
 Contents i

Digital Control and

State Variable Methods
Conventional and Intelligent Control Systems

FOURTH EDITION

ii Contents

About the Author

M.Gopal, a Professor in Electrical Engineering at Indian Institute of

Technology Delhi, is at present the Director of School of Engineering,

Shiv Nadar University, Gautam Budh Nagar (U.P.) India. His teaching and

research stints span three decades at the IITs.

Dr. Gopal is a globally known academician with excellent credentials as

author, teacher, researcher, and administrator. He is the author/co-author

of six books on Control Engineering. His books are used worldwide, and

some of them have been translated into Chinese and Spanish as well.

McGraw-Hill, Singapore has published his books for the Asia Pacific

market and McGraw-Hill, USA for the US market. In India, his books have

been serving as the major source of learning for more than three decades.

As a teacher, his potential is being used globally through a video course (http://www.youtube.com/iit),

which is one of the most popular courses on You Tube by the IIT faculty across India. He has been

conducting Faculty Development Programs on active learning and effective teaching.

A recognized researcher in the area of Machine Learning, Dr. Gopal has been a key-note speaker in many

international conferences. He periodically runs executive programs as tutorial sessions in conferences,

and short-term workshops, to empower the participants with the state-of-the-art techniques in pattern

recognition and machine learning.

He is the author/co-author of over 135 research papers and his key contributions have been published

in high impact factor journals. He has supervised 16 doctoral research projects. His current research

interests are in the areas of Machine Learning, Soft-Computing Technologies, Pattern Recognition, and

Intelligent Control.

In administrative capacity, he contributed to the growth of a large department at IIT Delhi with electrical

(power), electronics, communications, computer technology, and information technology as the areas

of activities. The department has acquired a respectable international standing in both teaching and

research.

M.Gopal holds B.Tech (Electrical), M.Tech (Control Systems), and Ph.D. degrees form BITS, Pilani.

 Contents iii

Tata McGraw Hill Education Private Limited
NEW DELHI

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

M GOPAL

Professor

Department of Electrical Engineering

Indian Institute of Technology Delhi

New Delhi

Digital Control and

State Variable Methods
Conventional and Intelligent Control Systems

FOURTH EDITION

iv Contents

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

Digital Control and State Variable Methods: Conventional and Intelligent Control Systems, 4e

Copyright © 2012, 2009, by Tata McGraw Hill Education Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission

of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they

may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited.

ISBN (13): 978-0-07-133327-6

ISBN (10): 0-07-133327-4

Vice President and Managing Director—McGraw-Hill Education: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Publishing Manager—SEM & Tech Ed.: Shalini Jha

Editorial Executive: Koyel Ghosh

Sr Copy Editor: Nimisha Kapoor

Sr Production Manager: Satinder Singh Baveja

Proof Reader: Yukti Sharma

Marketing Manager—Higher Education: Vijay Sarathi

Sr Product Specialist—SEM & Tech Ed.: Tina Jajoriya

Graphic Designer (Cover): Meenu Raghav

General Manager—Production: Rajender P Ghansela

Production Manager: Reji Kumar

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions,

or damages arising out of use of this information. This work is published with the understanding that Tata

McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be

sought.

Typeset at Tej Composers, WZ-391, Madipur, New Delhi 110063, and printed at

The McGraw-Hill Companies

Tata McGraw-Hill

 Contents v

Dedicated

with all my love to my

son, Ashwani

and

daughter, Anshu

 Contents vii

Preface xi

Part I Digital Control: Principles and Design in Transform Domain 1

 1. Introduction 3

 1.1 Control System Terminology 3

 1.2 Computer-Based Control: History and Trends 9

 1.3 Control Theory: History and Trends 13

 1.4 An Overview of the C lassical Approach to Analog Controller Design 16

 2. Signal Processing in Digital Control 21

 2.1 Why Use Digital Control? 21

 2.2 Configuration of the Basic Digital Control Scheme 23

 2.3 Principles of Signal Conversion 25

 2.4 Basic Discrete-Time Signals 31

 2.5 Time-Domain Models for Discrete-Time Systems 34

 2.6 The z-Transform 43

 2.7 Transfer Function Models 56

 2.8 Frequency Response 63

 2.9 Stability on the z-Plane and the Jury Stability Criterion 66

 2.10 Sample-and-Hold Systems 76

 2.11 Sampled Spectra and Aliasing 79

 2.12 Reconstruction of Analog Signals 84

 2.13 Practical Aspects of the Choice of Sampling Rate 87

 2.14 Principles of Discretization 90

 Review Examples 110

 Problems 119

 3. Models of Digital Control Devices and Systems 125

 3.1 Introduction 125

 3.2 z-Domain Description of Sampled Continuous-Time Plants 127

 3.3 Z-Domain Description of Systems with Dead-Time 135

 3.4 Implementation of Digital Controllers 140

 3.5 Tunable PID Controllers 147

 3.6 Digital Temperature Control System 163

 3.7 Digital Position Control System 167

 3.8 Stepping Motors and Their Control 174

Contents

viii Contents

 3.9 Programmable Logic Controllers 181

 Review Examples 200

 Problems 204

 4. Design of Digital Control Algorithms 214

 4.1 Introduction 214

 4.2 z-Plane Specifications of Control System Design 217

 4.3 Digital Compensator Design using Frequency Response Plots 235

 4.4 Digital Compensator Design using Root Locus Plots 249

 4.5 z-Plane Synthesis 263

 Review Examples 268

 Problems 273

Part II State Variable Methods in Automatic Control: Continuous-Time and
 Sampled-Data Systems 281
 5. Control System Analysis Using State Variable Methods 283

 5.1 Introduction 283

 5.2 Vectors and Matrices 284

 5.3 State Variable Representation 297

 5.4 Conversion of State Variable Models to Transfer Functions 308

 5.5 Conversion of Transfer Functions to Canonical State Variable Models 315

 5.6 Eigenvalues and Eigenvectors 327

 5.7 Solution of State Equations 338

 5.8 Concepts of Controllability and Observability 350

 5.9 Equivalence Between Transfer Function and State Variable Representations 362

 5.10 Multivariable Systems 367

 Review Examples 372

 Problems 380

 6. State Variable Analysis of Digital Control Systems 391

 6.1 Introduction 391

 6.2 State Descriptions of Digital Processors 392

 6.3 State Description of Sampled Continuous-Time Plants 399

 6.4 State Description of Systems with Dead-Time 405

 6.5 Solution of State Difference Equations 408

 6.6 Controllability and Observability 414

 6.7 Multivariable Systems 419

 Review Examples 422

 Problems 429

 7. Pole-Placement Design and State Observers 436

 7.1 Introduction 436

 7.2 Stability Improvement by State Feedback 437

 7.3 Necessary and Sufficient Conditions for Arbitrary Pole-Placement 441

 7.4 State Regulator Design 444

 7.5 Design of State Observers 448

 7.6 Compensator Design by the Separation Principle 458

 7.7 Servo Design: Introduction of the Reference Input by Feedfor ward Control 463

 7.8 State Feedback with Integral Control 466

 7.9 Digital Control Systems with State Feedback 469

 Contents ix

 7.10 Deadbeat Control by State Feedback and Deadbeat Observers 480

 Review Examples 483

 Problems 490

 8. Linear Quadratic Optimal Control through Lyapunov Synthesis 502

 8.1 Introduction 502

 8.2 The Concept of Lyapunov Stability 503

 8.3 Lyapunov Functions for Linear Systems 505

 8.4 Parameter Optimization and Optimal Control Problems 510

 8.5 Quadratic Performance Index 513

 8.6 Control Configurations 520

 8.7 Optimal State Regulator 523

 8.8 Optimal Digital Control Systems 534

 8.9 Constrained State Feedback Control 539

 Review Examples 545

 Problems 552

Part III Nonlinear Control Systems: Conventional and Intelligent 559

 9. Nonlinear Systems Analysis 563

 9.1 Introduction 563

 9.2 Some Common Nonlinear System Behaviors 565

 9.3 Common Nonlinearities in Control Systems 567

 9.4 Describing Function Fundamentals 569

 9.5 Describing Functions of Common Nonlinearities 573

 9.6 Stability Analysis by the Describing Function Method 580

 9.7 Concepts of Phase-Plane Analysis 587

 9.8 Construction of Phase Portraits 590

 9.9 System Analysis on the Phase Plane 597

 9.10 Simple Variable Structure Systems 605

 9.11 Lyapunov Stability Definitions 609

 9.12 Lyapunov Stability Theorems 613

 9.13 Lyapunov Functions for Nonlinear Systems 621

 9.14 Lypunov’s Linearization Method and Local Stability 627

 Review Examples 628

 Problems 634

 10. Nonlinear Control Structures 642

 10.1 Introduction 642

 10.2 Feedback Linearization 644

 10.3 Model Reference Adaptive Control 649

 10.4 System Identification and Generalized Predictive Control in Self-Tuning Mode 657

 10.5 Sliding Mode Control 672

 Problems 681

 11. Intelligent Control with Neural Networks/Support Vector Machines 686

 11.1 Towards Intelligent Systems 686

 11.2 Introduction to Soft Computing and Intelligent Control Systems 687

 11.3 Basics of Machine Learning 690

 11.4 A Brief History of Neural Networks 696

x Contents

 11.5 Neuron Models 698

 11.6 Network Architectures 707

 11.7 Function Approximation with Neural Networks 714

 11.8 Linear Learning Machines 716

 11.9 Training The Multilayer Perceptron Network–Backpropagation Algorithm 722

 11.10 Radial Basis Function Networks 727

 11.11 System Identification with Neural Networks 730

 11.12 Control with Neural Networks 735

 11.13 Support Vector Machines 741

 Review Examples 757

 Problems 763

 12. Fuzzy Logic and Neuro-Fuzzy Systems 767

 12.1 Introduction 767

 12.2 Fuzzy Rules-Based Learning 770

 12.3 Fuzzy Quantification of Knowledge 778

 12.4 Fuzzy Inference 790

 12.5 Designing A Fuzzy Logic Controller (Mamdani Architecture) 794

 12.6 Data Based Fuzzy Modeling (Sugeno Architecture) 805

 12.7 System Identification and Control with Neuro-Fuzzy Systems 809

 Review Examples 813

 Problems 817

 13. Optimization with Genetic Algorithms 827

 13.1 Evolutionary Algorithms 827

 13.2 Genetic Algorithms 828

 13.3 Genetic-Fuzzy Systems 839

 13.4 Genetic-Neural Systems 842

 Review Examples 843

 Problems 846

 14. Intelligent Control with Reinforcement Learning 849

 14.1 Introduction 849

 14.2 Elements of Reinforcement Learning Control 850

 14.3 Methods for Solving the Reinforcement Learning Problem 853

 14.4 Basics of Dynamic Programming 855

 14.5 Temporal Difference Learning 861

 14.6 Q-Learning 863

 14.7 Sarsa-Learning 866

 References 868

 Answers to Problems 876

 Appendix A: MATLAB Aided Control System Design: Conventional Control

 URL: http://www.mhhe.com/gopal/dc4e

 Appendix B: MATLAB Aided Control System Design: Intelligent Control

 URL: http://www.mhhe.com/gopal/dc4e

 Index 900

 Contents xi

 Control Engineering is an active field of research and hence there is a steady influx of new concepts,

ideas and techniques. In time, some of these elements develop to the point where they join the list of

things every control engineer must know. To grasp the significance of modern developments, a strong

foundation is necessary in analysis, design and stability procedures applied to continuous-time linear and

nonlinear feedback control systems. Simultaneously, knowledge of the corresponding methods in the

digital version of control systems is also required because of the use of microprocessors, programmable

logic devices and DSP chips as controllers in modern systems. This book aims at presenting the vital

theories required for appreciating the past and present status of control engineering.

 When compiling the material for the first edition of the book, decisions had to be made as to what should

be included and what should not. It was decided to place the emphasis on the control of continuous-time

and discrete-time linear systems, based on frequency-domain and state-space methods of design. In the

subsequent editions, we continue to emphasize solid mastery of the underlying techniques for linear

systems; in addition, the subject of nonlinear control has occupied an important place in our presentation.

The availability of powerful low-cost microprocessors has spurred great interest in nonlinear control.

Many practical nonlinear control systems based on conventional nonlinear control theory have been

developed. The emerging trends are to employ intelligent control technology for nonlinear systems. As a

result, the subject of nonlinear control (based on conventional as well as intelligent control methodologies)

has become a necessary part of the fundamental background of control engineers.

 The vast array of systems to which feedback control is applied and the growing variety of techniques

available for the solution of control problems means that today’s student of control engineering needs

to manage a great deal of information. To help the students in this task and to keep their perspective as

they plow through a variety of techniques, a user-friendly format has been devised for the book. We have

divided the contents in three parts. Part I deals with digital control principles and design in transform

domain, assuming that the reader has had an introductory course in control engineering concentrating

on the basic principles of feedback control and covering the various classical analog methods of control

system design. The material presented in this part of the book is closely related to the material a student

may already be familiar with, but towards the end a direction to wider horizons is indicated. Basic

principles of feedback control and classical analog methods of design have been elaborately covered in

another book: M Gopal, Control Systems: Principles and Design, 4th edition, Tata McGraw-Hill, 2012.

Part II of the book deals with state variable methods in automatic control. State variable analysis and

design methods are usually not covered in an introductory course. It is assumed that the reader is not

exposed to the so-called modern control theory. Our approach is to first discuss the state variable methods

Preface

xii Preface

for continuous-time systems and then give a compact presentation for discrete-time systems using the

analogy with the continuous-time systems. This formatting is a little different from the conventional one.

Typically, a book on digital control systems starts with transform-domain design and then carries over

to state space. These books give a detailed account of state variable methods for discrete-time systems.

Since the state variable methods for discrete-time systems run quite parallel to those for continuous-time

systems, a full-blown repetition is not appreciated by readers conversant with state variable methods for

continuous-time systems. And for readers with no background of this type, a natural way of introducing

state variable methods is to give the treatment for continuous-time systems, followed by a brief parallel

presentation for discrete-time systems. This sequence of presentation is natural because it evolves from

the sequence of steps in a design procedure. The systems to be controlled (plants) are continuous-

time systems; we, therefore, investigate the properties of these systems using continuous-time models.

Sampling is introduced only to insert a microprocessor in the feedback loop.

Part III of the book deals with nonlinear control schemes. The choice and emphasis of the schemes is

guided by the basic objective of making an engineer or a student gain insights into the current nonlinear

techniques in use for the solution of practical control problems in the industry. Some results of mostly

theoretical interest are not included. Instead, emerging trends in nonlinear control are introduced. The

conventional nonlinear control structures like Feedback Linearization, Model-Reference Adaptive

Control, Self-Tuning Control, Generalized Model Predictive Control, Sliding Mode Control, etc., fall

well short of the requirements of modern complex systems. While extensions and modifications to these

conventional methods of control design based on mathematical models continue to be made, intelligent

control technology is emerging as an alternative to solve complex control problems. This technology is

slowly gaining wider acceptance in both academics and industry. The scientific community and industry

are converging to the fact that there is something fundamentally significant about this technology.

Rigorous characterization of theoretical properties of intelligent control methodology is not our aim;

rather we focus on the development of systematic design procedures, which will guide the design of a

controller for a specific problem.

The fundamental aim in preparing the book has been to work from basic principles and to present control

theory in a way that can be easily understood and applied. Solved examples are provided as and when

a new concept is introduced. The section on review examples briefly reiterates the key concepts of

the chapter. A supplement of problems, with final answers, is also made available for pen-and-paper

practice. MATLAB/Simulink tools are introduced in appendices to train the students in computer-aided-

design. All the solved examples, review examples and problems can be done using software tools. Some

problems specifically designed with a focus on MATLAB solutions, are given in appendices. A rich

collection of references, classified to topics, has been given for more enthusiastic readers.

ORGANIZATION OF THE BOOK

 The contents of the book are organized into fourteen chapters and two appendices. The appendices

are given in the web supplements of the book. Appendix A deals with MATLAB/Simulink support for

Conventional Control (Chapters 1−10) and Appendix B deals with MATLAB/Simulink support for

Intelligent Control (Chapters 11−14).

 The fourteen chapters of the book are classified into three parts, with each part serving a clearly defined

objective. Part I (Chapters 1−4) deals with digital control principles and classical digital methods of

design, paralleling and extending considerably the similar topics in analog control.

 Preface xiii

In Chapter 1, introduction to the digital control problem is given. A rich variety of practical problems are

placed as examples. A rapid review of the classical procedures used for analog control is also provided.

For the study of classical procedures for digital control, the required mathematical background includes

z-transforms. A review of z-transformation is presented in Chapter 2. With this background, the concepts

of transfer function models and frequency-response models are introduced; and then dynamic response,

steady-state response and stability issues are covered. After taking the student gradually through

mathematical domain of digital control systems, Chapter 2 introduces the sampling theorem and the

phenomenon of aliasing. Methods to generate discrete-time models which approximate continuous-time

dynamics are also introduced in this chapter.

Chapter 3 briefly describes the digital control hardware including microprocessors, shaft-angle encoders,

stepping motors, programmable logic controllers, etc. Transform-domain models of digital control loops

are developed, with examples of some of the widely used digital control systems. Digital PID controllers,

their implementation and tuning are also included in this chapter.

Chapter 4 establishes a toolkit of design-oriented techniques. It puts forward alternative design methods

based on root locus and Bode plots. Design of digital controllers using z-plane synthesis is also included

in this chapter.

Part II (Chapters 5−8) of the book deals with state variable methods in automatic control. The manner

of presentation followed here is to first discuss state variable methods for continuous-time systems and

then give a compact presentation of the methods for discrete-time systems, using the analogy with the

continuous-time case.

Chapter 5 is on state variable analysis. It exposes the problems of state variable representation,

diagonalization, solution, controllability and observability. The relationship between transfer function

and state variable models is also given. Although it is assumed that the reader has the necessary

background on vector-matrix analysis, a reasonably detailed account of vector-matrix analysis is provided

in this chapter for convenient reference.

State variable analysis concepts, developed in continuous-time format in Chapter 5, are extended to

digital control systems in Chapter 6.

The techniques of achieving desired system characteristics by pole-placement using complete state

variable feedback are developed in Chapter 7. Also included is the method of using the system output

to form estimates of the states for use in state feedback. Results are given for both continuous-time and

discrete-time systems.

Lyapunov stability analysis is introduced in Chapter 8. In addition to stability analysis, Lyapunov

functions are useful in solving some optimization problems. We discuss in this chapter, the solution

of linear quadratic optimal control problem through Lyapunov synthesis. Results are given for both

continuous-time and discrete-time systems.

Parts I and II exclusivelydeal with linear systems. In Part III (Chapters 9−14), the focus is on nonlinear

systems. We begin with conventional methods of analysis and design (Chapters 9−10) which are of

current importance in terms of industrial practice. Results of mostly theoretical interest are not included.

Instead, the emerging trends in nonlinear control based on intelligent control technology are presented in

reasonable details (Chapters 11−14).

In Chapter 9, considerable attention is paid to describing function and phase plane methods, which

have demonstrated great utility in analysis of nonlinear systems. Also included is stability analysis of

nonlinear systems using Lyapunov functions.

xiv Preface

Chapter 10 introduces the concepts of feedback linearization, model reference adaptive control, system

identification and self-tuning control and variable structure control. In terms of theory, major strides have

been made in these areas. In terms of applications, many practical nonlinear control systems have been

developed.

Neural networks are widely used in intelligent control systems. An informative description of neural

networks is presented in Chapter 11. This chapter contains architectures and algorithms associated

with multi-layer perceptron networks, radial basis function networks and support vector machines.

Application examples from the perspectives of system identification and control are given.

Chapter 12 introduces the concepts of fuzzy sets and knowledge representation using fuzzy rules-

based learning. Conceptual paradigms of fuzzy controllers are presented, with a discussion on Mamdani

architecture for design. The approach to system identification as linguistic rules using the popular Takagi-

Sugeno fuzzy representation is discussed. A brief description of system identification and control using

neuro-fuzzy systems is also included in this chapter.

The focus in Chapter 13 is on genetic algorithm for optimization. The applications of this algorithm to

the learning of neural networks, as well as to the structural and parameter adaptations of fuzzy systems

are also described.

Chapter 14 presents a new control architecture that is based on reinforcement learning. Several recent

developments in reinforcement learning have substantially increased its viability as a general approach

to intelligent control.

WEB SUPPLEMENTS

The book includes a wealth of supplements available in the dedicated website:

http://www.mhhe.com/gopal/dc4e

It includes:

For Students

For Instructors

This part of the website is password protected and will be available to the instructors who adopt

this text. This request can be sent to a local TMH sales representative.

READERSHIP

The book is intended to be a comprehensive treatment of advanced control engineering for courses at

senior undergraduate level and postgraduate (Masters degrees) level. It is also intended to be a reference

source for PhD research students and practicing engineers.

 Preface xv

 For the purpose of organizing different courses for students with different backgrounds, the sequencing

of chapters and dependence of each chapter on previous chapters has been properly designed in the text.

A typical engineering curriculum at the second-degree level includes core courses on ‘digital control

systems’ and ‘linear system theory’. Parts I and II of the book have been designed to fully meet the

requirements of the two courses. In Part III of the book, a reasonably detailed account of nonlinear

control schemes, both the conventional and the intelligent, is given. The requirements of elective courses

on ‘nonlinear control systems’ and ‘intelligent control’, will be partially or fully (depending on the depth

of coverage of the courses) served by Part III of the book.

 A typical engineering curriculum at the first-degree level includes a core course on feedback control

systems, with one or two elective courses on the subject. This book meets the requirements of elective

courses at the first-degree level.

ACKNOWLEDGEMENTS

I would like to acknowledge the contributions of faculty, students and practicing engineers across the

country, whose suggestions through previous editions have made a positive impact on this new edition.

In particular, the considerable help and education I have received from my students and colleagues at

Indian Institute of Technology, Delhi, deserves sincere appreciation.

I also express my appreciation to the reviewers who offered valuable suggestions for this fourth and

previous editions. The reviews have had a great impact on the project.

Finally, I would like to thank The Tata McGraw-Hill Publishing Company, and its executives for providing

professional support for this project through all phases of its development.

Generous participation of instructors, students, and practicing engineers to eliminate errors in the text

(if any), and to refine the presentation will be gratefully acknowledged.

M.Gopal

mgopal@ee.iitd.ac.in

PUBLISHER’S NOTE

Remember to write to us. We look forward to receiving your feedback, comments and ideas to enhance

the quality of this book. You can reach us at tmh.elefeedback@gmail.com. Please mention the title and

author’s name as the subject.

In case you spot piracy of this book, please do let us know.

 Introduction 1

Part I
Digital Control: Principles and Design in
Transform Domain

Automatic control systems play a vital role in the (technological) progress of human civilization. These

control systems range from the very simple to the fairly complex in nature. Automatic washing machines,

refrigerators, and ovens are examples of some of the simpler systems used in homes. Aircraft automatic

pilots, robots used in manufacturing, and electric power generation and distribution systems represent

complex control systems. Even such problems as inventory control, and socio-economic systems control,

may be approached from the theory of feedback control.

Our world is one of continuous-time variables type. Quantities like flow, temperature, voltage,

position, and velocity are not discrete-time variables but continuous-time ones. If we look back at the

development of automatic control, we find that mass-produced analog (electronic) controllers have

been available since about the 1940s. A first-level introduction to control engineering, provided in the

companion book ‘Control Systems: Principles and Design’, deals with the basics of control, and

covers sufficient material to enable us to design analog (op amp based) controllers for many simple

control loops found in the industry.

From the 1980s onwards, we find microprocessor digital technology to be a dominant industrial

phenomenon. Today, the most complex industrial processes are under computer control. A microprocessor

determines the input to manipulate the physical system, or plant; and this requires facilities to apply this

input to the physical world. In addition, the control strategy typically relies on measured values of the

plant behavior; and this requires a mechanism to make these measured values available to the computing

resources. The plant can be viewed as changing continuously with time. The controller, however, has

a discrete clock that governs its behavior and so its values change only at discrete points in time. To

obtain deterministic behavior and ensure data integrity, the sensor must include a mechanism to sample

continuous data at discrete points in time, while the actuators need to produce a continuous value between

the time points with discrete-time data.

Computer interfacing for data acquisition, consists of analog-to-digital (A/D) conversion of the input

(to controller) analog signals. Prior to the conversion, the analog signal has to be conditioned to meet

the input requirements of the A/D converter. Signal conditioning consists of amplification (for sensors

generating very low power signals), filtering (to limit the amount of noise on the signal), and isolation

(to protect the sensors from interacting with one another and/or to protect the signals from possibly

damaging inputs). Conversion of a digital signal to an analog signal (D/A) at the output (of controller),

is to be carried out to send this signal to an actuator which requires an analog signal. The signal has to

be amplified by a transistor or solid state relay or power amplifier. Most manufacturers of electronic

instrumentation devices are producing signal conditioners as modules.

2 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The immersion of computing power into the physical world has changed the scene of control system

design. A comprehensive theory of digital ‘sampled’ control has been developed. This theory requires a

sophisticated use of new concepts such as z-transform. It is, however, quite straightforward to translate

analog design concepts into digital equivalents. After taking a guided tour through the analog design

concepts and op amp technology, the reader will find in Part I of this book sufficient material to enable

him/her to design digital controllers for many simple control loops, and interfacing the controllers to

other subsystems in the loop; thereby building complete feedback control systems.

The broad space of digital control applications can be roughly divided into two categories: industrial

control and embedded control. Industrial control applications are those in which control is used as part

of the process of creating or producing an end product. The control system is not a part of the actual end

product itself. Examples include the manufacture of pharmaceuticals and the refining of oil. In the case

of industrial control, the control system must be robust and reliable, since the processes typically run

continuously for days, weeks or years.

Embedded control applications are those in which the control system is a component of the end product

itself. For example, Electronic Control Units (ECUs) are found in a wide variety of products including

automobiles, airplanes, and home applications. Most of these ECUs implement different feedback

control tasks. For instance, engine control, traction control, anti-lock braking, active stability control,

cruise control, and climate control. While embedded control systems must also be reliable, cost is a

more significant factor, since the components of the control system contribute to the overall cost of

manufacturing the product. In this case, much more time and effort is usually spent in the design phase

of the control system to ensure reliable performance without requiring any unnecessary excess of

processing power, memory, sensors, actuators, etc., in the digital control system. Our focus in this book

will be on industrial control applications.

Perhaps more than any other factor, the development of microprocessors has been responsible for the

explosive growth of the computer industry. While early microprocessors required many additional

components in order to perform any useful task, the increasing use of Large-Scale Integration (LSI) or

Very Large-Scale Integration (VLSI) semiconductor fabrication techniques has led to the production of

microcomputers, where all of the required circuitry is embedded on one or a small number of integrated

circuits. A further extension of the integration is the single-chip microcontroller, which adds analog and

binary I/O, timers, and counters so as to be able to carry out real-time control functions with almost

no additional hardware. Examples of such microcontrollers are Intel 8051, 8096 and Motorola MCH

68HC11. These chips were developed largely, in response to the automotive industries’ desire for

computer-controlled ignition, emission control and anti-skid systems. They are now widely used

in process industries. This digital control practice, along with the theory of sampled-data systems is

covered in Chapters 2–4 of the book.

 Introduction 3

1.1 CONTROL SYSTEM TERMINOLOGY

A Control System is an interconnection of components to provide a desired function. The portion of

the system to be controlled is given various names: process, plant, and controlled system being perhaps

the most common. The portion of the system that does the controlling is the controller. Often, a control

system designer has little or no design freedom with the plant; it is usually fixed. The designer’s task is,

therefore, to develop a controller that will control the given plant acceptably. When measurements of the

plant response are available to the controller (which, in turn, generates signals affecting the plant), the

configuration is a feedback control system.

A digital control system uses digital hardware, usually in the form of a programmed digital computer, as

the heart of the con troller. In contrast, the controller in an analog control system is composed of analog

hardware; an electronic controller made of resistors, capacitors, and operational amplifiers is a typical

example. Digital controllers normally have analog devices at their periphery to interface with the plant;

it is the internal working of the controller that distinguishes digital from analog control.

The signals used in the description of control systems are clas sified as continuous-time and discrete-

time. Continuous-time signals are defined for all time, whereas discrete-time signals are defined only

at discrete instants of time, usually evenly spaced steps. The signals for which both time and ampli tude

are discrete, are called digital signals. Because of the complexity of dealing with quantized (discrete-

amplitude) sig nals, digital control system design proceeds as if computer-generated signals were not

of discrete amplitude. If necessary, further analysis is then done, to determine if a proposed level of

quantization is acceptable.

Systems and system components are termed continuous-time or discrete-time according to the

type of signals they involve. They are classified as being linear if signal components in them can be

superimposed—any linear combination of signal components, applied to a system, produces the same

linear combination of corresponding output components; otherwise the system is nonlinear. A system

or component is time-invariant if its properties do not change with time—any time shift of the inputs

produces an equal time shift of every corresponding signal. If a system is not time-invariant, then it is

time-varying.

