moving away from the set-point.

 (iv) Consider a situation when e(k) has large positive value (which implies that y(k) is significantly 

below the set-point) and v(k) is negative (which implies that y is moving towards the set-point). 
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The amount of change Du to be introduced is intended to either speed up, or slow down, the 

approach to the set-point. For example, if y(k) is much below the set-point (e(k) has large positive 

value), and it is moving towards the set-point with somewhat large step (v(k) has large negative 

value), then the magnitude of this step need not be changed (Du(k) Æ 0), or only slightly enlarged 

(Du(k) Æ small positive value).

 (v) e(k) has either a small value (positive, negative, zero) or a large negative value, and this implies 

that y(k) is either close to the set-point or significantly above it. If v(k) is negative at the same 

time, y is moving away from the set-point. Thus, a negative change Du(k) in the previous control 

u(k – 1) is required to reverse this trend and make y start moving towards it instead of moving 

away from the set-point.

The variables e, v and Du are described as consisting of a finite number of verbally expressed values 

which these variables can take. Values are expressed as tuples of the form {value sign, value magnitude}. 

The ‘value sign’ component of such a tuple takes on either one of the two values: positive or negative. 

The ‘value magnitude’ component can take on any number of magnitudes, e.g., {zero, small, medium, 

big}, or {zero, small, big}, or {zero, very small, small, medium, big, very big}, etc. 

The tuples of values may, therefore, look like: Negative Big (NB), Negative Medium (NM), Negative 

Small (NS), Zero (ZO), Positive Small (PS), Positive Medium (PM), Positive Big (PB) or an enhanced 

set/subset of these values.

We consider here a simple rule-based controller which employs only three values of the variables e, v, 

and Du: Negative (N), Near Zero (NZ), Positive (P), for e and v; and Negative (N), Zero (Z), Positive (P) 

for Du. A typical production rule of the rule-base in Fig. 12.4 is

 IF e(k) is Positive and v(k) is Positive THEN Du(k) is Positive (12.5)

Let us see now what such a rule actually means. A positive e(k) implies that y(k) is below the set-point. 

If v(k) is positive at the same time, it means that y(k) is moving away from the set-point. Thus, a positive 

change Du(k) in the previous control u(k – 1) is required to reverse this trend.

Consider another rule:

 IF e(k) is Positive and v(k) is Negative THEN Du(k) is Zero (12.6)

This rule says that if y(k) is below the set-point, and is moving towards the set-point, then, no change in 

control is required.

We will present the rule-base in table format, 

shown in Fig. 12.6. The cell defined by the 

intersection of the third row and third column 

represents the rule given in (12.5), and the cell 

defined by the inter-section of the third row and 

first column represents the rule given in (12.6).

 The rule-base shown in Fig. 12.6 is designed to remove any sig nificant errors in process output by 

appropriate adjustment of the controller output. Note that the rule 

 IF e(k) is Near Zero and v(k) is Near Zero THEN Du(k) is Zero (12.7)

ensures smooth action near the set-point, i.e., minor fluctua tions in the process output are not passed 

further to the con troller.

Fig. 12.6 
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The rule-base of Fig. 12.6 is thus effective for control action in the set-point region and the normal region 

in Fig. 12.3. However, we require additional rules for the constraint region. The following three rules 

prescribe a control action when the error is in the constraint region, approaching it or leaving it.

 (i) IF e(k) is in constraint region THEN value of Du(k) is drastic change.

  This rule specifies the magnitude of additional DU(k) to be added to the one already determined 

by the rules of Fig. 12.6 when e(k) is in the constraint region.

 (ii) IF e(k) enters constraint region, THEN start summing up the values of Du(k) determined by 

constraint Rule 1.

 (iii) IF e(k) leaves constraint region, THEN subtract the total value of Du(k) determined by constraint 

Rule 2.

The man–machine control system of Fig. 12.4 has the capability of representing and manipulating data 

that is not precise, but rather fuzzy. The error variable is ‘near zero’, change in con trol is ‘drastic’, etc.,—

are the type of linguistic information which the expert controller is required to handle. But what is a 

‘drastic change’ in control? The property ‘drastic’ is inherently vague, meaning that the set of signals it 

is applied to, has no sharp boundaries between ‘drastic’ and ‘not drastic’. The fuzzi ness of a property lies 

in the lack of well-defined boundaries of the set of objects to which the property applies.

Problems featuring uncertainty and ambiguity have been success fully addressed subconsciously by 

humans. Humans can adapt to unfamiliar situations and they are able to gather information in an efficient 

manner, and discard irrelevant details. The informa tion gathered need not be complete and precise and 

could be general, qualitative and vague because humans can reason, infer and deduce new information 

and knowledge. They can learn, per ceive and improve their skills through experience.

How can humans reason about complex systems, when the complete description of such a system often 

requires more detailed data than a human could ever hope to recognize simultaneously, and assimilate 

with understanding? The answer is that humans have the capacity to reason approximately. In reasoning 

about a complex system, humans reason approximately about its behavior, thereby maintaining only a 

generic understanding about the problem.

The seminal work by Dr. Lotfi Zadeh (1965) on system analysis based on the theory of fuzzy sets, 

has provided a mathematical strength to capture the uncertainties associated with human cognitive 

processes, such as thinking and reasoning. The conven tional approaches to knowledge representation, 

lack the means for representing the meaning of fuzzy concepts. As a consequence, the approaches based 

on classical logic and probability theory, do not provide an appropriate conceptual framework for dealing 

with the representation of commonsense knowledge, since such knowledge is by its nature, both, lexically 

imprecise and non-categorical. The development of fuzzy logic was motivated, in large measure, by the 

need for a conceptual framework which can address the issue of uncer tainty and lexical imprecision. 

Fuzzy logic provides an inference morphology, that enables approximate human reasoning capabilities 

to be applied to knowledge-based systems.

Since the publication of Zadeh’s seminal work Fuzzy Sets in 1965, the subject has been the focus of 

many independent research investigations by mathematicians, scientists and engineers from around the 

world. Fuzzy logic has rapidly become one of the most successful of technologies today, for developing 

sophisticated control systems. With its aid, complex requirements may be imple mented in amazingly 

simple, easily maintained and inexpensive controllers. Of course, fuzzy logic is not the best approach 
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for every control problem. As designers look at its power and expres siveness, they must decide where 

to apply it.

The criteria, in order of relevance, as to when and where to apply fuzzy logic are as follows:

  Human (structured) knowledge is available.

  A mathematical model is unknown or impossible.

  The process is substantially nonlinear.

  There is lack of precise sensor information.

  It is applied at the higher levels of hierarchical control systems.

  It is applied in generic decision-making problems

Possible difficulties in applying fuzzy logic, arise from the following:

  Knowledge is subjective.

  For high-dimensional inputs, the increase in the required number of rules is exponential.

  Knowledge must be structured, but experts bounce between a few extreme poles: they have trouble 

structuring the knowledge; they are too aware of their ‘expertise’; they tend to hide knowledge; 

and there may be some other subjective factors working against the whole process of human 

knowledge transfer.

Note that the basic premise of fuzzy logic is that a human solution is good. When applied, for example, 

in control systems, this premise means that a human being is a good controller. Today, after several 

thousands successful applications, there is more or less convergence on trustworthiness of this premise.

The word ‘fuzzy’ may sound to mean intrinsically imprecise, but there is nothing ‘fuzzy’ about fuzzy 

logic. It is firmly based on multivalued logic theory and does not violate any well-proven laws of logic. 

Also fuzzy logic systems can produce answers to any required degree of accuracy. This means that 

these models can be very precise if needed (There is a trade-off between precision and cost). However, 

they are aimed at handling imprecise and approximate concepts that cannot be processed by any other 

known modeling tool. In this sense, fuzzy logic models are invaluable supplements to classical hard 

computing techniques. For example in a hierarchical control system, classical control at the lowest level, 

supplemented by fuzzy logic control at higher levels provides good hybrid solution in many situations.

Our focus in this chapter is on the essential ideas and tools necessary for the construction of the fuzzy 

knowledge-based models, that have been successful in the development of intelli gent controllers. 

Fuzzy control and modeling use only a small portion of the fuzzy mathematics that is available; this 

portion is also mathematically quite simple and conceptually, easy to understand. This chapter begins 

with an introduction to some essential con cepts, terminology, notations and arithmetic of fuzzy sets and 

fuzzy logic. We include only a minimum, though adequate, amount of fuzzy mathematics necessary 

for understanding fuzzy control and modeling. To facilitate easy reading, this background material is 

presented in a rather informal manner, with simple and clear notation as well as explanation. Whenever 

possible, excessively rigorous mathematics is avoided. This material is intended to serve as an introductory 

foundation for the reader to understand not only the fuzzy controllers presented later in this chapter but 

also others in the literature. We recommend references [137, 138, 142–145] for further reading on fuzzy 

set theory.
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12.3

Up to this point we have only quantified, in an abstract way, the knowledge that the human expert has 

about how to control the plant. Next, we will show how to use fuzzy logic to fully quantify the meaning 

of linguistic descriptions so that we may automate in the fuzzy controller, the control rules specified by 

the expert.

12.3.1

Knowledge is structured information and knowledge acquisition is done through learning and experience, 

which are forms of high-level processing of information. Knowledge representation and processing are 

the keys to any intelligent system. In logic, knowledge is represented by propositions and is processed 

through reasoning, by the application of various laws of logic, including an appropriate rule of inference.

Fuzzy logic focuses on linguistic variables in natural language, and aims to provide foundations for 

approximate reasoning with imprecise propositions.

In classical logic, a proposition is either TRUE, denoted by 1, or FALSE, denoted by 0. Consider the 

following proposition p:

‘Team member is female’

Let X be a collection of 10 people: x1, x2, ..., x10, who form a project team. The entire object of discussion 

is 

X = {x1, x2, ..., x10}

In general, the entire object of discussion is called a ‘universe of discourse’, and each constituent member 

x is called an ‘ele ment’ of the universe (the fact that x is an element of X, is written as x Œ X).

If x1, x2, x3 and x4 are female members in the project team, then the proposition p on the universe of 

discourse X is equally well represented by the crisp (nonfuzzy) set A defined below.

A = {x1, x2, x3, x4}

The fact that A is a subset of X is denoted as A Ã X.

The proposition can also be expressed by a mapping mA from X into the binary space {0, 1}.

mA : X Æ {0, 1}

such that 

mA = 
0

1

5 6 7 8 9 10

1 2 3 4

; , , , , ,

; , , ,

x x x x x x x

x x x x x

=

=

Ï
Ì
Ó

That is to say, the value mA(x) = 1 when the element x satisfies the attributes of set A; 0 when it does not. 

mA is called the characteristic function of A.

Next, supposing that, within X, only x1 and x2 are below age 20; we may call them ‘minors’. Then

B = {x1, x2}
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consists of minor team members. In this case

mB(x) = 
1

0

1 2; ,

;

x x x=Ï
Ì
Ó otherwise

B is obviously a subset of A; we write B Ã A.

We have considered the ‘set of females A’, and the ‘set of minors B’ in X. Is it also possible to consider 

a ‘set of young females C’? If, for convenience, we consider the attribute ‘young’ to be same as ‘minor’, 

then C = B; but, in this case, we have created a sharp boundary, under which x2 who is 19 is still young 

(mC(x2) = 1), but x3 who just turned 20 today is no longer young (mC (x3) = 0). In just one day, the value 

changed from yes (1) to no (0), and x3 is now an old maid.

However, is it not possible that a young woman becomes an old maid over a period of 10 to 15 years, so 

that we ought to be patient with her? Prof. Zadeh admitted values such as 0.8 and 0.9 that are intermediate 

between 0 and 1, thus creating the concept of a ‘fuzzy set’. Whereas a crisp set is defined by the charac-

teristic function that can assume only the two values {0, 1}, a fuzzy set is defined by a ‘membership 

function’ that can assume an infinite number of values; any real number in the closed interval [0, 1].

With this definition, the concept of ‘young women’ in X can be expressed flexibly in terms of membership 

function (Fuzzy sets are denoted in this book by a set symbol with a tilde under strike).

mC
~

: X Æ [0, 1]

such that

mC
~
 = 

1

0 9

0 2

0

1 2

3

4

; ,

. ;

. ;

;

x x x

x x

x x

=
=
=

Ï

Ì
Ô
Ô

Ó
Ô
Ô otherwise

The significance of such terms as ‘patient’ and ‘flexibly’ in the above description may be explained 

as follows. For example, we have taken mC
~

(x3) = 0.9, but suppose that x3 objects that ‘you are being 

unfair; I really ought to be a 1 but if you insist we can compromise on 0.95’. There is a good amount of 

subjectivity in the choice of membership values. A great deal of research is being done on the question 

of assignment of membership values. However, even with this restriction, it has become possible to deal 

with many problems that could not be handled with only crisp sets.

Since [0, 1] incorporates {0, 1}, the concept of fuzzy set can be considered as an extended concept, 

which incorporates the concept of crisp set. For example, the crisp set B of ‘minors’ can be regarded as 

a fuzzy set B~ with the membership function:

mB~
(x) = 

1

0

1 2; ,

;

x x x=Ï
Ì
Ó otherwise

Example 12.1

One of the most commonly used examples of a fuzzy set is the set of tall people. In this case, the universe of 

discourse is poten tial heights (the real line), say, from 3 feet to 9 feet. If the set of tall people is given the 
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well-defined boundary of a crisp set, we might say all people taller than 6 feet are officially considered 

tall. The characteristic function of the set A = {tall men} then, is 

mA(x) = 
1

6

for 6

0 for 3

£
£ <

Ï
Ì
Ó

x

x

Such a condition is expressed by a Venn diagram shown in Fig. 12.7a, and a characteristic function 

shown in Fig. 12.8a.
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For our example of universe X of heights of people, the crisp set A of all people with x ≥ 6 has a sharp 

boundary: individual, ‘a’ corresponding to x = 6 is a member of the crisp set A, and indi vidual ‘b’ 

corresponding to x = 5.9 is unambiguously not a member of set A. Is it not an absurd statement for the 

situation under consideration? A 0.1" reduction in the height of a person has changed mA from 1 to 0, and 

the person is no more tall.

It may make sense to consider the crisp set of all real numbers greater than 6 because the numbers belong 

to an abstract plane, but when we want to talk about real people, it is unreasonable to call one person 
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short and another one tall, when they differ in height by the width of a hair. But if this kind of distinction 

is unworka ble, then what is the right way to define the set of all people? Much as with our example of 

‘set of young females’, the word ‘tall’ would correspond to a curve that defines the degree to which any 

person is tall. Figure 12.8b shows a possible member ship function of this fuzzy set A~; the curve defines 

the transi tion from not tall to tall. Two people with membership values 0.9 and 0.3 are tall to some 

degree, but one significantly less than the other.

Note that there is inherent subjectivity in fuzzy set descrip tion. Figure 12.9 shows a smoothly varying 

curve (S-shaped) for transition from not tall to tall. Compared to Fig. 12.8b, the membership values are 

lower for heights close to 3¢ and are higher for heights close to 6¢. This looks more reasonable; however, 

the price paid is in terms of a more complex function, which is more difficult to handle.

1

0
3 6 9

x

mA

Fig. 12.9 A
~

Figure 12.7b shows the representation of a fuzzy set by a Venn diagram. In the central (unshaded) region 

of the fuzzy set, mA~
(x) = 1. Outside the boundary region of fuzzy set, mA~

(x) = 0. On the boundary region, 

mA~
(x) assumes an intermediate value in the interval (0, 1). Presumably, the membership value of an x in 

fuzzy set, A~, approaches a value of 1 as it moves closer to the central (unshaded) region; it approaches a 

value of 0 as it moves closer to leaving the boundary region of A~.

Thus, so far we have discussed the representation of knowledge in logic. We have seen that the concept 

of fuzzy sets makes it possible to describe vague information (knowledge). But descrip tion alone will not 

lead to the development of any useful pro ducts. Indeed, a good deal of time passed after fuzzy sets were 

first proposed, until they were applied at the industrial level. Howe ver, eventually it became possible to 

apply them in the form of ‘fuzzy inference’, and fuzzy logic theory has now become legit imized as one 

component of applied high technology.

In fuzzy logic theory, nothing is done at random or haphazardly. Information containing a certain amount 

of vagueness is expressed as faithfully as possible, without the distortion produced by forcing it into a 

‘crisp’ mould, and it is then processed by applying an appropriate rule of inference.

‘Approximate reasoning’ is the best known form of fuzzy logic processing and covers a variety of 

inference rules.

Fuzziness is often confused with probability. The fundamental difference between them is that fuzziness 

deals with determinis tic plausibility, while probability concerns the likelihood of nondeterministic 

(stochastic) events. Fuzziness is one aspect of uncertainty. It is the ambiguity (vagueness) found in the 

defini tion of a concept, or the meaning of a term. However, the uncer tainty of probability generally 
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relates to the occurrence of phenomena, not the vagueness of phenomena. For example, ‘There is a 

50–50 chance that he will be there’ has the uncertainty of randomness. ‘He is a young man’, has the 

uncertainty in definition of ‘young man’. Thus, fuzziness describes the ambiguity of an event, whereas 

randomness describes the uncertainty in the occurrence of an event.

We can now give a formal definition to fuzzy sets.

12.3.2

A universe of discourse, X, is a collection of objects all having the same characteristics. The individual 

elements in the universe X will be denoted as x.

A universe of discourse and a membership function that spans the universe, completely define a fuzzy 

set. Consider a universe of discourse X with x representing its generic element. A fuzzy set A~ in X has 

the membership function mA~
(x) which maps the elements of the universe onto numerical values in the 

interval [0, 1]:

 mA~
(x) : X Æ [0, 1] (12.8a)

Every element x in X has a membership function mA~
(x) Œ [0, 1]. A~ is then defined by the set of ordered 

pairs:

 A~ = {( , ( )) | , ( ) [ , ]}
~ ~

x x x X xA Am mŒ Œ 0 1  (12.8b)

A membership value of zero implies that the corresponding element is definitely not an element of the 

fuzzy set A~. A membership function of unity means that the corresponding element is defi nitely an 

element of fuzzy set A~. A grade of membership greater than zero, and less than unity, corresponds to a 

noncrisp (or fuzzy) membership of the fuzzy set A~
. Classical sets can be consid ered as special case of 

fuzzy sets with all membership grades equal to unity.

A fuzzy set A~ is formally given by its membership function mA~
(x). We will identify any fuzzy set with 

its membership function, and use these two terms interchangeably.

Membership functions characterize the fuzziness in a fuzzy set. However, the shape of the membership 

functions, used to describe the fuzziness, has very few restrictions indeed. It might be claimed that the 

rules used to describe fuzziness are also fuzzy. Just as there are an infinite number of ways to characterize 

fuzziness, there are an infinite number of ways to graphically depict the membership functions that 

describe fuzziness. Although the selection of membership functions is subjective, it cannot be arbitrary; 

it should be plausible.

To avoid unjustified complications, mA~
(x) is usually constructed without a high degree of precision. It 

is advantageous to deal with membership functions involving a small number of parame ters. Indeed, 

one of the key issues in the theory and practice of fuzzy sets is how to define the proper membership 

functions. Primary approaches include (1) asking the control expert to define them; (2) using data from 

the system to be controlled, to generate them; and (3) making them in a trial-and-error manner. In more 

than 25 years of practice, it has been found that the third approach, though ad hoc, works effectively and 

efficiently in many real-world applications.

Numerous applications in control have shown that only four types of membership functions are needed 

in most circumstances: trape zoidal, triangular (a special case of trapezoidal), Gaussian, and bell-shaped. 
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Figure 12.10 shows an example of each type. Among the four, the first two are more widely used. All 

these fuzzy sets are continuous, normal and convex.

A fuzzy set is said to be continuous if its membership function is continuous.

A fuzzy set is said to be normal if its height is one (The largest membership value of a fuzzy set is called 

the height of the fuzzy set).

The convexity property of fuzzy sets is viewed as a generaliza tion of the classical concept of crisp sets. 

Consider the uni verse X to be a set of real numbers ¬. A subset A of ¬ is said to be convex if, and only 

if, for all x1, x2 Œ A and for every real number l satisfying 0 £ l £ 1, we have

 lx1 + (1 – l)x2 Œ A (12.9)

1 1

0 0x x

0 0x x

1 1

(a)

(c)

(b)

(d)

m( )x

m( )x m( )x

m( )x

Fig. 12.10

It can easily be established that any set defined by a single interval of real numbers is convex; any set 

defined by more than one interval, that does not contain some points between the intervals, is not convex.

An alpha-cut of a fuzzy set A~ is a crisp set Aa that contains all the elements of the universal set X that 

have a membership grade in A~ greater than or equal to a (refer to Fig. 12.11). The convexity property 

of fuzzy sets is viewed as a generalization of the classical concept of convexity of crisp sets. In order to 

make the generalized convexity consistent with the classical defini tion of convexity, it is required that 

a-cuts of a convex fuzzy set be convex for all a Œ (0, 1] in the classical sense (0-cut is excluded here since 

it is always equal to ¬ in this sense and thus includes –  to + ). Figure 12.11a shows a fuzzy set that 

is convex. Two of the a-cuts shown in this figure are clearly convex in the classical sense, and it is easy 

to see that any other a-cuts for a > 0 are convex as well. Figure 12.11b illustrates a fuzzy set that is not 

convex. The lack of convexity of this fuzzy set can be demonstrated by identifying some of its a-cuts 

(a > 0) that are not convex.
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The support of a fuzzy set A~ is the crisp set of all xŒX such that mA~
(x) > 0. That is 

 supp ( )~A  = { | ( ) }
~

x X xAŒ m > 0  (12.10)

The element x Œ X at which mA~
(x) = 0.5, is called the crosspoint.

A fuzzy set A~ whose support is a single point in X with mA~
(x) = 1, is referred to as a fuzzy singleton.

Example 12.2

Consider the fuzzy set described by membership function depicted in Fig. 12.12, where the universe 

of discourse is 

 X = [32ºF, 104ºF]

This fuzzy set A~ is linguistic ‘warm’, 

with membership function

mA~
(x) = 

0 64

64 6 64 70

1 70 74

78 4 74 78

0

;

( ) / ;

;

( )/ ;

;

x

x x

x

x x

x

< ∞
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∞ < £ ∞
∞ - < £ ∞

>> ∞

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô 78

The support of A~ is the crisp set

x x| 64 78∞ < < ∞{ }

Example 12.3

Consider a natural language form expression:

‘Speed sensor output is very large’

Fig. 12.11

1

x

mA

64° 70° 74° 78° 104°32°F

Fig. 12.12
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 The formal, symbolic translation of this natural language expres sion, in terms of linguistic variables, 

proceeds as follows:

 (i) An abbreviation ‘Speed’ may be chosen to denote the physical variable ‘Speed sensor output’.

 (ii) An abbreviation ‘XFast’ (i.e., extra fast) may be chosen to denote the particular value ‘very large’ of 

speed.

 (iii) The above natural language expression is rewritten as ‘Speed is XFast’.

 Such an expression is an atomic fuzzy proposition. The ‘meaning’ of the atomic proposition is 

then defined by a fuzzy set XFast
~

, or a membership function mXFast
~

(x), defined on the physical domain 

X = [0 mph, 100 mph] of the physical variable ‘Speed’.

Many atomic propositions may be associated with a linguistic variable, e.g.,

 ‘Speed is Fast’

 ‘Speed is Moderate’

 ‘Speed is Slow’

 ‘Speed is XSlow’

Thus, the set of linguistic values that the linguistic variable ‘Speed’ may take is

{XFast, Fast, Moderate, Slow, XSlow}

These linguistic values are called terms of the linguistic varia ble. Each term is defined by an appropriate 

membership function.

It is usual in approximate reasoning to have the following frame associated with the notion of a linguistic 

variable:

 A A X A~ ~
, , ,

~~
L Lm  (12.11)

where A~ denotes the symbolic name of a linguistic variable, e.g., speed, temperature, level, error, change-

of-error, etc. LA
~

 is the set of linguistic values that A~ can take, i.e., LA
~

 is the term set of A~
. X is the 

actual physical domain over which linguistic variable A~ takes its quantitative (crisp) values, and mLA
~

 is a 

membership function which gives a meaning to the linguistic value in terms of the quantitative elements 

of X.

Example 12.4

Consider speed, interpreted as a linguistic variable with X = [0mph, 100mph]; i.e., x = ‘speed’. Its term 

set could be

{Slow, Moderate, Fast}

 Slow
~

 = the fuzzy set for ‘a speed below about 40 miles per hour (mph)’, with membership function 

mSlow~

 Moderate
~

 = the fuzzy set for ‘a speed close to 55 mph’, with membership function mModerate
~

.

 Fast
~

 = the fuzzy set for ‘a speed above about 70 mph’, with member ship function mFast~
.
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The frame of speed is 

Speed Speed X Speed~ ~
, , ,

~
L Lm

where 

 LSpeed
~

 = { , , }
~

Slow Moderate Fast
~ ~

 X = [0, 100] mph

m m mSlow Moderate Fast
~ ~ ~

, ,  are given in Fig. 12.13.

The frame of speed helps us to decide the degree to which an atomic proposition associated with ‘speed’ 

is satisfied, given a specific physical value of speed. For example, for crisp input

 Speed = 50 mph

 mSlow
~

(50) = 1/3

 mModerate
~

(50) = 2/3

 mFast
~

(50) = 0

Therefore, the proposition ‘Speed is Slow’ is 

satisfied to a degree of 1/3, the proposition 

‘Speed is Moderate’ is satisfied to a degree of 

2/3, and the proposition ‘Speed is Fast’ is not 

satisfied.

An extension of ordinary fuzzy sets is to allow the membership values to be a fuzzy set—instead of a 

crisply defined degree. A fuzzy set whose membership function is itself a fuzzy set, is called a Type-2 

fuzzy set [143]. A Type-1 fuzzy set is an ordinary fuzzy set. We will limit our discussion to Type-1 fuzzy 

sets. The reference to a fuzzy set in this chapter, implies a Type-1 fuzzy set.

12.3.3

There are a variety of fuzzy set theories which differ from one another by the set operations (complement, 

intersection, union) they employ. The fuzzy complement, intersection and union are not unique 

operations, contrary to their crisp counterparts; differ ent functions may be appropriate to represent these 

operations in different contexts. That is, not only membership functions of fuzzy sets, but also operations 

on fuzzy sets, are context-dependent. The capability to determine appropriate membership functions, 

and meaningful fuzzy operations in the context of each particular application, is crucial for making fuzzy 

set theory practically useful.

The intersection and union operations on fuzzy sets are often referred to as triangular norms (t-norms), 

and triangular conorms (t-conorms; also called s-norms), respectively. The reader is advised to refer to 

[143] for the axioms which t-norms, t-conorms, and the complements of fuzzy sets are required to satisfy.

Fig. 12.13 
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In the following, we define standard fuzzy operations, which are generalizations of the corresponding 

crisp set operations.

Consider the fuzzy sets A~ and B~
 in the universe X.

 A~ = {( , ( )) | ; ( ) [ , ]}
~ ~

x x x X xA Am mŒ Œ 0 1  (12.12)

 B~
 = {( , ( )) | ; ( ) [ , ]}

~ ~
x x x X xB Bm mŒ Œ 0 1  (12.13)

The operations with A~ and B~
 are introduced via operations on their membership functions mA~

(x) and 

mB~
(x) correspondingly.

The standard complement, A
~

, of fuzzy set A~
 with respect to the universal set X , is defined for all x Œ X 

by the equation

 m
A

x
~

( ) =D 1- " ŒmA x x X
~

( )  (12.14)

The standard operation, A B
~ ~

«  is defined for all x Œ X by the equa tion

 mA B x
~ ~

( )«  =D min [ ( ), ( )]
~ ~

m mA Bx x  ∫ mA x
~

( ) Ÿ mB x x X
~

( ) " Œ  (12.15)

where Ÿ indicates the min operation.

The standard union, A B
~ ~

» , is defined for all x Œ X by the equation

 mA B x
~ ~

( )»  =D max [ ( ), ( )] ( ) ( )
~ ~ ~ ~

m m m mA B A Bx x x x∫ ⁄  " x ŒX (12.16)

where ⁄ indicates the max operation.

12.3.4

Consider two universes (crisp sets) X and Y. The Cartesian pro duct (or cross product) of two sets X and 

Y (in this order) is the set of all ordered pairs, such that, the first element in each pair is a member of X, 

and the second element is a member of Y. Formally,

 X ¥ Y = {(x, y); x Œ X, y Œ Y} (12.17)

where X ¥ Y denotes the Cartesian product.

A fuzzy relation on X ¥ Y, denoted by R
~

, or R
~

(X, Y ) is defined as the set

 R~ = {(( , ), ( , )) |( , ) , ( , ) [ , ]}
~ ~

x y x y x y X Y x yR Rm mŒ ¥ Œ 0 1  (12.18)

where mR x y
~

( , )  is a function in two variables, called membership function of the fuzzy relation. It gives 

the degree of membership of the ordered pair (x, y) in R~, associating with each pair (x, y) in X ¥ Y, a real 

number in the interval [0, 1]. The degree of membership indicates the degree to which x is in relation 

with y. It is clear that a fuzzy relation is basically a fuzzy set.



788  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 12.5

Consider an example of fuzzy sets: the set of people with normal weight. In this case, the universe of 

discourse appears to be all potential weights (the real line). However, the knowledge representation in 

terms of this universe, is not useful. The normal weight of a person is a func tion of his/her height.

Body Mass Index (BMI) = 
Weight kg

(Height, m)2

Normal BMI for males is 20–25, and for females is 19–24. Values between 25 to 27 in men and 24 to 27 

in women indicate overweight; and those over 27 indicate obesity. Of course, values below 20 for men 

and below 19 for women indicate underweight.

The universe of discourse for this fuzzy set is more appropriate ly the Cartesian product of two universal 

sets: X, the set of all potential heights, and Y, the set of all potential weights. The Cartesian product space 

X ¥ Y is a universal set which is a set of ordered pairs (x, y), for each x Œ X and each y Œ Y.

A subset of the Cartesian product X ¥ Y, satisfying the knowledge attribute ‘normal weight’ is a set of 

(height, weight) pairs. This is called a relation R
~

. The membership value for each ele ment of R~ depends 

on BMI. For men, a BMI of 27 and more could be given a membership value of 0, and a BMI of less 

than 18 could also be given a membership value of 0; and membership value between 0 and 1 for BMI 

between 18 and 27.

Example 12.6

Because fuzzy relations, in general, are fuzzy sets, we can define the Cartesian product to be a relation 

between two or more fuzzy sets. Let A~ be a fuzzy set on universe X, and B~
 be a fuzzy set on universe 

Y; then the Cartesian product between fuzzy sets A~
 and B~

 will result in a fuzzy relation R~, which is 

contained within the full Cartesian product space, or

  A B
~ ~

¥  = R~ Ã X  ¥ Y (12.19a)

where the fuzzy relation R~
 has membership function

 mR x y
~

( , ) = mA B
~ ~

¥ (x, y) = min [ ( ), ( )]
~ ~

m mA Bx y "x Œ X, "y Œ Y  (12.19b)

Note that the min combination applies here because each element (x, y), in the Cartesian product, is 

formed by taking both elements x, y together, not just the one or the other.

As an example of the Cartesian product of fuzzy sets, we consider premise quantification. Atomic fuzzy 

propositions do not, usually, make a knowledge base in real-life situations. Many propositions connected 

by logical connectives may be needed. A set of such compound propositions, connected by IF-THEN 

rules, makes a knowl edge base.

Consider two propositions defined by

p =D x is A~
q =D y is B~

where A~ and B~ are the fuzzy sets:
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 A~ = x x x XA, ( )m
 

( ) Œ{ }
 B~ = y y y YB, ( )m

 
( ) Œ{ }

The meaning of the linguistic terms ‘x is A~
’, and ‘y 

is B~
’ is quantified via the membership functions 

mA x
~

( ) and mB y
~

( ), respec tively. Now, we seek to 

quantify the linguistic premise ‘x is A~ and y is B~
’ 

of the rule:

 IF x is A~
 and y is B~

 THEN z is C
~

 (12.20a)

The main item to focus on is, how to quantify the 

logical and operation that combines the mean-

ing of two linguistic terms. As said earlier, there 

are actually several ways (t-norms) to define 

this quantification. In the following, we use min 

operation:

 m premise x y( , ) = min [ ( ), ( )]
~ ~

m mA Bx y  "x Œ X, "y Œ Y (12.20b)

Does this quantification make sense? Notice that this way of quantifying the and operation in the premise, 

indicates that you can be no more certain about the conjunction of two statements, than you are about the 

individual terms that make them up.

The conjunction operator (logical connective and), implemented as Cartesian product, is described in 

Fig. 12.14.

 m premise x y( , ) = mA B
~ ~

¥ (x, y) = min [ ( ), ( )]
~ ~

m mA Bx y " Œ " Œx X y Y,  (12.20c)

Example 12.7

We consider here quantification of ‘implication’ operator via fuzzy logic. Consider the implication 

statement

IF pressure is high THEN volume is small

The membership function of the fuzzy set A~ = ‘big pressure’,

 mA x
~

( ) = 

1 5

1 5 4 1 5

0

;

( ) / ;

;

x

x x

≥
- - £ £

Ï

Ì
Ô

Ó
Ô otherwise

is shown in Fig. 12.15a. The membership function of the fuzzy set B~ = ‘small volume’, 

 mB y
~

( ) = 

1 1

1 1 4 1 5

0

;

( ) / ;

;

y

y y

£
- - £ £

Ï

Ì
Ô

Ó
Ô otherwise

x

B

y
A

A B¥

mA B¥ ( , )x y

Fig. 12.14 
implemented as Cartesian product
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is shown in Fig. 12.15b.

Fig. 12.15

If p is a proposition of the form ‘x is A~
’ where A~ is a fuzzy set on the universe X, e.g., ‘big pressure’, and q 

is a proposition of the form ‘y is B
~

’ where B
~

 is a fuzzy set on the universe Y, e.g., ‘small volume’, then one 

encounters the following problem:

How does one define the membership function of the fuzzy implica tion A~ Æ B~? 

There are different important classes of fuzzy implication operators based on t-norm and t-conorm. 

In many practical applications, one uses Mamdani’s implication operator to model causal relationship 

between fuzzy variables:

 mA B x y
~ ~

( , )Æ  = min [ ( ), ( )]
~ ~

m mA Bx y  " Œ " Œx X y Y,  (12.21)

The fuzzy implication A~ Æ B~ is a fuzzy relation in the Cartesian product space X¥Y.

Note that Mamdani’s implication operator gives a relation which is symmetric with respect to A~ and 

B~. This is not intuitively satisfying, because ‘implication’ is not a commutative operation. In practice, 

however, the method provides good, robust results. The justification for the use of the min operator to 

represent the implication, is that we can be no more certain about our consequent than our premise.

12.4 FUZZY INFERENCE

Problems featuring uncertainty and ambiguity have been success fully addressed subconsciously by 

humans. Humans can adapt to unfamiliar situations and they are able to gather information in an efficient 

manner and discard irrelevant details. The informa tion gathered need not be complete and precise, and 

could be general, qualitative and vague, because humans can reason, infer and deduce new information 

and knowledge. They can learn, per ceive and improve their skills through experience.

How can humans reason about complex systems, when the complete description of such a system often 

requires more detailed data than a human could ever hope to recognize simultaneously, and assimilate 

with understanding? The answer is that humans have the capacity to reason approximately. In reasoning 

about a complex system, humans reason approximately about its behavior, thereby maintaining only a 

generic understanding about the problem.
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The fuzzy set theory has provided a mathematical strength to capture the uncertainties associated 

with human congnitive pro cesses, such as thinking and reasoning. Fuzzy logic provides an inference 

morphology that enables approximate human reasoning capabilities to be applied to knowledge-based 

systems.

Fuzzy conditional, or fuzzy IF-THEN production rules are symboli cally expressed as 

 IF (premise ) THEN (consequent )i i
i

N{ } = 1

Here N is the number of rules.

Two major types of fuzzy rules exist: Mamdani fuzzy rules, and Sugeno fuzzy rules.

12.4.1

In Mamdani fuzzy rules, both the premises and the consequents are fuzzy propositions (atomic/

compound). Consider first the case of a rule with atomic propositions. For example:

  ‘IF x is A~  THEN y is B~ ’ (12.22a)

If we let X be the premise universe of discourse, and Y the consequent universe of discourse, then the 

relation between the premise A~  and consequent B~  can be described using fuzzy sets on the Cartesian 

product space X ¥ Y. Using Mamdani’s implication rule,

 R~ = A~ Æ B~
 mR x y

~
( , ) = mA B x y

~ ~
( , )Æ

  = min [ ( ), ( )]
~ ~

m mA Bx y  " Œ " Œx X y Y,  (12.22b)

When the rule premise or rule consequent are compound fuzzy propositions, then the membership  

function, corresponding to each such compound proposition, is first determined. The above operation 

is applied to represent IF-THEN relation. Quite often, in control applications, we come across  

logical connective and (conjunction operation on atomic propositions), which, as we have seen in 

Example 12.6, may be implemented by Cartesian product.

The rules of inference in fuzzy logic govern the deduction of final conclusion from IF-THEN rules for 

known inputs (Fig. 12.16). Consider the statements:

 rule : IF x is A~
 THEN y is B~

 input : x is A~
¢ (12.23)

 inference : y is B~
¢

Here the propositions ‘x is A
~

’, ‘x is A~
¢’, ‘y is B

~
’ and ‘y is B~

¢’ are characterized by fuzzy sets A~, A~
¢, B~, 

and B~
¢, respectively.

  A~ = {( , ( )) | ; [ , ]}
~ ~

x x x XA Am mŒ Œ 0 1

  A~
¢  = {( , ( )) | ; [ , ]}

~ ~
x x x XA Am m¢ ¢Œ Œ 0 1  (12.24)

  B~ = {( , ( )) | ; [ , ]}
~ ~

y y y YB Bm mŒ Œ 0 1

  B~
¢  = {( , ( )) | ; [ , ]}

~ ~
y y y YB Bm m¢ ¢Œ Œ 0 1

Fuzzy sets A~
 and A~

¢ are close but not equal, and same is valid for the sets B~
 and B~

¢.

Fig. 12.16 Inference mechanism
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Inference mechanism is based on matching of two fuzzy sets A~
¢ and R~, and determining membership 

function of B~
¢ according to the result. Note that X denotes the space in which the input A~

¢ is defined, and 

it is subspace of the space X  ¥ Y in which the rule-base relation R~ is defined. It is, therefore, not possible 

to take the intersection of A~
¢ and R~

; an operation required for matching the two sets, to incorporate the 

knowledge of the membership functions of both the input and the rule base. But when A~
¢  is extended to 

X ¥ Y, this is possible.

Cylindrical extension of A~
¢ (a fuzzy set defined on X ) on X ¥ Y is the set of all tuples (x, y) Œ X ¥ Y, with 

membership degree equal to mA x¢~
( ), i.e.,

 mce A x y( )
~

( , )¢  = m ¢A x
~

( ) for every y Œ Y (12.25)

Now, the intersection operation, to incorporate the knowledge of membership functions of input and rule 

base, is possible. It is given by

ce A R( )~ ~¢ «
In terms of membership functions, this operation may be expressed as

 m mce A Rx y x y( )
~ ~

( , ) ( , )¢ Ÿ   = min[mce A( )~¢ (x, y), mR~
(x, y)] " Œ " Œx X y Y,

 mR x y
~

( , ) = mA B x y
~ ~

( , )Æ  = min[mA~
(x), mB~

(y)]

 mce A x y( )
~

( , )¢  = m ¢A x
~

( )

Therefore, 

 mS~
(x, y) = mce A( )

~
¢ (x, y) Ÿ mR~

(x, y) = min(mA¢~
(x), min(mA~

(x), mB~
(y))) (12.26)

By projecting this matched fuzzy set (defined on X ¥ Y) over the inference subspace Y, we can determine 

the membership func tion m ¢B
~

(y) of the fuzzy set B~¢ (defined on Y).

Projection of mS~
(x, y) (a fuzzy set defined on X ¥ Y) on Y, is a set of all y Œ Y with membership grades 

equal to max{ ( , )}; max
~x
S

x
x ym  means maximum with respect to x while y is considered fixed, i.e.,

 m proj S( )~
(y) = max{ ( , )}

~x
S x ym  (12.27)

Projection on Y means that yi is assigned the highest membership degree from the tuples (x1, yi), 

(x2, yi), (x3, yi), ..., where x1, x2, x2, ... Œ X and yi Œ Y. The rationale for using the max operation on the 

membership functions of S
~

 should be clear in view of the fact that we have a many-to-one mapping.

The combination of fuzzy sets with the aid of cylindrical exten sion and projection, is called composition. 

It is denoted by �.

If A~
¢ is a fuzzy set defined on X and R~ is a fuzzy relation de fined on X ¥ Y, then the composition of A~

¢ 
and R~ resulting in a fuzzy set B~

¢ defined on Y is given by

 B~
¢ = ¢A R

~ ~
�  = proj ( (

~
)

~
)ce A R¢ «  on Y (12.28)

Note that, in general, intersection is given by a t-norm, and projection by a t-conorm, resulting in many 

definitions of composition operator. In our applications, we will mostly use min operator for t-norm and 

max operator for t-conorm. Therefore, we have the following compositional rule of inference:

 m ¢B~
(y) = max{min( ( ), min( ( ), ( )))}

~ ~ ~x
A A Bx x ym m m¢  (12.29)

This inference rule, based on max-min composition, uses Mamdani’s rule for implication operator.
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In control applications, as we shall see later, the fuzzy set ¢A
~

 is fuzzy singleton, i.e.,

 m ¢A~
(x) = 

1

0

0for

for all other

x x X

x X

= Œ
Œ

Ï
Ì
Ó

 (12.30)

This results in a simple inference procedure, as is seen below.

 m ¢B
~

(y) = 
min( ( ), ( )) ,m m

  
A Bx y x x y Y

x y Y

for  

for all other ,

= " Œ

" Œ

Ï
Ì
Ô

ÓÔ

0

0
 (12.31)

Graphical representation of the procedure is shown in Fig. 12.17.

x
y

x0

mA( )x

mA( )x0

mB( )y

mB¢( )y

Fig. 12.17 Inference procedure for singleton fuzzy system

When the rule (12.20a) has a compound proposition in premise part, connected by logical connectives, 

then mA~
 in (12.31) is replaced by m premise. For rules with AND’ed premise, one might use min or product 

t-norm for calculating m premise (we have used min in Eqn. (12.20b)); and for rules with OR’ed premise, 

we may use max t-conorm for the calculation of m premise. Of course, other t-norms and t-conorms are 

also premissible.

 Singleton fuzzy system is most widely used because of its sim plicity and lower computational 

requirements. However, this kind of fuzzy system may not always be adequate, especially in cases where 

noise is present in the data. Nonsingleton fuzzy system becomes necessary to account for uncertainty in 

the data.

12.4.2

Unlike Mamdani fuzzy rules, Sugeno rules are functions of input variables on the rule consequent. A 

typical rule, with two input variables and one output variable, is of the form:

 IF x1 is A~ and x2 is B
~

 THEN y = f (x1, x2)  (12.32a)

where f (◊) is a real function.

 In theory, f (◊) can be any real function, linear or nonlinear. It seems to be appealing to use nonlinear 

functions; rules are more general and can potentially be more powerful. Unfortunately, the idea is 

impractical; properly choosing or determining the mathematical formalism of nonlinear functions for 

every fuzzy rule in the rule base, is extremely difficult, if not impossible. For this reason, linear functions 
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have been employed exclusively in theoretical research, and practical development, of Sugeno fuzzy 

models. For a system with two input variables and one output variable, ith rule in the rule base is of the 

form:

 IF x1 is A
i

~
( )

 and x2 is B
i

~
( )

 THEN y(i) = ai,0 + ai,1 x1 + ai,2 x2 (12.32b)

where the ai, j are real numbers.

We can view the Sugeno fuzzy system as a nonlinear interpolator between the linear mappings that are 

defined by the functions in the consequents of the rules. It is important to note that a Sugeno fuzzy system 

may have any linear mapping as its output function which contributes to its generality. One mapping that 

has proven to be particularly useful, is to have a linear dynamic system as the output function so that the 

ith rule (12.32b) takes the form:

 IF x1 is A
i

~
( )

 and x2 is B
i

~
( )

 THEN  x(t) = Ai x(t) + biu(t); i = 1, 2, ..., R  (12.32c)

where A
i

~
( )

 and B
i

~
( )

 are the fuzzy sets of the ith rule, and Ai and bi are state and input matrices (of 

appropriate dimensions) of the local description of the linear dynamic system. Such a fuzzy system can 

be thought of as a nonlinear interpolator between R linear systems. The premise membership functions 

for each rule quantify whether the linear system in the consequent is valid for a specific region on the state 

space. As the state evolves, different rules turn on, indicating that other combinations of linear models 

should be used. Overall, we find that the Sugeno fuzzy system provides a very intuitive representation of 

a nonlinear system as a nonlinear interpolation between R linear models [145].

We will limit our discussion to the more widely used controllers—the Mamdani type singleton fuzzy 

logic systems. Sugeno architecture will be employed for data-based fuzzy modeling.

12.5

Figure 12.18 shows the basic configuration of a fuzzy logic controller (FLC), which comprises four 

principal components: a rule base, a decision-making logic, an input fuzzification interface, and an 

output defuzzification interface. The rule base holds a set of IF-THEN rules, that quantify the knowledge 

that human experts have amassed about solving particular problems. It acts as a resource to the decision-

making logic, which makes successive decisions about which rules are most relevant to the current 

situation, and applies the actions indicated by these rules. The input fuzzifier takes the crisp numeric 

inputs and, as its name implies, converts them into the fuzzy form needed by the decision-making logic. 

At the output, the defuzzification inter face combines the conclusions reached by the decision-making 

logic and converts them into crisp numeric values as control actions.

We will illustrate the FLC methodology, step by step, on a water-heating system.

Consider a simple water-heating system shown in Fig. 12.19. The water heater has a knob (HeatKnob) 

to control the steam for circulation through the radiator. The higher the setting of the HeatKnob, the 

hotter the water gets, with the value of ‘0’ indi cating the steam supply is turned off, and the value of ‘10’ 

indicating the maximum possible steam supply. There is a sensor (TempSense) in the outlet pipe to tell us 

the temperature of the outflowing water, which varies from 0ºC to 125ºC. Another sensor (LevelSense) 

tells us the level of the water in the tank, which varies from 0 (= empty) to 10 (= full). We assume that 
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Fig. 12.18 A simple fuzzy logic control system block diagram
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Fig. 12.19
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there is an automatic flow control that determines how much cold water flows into the tank from the main 

water supply; whenever the level of the tank gets below 4, the flow control turns ON, and turns OFF 

when the level of the water gets above 9.5.

Figure 12.20 shows a FLC diagram for the water-heating system.

Water inlet

Input

Output
Input

Fuzzy logic
controller

HeatKnob

LevelSense

TempSense

Water outlet

Go

Gi2

Gi1

Fig. 12.20

 The design objective can be stated as:

Keep the water temperature as close to 80ºC as possible, in spite of changes in the hot water flowing out 

of the tank, and the cold water flowing into the tank.

Three fuzzy variables characterize the 

behavior of the water-heating system.

Input Variables: TempSense and LevelSense

Output Variable: HeatKnob

 For x = outlet water temperature (linguistic variable TempSense), the universe of discourse is 

X = [0ºC,125ºC]

 For y = level of water in the tank (linguistic variable Level Sense), the universe of discourse is 

Y = [0,10]

 For z = HeatKnob setting (linguistic variable HeatKnob), the universe of discourse is

Z = [0,10]

The frame of TempSense is 

TempSense TempSense X TempSense~ ~
, , ,

~
L Lm
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where LTempSense
~

 is the set of linguistic values that TempSense can take. We may use the following 

fuzzy subsets to describe the linguistic values:

XSmall (XS); Small (S); Medium (M); Large (L); XLarge (XL)

i.e.,

LTempSense
~

 = {XSmall, Small, Medium, Large, XLarge}

The frame of LevelSense is 

 LevelSense LevelSense Y LevelSense~ ~
, , ,

~
L Lm

L LevelSense
~

 = {XSmall, Small, Medium, Large, XLarge}

In our system, we have just one output which is the HeatKnob. We take the following frame for this 

linguistic variable:

HeatKnob HeatKnob Z HeatKnob~ ~
, , ,

~
L Lm

LHeatKnob
~

 = {VeryLittle, ALittle, AGoodAmount, ALot, AWholeLot}

Since the membership 

function essentially embodies all fuzziness for a particular fuzzy set, its description is the essence of 

a fuzzy property or operation. Because of the importance of the ‘shape’ of the membership function, 

a great deal of attention has been focussed on development of these functions. Many ways to develop 

membership functions, i.e., to assign membership values to fuzzy variables, have been reported in the 

literature—methods based on Inference, Neural Networks, Genetic Algorithms, Induc tive Reasoning, 

etc. The assignment process can be intuitive, or it can be based on some algorithmic or logical operations. 

We shall rely on intuition in our application examples.

The input variables TempSense and LevelSense, 

as well as the output variable HeatKnob, are 

restricted to positive values. In Table 12.1 and 

Fig. 12.21, we show a possible assignment for 

ranges and triangular membership functions 

for TempSense. Simi larly, we assign ranges 

and fuzzy membership functions for Level-

Sense in Table 12.2 and Fig. 12.22; and 

HeatKnob in Table 12.3 and  Fig. 12.23. The 

optimization of these assignments is often 

done through trial and error for achieving 

optimum performance of FLC.

The following guidelines were kept in mind while determining range of fuzzy variables as related to the 

crisp inputs.

 (i) Symmetrically distribute the fuzzified values across the uni verse of discourse.

Crisp Input Range Fuzzy Variable

0–20 XSmall

10–35 Small

30–75 Medium

60–95 Large

85–125 XLarge
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 (ii) Use an odd number of fuzzy sets for each variable so that some set is assured to be in the middle. 

The use of 5 to 7 sets is fairly typical.

 (iii) Overlap adjacent sets (by 15% to 25%, typically).

Now that we have the inputs and the outputs in terms of fuzzy 

variables, we need only specify what actions to take, under what conditions; i.e., we need to construct a 

set of rules that de scribe the operation of the FLC. These rules usually take the form of IF-THEN rules, 

and can be obtained from a human expert (heuristics).

The rule-base matrix for our example is given in Table 12.4. Our heuristic guidelines, in determining this 

matrix, are the following:

 (i) When the temperature is low, the HeatKnob should be set higher than when the temperature is 

high.

 (ii) When the volume of water is low, the HeatKnob does not need to be as high as when the volume 

of water is high.

 Decision table

TempSense Æ
LevelSense

Ø

XS S M L XL

XS AGoodAmount ALittle VeryLittle

S ALot AGoodAmount VeryLittle VeryLittle

M AWholeLot ALot AGoodAmount VeryLittle

L AWholeLot ALot ALot ALittle

XL AWholeLot ALot ALot AGoodAmount

In FLCs we do not need to specify all the cells in the matrix. No entry signifies that no action is taken. For 

example, in the column for TempSense = XLarge, no action is required since the temperature is already 

at or above the target temperature.

Crisp Input Range Fuzzy Variable

0–2 XSmall

1.5–4 Small

3–7 Medium

6–8.5 Large

7.5–10 XLarge

Crisp Input Range Fuzzy Variable

0–2 VeryLittle

1.5–4 ALittle

3–7 AGoodAmount

6–8.5 ALot

7.5–10 AWholeLot
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 Let us examine a couple of typical entries in the table: For LevelSense = Small, and TempSense = XSmall, 

the output is HeatKnob = ALot. Now for the same temperature, as the water level rises, the setting 

on HeatKnob should also rise—to compen sate for the added volume of water. We can see that for  

Level Sense = Large and TempSense = XSmall, the output Heat Knob = AWholeLot.

We can translate the table entries into IF-THEN rules. We give here a couple of rules.

  IF TempSense is Small and LevelSense is Small THEN set HeatKnob to ALot.

  IF TempSense is XSmall and LevelSense is Large THEN set HeatKnob to AWholeLot.

Using standard ideas from control 

engineering, we have introduced gains Gi1 and Gi2 with the input variables, as shown in Fig. 12.20, and at 

the same time we also put a gain Go between FLC and the plant. Change in the scaling gains, at the input 

and output of FLC, can have a significant impact on the performance of the resulting control system, and 

hence they are often convenient parameters for tuning.

 First, let us consider the effect of input scaling gain Gi1. Note that we can actually achieve the same effect 

as scaling via Gi1, by simply changing the labeling of the temperature axis for the membership function of 

the input variable TempSense. The case when Gi1 = 1 corresponds to our original choice of the membership 

functions in Fig. 12.21. The choice of Gi1 = 0.5 as the scaling gain for the FLC with these membership 

functions, is equivalent to having the membership functions shown in Fig. 12.24 with Gi1 = 1. Thus, 

the choice of a scaling gain Gi1 results in scaling the horizontal axis of the membership functions by 

1/Gi1 (multiplica tion of each number on the horizontal axis of Fig. 12.21 by 1/0.5 produces Fig. 12.24; 

membership functions are uniformly ‘spread out’ by a factor of 1/0.5). Similar statements can be made 

about Gi2 (Fig. 12.25).

Figure 12.23 shows our choice of output membership functions with Go = 1. There is a proportional 

effect between the scaling gain Go and the output membership functions as shown in Fig. 12.26 for

Go = 2.

If, for the process under consideration, the effective universes of discourse for all inputs and output are 

common, say, [0, 1], then we may say that the FLC is normalized. Clearly, scaling gains can be used to 

normalize the given FLC. Denormalization of the output of such a FLC will yield the required control 

action.

MS
m ( )x XS XLL

0 40
0.5

20
0.5

60
0.5

80
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100
0.5

120
0.5

x

Fig. 12.24
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It is important to realize that the scaling gains are not the only parameters that can be tuned to improve 

the performance of the fuzzy control system. Membership function shapes, position ing, and number and 

type of rules are often the other parameters to tune.

We set Gi1 = Gi2 = Go = 1 for our design problem.

Fuzzy sets are used to quantify information in the rule 

base, and the inference mechanism operates on fuzzy sets and produces fuzzy sets. Inputs to the FLC 

are the measured output variables of the controlled process, which are crisp variables. And input to the 

controlled process (control action) is required to be crisp. Therefore, we must specify how the fuzzy 

system will convert the numeric (crisp) inputs to the FLC into fuzzy sets (a process called ‘fuzzification’). 

Also we must specify how the fuzzy system will convert the fuzzy sets produced by inference mechan ism 

into numeric (crisp) FLC output (a process called ‘defuzzifi cation’), which is the input to the controlled 

process.

Fuzzification can be defined as a mapping from an observed input space to fuzzy sets in a specified 

universe of discourse. A natural and simple fuzzification approach is to convert a crisp measurement into 

a fuzzy singleton within the specified universe of discourse. This approach is based on the assumption 

that the observed data is crisp, and not corrupted by random noise.
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To understand fuzzification, we consider an example. Assume that at a particular point in time,  

LevelSense = 6.5 and TempSense = 65ºC. These are the crisp inputs directly from the sensors. Figures 

12.21 and 12.22 show the membership functions for the input variables and indicate with vertical lines the 

measured values of LevelSense and TempSense. These vertical lines are, in fact, graphical representation 

of the two fuzzy singletons ob tained by the fuzzification process.

We see that with singleton fuzzification, combining 

the fuzzy sets that were created by the fuzzification process to represent the inputs with the premise 

membership functions for the rules, is particularly simple. It simply reduces to computing the mem-

bership values of the input fuzzy sets for the given inputs.

From Fig. 12.21 we find that for input TempSense = 65ºC, mM
~

(65) = 0.45, mL
~

(65) = 0.28, and all 

other membership functions are off (i.e., their values are zero). Therefore, the proposition ‘Temp Sense is 

Medium’ is satisfied to a degree of 0.45, the proposi tion ‘TempSense is Large’ is satisfied to a degree of 

0.28; all other atomic propositions associated with TempSense are not satisfied.

From Fig. 12.22 we find that for input LevelSense = 6.5, mM
~

(6.5) = 0.25, mL
~

(6.5) = 0.38; all other 

membership functions are off.

We next form membership values of premises of all the rules. From the induced decision table (Table 12.5), 

we observe that the rules that have the premise terms:

 (i) TempSense is Medium and LevelSense is Medium

 (ii) TempSense is Large and LevelSense is Medium

 (iii) TempSense is Medium and LevelSense is Large

 (iv) TempSense is Large and LevelSense is Large

have m premise > 0. For all other rules, m premise = 0.

Determining applicability of each rule is called ‘firing’. We say that, a rule fires at time t if its premise 

membership value at time t is greater than zero. The inference mechanism seeks to determine which rules 

fire, to find out which rules are relevant to the current situation. The inference mechanism combines the 

recommendations of all the rules, to come up with a single conclu sion.

 Induced Decision table

TempSenseÆ
LevelSense

Ø

mXS
~

= 0 mS
~

= 0 mM
~

.= 0 45 mL
~

.= 0 28 mXL
~

= 0

mXS
~

 = 0 0 0 0 0 0

mS
~

 = 0 0 0 0 0 0

mM
~

 = 0.25 0 0 AGoodAmount VeryLittle 0

mL
~

 = 0.38 0 0 ALot ALittle 0

mXL
~

 = 0 0 0 0 0 0
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For crisp input TempSense = 65ºC, and LevelSense = 6.5, four rules fire. m premise  for the four rules (refer 

to Table 12.5), which amounts to firing strength in each case, can be calculated as follows:

 (i) mTempSense LevelSense
~ ~

¥  = min(0.45,0.25) = 0.25

 (ii) mTempSense LevelSense
~ ~

¥  = min(0.28,0.25) = 0.25

 (iii) mTempSense LevelSense
~ ~

¥  = min(0.45,0.38) = 0.38

 (iv) mTempSense LevelSense
~ ~

¥  = min(0.28,0.38) = 0.28

From the induced decision table 

(Table 12.5), we observe that only four cells contain nonzero terms. Let us call these cells active. The 

active cells correspond to the following rules:

 (i) TempSense is Medium and LevelSense is Medium : p1

   Set HeatKnob to AGoodAmount : q1

   IF p1 THEN q1

  m premise( )1  = 0.25

  minference(1)  is obtained by ‘chopping off’ the top of mAGoodAmount
~

 func tion of the output variable 

HeatKnob, as shown in Fig. 12.27a.

 (ii) TempSense is Large and LevelSense is Medium : p2

   Set HeatKnob to VeryLittle : q2

   IF p2 THEN q2

  m premise( )2  = 0.25

  minference(2)  is shown in Fig. 12.27b.

 (iii) TempSense is Medium and LevelSense is Large : p3

   Set HeatKnob to ALot : q3

   IF p3 THEN q3

  m premise( )3  = 0.38

  minference(3) is shown in Fig. 12.27c.

 (iv) TempSense is Large and LevelSense is Large : p4

   Set HeatKnob to ALittle : q4

   IF p4 THEN q4

  m premise( )4  = 0.28

  minference(4) is shown in Fig. 12.27d.

The reader should note that for different crisp measurements TempSense and LevelSense, there will be 

different values of m premise and, hence, different minference functions will be obtained.

In the 

previous step, we noticed that the input to the inference process is the set of rules that fire; its output is 

the set of fuzzy sets that represent the inference reached by all the rules that fire. We now combine all 

the recommendations of all the rules to determine the control action. This is done by aggregat ing (union 

operation) the inferred fuzzy sets. Aggregated fuzzy set, obtained by drawing all the inferred fuzzy sets 

on one axis, is shown in Fig. 12.28. This fuzzy set represents the desired control action.
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1

z
1 2 3 4 5 6 7 8 9 10

magg( )z
z* = 4.66

Fig. 12.28 Aggregated fuzzy set

Defuzzification is a mapping from a space of fuzzy control ac tions defined by fuzzy sets on an 

output universe of discourse, into nonfuzzy (crisp) control actions. This process is necessary because 

crisp control action is required to actuate the control.

There are many approaches to defuzzification. We will consider here the ‘Center of Area’ (COA) method, 

which is known to yield superior results.

We may discretize the universe Z into q equal (or almost equal) subintervals by the points z1, z2, ..., zq–1. 

The crisp value z*, according to this method is 

 z* = 

z z

z

k k

k

q

k

k

q

m

m

agg

=

agg

=

( )

( )

1

1

1

1

-

-

Â

Â
 (12.33)
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From Fig. 12.28, we obtain

 S zk magg = 1 × 0.25 + 1.5 × 0.25 + 2 × 0.28 + 3 × 0.28 + 4 × 0.25 

  + 5 × 0.25 + 6 × 0.25 + 7 × 0.38 + 8 × 0.38 = 11.475

 S magg = 0.25 + 0.25 + 0.28 + 0.28 + 0.25 + 0.25 + 0.25 + 0.38 + 0.38 = 2.57

Therefore,

z* = 
11 475

2 57

.

.
 = 4.46

The physical interpretation of z* is that, if the area is cut of a thin piece of metal or wood, the center of 

the area will be the center of gravity.

In fact, there is hardly any need of discretization of the uni verse for situations like the one shown in  

Fig. 12.28; we can split up geometry into pieces and place a straight edge (cen troid) through the figure 

to have it perfectly balanced with equal area of the figure on either side. Analytical expres sion for z* is

 z* = 
m

m

agg

agg

( )

( )

z zdz

z dz

z

z

Ú
Ú

 (12.34)

This completes the design for the simple example we chose.

12.6

The Mamdani architecture is widely used for capturing expert knowledge. It allows us to describe the 

expertise in more intuitive, more human-like manner. On the other hand, the Sugeno architecture is by 

far the most popular candidate for data-based fuzzy modeling.

Basically, a fuzzy model is a ‘Fuzzy Inference System (FIS)’ composed of four principal components: 

a fuzzification interface, a knowledge base, a decision-making logic, and a defuzzification interface. 

Figure 12.29 shows the basic configuration of FIS for data-based modeling.

Fig. 12.29
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We consider here, a single-output FIS in the n-dimensional input space. Let us assume that the following 

P input-output pairs are given as training data for constructing FIS model:

 x
( ) ( ), , , ,p py p P={ }1 2 …  (12.35)

where x
( ) ( ) ( ) ( )p p p

n
p

T

x x x= 1 2  ÈÎ ˘̊  is the input vector of pth input-output pair and y( p) is the corresponding 

output.

The fuzzification interface performs a mapping that converts crisp values of input variables into fuzzy 

singletons. A singleton is a fuzzy set with a membership function that is unity at a single particular 

point on the universe of discourse (the numerical-data value), and zero everywhere else. Basically, a 

fuzzy singleton is a precise value and hence no fuzziness is introduced by fuzzification in this case. This 

strategy, however, has been widely used in fuzzy modeling applications because it is easily implemented.

 There are two factors that determine a database (i) a fuzzy partition of an input space, and (ii) membership 

functions of antecedent fuzzy sets. Assume that the domain interval of the ith input variable xi, is equally 

divided into Ki fuzzy sets labeled A~i1, A~i2, ..., AiKi~
, for i = 1, 2, ..., n. Then the n-dimensional input space 

is divided into K1 ¥ K2 ¥ � ¥ Kn fuzzy partition spaces:

 ( , , , )~ ~ ~A A Aj j njn1 21 2
… ; j1 = 1, 2, ..., K1; ...; jn = 1, ..., Kn (12.36)

Though any type of membership functions (e.g., triangle-shaped, trapezoid-shaped, bell-shaped, etc.) 

can be used for fuzzy sets, we employ the symmetric triangle-shaped fuzzy sets, Ai ji~
, with the following 

membership functions:

  mA i ji~
( ) ( ) ; , , ,

( , )

( , )

x x
x c

w
j Ki i j i

i i j

i j
i ii

i

i

= = -
-

=D
m 1

2
1 2 …  (12.37)

c i ji( , ) is the center of the membership function, where the 

membership grade is equal to 1, and w i ji( , ) denotes the width of 

the membership function (Fig. 12.30).

By means of the input-output data, the range x xi i
min max,ÈÎ ˘̊  of 

the ith input variable is determined, where

  x x x xi
p P

i
p

i
p P

i
pmin

{ , , }

( ) max

{ , , }

( )
min , max= =

= =1 1… …

  (12.38a)

The center position of each membership function with respect 

to the ith variable is determined by 

 c x j x x K c xi j i i i i i i ii( , )
min max min

( , )
min( ) ( ) /( ) ; ;= =+ - - -ÈÎ ˘̊1 1 1 cc xi K ii( , )

max=  (12.38b)

To achieve sufficient overlap from one linguistic label to another, we take 

 w c ci j i j i ji i i( , ) ( , ) ( , )( )= -+2 1  (12.38c)

Figure 12.31 shows an example where the domain interval of x1 is divided into K1 = 5 fuzzy sets.

The rule base consists of a set of fuzzy IF-THEN rules in the form ‘IF a set of conditions are satisfied 

THEN a set of consequences can be inferred’. Different types of consequent parts have been used in 

1

mi j ii
( )x

c( , )i ji
w( , )i ji

xi

Fig. 12.30 Parameters of a mem
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fuzzy rules; the two commonly used fuzzy models are based on Mamdani’s approach and Sugeno’s 

approach. We restrict our discussion to Sugeno architecture: the domain interval of y is represented by 

R linear functions, giving rise to R fuzzy rules. All the rules corresponding to the possible combinations 

of the inputs are implemented. The total number of rules R for an n-input system is : K1 ¥ K2 ¥   ¥ Kn.

The format of fuzzy rules is,

Rule r: IF x1 is A j1 1~
 and   and xn is Anjn~

 THEN 

 ˆ ; , , ,( ) ( ) ( ) ( )y a a x a x r Rr r r
n
r

n= + + + =0 1 1 1 2… …  (12.39)

The consequent part is a linear function of the input variables xi; a0, a1, ..., an are the (n + 1) parameters 

that determine the real consequent value. The aim of the linear function is to describe the local linear 

behavior of the system. Each rule r gives rise to a local linear model. The selected R rules are required 

to approximate the function that theoretically underlines the system behavior most consistently, with the 

given sample of input-output data (12.35) (When ŷ is a constant in (12.39), we get a Sugeno model in 

which the consequent of a rule is specified by a singleton).

The decision-making logic employs fuzzy IF-THEN rules from the rule base to infer the output by a 

fuzzy reasoning method. The contribution of each local linear model (i.e., each rule) in the estimated 

output of the FIS is dictated by the firing strength of the rule. We use product strategy to assign firing 

strength m (r) to each rule r = 1, 2, …, R.

Given an input vector, x
( ) ( ) ( )

, , ...,p p p
n
p

T
x x x= 1 2

ÈÎ ˘̊ , the degree of compatibility of x(p) to the rth fuzzy 

IF-THEN rule is the firing strength m(r) of the rule, and is given by (note that we have used product 

t-norm operator on the premise part of the rule)

 
m m m m( ) ( ) ( ) ( ) ( )

( , )

( ) ( ) ( ) ( )r p
j

p
j

p
nj n

p

i j I

x x x
n

i

x = ¥ ¥ ¥

=
Œ

1 1 2 21 2
 

P
rr

ii j i
p

xm ( )
( )

 (12.40)

where Ir is the set of all Ai ji~
 associated with the premise part of rule r.