A typical topology of a computer-controlled system is sketched schematically in Fig. 1.1. In most cases,

the measuring transdu cer (sensor) and the actuator (final control element) are analog devices, requiring,

Introduction

Chapter 1

4 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

respectively, analog-to-digital (A/D) and digital-to-analog (D/A) conversion at the computer input and

output. There are, of course, exceptions; sensors which combine the functions of the transducer and the

A/D converter, and actua tors which combine the functions of the D/A converter and the final control

element are available. In most cases, however, our sensors will provide an analog voltage output, and our

final control elements will accept an analog voltage input.

In the control scheme of Fig. 1.1, the A/D converter performs the sampling of the sensor signal (analog

feedback signal) and pro duces its binary representation. The digital computer (control algorithm)

generates a digital control signal using the informa tion on desired and actual plant behavior. The

digital control signal is then converted to analog control signal via the D/A converter. A real-time clock

synchronizes the actions of the A/D and D/A converters, and the shift registers. The analog control signal

is applied to the plant actuator to control the plant’s behavior.

The overall system in Fig. 1.1 is hybrid in nature; the signals are in the sampled form (discrete-time

signals) in the computer, and in a continuous form in the plant. Such systems have tradi tionally been

called sampled-data systems; we will use this term as a synonym for computer control systems/digital

control sys tems.

The word ‘servomechanism’ (or servo system) is used for a command-following system, wherein the

controlled output of the system is required to follow a given command. When the desired value of the

controlled outputs is more or less fixed, and the main problem is to reject disturbance effects, the control

system is sometimes called a regulator. The command input for a regulator becomes a constant and

is called set-point, which corresponds to the de sired value of the controlled output. The set-point may

however be changed in time, from one constant value to another. In a tracking system, the controlled

output is required to follow, or track, a time-varying command input.

To make these definitions more concrete, let us consider some familiar examples of control systems.

Example 1.1 Servomechanism for Steering of Antenna

One of the earliest applications of radar tracking was for anti-aircraft fire control; first with guns and

later with missiles. Today, many civilian applications exist as well, such as satel lite-tracking radars,

navigation-aiding radars, etc.

Fig. 1.1 Basic structure of a computer-controlled system

 Introduction 5

The radar scene includes the radar itself, a target, and the transmitted waveform that travels to the target

and back. Information about the target’s spatial position is first obtained by measuring the changes in the

back-scattered waveform relative to the transmitted waveform. The time shift provides information about

the target’s range, the frequency shift provides informa tion about the target’s radial velocity, and the

received voltage magnitude and phase provide information about the target’s angle1[1].

In a typical radar application, it is necessary to

point the radar antenna towards the target and

follow its movements. The radar sensor detects

the error between the antenna axis and the target,

and directs the antenna to follow the target. The

servomechanism for steering the antenna in

response to commands from the radar sensor,

is considered here. The antenna is designed for

two independent angular motions; one about

the vertical axis in which the azimuth angle is

varied, and the other about the hori zontal axis

in which the elevation angle is varied (Fig. 1.2).

The servomechanism for steering the antenna

is described by two controlled variables—azimuth angle b and elevation angle a. The desired values

or commands are the azimuth angle br and the elevation angle ar of the target. The feedback control

problem involves error self-nulling, under conditions of disturbances beyond our control (such as wind

power).

The control system for steering antenna can be treated as two independent systems—the azimuth-angle

servomechanism, and the elevation-angle servomechanism. This is because the interaction effects are

usually small. The operational diagram of the azimuth-angle servomechanism is shown in Fig. 1.3.

 1 The bracketed numbers coincide with the list of references given at the end of the book.

Fig. 1.3 Azimuthal servomechanism for steering of antenna

Fig. 1.2

6 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The steering command from the radar sensor, which corresponds to target the azimuth angle, is compared

with the azimuth angle of the antenna axis. The occur rence of the azimuth-angle error causes an error

signal to pass through the amplifier, which increases the angular velocity of the servo motor in a direction

towards an error reduction. In the scheme of Fig. 1.3, the measurement and processing of signals

(calculation of control signal) is digital in nature. The shaft-angle encoder combines the functions of

transducer and A/D con verter.

Figure 1.4 gives the functional block diagrams of the control system. A simple model of the load

(antenna) on the motor is shown in Fig. 1.4b. The moment of inertia J and the viscous friction coefficient

B are the parameters of the assumed model. Nominal load is included in the plant model for the control

design. The main disturbance inputs are the deviations of the load from the nominal estimated value as a

result of uncertainties in our estimate, effect of wind power, etc.

In the tracking system of Fig. 1.4a, the occurrence of error causes the motor to rotate in a direction

favoring the dissolu tion of error. The processing of the error signal (calculation of the control signal) is

based on the proportional control logic. Note that the components of our system cannot respond instan-

taneously, since any real-world system cannot go from one energy level to another in zero time. Thus,

in any real-world system, there is some kind of dynamic lagging behavior between input and output.

In the servo system of Fig. 1.4a, the control action, on occurrence of the deviation of the controlled

output from the desired value (the occurrence of error), will be delayed by the cumulative dynamic

lags of the shaft-angle encoder, digital computer and digital-to-analog converter, power amplifier, and

the servo motor with load. Eventually, however, the trend of the controlled variable deviation from

the desired value, will be reversed by the action of the amplifier output on the rotation of the motor,

Fig. 1.4

 Introduction 7

returning the controlled variable towards the desired value. Now, if a strong correction (high amplifier

gain) is applied (which is desirable from the point of view of control system performance, e.g., strong

correction improves the speed of response), the controlled variable overshoots the desired value (the

‘run-out’ of the motor towards an error with the opposite rotation), causing a reversal in the algebraic

sign of the system error. Unfortunately, because of system dynamic lags, a reversal of correction does

not occur immediately, and the amplifier output (acting on ‘old’ information) is now actually driving

the con trolled variable in the direction it was already heading, instead of opposing its excursions, thus

leading to a larger deviation. Eventually, the reversed error does cause a reversed correction, but the

controlled variable overshoots the desired value in the opposite direction and the correction is again in

the wrong direction. The controlled variable is thus driven, alternatively, in opposite directions before

it settles to an equilibrium condition. This oscillatory state is unacceptable as the be havior of antenna-

steering servomechanism. The considerable amplifier gain, which is necessary if high accuracies are to

be obtained, aggravates the described unfavorable phenomenon.

The occurrence of these oscillatory effects can be controlled by the application of special compensation

feedback. When a signal proportional to the motor’s angular velocity (called the rate signal) is subtracted

from the error signal (Fig. 1.4c), the braking process starts sooner than the error reaches a zero value.

The ‘loop within a loop’ (velocity feedback system embedded within a position feedback system)

configuration utilized in this application, is a classical scheme called minor-loop feedback scheme.

Example 1.2 Variable Speed dc Drive

Many industrial applications require variable speed drives. For example, variable speed drives are used

for pumping duty to vary the flow rate or the pumping pressure, rolling mills, harbor cranes, rail traction,

etc. [2–4].

The variable speed dc drive is the most versatile drive availa ble. Silicon Controlled Rectifiers (SCR) are

almost universally used to control the speed of dc motors, because of considerable benefits that accrue

from the compact static con trollers supplied directly from the ac mains.

Basically, all dc systems involving SCR controllers are similar but, with different configurations of

the devices, differ ent characteristics may be obtained from the controller. Figure 1.5 shows a dc motor

driven by a full-wave rectified supply. Armature current of the dc motor is controlled by an SCR, which

is, in turn, controlled by the pulses applied by the SCR trigger control circuit. The SCR controller thus

combines the functions of a D/A converter and a final control element.

Firing angle of the SCR controls the average armature current, which, in turn, controls the speed of the

dc motor. The average armature current (speed) increases as the trigger circuit reduces the delay angle

of firing of the SCR, and the average armature current (speed) reduces as the delay angle of firing of the

SCR is increased.

In the regulator system of Fig. 1.5, the reference voltage which corresponds to the desired speed of the

dc motor, is compared with the output voltage of tachogenerator, corresponding to the actual speed of

the motor. The occurrence of the error in speed, causes an error signal to pass through the trigger circuit,

which controls the firing angle of the SCR in a direction towards an error reduction. When the processing

of the error signal (calcu lation of the control signal) is based on the proportional con trol logic, a steady-

8 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

state error between the actual speed and the desired speed exists. The occurrence of steady-state error

can be eliminated by generating the control signal with two components: one component proportional to

the error signal, and the other proportional to the integral of the error signal.

Example 1.3 Liquid-level Control System

This example describes the hardware features of the design of a PC-based liquid-level control system. The

plant of our control system is a cylindrical tank. Liquid is pumped into the tank from the sump (Fig. 1.6).

The inflow to the tank can be controlled by adjusting valve V1. The outflow from the tank goes back into

the sump.

Valve V1 of our plant is a rotary valve; a stepping motor has been used to control the valve. The stepping

motor controller card, interfaced to the PC, converts the digital control signals into a series of pulses

which are fed to the stepping motor using a driver circuit. Three signals are generated from the digital

control signal at each sampling instant, namely, number of steps, speed of rotation, and direction of

rotation. The stepping motor driver circuit converts this information into a single pulse train, which is

fed to the stepping motor. The valve characteris tics between the number of steps of the stepping motor

and the outflow from the valve, are nonlinear.

The probe used for measurement of liquid level, consists of two concentric cylinders connected to a

bridge circuit, to provide an analog voltage. The liquid partially occupies the space between the cylinders,

with air in the remaining part. This device acts like two capacitors in parallel; one with dielectric constant

of air (~1) and the other with that of the liquid. Thus, the varia tion of the liquid level causes variation of

the electrical capacity, measured between the cylinders. The change in the ca pacitance causes a change

in the bridge output voltage which is fed to the PC through an amplifier circuit. The characteristics of the

sensor between the level and the voltage are approximately linear.

Fig. 1.5

 Introduction 9

In the liquid-level control system of Fig. 1.6, the command signal (which corresponds to the desired

level of the liquid in the cylinder) is fed through the keyboard; the actual level signal is received through

the A/D conversion card. The digital computer compares the two signals at each sampling instant, and

generates a control signal which is the sum of two components: one proportional to the error signal, and

the other, proportional to the integral of the error signal.

1.2

Digital computers were first applied to industrial process control in the late 1950s. The machines

were generally large-scale ‘main frames’ and were used in a so-called supervisory control mode; the

individual temperature, pressure, flow and the like, feedback loops were locally controlled by electronic

or pneumatic analog controllers. The main function of the computer was to gather information on how

the overall process was operat ing, feed this into a technical-economic model of the process (programmed

into computer memory), and then, periodically, send signals to the set-points of all the analog controllers,

so that each individual loop operated in such a way as to optimize the overall operation.

In 1962, Imperial Chemical Industries in England made a drastic departure from this approach—a digital

computer was installed, which measured 224 variables and manipulated 129 valves directly. The name

Direct Digital Control (DDC) was coined to emphasize that the computer controlled the process directly.

In DDC systems, analog controllers were no longer used. The central computer served as a single, time-

shared controller for all the individual feedback loops. Conventional control laws were still used for each

loop, but the digital versions of control laws for each loop resided in the software in the central computer.

Though digital computers were very expensive, one expected DDC systems to have economic advantage

Fig. 1.6 Liquid-level control system

10 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

for processes with many (50 or more) loops. Unfortunately, this did not often materialize. As failures

in the central computer of a DDC system shut down the entire system, it was necessary to provide a

‘fail-safe’ backup system, which usually turned out to be a complete system of individual loop analog

controllers, thus negating the expected hardware savings.

There was a substantial development of digital computer technolo gy in the 1960s. By the early 1970s,

smaller, faster, more relia ble, and cheaper computers became available. The term minicompu ters was

coined for the new computers that emerged. DEC PDP11 is by far, the best-known example. There were,

however, many related machines from other vendors.

The minicomputer was still a fairly large system. Even as performance continued to increase and prices to

decrease, the price of a minicomputer main frame in 1975, was still about $10,000. Computer control was still

out of reach for a large number of control problems. However, with the development of microcom puter, the

price of a card computer, with the performance of a 1975 minicomputer, dropped to $500 in 1980. Another

consequence was that digital computing power in 1980 came in quanta as small as $50. This meant that

computer control could now be considered as an alternative, no matter how small the application [54–57].

Microcomputers have already made a great impact on the process control field. They are replacing analog

hardware even as single-loop controllers. Small DDC systems have been made using microcomputers.

Operator communication has vastly improved with the introduction of color video-graphics displays.

The variety of commercially available industrial controllers ranges from single-loop controllers through

multiloop single computer systems to multiloop distributed computers. Although the range of equipment

available is large, there are a number of identifiable trends which are apparent.

Single-loop microprocessor-based controllers, though descendants of single-loop analog controllers, have

greater degree of flexibility. Control actions which are permitted, include on/off control, proportional

action, integral action, derivative action, and the lag effect. Many controllers have self-tuning option.

During the self-tune sequence, the controller introduces a number of step commands, within the tolerances

allowed by the operator, in order to characterize the system response. From this response, values for

proportional gain, reset time, and rate time are developed. This feature of online tuning in industrial

control lers is interesting, and permits the concept of the computer automatically adjusting to changing

process conditions [11–12].

Multiloop single computer systems have variability in available interface and software design. Both

single-loop and multiloop controllers may be used in stand-alone mode, or may be interfaced to a host

computer for distributed operation. The reducing costs and increasing power of computing systems, has

tended to make distributed computing systems for larger installations, far more cost effective than those

built around one large computer. Howe ver, the smaller installation may be best catered for by a single

multiloop controller, or even a few single-loop devices.

Control of large and complex processes using Distributed Computer Control Systems (DCCS), is

facilitated by adopting a multilevel or hierarchical view point of control strategy. The multilevel approach

subdivides the system into a hierarchy of simpler control design problems. On the lowest level of control

(direct process control level), the following tasks are handled: acquisition of process data, i.e., collection

of instantaneous values of individual process variables, and status messages of plant control facilities

(valves, pumps, motors, etc.) needed for efficient direct digital control; processing of collected data;

plant hardware monitoring, system check and diagnosis; closed-loop control and logic control functions,

based on directives from the next ‘higher’ level.

 Introduction 11

Supervisory level copes with the problems of determination of optimal plant work conditions, and

generation of relevant instruc tions to be transferred to the next ‘lower’ level. Adaptive control, optimal

control, plant performance monitoring, plant coordination and failure detections are the functions

performed at this level.

Production scheduling and control level is responsible for pro duction dispatching, inventory control,

production supervision, production rescheduling, production reporting, etc.

Plant(s) management level, the ‘highest’ hierarchical level of the plant automation system, is in charge of

the wide spectrum of engineering, economic, commercial, personnel, and other func tions.

It is, of course, not to be expected that in all available distributed computer control systems, all four

hierarchical levels are already implemented. For automation of small-scale plants, any DCCS having

at least two hierarchical levels, can be used. One system level can be used as a direct process control

level, and the second one as a combined plant supervisory, and production scheduling and control level.

Production planning and other enterprise-level activities, can be managed by the separate mainframe

computer or the computer center. For instance, in a LAN (Local Area Network)-based system structure,

shown in Fig. 1.7a, the ‘higher’ automation levels are implemented by simply attach ing the additional

‘higher’ level computers to the LAN of the system [89].

For complex process plant monitoring, SCADA (Supervisory Control And Data Acquisition) systems are

available. The basic functions carried out by a SCADA system are as follows:

 Data acquisition and communication

 Events and alarms reporting

 Data processing

 Partial process control

The full process control functions are delegated to the special control units, connected to the SCADA

system, and are capable of handling emergency shut down situations.

Fig. 1.7a Hierarchical levels in Computer Integrated Process Systems (CIPS)

12 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The separation of SCADA and DCCS is slowly vanishing and the SCADA systems are being

brought within the field of DCCS; the hierarchical, distributed, flexible and extremely powerful Computer

Integrated Process Systems (CIPS), is now a technical reality.

The other main and early application area of digital methods was machine tool numerical control, which

developed at about the same time as computer control in process industries. Earlier, numerically controlled

(NC) machines used ‘hard-wired’ digital techniques. As the price and performance of microcomputers

improved, it became feasible to replace the hard-wired functions with their software-implemented

equivalents, using a microcomputer as a built-in component of the machine tool. This approach has been

called Computerized Numerical Control (CNC) [20]. Industrial robots were developed simultaneously

with CNC systems.

A quiet revolution is ongoing in the manufacturing world, which is changing the look of factories.

Computers are controlling and monitoring the manufacturing processes [21–22]. The high degree of

automation that, until recently, was reserved for mass production only, is also applied now to small

batches. This requires a change from hard automation in the production line, to a Flexible Manufacturing

System (FMS), which can be more readily rearranged to handle new market requirements.

Flexible manufacturing systems, combined with automatic assembly and product inspection on one hand,

and CAD/CAM systems on the other, are the basic components of the modern Computer Integrated

Manufacturing System (CIMS). In a CIMS, the production flow, from the conceptual design to the

finished product, is entirely under computer control and management.

Figure 1.7b illustrates the hierarchical structure of CIMS. The lowest level of this structure contains

stand-alone computer control systems of manufacturing processes and industrial robots. The computer

control of processes includes all types of CNC machine tools, welding, electrochemical machining,

electrical discharge machining, and a high-power laser, as well as the adaptive control of these processes.

When a battery of NC or CNC machine tools is placed under the control of a single computer, the result

is a system known as Direct Numerical Control (DNC).

Fig. 1.7b Hierarchical levels in Computer Integrated Manufactur ing Systems (CIMS)

 Introduction 13

The operation of several CNC machines and industrial robots, can be coordinated by systems called

manufacturing cells. The computer of the cell is interfaced with the computer of the robot and CNC

machines. It receives ‘completion of job’ signals from the machines and issues instructions to the robot

to load and unload the machines, and change their tools. The software includes strategies permitting the

handling of machine breakdown, tool breakage, and other special situations.

The operation of many manufacturing cells can be coordinated by Flexible Manufacturing System (FMS).

The FMS accepts incoming workpieces and processes them under computer control, into fi nished parts.

The parts produced by the FMS must be assembled into the final product. They are routed on a transfer

system to assembly stations. In each station, a robot will assemble parts, either into a sub-assembly or

(for simple units), into the final product. The sub-assemblies will be further assembled by robots located

in other stations. The final product will be tested by an automatic inspection system.

The FMS uses CAD/CAM systems to integrate the design and manufacturing of parts. At the highest

hierarchical level, there will be a supervisory computer, which coordinates participation of computers

in all phases of a manufacturing enterprise: the design of the product, the planning of its manufacture,

the automatic production of parts, automatic assembly, automatic testing, and, of course, computer-

controlled flow of materials and parts through the plant.

In a LAN-based system, the ‘higher’ automation levels (production planning and other enterprise-level

activities), can be implement ed by simply attaching the additional ‘higher’ level computers to the LAN

of the system.

One of the most ingenious devices ever devised to advance the field of industrial automation, is the

Programmable Logic Control ler (PLC). The PLC, a microprocessor-based general-purpose device,

provides a ‘menu’ of basic operations that can be config ured by programming to create logic control

system for any appli cation [23–25]. So versatile are these devices, that they are employed in the

automation of almost every type of industry. CIPS and CIMS provide interfaces to PLCs for handling

high-speed logic (and other) control functions. Thousands of these devices go unrecognized in process

plants and factory environments—quietly monitoring security, manipulating valves, and controlling ma-

chines and automatic production lines.

Thus, we see that the recent appearance of powerful and inexpen sive microcomputers, has made digital

control practical for a wide variety of applications. In fact, now every process is a candi date for digital

control. The flourishing of digital control is just beginning for most industries, and there is much to be

gained by exploiting the full potential of new technology. There is every indication that a high rate of

growth in the capability and application of digital computers, will continue far into the future.

1.3

The development of control system analysis and design can be divided into three eras. In the first era,

we have the classical control theory, which deals with techniques developed during the 1940s and 1950s.

Classical control methods—Routh–Hurwitz, Root Locus, Nyquist, Bode, Nichols—have in common

the use of transfer functions in the complex frequency (Laplace variable s) domain, and the emphasis

14 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

on the graphical techniques. Since computers were not available at that time, a great deal of emphasis

was placed on developing methods that were amenable to manual computation and graphics. A major

limitation of the classical control methods was the use of Single-Input, Single-Output (SISO) control

configurations. Also, the use of the transfer function and frequency domain limited one to linear time-

invariant systems. Important results of this era have been discussed in Part I of this book.

In the second era, we have modern control (which is not so modern any longer), which refers to state-

space-based methods developed in the late 1950s and early 1960s. In modern control, system models are

directly written in the time domain. Analysis and design are also carried out in the time domain. It should

be noted that before Laplace transforms and transfer functions became popular in the 1920s, engineers

were studying systems in the time domain. Therefore, the resurgence of time-domain analy sis was not

unusual, but it was triggered by the development of computers and advances in numerical analysis. As

computers were available, it was no longer necessary to develop analysis and design methods that were

strictly manual. Multivariable (Multi-Input, Multi-Output (MIMO)) control configurations could be

analyzed and designed. An engineer could use computers to numeri cally solve or simulate large systems

that were nonlinear and/or time-varying. Important results of this era—Lyapunov stability criterion,

pole-placement by state feedback, state observers, optimal control—are discussed in Part II of this book.

Modern control methods initially enjoyed a great deal of success in academic circles, but they did not perform

very well in many areas of application. Modern control provided a lot of insight into system structure and

properties, but it masked other important feedback properties that could be studied and manipulated using

the classical control theory. A basic requirement in control engineering is to design control systems that

will work properly when the plant model is uncertain. This issue is tackled in the classical control theory

using gain and phase margins. Most modern control design methods, however, inherently require a precise

model of the plant. In the years since these methods were developed, there have been few signifi cant

implementations and most of them have been in a single application area—the aerospace industry. The

classical control theory, on the other hand, is going strong. It provides an effi cient framework for the

design of feedback controls in all areas of application. The classical design methods have been greatly

enhanced by the availability of low-cost computers for system analysis and simulation. The graphical

tools of classical design can now be more easily used with computer graphics for SISO as well as MIMO

systems.

During the past three decades, the control theory has experienced a rapid expansion, as a result of the

challenges of the stringent requirements posed by modern systems, such as flight vehicles, weapon control

systems, robots, and chemical processes; and the availability of low-cost computing power. A body of

methods emerged during this third era of control-theory development, which tried to provide answers to the

problems of plant uncer tainty. These techniques, commonly known as robust control, are a combination

of modern state-space and classical frequency-domain techniques. For a thorough understanding of these

new methods, we need to have adequate knowledge of state-space methods, in addi tion to the frequency-

domain methods. This has guided the prepa ration of this text.

Robust control system design has been dominated by linear control techniques, which rely on the key

assumption of availability of the uncertainty model. When the required operation range is large, and

a reliable uncertainty model cannot be developed, a linear controller is likely to perform very poorly.

Nonlinear controllers, on the other hand, may handle the nonlinearities in large-range operations, directly.

Also, nonlinearities can be intentionally introduced into the controller part of a control system, so that the

model uncertainties can be tolerated. Advances in computer technology have made the implementation

 Introduction 15

of nonlinear control schemes—feedback linearization, variable structure sliding mode control, adaptive

control, gain scheduling—a relatively simpler task.

The third era of control-theory development has also given an alternative to model-based design methods:

the knowledge-based control method. In this approach, we look for a control solution that exhibits

intelligent behavior, rather than using purely mathematical methods to keep the system under control.

Model-based control techniques have many advantages. When the underlying assumptions are satisfied,

many of these methods provide good stability, robustness to model uncertainties and disturbances, and

speed of response. However, there are many practical deficiencies of these ‘crisp’ (‘hard’ or ‘inflexible’)

control algorithms. It is generally difficult to accurately represent a complex process by a mathematical

model. If the process model has parameters whose values are partially known, ambiguous or vague, then

crisp control algorithms, that are based on such incomplete information, will not usually give satisfactory

results. The environment with which the process interacts, may not be completely predictable and it is

normally not possible for a crisp algorithm, to accurately respond to a condition that it did not anticipate,

and that it could not ‘understand’.

Intelligent control is the name introduced to describe control systems in which control strategies are

based on AI (Artificial Intelligence) techniques. In this control approach, which is an alternative to

model-based control approach, a behavioral (and not mathematical) descrip tion of the process is used,

which is based on qualitative ex pressions and experience of people working with the process. Actions

can be performed either as a result of evaluating rules (reasoning), or as unconscious actions based on

presented process behavior after a learning phase. Intelligence becomes a measure of the capability to

reason about facts and rules, and to learn about presented behavior. It opens up the possibility of applying

the experience gathered by operators and process engineers. Uncer tainty about facts and rules along with

ignorance about the structure of the system can then be handled easily.

Fuzzy logic, and neural networks are very good methods to model real processes which cannot be

described mathematically. Fuzzy logic deals with linguistic and imprecise rules based on an expert’s

knowledge. Neural networks are applied in the case where we do not have any rules but several data.

The main feature of fuzzy logic control is that a control engi neering knowledge base (typically in terms of

a set of rules), created using an expert’s knowledge of process behavior, is available within the controller

and the control actions are generated by applying existing process conditions to the knowledge base,

making use of an inference mechanism. The knowledge base and the inference mechanism can handle

noncrisp and incomplete information, and the knowledge itself will improve and evolve through learning

and past experience.

In neural network based control, the goal of artificial neural network is to emulate the mechanism of

human brain func tion and reasoning, and to achieve the same intelligence level as the human brain in

learning, abstraction, generalization and making decisions under uncertainty.

In conventional design exercises, the system is modeled analytically by a set of differential equations, and

their solu tion tells the controller how to adjust the system’s control activities for each type of behavior. In

a typical intelligent control scheme, these adjustments are handled by an intelligent controller, a logical

model of thinking processes that a person might go through in the course of manipulating the system.

This shift in focus from the process to the person in volved, changes the entire approach to automatic

control prob lems. It provides a new design paradigm such that a controller can be designed for complex,

16 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

ill-defined processes without know ing quantitative input-output relations, which are otherwise required

by conventional methods.

The ever-increasing demands of the complex control systems being built today, and planned for the

future, dictate the use of novel and more powerful methods in control. The potential for intelli gent

control techniques in solving many of the problems involved is great, and this research area is evolving

rapidly. The emerging viewpoint is that model-based control techniques should be augmented with

intelligent control techniques in order to enhance the performance of control systems. The developments

in intelligent control methods should be based on firm theoretical foundations (as is the case with model-

based control methods), but this is still at its early stages. Strong theoretical results guaranteeing control

system properties such as stability are still to come, although promising results reporting progress in

special cases have been reported recently. The potential of intelligent control systems clearly needs to

be further explored and both theory and applications need to be further developed. A brief account of

nonlinear control schemes, both the conventional and the intelligent, is given in Part III of this book.

1.4

The tools of classical linear control system design are the Laplace transform, stability testing, root locus,

and frequency response. Laplace transformation is used to convert system descriptions in terms of integro-

differential equations to equivalent algebraic relations involving rational functions. These are conveniently

manipulated in the form of transfer functions with block diagrams and signal flow graphs [155].

The block diagram of Fig. 1.8 represents the basic structure of feedback control systems. Not all systems

can be forced into this format, but it serves as a reference for discussion.

In Fig. 1.8, the variable y(t) is the controlled variable of the system. The desired value of the controlled

variable is yr(t), the command input. yr(t) and y(t) have the same units. The feed back elements with

transfer function H(s) are system components that act on the controlled variable y(t) to produce the

feedback signal b(t). H(s) typically represents the sensor action to convert the controlled variable y(t) to

an electrical sensor output signal b(t).

The reference input elements with transfer function A(s) convert the command signal yr(t) into a form

compatible with the feedback signal b(t). The transformed command signal is the actual physi cal input

to the system. This actual signal input is defined as the reference input.

Fig. 1.8

 Introduction 17

The comparison device (error detector) of the system compares the reference input r(t) with the feedback

signal b(t) and generates the actuating error signal ê(t). The signals r(t), b(t), and ê(t) have the same

units. The controller with transfer function D(s) acts on the actuating error signal to produce the control

signal u(t).

The control signal u(t) has the knowledge about the desired control action. The power level of this signal

is relatively low. The actuator elements with transfer function GA(s), are the system components that act

on the control signal u(t) and develop enough torque, pressure, heat, etc. (manipulated variable m(t)), to

influence the controlled system. GP(s) is the transfer function of the controlled system.

The disturbance w(t) represents the undesired signals that tend to affect the controlled system. The

disturbance may be intro duced into the system at more than one location.

The dashed-line portion of Fig. 1.8 shows the system error e(t) = yr – y(t). Note that the actuating error

signal ê(t) and the system error e(t) are two different variables.

The basic feedback system block diagram of Fig. 1.8 is shown in an abridged form in Fig. 1.9. The output

Y(s) is influenced by the control signal U(s) and the disturbance signal W(s) as per the following relation:

 Y(s) = GP(s) GA(s) U(s) + GP(s) W(s) (1.1a)

 = G(s) U(s) + N(s) W(s) (1.1b)

where G(s) is the transfer function from the control signal U(s) to the output Y(s), and N(s) is the transfer

function from the disturbance input W(s) to the output Y(s). Using Eqns (1.1), we can modify the block

diagram of Fig. 1.9 to the form shown in Fig. 1.10. Note that in the block diagram model of Fig. 1.10,

the plant includes the actuator elements.