The main idea of the Sugeno architecture is that in each input fuzzy region A A Aj j njn1 21 2~ ~ ~¥ ¥ ¥  of the

input domain, a local linear system is formed. The membership function m( ) ( )( )r p
x  of each region 

is a map indicating the degree of the output of the associated linear system to the region. A simple 

defuzzification procedure is to take the output of the system as the ‘fuzzy’ combination of the outputs of 

local systems in all regions:

Fig. 12.31
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 ŷ = 
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  = ( )
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r

n
r

r

R

0 1 1

1

+ + +Â  m
=

 (12.41b)

where  m
m

m

( )
( )

( )

r
r

r

r

R
=

=1

Â
 (12.41c)

is the normalized firing strength of rule r; a ratio of firing strength of rule r to the sum of the firing 

strengths of all the rules.

Note that the output of the fuzzy model can be determined only if the parameters in rule consequents 

are known. However, it is often difficult or even impossible to specify a rule consequent in a polynomial 

form. Fortunately, it is not necessary to have any prior knowledge of rule consequent parameters for the 

Sugeno fuzzy modeling approach to deal with a problem. These parameters can be determined using 

least squares estimation method as follows.

Given the values of the membership parameters and a training set of P input-output patterns x
( ) ( ), ;p py{

p = 1,2,...,P}, we can form P linear equations in terms of the consequent parameters.

 y(p) = m m( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
( ) ( )1

0
1

1
1

1
1 2

0
2

x x
( )p p

n n
p pa a x a x a+ + +ÈÎ ˘̊ + 

)) ( ) ( ) ( ) ( )+ + +È
Î

˘
˚ +a x a x

p
n n

p
1

2
1

2
  

 + + + +ÈÎ ˘̊m ( ) ( ) ( ) ( ) ( ) ( )( ) ; , ,R p R R p
n
R

n
pa a x a x p Px

( ) =0 1 1 1 2   (12.42)

where m( ) ( )( )r p
x  is the normalized firing strength of rule r, fired by the input pattern x( p).

In terms of vectors 

 x
( )p

 = 1 1 2x x x
p p

n
p

T
( ) ( ) ( )

 ÈÎ ˘̊

 p
(r) = a a a

r r
n
r

0 1
( ) ( ) ( )

 ÈÎ ˘̊

 Q = a a a a a a an n
R

n
R

0
1

1
1 1

0
2 2

0
( ) ( ) ( ) ( ) ( ) ( ) ( )

    ÈÎ ˘̊  

(12.43)

we can write the P linear equations as follows:

 y(1) = m m m( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 1 2 1 2 1 1
x x x x xp pÈÎ ˘̊ + ÈÎ ˘̊ + + 

R
pp

( ) ( )R
x

1ÈÎ ˘̊

 y(2) = m m m( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 2 1 2 2 2 2 2 2
x x x x xp pÈÎ ˘̊ + ÈÎ ˘̊ + + 

R
pp

( ) ( )R
x

2ÈÎ ˘̊

       

 y(P) = m m m( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 2 2
x x x x x

P P P P R P
p pÈÎ ˘̊ + ÈÎ ˘̊ + + pp

( ) ( )R P
xÈÎ ˘̊  

(12.44)
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These P equations can be rearranged into a single vector-matrix equation:
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 (12.45a)

or y = XT QT (12.45b)

In the Sugeno fuzzy model given above, we have used most intuitive approach of implementing all 

possible combinations of the given fuzzy sets as rules. In fact, if data is not uniformly distributed, some 

rules may never be fired. This and other drawbacks are handled by many variants of the basic ANFIS 

model, described in the next section.

12.7

Fuzzy logic and neural networks are natural complementary tools in building intelligent systems. While 

neural networks are computational structures that perform well when dealing with raw data, fuzzy logic 

deals with reasoning, using linguistic information acquired from domain experts. However, fuzzy systems 

lack the ability to learn and cannot adjust themselves to a new environment. On the other hand, although 

neural networks can learn, they are opaque to the user. The merger of a neural network with a fuzzy 

system into one integrated system, therefore, offers a promising approach to building intelligent systems. 

Integrated systems can combine the parallel computation and learning abilities of neural networks, with 

the human-like knowledge representation and explanation abilities of fuzzy systems. As a result, neural 

networks become more transparent, while fuzzy systems become capable of learning.

The structure of a neuro-fuzzy system is similar to a multilayer neural network. In general, a neuro-fuzzy 

system has input terminals, output layer, and hidden layers that represent membership functions and 

fuzzy rules.

Roger Jang [142] proposed an integrated system that is functionally equivalent to a Sugeno fuzzy 

inference model. He called it an Adaptive Neuro-Fuzzy Inference System or ANFIS. Similar network 

structures have also been proposed for Mamdani fuzzy inference model [137]. However, the Sugeno 

model is by for the most popular candidate for data-based fuzzy modeling. Our brief presentation of the 

subject is, therefore, focused on ANFIS based on Sugeno fuzzy model.

12.7.1

Figure 12.32 shows the ANFIS architecture. For simplicity, we assume that the ANFIS has two inputs, 

x1 and x2, and one output y. Each input is represented by two fuzzy sets, and the output by a first-order 

polynomial. The ANFIS implements the following four rules:
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Rule 1: IF x1 is A11~
 and x2 is A21~

 THEN y(1) = a 0
(1) + a1

(1)x1 + a2
(1)x2 

Rule 2: IF x1 is A12~
 and x2 is A22~

 THEN y(2) = a0
(2) + a1

(2)x1 + a2
(2)x2 

Rule 3: IF x1 is A12~
 and x2 is A21~  THEN y(3) = a0

(3) + a1
(3)x1 + a2

(3)x2 

Rule 4: IF x1 is A11~
 and x2 is A22~

 THEN y(4) = a0
(4) + a1

(4)x1 + a2
(4)x2  

(12.46)

where A11~
 and A12~

 are fuzzy sets on the universe of discourse, of input variable x1, A21~
 and A22~

 are fuzzy 

sets on the universe of discourse of input variable x2; a0
(r), a1

(r) and a2
(r) is a set of parameters specified for 

rule r.

Let us now discuss the purpose of each layer in ANFIS of Fig. 12.32.

Fig. 12.32

The inputs to the nodes in the first layer are the input fuzzy sets of the ANFIS. Since these 

fuzzy sets are fuzzy singletons, numerical inputs are directly transmitted to the first-layer nodes.

Nodes in this layer represent the membership functions associated with each linguistic term of input 

variables. Every node here is an adaptive node. Links in this layer are fully connected between input 

terminals and their corresponding membership function nodes. Membership functions can be any 

appropriate parameterized function; we use Gaussian function.

 m mA i i j ii ji i
x x

~
( ) ( )=D  = exp

( , )

( , )

-
-Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

x c

w

i i j

i j

i

i

2

 (12.47)

The nodes are labeled Ai ji~ ; i = 1, 2; ji = 1, 2. Total number of nodes in this layer is, therefore, four. 

c i ji( , ) is the center (mean) and w i ji( , ) is the width (variance), respectively, of the membership function 

corresponding to the node Ai ji~ ; xi is the input and mi ji
 is the output of the node. The adjusted weights in 

Layer 1 are c i ji( , )’s and w i ji( , )’s. As the values of these parameters change, the Gaussian function varies 

accordingly; thus exhibiting various forms of membership functions of fuzzy set Ai ji~ . Parameters in this 

layer are referred to as premise parameters.

Every node in this layer is a fixed node labeled P, whose output is the product of all the 

incoming signals. Each node output represents firing strength of a rule. In fact, other t-norm operators 

could also be used as node functions.
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Each node, representing a single Sugeno fuzzy rule, has the output

  m m( )

( , )
( ) ( )r

i j I
ij i

i r
i

xx = Œ
D P  (12.48)

where Ir is the set of all Ai ji~
 associated with the premise part of rule r.

Every node in this layer is a fixed node labeled N. The rth node calculates the ratio of the rth 

rule’s firing strength, to the sum of all rules’ firing strengths:

 m( )r
 = 

m

m

( )

( )

r

r

r

R

=1

Â
 = Normalized firing strength of rule r  (12.49)

Every node is this layer is an adaptive node, is connected to the respective normalization 

node in the previous layer, and also receives inputs x1 and x2. It calculates the weighted consequent value 

of a given rule as

 ˆ ( )y r  = m( )r a a x a x
r r r

0
( )

1
( )

1 2
( )

2+ +È
Î

˘
˚  (12.50)

where m( )r
 is the normalized firing strength from layer 3, and a0

(r), a1
(r) and a2

(r) are the parameters of this 

node. Parameters in this layer are referred to as consequent parameters.

Each node in Layer 4 is a local linear model of the Sugeno fuzzy system; integration of outputs of all 

local linear models yields global output.

The single node in this layer is a fixed mode labeled S, which computes the overall output 

as the summation of all incoming signals:

 ŷ = ( ) ;
( ) ( ) ( ) ( )a a x a x R
r r r r

r

R

0 1 1 2 2

1

4+ + =Â m
=

 (12.51)

12.7.2

An ANFIS uses a hybrid learning algorithm that combines the least squares estimator and the gradient 

descent method. First, initial activation functions are assigned to each membership neuron. The function 

centers of the neurons connected to input xi, are set so that the domain of xi is divided equally, and the 

widths are set to allow sufficient overlapping of the respective functions.

In an ANFIS training algorithm, each epoch is composed of a forward pass and a backward pass. In the 

forward pass, a training set of input patterns (input vector x) is presented to the ANFIS, neurons outputs 

are calculated on the layer-by-layer basis, and the rules consequent parameters are identified by the 

least squares estimator. In the Sugeno fuzzy inference, an output ŷ  is a linear function. Thus, given the 

values of the membership parameters and a training set of P input-output patterns, we can form P linear 

equations in terms of the consequent parameters (refer to Eqns (12.45)). Least-squares solution of these 

equations yields the consequent parameters.

As soon as the rule consequent parameters are established, we can compute actual network output, ŷ, 

and determine the error 

 e = y – ŷ    (12.52)
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In the backward pass, the backpropagation algorithm in applied. The error signals are propagated back, 

and the premise parameters are updated according to the chain rule.

The goal is to minimize the error function

 E = 
1
2

2( y y- ˆ)  (12.53)

The error at Layer 5:

 
∂
∂
E

ŷ
 = ( ˆ )y y-  (12.54)

Back propagating to Layer 3 via Layer 4 (refer to Eqn. (12.51)),
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Back propagating to Layer 2 (refer to Eqn. (12.49)),
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 (12.56)

The error at Layer 1:

 Ir is the set of all Ai ji~  associated with the premise part of rule r. Reverse pass: I i ji( , ) is the set of all rule 

nodes in Layer 2 connected to (i, ji)
th node (corresponding to Ai ji~ ) of Layer 1.

Back propagating error to Layer 1 (refer to Eqn. (12.48)),
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From Eqn. (12.47), we obtain
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Denoting the iteration index by k (refer to Eqn. (11.27)),

 c ki ji( , ) ( )+1  = c k
E k

c k
i j

i j
i

i

( , )
( , )

( )
( )

( )
-

∂
∂

h  (12.58a)

 w ki ji( , ) ( )+1  = w k
E k

w k
i j

i j
i

i

( , )
( , )

( )
( )

( )
-

∂
∂

h   (12.58b)

where h is the learning rate.

For given input-output pairs (x( p), y(p); p = 1, 2, ..., P), the batch-updating algorithm back propagates the 

cumulative error resulting from the difference between y(p); p = 1,..., P, and ˆ ;( )y p  p = 1,..., P, from output 

layer to the previous layers to update weights of the network.
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In this section, we have described a method that can be used to construct identifiers of dynamical systems 

that, in turn, could be employed to construct neuro-fuzzy control systems. The idea behind the method is 

to apply the backpropagation algorithm to a fuzzy logic system.

Neuro-fuzzy control refers to the design methods for fuzzy logic controllers that employ neural network 

techniques. The design methods for neuro-fuzzy control are derived directly from methods for neural  

control. Thus, if we replace the NN blocks in Figs 11.23–11.25 with ANFIS blocks, then we end up with 

neuro-fuzzy control systems.

REVIEW EXAMPLES

Review Example 12.1

We consider here the simplest fuzzy PI control scheme for a servo motor with the control model (refer 

to Fig. 12.33a)

 
Y s

U s

( )

( )
 = G(s) = 

1

3 6s s( . )+
 (12.59)

The objective of the fuzzy controller is to control angular position y(t) of the servo motor to achieve a 

given set-point yr, within desired accuracy.

 The discretized model for the plant (refer to Chapter 3) is

 Gh0G(z) = 
Y z

U z

( )

( )
 = 

0 0237 0 0175

1 1 407 0 407

1 2

1 2

. .

. .

z z

z z

- -

- -
+

- +
 y(k) = 1.407y(k – 1) – 0.407y(k – 2) + 0.0237u(k – 1) + 0.0175u(k – 2) (12.60)

The proposed fuzzy controller (refer to Fig. 12.33b) has the following two input variables:

 e(k) = error between the set-point and actual position of the shaft;

 v(k) = rate of change of error;

and one output variable:

 Du(k) = incremental voltage signal to the driver circuit of the motor.

 Universe of discourse for e(k) = {–Le, Le}

 Universe of discourse for v(k) = {–L
v
, L

v
}

 Universe of discourse for Du(k) = {–HDu, HDu}

Clockwise and counterclockwise rotations are defined as positive and negative, respectively.

The two input variables are quantized to two fuzzy subsets: Positive ( )
~
P , Negative ( )

~
N ; and the output 

variable is quantized to three fuzzy subsets: Positive ( )
~
P , Zero ( )

~
Z , Negative ( )

~
N . Triangular membership 

functions are used.

The scaling factors GE (gain for error variable), and GV (gain for velocity variable) describe input 

normalization:

 e*(k) = GE × e(k); GE = L /Le
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Fig. 12.33 Structure for a fuzzy controller

 v
*(k) = GV × v(k); GV = L/L

v

where e*, v* Œ {–L, L}

The output Du* of the fuzzy controller is denormalized to Du, by the relation 

 Du(k) = GU¢ ¥ Du*(k); GU ¢ = HDu /H

where Du* Œ {–H, H}

Without loss of generality, we take L = H = 1 (refer to Fig. 12.34).

The fuzzy PI controller uses the following four fuzzy rules:

 IF e*(k) is P
~

 and v
*(k) is P

~
 THEN Du*(k) is P

~
 IF e*(k) is P

~
 and v*(k) is N

~
 THEN Du*(k) is Z

~
 IF e*(k) is N

~
 and v*(k) is P

~
 THEN Du*(k) is Z

~
 IF e*(k) is N

~
 and v*(k) is N

~
 THEN Du*(k) is N

~

The initial value of the system output and the initial velocity are set to zero, as is the initial output of the 

fuzzy PI con troller.
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The scaling factors GE, GV and GU¢ of the fuzzy controller may be tuned by trial and error. Refer to 

Appendix B for realization of the controller.

N 1 P

–1 0 1

N P

–1 0 1

Z

1

0.5

e*, v* Du*

m

m

Fig. 12.34

Review Example 12.2

Figure 12.32 shows the schematic diagram of an ANFIS, used to model a process with two inputs, x1 

and x2, and one output y. Two fuzzy sets A
~11

 and A
~12

 have been utilized to represent x1; and x2 has been 

expressed using two other fuzzy sets A
~21

 and A
~22

. The membership function distributions of x1 and x2 

are shown in Fig. 12.35.

 There is a maximum of 2 ¥ 2 possible rules (refer to (12.46)); the values of the coefficients of the 

consequent part of the rules are as follows:

 a0
(1) = 0.10, a0

(2) = 0.11, a0
(3) = 0.13, a0

(4)  = 0.14, a1
(1) = 0.2, a1,

(2) = 0.2, a1 
(3)  = 0.3,

 a1
(4) = 0.3, a2

(1)  = 0.3, a2
(2) = 0.4, a2

(3) = 0.3, a2
(4) = 0.4.

The objective is to determine the predicted output ŷ of ANFIS when x1 = 1.1 and x2 = 6.0.

 For given values of x1 and x2, we find, using the principle of similar triangles, from Fig. 12.35 (Layer 1 

in Fig. 12.32):

 mA
~11

 (x1) = 
2 01 1 1

2 01 1
1 0 900990

. .

.
.

-
-

Ê
ËÁ

ˆ
¯̃

¥ =

 mA
~ 12

 (x1) = 
1 1 1

2 01 1
1 0 099010

.

.
.

-
-

Ê
ËÁ

ˆ
¯̃

¥ =

 mA
~ 21

 (x2) = 
10 6

10 5
1 0 8

-
-

Ê
ËÁ

ˆ
¯̃

¥ = .

 mA
~ 22

 (x2) = 
6 5

10 5
1 0 2

-
-

Ê
ËÁ

ˆ
¯̃

¥ = .
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Fig. 12.35 

All the possible four rules, given in (12.46), will be fired. Firing strengths of the rules are (Layer 2 in 

Fig. 12.32; Eqn. (12.48)):

 m(1) (x) = 0.900990 ¥ 0.8 = 0.720792

 m(2) (x) = 0.099010 ¥ 0.2 = 0.019802

 m(3) (x) = 0.099009 ¥ 0.8 = 0.079208

 m(4) (x) = 0.900990 ¥ 0.2 = 0.180198

The normalized firing strengths of the rules are (Layer 3 in Fig. 12.32; Eqn. (12.49)):

 m( )1  = m m( ) ( )1

1

4
r

r =

Â  = m(1) = 0.720792

 m( )2  = m(2), m( )3  = m(3), m( )4  = m(4)

Weighted consequent values of the rules are (Layer 4 in Fig. 12.32; Eqn. (12.50)):

 ˆ ( )y 1  = 0.720792(0.10 + 0.2 ¥ 1.1 + 0.3 ¥ 6.0) = 1.528079;

 ˆ ( )y 2  = 0.054059; ˆ ( )y 3  = 0.179010; ˆ ( )y 4  = 0.517168

Predicted output of the ANFIS, is (Layer 5 in Fig. 12.32; Eqn. (12.51)):

 ŷ = 2.278316
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PROBLEMS

 12.1 (a) In the following, we suggest a membership function for fuzzy description of the set ‘real 

numbers close to 2’:

  A
~  = { , ( )}

~
x xAm

  where

  mA
~

(x) = 

0

4 3

0

1

1 3

3

2- + -
<

£ £
>

Ï

Ì
Ô

Ó
Ô

x x

x

x

x

;

;

;

  Sketch the membership function (arc of a parabola) and determine its supporting interval, 

and a-cut interval for a = 0.5.

 (b) Sketch the piecewise quadratic membership function

  mB
~

(x) = 

2 1

1 2 2

2 3

0

1 3 2

3 2 5 2

5 2 3

2

2

2

( )

( )

( )

;

;

;

;

/

/ /

/

x

x

x

x

x

x

-

- -

-

£ <
£ <
£ £

otherwisse

Ï

Ì

Ô
Ô

Ó

Ô
Ô

  and show that it also represents ‘real number close to 2’. Deter mine its support, and a-cut for 

a = 0.5.

 12.2 (a) The well known Gaussian distribution in probability is defined by 

  f (x) = 
1

2

1

2

2

s p

m

se

x
-

-Ê
ËÁ

ˆ
¯̃

; –  < x < 

  where m is the mean and s is the standard deviation of the dis tribution. Construct a normal, 

convex membership function from this distribution (select parameters m and s) that 

represents ‘real numbers close to 2’. Find its support, and a-cut for a = 0.5. Show that the 

membership function

  mA
~

(x) = 1

1 2 2+ -( )x

  also represents ‘real numbers close to 2’. Find its support, and a-cut for a = 0.5.

 12.3 Consider the piecewise quadratic function

f(x) = 

0

2
2

1 2
2

1

2

2

;

;

;

;

x a

x a

b a
a x

a b

x b

b a

a b
x b

b x

<

-
-

Ê
ËÁ

ˆ
¯̃

£ <
+

-
-
-

Ê
ËÁ

ˆ
¯̃

+
£ <

£ <<

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô c
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  Construct a normal, convex membership function from f (x) (select parameters a, b and 

c) that represents the set ‘tall men’ on the universe {3, 9}. Determine the crosspoints and 

support of the membership function.

 12.4 (a) Write an analytical expression for the membership func tion mA
~

(x) with supporting interval 

[–1, 9] and a-cut interval for a = 1 given as [4, 5].

 (b) Define what we mean by a normal membership function and a convex membership function. 

Is the function described in (a) above (i) normal, (ii) convex?

 12.5 (a) Let the fuzzy set A
~

 be the linguistic ‘warm’ with member ship function

mA
~

(x) = 

0

1

0

1

1

1 1
1 1

1 2

2

2 2
2 2

2

;

;

;

;

;

x a

x a

b a
a x b

b x b

x a

b a
b x a

x a

<
-
-

£ £

£ £
-
-

£ £

≥

Ï

Ì

Ô
ÔÔ
Ô
Ô

Ó

Ô
Ô
Ô
Ô

    a1 = 64ºF, b1 = 70ºF, b2 = 74ºF, a2 = 78ºF

 (i) Is A
~

 a normal fuzzy set?

 (ii) Is A
~

 a convex fuzzy set?

 (iii) Is A
~

 a singleton fuzzy set?

    If answer to one or more to these is ‘no’, then give an example of such a set.

 (b) For fuzzy set A
~

 described in part (a), assume that b1 = b2 = 72ºF.

  Sketch the resulting membership function and determine its sup port, crosspoints and a-cuts 

for a = 0.2 and 0.4.

 12.6 Consider two fuzzy sets A
~

 and B
~

; membership functions mA
~

(x) and mB
~

(x) are shown in Fig. P12.6. 

The fuzzy variable x is tem perature.

  Sketch the graph of mA
~

(x), mA B
~ ~

« (x) and mA B
~ ~

» (x).

  Which t-norm and t-conorm have you used?

1 1

0 0
x x

mA( )x mB( )x

20°C10°C15°C

Fig. P12.6
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 12.7 Consider the fuzzy relation R
~

 on the universe X  ¥ Y, given by the membership function

mR
~

(x, y) = 
1

1 100 3 4[ ( ) ]+ -x y
,

  vaguely representing the crisp relation x = 3y. All elements satisfying x = 3y have unity grade of 

membership; elements satis fying, for example, x = 3.1y have membership grades less than 1. The 

farther away the elements are from the straight line, the lower are the membership grades.

  Give a graphical representation of the fuzzy relation R
~

.

 12.8 Assume the membership function of the fuzzy set A
~

, big pres sure, is 

   mA~
(x) = 

1 5

1
5

4
1 5

0

;

;

;

x

x
x

≥

-
-

£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô otherwise

  Assume the membership function of the fuzzy set B
~

, small volume, is 

   mB
~

(y) = 

1 1

1
1

4
1 5

0

;

;

;

y

y
y

£

-
-

£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô otherwise

  Find the truth values of the following propositions:

 (i) 4 is big pressure.

 (ii) 3 is small volume.

 (iii) 4 is big pressure and 3 is small volume.

 (iv) 4 is big pressure Æ 3 is small volume.

  Explain the conjunction and implication operations you have used for this purpose.

 12.9 Consider the following statements:

 Input : ¢A
~

 is very small

 Rule : IF ¢A
~

 is small THEN ¢B
~

 is large

 Inference : ¢B
~

 is very large

  If R
~

 is a fuzzy relation from X to Y representing the implication rule, and ¢A
~

 is a fuzzy subset of 

X, then the fuzzy subset ¢B
~

 of Y, which is induced by ¢A
~

, is given by 

 ¢B
~

 = ¢A
~

  R
~

  where � operation (composition) is carried out by taking cylin drical extension of ¢A
~

, taking the 

intersection with R
~

, and pro jecting the result onto Y.

  Define cylindrical extension, intersection and projection opera tions that lead to max-min 

compositional rule of inference.

12.10 Input : x is ¢A
~

 and y is ¢B
~

 Rule 1 : IF x is A1~
 and y is B1~

 THEN z is C1~
 Rule 2 : IF x is A2~

 and y is B2~
 THEN z is C2~

 Inference : z is ¢C
~
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  Taking arbitrary membership functions for A B C A B1 1 1 2 2~
,

~
,

~
,

~
,

~
 and C2~

, outline the procedure of 

determining ¢C
~

 corresponding to the crisp inputs x = x0 and y = y0. Use t-norm ‘min’ for conjunction 

operation, Mamda ni’s implication operation and max-min compositional rule of inference.

 12.11 Fig. P12.11 shows the fuzzy output of a certain control problem. Defuzzify by using the center of 

area method, to obtain the value of crisp control action.

m

3/4

1/2

1/4

1

2 3 41 5 6 7 8 9 10
z

Fig. P12.11

 12.12 Consider the fuzzy system concerning the terminal voltage and speed of an electric motor, 

described by the membership functions

x 100 150 200 250 300

mA
~

(x) 1 0.8 0.5 0.2 0.1

y 1600 1800 2000 2200 2400

mB
~

(y) 1 0.9 0.7 0.3 0

 Input : Voltage is rather small (x is ¢A
~

)

 Rule : IF voltage is small (x is A
~

) THEN speed is small (y is B
~

)

 Inference : Speed is rather small (y is ¢B
~

)

  Assume that the input fuzzy set ¢A
~

 is a singleton at x0 = 125. Determine the inference fuzzy set ¢B
~

 

of the fuzzy system. Defuzzi fy this set to obtain crisp value for speed.

  Use piecewise continuous approximations of graphs of mA
~

(x) and mB
~

(y) to describe your solution.

 12.13 Consider the two-input, one-output fuzzy system:

 Input : x is ¢A
~

 and y is ¢B
~

 Rule 1 : IF x is A1~
 and y is B1~

 THEN z is C1~
 Rule 2 : IF x is A2~

 and y is B2~
 THEN z is C2~

 Inference : z is ¢C
~
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  The fuzzy sets Ai~
, Bi

~
 and Ci~

; i = 1, 2, have the membership func tions

 mA1~
(x) = 

x
x

x
x

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

2

3
2 5

8

3
5 8

;

;

 mA2~
(x) = 

x
x

x
x

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

3

3
3 6

9

3
6 9

;

;

 mB1~
(y) = 

y
y

y
y

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

5

3
5 8

11

3
8 11

;

;

 mB2~
(y) = 

y
y

y
y

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

4

3
4 7

10

3
7 10

;

;

 mC1~
(z) = 

z
z

z
z

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

1

3
1 4

7

3
4 7

;

;

 mC2~
(z) = 

z
z

z
z

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

3

3
3 6

9

3
6 9

;

;

 

  Assume fuzzy sets ¢A
~

 and ¢B
~

 are singletons at x0 = 4 and y0 = 8. Determine the inference fuzzy set 

¢C
~

 of the fuzzy system. Defuzzi fy ¢C
~

.

 12.14 The control objective is to design an automatic braking system for motor cars. We need two analog 

signals: vehicle speed (V), and a measure of distance (D) from the vehicle in the front. A fuzzy 

logic control system will process these, giving a single output, braking force (B), which controls 

the brakes.

m

PMPS PL PS PM PL

m

10 20 30 40 50 600 V(km/hr) 10 20 30 40 50 600 D(m)

PS PM PL

20 40 60 80 1000 Braking force (%)B

m

1 1

1

Fig. P12.14
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  Term set for each of the variables (V, D, and B) is of the form:

  {PS (positive small), PM (positive medium), PL (positive large)}

  Membership functions for each term-set are given in Fig. P12.14.

  Suppose that for the control problem, two rules have to be fired:

  Rule 1: IF D = PS and V = PM THEN B = PL

  Rule 2: IF D = PM and V = PL THEN B = PM

  For the sensor readings of V = 55 km/hr, and D = 27 m from the car in front, find graphically

 (i) the firing strengths of the two rules;

 (ii) the aggregated output; and

 (iii) defuzzified control action.

 12.15 The control objective is to automate the wash time when using a washing machine. Experts select 

for inputs dirt and grease of the clothes to be washed, and for output parameter the wash time, as 

follows:

   Dirt =D {SD (small dirt), MD (medium dirt), LD (large dirt)}

   Grease =D {NG (no grease), MG (medium grease), LG (large grease)}

   Washtime =D {VS (very short), S (short), M (medium), L (long), VL (very long)}

  The degrees of the dirt and grease are measured on a scale from 0 to 100; washtime is measured 

in minutes from 0 to 60.

 mSD
~

(x) = 
50

50

- x
; 0 £ x £ 50 mVS

~
(z) = 

10

10

- z
; 0 £ z £ 10

 mMD
~

(x) = 

x

x

x

x

50

100

50

0 50

50 100-

£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

;

;
 mS

~
(z) = 

z

z

z

z

10

25

15

0 10

10 25-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

;

;

 mLD
~

(x) = 
x - 50

50
; 50 £ x £ 100 mM

~
(z) = 

z

z

z

z

-

-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

10

15

40

15

10 25

25 40

;

;

 mNG
~

(y) = 
50

50

- y
; 0 £ y £ 50 mL~

(z) = 

z

z

z

z

-

-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

25

15

60

20

25 40

40 60

;

;

 mMG
~

(y) = 

y

y

y

y

50

100

50

0 50

50 100-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

;

;
 mVL~

(z) = 
z - 40

20
; 40 £ z £ 60

 mLG
~

(y) = 
y - 50

50
; 50 £ y £ 100
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  The selected rules are as follows:

Grease Æ
Dirt

Ø

NG MG LG

SD VS M L

M D S M L

LD M L VL

 12.16 A fuzzy controller is acting according to the following rule base (N = negative, M = medium, 

P = positive):

  R1 : If x1 is N AND x2 is N, THEN u is N 

  R2 : If x1 is N OR x2 is P, THEN u is M

  R3 : If x1 is P OR x2 is N, THEN u is M

  R4 : If x1 is P AND x2 is P, THEN u is P

  The membership functions of the input and output variables are given in Fig. P12.16. Actual 

inputs are x1 = 2.5 and x2 = 4. Which rules are active and what will be the controller action u? Find 

u by applying standard fuzzy operations: min for AND, and max for OR.

1 112 223 334 44
u

N N
N

P PP
1 11

0 00

M

x2x1

mmm

Fig. P12.16

 12.17 Consider the following fuzzy model of a system with inputs x and y and outpur z:

  Rule 1 : If x is A3 OR y is B1, THEN z is C1 

  Rule 2 : If x is A2 AND y is B2, THEN z is C2 

  Rule 3 : If x is A1, THEN z is C3 

  The membership functions of the input and output variables are given in Fig. P12.17. Actual 

inputs are x1 and y1. Find the output z by applying standard fuzzy operation: min for AND, and 

max for OR.

1 1

0.5
0.7

0.2 0.1

1

0
z

A1 A2 A3 B1 C1 C2 C3

y1
yx1 20 35

3025

7055

60 65

100
x

mm m

B2

Fig. P12.17

Find a crisp control output for the 

following sensor readings:

Dirt = 60; Grease = 70
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 12.18 A fuzzy controller is acting according to the following rule base (N = negative, P = positive):

  R1 : If x1 is N AND x2 is N, THEN u is k1 

  R2 : If x1 is N OR x2 is P, THEN u is k2

  R3 : If x1 is P OR x2 is N, THEN u is k2

  R4 : If x1 is P AND x2 is P, THEN u is k3

  The membership functions of the input variables are given in Fig. P12.16 and the membership 

functions of the output variable (which is a controller action) u are singletons placed at k1 = 1, k2 

= 2, k3 = 3. Actual inputs are x1 = 2.5 and x2 = 4. Find u by applying standared fuzzy operations: 

min for AND, and max for OR.

 12.19 Consider a two-dimensional sinc equation defined by

y = sinc( , )
sin( )sin( )

x x
x x

x x
1 2

1 2

1 2

=

  Training data are sampled uniformly from the input range [–10, 10] ¥ [–10, 10]. With two 

symmetric triangular membership functions assigned to each input variable, construct a Sugeno 

fuzzy model architecture for the sinc function. Give defining equations for determination of the 

premise and consequent parameters of the model.

 12.20 To identify the nonlinear system 

y = 1 1
0 5

2
1

3
1 5

2
+ + +( )- -( ) ( ) ( ). .x x x

  we assign two membership functions to each input variable. Training and testing data are sampled 

uniformly from the input ranges [1,6] ¥ [1,6] ¥ [1,6], and [1.5,5.5] ¥ [1.5,5.5] ¥ [1.5,5.5], 

respectively. Extract Sugeno fuzzy rules from the numerical input-output training data that could 

be employed in an ANFIS model.

 12.21 Assume that a fuzzy inference system has two inputs x1 and x2, and one output y. The rule base 

contains two Sugeno fuzzy rules as follows:

  Rule 1: IF x1 is A11~
 and x2 is A21~

 THEN y(1) = a0 
(1) + a1

(1) x1 + a2
(1) x2

  Rule 2: IF x1 is A12~
 and x2 is A22~

 THEN y(2) = a0
(2) + a1

(2) x1 + a2
(2) x2

  Aij~
 are Gaussian functions.

  For given input values x1 and x2, the inferred output is calculated by

ŷ = 
m m

m m

( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

1 2

y y+
+

  where m(r), r = 1, 2 are firing strengths of the two rules. Product inference is used to calculate the 

firing strengths of the rules.

  Develop ANFIS architecture for this modeling problem, and derive learning algorithms based on 

least squares estimation and the gradient-descent methods.