Fig. 1.9

Fig. 1.10

18 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The actuating error signal

 Ê(s) = R(s) – B(s) = A(s) Yr(s) – H(s) Y(s)

The control signal

 U(s) = D(s) A(s) Yr (s) – D(s) H(s) Y(s) (1.2a)

 = D(s) H(s)
A s

H s
Y s Y sr

()

()
() ()-

È

Î
Í

˘

˚
˙ (1.2b)

Using Eqns (1.2a) and (1.2b), we can simplify Fig. 1.10 to obtain the structure shown in Fig. 1.11.

Fig. 1.11

Further simplification of Fig. 1.11 is

possible if H = A. In this case, which is

quite common, we can model the system

as a unity-feedback system shown in

Fig. 1.12, and take advantage of the

fact that now the actuating signal is the

system error e(t).

The block diagrams in Figs 1.10–1.12

are very useful for the purpose of system

design. However, it should be clear that

these block diagrams have lost physical

significance. For example, the block in

Fig. 1.11 with transfer function A(s)/

H(s), does not refer to any physical

portion of the original system. Rather,

it represents the result of manipulating

Eqn. (1.2a) into the form given by Eqn.

(1.2b).

Thus, the reader is advised to think in

terms of the equations that the block

diagrams represent, rather than attach

any special significance to the block

diagrams themselves. The only role

played by a block diagram is that it is

a convenient means of representing the

Fig. 1.12

Fig. 1.13

Fig. 1.14

 Introduction 19

various system equations, rather than writing them out explicitly. Block diagram manipulation is nothing

more than the manipulation of a set of algebraic transform equations.

For the analysis of a feedback system, we require the transfer function between the input—either

reference or disturbance—and the output. We can use block diagram manipulations to eliminate all the

signals except the input and the output. The reduced block diagram leads to the desired result.

Consider the block diagram of Fig. 1.13. The feedback system has two inputs. We shall use superposition

to treat each input sepa rately.

When disturbance input is set to zero, the single-input system of Fig. 1.14 results. The transfer function

between the input R(s) and the output Y(s) is referred to as the reference transfer function and will be

denoted by M(s). To solve for M(s), we write the pair of transform equations

 Ê(s) = R(s) – H(s) Y(s); Y(s) = G(s) U(s) = G(s) D(s) Ê(s)

and then eliminate Ê(s) to obtain

[1 + D(s) G(s) H(s)] Y(s) = D(s) G(s) R(s)

which leads to the desired result

 M(s) =
Y s

R s
W s

()

()
() = 0

 =
D s G s

D s G s H s

() ()

() () ()1+
 (1.3)

Similarly, we obtain the disturbance transfer function Mw(s) by setting the reference input to zero in

Fig. 1.13 yielding Fig. 1.15, and then solving for Y(s)/W(s). From the revised block diagram,

 Ê(s) = – H(s)Y(s); Y(s) = G(s)D(s) Ê(s) + N(s)W(s)

from which Ê(s) can be eliminated to give

 Mw(s) =
Y s

W s
R s

()

()
() = 0

 =
N s

D s G s H s

()

() () ()1+
 (1.4)

The response to the simultaneous application of R(s) and W(s) is given by

 Y(s) = M(s) R(s) + Mw(s) W(s) (1.5)

Figure 1.16 shows the reduced block diagram model of the given feedback system.

Fig. 1.16 Fig. 1.15

20 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The transfer functions given by Eqns (1.3) and (1.4) are referred to as closed-loop transfer functions. The

denominator of these transfer functions has the term D(s)G(s)H(s) which is the multiplication of all the

transfer functions in the feedback loop. It may be viewed as the transfer function between the variables

R(s) and B(s) if the loop is broken at the summing point. D(s)G(s)H(s) may, therefore, be given the name

open-loop transfer function. The roots of denominator polynomial of D(s)G(s)H(s) are the open-loop

poles, and the roots of numerator polynomial of D(s)G(s)H(s) are the open-loop zeros.

The roots of the characteristic equation

 1 + D(s)G(s)H(s) = 0 (1.6)

are the closed-loop poles of the system. These poles indicate whether or not the system is Bounded-

Input Bounded-Output (BIBO) stable, according to whether or not all the poles are in the left half of the

complex plane. Stability may be tested by the Routh stability criterion.

A root locus plot consists of a pole-zero plot of the open-loop transfer function of a feedback system,

upon which is superimposed the locus of the poles of the closed-loop transfer function, as some parameter

is varied. Design of the controller (compensator) D(s) can be carried out using the root locus plot.

One begins with simple compensators, increasing their complexity until the performance requirements

can be met. Principal measures of transient performance are peak overshoot, settling time, and rise

time. The compensator poles, zeros, and multiplying con stant are selected to give feedback system pole

locations, that result in acceptable transient response to step inputs. At the same time, the parameters are

constrained so that the resulting system has acceptable steady-state response to important inputs, such

as steps and ramps.

Frequency response characterizations of systems have long been popular because of the ease and

practicality of steady-state sinusoidal response measurements. These methods also apply to systems in

which rational transfer function models are not adequate, such as those involving time delays. They do

not require explicit knowledge of system transfer function models; experimentally obtained open-loop

sinusoidal response data can directly be used for stability analysis and compensator design. A stability

test, the Nyquist criterion, is available. Principal measures of transient performance are gain margin,

phase margin, and bandwidth. The design of the compensator is conveniently carried out using the Bode

plot and the Nichols chart. One begins with simple compensators, increasing their complexity until the

transient and steady-state performance requirements are met.

There are two approaches to carry out the digital controller (compensator) design. The first approach uses

the methods discussed above to design an analog compensator, and then trans form it into a digital one. The

second approach, first transforms analog plants into digital plants, and then carries out the design using

digital techniques. The first approach performs discretization after design; the second approach performs

dis cretization before design. The classical approach to designing a digital compensator directly using an

equivalent digital plant for a given analog plant, parallels the classical approach to analog compensator

design. The concepts and tools of the classi cal digital design procedures are given in Chapters 2–4. This

background will also be useful in understanding and applying the state variable methods to follow.

 Signal Processing in Digital Control 21

Signal Processing in Digital Control

2.1 WHY USE DIGITAL CONTROL?

Digital control systems offer many advantages over their analog counterparts. Of course, there are

possible problems also. Let us first look at the advantages of digital control over the corresponding

analog control before we talk of the price one has to pay for the digital option.

2.1.1

Flexibility An important advantage offered by digital control is in the flexibility of its modifying

controller characteristics, or in other words, in adaptability of the controller if plant dynamics change

with operating conditions. The ability to ‘redesign’ the controller by changing software (rather than

hardware) is an important feature of digi tal control against analog control.

Implementation of advanced control techniques

was earlier constrained by the limitations of analog controllers and the high costs of digital computers.

However, with the advent of inexpen sive digital computers with virtually limitless computing power, the

techniques of modern control theory may now be put to practice. For example, in multivariable control

systems with more than one input and one output, modern techniques for optimizing system performance

or reducing interactions between feedback loops can now be implemented.

Feedback control is only one of the functions of

a computer. In fact, most of the information transfer between the process and the computer exploits the

logical decision-making capability of the computer. Real-time applica tions of information processing

and decision-making, e.g., pro duction planning, scheduling, optimization, operations control, etc., may

now be integrated with the traditional process control functions.

To enable the computer to meet a variety of demands imposed on it, its tasks are time-shared.

The study of emerging applications shows that Artificial

Intelligence (AI) will affect the design and application of control systems, as profoundly as the impact

of microprocessors in the last two decades. It is clear that future generation control systems will have

a significant AI component; the list of applications of computer-based control will continue to expand.

Chapter 2

22 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

2.1.2

The main problems associated with the implementation of digital control are related to the effects of

sampling and quantization.

Most processes that we are called upon to control, operate in continuous-time. This implies, that we are

dealing largely with an analog environment. To this environment, we need to interface digital computers

through which we seek to influence the process.

The interface is accomplished by a system of

the form shown in Fig. 2.1. It is a cascade

of analog-to-digital (A/D) conversion

system followed by a computer which is, in

turn, followed by a digital-to-analog (D/A)

conversion system. The A/D conversion

process involves deriving samples of the

analog signal at dis crete instants of time

separated by sampling period T sec. The

D/A conversion process involves reconstructing continuous-time signals from the samples given by the

digital computer.

The conversion of signals from analog into digital form and vice versa is performed by electronic devices

(A/D and D/A converters) of finite resolution. A device of n-bit resolution has 2n quantization levels.

Here, the analog signal gets tied to these finite number of quantization levels in the process of conversion

to digital form. Therefore, by the sheer act of conversion, a valuable part of information about the signal,

is lost.

Furthermore, any computer employed as a real-time controller must perform all the necessary calculations

with limited precision, thus introduction of a truncation error after each arithmetic opera tion has been

performed. As computational accuracy is normal ly much higher than the resolution of real converters,

a further truncation must take place before the computed data are converted into the analog form. The

repetitive process of approximate conver sion–computation–conversion may be costly, if not disastrous,

in terms of control system performance.

The process of quantization in signal conversion systems is discussed ahead.

The selection of a sampling period is a fundamental problem in digital control systems. Later in this

chapter, we will discuss the sampling theorem which states that the sampling period T should be chosen

such that

T < p /wm

where wm is the strict bandwidth of the signal being sampled. This condition ensures that there is no loss

of information due to sampling and the continuous-time signal can be completely recovered from its

samples using an ideal low-pass filter.

Computer

Discrete-time signals

Continuous-time signals

A/D D/A

 Signal Processing in Digital Control 23

There are, however, two problems associated with the use of this theorem in practical control systems:

 (i) Real signals are not band-limited and hence strict bandwidth limits are not defined.

 (ii) An ideal low-pass filter, needed for the distortionless reconstruction of continuous-time signals

from its samples, is not physically realizable. Practical devices, such as the D/A converter,

introduce distortions.

Thus, the process of sampling and reconstruction also affects the amount of information available

to the control computer, and degrades control system performance. For example, converting a given

continuous-time control system into a digital control system, without changing the system parameters,

degrades the system stability margin.

The ill-effects of sampling can be reduced, if not eliminated completely, by sampling at a very high

rate. However, excessively fast sampling (T Æ 0) may result in numerical ill-conditioning in the

implementation of recursive control algorithms (described later in this chapter).

With the availability of low-cost, high-performance digital computers and interfacing hardware, the

implementation problems in digital control do not pose a serious threat to its useful ness. The advantages

of digital control outweigh its implementation problems for most of the applications.

This book attempts to provide a modest coverage of digital control theory and practice. In the

present chapter, we focus on digital computers and their interface with signal conversion systems

(Fig. 2.1). The goal is to formulate tools of analysis necessary to understand and guide the design of

programs for a computer acting as a control logic component. Needless to say, digital computers can do

many things other than control dynamic systems; our purpose is to examine their characteris tics while

executing the elementary control task.

2.2 CONFIGURATION OF THE BASIC

 DIGITAL CONTROL SCHEME

Figure 2.2 depicts a block diagram of a digital control system showing a configuration of the basic

control scheme. The basic elements of the system are shown by the blocks.

The analog feedback signal coming from the sensor is usually of low frequency. It may often include

high frequency ‘noise’. Such noise signals are too fast for the control system to correct; low-pass filtering

is often needed to allow good control performance. The anti-aliasing filter shown in Fig. 2.2 serves

this purpose. In digital systems, a phenomenon called aliasing introduces some new aspects of noise

problems. We will study this phe nomenon later in this chapter.

The analog signal, after anti-aliasing processing, is converted into digital form by the A/D conversion

system. The conversion system usually consists of an A/D converter preceded by a sample-and-hold

(S/H) device. The A/D converter converts a voltage (or current) amplitude, at its input, into a binary code

representing a quantized amplitude value closest to the amplitude of the input. However, the conversion is not

instantaneous. Input signal variation, during the conversion time of the A/D converter, can lead to

erroneous results. For this reason, high performance A/D conversion systems include an S/H device,

which keeps the input to the A/D converter, constant during its conversion time.

24 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The digital computer processes the sequence of numbers by means of an algorithm and produces a new

sequence of numbers. Since data conversions and computations take time, there will always be a delay when a

control law is implemented using a digital computer. The delay, which is called computational delay, degrades

the control system performance. It should be minimized by the proper choice of hardware and by the proper

design of software for the control algorithm. Floating-point operations take a considerably longer time to

perform (even when carried out by an arithmetic co-processor) than the fixed-point ones. We, there fore,

try to execute fixed-point operations whenever possible. Alternative realization schemes for a control

algorithm are given in the next chapter.

The D/A conversion system in Fig. 2.2 converts the sequence of numbers in numerical code into a

piecewise continuous-time signal. The output of the D/A converter is fed to the plant through the actuator

(final control element) to control its dynamics.

The basic control scheme of Fig. 2.2 assumes a uniform sampling operation, i.e., only one sampling

rate exists in the system and the sampling period is constant. The real-time clock in the computer,

synchronizes all the events of A/D conversion–computation–D/A conversion.

The control scheme of Fig. 2.2 shows a single feedback loop. In a control system having multiple loops,

the largest time constant involved in one loop may be quite different from that in other loops. Hence, it

may be advisable to sample slowly in a loop involving a large time constant, while in a loop involving

only small time constants, the sampling rate must be fast. Thus, a digital control system may have

different sampling periods in different feedback paths, i.e., it may have multiple-rate sampling. Although

digital control systems with multirate sampling are important in practical situations, we shall concentrate

on single-rate sampling. (The reader interested in multirate digital control systems may refer to Kuo

[87]).

The overall system in Fig. 2.2 is hybrid in nature; the signals are in a sampled form (discrete-time

signals/digital signals) in the computer and in continuous-time form in the plant. Such systems have

traditionally been called sampled-data control systems. We will use this term as a synonym of computer

control systems/digital control systems.

 Signal Processing in Digital Control 25

In the present chapter, we focus on digital computers and their analog interfacing. For the time being, we

delink the digital computer from the plant. The link will be re-established in the next chapter.

2.3

Figure 2.3a shows an analog signal y(t)—it is defined at the continuum of times, and its amplitudes assume a

continuous range of values. Such a signal cannot be stored in digital computers. The signal, therefore, must

be converted to a form that will be accepted by digital computers. One very common method to do this is

to record sample values of this signal at equally spaced instants. For example, we sample the signal

every 10 msec, we would obtain the discrete-time signal sketched in Fig. 2.3b. The sampling interval of

10 msec corresponds to a sampling rate of 100 samples/sec. The choice of sampling rate is important,

since it determines how accurately the discrete-time signal can represent the original signal.

In a practical situation, the sampling rate is determined by the range of frequencies present in the original

signal. Detailed analysis of uniform sampling process, and the related problem of aliasing will appear

later in this chapter.

Notice that the time axis of the discrete-time signal in Fig. 2.3b, is labeled simply ‘sample number’ and

index k has been used to denote this number (k = 0, 1, 2, ...). Corresponding to di fferent values of sample

number k, the discrete-time signal as sumes the same continuous range of values assumed by the analog

signal y(t). We can represent the sample values by a sequence of numbers ys (refer to Fig. 2.3b):

 ys = {1.7, 2.4, 2.8, 1.4, 0.4, ...}

26 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In general,

 ys = {y(k)}, 0 £ k <

where y(k) denotes the kth number in the sequence.

The sequence defined above is a one-sided sequence; ys = 0 for k < 0. In digital control applications, we

normally encounter one-sided sequences.

Although, strictly speaking, y(k) denotes the kth number in the sequence, the notation given above is often

unnecessarily cumber some, and it is convenient and unambiguous to refer to y(k) itself as a sequence.

Throughout our discussion on digital control, we will assume uniform sampling, i.e., sample values of the

analog signal are extracted at equally spaced sampling instants. If the physical time, corresponding to the

sampling interval is T seconds, then the kth sample y(k), gives the value of the discrete-time signal at

t = kT seconds. We may, therefore, use y(kT) to denote a sequence wherein the independent variable is

the physical time.

The signal of Fig. 2.3b is defined at discrete instants of time. The sample values are, however, tied to a

continuous range of numbers. Such a signal, in principle, can be stored in an infi nite-bit machine because

a finite-bit machine can store only a finite set of numbers.

A simplified hypothetical two-bit machine can store

four numbers as given adjacent in the table.

The signal of Fig. 2.3b can be stored in such a machine

if the sample values are quantified to four quantization

levels. Figure 2.3c shows a quantized discrete-time

signal for our hypothetical machine. We have assumed

that any value in the interval [0.5, 1.5) is rounded to

1, and so forth. The signals for which both time and

amplitude are discrete, are called digi tal signals.

After sampling and quantization, the final step required in converting an analog signal to a form

acceptable to digital computers is coding (or encoding). The encoder maps each quan tized sample value

into a digital word. Figure 2.3d gives the coded digital signal, corresponding to the analog signal of

Fig. 2.3a for our hypothetical two-bit machine.

The device that performs the sampling, quantization, and coding is an A/D converter. Figure 2.4 is a

block diagram representation of the operations performed by an A/D converter.

It may be noted that the quantized discrete-time signal of Fig. 2.3c and the coded signal of Fig. 2.3d

carry exactly the same information. For the purpose of analytical study of digital systems, we will use

the quantized discrete-time form for digital signals.

The number of binary digits carried by a device is its word length, and this is obviously an important

characteristic related to the resolution of the device—the smallest change in the input signal that will

produce a change in the output signal. The A/D converter that generates signals of Fig. 2.3 has two binary

digits and thus four quantization levels. Any change, therefore, in the input over the interval [0.5, 1.5)

produces no change in the output. With three binary digits, 23 quantization levels can be obtained, and

the resolution of the converter could be improved.

Binary number Decimal equivalent

00 0

01 1

10 2

11 3

 Signal Processing in Digital Control 27

The A/D converters in common use have word lengths of 8 to 16 bits. For an A/D converter with a word

length of 8 bits, an input signal can be resolved to one part in 28, or 1 in 256. If the input signal has a

range of 10 V, the resolution is 10/256, or approximately 0.04 V. Thus, the input signal must change by

at least 0.04 V, in order to produce a change in the output.

With the availability of converters with resolution ranging from 8 to 16 bits, the quantization errors do

not pose a serious threat to computer control of industrial processes. In our treatment of the subject, we

assume quantization errors to be zero. This is equivalent to assuming infinite-bit digital devic es. Thus we

treat digital signals as if they are discrete-time signals with amplitudes assuming a continuous range of

values. In other words, we make no distinction between the words ‘discrete-time’ and ‘digital.’

A typical topology of a single-loop digital control system is shown in Fig. 2.2. It has been assumed that

the measuring trans ducer and the actuator (final control element) are analog devices, requiring respectively

A/D and D/A conversion at the computer input and output. The D/A conversion is a process of producing

an analog signal from a digital signal and is, in some sense, the reverse of the sampling process discussed

above.

The D/A converter performs two functions: first,

generation of output samples from the binary-

form digital signals produced by the machine,

and second, conversion of these samples to analog

form. Figure 2.5 is a block diagram representation

of the opera tions performed by a D/A converter.

The decoder maps each digital word into a sample

value of the signal in discrete-time form. It is

usually not possible to drive a load, such as a motor, with these samples. In order to deliver sufficient

energy, the sample amplitude might have to be so large that it may become infeasible to realistically

generate it. Also large-amplitude signals might saturate the system being driven.

The solution to this problem is to smooth the output samples to produce a signal in analog form. The

simplest way of converting a sample sequence into a continuous-time signal is to hold the value of the

sample until the next one arrives. The net effect is to convert a sample to a pulse of duration T—the sample

period. This function of a D/A converter is referred to as a Zero-Order Hold (ZOH) operation. The term

zero-order refers to the zero-order polynomial used to extrapolate between the sampling times (detailed

Sampler

Discrete-time
continuous-amplitude

signal

Continuous-time
continuous-amplitude

signal
Digital
words

Discrete-time
discrete-amplitude

signal

Quantizer Encoder

Decoder

Digital

words

Discrete-time

signal

Zero-order

hold

Analog

signal

28 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

discussion will appear later in this chapter). Figure 2.6 shows a typical sample sequence produced by the

decoder, and the analog signal1 resulting from the zero-order hold operation.

y k()

3

2

1

0 1 2 3 4

(a)

k

y th()

3

2

1

0 T 2T 3T 4T
t

(b)

2.3.1

Most D/A converters use the principle shown in the three-bit form in Fig. 2.7 to convert the HI/LO digital

signals at the computer output to a single analog voltage. The circuit of Fig. 2.7 is an ‘R–2R’ ladder; the

value of R typically ranges from 2.5 to 10K ohms.

Suppose a binary number b2b1b0 is given. The switch (actually, electronic gates) positions in Fig. 2.7

correspond to the digital word 100, i.e., b2 = 1 and b1 = b0 = 0. The circuit can be sim plified to the

equivalent form shown in Fig. 2.8a. The currents in the resistor branches are easily calculated and are

indicated in the circuit (for the high gain amplifier, the voltage at point A is practically zero [155]). The

output voltage is

 V0 = 3R
i2

2
 =

1

2
 Vref

If b1 = 1 and b2 = b0 = 0, then the equivalent circuit is as shown in Fig. 2.8b. The output voltage is

 V0 = 3R
i1

4
 =

1

4
 Vref

Similarly, if b0 = 1 and b2 = b1 = 0, then the equivalent circuit is as shown in Fig. 2.8c. The output

voltage is

 V0 = 3R
i0

8
 =

1

8
 Vref

In this way, we find that when the input data is b2b1b0 (where the bi’s are either 0 or 1), then the output

voltage is

 V0 = (b22–1 + b12–2 + b02–3)VFS (2.1)

where VFS = Vref = full scale output voltage.

 1 In the literature, including this book, the terms ‘continuous-time signal’ and ‘analog signal’ are fre quently inter-

changed.

 Signal Processing in Digital Control 29

The circuit and the defining equation for an n-bit D/A converter easily follow from Fig. 2.7 and Eqn. (2.1),

respectively.

2.3.2

Most A/D converters use the principle of successive approximation. Figure 2.9 shows the organization

of an A/D con verter that uses this method. Its principal components are a D/A converter, a comparator, a

Successive Approximation Register (SAR), a clock, and control and status logic.

On receiving the (Start-Of-Conversion) SOC command, the SAR is cleared to 0s and its most significant

bit is set to 1. This results in a V0 value that is one half of the full scale (refer to Eqn. (2.1)). The output of

30 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the comparator is then tested to see whether VIN is greater than or less than V0. If VIN is greater, the most

significant bit is left on; otherwise it is turned off (complemented).

In the next step, the next most significant bit of the SAR is turned on. At this stage, V0 will become either

three quarters or one quarter of the full scale, depending on whether VIN was, respectively, greater than

or less than V0 in the first step. Again, the comparator is tested and if VIN is greater than the new V0, the

next most significant bit is left on. Otherwise it is turned off.

 b0 b1 b b0 b1 b b0 b1 b

 Signal Processing in Digital Control 31

The process is repeated for each remaining

SAR bit. When the process has been carried

out for each bit, the SAR contains the binary

number that is proportional to VIN, and the

(End-Of-Conversion) EOC line indicates

that comparison has been completed and

digital output is available for transmission.

Figure 2.10 gives the code sequence for a three-

bit successive approximation.

Typical conversion times of commercial A/D units

range from 10 nsec to 200 msec. The input VIN

in Fig. 2.9 should remain con stant during the

conversion time of the A/D converter. For this

reason, a high performance A/D conversion system includes an S/H device which keeps the input to the

A/D converter, constant during its conversion time. The S/H operation is described in Section 2.10.

There are a number of basic discrete-time signals which play an important role in the analysis of signals

and systems. These signals are direct counterparts of the basic continuous-time signals.2 As we shall

see, many characteristics of basic discrete-time signals are directly analogous to the properties of basic

continuous-time signals. There are, however, several impor tant differences in discrete-time, and we will

point these out as we examine the properties of these signals.

111

110

110

010

101

111

101

011

001

100

011
100

010

001

000

 2 Chapter 2 of the companion book [155].

32 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The unit sample sequence contains only one nonzero element and is defined by (Fig. 2.11a)

 d (k) =
1 0

0

for =

otherwise

kÏ
Ì
Ó

 (2.2a)

The delayed unit-sample sequence, denoted by d (k – n), has its nonzero element at sample time n

(Fig. 2.11b):

 d (k – n) =
1

0

for =

otherwise

k nÏ
Ì
Ó

 (2.2b)

One of the important aspects of the unit-sample sequence is that an arbitrary sequence can be represented

as a sum of scaled, delayed unit samples. For example, the sequence r (k) in Fig. 2.11c can be expressed

as

 r(k) = r(0)d (k) + r(1)d (k – 1) + r(2)d (k – 2) +

 =

n = 0

Â r(n)d(k – n) (2.3)

r(0), r(1), … , are the sample values of the sequence r(k). This representation of a discrete-time signal is

found useful in the analysis of linear systems through the principle of superposi tion.

As we will see, the unit-sample sequence plays the same role for discrete-time signals and systems,

that the unit-impulse function does for continuous-time signals and systems. For this reason, the unit-

sample sequence is often referred to as the discrete-time impulse. It is important to note that a discrete-

time impulse does not suffer from the same mathematical complexity as a continuous-time impulse. Its

definition is simple and precise.

The unit-step sequence is defined as3 (Fig. 2.11d)

 m(k) =
1 0

0

for

otherwise

k ≥Ï
Ì
Ó

 (2.4)

The delayed unit-step sequence, denoted by m(k – n), has its first nonzero element at sample time n

(Fig. 2.11e):

 m(k – n) =
1

0

for

otherwise

k n≥Ï
Ì
Ó

 (2.5)

An arbitrary discrete-time signal r(k) switched on to a system at k = 0 is represented as r(k)m(k).

A one-sided sinusoidal sequence has the general form (Fig. 2.11f)

 r(k) = A cos(Wk + f) m(k) (2.6)

 3 In discrete-time system theory, the unit-step sequence is generally denoted by u(k). In control theory, u(k) is

used to represent the control signal. In this book, m(k) has been used to represent the unit-step sequence while

u(k) denotes the control signal.

 Signal Processing in Digital Control 33

The quantity W is called the frequency of the discrete-time sinusoid and f is called the phase. Since k is a

dimensionless integer, the dimension of W must be radians (we may specify the units of W to be radians/

sample, and units of k to be samples).

The fact that k is always an integer in Eqn. (2.6) leads to some differences between the properties of discrete-

time and continu ous-time sinusoidal signals. An important difference lies in the range of values the

frequency variable can take on. We know that for the continuous-time signal r(t) = A cos w t = real {Ae jwt},

w can take on values in the range (– ,). In contrast, for the discrete-time sinusoid r(k) = A cos Wk =

real {Ae jWk}, W can take on values in the range [–p, p].

To illustrate the property of discrete-time sinusoids, consider W = p + x, where x is a small number

compared with p. Since

 e jWk = e j(p + x)k = e j(2p – p + x)k = e j(– p + x)k

a frequency of (p + x) results in a sinusoid of frequency (– p + x). Suppose now, that W is increased to 2p.

Since e j2pk = e j0, the observed frequency is 0. Thus, the observed frequency is always between – p and p,

and is obtained by adding (or subtracting) multiples of 2p to W until a number in that range is obtained.

The highest frequency that can be represented by a digital signal is, therefore, p radians/sample interval.

The implications of this property for sequences obtained by sampling sinusoids and other signals is

discussed in Section 2.11.

34 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

A discrete-time system is defined mathematically, as a transformation, or an operator, that maps an input

sequence r(k) into an output sequence y(k). Classes of discrete-time systems are defined by placing

constraints on the transformation. As they are relatively easy to characterize mathematically, and as they

can be designed to perform useful signal processing functions, the class of linear time-invariant systems

will be studied in this book. In the control structure of Fig. 2.2, the digital computer transforms an input

sequence into a form which is in some sense more desirable. Therefore, the discrete-time systems we

consider here are, in fact, computer programs.

As we shall see, there is a similarity in the structure of models of continuous-time and discrete-time

systems. This has resulted in the development of similar methods of analysis. For example, the simulation

diagrams of discrete-time systems are similar to those for continuous-time systems, with only the

dynamic element changed from an integrator to a delayer. The convolution summation is similar to

convolution integral, and the z-transform method, tailored especially for linear discrete-time systems,

bears many similarities to the Laplace transform. There are differences also between the properties of

discrete-time and continuous-time systems. In this chapter, we are concerned with the analysis tools

for discrete-time systems. Similarities with the tools for continuous-time systems will be obvious. The

di fferences are pointed out specifically.

For linear time-invariant discrete-time systems, four different ways of mathematical representation are

discussed. Time-domain models are described in this section, and a transform-domain model is given in

Section 2.7.

Consider a simple computer program expressed in MATLAB:

 y (1) = 0

for i = 2, N (2.7)

 y (i) = r(i – 1) + 0.1 * y (i – 1)

end

where r(i) is the ith sample of the input sequence, y(i) is the ith sample of the output sequence, and N is

the total length of the signal record. We must define the value y(1) in order to start signal processing. This

value is the initial condition of the signal processor. For the signal processor, represented by the computer

program (2.7), the initial condition has been taken as zero.

In the computer program (2.7), the initial condition is repre sented by y(1) and not by y(0) because

MATLAB does not allow arrays to be indexed starting with zero. For the analytical study of discrete-

time systems, starting a sequence y(k) with y(0) is more convenient.

 Signal Processing in Digital Control 35

It is obvious that the computer program

(2.7) is characterized by the three basic

operations:

 (i) multiplication of a machine variable

by a constant,

 (ii) addition of several machine variables,

and

 (iii) storage of past values of machine

variables.

These basic operations are diagrammatically

represented in Fig. 2.12. The unit delayer

represents a means for storing previous

values of a sequence. If the signal x1(k); k ≥

0 is the input to the unit delayer, its output

sequence x2(k) has the sample val ues:

 x2(0) = specified initial condition

 x2(1) = x1(0)

 x2(2) = x1(1)

A specified initial condition is stored before the commencement of the algorithm, in the appropriate

register (of the digital computer) containing x2(.). This can be diagrammatically repre sented by adding

a signal x2(0)d (k) to the output of the delay er, where d (k) is the unit-sample sequence defined by

Eqn. (2.2a).

The signal processing function performed

by the computer program (2.7) can be

represented by a block diagram shown in

Fig. 2.13. Various blocks in this figure

represent the basic computing operations of

a digital computer. The unit delayer is the

only dynamic element involved. The signal

processing configuration of Fig. 2.13, thus,

represents a first-order discrete-time system.

The output x(k) of the dynamic element gives the state of the system at any k. If the signal r(k) is

switched on to the system at k = 0 (r(k) = 0 for k < 0), the sample value x(0) of the output sequence x(k),

represents the initial state of the system. Since the initial state in the computer program (2.7) is zero, a

signal of the form x(0) d(k) does not appear in Fig. 2.13.

The defining equation for the computer program (2.7), obtained by forming an equation of the summing

junction in Fig. 2.13, is

 x(k + 1) = 0.1 x(k) + r(k); x(0) = 0 (2.8)

+

+

+ 0.1

r k() x k(+ 1) x k()

36 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The solution of this first-order linear difference equation for given input r(k) applied at k = 0, and given

initial state x(0), yields the state x(k); k > 0. Equation (2.8) is thus the state equation of the discrete-time

system of Fig. 2.13. Conver sely, Fig. 2.13 is the simulation diagram for the mathematical model (2.8).

To solve an equation of the form (2.8) is an elementary matter. If k is incremented to take on values

k = 0, 1, 2, ..., etc., the state x(k); k = 1, 2, ..., can easily be generated by an itera tive procedure. The

iterative method, however, generates only a sequence of numbers and not a closed-form solution.

Example 2.1

In order to introduce discrete-time systems, we study the signal processing algorithm given by the

difference equation:

 x(k + 1) = – a x(k) + r(k); x(0) = 0 (2.9)

where a is a real constant.

We shall obtain a closed-form solution of this equation by using a so-called brute force method

(z-transform method of solving linear difference equations is given in Section 2.7). When solved

repetitively, Eqn. (2.9) yields

 x(0) = 0; x(1) = r(0)

 x(2) = – a r(0) + r(1); x(3) = (– a)2 r(0) – a r(1) + r(2)

The general term becomes (r(k) = 0 for k < 0),

 x(k) = (– a)k – 1 r(0) + (– a)k – 2 r(1) + + r(k – 1) (2.10)

Examining this equation, we note that the response x(k) is a linear combination of the input samples r(0),

r(1), ..., r(k – 1), and there appears to be a definite structure of the various weights.

The response of linear discrete-time systems to an impulse input d (k) (defined in Eqn. (2.2a)) will be of

special interest to us. Let us denote this response, called the impulse response, by g(k).

For the system described by Eqn. (2.9), the impulse response obtained from Eqn. (2.10) is given by

 g(k) =
0 0

1

for =

for 1

k

kk()- ≥

Ï
Ì
Ô

ÓÔ
-a

 (2.11)

The question of whether or not the solution decays, is more closely related to the magnitude of a than to

its sign. In par ticular, for |a | > 1, g(k) grows with increasing k while it decays when |a | < 1. The nature

of time functions of the form (2.11) for different values of a is examined in Section 2.9.

A discrete-time system is completely characterized by the output variables of independent dynamic

elements of the system. The outputs of independent dynamic elements, thus, constitute a set of

characterizing variables of the system. The values of the charac terizing variables at instant k describe

the state of the system at that instant. These variables are, therefore, the state varia bles of the system.

The discrete-time system shown in Fig. 2.14 has two dynamic elements; the outputs x1(k) and x2(k) of

these elements are, therefore, the state variables of the system. The following dynamical equations for

 Signal Processing in Digital Control 37

the state variables easily follow from Fig. 2.14:

 x1(k + 1) = x2(k); x1(0) = x0
1 (2.12a)

 x2(k + 1) = a1 x1(k) + a2 x2(k) + r(k); x2(0) = x0
2

The solution of these equations for a given input r(k) applied at k = 0, and given initial state {x0
1, x0

2},

yields the state {x1(k), x2(k)}, k > 0.

If y(k) shown in Fig. 2.14 is the desired output information, we have the following algebraic relation to

obtain y(k):

 y(k) = c1 x1(k) + c2 x2(k) (2.12b)

Equations (2.12a) are the state equations, and Eqn. (2.12b) is the output equation of the discrete-time

system of Fig. 2.14.

+
+

+
+

a2

c2

c1
y k()x k1()+

+

x01 d()k

x k2()

r k() +

+

+

+

x02 d()k

a1

In general, the state variable formulation may be

visualized in block diagram form as shown in

Fig. 2.15. We have depicted a Multi-Input, Multi-

Output (MIMO) system which has p inputs,

q outputs, and n state variables; the different

variables are represented by the input vector r(k),

the output vector y(k) and the state vector x(k),

where

 r(k) =D

r k

r k

r kp

1

2

()

()

()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; y(k) =D

y k

y k

y kq

1

2

()

()

()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; x(k) =D

x k

x k

x kn

1

2

()

()

()

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Assuming that the input is switched on to the system at k = 0 (r(k) = 0 for k < 0), the initial state is given by

 x(0) =D x0, a specified n ¥ 1 vector

n state variables

p input
variables

q output
variables

MIMO
discrete-time

system..
.

...

..
.

r1

r2

rp

x1 x2 xn

y1
y2

yq

38 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The dimension of the state vector defines the order of the sys tem. The dynamics of an nth-order linear

time-invariant system are described by equations of the form

 x1(k + 1) = f11 x1(k) + f12 x2(k) + + f1n xn(k) + g11 r1(k)

 + g12 r2(k) + + g1p rp(k)

 x2(k + 1) = f21 x1(k) + f22 x2(k) + + f2n xn(k) + g21 r1(k)

 + g22 r2(k) + + g2p rp(k)

 (2.13)

 xn(k + 1) = fn1 x1(k) + fn2 x2(k) + + fnn xn(k) + gn1 r1(k)

 + gn2 r2(k) + + gnp rp(k)

 where the coefficients fij and gij are constants.

In the vector-matrix form, Eqns (2.13) may be written as

 x(k + 1) = Fx(k) + Gr(k); x(0) =D x0 (2.14)

where

 F =

f f f

f f f

f f f

n

n

n n nn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 and G =

g g g

g g g

g g g

p

p

n n np

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

are, respectively, n ¥ n and n ¥ p constant matrices. Equation (2.14) is called the state equation of the

system.

The output variables at t = kT are linear combinations of the values of the state variables and input

variables at that time, i.e.,

 y(k) = Cx(k) + Dr(k) (2.15)

where

 C =

c c c

c c c

c c c

n

n

q q qn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 and D =

d d d

d d d

d d d

p

p

q q qp

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

are, respectively, q ¥ n and q ¥ p constant matrices. Equation (2.15) is called the output equation of the

system.

The state equation (2.14) and the output equation (2.15) together give the state variable model of the

MIMO system4:

 x(k + 1) = Fx(k) + Gr(k); x(0) =D x0 (2.16a)

 y(k) = Cx(k) + Dr(k) (2.16b)

For single-input (p = 1) and single-output (q = 1) system, the state variable model takes the form

 x(k + 1) = Fx(k) + gr(k); x(0) =D x0 (2.17a)

 y(k) = cx(k) + dr(k) (2.17b)

 4 We have used lower case bold letters to represent vectors and upper case bold letters to represent matrices.

 Signal Processing in Digital Control 39

where g is n ¥ 1 column vector, c is 1 ¥ n row vector and d is a scalar:

 g =

g

g

gn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2 … cn]

Example 2.2

The discrete-time system of Fig. 2.16 has one dynamic element (unit delayer); it is, therefore, a first-

order system. The state of the system at any k is described by x(k)—the output of the dynamic element.

The equation of the input summing junction is

 x(k + 1) = 0.95 x(k) + r(k); x(0) = 0 (2.18a)

This is the state equation of the first-order system.

The output y(k) is given by the following output equation:

 y(k) = 0.0475 x(k) + 0.05 r(k) (2.18b)

Equations (2.18a) and (2.18b) together constitute the state variable model of the first-order system.

Let us study the response of the system of Fig. 2.16 to the unit-step sequence,

 m(k) =
1 0

0 0

for

for

k

k

≥
<

Ï
Ì
Ó

 (2.19a)

and the unit-alternating sequence,

 r(k) =
()- ≥

<

Ï
Ì
Ô

ÓÔ

1 0

0 0

k k

k

for

for
 (2.19b)

We will first solve Eqn. (2.18a) for x(k) and then use Eqn. (2.18b) to obtain y(k).

The solution of Eqn. (2.18a) directly follows from Eqn. (2.10):

 x(k) = (0.95)k – 1 r(0) + (0.95)k – 2 r(1) + + r(k – 1)

 =

i

k

=0

1-

Â (0.95)k – 1 – i r(i) (2.20)

+
+

+
+

0.05

0.95

0.0475
y k()x k(+1) x k()r k()

40 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For the unit-step input given by Eqns (2.19a), we have5

 x(k) =

i

k

=0

1-

Â(0.95)k – 1 – i = (0.95)k – 1

i

k

=0

1-

Â 1

0 95.

Ê
ËÁ

ˆ
¯̃

i

 = (0.95)k – 1

1
1

0 95

1
1

0 95

- Ê
ËÁ

ˆ
¯̃

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

k

 =
1

0 05.
 [1 – (0.95)k]

The output

 y1(k) =
0 0475

0 05

.

.
 [1 – (0.95)k] + 0.05; k ≥ 0

 = 1 – (0.95)k + 1; k ≥ 0 (2.21)

Consider now the system excited by the unit-alternating input given by Eqn. (2.19b). It follows from

Eqn. (2.20) that for this input, the state

 x(k) =

i

k

=0

1-

Â(0.95)k – 1 – i (–1)i =
1

1 95.
 [(0.95)k – (–1)k]

The output

 y2(k) = 0.0475 x(k) + 0.05 (–1)k

 =
0 05

1 95

.

.
 [(–1)k + (0.95)k + 1]; k ≥ 0 (2.22)

From Eqns (2.21) and (2.22), we observe that the steady-state values of y1(k) and y2(k) are

 y1(k) = 1 for large k; y2(k) =
1

39
(–1)k for large k

Thus, the discrete-time system of Fig. 2.16 readily transmits a unit step and rejects a unit-alternating

input (reduces its magnitude by a factor of 39). Since the unit-alternating signal is a rapidly fluctuating

sequence of numbers, while the unit step can be viewed as a slowly fluctuating signal, the discrete-time

system of Fig. 2.16 represents a low-pass digital filter. In Example 2.11, we will study the frequency-

domain characteristics of this filter.

Consider the single-input, single-output (SISO) system represent ed by the state model (2.17). The system

has two types of inputs; the external input r(k), and the initial state x(0) representing initial storage in the

appropriate registers (of the digital computer) containing xi(◊).

If the dynamic evolution of the state x(k) is not required, i.e., we are interested only in the input-output

relation for k ≥ 0, a linear time-invariant discrete-time system composed of n dynamic elements can be

 5 a j

j

k

=0

Â =
1

1
1

1-
-

π
+a

a
a

k

;

 Signal Processing in Digital Control 41

analyzed using a single nth-order difference equation as its model. A general form of nth-order linear

di fference equation relating output y(k) to input r(k) is given below.

 y(k) + a1y(k – 1) + + an y(k – n) = b0r(k) + b1 r(k – 1) + + bmr(k – m)

The coefficients ai and bj are real constants; m and n are integers with m £ n.

We will consider the general linear difference equation in the following form:

 y(k) + a1 y(k – 1) + + an y(k – n) = b0r(k) + b1r(k – 1) + + bnr(k – n) (2.23)

There is no loss of generality in this assumption; the results for m = n can be used for the case of m < n

by setting appropriate bj coefficients to zero.

If the input is assumed to be switched on at k = 0 (r(k) = 0 for k < 0), then the difference equation model

(2.23) gives the output at instant ‘0’ in terms of the past values of the output; y(– 1), y(– 2), ..., y(– n),

and the present input r(0). Thus the initial conditions of the model (2.23) are {y(– 1), y(– 2), ..., y(– n)}.

Since the difference equation model (2.23) represents a time-invariant system, the choice of the initial

point on the time scale is simply a matter of convenience in analysis. Shifting the origin from k = 0 to

k = n, we get the equivalent difference equation model:

 y(k + n) + a1 y(k + n – 1) + + an y(k) = b0r(k + n) + b1r(k + n – 1) + + b0r(k) (2.24)

Substituting k = 0 in Eqn. (2.24), we observe that the output at instant ‘n’ is expressed in terms of n values

of the past outputs: y(0), y(1), ..., y(n – 1), and in terms of inputs: r(0), r(1), ..., r(n). If k is incremented

to take on values k = 0, 1, 2, ..., etc., the y(k); k = n, n +1 , ..., can easily be generated by the iterative

procedure. Given { y(– 1), y(– 2), ..., y(– n)}, the initial conditions {y(0), y(1), ..., y(n – 1)} of the model

(2.24) can be determined by successively substituting k = – n, – n + 1, ..., – 2, – 1 in Eqn. (2.24).

In this book, we have not accommodated the classical methods of solution of linear difference equations

of the form (2.23) for given initial conditions and/or external inputs. Our approach is to transform the

model (2.23) to other forms which are more con venient for analysis and design of digital control systems.

Our emphasis is on the state variable models and transfer functions.

In Chapter 6, we will present methods of conversion of difference equation models of the form (2.23),

to state variable models. We will use state variable models to obtain the system response to given initial

conditions and external inputs, to construct digital computer simulation diagrams, and to design digital

control algorithms using modern methods of design.

Later in this chapter, the z-transform technique for transforming difference equation model (2.23) to

transfer function form has been presented. Here we will use transfer function models to study input-

output behavior of discrete-time systems; and to design digital control algorithms using classical

methods of design.

Consider the SISO system represented by the state model (2.17) or the difference equation model (2.23).

The system has two types of inputs: the external input r(k); k ≥ 0, and initial state x(0).

A system is said to be relaxed at k = 0 if the initial state x(0) = 0. In terms of the representation (2.23), a

system is relaxed if y(k) = 0 for k < 0.

42 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

We have earlier seen in Eqn. (2.3) that an arbitrary sequence r(k) can be represented as a sum of scaled,

delayed impulse sequences. It follows from this result, that a linear time-invariant, initially relaxed

system can be completely character ized by its impulse response. This can be easily established.

Let g(k) be the response of an initially relaxed, linear time-invariant discrete-time system to an impulse

d(k). Due to time-invariance property, the response to d (k – n) will be g(k – n). By linearity property, the

response to an input signal r(k) given by Eqn. (2.3) will be

 y(k) = r(0) g(k) + r(1) g(k – 1) + r(2) g(k – 2) +

 =
j = 0

Â r(j) g(k – j); k ≥ 0 (2.25)

As a consequence of Eqn. (2.25), a linear time-invariant system is completely characterized by its

impulse response g(k) in the sense that given g(k), it is possible to use Eqn. (2.25) to compute the output

to any input r(k). Equation (2.25) is commonly called the convolution sum.

It should be pointed out that the summation in Eqn. (2.25) is not really infinite in a practical situation,

since for causal sys tems, g(k – j) resulting from the input d (k – j) is zero for k < j. This is because a

causal system cannot respond until the input is applied. Thus, for a causal system with input r(k)m(k),

Eqn. (2.25) modifies to

 y(k) =
j

k

= 0

Â r(j) g(k – j); k ≥ 0 (2.26)

Another important observation concerns the symmetry of the situa tion. If we let k – j = m in Eqn. (2.26),

we get

 y(k) =
m k=

0

Â r(k – m) g(m)

Reversing the order of summation,

 y(k) =
m

k

= 0

Â g(m) r(k – m) (2.27)

The symmetry shows that we may reverse the roles of r (◊) and g(◊) in the convolution formula.

We may remind the reader here, that whenever impulse response models are used to describe a system,

the system is always implicitly assumed to be linear, time-invariant, and initially relaxed.

We now transform r(k) and g(k) using the mapping

 f (k) Æ F(z)

where

 F(z) =D
k = 0

Â f (k)z–k; z is a complex variable (2.28)

The application of this mapping to Eqn. (2.25) yields

 Y(z) =
k = 0

Â y(k)z–k = r j g k j z

j

k

k

() ()-
È

Î
Í
Í

˘

˚
˙
˙

-ÂÂ
== 00

 Signal Processing in Digital Control 43

Changing the order of summations gives

 Y(z) =
j = 0

Â r(j)z–j
k = 0

Â g(k – j)z– (k – j)

Since g(k – j) = 0 for k < j, we can start the second summation at k = j. Then, defining the index m = k – j,

we can write

 Y(z) =
j = 0

Â r(j)z–j
m = 0

Â g(m)z–m

 = R(z) G(z) (2.29)

where

 R(z) =D
k = 0

Â r(k)z–k and G(z) =D
k = 0

Â g (k)z–k

We see that by applying the mapping (2.28), a convolution sum is transformed into an algebraic equation.

The mapping (2.28) is, in fact, the definition of z-transform.

The use of z-transform technique for the analysis of discrete-time systems runs parallel to that of Laplace

transform technique for continuous-time systems. The brief introduction to the theory of z-transform

given in this chapter provides the working tools adequate for the purposes of this text.

 THE z

There are basically two ways to approach the z-transform. One way is to think in terms of systems that are

intrinsically discrete. Signal processing by a digital computer, as we have seen in the previous section,

is an example of such systems. In fact, intrinsically discrete-time systems arise in a number of ways. A

model of the growth of cancer is discrete, because the cancer cells divide at discrete points in time. A

macroeconomic model is usually discrete, because most economic data is usually reported monthly and

quarterly. Representing the discrete instants of time by the integer variable k (k = 0, 1, 2, ...), we denote

the output of a SISO system by the sequence y(k); k ≥ 0, and the input by the sequence r(k); k ≥ 0.

The alternative approach to the z-transform is in terms of sampled-data systems. This is the approach

we will adopt because it best fits the problem we intend to solve, namely, the control of continuous-time

systems by a digital signal processor (refer to Fig. 2.2). Sampling a continuous-time signal defines the

discrete instants of time. Interestingly, we will see that the z-transform (2.28) defined for analyzing

systems that are intrinsically discrete, is equally useful for sampled-data systems.

Consider an analog signal xa(t); t ≥ 0. By substituting t = kT; k = 0, 1, 2, ..., a sequence xa(kT) is said to

be derived from xa(t) by periodic sampling, and T is called the fixed sampling period. The reciprocal of

T is called the sampling frequency or sampling rate. In a typical digital control scheme (refer to Fig. 2.2),

the operation of deriving a sequence from a continuous-time signal is performed by an analog-to-digital

(A/D) converter. A simple ideal sampler representation of the sampling operation is shown in Fig. 2.17.

44 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The ideal sampler consists of a switch that closes

and reopens instantaneously. For our purposes,

time will be in seconds, although this is not always

the case. In chemical processes, for instance, the

unit of time could very well be minutes.

Of course, no switch opens and closes instantaneously, but the modern A/D converter comes very close.

A/D converters with a conversion rate of 100 kHz are fairly inexpensive, and conversion rates in the

megahertz range are available. In control applications, the sampling rate is usually less than 100 Hz. If

the conversion rate is 100 kHz, the conversion is completed in less than one thousandth of the typical

sample period. Thus the conversion rate of A/D converter is close enough to instantaneous.

For intrinsically discrete-time systems, the sequence x(k) represents the values the variable x takes at

discrete instants k = 0, 1, 2, When the sampling operation is involved, the sequence xa(kT) represents

the values of continuous-time signal xa(t) derived at t = kT; k = 0, 1, 2, ...; and T is a fixed sampling

period. Since T remains fixed, there is no loss in information if variable x(k) is used to represent xa(kT);

the advantage is in terms of notational convenience. We will follow this notation.

To establish a relationship of the sequence x(k) to the continuous-time function xa(t) from which this

sequence is derived, we take the following approach. We treat each sample of the sequence x(k) as

an impulse function of strength equal to the value of the sample (Impulse function Ad (t – t0) is an

impulse of strength A occurring at t = t0). The idea is to give a mathematical description to periodic

samples of a continuous-time function in such a way, that we can analyze the samples and the function

simultaneously, using the same tool (Laplace transform). The sequence x(k) can be viewed as a train of

impulses represented by the continuous-time function x*(t):

 x*(t) = x(0)d (t) + x(1) d (t – T) + x(2)d (t – 2T) +

 =
k = 0

Â x(k)d (t – kT) (2.30)

Typical signals xa(t), x(k) and x*(t) are shown in Fig. 2.18. The sampler of Fig. 2.17 can thus be viewed

as an ‘impulse modulator’ with the carrier signal,

 d T (t) =
k = 0

Â d (t – kT) (2.31)

and modulating signal xa(t). The modulation process is schematically represented in Fig. 2.19a, and the

impulse train d T (t) in Fig. 2.19b:

 x*(t) = xa(t) dT(t) (2.32a)

T
x k() = x kTa()x ta()

x ta() x k() x t*()

t 0 1 2 3 0 T 2T 3T
t

x(3)
x(2)x(1)

x(0)

k

 Signal Processing in Digital Control 45

We will eliminate the impulse function by simply taking the Laplace transform of x*(t) to obtain (refer to

Chapter 2 of the companion book [155] for definitions and properties of impulse function, and Laplace

transform)

 L [x*(t)] =D X*(s) =

0

Ú xa (t)d T(t)e–st dt

 =

k = 0 0

Â Ú xa (t)d (t – kT)e–st dt

 =

k = 0

Â xa (kT)e–skT (2.32b)

This expression for X *(s) represents a Laplace transform, but it is not a transform that is easy to use

because the complex variable s occurs in the exponent of the transcendental function e. By contrast,

the Laplace transforms that we have used previously in the companion book [155], have mostly been

ratios of polynomials in the Laplace variable s, with real coefficients. These latter transforms are easy to

manipulate and interpret.

Ultimately, we will be able to achieve these same ratios of polynomials in a new complex variable z by

transforming X*(s) to reach what we will call the z-plane.

We remind the reader here that X *(s) is the notation used for Laplace transform of impulse modulated

signal x*(t); the ‘star’ distinguishes it from X(s)—the conventional Laplace transform of the unsampled

continuous function xa(t). We have used the same complex plane (s-plane) for Laplace transform

of ‘starred’ functions and conventional functions. This is the most compact approach used almost

universally.

46 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

z

The expression X*(s), given by (2.32b), contains the term e–Ts; T is the fixed sampling period. To transform

the irrational function X*(s) into a rational function, we use a transformation from the complex variable s

to another complex variable, say, z. An obvious choice for this transformation is

 z = eTs (2.33a)

although z = e–Ts would be just as acceptable.

Solving for s in Eqn. (2.33a), we obtain

 s =
1

T
ln z (2.33b)

The relationship between s and z in Eqns (2.33) may be defined as the z-transformation. In these two

equations, z is a complex variable; its relation with real and imaginary parts of complex variable s is

given by (with s = s + jw):

 z = eT(s + jw) = eTs e jwT = re jW (2.34)

For a fixed value of r, the locus of z is a circle in the complex

z-plane. Circle of radius unity in the complex z-plane will be of

specific interest to us. This circle is called a unit circle (Fig. 2.20).

When Eqns (2.33) are substituted in Eqn. (2.32b), we have

 X*
s

T
z=

1
ln

Ê
ËÁ

ˆ
¯̃ = X(z) =

k =0

Â xa (kT)z–k (2.35)

Thus, the z-transformation given by Eqns (2.33) is same as defined

earlier in Eqn. (2.28) for intrinsically discrete-time systems.

Since T remains fixed, there is no loss of information if variable

x (k) is used to represent xa(kT). The expression

 X (z) =

k =0

Â x (k)z–k

is often used as the definition of the z-transform of sequence x (k) (intrinsically discrete-time sequence or

derived from continuous-time signal xa(t); x(k) =D xa (kT)), denoted symbolically as Z [x (k)]:

 X (z) =D Z [x (k)] =

k =0

Â x(k)z–k (2.36)

The summation in Eqn. (2.36) does not converge for all functions; and when it does, it does so for

restricted values of z in the z-plane. Therefore, for each sequence for which the summation converges,

there is an associated convergence region in the complex z-plane (Examples of z-plane convergence

regions will shortly follow).

We now have a transform X(z) defined in terms of a complex variable z. However, our expression for X(z)

is an infinite sum in the complex variable z. What we would like to achieve is something of the form:

 X(z) =
b z b z b

z a z a

m m
m

n n
n

0 1
1

1
1

+ + +
+ + +

-

-

; m £ n (2.37)

where all the ai and bj are real.

Im

Re

1

z-plane

z

 Signal Processing in Digital Control 47

Under these conditions, we can write

 X(z) =

K z

z

i

i

m

j

j

n

()

()

-

-

’

’

b

a

=

=

1

1

 (2.38)

where the b i and a j are either real or complex-conjugate pairs.

The z-transform zeros are the values of z for which the transform is zero. z = – b i are the zeros of X(z)

in Eqn. (2.38).

The z-transform poles are the values of z for which the transform is infinite. z = – a j are the poles of X(z)

in Eqn. (2.38).

Actually, we are not very far from our goal. We will now show that we can find closed-form expressions

for the z-transforms of all the functions that we need to study the control of sampled-data systems.

 z

In this subsection, our goal is to find the z-transform of the functions we will subsequently need for

analysis of control systems.

The unit-sample sequence contains only one nonzero element and is defined by

 d (k) =
1 0

0

for

otherwise

k =Ï
Ì
Ó

The z-transform of the elementary signal is

 Z [d (k)] =

k = 0

Â d (k)] z–k = z0 = 1; | z | > 0 (2.39)

The unit-step sequence is defined as

 m (k) =
1 0

0

for

otherwise

k =Ï
Ì
Ó

The z-transform is

 Z [m (k)] =

k = 0

Â m(k)] z–k =

k = 0

Â z–k

Using the geometric series formula

k = 0

Â xk =
1

1 - x
; |x| < 1,

48 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

this becomes

 Z [m (k)] =
1

1 1- -z
 =

z

z - 1
 (2.40)

Note that this equation holds only if the infinite sum converges, that is, if |z–1| < 1 or |z| > 1. Thus, the

region of convergence is the area outside the unit circle in the z-plane.

Discrete form of y(t) = tm (t) is of the form

 y(k) =
kT kfor

0 otherwise

≥Ï
Ì
Ó

0

From the basic definition (2.36),

dX z

dz

()
 =

d

dz
x k z k

k

[()]-Â
= 0

 =
k = 0

Â (–k) x(k)z– k –1

Consequently,

 - z
dX z

dz

()
 =

k = 0

Â k x (k)z–k

or

 Z [kT x(k)] = – Tz
dX z

dz

()
 (2.41)

For x(k) = m (k), we obtain

 Z [kT m (k)] = Z [y(k)] = Y(z) = –Tz
d

dz

z

z -
Ê
ËÁ

ˆ
¯̃1

 = –Tz
z

z z

-
-

+
-

È

Î
Í

˘

˚
˙

()1

1

12

 =
Tz

z()- 1 2 ; | z | > 1 (2.42)

Discrete form of x(t) = e–at is of the form

 x(k) =
e kakT- ≥Ï

Ì
Ô

ÓÔ

for

otherwise

0

0

Then

 X(z) =

k = 0

Âe–akT z–k =

k = 0

Â (eaT z)–k

 Signal Processing in Digital Control 49

 =

k = 0

Â a–k; a = eaTz

 =
1

1 1- -a
 =

e z

e z

aT

aT - 1
 =

z

z e aT- -

This equation holds only if the infinite sum converges, that is, if |e–aT z–1| < 1 or |z| > | e–aT |. The result

holds for both real and complex a.