 12.22 Consider a fuzzy model (Mamdani architecture) for a manufacturing process. The process 

is characterized by two input variables, x1 and x2, and one output variable y. The membership 

function distribution (isosceles triangles of base widths q1, q2, q3) of x1, x2 and y are shown in 

Fig. P12.22, and a rule base is given in Table P12.22. Determine the output of the model for x1 = 

10, x2 = 28.
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x2 Æ
        x1

        Ø

 
A21

 
A22

 
A23

 
A24

 
A11

 
S

 
S

 
M
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A12

 
S

 
M

 
L

 
L

 
A13

 
M

 
M

 
L XL~

 
A14

 
M

 
L XL~ XL~

Fig. P12.22
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 12.23 Consider a fuzzy model (Sugeno architecture) for a manufacturing process. The process is 

characterized by two input variables, x1 and x2, and one output variable, y. The membership 

function distributions of x1 and x2 are shown in Fig. P12.23. Domain intervals of xi are divided 

into Ki = 3 fuzzy sets. Therefore, there is a maximum of K1 ¥ K2 = 9 feasible rules. The output of 

the rth rule is expressed as

ˆ( )y r
 = aj

(r) x1 + bk
(r) x2

  where j, k = 1, 2, 3; a1
(r) = 1, a2

(r) = 2 and a3
(r) = 3 if x1 is found to be 

 
A11, 

 
A12 and 

 
A13, respectively; 

b1
(r) = 1, b2

(r) = 2, b3
(r) = 3 if x2 is found to be 

 
A21, 

 
A22 and 

 
A23, respectively. Determine the output 

of the model if x1 = 6.0 and x2 = 2.2.

Fig. P12.23
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13.1 EVOLUTIONARY ALGORITHMS

The adaptation of creatures to their environments results from the interaction of two processes: evolution 

and learning. Evolution is a slow stochastic process at the population level that determines the basic 

structures of a species. Evolution operates on biological entities, rather than on the individuals themselves. 

At the other end, learning is a process of gradually improving an individual’s adaptation capability to its 

environment by tuning the structure of the individual.

Evolution is based on the Darwinian model, also called the principal of natural selection or survival of 

the fittest. All the living organisms have a specific genetic material containing information about them 

and allowing them to transfer their features to new generations. During reproduction, a new organism is 

created, which takes certain features after its parents, but also has certain features specific to itself. This 

organism starts to live in a given environment. If it turns out that it is well fit to the environment, it will 

transfer its genetic material to its offspring. The individual that is poorly fit to the environment will find 

it difficult to live in this environment and hence, transfer its genetic material to subsequent generations.

 The presented idea has been applied to solve optimization problems. It turns out that an analogous 

approach to numerical calculations can be proposed using so-called evolutionary algorithms. The 

environment is defined on the basis of the problem to be solved. A population of individuals constituting 

potential solutions of a given problem lives in this environment. With the use of appropriately defined 

fitness function, we check to what extent they are adapted to the environment. Individuals exchange 

solutions (genetic material) and generate new solutions. Among the potential solutions, only the best-fit 

ones ‘survive’. A family of evolutionary algorithms constitutes classical genetic algorithms, evolution 

strategies, evolutionary programming, and genetic programming.

 Recently, more and more computational techniques inspired by biological adaptive systems (such as the 

collective behavior of animals and insects, as well as the immune systems of mammals) are emerging. 

The three well-known population-based optimization methods in this category are particle swarm 

optimization, the immune algorithm, and the ant-colony optimization. All these algorithms belong to a 

branch of swarm intelligence, an emergent collective intelligence of groups of simple agents. They are 

general optimization methods and can be used for discrete and continuous function optimization.

Chapter 13

Optimization with  
Genetic Algorithms
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 Our focus in this chapter is on genetic algorithm—an evolutionary algorithm which is both the simplest 

and the most general, for optimization. The application of genetic algorithm to the learning of neural 

networks as well as to the structural and parametric adaptations of fuzzy systems, will also be described. 

13.2 GENETIC ALGORITHMS

13.2.1

Biological evolution is an appealing source of inspiration for addressing optimization problems. Evolution 

is, in effect, a method of searching among an enormous number of possibilities for ‘solu tions’. In biology, 

the enormous set of possibilities is the set of possible genetic sequences, and the desired ‘solutions’ are 

highly fit organisms—organisms well able to survive and repro duce in their environments. Of course, 

the fitness of a biological organism depends on many factors—for example, how well it can weather 

the physical characteristics of the environment, and how well it can compete with, or cooperate with, 

the other organisms around it. The fitness criteria continually changes as creatures evolve; so evolution 

is searching a constantly changing set of possibilities. Searching for solutions in the face of changing 

conditions is precisely what is required for adaptive computer programs. Furthermore, evolution is a 

massively parallel search method: rather than work on one species at a time, evolution tests and changes 

millions of species in parallel. Finally, the ‘rules’ of evolution are remarkably simple: species evolve 

by means of random variation (via mutation, recombination and other parameters), followed by natural 

selection in which the fittest tend to survive and reproduce; thus, propagating their genetic material to 

future generations. Yet, these simple rules are thought to be responsible, in large part, for the extraordinary 

variety and complexity we see in the biosphere.

Knowledge of biological terminology, though not necessary, may help better appreciation of genetic 

algorithms. All living organisms consist of cells, and each cell contains the same set of one or more 

chromosomes—strings of DNA (deoxyribonucleic acid). A chromosome can be conceptually divided 

into genes—functional blocks of DNA, each of which encodes a particular protein. Very roughly, one 

can think of a gene as encoding a trait, such as eye color. The different possible ‘settings’ for a trait 

(e.g., blue, brown, hazel) are called alleles. Each gene is located at a particular locus (position) on the 

chromosome.

Many organisms have multiple chromosomes in each cell. The com plete collection of genetic material (all 

chromosomes taken together) is called the organism’s genome. The term genotype refers to the particular 

set of genes contained in a genome. The genotype gives rise, under foetus and later development, to the 

organism’s phenotype—its physical and mental characteristics, such as eye color, height, brain size and 

intelligence.

Organisms whose chromosomes are arrayed in pairs are called diploid; organisms whose chromosomes 

are unpaired are called haploid. In nature, most sexually reproducing species are di ploid, including 

human beings. In diploid sexual reproduction, recombination (or crossover) occurs: in each parent, 

genes are exchanged between each pair of chromosomes to form a gamete (a single chromosome), and 

then gametes from the two parents pair up to create a full set of diploid chromosomes. In haploid sexual 

reproduction, genes are exchanged between the two parents’ sin gle-strand chromosomes. Offsprings are 

subject to mutation, in which single nucleotides (elementary bits of DNA) are changed from the parents 
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to offsprings; mutation may cause the chromosomes of children to be different from those of their 

biological parents. The fitness of an organism is typically defined as the probabili ty that the organism 

will live to reproduce (viability), or as a function of the number of offspring the organism has (fertility).

The basic idea of a genetic algorithm is very simple. The term chromosome typically refers to a candidate 

solution to a problem, typically stored as strings of binary digits (1s and 0s) in the computer’s memory. 

The ‘genes’ are short blocks of adjacent bits that encode a particular element of the candidate solution 

(e.g., in the context of multiparameter function optimization, the bits encoding a particular parameter 

might be considered to be a gene). An ‘allele’ in a bit string, is either 0 or 1. Crossover typically consists 

of exchanging genetic material between two single-chromosome haploid parents. Mutation consists of 

flipping the bit at a randomly-chosen locus.

Most applications of genetic algorithms employ haploid individu als, particularly, single-chromosome 

individuals. The genotype of an individual, in a genetic algorithm using bit strings, is simply the 

configuration of bits in that individual’s chromosome.

13.2.2

The current literature identifies three main types of search methods: calculus-based, enumerative and  

random. Calculus-based methods have been studied extensively. These subdivide into two main classes: 

indirect and direct. Indirect methods seek local extrema by solving the usually nonlinear set of equations, 

result ing from setting the gradient of the objective function equal to zero. Given a smooth, unconstrained 

function, finding a possible peak starts by restricting search to those points with slopes of zero in all 

directions. On the other hand, direct (search) meth ods seek local optima by hopping on the function and 

moving in a direction related to the local gradient. This is simply the notion of hill climbing: to find the 

local best, climb the func tion in the steepest permissible direction.

Both the calculus-based methods are local in scope: the optima they seek are the best in a neighborhood 

of the current point. Clearly, starting the search procedures in the neighborhood of the lower peak will 

cause us to miss the main event (the higher peak). Furthermore, once the lower peak is reached, further 

improvement must be sought through random restart or other trick ery. Another problem with calculus-

based methods is that, they depend upon the existence of derivatives (well-defined slope values). Even if 

we allow numerical approximation of derivatives, this is a severe shortcoming. The real world of search 

is fraught with discontinuities and vast multimodal (i.e., consisting of many ‘hills’) noisy search spaces; 

methods depending upon re strictive requirements of continuity and derivative existence, are unsuitable 

for all, but a very limited, problem domain.

Enumerative schemes have been considered in many shapes and sizes. The idea is fairly straightforward: 

within a finite search space, the search algorithm starts looking at objective function values at every point 

in the space, one at a time. Although the simplic ity of the type of algorithm is attractive, and enumeration 

is a very human kind of search, such schemes have applications wherein the number of possibilities is 

small. Even the highly touted enumerative scheme, dynamic programming, breaks down on problems of 

moderate size and complexity. 

Random walks and random schemes that search and save the best, in the long run, can be expected 

to do no better than enumerative schemes. We must be careful to separate the strictly random search 
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methods from randomized techniques. The genetic algorithm is an example of a search procedure that 

uses random choice as a tool, to guide a highly exploitative search through a coding of parameter space. 

Using random choice as a tool in a directed search process seems strange at first, but nature contains 

many examples.

The traditional schemes have been used successfully in many applications; however, as more complex 

problems are attacked, other methods will be necessary. We shall soon see how genetic algorithms help 

attack complex problems [146].

The GA literature describes a large number of successful applica tions, but there are also many cases 

in which GAs perform poorly. Given a potential application, how do we know if a GA is a good 

method to use? There is no rigorous answer, though many re searchers share the intuitions that if 

the space to be searched is large, is known not to be perfectly smooth and unimodal, or is not well 

understood; or if the fitness function is noisy; and if the task does not require a global optimum to 

be found—i.e., if quickly finding a sufficiently good solution is enough—a GA will have a good 

chance of being competitive or surpassing other methods. If the space is not large, it can be searched 

exhaus tively by enumerative search methods, and one can be sure that the best possible solution has 

been found, whereas a GA might give only a ‘good’ solution. If the space is smooth and unimodal, 

a gradient ascent algorithm will be much more efficient than a GA. If the space is well understood, 

search methods using domain-specific heuristics can often be designed to outperform any  

general-purpose method such as a GA. If the fitness function is noisy, a one-candidate-solution-at-a-time 

search method such as simple hill climbing might be irrecoverably led astray by the noise; but GAs, since 

they work by accumulating fitness statis tics over many generations, are thought to outperform robustly 

in the presence of small amounts of noise.

These intuitions, of course, do not rigorously predict when a GA will be an effective search procedure, 

competitive with other procedures. It would be useful to have a mathematical characteri zation of how  

the genetic algorithm works, that is, predictive. Research on this aspect of genetic algorithms has not yet 

produced definite an swers.

13.2.3

Simple genetic algorithms require the natural parameter set of the problem to be coded as a finite-

length string of binary bits 0 and 1. For example, given a set of two-dimensional data ((x, y) data 

points), we want to fit a linear curve (straight line) through the data. To get a linear fit, we encode the  

parameter set for a line y = q1x + q2, by creating independent bit strings for the two unknown constants q1 

and q2 (parameter set describing the line) and then joining them (concatenating the strings). A bit string 

is a combination of 0s and 1s, which represents the value of a number in binary form. An n-bit string can 

accommodate all integers up to the value 2n –1.

For problems that are solved by the genetic algorithm, it is usually known that the parameters, that are 

manipulated by the algorithm, will lie in a certain fixed range, say {qmin, qmax}. A bit string may then be 

mapped to the value of a parameter, say qi, by the mapping
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 qi = qmini + 
b

L2 1-
 (qmaxi – qmin i) (13.1)

where ‘b’ is the number in decimal form that is being represented in binary form (e.g., 152 may be 

represented in binary form as 10011000), L is the length of the bit string (i.e., the number of bits in each 

string), and qmax and qmin are user-specified con stants, which depend on the problem in hand.

The length of the bit strings is based on the handling capacity of the computer being used, i.e., how 

long a string (strings of each parameter are concatenated to make one long string repre senting the whole 

parameter set) the computer can manipulate at an optimum speed.

Let us consider the data set in Table 13.1. For performing a line (y = q1x + q2) fit, as mentioned earlier, 

we encode the parameter set (q1, q2) in the form of binary strings. We take the string length to be 12 bits. 

The first six bits encode the parameter q1, and the next six bits encode the parameter q2.

Data number x y

1 1.0 1.0

2 2.0 2.0

3 4.0 4.0

4 6.0 6.0

The strings (000000, 000000) and (111111, 111111), represent the points (qmin1, qmin2) and (qmax1, qmax2), 

respectively, in the parameter space for the parameter set (q1, q2). Decoding of (000000) and (111111) to 

decimal form gives 0 and 63, respective ly. However, problem specification may impose different values 

of minimum and maximum for qi. We assume that the minimum value to which we would expect q1 or 

q2 to go would be –2, and the maximum would be 5.

Therefore,

qmini = –2, and qmaxi = 5

Consider a string (a concatenation of two substrings)

 000111 010100 (13.2)

representing a point in the parameter space for the set (q1, q2). The decimal value of the substring 

(000111) is 7 and that of (010100) is 20. This, however, does not give the value of the parameter set (q1, 

q2) corresponding to the string in (13.2). The mapping (13.1) gives the value:

q1 = qmin1 + 
b

L2 1-
 (qmax1 – qmin1) = –2 + 

7

2 16 -
 (5 – (–2)) = –1.22

q2 = qmin2 + 
b

L2 1-
 (qmax2 – qmin2) = –2 + 

20

2 16 -
 (5 – (–2)) = 0.22
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A fitness function takes a chromosome (binary string) as an input, and returns a number that is a measure 

of the chromosome’s performance on the problem to be solved. Fitness function plays the same role in 

GAs as the environment plays in natural evolution. The interaction of an individual with its environment, 

provides a measure of fitness to reproduce. Similar ly, the interaction of a chromosome with a fitness 

function, provides a measure of fitness that the GA uses when carrying out reproduction. Genetic 

algorithm is a maximization routine; the fitness function must be a non-negative figure of merit.

It is often necessary to map the underlying natural objective function to a fitness function form through 

one or more mappings. If the optimization problem is to minimize cost function J (p), where p denotes 

the parameter set, then the following cost-to-fitness transformation may be used:

 J(p) = 
1

J ( )p + e
 (13.3)

where e is a small positive number. Maximization of J can be achieved by minimization of J ; so the 

desired effect is achieved.

Another way to define the fitness function is to let

 J(p(k)) = – J (p(k)) + max ( ( ))
( )p

p
k

J k{ }  (13.4)

The minus sign in front of the J (p(k)) term turns the minimiza tion problem into a maximization problem 

and max ( ( ))
( )p

p
k

J k{ } term is needed to shift the function up, so that J (p(k)) is always positive; k is the 

iteration index.

A fitness function can be any nonlinear, nondifferentiable, discontinuous, positive function because the 

algorithm only needs a fitness value assigned to each string.

For the problem in hand (fit a line through a given data set), let us choose a fitness function. Using 

decoded values of q1 and q2 of a chromosome, and the four data values of x given in Table 13.2, calculate

ˆ( )y p  = q1x (p) + q2; p = 1, 2, 3, 4

These computed values of ˆ ( )y p  are compared with the correct values y(p), given in Table 13.2, and 

square of errors in estimating the  y’s is calculated for each string. The summation of the square of errors 

is subtracted from a large number (400 in this problem) to convert the problem into a maximization 

problem:

 J(p) = 400 – ˆ –( ) ( )y yp p

p

( )Â
2
; p = [q1 q2] (13.5)

The fitness value of the string (13.2) is calculated as follows:

 q1 = –1.22, q2 = 0.22

For  x = 1.0, ˆ ( )y 1  = q1x + q2 = –1.00

For  x = 2.0, ˆ ( )y 2  = – 2.22

For  x = 4.0, ˆ ( )y 3  = – 4.66
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For x = 6.0, ˆ ( )y 4  = – 7.10

 J(p) = 400 – ˆ ( ) ( )y yp p

p

-( )
=

Â
2

1

4

 = 131.586

The basic element processed by a GA is the string formed by concatenating substrings, each of which is 

a binary coding of a parameter of the search space. If there are N decision variables in an optimization 

problem, and each deci sion variable is encoded as an n-digit binary number, then a chromosome is a 

string of n ¥ N binary digits. We start with a randomly selected initial population of such chromosomes; 

each chromosome in the population represents a point in the search space, and hence, a possible solution 

to the problem. Each string is then decoded to obtain its fitness value, which determines the probability 

of the chromosome being acted on by genetic operators. The population then evolves, and a new 

generation is created through the application of genetic operators (The total number of strings included 

in a population, is kept unchanged throughout generations, for computational economy and efficiency). 

The new generation is expected to perform better than the previous gen eration (better fitness values). 

The new set of strings is again decoded and evaluated, and another generation is created using the basic 

genetic operators. This process is continued until convergence is achieved within a population.

Let q j(k) be a single parameter in chromosome j of generation k. Chromosome j is composed of N of 

these parameters:

 p
j(k) = [q1

j(k), q2
j(k), …, qN

j(k)] (13.6)

The population of chromosomes, in generation k:

 P(k) = {p j(k)| j = 1, 2, ..., S} (13.7)

where S represents the number of chromosomes in the population. We want to pick S to be big enough, so 

that the population ele ments can cover the search space. However, we do not want S to be too big, since 

this increases the number of computations we have to perform.

For the problem in hand, Table 13.2 gives an initial population of 4 strings, the corresponding decoded 

values of q1 and q2, and the fitness value for each string.

String number    String q1 q2 J

1 000111010100 –1.22 0.22 131.586

2 010010001100 0.00 –0.67 323.784

3 010101101010 0.33 2.67 392.41

4 100100001001 2.00 –1.00 365.00

S J 1212.8

Av.J 303.2

Max.J 392.41
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Evolution occurs as we go from generation k to the next genera tion k + 1. Genetic operations of selection, 

crossover and muta tion are used to produce a new generation.

Basically, according to Darwin, the most qualified (fittest) creatures survive to mate. Fitness is 

determined by a creature’s ability to survive predators, pestilence, and other obstacles to adulthood 

and subsequent reproduction. In our una bashedly artificial setting, we quantify ‘most qualified’ via a 

chromosome’s fitness J(p j(k)). The fitness function is the final arbiter of the string-creature’s life or 

death. Selecting strings according to their fitness values means that the strings with a higher value have 

a higher probability of contributing one or more offspring in the next generation.

Selection is a process in which good-fit strings in the popula tion are selected to form a mating pool, 

which we denote by

 M(k) = {m
j(k) | j = 1, 2, ..., S} (13.8)

The mating pool is the set of chromosomes that are selected for mating. A chromosome is selected for 

mating pool according to the probability proportional to its fitness value. The probability for selecting 

the ith string is

 pi = 
J k

J k

i

j

j

S

p

p

( )

( )

( )

( )Â
= 1

 (13.9)

For the initial population of four strings in Table 13.2, the probability for selecting each string is calculated 

as follows:

 p1 = 
131 586

131 586 323 784 392 41 365

131 586

1212 8

.

. . .

.

.+ + +
=  = 0.108

 p2 = 
323 784

1212 8

.

.
 = 0.267; p3 = 

392 41

1212 8

.

.
 = 0.324; p4 = 

365 00

1212 8

.

.
 = 0.301

To clarify the meaning of the formula and, hence, the selection 

strategy, Goldberg [146] uses the analogy of spinning a unit-

circumference roulette wheel; the wheel is cut like a pie into S 

regions where the ith region is associated with the ith element of 

P(k). Each pie-shaped region has a portion of the circumfer ence 

that is given by pi in Eqn. (13.9).

The roulette wheel for the problem in hand is shown in Fig. 13.1. 

String 1 has solution probability of 0.108. As a result, String 1 

is given 10.8% slice of the roulette wheel. Similarly, String 2 is 

given 26.7% slice, String 3 is given 32.4% slice and String 4 is 

given 30.1% of the roulette wheel.

You spin the wheel, and if the pointer points at region i when the 

wheel stops, then you place pi into the mating pool M(k). You 

26.7%

10.8%
1

2

4

3

32.4%

30.1%

0
100

10.8

37.5

67.6
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spin the wheel S times, so that S strings end up in the mating pool. Clearly, the strings which are more fit 

will end up with more copies in the mating pool; hence, chromosomes with larger-than-average fitness, 

will embody a greater portion of the next generation. At the same time, due to the probabilistic nature 

of the selection process, it is possible that some relatively unfit strings may end up in the mating pool.

For the problem in hand, the four spins might choose strings 3, 3, 4 and 2 as parents (String 1 also may 

be selected in the process of roulette wheel spin; it is just the luck of the draw. If the roulette wheel were 

spun many times, the average results would be closer to the expected values).

We think of crossover as mating in biological terms, which, at the fundamental biological level, involves 

the process of combining chromosomes. The crossover operation operates on the mating pool M(k). 

First, specify the ‘crossover probability’ pc (usually chosen to be near one, since, when mating occurs in 

biological systems, genetic material is swapped between the parents).

 The procedure for crossover consists of the follow ing steps:

 (i) Randomly pair off the strings in the mating pool M(k). If there are an odd number of strings in 

M(k), then, for instance, simply take the last string and pair it off with another string which has 

already been paired off.

 (ii) Consider chromosome pair (p j, pi) that was formed in Step 1. Generate a random number r Œ [0, 1].

 (a) If r < pc, then crossover p j and pi. To crossover these chromosomes, select at random a ‘cross 

site’ and exchange all bits to the right of the cross site of one string, with those of the other. 

This process is pictured in Fig. 13.2. In this exam ple, the cross site is position four on the 

string, and hence we swap the last eight bits between the two strings. Clearly, the cross site 

is a random number between one and the number of bits in the string, minus one.

 (b) If r > pc, then the crossover will not take place; hence, we do not modify the strings.

 (iii) Repeat Step 2 for each pair of strings that is in M(k).

For the problem in hand, Table 13.3 shows the power of crossover. The first column shows the four strings 

selected for mating pool. We randomly pair off the strings. Suppose that random choice of mates has 

selected the first string in the mating pool, to be mated with the fourth. With a cross site 4, the two strings 

cross and yield two new strings as shown in Table 13.3. The remaining two strings in the mating pool are 

crossed at site 9; the resulting strings are given in the table.
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String 

number

Mating pool Couples After crossover q1 q2 J

3 010101 101010 0101 | 01 101010 010110 001100 0.44 – 0.67 370.574

3 010101 101010 0100 | 10 001100 010001 101010 – 0.11 2.67 378.311

4 100100 001001 010101 101 | 010 010101 101001 0.33 2.56 392.794

2 010010 001100 100100 001 | 001 100100 001010 2.00 –0.89 362.972

S J 1504.7

Av.J 376.163

Max.J 392.794

In nature, an offspring inherits genes from both the parents. The crossover process creates children 

strings from the parent strings. The children strings thus produced, may or may not, have combination 

of good substrings from parents strings, but we don’t worry about this too much, because if good strings 

are not created by crossover, they will not survive too long because of the selection operator. If good 

strings are created by crossover, there will be more copies of it in the next mating pool generated by the 

selection operator.

Besides the fact that crossover helps to model the mating part of the evolution process, why should the 

genetic algorithm perform crossover? Basically, the crossover operation perturbs the param eters near 

good positions to try to find better solutions to the optimization problem. It tends to help perform a 

localized search around the more fit strings (since, on average, the strings in the generation k mating pool 

are more fit than the ones in the gen eration k population).

Selection according to fitness, combined with 

crossover, gives genetic algorithms the bulk of their 

processing power. Mutation plays a secondary role in 

the operation of GAs. Mutation is needed because, 

occasionally, chro mosomes may lose some potentially 

useful genetic material. In artificial genetic systems, 

mutation is realized by inverting a randomly chosen 

bit in a string. This is illustrated in Fig. 13.3.

Besides the fact that this helps to model mutation in a biologi cal system, why should the genetic algorithm 

perform mutation? Basically, it provides random excursions into new parts of the search space. It is 

possible that we will get lucky and mutate to a good solution. It is the mechanism that tries to make sure 

that we do not get stuck at a local maxima, and that we seek to explore other areas of the search space 

to help find a global maximum for J(p). Usually, the mutation probability pm is chosen to be quite small 

(e.g., less than 0.01) since this will help guar antee that all the strings in the mating pool are not mutated 

so that any search progress that was made is lost (i.e., we keep it relatively low to avoid degradation to 

exhaustive search via a random walk in the search space).
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After mutation, we get a modified mating pool M(k). To form the next generation for the population, we 

let

 P(k + 1) = M(k) (13.10)

where this M(k) is the one that was formed by selection and modified by crossover and mutation. Then 

the above steps repeat, successive generations are produced, and we thereby model evolu tion (of course, 

it is a very crude model).

While the biological evolutionary process continues, perhaps indefinitely, we would like to terminate our 

artificial one and find the following:

 (1) The population string—say, p*(k)—that best maximizes the fitness function. Notice that, to 

determine this, we also need to know the generation number k where the most fit string existed (it 

is not necessarily in the last generation). A computer code, implementing the genetic algorithm, 

keeps track of the highest J value, and the generation number and string that achieved this value 

of J.

 (2) The value of the fitness function J(p*(k)).

There is then the question of how to terminate the genetic algo rithm. There are many ways to terminate 

a genetic algorithm, many of them similar to termination conditions used for conventional optimization 

algorithms. To introduce a few of these, let e > 0 be a small number and n1 > 0 and n2 > 0 be integers. 

Consider the following options for terminating the GA:

 (1) Stop the algorithm after generating the generation P(n1)—that is, after n1 generations.

 (2) Stop the algorithm after at least n2 generations have occurred and, at least n1 steps have occurred 

when the maximum (or average) value of J for all population members has increased by no more 

than e.

 (3) Stop the algorithm once J takes on a value above some fixed value.

The above possibilities are easy to implement on a computer but, sometimes, you may want to watch the 

parameters evolve and decide yourself when to stop the algorithm.

A set of parameters is predefined to guide the genetic algorithm, such as follows:

 (1) the length of each decision variable encoded as a binary string;

 (2) the number of chromosomes to be generated and operated in each generation, i.e., population size;

 (3) the crossover probability pc;

 (4) the mutation probability pm; and

 (5) and the stopping criterion.

Example 13.1

Consider the problem of maximizing the function
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 J(q) = q 2 (13.11)

where q is permitted to vary between 0 and 31.

To use a GA, we must first code the decision variables of our problem as some finite length string. For 

this problem, we will code the variable q simply as a binary unsigned integer of length 5. With a five-

bit unsigned integer, we can obtain numbers between 0 (00000) and 31 (11111). The fitness function is 

simply defined as the function J(q).

To start off, we select an initial population at random. We select a population of size 4. Table 13.4 gives 

the selected initial population, decoded q values, and the fitness function values J(q). As an illustration of 

the calculations done, let’s take a look at the third string of the initial population, string 01000. Decoding 

this string gives q = 8, and the fitness J(q) = 64. Other q and J(q) values are obtained similarly.

The mating pool of the next generation may be selected by spin ning a roulette wheel. Alternatively, the 

roulette-wheel tech nique may be implemented using a computer algorithm:

 (i) Sum the fitness of all the population members, and call this result the total fitness SJ.

 (ii) Generate r, a random number between 0 and total fitness.

 (iii) Return the first population member whose fitness, added to the fitness of the preceding population 

members (running total), is greater than or equal to r.

We generate numbers randomly from the interval [0, 1170] (refer to Table 13.4). For each number, we 

choose the first chromosome for which the running total of fitness is greater than, or equal to, the random 

number. Four randomly generated numbers are 233, 9, 508, 967; String 1 and String 4 give one copy to 

the mating pool, String 2 gives two copies, and String 3 gives no copies.

With the above active pool of strings looking for mates, simple crossover proceeds in two steps: 

(1) strings are mated randomly, and (2) mated-strings couples crossover. We take the crossover proba-

bility pc = 1. Looking at Table 13.5, we find that, random choice of mates has selected the second string 

in the mating pool to be mated with the first. With a crossing site of 4, the two strings 01101, and 11000 

cross and yield two new strings, 01100 and 11001. The remaining two strings in the mating pool are 

crossed at site 2; the resulting strings are given in Table 13.5.

String number Initial population q J(q ) Running total

1 01101 13 169 169

2 11000 24 576 745

3 01000 8 64 809

4 10011 19 361 1170

S J 1170

Av.J 293

Max.J 576



 Optimization with Genetic Algorithms 839

Mating pool New population q J(q)

0110   1

1100   0

01100 12 144

11001 25 625

11    000

10    011

11011 27 729

10000 16 256

S J 1754

Av. J 439

Max. J 729

 The last operator, mutation, is performed on a bit-by-bit basis. We assume that the probability of muta-

tion in this test is 0.001. With 20 transferred bit positions, we should expect 20 ¥ 0.001 = 0.02 bits to 

undergo mutation during a given generation. Simula tion of this process indicates that no bits undergo 

mutation for this probability value. As a result, no bit positions are changed from 0 to 1, or vice versa, 

during this generation.

Following selection, crossover and mutation, the new population is ready to be tested. To do this, we 

simply decode the new strings created by the simple GA, and calculate the fitness func tion values from 

the q values thus decoded. The results are shown in Table 13.5. While drawing concrete conclusions from 

a single trial of a stochastic process is, at best, a risky business, we start to see how GAs combine high-

performance notions to achieve better performance. Both the maximal and average performance have 

improved in the new population. The population average fitness has improved from 293 to 439 in one 

generation. The maximum fitness has increased from 576 to 729 during that same period.

13.3

Fuzzy inference systems (discussed in Chapter 12) are highly nonlinear systems with many input and 

output variables. The knowledge base for the design of these systems (refer to Fig.12.29) consists of data 

base (membership functions for input and output variables) and rule base. Crucial issues in the design are 

the tasks of selecting appropriate membership functions, and the generation of fuzzy rules. These tasks 

require experience and expertise. Genetic algorithms may be employed for 

  tuning of membership functions, while the rule base remains unchanged;

  generating a rule base when a set of membership functions for input/output variables remains 

unchanged; or

  for both of these tasks simultaneously.

We will limit our presentation to the first task, i.e., tuning of membership functions while the rule base 

remains unchanged.
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13.3.1

The effectiveness of the fuzzy system operation could be increased by appropriate tuning of the fuzzy 

sets. The GA modifies membership functions by changing the location of characteristic points of their 

shapes. The information on characteristic points of the membership functions is coded in chromosomes. 

After the appropriate representation of fuzzy sets in the chromosome has been selected, the GA operates 

on the population of individuals, i.e., on the population of chromosomes containing coded shapes of 

fuzzy membership functions, according to the genetic cycle comprising the following steps:

 1. Decoding each of the individuals (chromosomes) of the population, recreating the set of 

membership functions, and constructing an appropriate fuzzy system. The rule base is predefined.

 2. Evaluating the performance of the fuzzy system on the basis of the difference (error) between 

the system’s responses and the desired values. This error defines the individual’s (chromosome’s) 

fitness.

 3. Selection and application of genetic operators, such as crossover and mutation, and obtaining a 

new generation.

Example 13.2

Let us consider the application of GA to the fuzzy model of a manufacturing process, described in 

Problem 12.22. The process is characterized by two input variables, x1 and x2, and one output variable, 

y. The membership function distributions of the inputs and the output are shown in Fig. P12.22, and the 

predefined rule base is given in Table P12.22.

 The membership functions have the shape of isosceles triangles, which may be described by means of 

characteristic points in the following manner: the vertices of the triangles are fixed, and the base-widths 

q1, q2, and q3 (refer to Fig. P12.22) are tunable. The ranges of the tunable parameters are assumed to be

2 £ q1 £ 4; 5 £ q2 £ 15; 0.5 £ q3 £ 1.5 (13.12)

Let us code these fuzzy sets in chromosomes by placing 

characteristic parameters one by one, next to each other 

(Fig.13.4). Starting from the leftmost position, L bits are 

assigned for parameter q1. Each of the parameters q1, q2, 

q3, may be assigned different number of bits depending 

on their ranges. However, for simplicity of presentation, we assign L = 5 in each of the three cases. Thus, 

the GA-string is 15 bits long. 

An initial population for the GA is created at random. We assume that the first chromosome of this 

randomly selected population is

 10110 01101 11011 (13.13)

 The mapping rule (13.1) is used to determine the real values of the parameters qi; i = 1, 2, 3, represented 

by this string. The decoded value b of the binary substring 10110 is equal to 22. Therefore, the real value 

of q1 is given by (refer to Fig.P12.22, and parameter values (13.12))

q1 = q q q1 1 1 52 1
2

22

2 1
4 2 3 419355min max min ( ) .+

-
-( ) +

-
-

b
L

= =  

q1 q2 q3
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 The real values of q2 and q3, corresponding to their respective substrings in (13.13), are 9.193548 and 

1.370968, respectively. Figure 13.5 shows the modified membership distributions of input and output 

variables.

 The GA optimizes the database (tunes the membership functions) with the help of a set of training 

examples. Assume that we are given P training examples {x
(p), y(p); p = 1,2,…,P}. Further, we take first 

training example (p = 1) as {x1 = 10, x2 = 28, y = 3.5}.

 For the inputs x1 = 10, x2 = 28, we calculate the predicted value of the output, ŷ, of the fuzzy model when 

the model parameters are given by the first chromosome in the initial population. This is done using the 

procedure given in Section 12.4. This will give us the absolute value of error in prediction: e1 = | 3.5 – ŷ|.

 From this procedure, repeated on all the training examples, we can obtain the average value of absolute 

errors in prediction,
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 e  = 
1

1
P

ep

p

P

=
Â

Since GA is a maximization algorithm, we may choose the fitness function

 J = 
1

e + e

where e is a small positive number,

 The population of GA-strings is then modified using different operators, such as selection, crossover and 

mutation, and after a few generations, the GA will be able to evolve an optimal fuzzy system.

 Neural-network learning is a search process for the minimization of a performance criterion (error 

function). In order to make use of existing learning algorithms, one needs to select a lot of parameters 

such as the number of layers, the number of units in each layer, the manner of their connection, the 

activation functions, as well as learning parameters. Learning process is usually carried out with the use 

of error backpropagation for connection weights, and trial-and-error approach for the other parameters. 

These design steps sometimes need quite a lot of time and experience, but genetic algorithms can be 

helpful here.

Genetic algorithms can be introduced into neural networks at many different levels:

  learning of connection weights including biases;

  determination of optimal architecture; or 

  the simultaneous determination of architecture and weights.

We will limit our presentation to the first task, i.e., the use of genetic algorithms to the problems of 

optimization of neural network weights.

 The gradient-based algorithms for learning weights of neural networks usually run multiple times to avoid 

local minima, and also gradient information must be available. Two of the most important arguments for 

the use of genetic algorithms to the problems of optimization of neural network weights, are 

  a global search of space of weights, avoiding local minima; and 

  useful for problems where obtaining gradient information is difficult or expensive.

It is important to mention that when gradient information is readily available, the gradient-based methods 

could be more effective in terms of computation speed, than the GA for weight optimization of neural 

networks. In fact, there is no clear winner in terms of the best training algorithm, since the best method 

is always problem dependent. The hybrid of genetic algorithm and gradient algorithm is an effective 

alternative.
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With a fixed topology, the weights of a neural network are coded in a chromosome. Each individual of 

the population is determined by a total set of neural network weights. The order of placing the weights in 

the chromosome is arbitrary, but cannot be changed after the process of learning begins.

The fitness of individuals will be evaluated on the basis of the fitness function, defined as the sum of 

squares of errors, being the differences between the network desired signal and network output signal 

for different input data.

The genetic algorithm operates on the population of individuals (chromosomes representing neural 

networks with the same architecture but with different weights values) according to the typical genetic 

cycle comprising the following steps:

 1. Decoding each individual of the current population to the set of weights and constructing the 

corresponding neural network with this set of weights; while the network architecture and the 

learning rule are predefined.

 2. Calculating the total mean squared error of the difference between the desired signals and output 

signals for all the input data. This error determines the fitness of the individual (constructed 

network).

 3. Selection and application of genetic operators, such as crossover and mutation, and obtaining a 

new generation.

REVIEW EXAMPLES

Review Example 13.1

Although applied in many complex industrial processes, fuzzy logic-based expert systems experience 

a deficiency in knowledge acquisition, and rely, to a great extent, on empirical and heuris tic knowledge 

which, in many cases, cannot be elicited objective ly. Fuzziness describes event ambiguity. It measures 

the degree to which an event occurs, not whether it occurs. Fuzzy controller design involves the 

determination of the linguistic state space, definition of membership grades of each linguistic term, and 

the derivation of the control rules. The information on the above aspects can be gathered by interviewing 

process operators, pro cess knowledge experts, and other sources of domain knowledge and theory.

The choice of a FLC depends more on the intuition of the design er, and its effectiveness depends on the 

following parameters:

 (i) Selection of rule set.

 (ii) Number, shape and size of the membership functions of the input and output variables.

 (iii) Value of the normalizing factors for the input variables to the FLC.

 (iv) Value of the denormalizing factors for the output variables of the FLC.

Genetic Algorithm (GA) has a capability to guide in poorly under stood, irregular spaces. In the  

following, we illustrate the use of GA in designing a FLC for the thermal system described in Review  

Example 11.2. We design FLC by tuning only the normaliz ing and denormalizing factors.
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 The proposed fuzzy controller has two input variables (refer to Figs 12.33):

 e(k) – error between set-point and actual temperature of the tank,

 v(k) – rate of change of error;

and one output variable:

 Du(k) – incremental heat input to the tank.

The universe of discourse for all the three variables may be taken as [–1, 1]. Proposed membership 

functions are shown in Fig. 13.6.

The selected rules are as follows:

Rate of 

change of errorÆ

Error

Ø

N NZ P

N N N Z

NZ N Z P

P Z P P

The initial value of the system output is Y0. The initial veloci ty, and the initial output of the Fuzzy PI 

controller are set to zero.

The scaling factors GE, GV and GU ¢ of the fuzzy controller may be tuned using genetic algorithm. Refer 

to Appendix B for realization of the controller.

N P
1

1

Z P
1

N

–1 0 1

m

NZ

–0.1 0.1–1
e*, v*

m

Du*
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Review Example 13.2

Problem P11.9 is concerned with optimization of the connection weights of the neural network shown 

in Fig. P11.9, using gradient algorithm. In the following, we describe how a binary-coded GA could be 

used (instead of gradient algorithm) to update the connection weights of this network.

 One of the GA-strings is given below, in which five bits (L = 5) are used to represent each connection 

weight (all the weights are assumed to vary in the range 0.0 to 1.0):

{w11 w12 w21 w22 w31 w32 v1 v2 v3} =

10110 01011 01101 11011 10001 00011 11001 11110 11101 (13.14)

The parameter w11 is represented by the binary substring 10110. Its decoded value is b = 22. It varies in 

the range of {w11
min

 , w11
max

 } = {0.0, 1.0}. Using the mapping rule (13.1), its real value can be determined 

as follows:

w11 = w
b

w w
L11 11 11 52 1

0 0
22

2 1
1 0 0 0 0 709677min max min . ( . . ) .+

-
-( ) +

-
-= =

Similarly, the real values of all the parameters represented by the GA-string (13.14) can be calculated. 

The real values are:

{w11, w12, w21, w22, w31, w32, v1, v2, v3} =

{0.709677, 0.354839, 0.419355, 0.870968, 0.548387, 0.096774, 0.806452,

0.967742, 0.935484}   (13.15)

The first training pattern of the data {x
(p), y(p), p = 1,2,…. , P} is assumed to be {x1 = 0.6, x2 = 0.7, 

y = 0.9}. The outputs of the hidden units for an input {x1 = 0.6, x2 = 0.7} and the connection weights 

given by (13.15), are found as follows:

a1 = 0.674194; a2 = 0.861291; a3 = 0.396774; z1 = 0.662442; z2 = 0.702930; z3 = 0.597912

The activation value a of the neuron in the output layer is obtained as follows:

 a = v1z1 + v2z2 + v3z3 = 1.773820

and the predicted output of the network is

 ŷ = 
e e

e e

a a

a a

-

+

-

-
 = 0.9440 

Since the target output for this training pattern is equal to 0.9, the error in prediction is found to be equal 

to 0.0440.

A population of GA-strings represents a number of candidate neural networks. When the batch mode of 

training is adopted, the whole training data is passed through the neural network represented by a GA 

string. This gives Mean Square Error (MSE):

  MSE = 
1

1
P

p

P

=

Â (y(p) – ŷ
(p))2 (13.16) 
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Since GA is a maximization algorithm, we may choose the fitness function

 J = 
1

MSE + e
 (13.17)

where e is a small positive number.

The population of GA-strings is then modified using the selection, crossover, and mutation operators. 

The GA, through its search, is expected to evolve an optimal neural network.

PROBLEMS

 13.1 The objective is to use GA to find the value of x that maximizes the function

   f (x) = sin (p x/256)

  over the range 0 £ x £ 255, where values of x are restricted to integers. The true solution to the 

problem is x = 128, having function value equal to one.

  Explain the steps involved in GA. Use a random population of size 8, represent each individual in 

the population with an 8-bit binary string (8 strings is the population), choose fitness function

   F(x) = f (x)/ S f (x)

  with summation over 8 strings, take crossover probability pc = 0.75 and zero mutation probability. 

Show only one iteration by hand calculation.

 13.2 The objective is to minimize the function:

  f (x1, x2) = (x2
1 + x2 – 11)2 + (x2

2 + x1 – 7)2

  in the interval 0 £ x1, x2 £ 6. The true solution to the problem is [3, 2]T having a function value 

equal to zero.

  Take up this problem to explain the steps involved in GA: maxi mizing the function

  F(x1, x2) = 
1 0

1 0 1 2

.

. ( , )+ f x x
; 0 £ x1, x2 £ 6.

  Step 1: Take 10 bits to code each variable. With 10 bits, what is the solution accuracy in the 

interval (0, 6)?

  Step 2: Take population size equal to total string length, i.e., 20. Create a random population of 

strings.

  Step 3: Consider the first string of the initial random popula tion. Decode the two substrings and 

determine the corresponding parameter values. What is the fitness function value correspond ing 

to each string? Similarly for other strings, calculate the fitness values.

  Step 4: Select good strings in the population to form the mating pool.

  Step 5: Perform crossover on random pairs of strings (the crosso ver probability is 0.8).

  Step 6: Perform bitwise mutation with probability 0.05 for every bit.

  The resulting population is the new population. This completes one iteration of GA and the 

generation count is incremented by 1.
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 13.3 A fuzzy logic-based expert system is to be developed that will work based on Sugano’s architecture 

to predict the output of a process. The Data Base of the fuzzy system is shown in Fig.P13.3; x1 

and x2 are two inputs with specified minimum values x1
min and x2

min
 respectively. The base-widths 

q1 and q2 are assumed to vary in the ranges:

  0.8 £ q1 £ 1.5; 4.0 £ q2 £ 6.0

  There is a maximum of R = 4 feasible rules; the output of rth rule (r = 1, 2, …,R) is expressed as 

follows:

  ˆ ( )y r  = a0
(r) + a1

(r)x1 + a2
(r)x2

  The parameters a0
(r), a1

(r), a2
(r) are assumed to vary in the range:

  0.001 £ a0
(r), a1

(r), a2
(r) £ 1.0

  To optimize the performance of the fuzzy system using GA, a set of training examples {x
(p), y(p); 

p = 1, …, P} is used. A typical GA-string in the population of solutions is of the form:

  {q1 q2 a0
(1) a1

(1)a2
(1) a0

(2) a1
(2) a2

(2) a0
(3) a1

(3) a2
(3)a0

(4) a1
(4) a2

(4)}

  with 4 binary bits assigned to represent each of the parameters.

  Randomly select an initial population of solutions, and determine the deviation in prediction for 

the training example {x
(1), y(1)} = {x1

(1) = 1.1, x2
(1) = 6.0, y(1) = 5.0} using the first GA-string.

 13.4 A fuzzy logic-based expert system is to be developed that will work based on Mamdani’s 

architecture to predict the output of a process. The Data Base of the fuzzy system is shown in 

Figs P13.3 and P13.4; x1 and x2 are two inputs with specified minimum values x1
min and x2

min, 

respectively, and y is the output with specified minimum value ymin. The basewidths q1, q2 and q3 

of these isosceles triangles are tunable. The ranges of the tunable parameters are assumed to be 

  0.8 £ q1 £ 1.5; 4.0 £ q2 £ 6.0,; 0.5 £ q3 £ 3
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  The Rule Base of the fuzzy system is given in Table P13.4.

x2Æ
x1

Ø

 
A21

 
A22

 
A11

 
S

 
M

 
A12

 
M

 
L

  To optimize the performance of the fuzzy system using GA, a set of training examples {x
(p), y(p); 

p = 1,…, P} is used. A typical GA-string in the population of solutions is of the form

{q1 q2 q3}

  with 4 binary bits assigned to represent each of the parameters.

  Randomly select an initial population of solutions, and determine the deviation in prediction for 

the training example {x
(1), y(1)} = {x1

(1) = 1.1, x2
(1) = 6.0, y(1) = 5.0} using the first GA-string.

 13.5 Reconsider the neural network shown in Fig. P11.9, modified to include the bias weights: w10, w20 

and w30, for the hidden units and bias weight, v0, for the output unit. All the bias weights vary in 

the range 0.0 to 1.0.

  A binary-coded GA is used to update connection weights including biases. Extend the procedure 

given in Review Example 13.2 to this modified network.
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14.1 INTRODUCTION

Reinforcement learning is a machine intelligence approach that emphasizes on learning by the individual 

from direct interaction with its environment. This contrasts with classical approaches (discussed earlier 

in Chapters 11 and 12) to machine learning which have focused on learning from exemplary supervision 

or from expert knowledge of the environment. In this chapter, the coverage of reinforcement learning is 

to be regarded as an introduction to the subject; a springboard to advanced studies. The inclusion of the 

topic has been motivated by the observation that reinforcent learning control has the potential of solving 

many nonlinear control problems.

Reinforcement learning is based on the common sense idea that if an action is followed by a satisfactory 

state of affairs, or by an improvement in the state of affairs (as determined in some clearly defined 

way), then the tendency to produce that action is strengthened, i.e., reinforced. Extending this idea to 

allow action selections to depend on state information, introduces aspects of feedback. A reinforcement 

learning system is, thus, any system that through interaction with its environment improves its 

performance by receiving feedback in the form of a scalar reward (or penalty)—a reinforcement signal, 

that is commensurate with the appropriateness of the response. The learning system is not told which 

action to take, as in forms of machine learning discussed earlier in Chapters 11 and 12, but instead must 

discover which actions yield the most reward by trying them. In the most interesting and challenging 

cases, actions may affect not only the immediate reward but also the next situation, and through that 

all subsequent rewards. These two characteristics—trial-and-error search and cumulative reward—

are the two important distinguishing features of reinforcement learning. Although the system’s initial 

performance may be poor, with enough interaction with the environment, it will eventually learn an 

effective strategy for maximizing cumulative reward.

Reinforcement learning is emerging as an important alternative to classical problem-solving approaches 

to intelligent control (Chapters 11 and 12), because it possesses many of the properties for intelligent 

control that classical approaches lack. Much of the classical intelligent control is an empirical science—

the asymptotic effectiveness of the learning systems has been validated only empirically. Recent advances 

Intelligent Control with  
Reinforcement Learning

Chapter 14
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relating reinforcement learning to dynamic programming are providing solid mathematical foundation; 

mathematical results that guarantee optimality in the limit for an important class of reinforcement 

learning systems, are now available [147].

Reinforcement learning systems do not depend upon models of the environment, because they learn 

through trial-and-error experience with the environment. However, when available, they can exploit this 

knowledge to determine a good initial control policy; this results in faster convergence to optimal policy.

The use of neural networks (or other associative memory structures such as fuzzy systems) makes 

reinforcement learning tractable on the realistic control problems with large state spaces. A neural 

network has the key feature of generalization; experience with a limited subset of state space is usefully 

generalized to produce a good approximation over a much larger subset. Intelligent control architectures 

incorporating aspects of both the reinforcement learning and the supervised learning, generalize from 

previously experienced states to ones that have never been experimented with. Empirical results based 

on such architectures, have shown robust, efficient learning on a variety of nonlinear control problems.

14.2 ELEMENTS OF REINFORCEMENT

 LEARNING CONTROL

Consider building a controller for stabilization of dynamic system; the controller has a set of sensors to 

observe the state of the dynamic system. In classical adaptive control strategies, the controller adjusts 

its behavior on-line, in real-time, to the changing properties of the controlled process, measured as 

a deviation of the actual process response from the process-model response. Reinforcement learning 

control is, in fact, a new adaptive control strategy wherein the controller’s performance depends on a 

sequence of decisions made by experimenting with the controlled process (model not known a priori) 

and observing the consequences.

In a general formulation of reinforcement learning framework for solving sequential decision problems, 

we see the reinforcement learning problem as a straightforward framing of the problem of learning from 

interaction to achieve a goal. The learner and the decision-maker is called an agent. The thing it interacts 

with, comprising everything outside the agent, is called the environment. These interact continually; the 

agent selecting actions and the environment responding to these actions and presenting new situations 

(states of the environment) to the agent. Figure 14.1 diagrams a generic agent perceiving its environment 

through sensors and acting upon that environment through effectors. Reinforcement learning is learning 

what to do—how to map states to actions—so as to maximize a numerical reward. The agent is not told 

which actions to take; it must instead discover which actions yield the most reward by trying them. To 

obtain a lot of reward, a reinforcement learning agent must prefer actions that it has tried in the past and 

found to be effective in producing reward. But to discover such actions, it has to try actions that it has not 

selected before. The agent has to exploit what it already knows by being greedy to maximize reward, but 

it has also to explore in order to make better action selections in the future. The dilemma is that neither 

exploitation nor exploration can be pursued exclusively without failing at the task. The agent must try 

a variety of actions and progressively favor those that appear to be most effective. Although the agent’s 

initial performance may be poor, with enough interaction with the environment, it will eventually learn 

an effective policy for maximizing reward.
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Fig. 14.1 A generic agent

Beyond the agent and the environment, one can identify four main sub-elements of a reinforcement 

learning system—a policy, a reward function, a value function and horizon of decisions. A policy defines 

the learning agent’s way of behaving at a given time. Roughly speaking, a policy is a mapping from 

perceived states of the environment to actions to be taken when in those states. A reward function defines 

immediate reward for an action responsible for the current state of the environment. Roughly speaking, 

it maps states of the environment to a scalar, a reward, indicating the intrinsic desirability of the state. 

Whereas a reward function indicates what is good in the immediate sense, a value function specifies 

what is good in the long run. Roughly speaking, the value of a state is the cumulative reward an agent 

can expect to accumulate over the future as a result of sequence of its actions, starting from that state. 

Whereas rewards determine the immediate, intrinsic desirability of environmental states, values indicate 

the long-term desirability of states after taking into account the states that are likely to follow, and the 

rewards available in those states. An agent’s sole objective is to maximize the cumulative reward (value) 

it receives in the long run.

The value function depends on whether there is a finite horizon or an infinite horizon for decision making. 

A finite horizon means that there is a fixed time after which nothing matters—the game is over, so to 

speak. With a finite horizon, the optimal action for a given state could change over time. We say that the 

optimal policy for a finite horizon is nonstationary.

With no fixed time limit, on the other hand, there is no reason to behave differently in the same state at 

different times. Hence, the optimal action depends only on the current state, and the optimal policy is 

stationary. Polices for the infinite-horizon case are, therefore, simpler than those for finite-horizon case.

Note that ‘infinite horizon’ does not necessarily mean that all state sequences are infinite; it just means 

that there is no fixed deadline. If the environment contains terminal states and if the agent is guaranteed 

to get to one eventually, then we will never come across infinite sequences.

Our focus in this chapter is on reinforcement learning solutions to control problems. The controller 

(agent) has a set of sensors to observe the state of the controlled process (environment); the learning task 

is to learn a control strategy (policy) for choosing control signals (actions) that achieve minimization of 

a performance measure (maximization of cumulative reward).

In control problems, we minimize a performance measure; frequently referred to as cost function. The 

reinforcement learning control solution seeks to minimize the long-term accumulated cost the controller 
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incurs over the task time. The general reinforcement learning solution seeks to maximize the long-

term accumulated reward the agent receives over the task time. Since in control problems, reference of 

optimality is a cost function, we assign cost to the reward structure of the reinforcement learning process; 

the reinforcement learning solution then seeks to minimize the long-term accumulated cost the agent 

incurs over the task time. The value function of the reinforcement learning process is accordingly defined 

with respect to cost structure.

The stabilizing control problems we have been discussing in this book, are all infinite-horizon problems. 

Here also, we will limit our discussion to this class of control problems.

Some reinforcement learning systems have one more element—a model of the environment. This is 

something that mimics the behavior of the environment. For example, given a state and action, the model 

might predict the resultant next state and next cost.

Early reinforcement learning systems were explicitly model-free, trial-and-error learners. Nevertheless, it 

gradually became clear that reinforcement learning methods are closely related to dynamic programming 

methods, which do use models. Adaptive dynamic programming has emerged as a solution method for 

reinforcement learning problems wherein the agent learns the models through trial-and-error interaction 

with the environment, and then uses these models in dynamic programming methods.

We have used the vector x to represent the state of a physical system: x = [x1 x2 ... xn]T, where xi: 

i = 1, ..., n, are state variables of the system. State x, a vector of real numbers, is a point in the state 

space. In reinforcement learning (RL) framework, we will represent the state by ‘s’; thus s is a point in 

the n-dimensional state space. Similarly, the vector u has been used for control. We will represent this by 

the action ‘a’ in our RL framework. 

If the environment is deterministic, then an agent’s action a will transit the state of the environment from 

s to s¢ deterministically; there is no probability involved. In fact, the transfer function models or state 

variable models, used in the book so far, for plants/controlled processes, are approximate models based 

on the assumption of deterministic behavior.

If the environment is stochastic, then transition of s to s¢ under action a will be different each time action 

a is applied in state s. This is captured by a probabilistic model. If the environment is deterministic, but 

uncertain, then also transition of s to s¢ under action a will not be unique each time action a is applied 

in state s. Since uncertainty in environments is the major issue leading to complexity of the control 

problem, we will be concerned with probabilistic models.

 (1) A specification of the outcome probabilities for each admissible action in each possible state is 

called the transition model.

  P(s, a, s¢): probability of reaching state s¢ if action a is applied in state s.

 (2) In control problems, the transitions are Markovian—the probability of reaching state s¢ from s 

depends only on s and not on the history of earlier states. 

 (3) In each state s, the agent receives a reinforcement r(s), which measures the immediate cost of the 

action.

 (4) The specification of a sequential decision problem for a fully observable environment, with a 

Markovian transition model and cost for each state, is called a Markov Decision Process (MDP).

 (5) The basis of our reinforcement learning framework is Markov decision processes.
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14.3 METHODS FOR SOLVING THE REINFORCEMENT 

LEARNING PROBLEM

 Dynamic programming is a well-known, general-purpose method to deal with complex systems to find 

optimal control strategies for nonlinear and stochastic dynamic systems. It addresses the problem of 

designing closed-loop policies off-line under the assumption that an accurate model of the stochastic 

dynamic system is available. The off-line design procedure typically yields a computationally efficient 

method for determining each action as a function of the observed system state.

There are two practical issues related to the use of dynamic programming: 

 (1) For many real-world problems, the number of possible states and admissible actions in each state 

are so large that the computational requirements of dynamic programming are overwhelming 

(‘curse of dimensionality’).

 (2) Dynamic programming algorithms require accurate model of the dynamic system; this prior 

knowledge is not always available (‘curse of modeling’).

Over the past three decades, a focus of researchers has been to develop methods capable of finding  

high-quality approximate solutions to problems where exact solutions via classic dynamic programming 

are not attainable in practice due to high computational complexity and lack of accurate knowledge 

of system dynamics. In fact, reinforcement learning is a field that represents this stream of activities. 

All of the reinforcement learning can be viewed as attempts to achieve the same effect as dynamic 

programming, only with less computation and without assuming a perfect model of the dynamic system. 

By focusing computational effort along behavioral patterns of interactions with the environment, and 

by using function approximation (neural network) for generalization of experience to states not reached 

through interactions, reinforcement learning can be used on-line for problems with large state spaces and 

with lack of accurate knowledge of system dynamics.

 There is a close relationship between reinforcement learning and using dynamic programming to 

solve sequential decision problems. In both, the environment is characterized by a set of states, a 

set of admissible actions, and a cost function. In both, the objective is to find a decision policy that 

minimizes the cumulative cost over time. There is an important difference though. When solving a 

sequential decision problem using dynamic programming, the agent (presumably the designer of the 

eventual control system) has a complete (albeit stochastic) model of the environment’s behavior. Given 

this information, the agent can compute the optimal control policy with respect to the model, as will be 

outlined in the next section. In reinforcement learning, the set of states, and the set of admissible actions 

are known a priori, but the effects of action on the environment and on the cost is not known. Thus, 

the agent cannot compute an optimal policy a priori (off-line). Instead, the agent must learn an optimal 

policy by experimenting in the environment. Reinforcement learning system is, thus, an on-line system.

In an on-line learning system, the learner moves about the real environment and observes the results. In 

this case, our primary concern is usually the number of real-world actions that the agent must perform to 

converge to an acceptable policy (rather than the number of computational cycles, as in off-line learning). 

The reason is that in many practical domains, the costs in time and in dollars of performing actions in the 

external world dominate the computational costs.
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On-line learning can be performed in two elementary ways:

 (1) Temporal difference learning

 (2) Adaptive dynamic programming

14.3.1 

If one had to identify an idea as central and novel to reinforcement learning, it would undoubtedly 

be Temporal Difference (TD) learning. Temporal difference learning can be thought of as a version 

of dynamic programming, with the difference that TD methods can learn on-line in real-time, from 

raw experience without a model of the environment’s dynamics. TD methods do not assume complete 

knowledge of the environment; they require only experience—sample sequences of states, actions and 

costs from actual interaction with the environment. Learning from actual experience is striking because 

it requires no prior knowledge of the environment’s dynamics, yet can obtain optimal behavior.

The principle advantage of dynamic programming is that, if a problem can be specified in terms of 

Markov decision process, then it can be analyzed and an optimal policy obtained a priori. The two 

principle disadvantages of dynamic programming are as follows: (1) for many tasks, it is difficult to 

specify the dynamic model; and (2) because dynamic programming determines a fixed control policy a 

priori, it does not provide a mechanism for adapting the policy to compensate for disturbances and/or 

modeling errors (nonstationary dynamics). 

Reinforcement learning has complimentary advantages as follows: (1) it does not require a prior 

dynamical model of any kind, but learns on experience gained directly from the environment; and (2) 

to some degree, it can track the dynamics of nonstationary systems. The principle disadvantage of 

reinforcement learning is that, in general, many trials (repeated experiences) are required to learn an 

optimal control strategy, especially if the system starts with a poor initial policy.

This suggests that the respective weaknesses of these two approaches may be overcome by integrating 

them. That is, if a complete, possibly inaccurate, model of the task is available a priori, model-based 

methods (including dynamic programming) can be used to develop initial policy for a reinforcement 

learning system. A reasonable initial policy can substantially improve the system’s initial performance 

and reduce the time required to reach an acceptable level of performance. Conversely, adding an adaptive 

reinforcement learning component to an otherwise model-based fixed controller, can compensate for an 

inaccurate model.

In this chapter, we limit our discussion to naive reinforcement learning systems.

14.3.2

An adaptive dynamic programming agent works by learning the transition model of the environment 

through interaction with the environment. It then plugs the transition model and the observed costs in the 

dynamic programming algorithm. Adaptive dynamic programming is, thus, an on-line learning system. 

The process of learning the model itself is easy when the environment is fully observable. In the simplest 

case, we can represent the transition model as a table of probabilities. We keep track of how often each 

action outcome occurs, and estimate the transition probability P(s, a, s¢) from the frequency with which 

state s¢ is reached when executing action a in state s.
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Our focus in this chapter is on temporal difference learning. We begin with an introduction to dynamic 

programming, and then using this platform, develop temporal difference methods of learning.

14.4 BASICS OF DYNAMIC PROGRAMMING

 We first define a general formulation of the problem of learning sequential control strategies. To do so, 

we consider building a learning controller for stabilization of an inverted pendulum (Fig. 5.16). The 

controller, or agent, has a set of sensors to observe the state of its environment (the dynamic system: 

inverted pendulum mounted on a cart). For example, a controller may have sensors to measure angular 

position q and velocity �q of the pendulum, and horizontal position z and velocity �z of the cart; and 

actions implemented by applying a force of u newtons to the cart. Its task is to learn control strategy, or 

policy, for choosing actions that achieve its goals.

A common way of obtaining approximate solutions for continuous state and action tasks is to quantize 

the state and action spaces, and apply finite-state dynamic programming (DP) methods. The methods we 

explore later in this chapter make learning tractable on the realistic control problems with continuous 

state spaces (infinitely large set of quantized states).

Suppose that our stabilization problem demands that the pendulum must be kept within ± 12° from 

vertical, and the cart must be kept within ± 2.4m from the center of the track.

We define the following finite sets of possible states S and available actions A.

State Æ 1 2 3 4 5 6

Pend. angle(deg); q < –6 –6 to –1 –1 to 0 0 to 1 1 to 6 > 6

Pend. velocity; �q < –50 –50 to 50 > 50

Cart position(m); z < –0.8 –0.8 to 0.8 > 0.8

Cart velocity; �z < –0.5 –0.5 to 0.5 > 0.5

Actions Æ 1 2 3 4 5 6 7

Apply force of  

u newtons

 –10 –6 –2 0 2 6 10

Define: x1, = q , x2 = �q, x3 = z, x4 = �z. Vector x = [x1 x2 x3 x4]T defines a point in the state space; the distinct 

point corresponding to x is the distinct state s of the environment (pendulum on a cart). Therefore, there 

are 6 ¥ 3 ¥ 3 ¥ 3 = 162 distinct states: s(1), s(2),..., s(162), of our environment. The finite set of states, in our 

learning problem, is thus given as 

 S : {s(1), s(2),..., s(162)}

The action set size is seven: a(1), a(2),..., a(7). The finite set of available actions in our learning problem, 

is thus given as 

 A : {a(1), a(2),..., a(7)}
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We assume the knowledge of state transition model:

P(s, a, s¢): probability of reaching state s¢ if action a is applied in state s; 

for all s Œ S, and for all a Œ A

Note that our model is stochastic; it captures the uncertainties involved in the environment.

 In each state s, the agent receives a reinforcement r (s), which measures the immediate cost of action. 

For the particular inverted pendulum example, a cost of ‘–1’ may be assigned to failure states (q >12°; 

q < –12°), and a cost of ‘0’ may be assigned to every other state. Note that cost structure for a learning 

problem is an important design parameter. It controls the convergence speed of a learning algorithm. The 

functions P(◊) and r(◊) are part of the environment and not necessarily known to the agent.

 The specification of a sequential design problem for a fully observable (the agent knows where it is) 

environment with a Markovian decision model and cost for each state, is a Markov Decision Process 

(MDP). An MDP is defined by the tuple (S,A,P,r) where S is the set of possible states the environment can 

occupy; A is the set of admissible actions the agent may execute to change the state of the environment, 

P is the state transition probability, and r is the cost function. Usually S and A are distinct and finite; we 

assume that

S : {s(1), s(2),..., s(N)}; A : {a(1), a(2),..., a(M)}

where N represents the total number of distinct states of the environment, and M represents the total 

number of admissible actions in each state.

Let us now consider the structure of solution to the problem. Any fixed action sequence (open-loop 

structure) will not solve the problem because due to uncertainties in the behavior of the environment, 

the agent might end up in a failure state; i.e., the scheme lacks the robustness properties. Therefore, 

a solution must specify what the agent should do far any state that the environment might reach. The 

resulting feedback loop is a source of a measure of internal/external disturbances. A solution of this kind 

is called a policy. We usually denote a policy by p.

A stationary policy p for an MDP is a mapping p : S Æ W(A), where W(A) is the set of all probability 

distributions over A. p (a,s) stands for the probability that policy p chooses action a in state s. Since each 

action a(1), a(2),..., a(M) is a candidate for state s, policy p(a,s) for s is a set of action-selection probabilities 

associated with a(1),..., a(M); their sum equals one.

A stationary deterministic policy p is a policy that commits to a single action choice per state, that is, 

a mapping p : S Æ A from states to actions. In this case, p(s) indicates the action that the agent takes 

in state s. For every MDP, there exists an optimal deterministic policy, which minimizes the expected, 

total discounted cost (to be defined shortly) from any initial state. It is, therefore, sufficient to restrict the 

search for the optimal policy only within the space of deterministic policies.

The next question we must decide is how to calculate the value of a state. Recall that the value of a state 

is the cumulative cost an agent can expect to incur over the future as a result of sequence of its actions, 

starting from that state. A sequence of actions for a given task will force the environment through a 

sequence of states. Let us call it environment trajectory of a given task. In an infinite-horizon problem, 

the number of actions for a task is not fixed; therefore, number of distinct states in an environment 
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trajectory is not fixed. A typical state sequence in a trajectory may be expressed as {s0, s1, s2,...} where, 

each st; t = 0,1,2,3,..., could be any of the possible environment states s(1),..., s(N).

Given the initial state st and the agent’s policy p. The agent selects an action p(st), and the result of this 

action is next state st+1. The state transition model, P(s, a, s¢), gives a probability that the next state st+1 

will be s¢ Œ S, given that the current state st = s and the action at = a. Since each state s(1), s(2),..., s(N) is a 

candidate to be the next state s¢, the environment simulator gives a set of probabilities: P(st, at , s
(1)), ..., 

P(st, at, s
N); their sum equals one. Thus, a given policy p generates not one state sequence (environment 

trajectory), but a whole range of possible state sequences, each with a specific probability determined by 

the transition model of the environment.

The quality of a policy is, therefore, measured by the expected value (cumulative cost) of a state, where 

the expectation is taken over all possible state sequences that could occur. For MDPs, we can define the 

‘value of a state under policy p’ formally as

 V p(s) = E r st
t

t

p g ( )

=0

Â
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
 (14.1)

where Ep{◊} denotes the expected value given that the agent follows policy p. This is a discounted cost 

value function; the discount factor g is a number between 0 and 1(0 £ g < 1)

Note that 

g gt
t

t

t

t

r s r( ) max

= =0 0

Â Â£  = rmax/(1– g )

Thus, the infinite sequence converges to a finite limit when costs are bounded and g < 1.