 Discrete form of x(t) = A cos (wt + f) is of the form

 x(k) =
A kT kcos ()w f+ ≥Ï

Ì
Ó

for

otherwise

0

0

The transform of sampled sinusoids can be found by expanding the sequence into complex exponential

components.

 x(k) = A
e ej kT j kT() ()w f w f+ - ++Ê

ËÁ
ˆ
¯̃2

Then

 X(z) =
A

2 k = 0

Â e jf e jwkT z–k +
A

2 k = 0

Â e –jf e jwkT z–k

 =
A ze

z e

A ze

z e

j

j T

j

j T2 2

f

w

f

w-
+

--

-

 =

Az
z e e e e

z
e e

j j j T j T

j T j T

() () ()f f w f w f

w w

+
-

+È

Î
Í

˘

˚
˙

-
+Ê

ËÁ

- + - +

-
2 2

2
2

2
ˆ̂
¯̃ +z 1

 =
Az z T

z z T
z

cos cos ()

cos
;| |

f w f

w

- +[]
- +

>
2 2 1

1

Given the z-transform of A cos(wkT + f), we can obtain the z-transform of Ae–akT cos(wkT + f) as

follows:

 Z [e–akT x(k)] = x k e zakT k

k

() - -

=
Â

0

 = x k ze X zeaT k aT

k

()() ()-

=

=Â
0

 (2.43)

Noting that

 Z [A cos (wkT + f)] =
Az z T

z z T

[cos cos()]

cos

f w f

w

- +
- +2 2 1

50 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

we substitute zeaT for z to obtain the z-transform of Ae–akT cos(wkT + f) as follows:

 Z [Ae–akT cos (wkT + f)] =
Aze ze T

z e ze T

aT aT

aT aT

[cos cos()]

cos

f w f

w

- +
- +2 2 2 1

; |z| > e–aT (2.44)

Example 2.3

Let us find the z-transform of

 X(s) =
1

1s s()+
Whenever a function in s is given, one approach for finding the corresponding z-transform is to convert

X(s) into x(t) and then find the z-transform of x(kT) = x(k); T is the sampling interval.

The inverse Laplace transform of X(s) is

 x(t) = 1–e–t; t ≥ 0

Hence

 x(kT) =D x(k) = 1 –e–kT; k ≥ 0

 X(z) = Z [x(k)] =
z

z

z

z e T–
–

– –1
 =

()

()()
;| |

1

1
1

-

- -
>

-

-
e z

z z e
z

T

T

We summarize the z-transforms we have derived up to this point, plus some additional transforms in

Table 2.1. The table lists commonly encountered functions x(t); t ≥ 0 and z-transforms of sampled

version of these functions, given by x(kT). We also include in this table, the Laplace transforms X(s)

corresponding to the selected x(t). We have seen in Example 2.3, that whenever a function in s is given,

one approach for finding the corresponding z-transform is to convert X(s) into x(t), and then find its

z-transform. Another approach is to expand X(s) into partial functions and use z-transform table to find

the z-transforms of the expanded terms. Table 2.1 will be helpful for this second approach.

All the transforms listed in the table, can easily be derived from first principles. It may be noted that

in this transform table, regions of convergence have not been specified. In our applications of systems

analysis, which involve transformation from time domain to z-domain and inverse transformation, the

variable z acts as a dummy operator. If transform pairs for sequences of interest to us are available, we

are not concerned with the region of convergence.

z

z-transformation of difference equations written in terms of advanced versions of the input and output

variables (refer to Eqn. (2.24)) requires the following results:

 Z [y(k + 1)] = y k z z y k zk

k

k

k

() () ()+ = +-

=

- +

=
Â Â1 1

0

1

0

 Signal Processing in Digital Control 51

Letting k + 1 = m, yields

 Z [y(k + 1)] = z y m z z y m z ym

k

m

k

() () ()-

=

-

=
Â Â= -

È

Î
Í
Í

˘

˚
˙
˙0 0

0

 = zY(z) – zy(0) (2.45a)

Use of this result in a recursive manner leads to the following general result:

 Z [y(k + n)] = zn Y(z) – zn y(0) –zn–1 y(1) – – z2 y(n –2) – zy(n – 1) (2.45b)

z-transformation of difference equations written in terms of delayed versions of input and output variables

(refer to Eqn. (2.23)) requires the following results:

z

X(s) x(t); t ≥ 0 x(k); k = 0, 1, 2, … X(z)

– – d (k) 1

1

s
m (t) m(k)

z

z –1

1

s a+ e–at e–akT z

z e aT– –

1
2s

t kT
Tz

z()–1 2

1
2()s a+

t e–at kTe–akT Te z

z e

aT

aT

–

–(–)2

a

s s a()+
1 – e–at 1 – e–akT

()

()()

1

1

-

- -

-e z

z z e

aT

aT-

w

ws2 2+
sin wt sin wkT

(sin)

(cos)

w

w

T z

z T z2 2 1- +

s

s2 2+ w
cos wt cos wkT

z T z

z T z

2

2 2 1

-
-

(cos)

(cos)

w

w +

w

w()s a+ +2 2 e–at sin wt e–akT sin wkT
(sin)

(cos)

e T z

z e T z e

aT

aT aT

-

- --
w

w2 22 +

s a

s a

+
+ +()2 2w

e–at cos wt e–akT cos wkT
z e T z

z e T z e

aT

aT aT

2

2 22

– (cos)

– (cos)

–

– –

w

w +

52 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Z [y(k – 1)] = ()k z k

k

- -

=
Â 1

0

 = y(– 1)z0 + y(0)z–1 + y(1)z–2 +

 = z–1 y k z yk

k

() ()-

=
Â

È

Î
Í
Í

˘

˚
˙
˙

+ -
0

1

 = z–1 Y(z) + y(–1) (2.46a)

Use of this result in a recursive manner leads to the following general result:

 Z [y(k – n)] = z–n Y(z) + z–(n–1) y(–1) + z–(n–2) y(–2) +

 + z–1 y(–n + 1) + y(–n) (2.46b)

If y(k) = 0 for k < 0, we have

 Z [y(k – n)] = z–n Y(z) (2.47)

Example 2.4

Let us find the z-transforms of unit-step functions that are delayed by one sampling period, and n

sampling periods, respectively.

Using the shifting theorem given by Eqn. (2.47), we have

 Z [m(k –1)] = z–1
Z [m (k)] = z–1

1

1 11

1

1– ––

–

–z

z

z

Ê
ËÁ

ˆ
¯̃

=

Also

 Z [m(k – n)] = z–n
Z [m (k)] = z–n

1

1 11 1– ––

–

–z

z

z

nÊ
ËÁ

ˆ
¯̃

=

Remember that multiplication of the z-transform X(z) by z has the effect of advancing the signal x(k)

by one sampling period, and that multiplication of the z-transform X(z) by z–1 has the effect of delaying

the signal x(k) by one sampling period. In control engineering and signal processing, X(z) is frequently

expressed as a ratio of polynomials in z–1 as follows (refer to Table 2.1):

 Z [e–akT cos wkT] =
z e T z

z e T z e

aT

aT aT

2

2 22

– (cos)

– (cos)

–

– –

w

w +
 (2.48a)

 =
1

1 2

1

1 2 2

– (cos)

– (cos)

– –

– – – –

e T z

e T z e z

aT

aT aT

w

w +
 (2.48b)

z–1 is interpreted as the unit-delay operator.

In finding the poles and zeros of X(z), it is convenient to express X(z) as a ratio of polynomials z, as is

done in Eqn. (2.48a). In this and the next chapter, X(z) will be expressed in terms of powers of z, as given

by Eqn. (2.48a), or in terms of powers of z–1, as given by Eqn. (2.48b), depending on the circumstances.

 Signal Processing in Digital Control 53

Example 2.5

Analogous to the operation of integration, we can define the summation operation

 x(k) = y i

i

k

()

=
Â

0

 (2.49)

In the course of deriving an expression for X(z) in terms of Y(z), we shall need the infinite series sum:

 ()az k

k

-

=
Â 1

0

 =
1

1 1– ––az

z

z a
= (2.50)

which converges, provided that |az–1| < 1, or |z| > a.

Successive values of x(k) are as follows:

 x(0) = y(0)

 x(1) = y(0) + y(1)

 x(k) = y(0) + y(1) + + y(k)

Thus, X(z) is the infinite sum given below.

 X(z) = x k z k

k

() -

=
Â

0

 = x(0) + z–1 x(1) + + z–k x(k) +

 = y(0) + z–1 [y(0) + y(1)] + + z–k [y(0) + + y(k)] +

 = y(0)[1 + z–1 + z–2 +] + y(1)[z–1 + z–2 +] +

 + y(k)[z–k + z–k–1 +] +

 =
z

z –1

Ê
ËÁ

ˆ
¯̃

[y(0) + z–1y(1) + z–2 y(2) +]

 =
z

z
y k z k

k
–

() –

1
0

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙=

Â
Therefore,

 X(z) =
z

z –1
 Y(z) (2.51)

 z

We will obtain the inverse z-transform in exactly the same way that we obtained the inverse Laplace

transform (Chapter 2 [155]), namely, by partial fraction expansion. The reason that the partial fraction

expansion method works is that we frequently encounter transforms that are rational functions, i.e.,

ratio of two polynomials in z with real coefficients (refer to Eqn. (2.37)). The fact that the coefficients

are real is crucial, because it guarantees that the roots of the numerator and denominator polynomials

will be either real, or complex-conjugate pairs. This, in turn, means that the individual terms in the

partial fraction expansion of the transform will be simple in form and we will be able to do the inverse

transformation by inspection.

54 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The transform pairs encountered using the partial fraction expansion technique will usually be those

found in Table 2.1. Those not found in the table can easily be derived by using basic properties of

z-transformation. The partial fraction expansion method for z-transforms is very straightforward, and

similar, in most respects, to the partial fraction expansion in Laplace transforms. We first illustrate the

method with some examples from which we can then abstract some general guidelines.

Example 2.6

We observe that the transforms of the elementary functions (see Table 2.1) contain a factor of z in the

numerator, e.g.,

 Z [m(k)] =
z

z –1

where m (k) is a unit-step sequence.

To ensure that the partial fraction expansion will yield terms corresponding to those tabulated, it is

customary to first expand the function Y(z)/z, if Y(z) has one or more roots at the origin, and then multiply

the resulting expansion by z.

For instance, if Y(z) is given as

 Y(z) =
2 1 5

1 5 0 5

2 1 5

0 5 1

2

2

z z

z z

z z

z z

– .

– . .

(.)

(– .)(–)
,

+
=

–

we are justified in writing

Y z

z

()
 =

2 1 5

0 5 1 0 5 1

1 2z

z z

A

z

A

z

– .

(– .)(–) – . –
= +

Constants A1 and A2 can be evaluated by applying the conventional partial fraction expansion rules.

 A1 = (z – 0.5)
Y z

z z

()

.

È
ÎÍ

˘
˚̇

=
=0 5

1; A2 = (z – 1)
Y z

z z

()È
ÎÍ

˘
˚̇

=
=1

1

Y z

z

()
 =

1

0 5

1

1z z– . –
+

or

 Y(z) =
z

z

z

z– . –0 5 1
+

Using the transform pairs from Table 2.1,

 y(k) = (0.5)kT + 1; k ≥ 0

Example 2.7

When Y(z) does not have one or more zeros at the origin, we expand Y(z), instead of Y(z)|/z, into partial

fractions and utilize shifting theorem given by Eqn. (2.47) to obtain inverse z-transform.

 Signal Processing in Digital Control 55

In applying the shifting theorem, notice that if

 Z
–1[Y(z)] = y(k) then Z

–1[z–1Y(z)] = y(k –1)

Let us consider an example:

 Y(z) =
10

1 0 2()(.)z z- -
We first expand Y(z) into partial fractions:

 Y(z) =
12 5

1

12 5

0 2

. .

.z z-
-

-
Notice that the inverse z-transform of 1/(z–1) is not available in Table 2.1. However, using the shifting

theorem, we find that

 Z
–1 1

1z –

È
ÎÍ

˘
˚̇

 = Z
–1 z

z

z

k

k

–

–

; , ,

;

1

1

1 1 2

0 0

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ =

=
£

Ï
Ì
Ó

…

Also,

 Z
–1 1

0 2z – .

È
ÎÍ

˘
˚̇

 = Z
–1 z

z

z

k

k

k
–

–

– .

(.) ; , ,

;

1
1

0 2

0 2 1 2

0 0

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ =

=
£

Ï
Ì
Ô

ÓÔ

…

Therefore,

 y(k) = Z
–1[Y(z)] =

12 5 1 0 2

0

1 2

0

1. (.) ; , ,

;

-ÈÎ ˘̊Ï
Ì
Ô

ÓÔ

=
£

-k k

k

…

which can be written as

 y(k) = 12.5[1 – (0.2)k–1]m (k–1)

The final value theorem is concerned with the evaluation of y(k) as k Æ assuming, of course, that y(k)

does approach a limit. Using partial fraction expansion for inverting z-transforms, it is a simple matter to

show that y(k) approaches a limit as k Æ , if all the poles of Y(z) lie inside the unit circle (| z | <1) in the

complex z-plane. The unit-circle boundary is, however, excluded except for a single pole at z = 1. This

is because purely sinusoidal signals whose transforms will have poles on the unit circle, do not settle to

a constant value as k Æ . Multiple poles at z = 1 are also excluded because, as we have already seen

in the table of z-transform, these correspond to unbounded signals like ramps. A more compact way of

phrasing these conditions is to say that (z – 1)Y(z) must be analytic on the boundary, and outside the unit

circle in the complex z-plane. The final value theorem states that when this condition on (z – 1)Y(z) is

satisfied, then

 lim
k

y(k) = lim
zÆ1

(z – 1)Y(z) (2.52)

The proof is as follows:

 Z [y(k + 1) – y(k)] = lim
m

[() ()]y k y k z k

k

m

+ - -

=
Â 1

0

or

 zY(z) – z y(0) – Y(z) = lim
m

[() ()]y k y k z k

k

m

+ - -

=
Â 1

0

56 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Letting z Æ 1 on both sides,

 lim
zÆ1

[(z – 1)Y(z)] = y(0) + lim
zÆ1

lim
m

[() ()]y k y k z k

k

m

+ - -

=
Â 1

0

Interchanging the order of limits on the right-hand side, we have

 lim
zÆ1

[(z – 1)Y(z)] = y(0) + lim
m

[() ()] ()y k y k y

k

m

+ -
=

Â 1

0

Example 2.8

Given

 X(z) =
z

z

z

z e
a

aT–
–

–
;

–1
0>

By applying the final value theorem to the given X(z), we obtain

 lim
k

x(k) = lim ()
z aT

z
z

z

z

z eÆ --
-

-
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

1
1

1
 = lim

z aT

z

z e
z

Æ -
-

-

-
È

ÎÍ
˘

˚̇
=

1
1

1
1

It is noted that the given X(z) is actually the z-transform of

 x(k) = 1 – e–akT

By substituting k = in this equation, we have

 x() = lim
k

akTe--() =1 1

 TRANSFER FUNCTION MODELS

The very first step in the analytical study of a system is to set up mathematical equations to describe the

system. Because of different analytical methods used, or because of different questions asked, we may

often set up different mathematical equations to describe the same system.

We have seen earlier in Section 2.5 (Eqn. (2.26)) that the input r(k) and output y(k) of any linear time-

invariant discrete-time system that is initially relaxed at k = 0, can be described by an equation of the

form

 y(k) = r j

j

k

()

=
Â

0

g(k – j); k ≥ 0 (2.53)

This is called the convolution sum. The function g(k) is defined for k ≥ 0 and is called the impulse

response of the system.

The application of z-transform to Eqn. (2.53) gives us an extremely useful mathematical description, of

a linear time-invariant discrete-time system (refer to Eqn. (2.29))

 Y(z) = Z [(y(k)] = G(z)R(z) (2.54)

 Signal Processing in Digital Control 57

where

 R(z) =D Z [(r(k)] and G(z) =D Z [(g(k)]

We see that by applying the z-transform, a convolution sum is transformed into an algebraic equation.

The function G(z) is called the transfer function of the discrete-time system.

The transfer function of a linear time-invariant discrete-time system is, by definition, the z-transform of

the impulse response of the system.

An alternative definition of transfer function follows from Eqn. (2.54).

 G(z) =
Z

Z

[()]

[()]

y k

r k System
initially relaxed

 =
Y z

R z

()

() System
initially relaxed

 (2.55)

Thus, the transfer function of a linear time-invariant discrete-time system is the ratio of the z-transforms

of its output and input sequences, assuming that the system is initially relaxed.

Figure 2.21 gives the block diagram of a discrete-time system in transform domain.

Let us use the definition given by Eqn. (2.55) to obtain transfer

function model of a discrete-time system, represented by a

difference equation of the form (2.23), relating its output y(k)

to the input r(k). We assume that the discrete-time system is

initially relaxed:

 y(k) = 0 for k < 0

and is excited by an input

 r(k); k ≥ 0

Taking z-transform of all the terms of Eqn. (2.23), under the assumption of zero initial conditions, we

obtain

 Y(z) + a1 z–1 Y(z) + … + an z– n Y(z) = b0 R(z) + b1 z–1 R(z) + … + bn z–n R(z)

where

 Y(z) =D Z [y(k)] and R(z) =D Z [r(k)]

Solving for Y(z),

 Y(z) =
() ()b b z b z R z

a z a z

n
n

n
n

0 1
1

1
11

+ + +
+ + +

- -

- -

Therefore, the transfer function G(z) of the discrete-time system represented by difference equation

(2.23) is

 G(z) =
Y z

R z

()

()
 =

b b z b z

a z a z

n
n

n
n

0 1
1

1
11

+ + +
+ + +

- -

- -

 (2.56)

The same result can be obtained by taking the z-transformation of the shifted difference equation (2.24).

We first consider the case with n = 2, and then present the general result.

 y(k + 2) + a1y(k + 1) + a2y(k) = b0r(k + 2) + b1r(k + 1) + b2r(k) (2.57)

R z()
G z()

Y z()

58 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The z-transform of Eqn. (2.57) gives (using the shifting theorem given by Eqns (2.45)):

 [z2Y(z) – z2y(0) – zy(1)] + a1[zY(z) – zy(0)] + a2Y(z)

 = b0[z2R(z) – z2r(0) – zr(1)] + b1[zR(z) – zr(0)] + b2R(z)

or

 (z2 + a1z + a2) Y(z) = (b0z2 + b1z + b2) R(z) + z2 [y(0) – b0r(0)]

 + z[y(1) + a1y(0) – b0r(1) – b1r(0)] (2.58)

Since the system is initially at rest, and switched on at k = 0, we have y(k) = 0 for k < 0, and r(k) = 0 for

k < 0. To determine the initial conditions y(0) and y(1), we substitute k = –2 and k = –1, respectively,

into Eqn. (2.57).

 y(0) + a1y(–1) + a2y(–2) = b0r(0) + b1r(–1) + b2r(–2)

which simplifies to

 y(0) = b0r(0) (2.59a)

and

 y(1) + a1y(0) + a2 y(–1) = b0r(1) + b1r(0) + b2r(–1)

or

 y(1) = –a1y(0) + b0r(1) + b1r(0) (2.59b)

By substituting Eqns (2.59) into Eqn. (2.58), we get

 (z2 + a1z + a2)Y(z) = (b0z2 + b1z + b2) R(z)

Therefore,

 G(z) =
Y z

R z

b z b z b

z a z a

b b z b z

a z a z

()

()
=

+ +

+ +
=

+ +

+ +

- -

- -
0

2
1 2

2
1 2

0 1
1

2
2

1
1

2
21

Therefore, we can express the general transfer function model (2.56) as

 G(z) =
Y z

R z

b z b z b

z a z a

n n
n

n n
n

()

()
=

+ + +

+ + +

-

-
0 1

1

1
1

 (2.60a)

We will represent the numerator polynomial of G(z) by N(z), and the denominator polynomial by D(z):

 G(z) =
N z

z

()

()D
 (2.60b)

where

 N(z) = b0 zn + b1 zn –1 + + bn; D(z) = zn + a1 zn –1 + + an

The terminology used in connection with G(s)—the transfer func tion of continuous-time systems6—is

directly applicable in the case of G(z).

The highest power of the complex variable z in the denominator polynomial D(z) of the transfer function

G(z) determines the order of the transfer function model. The denominator polynomial D(z) is called the

characteristic polynomial.

 6 Chapter 2 of reference [155].

 Signal Processing in Digital Control 59

The roots of the equation

 D(z) = 0 (2.61a)

are called the poles of the transfer function G(z), and roots of the equation

 N(z) = 0 (2.61b)

are called the zeros.

Equation (2.61a) is called the characteristic equation; the poles are the characteristic roots.

Section 2.9 shows that if the poles of the trans fer function G(z) of a discrete-time system lie inside the

unit circle in the complex z-plane, the discrete-time system is sta ble.

We now give a simple example of transfer function description of discrete-time systems. Figure 2.12

describes the basic operations characterizing a computer program. The unit delayer shown in this figure

is a dynamic system with input x1(k) and output x2(k); x2(0) represents the initial storage in the shift

register.

We assume that the discrete-time system (unit delayer) is ini tially relaxed:

 x2(0) = 0 (2.62a)

and is excited by an input sequence

 x1(k); k ≥ 0 (2.62b)

The following state variable model gives the output of the unit delayer at k = 0, 1, 2, ...

 x2(k + 1) = x1(k) (2.63)

The z-transformation of Eqn. (2.63) yields

 X2(z) = z –1 X1(z)

where

 X2(z) =D Z [x2(k)]; X1(z) =D Z [x1(k)]

Therefore, the transfer function of the unit delayer represented by Eqn. (2.63) is

X z

X z

2

1

()

()
 = z –1 (2.64)

The discrete-time system of Fig. 2.16 may be equivalently represented by Fig. 2.22a using the transfer

function description of the unit delayer. Use of the block-diagram analysis results in Fig. 2.22b, which

gives

 Y(z) =
0 0475

0 95
0 05

.

.
.

z -
+È

ÎÍ
˘
˚̇

 R(z)

Therefore, the transfer function G(z) of the discrete-time system of Fig. 2.22 is

 G(z) =
Y z

R z

()

()
 =

0 05

0 95

.

.

z

z -
 (2.65)

60 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

A standard problem in control engineering is to find the response, y(k), of a system given the input, r(k),

and a model of the system. With z-transforms, we have a means for easily computing the response of

linear time-invariant systems to quite general inputs.

Given a general relaxed, linear discrete-time system and an input signal r(k), the procedure for determining

the output y(k) is given by the following steps:

Step 1 Determine the transfer function G(z) by taking z-transform of equations of motion.

Step 2 Determine the z-transform of the input signal; R(z) = Z [r(k)].

Step 3 Determine the z-transform of the output; Y(z) = G(z)R(z).

Step 4 Break-up Y(z) by partial fraction expansion.

Step 5 Invert Y(z) to get y(k); find the components of y(k) in a table of transform pairs and combine the

components to get the total solution in the desired form.

Example 2.9

A discrete-time system is described by the transfer function

 G(z) =
Y z

R z z a z a

()

()
=

+ +
1

2
1 2

; a1 = –
3

4
, a2 =

1

8

Find the response y(k) to the input (i) r(k) = d (k), (ii) r(k) = m(k).

+
+

+

+

0.05

0.95

(a)

0.0475
Y z()X z()

z–1
R z()

 Signal Processing in Digital Control 61

Solution The transfer function G(z) expressed as a ratio of polynomials in z–1:

 G(z) =
z

z z

–

– ––

2

1 21
3

4

1

8
+

Since z–1 is a unit-delay operator, we can immediately write the corresponding difference equation:

 y(k) –
3

4
 y(k – 1) +

1

8
 y(k – 2) = r(k – 2)

The difference equations can be solved by means of recursion procedure. The recursion procedure is

quite simple and convenient for digital computations.

In the following, we obtain the closed-form solutions.

 (i) The z-transform of d(k) is (refer to Table 2.1)

 Z [d (k)] = 1

 Letting R(z) = 1, we obtain

 Y(z) = G(z) =
1

3

4

1

8

1

1

4

1

2

2z z z z– – –+
=

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 =
4

1

2

4

1

4
z z–

–

–

 The impulse response g(k) is, therefore, (refer to Table 2.1)

 g(k) = Z
–1 z

z

z

- Ê

Ë
Á
Á

ˆ

¯
˜
˜

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 4

1

2
–

 –
Z

–1
z

z

z

–

–

1 4

1

4

Ê

Ë
Á
Á

ˆ

¯
˜
˜

È

Î

Í
Í

˘

˚

˙
˙

 = 4
1

2

1
Ê
ËÁ

ˆ
¯̃

k –

 – ;

–

4
1

4
1

1
Ê
ËÁ

ˆ
¯̃ ≥

k

k

 The impulse input thus excites the system poles without creating any additional response term.

 (ii) The z-transform of m(k) is (refer to Table 2.1)

 Z [m(k)] =
z

z –1

 Letting R(z) =
z

z –1
, we obtain

 Y(z) =
1

1

4

1

2

1
z z

z

z
– –

–Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

 =
z

z z z– – (–)
1

4

1

2
1

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 =

16

3
1

4

8

1

2

z

z

z

z–

–

–

+

System poles

 +

8

3

1

z

z –
Excitationpole

 The inverse transform operation gives (refer to Table 2.1)

62 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 y(k) =
16

3

1

4
8

1

2

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í

k k

–

Transient response

 +

8

2
1()k

Steady state response-

˘

˚

˙
˙

The transient response terms correspond to system poles excited by the input m(k). These terms vanish

as k .

The second response term arises due to the excitation pole, and has the same nature as the input itself

except for a modification in magnitude caused by the system’s behavior to the specified input. Since the

input exists as k Æ , the second response term does not vanish and is called the steady-state response

of the system.

The steady-state response can be quickly obtained without doing the complete inverse transform

operation by use of the final value theorem (Eqn. (2.52)):

 lim
k

y(k) = lim
zÆ1

(z – 1)Y(z)

 if (z – 1)Y (z) has no poles on the boundary and outside of the unit circle in the complex z-plane.

Example 2.10

Consider a discrete-time system described by the difference equation

 y(k + 2) +
1

4
y(k + 1) –

1

8
y(k) = 3r(k + 1) – r(k)

The system is initially relaxed (y(k) = 0 for k < 0) and is excited by the input

 r(k) = (–1)k m (k)

Obtain the transfer function model of the discrete-time system, and therefrom, find the output y(k); k ≥ 0.

Solution The given difference equation is first converted to the equivalent form:

 y(k) +
1

4
 y(k – 1) –

1

8
 y(k – 2) = 3r(k – 1) – r(k – 2)

z-transformation of each term in this equation yields (using shifting theorem (2.47))

 Y(z) +
1

4
 z–1Y(z) –

1

8
 z–2 = 3z–1 R(z) – z–2R(z)

or

 1
1

4

1

8

1 2+Ê
ËÁ

ˆ
¯̃z z– –– Y(z) = (3z–1 – z–2) R(z)

or

 z z2 1

4

1

8
+Ê

ËÁ
ˆ
¯̃– Y(z) = (3z – 1) R(z)

 Signal Processing in Digital Control 63

The transfer function of the given discrete-time system is

 G(z) =
Y z

R z

z

z z

()

()
=

-

+ -

3 1

1

4

1

8

2

For (refer to Table 2.1; e–aT = –1)

 R(z) = Z [(–1)k] =
z

z +1
,

 Y(z) = G(z)R(z) =
z z

z z z

()

()

3 1

1

4

1

8
12

-

+ -Ê
ËÁ

ˆ
¯̃ +

 =
z z

z z z

()

()

3 1

1

2

1

4
1

-

+Ê
ËÁ

ˆ
¯̃ -Ê

ËÁ
ˆ
¯̃ +

 =

20

3
1

2

4

15
1

4

32

5

1

z

z

z

z

z

z+
+ +

+

–

–

–

Then

 y(k) =
20

3

1

2

4

15

1

4

32

5
1– – – (–)

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

k k
k m (k)

Using the Laplace transform, we were able to show that if we applied the input r(t) = R0 cos wt to a linear

time-invariant system with transfer function G(s), the steady-state output yss was of the form (refer to

[155]),

 yss = lim
t

 y(t) = R0 |G(jw)| cos(w t + f)

where f = –G(jw).

A similar result can be obtained for discrete-time systems. Let G(z) be the z-transform of a discrete linear

time-invariant system, and let the input to this system be r(kT) = R0 cos(wkT), with T sampling period.

Then

 Z [r(kT)] =
R z z T

z z T

0

2 2 1

(cos)

cos

-

- +

w

w
 =

R z z T

z e z ej T j T

0 (cos)-

-() -()-

w
w w

Suppose

 G(z) =

k z p

z

i

i

m

j

j

n j

()

()

;| |

-

-

<=

=

’

’
1

1

1

a

a (2.66)

64 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For simplicity, we assume no repeated poles. Then

 Y(z) = G(z)R(z)

can be expressed as

 Y(z) =
Az

z e

A z

z e

B z

zj T j T

j

jj

n

– – –

*

–w w a
+ +

=
Â

1

Now

 A = z e
R z T

z e z e
G zj T

j T j T
z e j T

–
(– cos)

– –
()

–

w

w w

w

w

()
()()

=

0

 =
R e e e

e e
G e

j T j T j T

j T j T

j T0 0 5w w w

w w

w– .