The discount factor g determines the relative value of delayed versus immediate costs. In particular, 

costs incurred t steps into the future are discounted exponentially by a factor of g t. Note that if we set g 

= 0, only the immediate cost is considered. If we set g  closer to 1, future costs are given greater emphasis 

relative to the immediate cost. The meaning of g substantially less than 1 is that future costs matter to 

us less than the costs paid at this present time. The discount factor is an important design parameter in 

reinforcement learning scheme.

The final step is to show how to choose between policies. An optimal policy is a policy that yields the 

highest expected value. We use p* to denote an optimal policy.

 p* = arg min ( )E r st
t

t

p
p

g
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Â
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˚

˙
˙
 (14.2)

The ‘arg min’ notation denotes the values of p at which Ep [◊] is minimized. p*(s) is, thus, a solution 

(obtained off-line) to the sequential decision problem. Given p*, the agent decides what to do in real 

time by observing the current state s and executing the action p*(s). This is the simplest kind of agent, 

selecting fixed actions on the basis of the current state. A reinforcement learning agent, as we shall 

see shortly, is adaptive; it improves its policy on the basis of on-line, real-time interactions with the 

environment.

In the following we describe algorithms for finding optimal policies of the dynamic programming agent.
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14.4.1

The dynamic programming technique rests on a very simple idea known as the principle of optimality 

[105].

An optimal policy has the property that whatever the initial state and initial decisions are, the remaining 

decisions must constitute an optimal policy with regard to the state resulting from the previous decisions.

Consider a state sequence (environment trajectory) resulting from the execution of optimal policy p* : 

{s0, s1, s2,...} where each st : t = 0,1,2..., could be any of the possible environment states s(1), s(2),..., s(N). 

The index t represents stages of decisions in the sequential decision problem.

The dynamic programming algorithm expresses a generalization of the principle of optimality. It states 

that the optimal value of a state is the immediate cost for that state plus the expected discounted optimal 

value of the next state, assuming that the agent chooses the optimal action. That is, the optimal value of 

a state is given by

 V *(s) = r s P s a s V s
a s

( ) min ( , , ) ( )*+ ¢ ¢
¢

Âg  (14.3)

This is one form of the Bellman optimality equation for V*. For finite MDPs, this equation has a unique 

solution.

The Bellman optimality equation is actually a system of N simultaneous nonlinear equations in N 

unknowns, where N is the number of possible environment states. If the dynamics of the environment 

(P(s,a,s¢)) and the immediate costs underlying the decision process (r(s)) are known, then, in principle, 

one can solve this system of equations for V* using any one of the variety of methods for solving systems 

of nonlinear equations. Once one has V*, it is relatively easy to determine an optimal policy:

 p*(s) = arg min ( , , ) ( )*

a s
P s a s V sS

¢
¢ ¢  (14.4)

Note that V*(s) = Vp*
 (s): 

 V *(s) = min ( )V s s Sp

p

for all Œ  (14.5)

The solution of Bellman optimality equation (14.3) directly gives the values V* of states with respect to 

optimal policy p*. From this solution, one can obtain optimal policy using Eqn. (14.4).

Equation (14.5) suggests an alternative route to finding optimal policy p*. It uses Bellman equation for 

V p, given below.

 Vp (s) = r s P s s s V s

s

( ) ( , ( ), ) ( )+ ¢ ¢
¢

Âg p p  (14.6)

Note that this equation is a system of N simultaneous linear equations in N unknowns, where N is 

the number of possible environment states (Eqns (14.6) are same as Eqns (14.3) with ‘min’ operator 

removed). We can solve these equations for V p(s) by standard linear algebra methods.

Given an initial policy p0, one can solve (14.6) for V p 0 (s). Once we have V p 0, we can obtain improved 

policy p1, using the strategy given by Eqn. (14.4):

 p1(s) = arg min ( , , ) ( )
a s

P s a s V s¢ ¢
¢

Â p0  (14.7)
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The process is continued:

p p p pp p
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Each policy is guaranteed to be a strict improvement over the previous one (unless it is already optimal). 

Because a finite MDP has only a finite number of policies, this process must converge to an optimal 

policy p* and optimal value function V* in a finite number of iterations.

Thus, given a complete and accurate model of MDP in the form of knowledge of the state transition 

probabilities P(s, a,s¢) and immediate costs r(s) for all states s Œ S and all actions a Œ A, it is possible—at 

least in principle—to solve the decision problem off-line. There is one problem: the Bellman equations 

(14.3) are nonlinear because of the ‘min’ operator; solution of nonlinear equations is problematic. The 

Bellman equations (14.6) are linear and therefore, can be solved relatively quickly. For large state spaces, 

time might be prohibitive even in this relatively simpler case.

In the following, we describe basic forms of two dynamic programming algorithms: value iteration and 

policy iteration—a step towards answering the computational complexity problems of solving Bellman 

equations.

14.4.2

As used for solving Markov decision problems, value iteration is a successive approximation procedure 

for solving the Bellman optimality equation (14.3), whose basic operation is ‘backing up’ estimates of 

optimal state values. We can solve Eqn. (14.3) using a simple iterative algorithm:

 V s r s P s a s V sl
a

l

s

( ) ( ) ( ) min ( , , ) ( )+
¢

¨ + ¢ ¢Â1 g  (14.8)

The algorithm begins with arbitrary guess V0(s) for each s Œ S. The sequence of V1(s),V2(s),…, is then 

obtained. The algorithm converges to the optimal values V*(s) as the number of iterations l approaches 

infinity (We use the index l for the stages of iteration algorithm, whereas we have used earlier the index t 

to denote the stages of decisions in the sequential decision problem). In practice, we stop once the value 

function changes by a small amount. Then a greedy policy (choosing the action with the lowest estimated 

cost) with respect to the optimal set of values is obtained as an optimal policy.

The computation (14.8) is done off-line, i.e., before the real system starts operating. An optimal policy, 

that is, an optimal choice of a Œ A for each s Œ S, is computed either simultaneously with V*, or in real 

time, using Eqn.(14.4).

A sequential implementation of iteration algorithm (14.8) requires temporary storage locations so that all 

the iteration-(l + 1) values are computed based on the iteration-l values. The optimal values V* are then 

stored in a lookup table. In addition to a problem of the memory needed for large tables, there is another 

problem of time needed to accurately fill them. If there are N states, and M is the largest number of 

admissible actions for any state, then each iteration which consists of backing up the value of each state 

exactly once requires about M ¥ N2 operations. For the large state sets, typical in many control problems, 

it is difficult to try to complete even one iteration, let alone repeat the process until it converges to V* 

(curse of dimensionality).
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The iteration of synchronous DP algorithm defined in (14.8) backs up the value of every state once to 

produce the new approximate value function. We call this kind of operation as full backup; it is based 

on all possible next states rather than on a sample next state. We think of the backups as being done in a 

sweep through the state space.

Asynchronous DP algorithms are not organized in terms of systematic sweep of the entire set of states in 

each iteration. These algorithms backup the values of the states in any order whatsoever, using whatever 

values of other states happen to be available. The values of some states may be backed up several 

times before the values of others are backed up once. To converge correctly, however, an asynchronous 

algorithm must continue to back up the values of all the states.

Of course, avoiding sweeps does not necessarily mean that we can get away with less computation. 

It just means that our algorithm does not need to get locked into any hopelessly long sweep before it 

can make progress. We can try to take advantage of this flexibility by selecting the states to which we 

apply backups so as to improve the algorithm’s rate of progress. We can try to order the backups to 

let value information propagate from state to state in an efficient way. Some states may not need their 

values backed up as often as other states. Some state orderings produce faster convergence than others, 

depending on the problem.

14.4.3

A policy iteration algorithm operates by alternating between two steps (the algorithm begins with 

arbitrary initial policy p0). 

(i) Policy evaluation step  

Given the current policy pk, we perform policy evaluation step that computes V kp (s) for all s Œ S, as the 

solution of the linear system of equations (Bellman equation)

 V kp (s) = r s P s s s V sk

s

k( ) ( , ( ), ) ( )+ ¢ ¢
¢

Âg p p  (14.9)

in the N unknowns V kp (s).

To solve these equations, an iteration procedure similar to the one used in value iteration algorithm 

(given by (14.8)) may be used.

  V s r s P s s s V sl k l

s

k k

+
¢

¨ + ¢ ¢Â1
p pg p( ) ( ) ( , ( ), ) ( ) (14.10)

(ii) Policy improvement step

Once we have V kp , we can obtain improved policy p k+1 (refer to Eqn.(14.7)) as follows:

 pk +1(s) = arg min ( , , ) ( )
a s

P s a s V sk¢ ¢
¢

Â p  (14.11)

The two-step procedure is repeated with policy p k+1 used in place of pk, unless we have V kp +1(s) ª V kp  (s) 

for all s; in which case, the algorithm is terminated with optimal policy p* = pk.

Policy iteration algorithm can be viewed as an actor–critic system. In this interpretation, the policy 

evaluation step is viewed as the work of a critic, who evaluates the performance of the current policy 
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pk, i.e., generates an estimate of the value function V kp  from states and reinforcement supplied by the 

environment as inputs. The policy improvement step is viewed as the work of an actor, who takes into 

account the latest evaluation of the critic, i.e., the estimate of the value function, and acts out the improved 

policy pk+1.

The algorithm we have described so far requires updating the values/policy for all states at once. It turns 

out that this is not strictly necessary. In fact, on each iteration, we can pick any subset of states and apply 

updating to that subset. This algorithm is called asynchronous policy iteration. Given certain conditions 

on the initial policy and value function, asynchronous policy iteration is guaranteed to converge to an 

optimal policy. The freedom to choose any states to work on means that we can design much more 

efficient heuristic algorithms—for example, algorithms that concentrate on updating the values of states 

that are likely to be reached by a good policy. 

14.5 TEMPORAL DIFFERENCE LEARNING

The novel aspect of learning that we address now is that it assumes the agent does not have knowledge of 

r(s) and P(s,a,s¢), and therefore it cannot learn solely by simulating actions with environment model (off-

line learning not possible). It has no choice but to interact with the environment and learn by observing 

consequences.

Figure 14.2 gives a general setting of the agent-environment interaction process. Time advances by 

discrete unit length quanta; t = 0,1,2,… At each time step t, the agent senses the current state st Œ S of the 

environment, chooses an action at Œ A, and performs it. The environment responds by giving the agent a 

cost rt = r(st), and by producing the succeeding state st+1 Œ S. 

Fig. 14.2

The environment is stochastic in nature—each time the action at is applied in the state st, the succeeding 

state st+1 could be any of the possible states in S : s(1), s(2),…, s(N). For the stochastic environment, the 

agent, however, explores in the space of deterministic policies (a deterministic optimal policy is known 

to exist for Markov decision process). Therefore, for each observed environment state st , the agent’s 

policy suggests a deterministic action at = p(st).

The task of the agent is to learn a policy p : S  Æ A that produces the lowest possible cumulative cost over 

time (greedy policy). To state this requirement more precisely, the agent’s task is to learn a policy p that 

minimizes the value V p given by (14.1).

Reinforcement learning methods specify how the agent updates its policy as a result of its experience. 

The agent could use alternative methods for gaining experience and using it for improvement of its 
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policy. In the so called Monte Carlo method, the agent executes a set of trials in the environment using 

its current policy p. In each trial, the agent starts in state s(i) (any point s(1),…,s(N) of state space) and 

experiences a sequence of state transitions until at reaches a terminal state. In infinite-horizon discounted 

cost problems under consideration, terminal state corresponds to the equilibrium state. A learning episode 

(trial) is infinitely long, because the learning is continual. For the purpose of viewing the infinite-horizon 

problem in terms of episodic learning, we may define a stability region around the equilibrium point 

and say that the environment has terminated at a success state if the state continues to be in stability 

region for a prespecified time period (In a real-time control, any uncertainty (internal or external) will 

pull the system out of stability region and a new learning episode begins). Failure states (situations 

corresponding to ‘the game is over and it is lost’) if any, are also terminal states of the learning process.

In a learning episode, agent’s percepts supply both the current state and the cost incurred in that state. 

Typical state sequences (environment trajectories) resulting from trials might look like this:
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Note that each state percept is subscripted with the cost incurred. The objective is to use the information 

about costs to learn the expected value V p(s) associated with each state. The value is defined to be the 

expected sum of (discounted) costs incurred if policy p is followed (refer to Eqn.(14.2)).

When a nonterminal state is visited, its value is estimated based on what happens after that visit. Thus, 

the value of a state is the expected total cost from that state onward, and each trial (episode) provides 

samples of the value for each state visited. For example, the first trial in the set of three given above, 

provides one sample of value for state s(1):

 (i) r(1) + g r(5) + g 2r(9) + g 3r(5) + g 4r (9) + g 5r(10) + g 6r(11) + g 7r(SUCCESS) ; 

  two samples of values for state s(5):

 (i) r(5) + g r(9) + g 2r(5) + g 3r(9) + g 4r (10) + g 5r(11) + g 6r(SUCCESS);

 (ii) r(5) + g r(9) + g 2r(10) + g 3r(11) + g 4r (SUCCESS);

  two samples of values for state s(9):

 (i) r(9) + g r(5) + g 2r(9) + g 3r(10) + g 4r (11) + g 5r(SUCCESS);

 (ii) r(9) + g r (10) + g 2r(11) + g 3r(SUCCESS);

  and so on.

Thus, at the end of each episode, the algorithm calculates the observed total cost for each state visited, 

and updates the estimated value for that state accordingly just by keeping a running average for each state 

in a table. In the limit of infinitely many trials, the sample average will converge to the true expectation 

of Eqn. (14.2).
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The Monte Carlo method differs from dynamic programming in the following two ways:

 (i) First, it operates on sample experience, and thus can be used for direct learning without a model.

 (ii) Second, it does not build its value estimates for a state on the basis of estimates of the possible 

successor states (refer to Eqn. (14.6)); it must wait until the end of the trial to determine the update 

in value estimates of states. In dynamic programming methods, the value of each state equals its 

own cost plus the discounted expected value of its successor states.

The Temporal Difference (TD) learning methods combine the sampling of Monte Carlo, with the value 

estimation scheme of dynamic programming. TD methods update value estimates based on cost of one-

step real-time transition and learned estimate of successor state, without waiting for the final outcome. 

Typically, when a transition occurs from state s to state s¢, we apply the following update to Vp(s):

 V p(s) ¨ V p(s) + h (r (s) + g V p(s¢) – V p(s)) (14.12)

where h is the learning parameter.

Because the update uses the difference in values between successive states, it is called the temporal-

difference or TD equation, TD methods have an advantage over dynamic programming methods in that 

they do not require a model of the environment. Advantage of TD methods over Monte Carlo is that they 

are naturally implemented in an on-line fully incremental fashion. With Monte Carlo methods, one must 

wait until the end of a sequence, because only then is the value known, whereas with TD methods, one 

need only wait one time step.

Note that the update (14.12) is based on one state transition that just happens with a certain probability, 

whereas in (14.6), the value function is updated for all states simultaneously using all possible next 

states, weighted by their probabilities. This difference disappears when the effects of TD adjustments 

are averaged over a large number of transitions. The interaction with the environment can be repeated 

several times by restarting the experiment after success/failure state is reached. For one particular state, 

the next state and received reinforcement can be different each time the state is visited. Because the 

frequency of each successor in the set of transitions is approximately proportional to its probability, TD 

can be viewed as a crude but efficient approximation to dynamic programming.

The TD equation (14.12) is, in fact, approximation of policy-evaluation step of policy iteration algorithm 

of dynamic programming (refer to previous section for a recall), where the agent’s policy is fixed and the 

task is to learn the values of states. This, as we have seen, can be done without a model of the system. 

However, improving the policy using (14.11) still requires the model.

One of the most important breakthroughs in reinforcement learning was the development of model-free 

TD control algorithm, known as Q-learning.

14.6

In addition to recognizing the intrinsic relationship between reinforcement learning and dynamic 

programming, Watkins [148,150] has made an important contribution to reinforcement learning by 

suggesting a new algorithm called Q-learning. The significance of Q-learning is that when applied to a 

Markov decision process, can be shown to converge to the optimal policy, under appropriate conditions. 

Q-learning is the first reinforcement learning algorithm to be shown convergent to the optimal policy for 

decision problems involving cumulative cost.
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The Q-learning method learns an action–value representation instead of learning value function. We will 

use the notation Q(s,a) to denote the value of doing action a in state s. Q-function is directly related to 

value function as follows:

 V(s) = min ( , )
a

Q s a  (14.13)

Q-functions may seem like just another way of storing value information, but they have a very important 

property: a TD agent that learns a Q-function does not need a model for either learning or action 

selection. For this reason, Q-learning is called a model-free method.

The connections between Q-learning and dynamic programming are strong: Q-learning is motivated 

directly by value-iteration, and its convergence proof is based on a generalization of the convergence 

proof for value-iteration.

We can use the value-iteration algorithm (14.8) directly as an update equation for an iteration process 

that calculates exact Q-values, given an estimated model:

 Q s a r s P s a s Q s al

s
a

l+
¢

¢
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Î
˘
˚Â1( , ) ( ) ( , , ) min ( , )g  (14.14)

It converges to the optimal Q-values, Q*(s,a).

Once one has Q*(s,a) for all s Œ S and all a Œ A, it is relatively easy to determine an optimal policy:

 p*(s) = arg min ( , )*

a

Q s a  (14.15)

This does, however, require that a model is given (or is learned (adaptive dynamic programming)), 

because Eqn. (14.14) uses P(s, a, s¢).

The temporal-difference approach, on the other hand, requires no model. The update equation for TD 

Q-learning is (refer to Eqn. (14.12))

  Q s a Q s a r s Q s a Q s a
a

( , ) ( , ) ( ) min ( , ) ( , )¨ + + ¢ ¢È
Î

˘
˚

-( )¢
h g  (14.16)

which is calculated whenever action a is executed in state s leading to s¢.

The Q-learning algorithm (14.16) backs up the Q-value for only a single state-action pair at each time 

step of control, where the state-action pair consists of the observed current state and the action actually 

executed. Specifically, assume that at time step t in real-time control, the agent observes state st and 

has available the estimated Q-values produced by all the preceding stages of real-time Q-learning (the 

estimates stored in a lookup table with one entry for each state-action pair). We denote these estimates 

by Qt(s,a) for all admissible state-action pairs. The agent selects an action at Œ A using this information 

available in lookup table:

at = arg min ( , )
a

t tQ s a

After executing at, the agent receives the immediate cost rt = r(st) while the environment state changes to 

st+1. The Q-values in the lookup table are then updated as follows.

For the state-action pair (st,at):

 Qt+1(st, at) = Q s a r Q s a Q s at t t t t
a

t t t t t( , ) min ( , ) ( , )+ + ( ) -È
ÎÍ

˘
˚̇

+h g 1  (14.17a) 
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For other admissible state-action pairs, the Q-values remain unchanged:

 Qt+1(s, a) = Qt (s, a) " (s, a) π (st, at) (14.17b)

Watkins [148, 150] has shown that the Q-learning system that 

 (1) decreases its learning parameter at an appropriate rate (e.g., ht = 1/tb, where 0.5 < b < 1); and 

 (2) visits each state-action pair infinitely often, is guaranteed to converge to an optimal policy.

Convergence, thus, requires that the agent selects actions in such a fashion that it visits every possible 

state-action pair infinitely enough. By this we mean that if action a is an admissible action from state 

s, then over time the agent must execute action a from state s repeatedly with nonzero frequency as the 

length of its action sequence approaches infinity.

In the Q-learning algorithm given by Eqns (14.17), the strategy for the agent in state st at time step t 

is to select the action a that minimizes Qt(st,a), thereby exploiting the current approximation of Q* by 

following a greedy policy. However, with this strategy, the agent runs the risk that it will over commit to 

actions that are found during early stages to have low Q-values, while failing to explore other actions that 

can have even lower values. In fact, the convergence condition requires that each state-action transition 

occurs infinitely often. This will clearly not happen if the agent always follows the greedy policy.

The Q-learning agent must, therefore, follow the policy of exploration and exploitation: exploration 

ensures that all admissible state-action pairs are visited enough to satisfy the Q-learning convergence 

condition, and exploitation seeks to minimize the cost by following a greedy policy.

Many exploration schemes have been used in the RL literature. The simplest one is to behave greedily 

most of the time, but every once a while, say with small probability e, instead select an action at random, 

uniformly, independently of the action-value estimates. We call methods using this near-greedy action 

selection rule e-greedy methods.

14.6.1

We have so far assumed that the Q-values learned by the agent are represented in a tabular form with one 

entry for each state-action pair. This is a particularly clear and instructive case, but of course, it is limited 

to tasks with small numbers of states and actions. The problem is not just the memory needed for large 

tables, but the computational time needed to experience all the state-action pairs for generation of data 

to accurately fill the tables.

Very few decision and control problems in the real world fit into lookup table representation strategy 

for solution; the number of possible states and actions in the real world is often much too large to 

accommodate the computational and storage requirements. The problem is more severe when state/

action spaces include continuous variables—to use a table, they should be discretized to finite size, which 

may cause errors. The only way to learn anything at all on these tasks is to generalize from previously 

experienced states to ones that have never been seen. In other words, experience with a limited subset of 

state space be usefully generalized to produce a good approximation over a much larger subset.

Fortunately, generalization from examples has already been extensively studied, and we do not need to 

invent totally new methods for use in Q-learning. To a large extent, we need only combine Q-learning 

with off-the-shelf architectures for inductive generalization—often called function approximation 

because it takes examples from desired Q-function and attempts to generalize from them to construct 
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an approximation of the entire function. Function approximation is an instance of supervised learning 

(discussed in Chapters 11 and 12). In principle, any of the methods studied in this field can be used in 

Q-learning.

In parametric methods, the tabular (exact) representation of the real-valued functions Q(s,a) is replaced 

by a generic parametric function approximator Q̂ (s, a; w) where w are the adjustable parameters of the 

approximator. Learning Q(s,a) for all s Œ S and a Œ A amounts to learning parameters w of Q̂ (s, a; w) 

The new version of Q-learning equation (14.16) is 
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This update rule can be shown to converge to the closest possible approximation to the true function 

when the function approximator is linear in the parameters.

Unfortunately, all bets are off when nonlinear functions—such as neural networks–are used. For many 

tasks, Q-learning fails to converge once a nonlinear function approximator is introduced. Fortunately, 

however, the algorithm does converge for large number of applications. The theory of Q-learning with 

nonlinear function approximator still contains many open questions; at present it remains an empirical 

science.

For Q-learning, it makes more sense to use an incremental learning algorithm that updates the parameters 

of function approximator after each trial. Alternatively, examples may be collected to form a training set 

and learned in batch mode, but it slows down learning as no learning happens while a sufficiently large 

sample is being collected.

We give an example of neural Q-learning. Let Q̂t (s, a; w)denote the approximation to Qt(s,a) for all 

admissible state-action pairs, computed by means of a neural network at time step t. The state s is input to 

the neural network with parameter vector w producing the output Q̂t (s, a; w)" a Œ A. We assume that the 

agent uses the training rule of (14.17) after initialization of Q̂ (s, a; w) with arbitrary finite values of w.

Treating the expression inside the square bracket in (14.17a) as the error signal involved in updating the 

current value of parameter vector w, we may identify the target (desired) value of Q̂t  at time step t as 

 ˆ ( , ; )Q s at t t
target

w  = r Q s at
a

t t+ ( )+g min ( ; ),1 w  (14.19)

At each iteration of the algorithm, the weight vector w of the neural network is changed slightly in a way 

that brings the output Q̂t (st, at; w) closer to the target Q̂t
target

(st, at; w)for the current (st,at ) pair. For other 

state-action pairs, Q-values remain unchanged (Eqn. (14.17b)).

14.7

The Q-learning algorithm, described in the previous section, is an off-policy TD method: the learned 

action-value function Q directly approximates Q*, the optimal action-value function, independent of the 

policy being followed; optimal action for state s is then obtained from Q*. The Q-learning is motivated 

by value iteration algorithm in dynamic programming.
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The alternative approach, motivated by policy iteration algorithm in dynamic programming, is an on-

policy TD method. The distinguishing feature of this method is that it attempts to evaluate and improve 

the same policy that it uses to make decisions.

In Section 14.5 on TD learning, we considered transitions from state to state and learned the value of 

states (Eqn. (14.12)) when following a policy p. The relationship between states and state-action pairs is 

symmetrical. Now we consider transitions from state-action pair to state-action pair and learn the value 

of state-action pairs, following a policy p. In particular, for on-policy TD method, we must estimate Qp(s, 

a) for the current policy p and for all states s Œ S and actions a Œ A. We can learn Qp using essentially 

the same TD method used in Eqn. (14.12) for learning Vp:

 Q s a Q s a r s Q s a Q s ap p p ph g( , ) ( , ) ( ) ( , ) ( , )¨ + + ¢ ¢ -( )  (14.20)

where a¢ is the action executed in state s¢.

This rule uses every element of the quintuple of events, (s, a, r, s¢, a¢), that make up a transition from one 

state-action pair to the next. This quintuple (State-Action-Reinforcement-State-Action) gives rise to the 

name SARSA for this algorithm. Unlike Q-learning, here the agent’s policy does matter. Once we have 

Qp(s,a), improved policy can be obtained as follows:

 pk+1(s) = arg min ( , )
a

Q s ap
 (14.21)

Since tabular (exact) representation is impractical for large state and action spaces, function approximation 

methods are used. Approximations in the policy-iteration framework can be introduced at the following 

two places:

 (i) The representation of the Q-function: The tabular representation of the real-valued function 

Qp(s,a) is replaced by a generic parametric function approximation Q̂p (s, a; w) when w are the 

adjustable parameters of the approximator.

 (ii) The representation of the policy: The tabular representation of the policy p(s) is replaced by a 

parametric representation p̂ (s; p) where p are the adjustable parameters of the representation 

The difficulty involved in use of these approximate methods within policy iteration is that the off-the-

shelf architectures and parameter adjustment methods cannot be applied blindly; they have to be fully 

integrated into the policy-iteration framework. 
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Caution

For some problems (especially the design problems) of the book, many alternative solutions are possible. 

The answers given in the present section, correspond to only one possible solution for such problems.

 2.1 (a) x1, x2: Outputs of unit delayers, starting at the right and proceeding to the left.
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 2.2  (a) y(k + 2) + 5y(k + 1) + 3y(k) = r(k + 1) + 2r(k)

   (b) x1, x2: Outputs of unit delayers, starting at the right and proceeding to the left.

     F = 
0 1

3 5- -

È

Î
Í

˘

˚
˙ ; g = 

1

3-

È

Î
Í

˘

˚
˙ ; c = [1 0]

   (c) 
Y z

R z

( )

( )
 = 

z

z z

+

+ +

2

5 32

Answers to Problems



 Answers to Problems 877

 2.3  (a) y(k + 1) + 
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 2.5  (a) y(k) = (–1)k – (–2)k; k ≥ 0
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 2.6 y(0) = 0, y(1) = 0.3679, y(2) = 0.8463, y(k) = 1; k = 3, 4, 5, ...

 2.7 y(k) = 3(2)k – 2; k ≥ 0

 2.8  (a) y(k) = – 40d (k) + 20d(k – 1) – 10(0.5)k + 50(– 0.3)k; k ≥ 0

   (b) y(k) = – 16 + (0.56)k[7.94 sin(0.468k) + 16 cos(0.468k)]; k ≥ 0

 2.9  (a) y(k) = – 0.833(0.5)k – 0.41(– 0.3)k + 0.476(–1)k + 0.769; k ≥ 0

   (b) y(k) = –10k(0.5)k + 2.5(0.5)k – 6.94(0.1)k + 4.44: k ≥ 0

 2.10 y( ) = K

 2.13  (a) No (b) Yes

 2.14 No

 2.16  (b) T = p / 2

 2.19  (i)     (ii)

 

z-plane
Im

Re

Unit circle
Radius = e–aT

Unit circle

Im z-plane

Re

q = w
0T

q =
w 0T
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 2.20 G(z) = 
1-

-

-

-
e

z e

T

T
; y(k) = 1 – e–kT; k ≥ 0

 2.21 
Y z

R z

( )

( )
 = 

10

16

0 76

1 0 46

z

z z

+
- -

È

Î
Í

˘

˚
˙

.

( )( . )

 2.25 u(k) – u(k – 1) = Kc 1 1
2

1 2+ +
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ
- +Ê
ËÁ

ˆ
¯̃

- + -
¸
˝
˛

T

T

T

T
e k

T

T
e k

T

T
e k

I

D D D( ) ( ) ( )

  U(z) = Kc 1
1

1
1

1

1+
-

Ê
ËÁ

ˆ
¯̃
+ -

È

Î
Í

˘

˚
˙-

-T

T z

T

T
z

I

D ( ) E(z)

 2.26  (ii) D(z) = 0.4074
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 9391

0 9752

.

.

 2.27  (a) U(z) = Kc 1
2

1

1

1
+

+
-

Ê
ËÁ

ˆ
¯̃
+

-Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

T

T

z

z

T

T

z

zI

D E(z)

   (b) u(k) = Kc e k
T

T

e i e i T

T
e k e k

I i

k
D( )

( ) ( )
[ ( ) ( )]+

- +
+ - -

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂=
Â

1

1

2
1

 2.28  (a) y(k) = 
1

1+ aT
y(k – 1) + 

T

aT1+
r(k) (b) y(k) = (1 – aT)y(k – 1) + Tr(k – 1)

 2.29 b
a

T T
+ +Ê

ËÁ
ˆ
¯̃

1
2

y(k) – 
a

T T
+Ê

ËÁ
ˆ
¯̃

2
2

y(k – 1) + 
1
2T

y(k – 2) = 0; y(0) = a, y(–1) = a – Tb

 3.1 
Y z

R z

( )

( )
 = 

G G z G G z

G G z G G H z

h h

h h

0 1 0 2

0 1 0 21

( ) ( )

( ) ( )+

 3.2 
Y z

R z

( )

( )
  = 

G G z

G G z H z

h

h

0

01

( )

( ) ( )+

 3.3 Y(z) = 
G G z G R z

G G HG z

h

h

0 2 1

0 2 11

( ) ( )

( )+

 3.4 Y(z) = GpH2R(z) + 
D z G G z

D z G G z

h p

h p

( ) ( )

( ) ( )

0

01+
 [H1R(z) – GpH2R(z)]

 3.5 
Y z

R z

( )

( )
  = 

D z G G G z

D z G G z G G G z

h

h h

( ) ( )

( )[ ( ) ( )]

0 1 2

0 1 0 1 21+ +
; 

X z

R z

( )

( )
 = 

D z G G z

D z G G z G G G z

h

h h

( ) ( )

( )[ ( ) ( )]

0 1

0 1 0 1 21+ +

 3.6 Y(z) = 
GW z

D z G G zh

( )

( ) ( )1 0+

 3.7 Gh0G(z) = 0.0288
z

z z

+
- -

È

Î
Í

˘

˚
˙

0 92

1 0 7788

.

( ) ( . )
; 

q

q
L

R

z

z

( )

( )
 = 

G G z

G G z

h

h

0

01

( )

( )+
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 3.8 
w

w

( )

( )

z

zr

  = 159.97
K K

z K

F P

P

+
+ -

Ê
ËÁ

ˆ
¯̃159 97 0 1353. .

 3.9 
Y z

R z

( )

( )
 = 0.0095

z z

z z z

( . )

. . .

+

- + -
È

ÎÍ
˘

˚̇

0 92

2 81 2 65 0 8193 2

 3.10  (i) 
Y z

R z

( )

( )
 = 

0 45 0 181

0 081 0 1812

. .

. .

z

z z

+

+ +
 (ii) 

Y z

R z

( )

( )
 = 

0 45 0 181

0 368 0 45 0 1812 2

. .

. . .

z

z z z

+

- + +

 3.13   0 < K < 4.293

 3.14  (i) The system is stable for 0 < K < 4.723.

   (ii) The system is stable for 0 < K < 3.315.

 3.15 K

200.34

20.34

0
0.01 0.1

Unstable
region

T

 3.16 0 < K < 0.785.

 3.17 For T = 0.001 sec, the response y(k) is very close to y(t).

  

0.5

0

Time (sec)

1.0

1.5

2.0

0.02 0.03 0.04 0.050.01

T = 0.01 sec
y k( )

y t( )
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 3.18 y(k) = 1.02 (0.795)k sin(0.89k); k ≥ 0

 3.19 y(0) = 0;  y(0.5T ) = 0.393; y(T ) = 0.632; y(1.5T) = 0.528

  y(2T ) = 0.465; y(2.5T) = 0.493; y(3T) = 0.509; y(3.5T) = 0.502; �

 3.22  (a) K  = 30ºC/(kg/min); tD = 5 min; t = 60 min

   (b) Kc = 0.545; TI = 13.75 min; tD = 2.2 min

 3.23 Kc = 2.13; TI = 666.66 sec

 4.1 Kp = ; K
v
 = K1/K2; Ka = 0.

 4.2 D1(s) = 
25 1

62 5 1

s

s

+
+.

; D1(z) = 0.4
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 939

0 975

.

.

  Velocity error constants are equal

 4.3 0, 1/3.041, 

 4.4 Underdamped response with z = 0.199 and wn = 8.93.

 4.5  (a) Y(z) = 
[ ( ) ( ) ( )] ( )

( ) ( )

D z D z D z G G z

D z G G z

h

h

2 1 3 0

1 01

+
+

 R(z) + 
GW z

D z G G zh

( )

( ) ( )1 1 0+

   (b) Y(z) = D3(z)R(z) + 
GW z

D z G G zh

( )

( ) ( )1 1 0+
   (c) D1(z) can be made large to reject the disturbances

 4.7 S(z) = 
z

z

-
-

0 607

0 214

.