–

–

–

+()ÈÎ ˘̊ () =
R

G e j T0

2

w() = |A|e jq

The other residue A* is the complex conjugate of A. Taking the inverse transform of Y(z), we obtain

 y(k) = Ae A ej kT j kTw w+ -*

Steady-state component

 + Bj j

k

j

n

()a

=
Â

1

Transient component

If |aj| < 1 for j = 1, 2, …, n, then

 lim
k

j j
k

j

n

B

=
()Â a

1

 = 0

Thus,

 yss =D lim
k

y(kT) = Ae jw kT + A*e–jw kT =
2

2

| | () ()
A e ej kT j kTw q w q+ - ++ÈÎ ˘̊

 = 2|A| cos(wkT + q)

 = R0 G e kTj Tw w q() +cos() (2.67)

We have obtained a result that is analogous to that for continuous-time systems. For a sinusoidal input,

the steady-state output is also sinusoidal; scaled by the gain factor |G(e jwT)|, and shifted in phase by

q = –G(e jwT). An important difference is that in the continuous-time case we have |G(jw)|, while in

the discrete-time case we have |G(e jwT)|. The implications of this difference are discussed later in this

chapter.

The steady-state response is also given by (2.67) when the poles of G(z) in Eqn.(2.66) are repeated with

|aj | < 1. This can easily be verified.

Example 2.11

The discrete-time system of Fig. 2.22 is described by the transfer function (refer to Eqn.(2.65))

 G(z) =
Y z

R z

z

z

()

()

.

.
=

-
0 05

0 95

 Signal Processing in Digital Control 65

The given input sequence is

 r(k) = R0 cos(Wk) = Re {R0e jWk}

The output is then given by

 y(k) = Re Z
-

-
È

ÎÍ
˘

˚̇

Ï
Ì
Ó

¸
˝
˛

1 0G z
R z

z e j
()

W
 = Re Z

-

- -

È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

1 0
20 05

0 95

.

(.) ()

R z

z z e j W

 = Re Z
-

- -
Ê
ËÁ

ˆ
¯̃

+
-

È

Î
Í
Í

˘

˚
˙
˙

Ï
1 0 00 0475

0 95 0 95

.

. .
()

()

R

e

z

z
G e

R z

z ej

j

jW

W

WÌÌ
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
where

 G(e jW) = G z
z e j()

= W =
0 05

0 95

.

.

e

e

j

j

W

W -
 The inverse z-transform operation yields

 y(k) = Re
0 0475

0 95
0 950.

.
(.) (

R

e
G ej

k j

-
È

ÎÍ
+

W

Transient
component

WW W
)R e j k

0

˘

˚
˙
˙

Steady-state
component

This equation shows that as k increases, the transient component dies out. When this happens, the output

expression becomes

 y k

k

()

very large

 = yss(k) = Re {G(ejW) R0 e jWk}

Let G(e jW) = |G(e jW)| e jf; f = –G(e jW)

Then

 yss(k) = Re{R0 |G(e jW)|e j(Wk + f)} = R0 |G(e jW)| cos(Wk + f)

The steady-state response has the same form as the input (dis crete sinusoidal), but is modified in

amplitude by |G(ejW)| and in phase by –G(e jW).

The graphs of |G(e jW)| and –G(e jW) as the frequency W is varied, are the frequency-response curves of

the given discrete-time system. The graphs are shown in Fig. 2.23. It is obvious from these curves, that

the given system is a low-pass digital filter.

1.2

0
0.8

– 30°

– 60°

– 90°
0.2p

0.2p

M
ag
n
it
u
d
e

P
h
as
e

0.4p

0.4p

0.4

0
W

W

66 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 7 Chapter 5 of reference [155].

 STABILITY ON THE z

 THE JURY STABILITY CRITERION

Stability is concerned with the qualitative analysis of the dynamic response of a system. This section

is devoted to the stability analysis of linear time-invariant discrete-time systems. Stability concepts and

definitions used in connection with continuous-time systems7 are directly applicable here.

A linear time-invariant discrete-time system described by the state variable model (refer to Eqns (2.17)),

 x(k + 1) = Fx(k) + gr(k); x(0) =D x
0

 y(k) = cx(k) + d r(k)

has the following two sources of excitation:

(i) the initial state x0 representing initial internal energy storage; and (ii) the external input r(k).

The system is said to be in equilibrium state xe = 0, when both the initial internal energy storage and the

external input are zero.

In the stability study, we are generally concerned with the questions listed below.

 (i) If the system with zero input (r(k) = 0; k ≥ 0) is perturbed from its equilibrium state xe = 0 at

k = 0, will the state x(k) return to xe, remain ‘close’ to xe, or diverge from xe?

 (ii) If the system is relaxed, will a bounded input r(k); k ≥ 0, produce a bounded output y(k) for all k?

The first notion of stability is concerned with the ‘boundedness’ of the state of an unforced system in

response to arbitrary initial state, and is called zero-input stability. The second notion is concerned

with the boundedness of the output of a relaxed system in response to the bounded input, and is called

Bound ed-Input, Bounded-Output (BIBO) stability.

A relaxed system (zero initial conditions) is said to be BIBO stable if for every bounded input

r(k); k ≥ 0, the output y(k) is bounded for all k.

For a linear time-invariant system to satisfy this condition, it is necessary and sufficient that

k =
Â

0

|g(k)| < (2.68)

where g(k) is the impulse response of the system.

To prove that condition (2.68) guarantees BIBO stability—i.e., sufficiency—we first establish an upper

bound on |y(k)|.

From Eqn. (2.25), we can express the output as a convolution sum:

 y(k) =

j =
Â

0

 g(j) r(k – j)

 Signal Processing in Digital Control 67

If we consider the magnitude of the response y(k), it is easy to see that

 |y(k) | = g j r k j

j

() ()-
=
Â

0

which is surely less than the sum of the magnitudes as given by

 |y(k)| £
j =
Â

0

 |g(j)| |r(k – j)|

Now take a bounded input, i.e.,

 |r(k)| < M; 0 £ k <

where M is an arbitrary but finite positive constant. With this input,

 |y(k)| £ M
j =
Â

0

|g(j)|

and if condition (2.68) holds true, |y(k)| is finite; hence the output is bounded and the system is BIBO

stable.

The condition (2.68) is also necessary, for if we consider the bounded input

 r(k – j) =

+ >
=

- <

Ï

Ì
Ô

Ó
Ô

1 0

0 0

1 0

if

if

if

g j

g j

g j

()

()

()

then the output at any fixed value of k is given by

 |y(k)| = g j r k j

j

() ()-
=

Â
0

 = | () |g j

j =
Â

0

Thus, unless the condition given by (2.68) is true, the system is not BIBO stable.

The condition (2.68) for BIBO stability can
be translated into a set of restrictions on the
location of poles of the transfer function
G(z) in the z-plane. Consider the discrete-
time system shown in Fig. 2.24. The block-

diagram analysis gives the follow ing input-

output relation for this system.

Y z

R z

()

()
 = G(z) =

z

z a z a2
1 2+ +

or Y(z) =
z

z a z a2
1 2+ +

 R(z)

+

+

+

+

Y z()

R z()

– a1

– a2

z–1 z–1

68 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For the impulse input, R(z) = 1. Therefore, response transform

 Y(z) =
z

z a z a2
1 2+ +

The impulse response of the system is given by

 y(k) = g(k) = Z
– 1 z

z a z a2
1 2+ +

È

Î
Í

˘

˚
˙

Assume that the poles of the response transform Y(z) are real and distinct:

 z2 + a1 z + a2 = (z – a1) (z – a2)

Partial fraction expansion of Y(z)/z is then of the form

Y z

z

()
 =

A

z

A

z

1

1

2

2-
+

-a a

where A1 and A2 are real constants.

This gives Y(z) =
A z

z

A z

z

1

1

2

2-
+

-a a
; y(k) = A1(a1)k + A2(a2)k

The time functions (a1)k and (a2)k are the response functions contributed by the system poles at z = a1 and

z = a2, respective ly. These time functions dictate the qualitative nature of the impulse response of the

system.

 A time function (a)k either grows or decays depending on |a | > 1 or |a | < 1, respectively. The growth or

decay is monotonic when a is positive and alternates in sign when a is negative. (a)k remains constant for

a = 1 and alternates in sign with constant amplitude for a = – 1 (Fig. 2.25).

Consider now the situation wherein the poles of response trans form Y(z) are complex.

For the complex-conjugate pole pair at z = p = R0e jW and z = p* = R0e–jW of Y(z), the response y(k) is

obtained as follows:

Y z

z

()
 =

A

z p

A

z p-
+

-
*

*

where A = |A| –f and A* is complex-conjugate of A.

The impulse response

 y(k) = A(p)k + A*(p*)k = A(p)k + [A(p)k]*

 = 2Re [A (p)k] = 2Re [|A| e jf R k
0 e jWk]

 = 2|A| R k
0 Re[e j(Wk + f)] = 2|A| R k

0 cos(W k + f)

Therefore, the complex-conjugate pair of poles of the response transform Y(z) gives rise to a sinusoidal

or oscillatory response function R k
0 cos(Wk + f), whose envelope R k

0 can be constant, growing or decaying

depending on whether R0 = 1, R0 > 1, or R0 < 1, respectively (Fig. 2.26).

For an nth-order linear discrete-time system, the response transform Y(z) has an nth-order characteristic

polynomial. Assume that Y(z) has a real pole at z = a of multiplicity m, and partial fraction expansion of

 Signal Processing in Digital Control 69

z-plane

Unit circle

a k a

z-plane

Unit circle

+

+

+

+

+

+

R0

k
 Wk + f R0

70 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Y(z) is of the form

 Y(z) =
A z

z

A z

z

m

m

m

m

1 1 1

1

() ()

() ()-
+

-
+-

-a a
 +

-
+

-
A z

z

A z

z

12

2

11

() ()a a
 (2.69)

where A1(m), ..., A12, A11 are real constants.

Response functions contributed by the real pole of multiplicity m can be evaluated as follows:

Consider the transform pair

z

z

k

-
´

a
a()

Application of the shifting theorem (Eqn. (2.47)) gives

1

11

z
kk

-
´ --

a
a m()

Using Eqn. (2.41),

 -
-

Ê
ËÁ

ˆ
¯̃

´ --z
d

dz z
k kk1

11

a
a m() or

z

z
k kk

()
()

-
´ --

a
a m

2

1 1

From this pair, we may write (Eqn. (2.47)),

1
1 2

2

2

()
() ()

z
k kk

-
´ - --

a
a m

Performing differentiation operation once again, we have

-
-

È

Î
Í

˘

˚
˙ ´ - --z

d

dz z
k k kk1

1 2
2

2

()
() ()

a
a m

or
z

z
k k kk

() !
() ()

-
´ - --

a
a m

3

21

2
1 2

In general,

z

z

k

k m m
k m

m

k m

()

!()

()! ()!
()

-
´

- + -
- +

- +

a

a
m

1

1 1
1 (2.70)

It can easily be established using final value theorem (Eqn. (2.52)) that each response function in Eqn.

(2.69) equals zero as k if |a| < 1. However, the response functions in Eqn. (2.69) grow without

bound for |a| ≥ 1.

Similar conclusions can be derived in case of response functions corresponding to complex-conjugate pair

of poles (R0e ± jW) of multiplicity m. The limit of each response function as k Æ equals zero if R0 < 1.

The case of R0 ≥ 1 contributes growing response functions.

From the foregoing discussion it follows that the nature of the response terms contributed by the

system poles (i.e., the poles of the transfer function G(z)), gives the nature of the impulse response g(k)

(= Z
–1[G(z)]) of the system. This, therefore, an swers the question of BIBO stability through condition

(2.68), which says that for a system with transfer function G(z) to be BIBO stable, it is necessary and

 Signal Processing in Digital Control 71

sufficient that

k =
Â

0

|g(k)| <

The nature of response terms contributed by various types of poles of G(z) =
N z

z

()

()D
, i.e., the roots of the

characteristic equation D(z) = 0, has already been investigated. Observing the nature of response terms

carefully, leads us to the following general conclusions on BIBO stability.

 (i) If all the roots of the characteristic equation lie inside the unit circle in the z-plane, then the

 impulse response is bounded and eventually decays to zero. Therefore,

k =
Â

0

 |g(k)| is finite and the

 system is BIBO stable.

 (ii) If any root of the characteristic equation lies outside the unit circle in the z-plane, g(k) grows

 without bound and

k =
Â

0

 |g(k)| is infinite. The system is, therefore, unstable.

 (iii) If the characteristic equation has repeated roots on the unit circle in the z-plane, g(k) grows

 without bound and

k =
Â

0

 |g(k)| is infinite. The system is, therefore, unstable.

 (iv) If one or more nonrepeated roots of the characteristic equation are on the unit circle in the

 z-plane, then g(k) is bounded but

k =
Â

0

 |g(k)| is infinite. The system is, therefore, unsta ble.

An exception to the definition of BIBO stability is brought out by the following observations. Consider

a system with transfer function

 G(z) =
N z

z z e z ej j

()

()()()- - - -1 W W

The system has nonrepeated poles on the unit circle in the z-plane. The response functions contributed

by the system poles at z = 1 and z = e± jW are respectively (l)k and cos(Wk + f). The terms (l)k and

cos(Wk + f) are bounded,

k =
Â

0

 | g(k)| is infinite and the system is unstable in the sense of our definition

of BIBO stability.

Careful examination of the input-output relation

 Y(z) = G(z)R(z) =
N z

z z e z ej j

()

()()()- - - -1 W W R(z)

shows that y(k) is bounded for all bounded r(k), unless the input has a pole matching one of the system

poles on the unit circle. For example, for a unit-step input r(k) = m(k),

 R(z) =
z

z -1
 and Y(z) =

zN z

z z e z ej j

()

() ()()- - - -1 2 W W

72 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The response y(k) is a linear combination of the terms cos(Wk + f), (l)k, and k(l)k, and therefore,

y(k) as k . Such a system, which has bounded output for all bounded inputs, except for the

inputs having poles matching the system poles, may be treated as acceptable or non-acceptable. We

will bring the situa tions where the system has nonrepeated poles on the unit circle under the class of

marginally stable systems.

This concept of stability is based on the dynamic evolution of the system state in response to arbitrary

initial state representing initial internal energy storage. State variable model (refer to Eqn. (2.17))

 x(k + 1) = Fx(k) (2.71)

is the most appropriate for the study of dynamic evolution of the state x(k) in response to the initial

state x(0).

We may classify stability as follows:

 (i) Unstable: There is at least one finite initial state x(0) such that x(k) grows thereafter without being

bound as k .

 (ii) Asymptotically stable: For all possible initial states x(0), x(k) eventually decays to zero as k .

 (iii) Marginally stable: For all initial states x(0), x(k) re mains thereafter within finite bounds for k > 0.

Taking z-transform on both the sides of Eqn. (2.71) yields

 z X(z) – z x(0) = FX(z) where X(z) =D Z [x(k)]

Solving for X(z), we get

 X(z) = (zI – F)–1zx(0) = F(z) x(0)

where

 F (z) = (zI – F)–1z =
()

| |

z z

z

I F

I F

-
-

+
 (2.72a)

The state vector x(k) can be obtained by inverse transforming X(z):

 x(k) = Z
–1[F(z)] x(0) (2.72b)

Note that for an n ¥ n matrix F, |zI – F| is an nth-order polynomial in z. Also, each element of the adjoint

matrix (zI – F)+ is a polynomial in z of order less than or equal to (n – 1). Therefore, each element of

F(z)/z is strictly a proper rational function, and can be expanded in a partial fraction expansion. Using

the time-response analysis given earlier in this section, it is easy to establish that

lim ()
k

k Æx 0

if all the roots of the characteristic polynomial |zI – F|, lie strictly inside the unit circle of the complex

plane. In Chapter 6 we will see that under mildly restrictive conditions (namely, the system must be both

controllable and observable), the roots of the characteristic polynomial |zI – F| are same as the poles of

the corresponding transfer function, and asymptotic stability ensures BIBO stability and vice versa. This

implies that stability analysis can be carried out using the BIBO stability test (or only the asymptotic

stability test).

 Signal Processing in Digital Control 73

We will use the following terminology and tests for stability analysis of linear time-invariant systems

described by the trans fer function G(z) = N(z)/D(z), with the characteristic equation D(z) = 0:

 (i) If all the roots of the characteristic equation lie inside the unit circle in the z-plane, the system is

stable.

 (ii) If any root of the characteristic equation lies outside the unit circle in the z-plane, or if there is a

repeated root on the unit circle, the system is unstable.

 (iii) If condition (i) is satisfied except for the presence of one or more nonrepeated roots on the unit

circle in the z-plane, the system is marginally stable.

It follows from the above discussion that stability can be established by determining the roots of the

characteristic equa tions. All the commercially available CAD packages ([151–154]) include root-solving

routines. However, there exist tests for determining the stability of a discrete-time system, without finding

the actual numerical values of the roots of the charac teristic equation.

A well-known criterion to test the location of zeros of the polynomial

 D(z) = a0 zn + a1 zn – 1 + + an – 1 z + an

where a’s are real coefficients, is the Jury stability criterion. The proof of this criterion is quite involved

and is given in the literature (Jury and Blanchard [98]). The criterion gives the necessary and sufficient

conditions for the roots to lie inside the unit circle. In the following, we present the Jury stability criterion

without proof.

In applying the Jury stability criterion to a given characteris tic equation D(z) = 0, we construct a table

whose elements are based on the coefficients of D(z).

Consider the general form of the characteristic polynomial D(z) (refer to Eqn. (2.60b)):

 D(z) = a0 zn + a1 zn –1 + + ak z
n – k + + an – 1 z + an; a0 > 0 (2.73)

The criterion uses the Jury stability table given in Table 2.2.

The Jury stability table is formed using the following rules:

 (i) The first two rows of the table consist of the coefficients of D(z), arranged in ascending order of

power of z in row 1, and in reverse order in row 2.

 (ii) All even-numbered rows are simply the reverse of the imme diately preceding odd-numbered rows.

 (iii) The elements for rows 3 through (2n – 3) are given by the following determinants:

 bk =
a a

a a

n n k

k

- -

+

1

0 1

; k = 0, 1, 2, ..., n – 1

 ck =
b b

b b

n n k

k

- - -

+

1 2

0 1

; k = 0, 1, 2, ..., n – 2 (2.74)

 qk =
p p

p p

k

k

3 2

0 1

-

+
 ; k = 0, 1, 2

74 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The procedure is continued until the (2n – 3)rd row is reached which will contain exactly three elements.

The necessary and sufficient conditions for polynomial D(z) to have no roots on and outside the unit

circle in the z-plane are:

 D(1) > 0

 D(–1)
>Ï

Ì
Ó

0 for even

<0 for odd

n

n
 (2.75a)

 | an | < | a0 |

| | | |

| | | |

| | | |

()

b b

c c

q q

n

n
n

-

-

>
>

>

¸

˝
Ô
Ô

˛
Ô
Ô

-

1 0

2 0

2 0

2

constraints (2.75b)

The conditions on D(1), D(–1), and between a0 and an in (2.75a) form necessary conditions of stability

that are very simple to check without carrying out the Jury tabulation.

It should be noted that the test of stability given in (2.75) is valid only if the inequality conditions provide

conclusive re sults. Jury tabulation ends prematurely if, either the first and the last elements of a row are

zero, or, a complete row is zero. These cases are referred to as singular cases. These problems can be

resolved by expanding and contracting the unit circle infini tesimally, which is equivalent to moving the

roots off the unit circle. The transformation for this purpose is

 ẑ = (1 + e)z

where e is a very small real number.

Row z0 z1 z2 z3 … zk … zn – 2 zn –1 zn

1 an an – 1 an – 2 an – 3
… an – k

… a2 a1 a0

2 a0 a1 a2 a3
… ak

… an – 2 an – 1 an

3 bn – 1 bn – 2 bn – 3 bn – 4
… bn – k – 1

… b1 b0

4 b0 b1 b2 b3
… bk

… bn – 2 bn – 1

5 cn – 2 cn – 3 cn – 4 cn – 5
… cn – k – 2

… c0

6 c0 c1 c2 c3
… ck

… cn – 2

…

2n – 5 p3 p2 p1 p0

2n – 4 p0 p1 p2 p3

2n – 3 q2 q1 q0

 Signal Processing in Digital Control 75

This transformation can easily be applied since

 (1 + e)n zn @ (1 + ne)zn

When e is a positive number, the radius of the unit circle is expanded to (1 + e), and when e is negative, the

radius of the unit circle is reduced to (1 – |e |). This is equivalent to moving the roots slightly. The difference

between the number of roots found inside (or outside) the unit circle when the circle is expanded and

contracted by e, is the number of roots on the circle [97].

Example 2.12

Consider the characteristic polynomial

 D(z) = 2z4 + 7z3 + 10z2 + 4z + 1

Employing stability constraints (2.75a), we get

 (i) D(1) = 2 + 7 + 10 + 4 + 1 = 24 > 0; satisfied

 (ii) D(–1) = 2 – 7 + 10 – 4 + 1 = 2 > 0; satisfied

 (iii) |1| < |2| ; satisfied

Next, we construct the Jury table:

Row z0 z1 z2 z3 z4

1 1 4 10 7 2

2 2 7 10 4 1

3 –3 –10 –10 –1

4 –1 –10 –10 –3

5 8 20 20

 Employing stability constraints (2.75b), we get

 (i) | –3| > | –1|; satisfied

 (ii) |8| > | 20 |; not satisfied

The system is, therefore, unstable.

Usefulness of the Jury stability test for the design of a digital control system from the stability point of

view, is demon strated in the next chapter.

The Jury criterion is of marginal use in designing a feedback system; it falls far short of the root locus

method discussed in Chapter 4. The root locus technique of factoring a polynomial is intrinsically

geometric, as opposed to the algebraic approach of the Jury criterion. The root locus method enables us

to rapidly sketch the locus of all solutions to the characteristic polynomial of the closed-loop transfer

function. The sketch is usually only qualitative, but even so, it offers great insight by showing how the

locations of the poles of closed-loop transfer function change as the gain is varied. As we will see in

Chapter 4, the root locus approach has been reduced to a set of ‘rules’. Applied in an orderly fashion,

these rules quickly identify all closed-loop pole locations.

76 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

2.10

The sampling operation—conversion of a continuous-time function to a sequence—has earlier been

studied in Section 2.6. We developed an impulse modulation model for the sampling operation (refer to

Fig. 2.19).

It is important to emphasize here that the impulse modulation model is a mathematical representation

of sampling; not a representation of any physical system designed to implement the sampling operation.

We have introduced this representation of the sampling operation because it leads to a simple derivation

of a key result on sampling (given in the next section) and because this approach allows us to obtain a

transfer function model of the hold operation.

2.10.1

It is the inverse of the sampling operation—conversion of a sequence to a continuous-time function. In

computer-controlled systems, it is necessary to convert the control actions calculat ed by the computer as

a sequence of numbers, to a continuous-time signal that can be applied to the process.

The problem of hold operation may be posed as follows:

Given a sequence {y(0), y(1), ..., y(k), ...}, we have to con struct ya(t), t ≥ 0.

A commonly used solution to the problem of hold operation, is polynomial extrapolation. Using Taylor’s

series expansion about t = kT, we can express ya(t) as

 ya(t) = ya(kT) + ya (kT) (t – kT) +
 y kTa ()

!2
 (t – kT)2 + ; kT £ t < (k + 1)T (2.76)

where

 ya(kT) =D
dy t

dt

a

t kT

()

=
 @ 1

T
[ya(kT) – ya((k – 1)T)]

 ya(kT) =D d y t

dt

a

t kT

2

2

()

=

 @ 1

T
[ya (kT) – ya((k – 1)T)]

 =
1
2T

[ya(kT) – 2ya((k – 1)T) + ya ((k – 2)T)]

If only the first term in expansion (2.76) is used, the data hold is called a zero-order hold (ZOH). Here

we assume that the func tion ya(t) is approximately constant within the sampling interval, at a value equal

to that of the function at the preceding sam pling instant. Therefore, for a given input sequence {y(k)},

the output of ZOH is given by

 ya(t) = y(k); kT £ t < (k + 1)T (2.77)

The first two terms in Eqn. (2.76) are used to realize the first-order hold. For a given input sequence

{y(k)}, the output of the first-order hold is given by

 ya(t) = y(k) +
t kT

T

-
[y(k) – y(k – 1)] (2.78)

 Signal Processing in Digital Control 77

It is obvious from Eqn. (2.76) that the higher the order of the derivative to be approximated, the larger will

be the number of delay pulses required. The time-delay adversely affects the stability of feedback control

systems. Furthermore, a high-order extrapolation requires complex circuitry and results in high costs of

construction. The ZOH is the simplest, and most commonly used, data hold device. The standard D/A

converters are often designed in such a way that the old value is held constant until a new conversion is

ordered.

2.10.2

In the digital control structure of Fig. 2.2,

discrete-time processing of continuous-

time signals is accomplished by the system

depicted in Fig. 2.27. The system is a

cascade of an A/D converter followed by a

discrete-time system (computer program),

followed by a D/A converter. Note that

the overall system is equivalent to a

continuous-time system, since it transforms

the continuous-time input signal xa(t) into

the continuous-time signal ya(t). However,

the properties of the system are dependent

on the choice of the discrete-time system

and the sampling rate.

In the special case of discrete-time signal

processing with a unit-gain algorithm, and

negligible time delay (i.e., y(k) = x(k)),

the combined action of the A/D converter,

the computer, and the D/A converter can

be described as a system that samples the

analog signal and produces another analog

signal that is constant over the sampling periods. Such a system is called a sample-and-hold (S/H) system.

Input-output behavior of an S/H system is described diagrammatically in Fig. 2.28. In the following, we

develop an idealized model for S/H systems.

S/H operations require modeling of the following two processes:

 (i) extracting the samples, and

 (ii) holding the result fixed for one period.

The impulse modulator effectively extracts the samples in the form of x(k)d (t – kT). The remaining

problem is to construct a linear time-invariant system which will convert this impulse into a pulse of

height x(k) and width T. The S/H may, therefore, be modeled by Fig. 2.29a, wherein the ZOH is a system

whose re sponse to a unit impulse d (t) is a unit pulse gh0(t) of width T. The Laplace transform of the

impulse response gh0(t) is the transfer function of the hold operation, namely,

Fig. 2.27

Fig. 2.28

78 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Gh0(s) = L
–1[gh0(t)] =

0

Ú gh0(t) e–stdt =

0

T

Ú e–st dt =
1 - -e

s

sT

 (2.79)

Figure 2.29b is a block diagram representation of the transfer function model of the S/H operation.

ZOH

(a)

(b)

T
x ta() x t*() y ta()

d()t

1 1

0t tT

g th0()

X sa()
T

Y sa()
G sh0() =

1 – e
s

–sT

X s*() =
k = 0

x k e() –skT

Fig. 2.29

In a majority of practical digital operations, S/H functions are performed by a single S/H device. It

consists of a capacitor, an electronic switch, and operational amplifiers (Fig. 2.30). Op amps are needed

for isolation; the capacitor and switch cannot be connected directly to analog circuitry because of the

capacitor’s effect on the driving waveform.

Since the voltage between the inverting and non-inverting inputs of an op amp is measured in microvolts,

we can approximate this voltage to zero. This implies that the voltage from the inverting input (– input)

to ground in Fig. 2.30 is approximately VIN; therefore, the output of first op amp is approximately VIN.

When the switch is closed, the capacitor rapidly charges to VIN, and VOUT is equal to VIN approximately.

When the switch opens, the capacitor retains its charge; the output holds at a value of VIN.

+
+ Hold

capacitor

Sample/hold
pulse

Control
logic

–
–

VIN

VOUT

Fig. 2.30

 Signal Processing in Digital Control 79

If the input voltage changes rapidly while the switch is closed, the capacitor can follow this voltage

because the charging time-constant is very short. If the switch is suddenly opened, the capacitor voltage

represents a sample of the input voltage at the instant the switch was opened. The capacitor then holds

this sample until the switch is again closed and a new sample is taken.

As an illustration of the application of a

sampler/ZOH circuit, consider the A/D

conversion system of Fig. 2.31. The two

subsystems in this figure correspond to

systems that are availa ble as physical

devices. The A/D converter converts a voltage (or current) amplitude at its input into a binary code

represent ing a quantized amplitude value closest to the amplitude of the input. However, the conversion

is not instantaneous. Input signal variation during the conversion time of the A/D converter (typical

conversion times of commercial A/D units range from 100 nsec to 200 m sec), can lead to erroneous

results. For this reason, a high performance A/D conversion system includes an S/H device, as shown in

Fig. 2.31.

Although an S/H is available commercially as one unit, it is advantageous to treat the sampling and

holding operations sepa rately for analytical purposes, as has been done in the S/H model of Fig. 2.29b.

This model gives the defining equation of the sampling process and the transfer function of the ZOH. It

may be emphasized here that X*(s) is not present in the physical system but appears in the mathematical

model; the sampler in Fig. 2.29 does not model a physical sampler and the block does not model a

physical data hold. However, the combination does accurately model a sampler/ZOH device.