.
; wb = 2 rad/sec

 4.8 GM = 8 dB; FM = 28º; nb = 1.6 rad/sec; wb = 1.35 rad/sec

 4.9  (a) Increase plant gain by a factor of 10; FM = 30º

   (b) D(z) = 4.2423
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 2308

.

.

   (c) D(z) = 0.141
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 98

0 998

.

.

   (d) nb1 = 4.8; nb2 = 9.8; nb3 = 1.04

   (e) Yes

 4.10 D(z) = 37.333
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 9048

0 1111

.

.
; K

v
 = 

  In the low-frequency range, –Gh0G(jn) is about –180º; therefore, a lag compensator cannot fulfil 

the requirement of 50º phase mar gin.

 4.11  (a) K = 50; FM = 20º; wb = 9.27 rad/sec.

   (c) With lag compensator D1(z) = 0.342
z

z

-
-

0 923

0 973

.

.
, FM = 54º, wb = 4.23 rad/sec

   With lag-lead compensator D1(z)D2(z); D2(z) = 2.49
z

z

-
-

0 793

0 484

.

.
; FM = 60º, wb = 7.61 rad/sec



 Answers to Problems 881

 4.12  (a) K = 61.25 (b) Unstable

   (c) D(z) = 0.122K
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 6

0 951

.

.

 4.13  (b) 0 < K < 2.1; K = 0.38

 4.14  (a) K = 2.3925

   (b) (i) K = 1.4557; (ii) K = 0.9653

 4.15  (a) K = 0.88; 1.33 rad/sec (b) K = 0.072; t = 2.3 sec

   (c) K = 0.18; wn = 0.644 rad/sec

 4.16 0 < A < 3.33

 4.17  (a) t = 0.4854 (b) K = 5.1223

 4.18  (a) D1(z) = 13.934
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 1595

.

.
 (b) K

v
 = 3

   (c) D2(z) = 
z

z

-
-

0 94

0 98

.

.

 4.19 D(z) = 1.91
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 84

0 98

.

.

 4.20  (a) z1, 2 = 0.78 ± j0.18

   (b) Pole of D(z) at z = 0; (K/2) = 0.18

   (c) Ka = 0.072

   (d) z3 = 0.2; the third pole causes the response to slow down.

 4.21 D(z) = 150
z

z

-
+

Ê
ËÁ

ˆ
¯̃

0 72

0 4

.

.

 4.22  (a) D(z) = 135.22
( . ) ( . )

( . ) ( . )

z z

z z

- -
+ -

Ê
ËÁ

ˆ
¯̃

0 9048 0 6135

0 9833 0 7491

   (b) D(z) = 104.17
( . ) ( )

( . ) ( . )

z z

z z

- +
+ +

Ê
ËÁ

ˆ
¯̃

0 9048 1

0 9833 0 5
; 0.15

 4.23 D(z) = 
4 8 3 9

1

1

1

. .-

-

-

-
z

z

 5.1 x1 = qM, x2 = �qM , x3 = motor armature current ia, x4 = genera tor field current if ; y = qL

  A = 

0 1 0 0

0 0 025 3 0

0 12 190 1000

0 0 0 4 2

-
- -

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

; b = 

0

0

0

0 2.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [0.5 0 0 0]
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 5.2 A = 

0 1 0

0 1 20

0 0 5

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

2 5.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

 5.3 x1 = qM, x2 = �qM , x3 = ia

  A = 

0

0

40

1

0 5

0 5

2

0

19

21

2

1 2-

-

- + -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

k k

.

( . )

; b = 

0

0

2

1k

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; c = 
1

20
0 0

È

ÎÍ
˘

˚̇

 5.4 A = 

-

- + - +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

B

J

K

J

k K K K

L

R k K

L

T

t c b

a

a c

a

( ) ( )1 2

; b = 

0

1k K

L

c

a

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0]

 5.5  (a) A = 
-
-
È

Î
Í

˘

˚
˙

11 6

15 8
; b = 

1

2

È

Î
Í
˘

˚
˙ ; c = [2 –1]

   (b) 

U

U

1 1

Y

–3

–11 –15

–2

–1

2

2

8

6

1

X2s–1 s–1

X1 = Y

X1s–1

X2s–1

   (c) 
Y s

U s

( )

( )
 = 

1

3 22s s+ +

 5.6  (a) A = 
0 1

0 0

È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í
˘

˚
˙  (b) A  = 

1 1

1 1- -
È

Î
Í

˘

˚
˙ ; b  = 

0

1

È

Î
Í
˘

˚
˙

   (c) |lI – A | = |lI – A | = l2
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 5.7 G(s) = 
1

3 3 1

1 3

1 2
D

s s s

s s s

s s

( )

( )

+ +
- +

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

  H(s) = 
1

1

2
D

s

s

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; D = s3 + 3s2 + 1

 5.9 x1, x2, x3: outputs of integrators, starting at the right and proceeding to the left.

     A = 

0 1 0

0 2 1

2 1 2

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [2 – 2 1]

 5.10 x1, x2, x3, x4: outputs of integrators

  Top row: x1, x2 = y1; Bottom row: x3, x4 = y2

  A = 

0 0 0 4

1 3 0 0

0 1 0 0

0 0 1 4

-
-
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; B = 

3 0

1 2

0 3

0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; x(0) = 

0

0

0

0

1

2

y

y

( )

( )

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; C = 
0 1 0 0

0 0 0 1

È

Î
Í

˘

˚
˙

 5.11  (a) G(s) = 
s

s s

+
+ +

3

1 2( )( )
 (b) G(s) = 

1

1 2( )( )s s+ +

 5.12 G(s) = 
1 3 5 4 3

2 2 3 12 2D

- + -

- + - +

È

Î
Í
Í

˘

˚
˙
˙

s s

s s s s

( )

( )
; D = s3 – 4s2 + 6s – 5

 5.13  (a) A = 

- -

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 0 5 3 5

4 5 0

0 1 0

. .

; b = 

0

0

1-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 1 0]

   (b) G(s) = 
14

1 2 7( )( )( )s s s+ + +

 5.14  (a) x1 = output of lag 1/(s + 2); x2 = output of lag 1/(s + 1)

     A = 
-
- -
È

Î
Í

˘

˚
˙

2 1

1 1
; b = 

0

1

È

Î
Í
˘

˚
˙ ; c = [– 1 1]; d = 1

   (b) x1 = output of lag 1/(s + 2); x2 = output of lag 1/s; x3 = output of lag 1/(s + 1).

     A = 

-
-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 1 1

1 0 0

1 0 1

; b = 

0

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 1 1]



884  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.15 x1 = output of lag 1/(s + 1); x2 = output of lag 5/(s + 5); x3 = output of lag 0.4/(s + 0.5); x4 = output 

of lag 4/(s + 2).

   A = 

- - -
- - -

- - -
- - -

È

Î

Í
Í
Í
Í

˘

˚

1 0 0

0 5 5 5

0 4 0 4 0 5 0

0 0 4 2 4

1 1

2 2

1 1

2 2

K K

K K

K K

K K

. . .

˙̇
˙
˙
˙

; B = 

K

K

K

K

1

2

1

2

0

0 5

0 4 0

0 4

.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; C = 
1 1 0 0

0 0 1 1

È

Î
Í

˘

˚
˙

 5.16  (i) A = 
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
; b = 

1

1

È

Î
Í
˘

˚
˙ ; c = [2 – 1]

   (ii) A = 

0 0 2

1 0 5

0 1 4

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

5

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]

  (iii) A = 

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [2 6 2]; d = 1

 5.17  (i) A = 

0 0 0

1 0 2

0 1 3

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1] 

   (ii) A = 

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

   (iii) L = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

; b = 

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [–1 2 1]; d = 1

 5.18  (a) A = 

0 1 0

0 0 1

0 100 52- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [5000 1000 0]

   (b) L = 

0 0 0

0 2 0

0 0 50

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

50

31 25

18 75

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

.

; c = [1 1 1]

 5.19  (a) L = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1 0

0 1 0

0 0 2

; b = 

0

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 1 1]

   (b) y(t) = 2.5 – 2e– t – te –t – 0.5e –2t
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 5.20  (i) l1 = 1, l2 = 2; v1 = 
1

0

È

Î
Í
˘

˚
˙ ; v2 = 

1

1

È

Î
Í
˘

˚
˙

   (ii) l1 = –1, l2 = –2; v1 = 
1

1

È

Î
Í
˘

˚
˙ ; v2 = 

2

1

È

Î
Í
˘

˚
˙

  (iii) l1 = –1, l2 = –2, l3 = –3; v1 = 

1

1

1

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v2 = 

1

2
1
2

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v3 = 

1

3

3

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.21  (b) l1 = –2, l2 = –3, l3 = –4; v1 = 

1

2

4

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v2 = 

1

3

9

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v3 = 

1

4

16

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.22  (a) P = 

1 1 1

1 1 1 1 1

2 2 1

- + - - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j j

j j

   (b) Q = 

1
2

1
2

1
2

1
2

0

0

0 0 1

-È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

j

j

 5.23 l1 = –1, l2 = 2; v1 = 
1

1

È

Î
Í
˘

˚
˙ ; v2 = 

1

2

È

Î
Í
˘

˚
˙ ; eAt = 

2

2 2 2

2 2

2 2

e e e e

e e e e

t t t t

t t t t

- -

- -

- - +

- - +

È

Î
Í
Í

˘

˚
˙
˙

 5.24  (a) eAt = 

3
2

1
2

3 3
2

3
2

3

1
2

1
2

3 1
2

3
2

3

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- - +

- - +

È

Î

Í
Í

˘

˚

˙
˙

 

   (b) eAt = 

3
2

1
2

3 1
2

1
2

3

3
2

3
2

3 1
2

3
2

3

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- + - +

È

Î

Í
Í

˘

˚

˙
˙

 5.25  (a) eAt = 
3 2

6 6 2 3

2 3 2 3

2 3 2 3

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- + - +

È

Î
Í
Í

˘

˚
˙
˙

 

   (b) eAt = 
( )

( )

1 2 2

2 1 2

2 2

2 2

+

- -

È

Î
Í
Í

˘

˚
˙
˙

- -

- -

t e t e

t e t e

t t

t t
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 5.26  (a) 

1

1 1

u

–2 –2

1

s–1

x2 x1

s–1

s–1

x02

s–1

x01

   (b) 
X s

x

1

1
0

( )
 = G11(s) = 

1 2

1

1 2

3

/ /

s s+
+

+
; 

X s

x

1

2
0

( )
 = G12(s) = 

1 2

1

1 2

3

/ /

s s+
+
-
+

    
X s

x

2

1
0

( )
 = G21(s) = 

1 2

1

1 2

3

/ /

s s+
+
-
+

; 
X s

x

2

2
0

( )
 = G22(s) = 

1 2

1

1 2

3

/ /

s s+
+

+

    
X s

U s

1( )

( )
 = H1(s) = 

1

1s +
; 

X s

U s

2 ( )

( )
 = H2(s) = 

1

1s +

   (c) (i) x(t) = 
1

2

1
0

2
0 3

1
0

2
0

1
0

2
0 3

1
0

2
0

e x x e x x

e x x e x x

t t

t t

- -

- -

+ + -

+ + - +

È

Î
Í

( ) ( )

( ) ( )ÍÍ

˘

˚
˙
˙

  (ii)  x(t) = 
1

1

-

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

 5.27 x1(t) = 
1

3
 – e–2t + 

2

3
e–3t; x2(t) = 2(e–2t – e–3t); x3(t) = –2(2e–2t – 3e–3t);  y(t) = x1(t)

 5.28  (a) Asymptotically stable (b) y(t) = 
1

2
 + 2e–t – 

3

2
e–2t

 5.29 y1(t) = 3 – 
5

2
e–t – e–2t + 

1

2
e–3t; y2(t) = 1 + e–2t – 2e–3t

 5.30  (a) A = 
-È

Î
Í

˘

˚
˙

6 0 5

4 5

.

-
; b = 

7

0

È

Î
Í
˘

˚
˙ ; c = [0 1] 

   (b) y(t) = 
28

3

1

4
1

1

7
14 7( ) ( )- - -È

ÎÍ
˘

˚̇
- -e et t  

 5.31 
x

x

1

2

1

1

( )

( )

È

Î
Í

˘

˚
˙  = 

2 7183

2

. -È

Î
Í

˘

˚
˙

k

k
 for any k π 0
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 5.32  (a) Modes: e tl1 , e tl2 , e tl3 , l1 = –1,  l2 = –2, l3 = –3

   (b) x(0) = 

k

k

k

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3

3

; k π 0

 5.33  (b) x(0) = 
k

k-
È

Î
Í

˘

˚
˙; k π 0

 5.34 eAt = 
2

2 2 2

2 2

2 2

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- -

È

Î
Í
Í

˘

˚
˙
˙

  A = 
0 1

2 3- -
È

Î
Í

˘

˚
˙

 5.37 Controllable but not observable.

 5.38  (i) Controllable but not observable (ii) Controllable but not observable

  (iii) Both controllable and observable (iv) Both controllable and observable

   (v) Both controllable and observable

 5.39  (i) Observable but not controllable (ii) Controllable but not observable

  (iii) Neither controllable nor observable

 5.40  (i) G(s) = 
1

2s +
; state model is not controllable 

   (ii) G(s) = 
s

s s

+
+ +

4

2 3( )( )
;  state model is not observable

 5.41  (a) l1 = 1, l2 = –2, l3 = –1; unstable

   (b) G(s) = 
1

1 2( )( )s s+ +
; stable

 5.42  (a) A = 
0 1

0 1-
È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í
˘

˚
˙ ; c = [10 0] 

   (b) A = 

0 1 0

0 0 1

0 2 3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [20 10 0] 

   (c) A = 

0 0 0

1 0 2

0 1 3

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b = 

20

10

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]
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 6.1 G(z) = 
1

1

4 1 3 3

1 3 4

2

D

z z

z z z z

z z z

- + + +
- - + +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

( ) ( )

( )

z; D = z3 + 3z2 + 4z + 1

  H(z) = 
1

3 7

7 9 3

3 7

2

2

D

- -

- - +
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

z z

z z

z

 6.3 G(z) = 
2 2

2 1
2

z

z z

+

- +

 6.4 G(z) = 

2 2
4

4 14 30

3 4
2

3 9
1
2

z z

z z z

+
+
- - -

+ - -
- +

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

D D D

D D D

; D = z2 – z + 1
2

 6.5 x1, x2, x3: Outputs of unit delayers, starting at the top of the column of unit delayers and proceeding 

to the bottom.

  F = 

1
2

1
4

1
2

1
3

2

0 1

0 3

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g = 

1

1

2

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [5 6 –7]; d = 8

 6.6 x1, x2, x3: Outputs of unit delayers. x1 and x2 in first row, starting at the left and proceeding to the 

right.

  F = 

0 1 0

3 0 2

12 7 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; G = 

1 0

0 0

0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; C = 
0 2 0

0 0 1

È

Î
Í

˘

˚
˙ ; D = 

2 0

0 1

È

Î
Í

˘

˚
˙

 6.7  (i) F = 
0 1
2
3

1
3

-
È

Î
Í

˘

˚
˙ ; g = 

0

1

È

Î
Í
˘

˚
˙ ; c = [–1 –2]; d = 3

   (ii) F = 

0 0

1 0 1

0 1 1

3
4

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g = 

0 5

3

4

.

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]; d = –2

 6.8  (i) F = 

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

; g = 

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [–1 2 1]; d = 1
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   (ii) F = 

1
3

1
3

1
3

1 0

0 1

0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; C = [5 –2 3]; d = 0

 6.9  (i) F = 

0 0 3

1 0 7

0 1 5

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g = 

0

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]; d = 0 

   (ii) F = 
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
; g = 

1

1

È

Î
Í
˘

˚
˙ ; c = [–2 7]; d = 0

   (iii) F = 

0 1 0

0 0 1

3 7 5- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [2 1 0]; d = 0

 6.10 F
k = 

1 5 0 5 3 0 5 3 1

1 5 3 1 0 5 1 5 3

. . ( ) . [( ) ]

. [( ) ] . . ( )

- -

- - - +

È

Î
Í
Í

˘

˚
˙
˙

k k

k k

 6.11 y(k) = -
17

6
(–0.2)k + 

22

9
 (–0.8)k + 

25

18
; k ≥ 0

 6.12 y1(k) = 5
1

2

Ê
ËÁ

ˆ
¯̃

k

 + 10 -Ê
ËÁ

ˆ
¯̃

1

2

k

 + 2; k ≥ 0; y2(k) = 3
1

2

Ê
ËÁ

ˆ
¯̃

k

 + 2 -Ê
ËÁ

ˆ
¯̃

1

2

k

 + 1; k ≥ 0

 6.13  (a) l1 = –1, l2 = –1, l3 = –2; Modes: (–1)k, k(–1)k–1, (–2)k 

   (b) x(k) = 

k k

k

k

( )

( )

( )

-

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-1

1

2

1

 6.14  (a) G(z) = Z [Gh0(s)Ga(s)] = 
0 2838 0 1485

1 1353 0 13532

. .

. .

z

z z

+

- +

     F = 
0 1

0 1353 1 1353-
È

Î
Í

˘

˚
˙

. .
; g = 

0

1

È

Î
Í
˘

˚
˙ ; c = [0.1485 0.2838]

   (b) From controllable companion form continuous-time model:

     F = 
1 0 4323

0 0 1353

.

.

È

Î
Í

˘

˚
˙ ; g = 

0 2838

0 4323

.

.

È

Î
Í

˘

˚
˙ ; c = [1 0]

 6.15 F = 
0 696 0 246

0 123 0 572

. .

. .

È

Î
Í

˘

˚
˙ ; g = 

-È

Î
Í

˘

˚
˙

0 021

0 747

.

.
; c = [2 –  4]; d = 6

 6.16 x(k + 1) = Fx(k) + g1u(k) + g2w(k); F = 
1 0 1

0 0 99

.

.

È

Î
Í

˘

˚
˙ ; g1 = 

0 005

0 1

.

.

È

Î
Í

˘

˚
˙ ; g2 = 

0

0 01.

È

Î
Í

˘

˚
˙
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 6.17 F = 
0 741 0

0 222 0 741

.

. .

È

Î
Í

˘

˚
˙ ; G = 

259 182 0

36 936 259 182

.

. .

È

Î
Í

˘

˚
˙ ; C = 

1 0

0 1

È

Î
Í

˘

˚
˙

 6.18  (a) 0.3679
z

z z

+
- -

È

Î
Í

˘

˚
˙

0 7181

1 0 3679

.

( )( . )

   (b) 
Y z

R z

( )

( )
 = 

0 3679 0 2642

0 63212

. .

.
;

z

z z

+

- +
 F = 

0 1

0 6321 1-
È

Î
Í

˘

˚
˙

.
; g = 

0

1

È

Î
Í
˘

˚
˙ ; c = [0.2642 0.3679]

 6.19  (a) G(z) = Z [Gh0(s)Ga(s)] = 
0 4512 0 1809

0 36792

. .

.

z

z z

+

-
;

    F = 
0 1

0 0 3679.

È

Î
Í

˘

˚
˙ ; g = 

0

1

È

Î
Í
˘

˚
˙ ; c = [0.1809 0.4512]

   (b) �y(t) = –y(t) + u(t – 0.4); x1(k) = y(k); x2(k) = u(k – 1);

    F = 
0 3679 0 1809

0 0

. .È

Î
Í

˘

˚
˙ ; g = 

0 4512

1

.È

Î
Í

˘

˚
˙ ; c = [1 0]

 6.20 x1(k) = x(k); x2(k) = u(k – 3); x3(k) = u(k – 2); x4(k) = u(k – 1);

  F = 

0 3679 0 2387 0 3935 0

0 0 1 0

0 0 0 1

0 0 0 0

. . .È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g = 

0

0

0

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 6.21 x1 = y; x2 = �y; x3(k) = u(k – 1);

  F = 

1 2

0 1

0 0 0

T TD D

D

t t

t

( / )-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g = 

( ) /T

T

D

D

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

t

t

2 2

1

; c = [1 0 0]

 6.23  (a) x1 = output of lag 1/s; x2 = output of lag 1/(s + 1); x3 = output of lag 1/(s + 2).

    x(k + 1)  = 

7

4

1

2

1

4
1

1

2
1 2

1

2

1

2

2 2

2

- - + - + -

- + - -

- - - - -

- - - -

T e e e e e

e e e e

T T T T T

T T T T

( )

ee

e e

T

T T

-

- -- +

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

2

2 21

2

1

2
0

x(k) 

     + 

- + + -

- +

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

- -

- -

-

3

4

1

2

1

4

1

2

1

2

1

2

1

2

2

2

2

T e e

e e

e

T T

T T

T

r(k)
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 6.24 x(k + 1) = 
0 4 0 233

0 698 0 0972

. .

. .- -
È

Î
Í

˘

˚
˙ x(k) + 

0 2

0 233

.

.

È

Î
Í

˘

˚
˙ r(k); y(k) = [1 0]x(k)

 6.25 x(k + 1) = 

0 6 0 233 0 2

0 465 0 0972 0 233

1 0 2

. . .

. . .- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x(k) + 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r(k)

 6.26 u(k) = 50e(k) – 41e(k – 1)

  x1 = y; x2= �y; x3(k) = e(k – 1)

     x(k + 1) = 

0 75 0 1 0 205

5 0 99 4 1

1 0 0

. . .

. .

-
- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x(k) + 

0 25

5

1

.È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r(k)

 6.27  (a) Both controllable and observable

   (b) Both controllable and observable

 6.28 T = np ; n = 1, 2, ...

 6.29 T π n; n = 1, 2, 3, ...

 6.30  (a) l1 = 
1

4
, l2 = 

1

2

   (b) G(z) = 
1

1

4
z -

   (c) Controllable but not observable

 7.2  (a) k1 = 74, k2 = 25, k3 = 3

   (b) ˆ�x = (A – mc) x̂ + bu + my; mT = [3 7 – 1]

   (c) With reference to Fig. 7.7:

     x̂e = 
ˆ

ˆ

x

x

2

3

È

Î
Í

˘

˚
˙ ; 

a e

e ee

11 1

1

a

a A

È

Î
Í

˘

˚
˙  = 

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; 
b

e

1

b

È

Î
Í

˘

˚
˙  = 

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; m = 
-È

Î
Í

˘

˚
˙

2

17

 7.3  (a) k = [3 7 –1]; �x  = (A – bk)x

   (b) m
T = [74 25 3]

   (c) 

�

�

�

x

x

x

3

1

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

6 0 1

6 0 0

11 1 0

3

1

2

x

x

x

 + 

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 u = 
a

x

x

x

b
u

e

e ee e

11 1

1

3

1

2

1a

a A b

È

Î
Í

˘

˚
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
+
È

Î
Í

˘

˚
˙

   With reference to Fig. 7.7:

     x̂e = 
ˆ

ˆ

x

x

1

2

È

Î
Í

˘

˚
˙ ; m = 

16

4

È

Î
Í

˘

˚
˙



892  Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 7.4 ˆ�x  = (A – mc) x̂  + Bu + m(y – du); mT = [–1 3]

 7.5 With reference to Fig. 7.7:

  x̂e = ẑ2; 
a a

a A

e

e ee

11 1

1

È

Î
Í

˘

˚
˙  = 

2 2

1 1- -
È

Î
Í
Í

˘

˚
˙
˙

; 
b

be

1È

Î
Í

˘

˚
˙  = 

1

0

È

Î
Í
Í

˘

˚
˙
˙

; m = 4.5; x̂  = 
y z

y z

+
+

È

Î
Í

˘

˚
˙

ˆ

ˆ

2

22

 7.6  (a) A  = 
0 9

1 0

È

Î
Í

˘

˚
˙ ; b = 

9

0

È

Î
Í
˘

˚
˙ ; c = [0 1]

   (b) k = 
2

3
3

È

ÎÍ
˘

˚̇

   (c) ˆ�x   = (A – mc) x̂  + bu + my; mT = [81 12]

   (d) k = 1

9

2

9

È

ÎÍ
˘

˚̇
     

 7.7  (a) A = 
0 1

00
2-

È

Î
Í
Í

˘

˚
˙
˙w

; b = 
0

1

È

Î
Í
˘

˚
˙ ; c = [1 0]

   (b) k1 = 3w 2
0; k2 = 4w0

   (c) ˆ�x  = (A – mc) x̂  + bu + my;  mT = [20w0 99w 2
0]

   (d) With reference to Fig. 7.7:

    x̂e = x̂2; 
a a

a A

e

e ee

11 1

1

È

Î
Í

˘

˚
˙  = 

0 1

00
2-

È

Î
Í
Í

˘

˚
˙
˙w

; 
b

be

1È

Î
Í

˘

˚
˙   = 

0

1

È

Î
Í
Í

˘

˚
˙
˙

; m = 10w0

 7.8  (a) k = [29.6 3.6]

   (b)  ˆ�x = (A – mc)x̂ + bu + my;  mT = [16 84.6]

   (c) With reference to Fig. 7.9:

    
U s

Y s

( )

( )-  = D(s) = 
778 16 3690 72

19 6 151 22

. .

. .

s

s s

+

+ +

   (d) 

�

�

�

�

x

x

x

x

1

2

1

2

ˆ

ˆ

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 = 

0 1 0 0

20 6 0 29 6 3 6

16 0 16 1

84 6 0 93 6 3 6

1

2. . .

. . .

- -
-
- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
x

xÍÍ
Í
Í

˘

˚

˙
˙
˙
˙

 

 7.9  (a) A = 
0 1

0 0

È

Î
Í

˘

˚
˙ ; b = 

0

1

È

Î
Í
˘

˚
˙; c = [1 0]

   (b) k = [1 2]

   (c) ˆ�x  = (A – mc) x̂  + bu + my; mT = [5 25]

x̂1

x̂2
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   (d) With reference to Fig. 7.9:

    
U s

Y s

( )

( )-
 = D(s) = 

40 4 0 619

6 414 33 072

. ( . )

. .

s

s s

+

+ +

   (e) With reference to Fig. 7.7:

    x̂e = x̂2 ; 
a a

a A

e

e ee

11 1

1

È

Î
Í

˘

˚
˙  = 

0 1

0 0

È

Î
Í
Í

˘

˚
˙
˙

; 
b

be

1È

Î
Í

˘

˚
˙  = 

0

1

È

Î
Í
Í

˘

˚
˙
˙

; m = 5

   (f) 
U s

Y s

( )

( )-  = D(s) = 
8 07 0 62

6 41

. ( . )

.

s

s

+
+

 7.10  (a) k1 = 4; k2 = 3; k3 = 1; N = k1

   (b) m
T = [5 7 8]

 7.11 k = [–1.4 2.4]; ki = 1.6

 7.12 k1 = 4; k2 = 1.2; k3 = 0.1

 7.13 k1 = 1.2; k2 = 0.1; k3 = 4

 7.14 m
T = [5 6 5]

 7.15 KA = 3.6; k2 = 0.11; k3 = 0.33

 7.16 KA = 40; k2 = 0.325; k3 = 3

 7.17 k1 = a2/b; k2 = (a1 – a)/b; N = k1

 7.18 k1 = – 0.38; k2 = 0.6; k3 = 6

 7.19  (a) k1 = 3; k2 = 1.5

   (b) For a unit-step disturbance, the steady-state error in the output is 1/7.

   (c) k1 = 2; k2 = 1.5; k3 = 3.5, Steady-state value of the output = 0

 7.20  (a) k = [3 1.5]  (b) N = 7

   (c) For a unit-step disturbance, the steady-state error in the output is 1/7.

   (d) k1 = 2; k2 = 1.5; k3 = 3.5

 7.21  (a) K = 0.095; N = 0.1  (b) For A + d A = – 0.6, w ( ) = 
10

10 1.
r

   (c) K1 = 0.105; K2 = 0.5

 7.22 k1 = – 4; k2 = – 3/2; k3 = 0

 7.23 x̂(k + 1) = (F – mc)x̂(k) + Gu(k) + m[y(k) – du(k)]; mT = 
3

2

11

16
0-È

ÎÍ
˘

˚̇

 7.24 k = [–0.5 – 0.2 1.1]; x(k + 1) = (F – gk)x(k)

 7.25 x(k + 1) = Fx̂(k) + gu(k)

  x̂(k + 1) = x (k + 1) + m[y(k + 1) – cx(k + 1)]; mT = [6.25 – 5.25]
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 7.26 

x k

x k

x k

2

1

3

1

1

1

( )

( )

( )

+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 

0 0 1

1 0 0

0 2 0 5 1 1

0

0

1

2

1

3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
+
È

Î. . .

( )

( )

( )

x k

x k

x k

ÍÍ
Í
Í

˘

˚

˙
˙
˙

u(k) = 
f e

e ee

11 1

1

f

f F

È

Î
Í

˘

˚
˙

x k

x k

x k

2

1

3

( )

( )

( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 + 
g

e

1

g

È

Î
Í

˘

˚
˙ u(k)

   ̂xe(k) = [x̂1(k) x̂3(k)]T

           x̂e(k + 1) = (Fee – mf1e)x̂e(k) + (ge – mg1)u(k) + (fe1 – m f11)y(k) + my(k + 1); mT = [0 1.1]

 7.27  (a) k = 
111

76

18

19
-È

ÎÍ
˘

˚̇

   (b) x̂(k + 1) = (F – mc) x̂ (k) + bu(k) + m[y(k) – du(k)]; mT = [8 –5]

     

x k

x k

k

k

1

2

1

1

1

1

( )

( )

( )

( )

+
+
+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = 

2 1 5 84 3 79

1 1 4 38 2 84

8 8 11 84 5 21

5 5 0 38 8 84

- -
- -

- -
- - -

È

Î

Í
Í
Í
Í

˘

˚

. .

. .

. .

. .

˙̇
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

x k

x k

k

k

1

2

( )

( )

( )

( )

 7.28  (a) F = 
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.
; g = 

0

1

È

Î
Í
˘

˚
˙ ; c = [1 0]

   (b) k1 = 0.36; k2 = –2.2

   (c) x̂2(k + 1) = (–1 – m) x̂2(k) + u(k) – 0.16y(k) + m y(k + 1); m = –1

   (d) 

–

Y( )zU( )z z

z z

–2

–1 –1(1 + 0.8 )(1 + 0.2 )

2.56(1 + 0.1375 )

1 – 2.2

z

z

–1

–1

 7.29  (a) x(k) = Qz(k); Q = 
1 1

0 1

-È

Î
Í

˘

˚
˙ ; u = – 0.36 z1(k) + 2.2z2(k)

   (b) ẑ2 (k + 1) = (–1 – m)ẑ2(k) + u(k) – 0.16 y(k) + my(k + 1); m = –1

   (c) 
U z

Y z

( )

( )-
 = D(z) = 

2 56 1 0 1375

1 2 2

1

1

. ( . )

.

+

-

-

-
z

z

 7.30  (a) F = 
1 0 1

0 1

.È

Î
Í

˘

˚
˙ ; g = 

0 005

0 1

.

.

È

Î
Í

˘

˚
˙    

   (b) k1 = 13; k2 = 3.95

x̂1

x̂2

x̂1

x̂2
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   (c) x̂(k + 1) = (F – mc)x̂(k) + gu(k) + my(k); mT = [2 10]

   (d) 
U z

Y z

( )

( )-
 = D(z) = 

65 5 0 802

0 46 0 262

. ( . )

. .

z

z z

-

+ +

 7.31  (a) F = 
1 0 0952

0 0 905

.

.

È

Î
Í

˘

˚
˙ ; g = 

0 00484

0 0952

.

.

È

Î
Í

˘

˚
˙ ; c = [1 0]

   (b) k1 = 105.1; k2 = 14.625

   (c) x̂(k + 1) = (F – mc) x̂(k) + gu(k) + my(k); mT = [1.9 8.6]

   (d) x̂2(k + 1) = (0.905 – 0.0952m)x̂2(k) + (0.0952 – 0.00484m)u(k) – my(k) + my(k + 1); m = 9.51

 7.32  (a) y(k + 1) = 0.368y(k) + 0.632u(k) + 0.632w(k)

   (b) K = 0.3687; N = 1.37

   (c) Steady-state error for a unit-step disturbance is 0.73.

   (d) K1 = 0.553; K2 = 2.013

 8.1 Asymptotically stable in-the-large.

 8.2 Unstable.

 8.3 Equilibrium state xe = [2 0]T is asymptotically stable.

 8.4 K > 0

 8.5 0 < K < 8

 8.6 Asymptotically stable.

 8.7 Asymptotically stable.

 8.8 K = [1 3]

 8.9 K = [1 2]

 8.10 Sufficient conditions not satisfied.

  u = – [–1 4]x; optimal closed-loop system is asymptotically stable.

 8.11 Asymptotically stable optimal solution does not exist.

 8.12 u = – x1 – 0.23x2 + r; r = desired output yd = 1

 8.13 u = – x1 – 6x2

 8.14 u = – x1 – x2; ˆ�x = (A – MC) ˆ�x + Bu + My; MT = [5 4]

 8.15 k1 = 2; k2 = 0.275; J0 = 93.2375

 8.16 r = 0.1; K = [3.1623 0.5968]; Poles: – 0.6377, – 4.9592

  r = 0.01; K = [10 1.7082]; Poles: – 2.2361, – 4.4721

  r = 0.001; K = [31.6228 4.3939]; Poles: – 4.6970 ± j3.0921

 8.17  (a) K = 2 – 1 (b) N = 2

   (c) Steady-state error to unit-step disturbance is 1/ 2

   (d) K = K1 = 1
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   (e) 

+

– –

+ + +
r

u

w

y
1
+ 1s

1
s

 8.18  (a) K = 0.095; N = 0.1 (b) For A + dA = – 0.6, w( ) = 
10

10 1.
r 

   (c) K = 0.105; K1 = 0.1

 8.19 u(k) = – 0.178x(k)

 8.20  (a) K = 0.277 (b) y( ) = 0.217r

   (c) N = 1.277

 8.21  (a) K = 0.2 (b) N = 0.45

   (c) For F + dF = 0.3, x( )  = 
0 9

1 1

.

.
r

 9.2 
8M

p
; 1 rad/sec; y(t) = 

-8M

p
 sint

 9.3 0.3; 10 rad/sec

 9.4 D < 0.131

 9.6 4.25; 2 rad/sec, stable limit cycle

 9.7 3.75; 1 rad/sec

 9.8  (a) Stable node; (0, 0) point in (y, �y)-plane

   (b) Stable node; (1,0) point in (y, �y)-plane

   (c) Unstable focus; (2,0) point in (y, �y)-plane

 9.9 For q = 0, the singular point is center; for q = p, it is saddle.

 9.10  (i) Singularity (1,0) in (y, �y)-plane is a center

   (ii) Singularity (1,0) in (y, �y)-plane is a stable focus.

 9.11  (a) For – 0.1 < x1 < 0.1, ��x1 + �x1+ 7x1 = 0 (b) Isocline equations: 

    For x1 > 0.1, ��x1 + �x1 + 0.7 = 0  x2 = 
–7

1

1x

m +
; – 0.1 < x1 < 0.1

    For x1 < –0.1, ��x1 + �x1– 0.7 = 0  x2 = 
– .0 7

1m +
; x1 > 0.1 

      x2 = 
0 7

1

.

m +
; x1 < – 0.1 

   (c) A singular point at the origin 

 9.12  (a) For – 0.1 < x1 < 0.1, ��x1 + �x1 = 0 (b) Isocline equations: 

          For x1 < – 0.1, ��x1 + �x1+ 7 (x1 + 0.1) = 0  m = – 1; – 0.1 < x1 < 0.1 
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         For x1 > 0.1, ��x1 + �x1+ 7 (x1 – 0.1) = 0  x2 = 
– – .7 0 7

1

1x

m +
; x1 < – 0.1 

      x2 = 
– .7 0 7

1

1x

m

+
+

; x1 > 0.1 

   (c) Singular point at (x1 = ± 0.1, x2 = 0)

 9.13 (a)  ��x1  + �x1+ 0.7 sgn x1 = 0 (b) Isocline equations: 

      x2 = 
– .0 7

1m +
; x1 > 0 

      x2 = 
0 7

1

.

m +
; x1 < 0 

   (c) No singular points

 9.14  (a) For – 0.1 < x1 < 0.1, ��x1 + �x1= 0 (b) Isocline equations: 

    For x1 > 0.1, ��x1 + �x1+ 0.7 = 0  m = – 1      ; – 0.1 < x1 < 0.1 

    For x1 < – 0.1, ��x1 + �x1– 0.7 = 0  x2 =  
– .0 7

1m +
; x1 > 0.1 

      x2 = 
0 7

1

.

m +
; x1 < – 0.1 

   (c) No singular points

 9.15  (a) ��x1  +  0.1 sgn �x1+ x1 = 0 (b) Isocline equation: 

      x2 = 
– – . sgnx x

m

1 20 1

   (c) Singular point at (x1 = ∓ 0.1, x2 = 0)

 9.16 Steady-state error to unit-step input = – 0.2 rad; Maximum steady-state error = ± 0.3 rad.

 9.17 Deadzone helps to reduce system oscillations, and introduces steady-state error.

 9.18 Saturation has a slowing down effect on the transient.

 9.20 The system has good damping and no oscillations but exhib its chattering behavior. Steady-state 

error is zero.

 9.21  (b) (i)   Deadzone provides damping; oscillations get re duced.

    (ii) Deadzone introduces steady-state error; maximum error = ± 0.2.

   (c) By derivative-control action, (i) settling time is reduced, but (ii) chattering effect appears.

 9.23 x1 = e, x2 = �e; Switching curve: x1 = – x2 + 
x

x

2

2| |
 ln 1 2

2

2

+
Ê

ËÁ
ˆ

¯̃
x

x| |

 9.24 |x1| < 1; origin is the equilibrium state.

 9.25 Asymptotically stable in-the-large; origin is the equilibrium state.

 9.26 Asymptotically stable; origin is the equilibrium state.

 9.27 1 > 2x1x2; origin is the equilibrium state

 9.28 Locally unstable
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 9.29 Origin is asymptotically stable for x 2
1 + x 2

2 < 1

 9.30 (i) Globally asymptotically stable (ii) Unstable (iii) Asymptotically stable for  

  0 < x 2
2 < K1/K2

 10.1 KP = 100; KD = 14.14

 10.4 a1 = 0.8187; b1 = 1.0877

 10.5 a1 = 0.9845; a2 = – 0.1222; b1 = 0.0579; b2 = 0.1011

 10.6 a1 = 1.5; a2 = 2; b1 = 1; b2 = 3

 11.1  (a) w1 = 1, w2 = 3 (b) w1 = 0.86442, w2 = 2.8892

   (c) 0.21626

 11.4 w = 0.36; w0 = 0.666

 11.6  (b) w(1) = [0.974 –0.948  0  0.526]T; 

    w(2)  = [0.974 –0.956 0.002 0.531]T

     w(3) = [0.947 –0.929 0.016 0.505]T

   (c) w = [0.9482 –0.9298 0.0155 0.505]T

 11.7  (b) w10 = 1.00043; w11 = 3.00043;

     w12 = 4; w20 = – 5.9878; w21 = 6.0123;

     w22 = 5; v0 = – 3.9078; v1 = 2.012;

    v2 = 4.0061

   (c) With initial weights, ŷ = 0.51; With updated weights, ŷ = 0.5239

 11.9  (a) vl(k + 1) = vl (k) + h(y – ŷ) 
4

2( )e e
z

a a+
È

Î
Í

˘

˚
˙-  

    wli (k + 1) = w k y
e e

v
e

e
xli a a

a

a i( ) ( )
( ) ( )

+ -
+

È

Î
Í

˘

˚
˙ +

È

Î
Í
Í

˘

˚
˙
˙-

-

-
h

4

12 2 

 

 

   (b) v1 = 0.095474, v2 = 0.195694, v3 = 0.095716; w11 = 0.199895,

     w12 = 0.100084, w21 = 0.399785, w22 = 0.600172, w31 = 0.299895, w32 = 0.500084

 12.1  (a) Supporting Interval: [1 3] (b) Support: [1 3]

    a-cut interval: 2 0 5 2 0 5- +È
Î

˘
˚. .   a-cut: [1.5 2.5]

 12.2  (a) s = 
1

2p
; m = 2; Support unbounded (–  ); a-cut: [1.53 2.47]

   (b) Support: (–  ); a-cut: [1 3]

 12.3  a = 3 ft; b = 6 ft; c = 9 ft; Support: [3 9]; Cross point: 4.5

 12.4  (a) mA~
 = A

x
x

x

x
x

~

;

;

;

+
- £ £

£ <
-
-

£ £

Ï

Ì

Ô
Ô

Ó

Ô
Ô

1

5
1 4

1 4 5

9

4
5 9

 (b) It is normal and convex.

ŷ
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 12.5  (a) (i) Yes (ii) Yes (iii) No

   (b) Support: [64 78]; Cross points: 68, 75; a-cut a=0 2.  : [65.6 76.8]; a-cut a=0 4.  : [67.2 75.6]

 12.8  (i) mA~
(4) = 0.75 (ii) mB

~
(3) = 0.5

   (iii) mA B
~ ~¥

(x, y) = 0.5 (iv) mA B
~ ~
Æ (x, y) = 0.5

 12.11 z* = 6.76

 12.12 1857.28

 12.13 m ¢C
~

(z) = max min , ( ) , min , ( )
2

3

1

31 2
m m

� �
C Cz z

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

 

  z*
COA = 4.7

 12.14  (i) 0.25, 0.62 

   (ii) magg(z) = max min . , ( ) , min . , ( )0 25 0 62m m
�

�PL PMz z( ) ( ){ }
  (iii) z* = 53.18

 12.15 34.40

12.16 Rules 2, 3, and 4 are active; u* = 2.663

12.17 67.4

12.18 2.3

 12.22 2.974

12.23 12.04
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A

Acceleration error constant 220

Ackermann’s formula 445, 471

Accuracy (NN) 693

Activation functions; 702

 bipolar 704

 Gaussian 728

 hyperbolic tangent 706

 linear 707

 log-sigmoid 707

 sigmoidal 706

 tan-sigmoid 707

 unipolar 704

Adaptive control system;

 model-reference 649–657, 671   

 self-tuning 663–671

A/D converter; 22, 27

 circuits 29–31

 model 127

Adjoint of a matrix 288

Aliasing 81–83

Alpha-cut; fuzzy set 783–784

Analytic function 55

ANFIS 809–813

Antecedent; IF-THEN rule 773

Anti-aliasing filter 24, 87

Artificial neural network

 (see Neural network)

Artificial neuron

 (see Neuron model)

Asymptotic stability 72, 367, 503, 613

Autonomous systems 610

B

Backlash nonlinearity; 568

 describing function 575–578

Index

Backpropagation training;

 batch-mode 721–722

 gradient descent method 719–722

 incremental-mode 720–721

 learning rate 720

 momentum term 726

 multilayer network 722–727

 single-layer network 716–722

 weight initialization 726

Backward difference approximation of 

 derivatives 99–103

Bandwidth; 229, 232

 on Nichols chart 244

Batch-mode training 721–722

Bell-shaped fuzzy set 782–783

Berbalat’s lemma 653–654

Bias (NN) 702

BIBO stability 66–72, 367

Bilinear transformation; 105–108

 with frequency prewarping 237

Bode plots:

 lag compensation 239–241

 lag-lead compensation 241

 lead compensation 239–240

C

Cancellation compensation 256, 263, 265–266

Canonical state models;

 controllability form 364

 controllable companion form 316–319, 394

 first companion form 316–319, 394

 Jordan form 320–325, 396–399

 observability form 366

 observable companion form 319–320, 395

 second companion form 319–320, 395
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Cascade programming 

 of controllers 144–145

Cartesian product 787

Cayley-Hamilton theorem 314

Center of area defuzzification 804–805

Center point; phase portrait 600

Characteristic equation 59, 328

Chattering 674

Chromosome (GA) 828

Classical logic 778

Coding 26

Companion form of state model:

 controllable 316–319, 394

 first form 316–319, 394

 observable 319–320, 395

 second form 319–320, 395

Companion matrices 320

Compensation:

 cancellation 256, 263, 265–266

 lag on Bode plots 239–241

 lag on root-locus plots 257–263

 lead on Bode plots 239–240

 lead on root-locus plots 254–257

Complement; fuzzy set 787

Complementary strips in s-plane 92

Compositional rule of inference 792

Composition; max-min 792

Computational time delay 24

Computer control systems (see Digital

 control systems)

Condition number of a matrix 292

Conclusion; IF-THEN rule 773

Conjunction; fuzzy set 789

Consequent; IF-THEN rule 773

Constant-wn loci 96

Constant-z loci 95–96

Controllability:

 definition 354–355, 414

 tests 356, 362, 371, 414, 416, 419

Controllability canonical form of state

 model 364

Controllability loss due to sampling 417–419

Controllability matrix 356, 371, 414, 419

Controllable companion form of state

 model 316–319, 394

Controllable eigenvalues (poles) 365

Controller tuning 148

 based on GA 839–842, 844

 based on process reaction curve 154–159

 based on ultimate gain and period 153–154

 digital PID 159–162

Convergence (NN) 696

Convex fuzzy set 783

Convolution sum 42

Coulomb friction 569, 603–605

Crisp set 778

Crossover (GA) 835–836

Cross point; fuzzy set 784

Cross product 787

Cross site (GA) 835

Current state observer 473–474

Cylindrical extension; fuzzy relation 792

D

D/A converter; 22, 27

 circuits 28–29

 model 127–128

Damping ratio; correlation with

 peak overshoot 224

 phase margin 232

 resonance peak 232

Data-based modeling 690, 767

Deadbeat control systems 480–481

Deadbeat state observer 481

Dead-time 135–137, 405–407

Deadzone nonlinearity 567

 describing function 579

 phase portrait 632–633

Decoding 27

Defuzzification 804–805

Describing function method 569–573

 stability analysis 580–583

 table 579

Detectability 528

Determinant of a matrix 287

Diagonal matrix 285

Difference equations 40–41

Digital controller implementation 140

 cascade realization 144–145

 direct realization 142–144

 nonrecursive 142, 145

 parallel realization 145

 recursive 142

Digital control systems; 4, 24

 advantages of 21

 configuration 3–4, 23–24

 implementation problems 22–23
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Digital PID controllers 117–118

 position algorithm 159–160

 velocity algorithm 160–161

 tuning 159–162

Digital signals (see Discrete-time signals)

Direct digital control 9

Direct digital design 126

Direct method of Lyapunov 611, 617–620

Direct programming of controllers 142–144

Discrete-time impulse 32, 47

Discrete-time signals 31

 sinusoidal sequence 32–33, 49

 unit-ramp sequence 48

 unit-sample sequence 32, 47

 unit-step sequence 32, 47

Discretization 90–108

Distributed computer control system 10

Disturbance rejection 232–234

Dominant poles 226–227

Duality 452

E

Eigenvalue assignment

 (see Pole-placement by  state feedback)

Eigenvalues 292, 296, 328

 controllable 365

 observable 366

Eigenvectors 328–332

 computation 332–338

 generalized 336

Encoder; shaft 169–172

Encoding 26

Epoch; NN training 721

Equilibrium state 464, 477, 502, 598, 610

Equivalence transformation 307

Error constants

 acceleration 220

 position 219

 velocity 219

Euclidean matrix norm 292

Euclidean vector norm 290–291

Evolutionary algorithms 827

F

Feedback control systems

 nonunity feedback 18, 217

 state feedback 297

 unity feedback 18, 217

Feedback linearization 644–649

Feedback network (see Recurrent  network)

Feedfarward action

 state-feedback servo 463–465, 476–477, 522

Feedforward neural network 707

 dynamic map 733

 input-output map 710, 713

 multilayer 711–713

 single layer 708–711

Filter

 anti-aliasing 24, 87

 finite impulse response 142

 infinite impulse response 142

 low pass 84

 nonrecursive 142, 145

 recursive 142

 zero-order hold 76, 77–79, 85–87

Final value theorem

 z-transform 55–56

Finite impulse response system 142

Firing strength; IF-THEN rule 803, 807

First companion form of

 state model 316–319, 394

First-harmonic approximation 572

First method of Lyapunov 611, 627–628

First-order hold 76

Fitness function 832

Focus; phase portrait 600

Forward difference approximation of

 derivatives 101–103

Fourier series 570–571

Frequency folding (see Aliasing)

Frequency prewarping 237

Frequency response 63–65

 specifications 227–229, 232

Frequency warping 101, 108, 237

Full-order state observer 449–452

 current observer 473–474

 prediction observer 472–473

Function approximation (NN) 691, 714–715

Function approximation (SVM) 753–757

Fuzzification 794

Fuzzy cartesian product 788

Fuzzy complement 787

Fuzzy conjunction 789

Fuzzy-genetic systems 839–840

Fuzzy implication 790

Fuzzy inference; 790

 compositional rule 792
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Fuzzy intersection 787

Fuzzy logic 778

Fuzzy logic control 794–805

 GA-based tuning 839–842, 844

Fuzzy modeling 805–809

Fuzzy propositions 791

Fuzzy relation 787

 composition 792

 cylindrical extension 792

 projection 792

Fuzzy rules (IF-THEN)

 Mamdani rules 791–793

 singleton rules 793

 Sugeno rules 793–794

Fuzzy singleton 784, 793

Fuzzy sets

 a-cut 783–784

 bell-shaped 782–783

 convex 783

 cross point 784

 Gaussian 782–783

 normal 783

 singleton 784

 support 784

 trapezoidal 782–783

 triangular 782–783

Fuzzy union 787

G

Gain margin 230–231

Gaussian activation (NN) 728

Gaussian fuzzy set 782–783

Generalization (NN) 693

Generalized eigenvectors 336

Generalized predictive control 665–671

Genetic algorithm (GA)

 chromosome 829

 coding 831

 controller tuning 839–842, 844

 crossover 835–836

 cross site 835

 fitness function 832

 mating pool 834

 mutation 836

 reproduction 835–836

 Roulette wheel parent selection 834–835

Genetic-fuzzy systems 839–840

Genetic-neural systems 842–843

Global stability 505, 513

Gradient descent method (NN) 719–722

Grammian matrix 294, 295

H

Hessian matrix 511

Hidden layer (NN) 711

Hierarchical control systems 10–11

Hold operation

 first-order 76

 zero-order 76, 77–79

Homogeneous state equations

 solution 340, 409

Hyperbolic tangent activation (NN) 706

I

IAE performance index 511

Identification of models

 least squares method 657–663

 fuzzy–based 805–809

 NN-based 730–735

Identity matrix 285

IF-THEN rule 

 antecedent 773

 conclusion 773

 consequent 773

 firing 803, 807

 implication 790

 premise 773

Implication; fuzzy set 790

Impulse; discrete-time 32, 47

Impulse-invariance method for

 discretization 90–94

Impulse modulator model of sampler 43–45

Impulse response model 41–43

Incremental-mode training (NN) 720–721

Indefinite scalar function 616

Inference; fuzzy system 790, 792

Infinite impulse response system 142

Inherent nonlinearities 569

Initialization (NN) 726

Inner product of vectors 290, 294

Instability theorem; Lyapunov 620–621

Integral action

 state-feedback servo 466–468, 477–479, 523

Intelligent control 688

Intentional nonlinearities 569

Intersample ripples 200–201, 417

Intersection; fuzzy set 787

Inverse model (NN) 736
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Inverse of a matrix 288

Inverted pendulum 350–353

ISE performance index 512

Isoclines method 593–597

ITAE performance index 511

ITSE performance index 512

J

Jacobian matrix 623

Jordan canonical form of

 state model 320–325, 396–399

Jump resonance 566

Jury stability criterion 73–75

K

Kernal functions 753

KKT conditions 745

Krasovskii method 623–625

L

Ladder diagram 190–198

Lag compensation on 

 Bode plots 239–241

 root-locus plots 257–263

Lag-lead compensation 240

Lagrange’s equation 644

Lead compensation on

 Bode plots 239–240

 root-locus plots 254–257

Learning; machine 689, 690–696

Learning in NN;

 reinforcement 692, 850–867

 supervised 691, 716

 unsupervised 692

Least squares estimation 657–663

 recursive 661–663

Limit cycles 605

Linear activation (NN) 707

Linear SVM 748–752

Linearization 

 feedback linearization 644–649

 first-harmonic approximation 572

 method of Lyapunov 611, 627–628

 Taylor’s series 302

Linear dependence of vectors 293

Linear independence of vectors 293, 294–295

Linear system stability tests

 Jury 73–75

 Lyapunov 506–509

Local stability 505, 513

Logic

 classical 778

 fuzzy 778

Log-sigmoid activation (NN) 707

Lowpass filter 84

Luenberger state observer 450

Lyapunov equations 507, 509

Lyapunov functions

 for linear systems 506–509

 for nonlinear systems 621–626

Lyapunov instability theorem 620–621

Lyapunov stability analysis

 direct method 611, 617–620

 first method 611, 627–628

 linearization method 611, 627–628

 non-autonomous systems 653–654

 second method 611, 617–620

M

Machine learning 689, 690–696

Mamdani architecture; FLC 791–793

Markov Decision Process 852

Mapping of s-plane to z-plane 46

 constant-wn loci 96

 constant-z loci 95–96

Mapping of z-plane to w-plane 236

Mapping of w-plane to z-plane 236

Marginal stability 72

Mating pool (GA) 834

Matrix

 adjoint 288

 condition number 292

 determinant 287

 diagonal 285

 eigenvalues 292, 296, 328

 Grammian 294, 295

 Hessian 511

 identity 285

 inverse 288

 Jacobian 623

 negative definite 296

 negative semidefinite 296

 nonsingular 288

 norm; Euclidean 292

 norm; spectral 292

 null 285

 nullity 331

 orthogonal 292

 partitioned 289
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 positive definite 296

 positive semidefinite 296

 rank 289, 294

 singular 288

 singular values 292

 skew-symmetric 287

 symmetric 286

 trace 289

 transpose 286

 triangular 285–286

 unit 285

 zero 285

Matrix exponential 338–339

 properties 339

Matrix exponential evaluation by

 Cayley-Hamilton technique 344–346, 412

 inverse Laplace transform 341

 numerical algorithm 401–402

 similarity transformation 342–343, 410–411

Matrix Riccati equation 526, 537

Max-min composition 792

Measurement noise 233

Membership functions (see Fuzzy sets)

MIMO systems; definition 14, 37–38

Minor-loop feedback 7

Model reference adaptive 

 control 649–657, 671

Modes 363

Momentum gradient algorithm 726

Multilayer NN 711–713

Multiloop control systems 10

Multiple-rate sampling 24

Multivariable control 

 systems 367–368, 419–420

Mutation (GA) 836

N

Negative definite matrix 296

Negative definite scalar function 296, 616

Negative semidefinite matrix 296

Negative semidefinite scalar function 296, 616

Neural Network

 dynamic map 733

 feedforward 707

 for control 735–741

 for function approximation 714–715

 for model identification 730–735

 input-output map 710, 713

 multilayer perceptron 711–713

 RBF 727–730

 recurrent 713–714

 single-layer perceptron 708–711

Neural Network Modeling 730–735

Neural Network Training

 (see Backpropagation training)

Neural Network Performance

 accuracy 693

 convergence 696

 generalization 693

 overfitting 694

 validation 694

Neural Q-earning 866

Neuron:

 artificial 700

 biological 698

 model 704

Neuro-control 

 feedforward-feedback 738

 inverse model 736

 model-reference adaptive 738–741

Neuro-fuzzy systems 809–813

Neuro-genetic systems 842–843

Nichols chart; bandwidth

 determination 244

Nodal point; phase portrait 600

Non–autonomous systems 653–654

Nonhomogeneous state equations

 solution 348–349, 408, 409

Nonlinearities 

 backlash 568, 575–578

 Coulomb friction 569, 603–605 

 deadzone 567, 632–633

 describing function table 579

 on–off 569, 573–575, 601–602

 saturation 567, 628–630

Nonlinear SVM 752–753

Nonlinear system stability

 describing function 580–583

 Lyapunov functions 621–626

Nonminimum-phase transfer 

 function 238

Nonrecursive controller 142, 145

Nonsingular matrix 288

Nonsingleton fuzzy system 793

Nonunity feedback system 18, 217

Norm:

 Euclidean; matrix 292

 Euclidean; vector 290–291

 spectral; matrix 292
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Normal fuzzy set 783

Nullity 331

Null matrix 285

Nyquist stability criterion 230–231

O

Observability

 definition 355–356, 415

 tests 359–360, 362, 371, 415, 416, 419

Observability canonical form of state model 366

Observability loss due to sampling 417–419

Observability matrix 360, 371, 415, 419

Observable companion form of state 

 model 319–320, 395

Observable eigenvalues (poles) 366

Observer (see State observer)

On–off controllers 569, 605–609

 describing functions 573–575

 phase portraits 601–602

Optimal servo system; with integral control 523

Optimal state estimators (see Optimal

 state observers)

Optimal state observers 521–522

Optimal state regulator 518, 523–529, 534–537

Optimization of parameters 510

Order of a system 38, 58

Orthogonal matrix 292

Orthogonal vectors 292

Orthonormal vectors 292

Output feedback (see Partial state feedback)

Output layer (NN) 711

Output regulator 519

Overfitting (NN) 694

P

Parallel programming of controllers 145

Parameter estimation

 least squares method 657–663

 recursive 661–663

Parameter optimization 510

Partial state feedback 539–545

Partitioned matrix 289

Pattern recognition 691

Peak overshoot 223

 correlation with damping ratio 224

Peak resonance 229

 correlation with damping ratio 232

Peak time 223, 224

Perceptron 705

Performance index (also see Quadratic

 performance index)

  IAE 511

  ISE 512

  ITAE 511

  ITSE 512

Performance specifications

 frequency-response 227–229, 232

 time-response 222–225

Permanent-magnet stepping motors 174–176

Phase margin 230–231

 correlation with damping ratio 232

Phase-plane analysis 587–590

Phase portraits 588

 Construction by analytical method 590–593

 Construction by isocline method 593–597

Phase trajectory 588

PID controller analog, 153–162

PID controller, digital (see Digital PID controller)

Pole-placement by state feedback 441–445, 470–471

 Ackermann’s formula 471

 multi-input systems 447–448

Poles and zeros 47

Pole-zero cancellation 256, 263, 265–266

Policy iteration 860

Position error constant 219

Position form of digital PID algorithm 159–160

Positive definite matrix 296

Positive definite scalar function 296, 616

Positive semidefinite matrix 296

Positive semidefinite scalar function 296, 616

Prediction state observer 472–473

Predictive control 665–671

Premise; IF-THEN rule 773

Prewarping 237

Primary strip in s-plane 92

Process reaction curve 155–157

Programmable logic controller; 13, 181

 applications 199

 building blocks 185–190

 ladder diagram 190–198

 programming 198

Projection; fuzzy relation 792

Proper transfer function 311

Q

Q-learning 863–864

Quadratic forms of scalar functions 295

 negative definite 296



 Index 907

 negative semidefinite 296

 positive definite 296

 positive semidefinite 296

Quadratic performance index

 ISE 512

 output regulator 519

 state regulator 519, 534

Quantization errors 22, 25–27

Quarter-decay ratio response 153–154

R

Ramp sequence 48

Rank of a matrix 289, 294

RBF network 727–730

Realization of a transfer function: 

 cascade programming 144–145

 direct programming 142–144

 first companion form 316–319, 394

 Jordan form 320–325, 396–399

 parallel programming 145

 second companion form 319–320, 395

Rectangular rules for integration 102

Recurrent networks 713–714

Recursive controller 142

Recursive least squares estimation 661–663

Reduced-order state observer 455–457, 474

Regulator; definition 4

Reinforcement learning control 850–867

Relaxed system 41

Reproduction (GA) 835–836

Resolvent algorithm 312–313

Resolvent matrix 313

Resonance frequency 229, 232

Resonance peak 229

 correlation with damping ratio 232

Riccati equation 526, 537

Rise time 222, 224

Robot manipulator control 644–649, 677–680

Robust control systems 14, 234–235

Robust observers 463

Root locus method 249–254

 construction rules table 250–251

Root locus plots

 lag compensation 257–263

 lead compensation 254–257

Root sensitivity 202–204

Roulette-wheel parent selection (GA) 834–835

S

Saddle point; phase portrait 601

Sampled-data control systems 4, 24

 state model 399–402

 transfer function 128–132

Sample-and-Hold:

 circuit 78–79

 model 85–86

Sampler impulse modulator model 43–45

Sampling 

 multiple rate 24

 uniform 24

Sampling effects; 22–23

 on controllability and observability 417–419

 on stability 134–135

 on steady-state error 222

Sampling frequency 43

Sampling period; 43

 selection 87–89

Sampling rate 43

Sampling theorem 84

SARSA-learning 866-867

Satellite attitude control system 438–440, 590–592

Saturation nonlinearity; 567

 describing function 628–630

Scalar product of vectors 290, 294

Second companion form of state

 model 319–320, 395

Second method of Lyapunov 611, 617–620

Self-tuning control 663–671

Sensitivity analysis 202–204, 234–235

Separation principle 458–460, 475

Servo design with state feedback

 with feedforward control 463–465, 476–477, 522

 with integral control 466–468, 477–479, 523

Servo system; definition 4

Set-point control system

 definition 4

Settling time 223, 224

Shaft encoder 169–172

S/H device

 circuit 78–79

 model 77–78

Sigmoid activation (NN) 706

Similarity transformation 307

Single layer NN 708–711
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Singleton fuzzy system 784, 793

Singular matrix 288

Singular points 597–599

 center 600

 focus 600

 node 600

 saddle 601

 vortex 600

Singular values of a matrix 292

Sinusoidal sequence 32–33, 49

SISO systems; definition 14, 38–39

Skew-symmetric matrix 287

Sliding-mode control 672–677

s-norm; fuzzy sets 786

Soft-computing 687–689

Solution of 

 homogeneous state equations 340, 409

 nonhomogeneous state 

  equations 348–349, 408, 409

Specifications (see Performance specifications)

Spectral norm of a matrix 292

s-plane to z-plane mapping 46

Stability 

 asymptotic 72, 367, 503, 613

 BIBO 66–72, 367

 global 505, 613

 in-the-large 613

 in the sense of Lyapunov 503, 612

 in-the-small 613

 local 505, 613

 marginal 72

 Nyquist 230–231

 sampling effects 134–135

 zero-input 72–73

Stability tests for linear systems

 Jury 73–75

 Lyapunov 506–509

Stability tests for nonlinear systems

 describing function 580–583

 Lyapunov 621–626

Stabilizability 524

State diagram 308, 394

State feedback 297, 437–438

State model 37–39, 302, 367, 392, 419

 conversion to transfer 

  function 308–311, 368, 393, 419

 equivalence with transfer

  function 362–367, 416–417

 sampled plant 399–402

 system with dead-time 405–407

State models; canonical (see canonical state  

 models)

State observers 448, 472

 current 473–474

 deadbeat 480–481

 full-order 449–452, 472–474

 prediction 472–473

 reduced-order 455–457, 474

 robust 463

State observer design through

 matrix Riccati equation 521–522

State regulator design through

 matrix Riccati equation 518, 523–529, 534–537

 pole-placement 437, 444–445, 470–471

State transition equation 413

State transition matrix; 340

 properties 340–341

State transition matrix evaluation by 

 Cayley-Hamilton technique 344–346, 412

 inverse Laplace transform 341

 inverse z-transform 409–410

 numerical algorithm 401–402

 similarity transformation 342–343, 410–411

Steady-state error 218–221

 sampling effects 222

Steady-state error constants (see Error constants)

Step-invariance method for

 discretization 96–98

Step motors (see Stepping motors)

Stepper motors (see Stepping motors)

Stepping motors

 in feedback loop 8

 interfacing to microprocessors 178–180

 permanent magnet 174–176

 torque-speed curves 178, 179

 variable-reluctance 177–178

Step sequence 32, 47

Strictly proper transfer function 311

Suboptimal state regulator 539–545

Sugeno architecture, data-based

 modeling 793–794

Supervised learning (NN) 691, 716

Support; fuzzy set 784

Support vector machines 741

 function approximation 753–757

 hard-margin linear 742–748

 nonlinear 752–753

 soft-margin linear 748–752

Sylvester’s test 296–297

Symmetric matrix 286
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System identification

 least squares method 657–663

 fuzzy-based 805–809

 NN-based 730–735

T

Tan-sigmoid activation (NN) 707

Taylor series 302

t-conorm; fuzzy sets 786

Temporal difference learning 854, 861–863

Time-response specifications 222–225

t-norm; fuzzy sets 786

Trace of a matrix 289

Tracking control systems

 definition 4

Training NN (see Backpropagation training)

Transfer function

 definition 57

 equivalence with state model 362–367, 416–417

 nonminimum-phase 238

 order 58

 poles and zeros 47

 proper 311

 sampled-data systems 128–132

 strictly proper 311

 systems with dead-time 135–137

 zero-order hold 77–78

Transportation lag (see Dead-time)

Transpose of a matrix 286

Trapezoidal fuzzy set 782–783

Trapezoidal rule for integration 105–106

Triangular fuzzy set 782–783

Triangular matrix 285–286

Tuning of process controller (see Controller

 tuning) 

Type number of a system 219

Type-1 system 220–221

Type-2 system 221

Type-0 system 220

U

Ultimate gain 153

Ultimate period 153

Uniform sampling 24

Union; fuzzy set 787

Unit circle in z-plane 46

Unit delayer 35, 59

Unit matrix 285

Unit-ramp sequence 48

Unit-sample sequence 32, 47

Unit-step sequence 32, 47

Unit vector 292

Unity feedback systems 18, 217

Universal approximation property (NN) 724

Universe of discourse 778

Unsupervised learning (NN) 692

V

Validation (NN) 694

Value iteration 859

Variable gradient method 625–627

Variable reluctance stepping motors 177–178

Variable structure control 605–608

Vectors 

 inner product 290, 294

 linearly dependent 293

 linearly independent 293, 294–295

 norm; Euclidean 290–291

 orthogonal 292

 orthonormal 292

 scalar product 290, 294

 unit 292

Velocity error constant 219

Velocity form of digital algorithm 160–161

Vender Pol’s oscillator 565, 588

Vortex point; phase portrait 600

W

Warping 101, 108, 237

Weights (NN) 704

w-plane; 236

 z-plane mapping 236

w-transform 236–239

Z

Zero-input stability 72–73

Zero matrix 285

Zero-order hold 76

 circuit 78–79

 filtering characteristic 85–86

 time-delay approximation 87, 162

 transfer function model 77–78

Zeros and poles 47

Ziegler-Nichols tuning

 based on process reaction curve 154–159

 based on ultimate gain and period 153–154
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z-plane 

 s-plane mapping 46

 unit circle 46

 w-plane mapping 236

z-plane synthesis 263–268

z-transfer function (see Transfer function)

z-transform

 definition 46

 final value theorem 55–56

 inverse 53

 pairs 51

 pairs for systems with dead-time 137

 properties 48, 49

 shifting theorems 50–52
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