2.11

We can get further insight into the process of sampling by relat ing the spectrum of the continuous-time

signal to that of the dis crete-time sequence, which is obtained by sampling.

Let us define the continuous-time signal by xa(t). Its spectrum is then given by Xa(jw), where w is the

frequency in radians per second. The sequence x(k) with value x(k) = xa(kT) is derived from xa(t) by

periodic sampling. Spectrum of x(k) is given by X(e jW) where the frequency W has units of radians per

sample interval.

The Laplace transform expresses an analog signal xa (t) as a continuous sum of exponentials est;

s = s + jw. The Fourier transform expresses xa(t) as a continuous sum of exponentials e jwt. Similarly

z-transform expresses a sequence x(k) as a discrete sum of phasors z–k; z = re jW. Fourier transform

expresses x(k) as a discrete sum of exponentials ejWk [31].

The Fourier transforms of xa(t) and x(k) are, respectively,

 Xa(jw) = Ú xa(t) e –jw t dt (2.80)

 X(e jW) =
k = -
Â x(k) e –jWk (2.81)

Fig. 2.31

80 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

We use the intermediate function x*(t)—the impulse modulated xa(t)—to establish a relation between

Xa(jw) and X(ejW).

The Fourier transform of x*(t), denoted by X* (jw), is (refer to Eqn. (2.30)) given by

 X*(jw) = x t e dtj t*() -Ú w = x k t kT e dt

k

j t() ()d w-
È

Î

Í
Í

˘

˚

˙
˙=

-ÂÚ
0

 = d w() ()t kT x k e dtj t

k

- -

= -
ÚÂ =

k = -
Â x(k)e–jkwT (2.82)

(The summation over the interval – to is allowed, since x(k) = 0 for k < 0). We have arrived at our

first intermediate result. By comparing Eqn. (2.82) with Eqn. (2.81), we observe that

 X(e jW) = X j
T

*()w
w =

W (2.83a)

X(e jW) is thus a frequency-scaled version of X*(jw) with the frequency scaling specified by

 W = wT (2.83b)

We now determine X*(jw) in terms of the continuous-time spectrum Xa(jw). From Eqn. (2.30), we have

 x*(t) =
k =
Â

0

x(k) d (t – kT) =
k =
Â

0

xa(t) d (t – kT) = xa(t)
k =
Â

0

 d (t – kT)

The summation over the interval – to is allowed since xa(t) = 0 for t < 0.

Therefore, x*(t) = xa(t)
k = -
Â d(t – kT)

A nonsinusoidal periodic signal y(t) of period T0 can be expanded through the Fourier series [31] as

 y(t) = c en
jn t

n

w0

=-
Â ; w0 = 2p /T0

 cn =
1

0
2

2

0

0

0

T
y t e jn t

T

T

()

/

/

-

-
Ú w

dt

Since
k = -
Â d (t – kT) is a periodic function of period T, it can be expressed in terms of the following

Fourier series expansion.

k = -
Â d(t – kT) =

n= -
Â cn e

j
n t

T

2p

where

 cn =
1

2

2

2

T
t kT e dt

k

j
nt

T

T

T

d

p

()

/

/

-
È

Î

Í
Í

˘

˚

˙
˙= -

-

-
ÂÚ

 =
1

2

2

2

T
t e dt

j
nt

T

T

T

d

p

()

/

/
-

-
Ú =

1 0

T
e j-

 =
1

T
 for all n

 Signal Processing in Digital Control 81

Substituting this Fourier series expansion into the impulse modulation process, we get

 x*(t) = xa(t)

k = -
Â d (t – kT)

 = xa(t)
1

2

T
e

n

j
nt

T

= -
Â

p

=
1

T
n= -
Â xa(t) e

j
nt

T

2p

The continuous-time spectrum of x*(t) is then equal to

 X*(jw) = Ú x*(t)e–jwt dt =
1

2

T
x t e e dta

j
nt

T

n

j t()

p
w

= -

-ÂÚ
È

Î

Í
Í

˘

˚

˙
˙

Interchanging the order of summation and integration, we obtain

 X*(jw) =
1

2

T
x t e dt

n

a

j
n

T
t

= -

- -Ê
ËÁ

ˆ
¯̃Â Ú

È

Î

Í
Í

˘

˚

˙
˙

()
w

p

 =
1 2

T
X j j

n

T
n

a

= -
Â -Ê

ËÁ
ˆ
¯̃

w
p

 (2.84a)

where Xa(jw) is the Fourier transform of xa(t).

We see from this equation that X*(jw) consists of periodically repeated copies of Xa(jw), scaled by 1/T.

The scaled copies of Xa(jw) are shifted by integer multiples of the sampling frequency

 ws =
2p

T
 (2.84b)

and then superimposed to produce X*(jw).

Equation (2.84a) is our second intermediate result. Combining this result with that given by Eqn. (2.83a),

we obtain the fol lowing relations:

 X*(jw) =
1 2

T
X j j

k

T
k

a

= -
Â -Ê

ËÁ
ˆ
¯̃

w
p

 (2.85a)

 X(e jW) = X j
T

*
WÊ

ËÁ
ˆ
¯̃

 =
1 2

T
X j

T
j

k

T
a

k

W
-Ê

ËÁ
ˆ
¯̃

= -
Â p

 (2.85b)

2.11.1

While sampling a continuous-time signal xa(t) to produce the sequence x(k) with values x(k) = xa(kT),

we want to ensure that all the information in the original signal is retained in the samples. There will be

no information loss if we can exactly recover the continuous-time signal from the samples. To determine

the condition under which there is no information loss, let us consider xa(t) to be a band-limited signal

with maximum frequency wm, i.e.,

 Xa(jw) = 0 for |w | > wm (2.86)

as shown in Fig. 2.32a. Figure 2.32b shows a plot of X*(jw) under the condition

w

s

2
 =

p

T
 > wm (2.87a)

82 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Figure 2.32c shows the plot of X(ejW), which is derived from Fig. 2.32b by simply scaling the frequency

axis.

(a)

(b)

(c)

(d)

X ja()w
1

0–wm wm w

X j*()w
1/T

–2p
T – p

T

–wm wm0
p
T

–2p
T

2p
T

w

X e()jW

1/T

0– 2p
–p

–wmT wmT 2p
p

X j*()w
1/T

– p
T p

T

2p
T

0

w1

wm w

2p
T

w– 1

w– m

W

Fig. 2.32

X *(jw) is seen to be a periodic function with period 2p/T (X(e jW) is a periodic function with period

2p). The spectrum X*(jw) for |w | £ p/T is identical to the continuous-time spectrum Xa(jw) except for

linear scaling in amplitude (the spec trum X(e jW) for |W | £ p is identical to the continuous-time spectrum

Xa(jw), except for linear scaling in amplitude and fre quency). The continuous-time signal xa(t) can be

recovered from its samples x(k) without any distortion by employing an ideal low-pass filter (Fig. 2.33).

Figure 2.32d shows a plot of X*(jw) under the condition

ws

2
 =

p
w

T
m< (2.87b)

The plot of X(ejW) can easily be derived from Fig. 2.32d by scaling the frequency axis.

 Signal Processing in Digital Control 83

It is obvious from Fig. 2.32d that the

shifted versions of Xa(jw) overlap;

X*(jw) in the range |w | £ p/T can be

viewed as being found by superimposing

onto this frequency range, the behavior

of the shifted versions of Xa(jw).

Consider an arbitrary frequency point w1

in Fig. 2.32d which falls in the region

of the overlap of shifted versions of Xa(jw). The frequency spectrum at w = w1 is the sum of two

components. One of these, the larger one in the figure, has a value equal to Xa(jw1). The other component

comes from the spectrum centered at 2p /T, and has a value equal to X j
T

a

2
1

p
w-Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

. Note that the

high frequency
2

1

p
w

T
-Ê

ËÁ
ˆ
¯̃

 is ‘folded in’ about the folding frequency p/T; and appears as low frequency

at w1. The frequency
2

1

p
w

T
-Ê

ËÁ
ˆ
¯̃

 which shows up at w1 after sampling, is called in the trade as the ‘alias’

of w1. The super imposition of the high-frequency behavior onto the low frequency is known as frequency

folding or aliasing. Under the condition given by (2.87b), the form of X*(jw) in the frequency range |w |

£ p/T is no longer similar to Xa(jw); therefore, the true spectral shape Xa(jw) is no longer recoverable by

low-pass filtering (refer to Fig. 2.33). In this case, the reconstructed signal xr(t) is related to the original

signal xa(t) through a distortion intro duced by aliasing and therefore, there is loss of information due to

sampling.

Example 2.13

We consider a simple example to illustrate the effects of alias ing.

Figure 2.34a shows a recording of the temperature in a thermal process. From this recording we observe

that there is an oscilla tion in temperature with a period of two minutes.

X ja()w T X*()jw
T

G j()w

X jr ()w

0 p
T

–p
T

w

Fig. 2.33

2 min

1.8 min

18 min

(a)

(b)

Fig. 2.34

84 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The sampled recording of the temperature obtained by measurement of temperature after every

1.8 minutes is shown in Fig. 2.34b. From the sampled recording, one might believe that there is an

oscillation with a period of 18 minutes. There seems to be loss of information because of the process of

sampling.

The sampling frequency is ws = 2p/1.8 = p/0.9 rad/min, and the frequency of temperature oscillation is

w0 = 2p/2 = p rad/min. Since w0 is greater than ws/2, it does not lie in the passband of a low-pass filter

with a cut-off frequency ws/2. However, the frequency w0 is ‘folded in’ at ws – w0 = p/9 rad/min which

lies in the passband of the low-pass filter. The reconstructed signal has, therefore, a period of 18 minutes,

which is the period of the sampled recording.

2.11.2

A corollary to the aliasing problem is the sampling theorem stated below.

Let xa(t) be a band-limited signal with Xa(jw) = 0 for |w | > wm. Then xa(t) is uniquely determined from

its samples x(k) = xa(kT) if the sampling frequency ws =Ê
ËÁ

ˆ
¯̃

2p

T
 > 2wm, i.e., the sampling frequen cy must

be at least twice the highest frequency present in the signal.

We will discuss the practical aspects of the choice of sampling frequency in Section 2.13.

2.12

Digital control systems usually require the transformation of discrete-time sequences into analog signals.

In such cases, we are faced with the converse problem from that of sampling xa(t) to obtain x(k). The

relevant question now becomes—how can xa(t) be recovered from its samples.

We begin by considering the unaliased spectrum of X*(jw) shown in Fig. 2.32b. Xa(jw) has the same

form as X*(jw) over
-

£ £
p

w
p

T T
. Xa(jw) can be recovered from X*(jw) by a low-pass filter.

Consider the ideal low-pass filter shown in Fig. 2.33. It is characterized by G(jw) defined below.

 G(jw) =
T

T T
for

otherwise

-
£ £È

Î

Í
Í
Í

p
w

p

0

 (2.88)

Note that the ideal filter given by Eqn. (2.88) has a zero phase characteristic. This phase characteristic

stems from our requirement that any signal whose frequency components are total ly within the passband

of the filter, be passed undistorted.

 We will need the following basic mathematical background in this section [31].

The Fourier transform pair:

 F [y(t)] = Y(jw) =D y t e dtj t() -Ú w

 Signal Processing in Digital Control 85

 F
 –1[Y(jw)] = y(t) =D

1

2p
w wwY j e dj t()Ú

Shifting theorem:

 F y t
T

-Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

2
 = e– jwT/2 Y(jw)

The impulse response of the ideal low-pass filter is given by inverse Fourier transformation.

 g(t) = 1

2p Ú G(jw) e jwt dw =
1

2p
ww

p

p

Te dj t

T

T

-
Ú

/

/

 =
T

j t
e ej t T j t T

2p
p p()/ /- -

 =
sin /

/

p

p

t T

t T
 (2.89)

Figure 2.35 shows a plot of g(t) versus t. Notice that the response extends from t = – to t = . This

implies that there is a response for t < 0 to a unit impulse applied at t = 0 (i.e., the time response that

begins before an input is applied). This cannot be true in the physical world. Hence, such an ideal filter

is physically unrealizable.

t

g t()

1

– 3T – T 0 3TT

Fig. 2.35

We consider polynomial holds as an approximation to the ideal low-pass filter. The ZOH was considered

in Section 2.10, and its transfer function was derived to be (Eqn. (2.79)),

 Gh0(s) =
1- -e

s

sT

Its frequency response is consequently given by

 Gh0(jw) =
1- -e

j

j Tw

w
 =

e e e

j

j T j T j T- --w w w

w

/ / /()2 2 2

 = T
T

T
e j Tsin (/)

/

/w

w
w2

2

2-
 (2.90)

Plot of
sin (/)

/

w

w

T

T

2

2
 versus w will be of the form shown in Fig. 2.35 with sign reversals at w =

2 4p p

T T
, , º

86 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

(i.e., w = ws, 2ws, …). The sign reversals amount to a phase shift of –180º (it can be taken as +180º as

well) at w = kws; k = 1, 2, …

Equation (2.90) can, therefore, be expressed as

 Gh0(jw) = |Gh0(jw) | –Gh0(jw)

where

 |Gh0(jw)| = T
sin(/)

/

w

w

T

T

2

2
 (2.91a)

and

 –Gh0(jw) =
-

-Ê
ËÁ

ˆ
¯̃

wT

2
180° at w =

2p k

T
; k = 1, 2, ... (2.91b)

A plot of magnitude and phase characteristics of ZOH are shown in Fig. 2.36. The ideal low-pass filter is

shown by dashed lines in Fig. 2.36a. The phase of the ideal filter, at all frequencies, is zero.

It is obvious that the hold device does not have the ideal filter characteristics.

 (i) The ZOH begins to attenuate at frequencies considerably below ws/2.

 (ii) The ZOH allows high frequencies to pass through, although they are attenuated.

Fig. 2.36

 Signal Processing in Digital Control 87

 (iii) The factor e– jwT/2 in Eqn. (2.90) corresponds to a delay of T/2 in the time domain. This follows

from the shifting theorem of Fourier transforms. Therefore, the linear phase characteristic

introduces a time delay of T/2. When ZOH is used in a feedback system, the lag characteristic of

the device degrades the degree of system stability.

The higher-order holds, which are more sophisticated and which better approximate the ideal filter,

are more complex and have more time delay than the ZOH. As the additional time delay in feedback

control systems decreases the stability margin or even causes instability, the higher-order holds are rarely

justified in terms of improved performance, and therefore, the zero-order hold is widely used in practice.

In practice, signals in control systems have frequency spectra consisting of low-frequency components

as well as high-frequency noise components. Recall that all signals with frequency higher than ws/2

appear as signals of frequencies between 0 and ws/2 due to the aliasing effect. Therefore, high-frequency

noise will be folded in and will corrupt the low-frequency signal containing the desired information.

To avoid aliasing, we must either choose the sampling frequency high enough (ws > 2wm, where wm

is the highest-frequency component present in the signal) or use an analog filter ahead of sampler

(refer to Fig. 2.2) to reshape the frequency spectrum of the signal (so that the frequency spectrum for

w > (1/2)ws is negli gible), before the signal is sampled. Sampling at very high fre quencies introduces

numerical errors. Anti-aliasing filters are, therefore, useful for digital control applications.

The synthesis of analog filters is now a very mature subject area. Extensive sets of tables exist, which

give, not only the frequency and phase response of many analog prototypes, but also the element values

necessary to realize those prototypes. Many of the design procedures for digital filters, have been

developed in ways that allow this wide body of analog filter knowledge, to be utilized effectively.

2.13

Every time a digital control algorithm is designed, a suitable sampling interval must be chosen. Choosing

a long sampling inter val reduces both the computational load and the need for rapid A/D conversion, and

hence the hardware cost of the project.

However, as the sampling interval is increased, a number of potentially degrading effects start to become

significant. For a particular application, one or more of these degrading effects set the upper limit for

the sampling interval. The process dynamics, the type of algorithm, the control requirement and the

characteristics of input and noise signals, all interact to set the maximum usable value for T.

There is also a lower limit for the sampling interval. Digital hardware dictates the minimum usable value

for T.

We will discuss some of the factors which limit the choice of sampling interval. Some empirical rules for

the selection of sampling interval are also reported.

88 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

2.13.1

The sampling theorem states that a continuous-time signal whose frequency spectrum is bounded by

upper limit wm, can be completely reconstructed from its samples when the sampling frequency is

ws > 2wm. There are two problems associated with the use of the sampling theorem in practical control

systems.

 (i) The frequency spectra of real signals do not possess strictly defined wm. There are almost always

frequency components outside the system bandwidth. Therefore, the selection of the sampling

frequency ws using the sampling theorem on the basis of system bandwidth (wb = wm) is risky, as

frequency components outside wb will appear as low-frequency signals of frequencies between 0

and ws /2 due to the aliasing effect, and lead to loss of information.

 (ii) The ideal low-pass filter needed for perfect reconstruction of a continuous-time signal from its

samples is not physically realizable. Practical filters, such as the ZOH, introduce recon struction

errors because of the limitations of their operation.

Figure 2.28 clearly indicates that the accuracy of the zero-order hold as an extrapolating device depends

greatly on the sampling frequency ws. The accuracy improves with increase in sampling frequency.

In practice, signals in control systems include low-frequency components carrying useful information,

as well as high-frequency noise components. The high-frequency components appear as low-frequency

signals (of frequencies between 0 and ws/2) due to the aliasing effect, causing a loss of information.

To avoid aliasing, we use the analog filter ahead of sampler (refer to Fig. 2.2) to reshape the frequency

spectrum of the signal, so that the frequency spectrum for w > (1/2)ws is negligible. The cut-off frequency

ws /2 of the anti-aliasing filter must be much higher than the system bandwidth, otherwise the anti-

aliasing filter becomes as significant as the system itself, in determining the sampled response.

Due to the conversion times and the computation times, a digital algorithm contains a dead-time that is

absent from its analog counterpart. Dead-time has a marked destabilizing effect on a closed-loop system

due to the phase shift caused.

A practical approach of selecting the sampling interval is to determine the stability limit of the closed-

loop control system, as sampling interval T is increased. For control system applica tions, this approach

is more useful than the use of the sampling theorem for the selection of sampling interval. In the later

chapters of this book, we will use stability tests, root-locus techniques, and frequency-response plots to

study the effect of the sampling interval on closed-loop stability.

A number of digital control algorithms are derived from analog algorithms by a process of discretization.

As we shall see in the next section, in the transformation of an algorithm, from contin uous-time to

 Signal Processing in Digital Control 89

discrete-time form, errors arise and the character of the digital algorithm differs from that of its analog

counter part. In general, these errors occurring during the discretiza tion process, become larger as the

sampling interval increases.

This effect should rarely be allowed to dictate a shorter sam pling interval, than would otherwise have

been needed. We will see in Chapter 4 that the direct digital design approach allows a longer sampling

interval without the introduction of unacceptable errors.

As the sampling interval T becomes very short, a digital system does not tend to the continuous-time

case, because of the finite word-length. To visualize this effect, we can imagine that as a signal is sampled

more frequently, adjacent samples have more similar magnitudes. In order to realize the beneficial effects

of shorter sampling, longer word-lengths are needed to resolve the differences between adjacent samples.

Excessively fast sampling (T Æ 0) may also result in numerical ill-conditioning in implementation of

recursive control algo rithms (such as the PID control algorithm—discussed in the next section).

2.13.2

Practical experience and simulation results have produced a number of useful approximate rules for the

specification of minimum sampling rates.

 (i) The recommendations given in the adjacent table

for the most common process variables follow

from the experience of process industries.

 (ii) Fast-acting electromechanical systems require

much shorter sampling intervals, perhaps down

to a few milliseconds.

 (iii) A rule of thumb says that, a sampling period

needs to be selected that is much shorter than

any of the time constants, in the continuous-time plant, to be controlled digitally. The sam pling

interval, equal to one tenth of the smallest time-constant, or the inverse of the largest real pole (or

real part of complex pole), has been recommended.

 (iv) For complex poles with the imaginary part wd, the frequency of transient oscillations, corresponding

to the poles, is wd. A convenient rule suggests sampling at the rate of 6 to 10 times per cycle.

Thus, if the largest imaginary part in the poles of the continuous-time plant is 1 rad/sec, which

corresponds to transient oscillations with a frequency of 1/6.28 cycles per second, T = 1 sec may

be satisfactory.

 (v) Rules of thumb based on the open-loop plant model, are risky under conditions where the high

closed-loop performance is forced from a plant with a low open-loop performance. The rational

choice of the sampling rate, should be based on an understanding of its influence on the closed-

loop performance of the control system. It seems reasonable that the highest frequency of

inter est, should be closely related to the 3dB-bandwidth of the closed-loop system. The selection

Type of variable
Sampling time

(seconds)

Flow 1–3

Level 5–10

Pressure 1–5

Temperature 10–20

90 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

of sampling rates can then be based on the bandwidth of the closed-loop system. Reasonable

sampling rates are 10 to 30 times the bandwidth.

 (vi) Another rule of thumb, based on the closed-loop performance, is to select sampling interval T

equal to, or less than, one tenth of the desired settling time.

2.14

Most of the industrial processes that we are called upon to control are continuous-time processes.

Mathematical models of continuous-time processes are usually based around differential equations or,

equivalently, around transfer functions in the operator s. A very extensive range of well-tried methods for

control system analysis and design are in the continuous-time form.

To move from the continuous-time form to the discrete-time form requires some mechanism for time

discretization (we shall refer to this mechanism simply as discretization). In this section, principles and

various methods of discretization will be presented. An understanding of various possible approaches

helps the formation of a good theoretical foundation for the analysis and design of digital control systems.

The main point is to be aware of the significant features of discretization and to have a rough quantitative

understanding of the errors that are likely to be introduced by various methods. We will shortly see that

none of the discretization methods preserves the characteristics of the continuous-time system exactly.

The specific problem of this section is: given a transfer func tion G(s), what discrete-time transfer function

will have approx imately the same characteristics?

We present four methods for solution of this problem.

 (i) Impulse-invariant discretization

 (ii) Step-invariant discretization

 (iii) Discretization based on finite-difference approximation of derivatives

 (iv) Discretization based on bilinear transformation

2.14.1

If we are given a continuous-time impulse response ga(t), we can consider transforming it to a discrete-

time system with impulse response g(k) consisting of equally spaced samples of ga(t) so that

 g(k) = ga(t) | t = kT = ga(kT)

where T is a (positive) number to be chosen as part of the dis cretization procedure.

The transformation of ga(t) to g(k) can be viewed as impulse modulation (refer of Fig. 2.19) giving

impulse-train representation g*(t) to the samples g(k):

 g*(t) =
k =
Â

0

 g(k)d(t – kT) (2.92)

From the discussion in Section 2.11, and specifically Eqns (2.85), it follows that

 G*(jw) =
1

T
k = -
Â G j j

k

T
a w -Ê

ËÁ
ˆ
¯̃

2p
 (2.93a)

 Signal Processing in Digital Control 91

 G(e jW) = 1 2

T
G j

T
j

k

T
a

k

W
-Ê

ËÁ
ˆ
¯̃

=-
Â p (2.93b)

w, in radians/second, is the physical frequency of the continu ous-time function and W = wT, in radians,

is the observed fre quency in its samples.

Thus, for a discrete-time system obtained from a continuous-time system through impulse invariance,

the discrete-time frequency response G(e jW) is related to the continuous-time frequency response

Ga(jw) through replication of the continuous-time fre quency response and linear scaling in amplitude

and frequency. If Ga(jw) is band-limited and T is chosen so that aliasing is avoid ed, the discrete-time

frequency response is then identical to continuous-time frequency response, except for linear scaling in

amplitude and frequency.

Let us explore further the properties of impulse invariance. Applying the Laplace transform to

Eqn. (2.92), we obtain (refer to Eqn. (2.32b))

 G*(s) =

k =
Â

0

 g(k) e–skT (2.94a)

On the other hand, the z-transform of g (k) is, by definition,

 G(z) =

k =
Â

0

 g(k) z –k (2.94b)

Comparing Eqns (2.94a) and (2.94b), it follows that

 G z

z esT

()

=

 = G*(s) (2.95a)

Rewriting Eqn. (2.93a) in terms of the general transform variable s, gives a relationship between G*(s)

and Ga(s):

 G*(s) =
1 2

T
G s

k

T
a

k

-Ê
ËÁ

ˆ
¯̃

= -
Â p

 (2.95b)

Therefore, G z

z esT

()

=

 =
1 2

T
G s

k

T
a

k

-Ê
ËÁ

ˆ
¯̃

= -
Â p

 (2.95c)

 We note that impulse invariance corresponds to a transformation between G*(s) and G(z) represented by

the mapping

 z = esT= e(s ± jw)T = esT – ± wT (2.96)

between the s-plane and the z-plane.

In the following, we investigate in more detail the mapping z = esT. We begin by letting ga(t) = e–atm(t);

a > 0. The Laplace transform of this function is

 Ga (s) =
1

s a+
 (2.97a)

The starred transformation is (refer to Eqn. (2.32b))

 G*(s) = e eakT kTs

k

- -

=
Â

0

=
e

e e

sT

sT aT- - (2.97b)

92 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Under the mapping z = esT, G*(s) is mapped into the z-transform

 G(z) =
z

z e aT- - (2.97c)

The function Ga(s) has a pole at s = – a. The poles of G*(s) are at s = – a ± j2mp / T; m = 0, 1, 2, Thus

G*(s) has a countably infinite number of poles, one of which is the pole of Ga(s) at s = – a, as shown in

Fig. 2.37a. We see that the poles of G*(s) consist of a pole of Ga(s) and copies of this pole, repeated at

intervals of 2p/T. The same would be true for any other function whose Laplace transform exists. The poles

of the Laplace transform will lie in a strip of width 2p/T centered on the real axis of the s-plane. This strip

is called the primary strip. These poles are then repeated in complementary strips, above and below the

primary strip (refer to Fig. 2.37a).

Suppose we map the primary strip of the s-plane into the z-plane. We begin by mapping the points of

a vertical line s = s + jw, where s < 0 is fixed. Under the mapping z = esT, a point on this line maps to

 z = e e ej T T j T()s w s w+ =

The term esT is a real number that can be thought of as a scaling factor for the unit phasor e jwT .

If
-

£ £
p

w
p

T T
, and s is fixed with s < 0, then the mapping is a circle with radius less than one. If

s = 0, the line segment, maps onto the unit circle. For clarity, the circles in Fig. 2.37b have been divided

Fig. 2.37 z

 Signal Processing in Digital Control 93

into dashed and solid portions; the solid portions correspond to mapping for 0 £ w £ p/T and the dashed

portions correspond to mapping for - £ £
p

w
T

0 .

The following points are worth noting at this juncture.

 (i) The left half of the primary strip in the s-plane maps onto the interior of the unit circle, in the

z-plane.

 (ii) The imaginary axis between –jp /T and jp /T associated with primary strip in the s-plane, maps

onto the unit circle in the z-plane.

 (iii) The right half of the primary strip in the s-plane, maps onto the region, exterior to the unit circle,

in the z-plane.

 (iv) The same pattern holds for each of the complementary strips.

 The fourth point needs further discussion. We consider

 ga(t) = cos (wt)

 The corresponding Laplace transform is

 Ga(s) =
s

s

s

s j s j2 2+ - +w w w
=

()()

 and the z-transform is

 G (z) =
z z T

z e z ej T j T

(cos)

()()

-

- - -
w

w w

The s-plane poles: s = jw and s = – jw, in the primary strip are mapped to the z-plane poles: z = e jwT and

z = e – jwT, respectively. However, these z-plane poles are also maps of s-plane poles: s = jw + 2p /T and

s = – jw + 2p /T; s = jw –2p /T and s = – jw – 2p /T; s = jw + 4p /T and s = –jw + 4p/T; s = jw – 4p /T

and s = – jw – 4p/T;..., in the complementary strips. The z-plane poles: z = ejwT and z = e – jwT, cannot

distinguish the poles in the primary strip from the poles in the complementary strips. Thus the largest

frequency we can distinguish is w = p/T, which is half of the sampling frequency 2p/T.

While sampling a continuous-time signal to produce the discrete-time sequence, we want to ensure that

all the information in the original signal is retained in the samples. There will be no information loss if

we can exactly recover the continuous-time signal from the samples. To determine the condition under

which there is no information loss, let us consider the continuous-time signal to be band-limited signal

with maximum frequency wm. From Fig. 2.37, we observe that there is no information loss if

p
w

T
m<

This, in fact, is the sampling theorem.

In summary, the use of impulse invariance corresponds to convert ing the continuous-time impulse

response to a discrete-time impulse response through sampling. To avoid aliasing, the proce dure is

restricted to transforming band-limited frequency re sponses. Except for aliasing, the discrete-time

frequency re sponse is a replication of the continuous-time frequency response, linearly scaled in

amplitude and frequency.

94 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Although useful for discretizing band-limited analog systems, the impulse-invariance method is

unsuccessful for discretizing trans fer functions Ga(s) for which |Ga(jw)| does not approach zero for

large w. In these cases, an appropriate sampling rate cannot be found to prevent aliasing.

To overcome the problem of aliasing, we need a method in which the entire jw-axis in the s-plane, maps

uniquely onto the unit circle in the z-plane. This is accomplished by the bilinear transformation method,

described later in this section.

For a given analog system Ga(s), the impulse-invariant discrete-time system is obtained following the

procedure given below:

 (i) Obtain the impulse response,

 ga(t) = L – 1[Ga(s)]

 (ii) Select a suitable sampling interval and derive samples g(k) from ga(t),

 g(k) = ga(t)|t = kT

 (iii) Obtain z-transform of the sequence g(k),

 G(z) = Z [g(k)]

 The three steps given above can be represented by the following relationship:

 G(z) = Z [L –1[Ga(s)]|t = kT] (2.98a)

 This z-transform operation is commonly indicated as

 G(z) = Z [Ga(s)] (2.98b)

 Single factor building blocks of the Laplace and z-transform pairs are given in Table 2.1. Expanding

any Ga(s) into partial fractions, G(z) can be found by use of this table.

Example 2.14

With the background on analog design methods, the reader will appreciate the value of being able to

correlate particular pat terns in the s-plane with particular features of system be havior. Some of the useful

s-plane patterns, which have been used in analog design, are the loci of points in the s-plane with (i)

constant damping ratio z, and (ii) constant undamped natural frequency wn. In this example, we translate

these patterns in the primary strip of the s-plane onto the z-plane using the basic rela tion z = e sT, where

T is some chosen sampling period.

Consider a second-order system with transfer function

 Ga(s) =
K

s sn n
2 22+ +zw w

where z = damping ratio, and wn = undamped natural frequency.

The characteristic root locations in the s-plane are

 s1, s2 = – zwn ± jwn 1 2-z = – zw n ± jwd

Figure 2.38a shows a locus of the characteristic roots, with z held constant and wn varying. Figure 2.38b

shows a locus with wn held constant and z varying. The loci in Figs 2.38a and 2.38b, correspond to an

underdamped second-order system.

 Signal Processing in Digital Control 95

Define the sampling frequency by

 ws = 2p /T

Corresponding to each point s = s + jw in the primary strip of the s-plane, there is a point

 z = exp[(s + jw)2p /ws]

in the z-plane.

 (i) Mapping of constant damping ratio loci

 A point on the constant-z line in the second quadrant (Fig. 2.38a), can be expressed as

 s = s + jwd = – zwn + jwn 1 2-z

 Since cotq =
zw

w
n

d

 =
zw

w z

n

n 1 2-
 =

z

z1 2-
,

 the s-plane point may be described by the relation

 s = – wd cotq + jwd

Constant-z
locus

–zwn

jwd

jwjw

T 2
=

Constant-wn

locus

Constant-w

w p
n

n

locus

(= 6 /10)T

w pd /2T=

Constant-z

locus (z = 0.6)

(a)

Im

ReRe

11

Im

(b)

wsp

q

s

jwn

jwd

–zwn s

wd = 0

w pd /T=

(c) (d)

j j

 Fig. 2.38 z wn s z

96 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 The z-plane relation becomes

 z = exp [(– wd cotq + jwd) 2p /ws] = exp [((– 2p cotq)/ws) wd] exp [j(2p/ws) wd]

 where wd varies from 0 to ws/2.

 As per this equation, for a constant value of z (and hence cotq), z is a function of wd only. The constant

damping ratio line in the s-plane maps into the z-plane as a logarithmic spiral (except for q = 0º and

q = 90º). The portion of z-line between wd = 0 and wd = ws/2 corresponds to one half revolution

of the logarithmic spiral in the z-plane. Mapping of one representative constant-z line is shown

in Fig. 2.38c.

 (ii) Mapping of constant undamped natural frequency loci

 A point on the constant-wn locus in the second quadrant (Fig. 2.38b), can be expressed as

 s = s + jwd = – zwn + jwd

 It lies on the circle given by

 s2 + w 2
d = w 2

n

 For points in the second quadrant,

 s = – w wn d
2 2-

 The locus of constant-wn in the z-plane is given by the relation

 z = e
n d dj T- - +()w w w2 2

 where wd varies from 0 to ws/2.

 Mapping of one representative constant-wn locus is shown in Fig. 2.38d.

2.14.2

The basis for impulse invariance is to choose an impulse response for the discrete-time system that is

similar to the impulse re sponse of the analog system. The use of this procedure is often motivated not so

much by a desire to preserve the impulse-response shape, as by the knowledge that if the analog system

is band-limited, then the discrete-time frequency response will closely approximate the continuous-time

frequency response.

In some design problems, a primary objective may be to control some aspect of the time response, such

as the step response. In such cases, a natural approach might be to discretize the continuous-time system

by waveform-invariance criteria. In this subsection, we consider the step-invariant discretization.

The step-invariant discrete-time system is obtained by placing a unit step on the input to the analog

system Ga(s), and a sampled unit step on the input to the discrete-time system. The transfer function G(z)

of the discrete-time system is adjusted, until the output of the discrete-time system represents samples of

the output of the analog system. The input to the analog system Ga(s) is m(t)—a unit-step function. Since

L [m(t)] = 1/s, the output y(t) of the analog system is given by

 Signal Processing in Digital Control 97

 y(t) = L
–1

G s

s

a ()Ï
Ì
Ó

¸
˝
˛

Output samples of the discrete-time system are defined to be

 y(kT) = L
–1

G s

s

a

t kT

()Ï
Ì
Ó

¸
˝
˛ =

The z-transform of this quantity yields the z-domain output of the discrete-time system. This gives

 Y(z) = Z L
-

=

Ï
Ì
Ó

¸
˝
˛

È

Î
Í
Í

˘

˚
˙
˙

1 G s

s

a

t kT

()
 (2.99a)

Since Z [m(k)] =
z

z -1
, where m(k) is the unit-step sequence, the output y(k) of the discrete-time

system G(z) is given by

 Y(z) = G(z)
z

z -
Ï
Ì
Ó

¸
˝
˛1

 (2.99b)

Comparing Eqn. (2.99b) with Eqn. (2.99a), we obtain

 G(z) = (1 – z–1) Z L
-

=

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

Í
Í

˘

˚

˙
˙

1 G s

s

a

t kT

()
 (2.100a)

or G(z) = (1 – z–1) Z
G s

s

a ()Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ (2.100b)

 Notice that Eqn. (2.100b) can be rewritten as follows:

 G(z) =
-È

Î
Í
Í

˘

˚
˙
˙

-
Z

1 e

s
G s

sT

a () (2.100c)

This can easily be established.

Let L
–1 G s

s

a ()È

ÎÍ
˘

˚̇
 = g1(t), and Z [g1(kT)] = G1(z)

Then L
–1 e

G s

s

sT a-È

ÎÍ
˘

˚̇

()
 = g1(t – T), and Z [g1(kT – T)] = z–1 G1(z)

Therefore,

 Z
G s

s
e

G s

s

a sT a() ()
-È

ÎÍ
˘

˚̇
- = (1 – z–1) Z

G s

s

a ()È

ÎÍ
˘

˚̇

This establishes the equivalence of Eqns (2.100b) and (2.100c).

The right-hand side of Eqn (2.100c) can be viewed as the z-transform of the analog system Ga(s),

preceded by zero-order hold (ZOH). Introducing a fictitious sampler and ZOH for analytical purposes,

we can use the model of Fig. 2.39 to derive a step-invariant equivalent of analog systems. For obvious

reasons, step-invariant equivalence is also referred to as ZOH equivalence. In the next chapter, we will

use the ZOH equivalence to obtain dis crete-time equivalents of the plants of feedback control systems.

98 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

x t() x t*()
T

1 – e–sT

s
G s()a

y t()

Fig. 2.39 Ga s

Equivalent discrete-time systems obtained by the step-invariance method, may exhibit the frequency

folding phenomena and may, therefore, present the same kind of aliasing errors as found in impulse-

invariance method. Notice, however, that the presence of 1/s term in Ga(s)/s causes high-frequency

attenuation. Conse quently, the equivalent discrete-time system obtained by the step-invariance method,

will exhibit smaller aliasing errors than that obtained by the impulse-invariance method.

As for stability, the equivalent discrete-time system obtained by the step-invariance method is stable if

the original continuous-time system is a stable one (refer to Review Example 6.2).

Example 2.15

Figure 2.40 shows the model of a plant driven by a D/A converter. In the following, we derive the

transfer function model relating y(kT) to r(kT).

r kT()
D/A G s() =a

0.5 (+ 4)s

(+ 1)s (+ 2)s

y t()

Fig. 2.40

The standard D/A converters are designed in such a way, that the old value of the input sample is held

constant until a new sample arrives. The system of Fig. 2.40 can, therefore, be viewed as an analog

system Ga(s), preceded by zero-order hold, and we can use ZOH equivalence to obtain the transfer

function model relating y(kT) to r(kT).

 Zero-order hold equivalent (step-invariant equivalent) of Ga(s) can be deter mined as follows:

Since
1

s
G sa () =

0 5 4

1 2

. ()

() ()

s

s s s

+
+ +

 =
1 1 5

1

0 5

2s s s
-

+
+

+
. .

we have (refer to Table 2.1)

 Z
1

s
G sa ()

È

ÎÍ
˘

˚̇
 =

z

z

z

z e

z

z eT T-
-

-
+

-- -1

1 5 0 5
2

. .

From Eqn. (2.100b),

 G(z) =
z

z

z

z

z

z e

z

z eT T

-
-

-
-

+
-

È

ÎÍ
˘

˚̇- -
1

1

1 5 0 5
2

. .
 = 1

1 5 1 0 5 1
2

-
-

-
+

-

-- -
. () . ()z

z e

z

z eT T

Let the sampling frequency be 20 rad/sec, so that

 T =
2

20

p
 = 0.31416 sec; e–T = 0.7304; e–2T = 0.5335

 Signal Processing in Digital Control 99

With these values, we get the following step-invariant equivalent of the given analog system:

 G(z) =
0 17115 0 04535

1 2639 0 38972

. .

. .

z

z z

-

- +

2.14.3

Another approach to transforming a continuous-time system into a discrete-time one is to approximate

derivatives in a differential equation representation of the continuous-time system by finite differences.

This is a common procedure in digital simulations of analog systems, and is motivated by the intuitive

notion that the derivative of a continuous-time function, can be approximated by the difference between

consecutive samples of the signal to be differentiated. To illustrate the procedure, consider the first-order

differential equation

dy t

dt
ay t

()
()+ = r(t) (2.101)

The backward-difference method consists of replacing r(t) by r(k), y(t) by y(k); and the first derivative

dy(t)/dt by the first backward-difference

dy t

dt t kT

()

=
 =

y k y k

T

() ()- -1
 (2.102)

This yields the difference equation

y k y k

T

() ()- -1
 + ay(k) = r(k) (2.103)

If T is sufficiently small, we would expect the solution y(k) to yield a good approximation to the samples

of y(t).

To interpret the procedure in terms of a mapping of continuous-time function Ga(s) to a discrete-time

function G(z), we apply the Laplace transform to Eqn. (2.101) and z-transform to Eqn. (2.103), to obtain

 sY(s) + aY(s) = R(s) ; so that Ga(s) =
Y s

R s

()

()
 =

1

s a+

1 1-Ê

Ë
Á

ˆ

¯
˜

-z

T
Y(z) + a Y(z) = R(z) ; so that G(z) =

Y z

R z

()

()
 =

1

1 1-Ê

Ë
Á

ˆ

¯
˜ +

-z

T
a

Comparing Ga(s) with G(z), we see that

 G(z) = G sa

s z T

()

() /= - -1 1

Therefore, s =
1 1- -z

T
; z =

1

1- sT
 (2.104)

is a mapping from the s-plane to the z-plane when the backward-difference method is used to discretize

Eqn. (2.101).

100 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The stability region in the s-plane can be mapped by Eqn. (2.104) into the z-plane as follows. Noting

that the stable region in the s-plane is given by Re(s) < 0, the stability region in the z-plane under the

mapping (2.104), becomes

 Re
1 1-Ê

Ë
Á

ˆ

¯
˜

-z

T
 = Re

z

T z

-Ê
ËÁ

ˆ
¯̃

1
 < 0

Writing the complex variable z as a + jb, we may write the last inequality as

 Re
a b

a b

+ -
+

Ê
ËÁ

ˆ
¯̃

j

j

1
 < 0

or Re
()a b a b

a b

+ - -()
+

È

Î
Í
Í

˘

˚
˙
˙

j j1

2 2
 = Re

a a b b

a b

2 2

2 2

- + +

+

È

Î
Í
Í

˘

˚
˙
˙

j
 =

a a b

a b

2 2

2 2

- +

+
 < 0

which can be written as

 (a – 1/2)2 + b2 < (1/2)2

The stable region in the s-plane can thus be mapped into a circle with center at a = 1/2, b = 0 and radius

equal to 1/2, as shown in Fig. 2.41a.

Fig. 2.41

 Signal Processing in Digital Control 101

The backward-difference method is simple and will produce a stable discrete-time system for a stable

continuous-time system. Also, the entire s-plane imaginary axis is mapped once and only once onto the

small z-plane circle; the folding or aliasing problems do not occur. The penalty is a ‘warping’ of the

equiva lent s-plane poles, as shown in Fig. 2.41b. This situation is reflected in the relationship between

the exact z-transformation, and the backward-difference approximation.

Consider a pole in z-plane at z = e jaT. Inverse mapping of this pole to the s-plane, using the transformation

s = ln z/T, gives s = ja (shown in Fig. 2.41b). Inverse mapping of the pole in the z-plane at z = e jaT to the

s-plane, using the backward-difference approximation s = (1– z –1)/T, gives s = jâ = (1 – e –jaT)/T (also

shown in Fig. 2.41b).

Thus a nonlinear relationship or ‘warping’:

 jâ = (1 – e –jaT)/T (2.105)

exists between the two poles ja and jâ in the s-plane. Note that for small aT, using the first two terms of

the expansion of the exponential in Eqn. (2.105), yields

 ja
T

jaTˆ ()@ - -[]1
1 1

 @ ja

The ‘warping’ effect is thus negligible for relatively small aT (about 17° or less).

Let us now investigate the behavior of the equivalent discrete-time system when the derivative dy(t)/dt in

Eqn. (2.101), is replaced by forward difference:

dy t

dt t kT

()

=

 =
y k y k

T

() ()+ -1

This yields the following difference equation approximation for Eqn. (2.101):

y k y k

T

() ()+ -1
 + ay(k) = r(k) (2.106)

Applying Laplace transform to Eqn. (2.101) and z-transform to Eqn. (2.106), we obtain

Y s

R s

()

()
 = Ga(s) =

1

s a+
 (2.107a)

and
Y z

R z

()

()
 = G(z) =

1

1z

T
a

-
+

 (2.107b)

The right-hand sides of Eqns (2.107a) and (2.107b) become identical if we let

 s =
z

T

-1
 (2.108)

We may consider Eqn. (2.108) to be the mapping from the s-plane to the z-plane, when the forward-

difference method is used to discre tize Eqn. (2.101).

One serious problem with the forward-difference approximation method is regarding stability. The left-

hand side of the s-plane is mapped into the region Re
z

T

-Ê
ËÁ

ˆ
¯̃

1
< 0 or Re (z) < 1. This mapping shows

102 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

that the poles of the left half of the s-plane, may be mapped outside the unit circle in z-plane. Hence the

discrete-time system obtained by this method may become unstable.

Consider the continuous-time system (2.101):

 y (t) = – ay(t) + r(t) (2.109a)

or y(t) = y(0) – a y d r d

t t

() ()t t t t

0 0

Ú Ú+ (2.109b)

In numerical analysis, the procedure known as the rectangular rule for integration proceeds by

approximating the continuous-time function by continuous rectangles, as illustrated in Fig. 2.42, and

then adding their areas to compute the total integral. We thus approximate the area as given below.

 (i) Forward rectangular rule for integration

 y t dt

k T

kT

()

()-
Ú
1

 @ [y(k – 1)]T (2.110a)

 (ii) Backward rectangular rule for integration

 y t dt

k T

kT

()

()-
Ú
1

 @ [y(k)]T (2.110b)

With the forward rule for integration, the continuous-time system (2.109) is converted to the following

recursive algorithm:

 y(k) = y(k – 1) – aTy(k – 1) + Tr (k – 1)

The z-transformation of this equation gives

 Y(z) = z–1 Y(z) – aT z–1 Y(z) + T z–1 R(z)

or
Y z

R z

()

()
 =

1

1z

T
a

-
+

2T 2T3T 3T

y t() y t()

0 T t tT0

(a) (b)

 Fig. 2.42

 Signal Processing in Digital Control 103

Laplace transformation of Eqn. (2.109a) gives the transfer func tion of the continuous-time system:

Y s

R s

()

()
 =

1

s a+

The forward rectangular rule for integration thus results in the s-plane to z-plane mapping:

 s =
z

T

-1

which is same as the one obtained by forward-difference approxi mation of derivatives (Eqn. (2.108)).

Similarly, it can easily be established that the backward rectangular rule for integration results in s-plane

to z-plane mapping, which is same as the one obtained by backward-difference approximation of

derivatives (Eqn. (2.104)).

Example 2.16

The simplest formula for the PID or three-mode controller is the addition of the proportional, integral, and

derivative modes:

 u(t) = Kc
e t

T
e t dt T

de t

dtI
D

t

() ()
()

+ +
È

Î

Í
Í

˘

˚

˙
˙Ú1

0

 (2.111)

where

 u = controller output signal;

 TI = integral or reset time;

 e = error (controller input) signal;

 TD = derivative or rate time; and

 K = controller gain.

For the digital realization of the PID controller, it is necessary to approximate each mode in Eqn. (2.111)

using the sampled values of e(t).

The proportional mode requires no approximation since it is a purely static part:

 uP(k) = Kc e(k)

The integral mode may be approximated by the backward rectangular rule for integration. If S(k – 1)

approximates the area under the e(t) curve up to t = (k – 1)T, then the approximation to the area under the

e(t) curve up to t = kT is given by (refer to Eqn. (2.110b))

 S(k) = S(k – 1) + Te(k)

A digital realization of the integral mode of control is as follows:

 uI(k) =
K

T

c

I

 S(k)

where S(k) = sum of the areas under the error curve = S(k – 1) + Te(k)

104 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The derivative mode may be approximated by the backward-difference approximation:

de t

dt t kT

()

=
 =

e k e k

T

() ()- -1

Therefore, uD(k) =
K T

T

c D
 [e(k) – e(k – 1)]

Bringing all the three modes together, results in the following PID algorithm:

 u(k) = uP(k) + uI(k) + uD(k)

 = Kc e k
T

S k
T

T
e k e k

I

D() () [() ()]+ + - -
È

Î
Í

˘

˚
˙

1
1 (2.112a)

where S(k) = S(k – 1) + Te(k) (2.112b)

We can directly use the s-plane to z-plane mapping given by Eqn. (2.104) to obtain the discrete equivalent

(2.112) of the PID con troller (2.111).

The PID controller (2.111), expressed in terms of operator s, is given by the input-output relation

 U(s) = Kc 1
1

+ +
È

Î
Í

˘

˚
˙

T s
T s

I
D E(s) (2.113a)

The mapping (2.104):

 s =
1 1- -z

T

corresponds to backward-difference approximation of derivatives. This mapping transforms Eqn.

(2.113a) to the following system:

 U(z) = Kc 1
1

1
1

1

1+
-

Ê
ËÁ

ˆ
¯̃

+ -
È

Î
Í

˘

˚
˙-

-T

T z

T

T
z

I

D () E(z) (2.113b)

This is the input-output relation of the PID controller in terms of operator z. By the inverse transform

operation, we can express individual control modes by difference equations:

 (i) uP(k) = Kc e(k)

 (ii) uI(k) – uI(k – 1) =
K T

T

c

I

e(k)

 or uI(k) = uI(k – 1) +
K T

T

c

I

 e(k) =
K

T

c

I

 S(k)

 where S(k) = S(k – 1) + T e(k)

 (iii) uD(k) =
K T

T

c D
 [e(k) – e(k – 1)]

Bringing all the three modes together results in the PID algo rithm given by Eqns (2.112).

 Signal Processing in Digital Control 105

2.14.4

The technique, based on finite-difference approximation to differential equations, for deriving a

discrete- time system from an analog system, has the advantage that z-transform of the discrete-time

system, is trivially derived from the Laplace trans form of the analog system by an algebraic substitution.

The disadvantages of these mappings are that jw-axis in the s-plane, generally does not map into the

unit circle in the z-plane, and (for the case of forward-difference method) stable analog systems may not

always map into stable discrete-time systems.

A nonlinear one-to-one mapping from the s-plane to the z-plane which eliminates the disadvantages

mentioned above and which preserves the desired algebraic form is the bilinear8 transforma tion defined

by

 s =
2 1

1T

z

z

-
+

Ê
ËÁ

ˆ
¯̃ (2.114)

This transformation is invertible with the inverse mapping given by

 z =
1 2

1 2

+
-

(/)

(/)

T s

T s
 (2.115)

The bilinear transformation also arises from a particular approx imation method—the trapezoidal rule

for numerically integrating differential equations.

Let us consider a continuous-time system for which the describing equation is (Eqn. (2.101))

 y(t) = – ay(t) + r(t) (2.116a)

or y(t) = y(0) – a y d r d

tt

() ()t t t t+ ÚÚ
00

 (2.116b)

Laplace transformation of Eqn. (2.116a) gives the transfer func tion of the continuous-time system.

Y s

R s

()

()
 = Ga(s) =

1

s a+
Applying bilinear transformation (Eqn. (2.114)) to this transfer

function, we obtain

 G(z) =
1

2 1

1T

z

z
a

-
+

Ê
ËÁ

ˆ
¯̃

+

In numerical analysis, the procedure known as the trapezoidal

rule for integration proceeds by approximating the continuous-

time function by continuous trapezoids, as illustrated in Fig.

2.43, and then adding their areas to compute the total integral.

We thus approximate the area

()

()

k T

kT

y t dt

-
Ú
1

1

2
by [y(k) + y(k – 1)]T

 8 The transformation is called bilinear from consideration of its mathematical form.

y(t)

0 T 2T 3T t

Fig. 2.43

106 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

With this approximation, Eqn. (2.116b) can be converted to the following recursive algorithm:

 y(k) = y(k – 1) –
aT

2
 [y(k) + y(k – 1)] +

T

2
 [r(k) + r(k – 1)]

The z-transformation of this equation gives

 Y(z) = z–1 Y(z) –
aT

2
 [Y(z) + z–1 Y(z)] +

T

2
 [R(z) + z–1 R(z)]

or
Y z

R z

()

()
 =

T
z

z
aT

z

2
1

1
2

1

1

1 1

()

() ()

+

- + +

-

- -
 =

1

2 1

1T

z

z
a

-
+

Ê
ËÁ

ˆ
¯̃

+

This result is identical to the one obtained from the transfer function of the continuous-time system by

bilinear transforma tion.

The nature of bilinear transformation is best understood from Fig. 2.44, which shows how the s-plane

is mapped onto the z-plane. As seen in the figure, the entire jw-axis in the s-plane, is mapped onto the

unit circle in the z-plane. The left half of the s-plane is mapped inside the unit circle in the z-plane,

and the right half of the s-plane is mapped outside the z-plane unit circle. These properties can easily

be established. Consider, for example, the left half of the s-plane defined by Re(s) < 0. By means of

Eqn. (2.114), this region of the s-plane is mapped onto the z-plane region defined by

 Re
2 1

1T

z

z

-
+

Ê
ËÁ

ˆ
¯̃
 < 0 or Re

z

z

-
+

Ê
ËÁ

ˆ
¯̃

1

1
 < 0

By taking the complex variable z = a + jb, this inequality becomes

 Re
z

z

-
+

Ê
ËÁ

ˆ
¯̃

1

1
 = Re

a b

a b

+ -
+ +

Ê
ËÁ

ˆ
¯̃

j

j

1

1
 = Re

() ()

() ()

a b a b

a b a b

- + + -
+ + + -

È

Î
Í

˘

˚
˙

1 1

1 1

j j

j j

 = Re
a b b

a b

2 2

2 2

1 2

1

- + +

+ +

È

Î
Í
Í

˘

˚
˙
˙

j

()
 < 0

Im

Unit circle

s-plane z-plane

Re

jw

s

Fig. 2.44 s z

 Signal Processing in Digital Control 107

which is equivalent to

 a2 – 1 + b2 < 0 or a2 + b2 < 12

which corresponds to the inside of the unit circle in z-plane. The bilinear transformation thus produces a

stable discrete-time system for a stable continuous-time system.

Since the entire jw-axis of the s-plane is mapped once and only once onto the unit circle in the z-plane,

the aliasing errors inherent with impulse-invariant transformations are eliminated. However, there is

again a warping penalty.

Consider a pole in z-plane at z = e jaT, shown in Fig. 2.45c. Its inverse mapping in the s-plane using

the transformation s = ln z/T, gives s = ja (shown in Fig. 2.45a). Inverse mapping of the z-plane pole

(Fig. 2.45b) at z = e jaT, to the s-plane obtained using the bilinear transformation s
T

z

z
=

-
+

1 1

1
, is also

shown in Fig. 2.45a.

aT rad

(b)

Exact map

Approximate map

2
T
z – 1

j2
T
tanaT

2

ja

= –2/T

–p/T

p/T

Im()s

s =
z – 1

–s Re()s Im()z

Im()z

Re()z

| | = 0s

| |<2/s T
| |>2/s T

aT rad

Re()z

| | = 0s

| |<2/s T

| |>2/s T

s z T= ln /

(a) (c)

Fig. 2.45 s z

108 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

(a)

(b)

+

+

–

–

r t()

T

e k()
D z()

u k() u t*()

Gh0()s G()s
y()t

T

r t()
D s() e– /2sT G()s

y()t

Fig. 2.46

 s = ja
e

Te

jaT

jaT
ˆ =

-

+

2 1

1
 =

2 2 2

2 2

e e

Te e

jaT jaT

jaT jaT

/ /

/ /

-

+

-

-

 = j
T

aT2

2
tan (2.117)

Equation (2.117) is a measure of the frequency distortion or warping caused by the bilinear transformation.

Whereas the exact mapping gives the s-plane pole at s = ja, approximate mapping gives the pole at

s j
T

aT
=

2

2
tan . This mapping will be correct only if

aT

2
<< p , i.e., if w

p
s

T
a= >>

2
. When

aT

2
17< ∞,

or about 0.3 rad, then j
T

aT
a

2

2
tan @ . This means that in frequency domain, the bilinear transformation

is good only for small values wT /2.

Some additional information about the nature of the bilinear mapping can be obtained, by considering

the mapping of s-plane poles, s = – s + jw. Figure 2.45a shows the regions of poles with s >
2

T
, and

s <
2

T
; the vertical line through - = -s

2

T
 in the left half of the s-plane, maps to a closed curve inside

the unit circle in z-plane (Fig. 2.45b). The approximations introduced by bilinear mapping are clearly

visible when we compare this mapping with exact mapping z = esT shown in Fig. 2.45c.

Example 2.17

A method that has been frequently used by practicing engineers to approximate a sampled-data system

by a continuous-time system, relies on the approximation of the sample-and-hold operation by means of

a pure time delay. Consider the sampled-data system of Fig. 2.46a. The sinusoidal steady-state transfer

function of the zero-order hold is (refer to Eqn. (2.90))

 Signal Processing in Digital Control 109

 Gh0(jw) = T
sin (/)

/

/w

w
wT

T
e j T2

2

2-

The sinusoidal steady-state transfer function of the impulse-modulation model of the open-loop system

is given by (refer to Eqn. (2.84a))

 Gh0G*(jw) =
1 2 2

0
T

G j j
n

T
G j j

n

T
h

n

w
p

w
p

-Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

= -
Â

Since in most control systems, G(jw) has low-pass filter charac teristics, we can approximate the right-

hand side of the equation given above just by the n = 0 term. At low frequencies, the magnitude of

sin(wT/2)/(wT/2) is approximately unity; therefore (refer to Eqn. (2.90))

 Gh0G*(jw) = G(jw) e–jwT/2

This means that the sample-and-hold operation can be approximated by a pure time delay of one half the

sampling period T. Figure 2.46b shows the continuous-time approximation of the sampled-data system.

The approximating continuous-time system can be used for the design of the discrete-time system as

illustrated by the follow ing example.

Consider that the transfer function of the controlled process of the system shown in Fig. 2.46a is

 G(s) =
10

1 0 5 1 0 1 1 0 05(.) (.) (.)+ + +s s s

We wish to design a digital controller for the process so that the closed-loop system acquires a damping

ratio of 0.4 without loss of steady-state accuracy. We select sampling time T = 0.04 sec for the proposed

digital controller. Our approach will be to first design an analog controller D(s) for the approximating

continuous time system in Fig. 2.46b (with G(s) = 10/[(1+ 0.5s)(1+ 0.1s)(1+ 0.05s)]), that meets the

given design specifica tions and then discretizing D(s) to obtain the digital controller D(z).

The plant model for the design of D(s) becomes

 GP(s) =
10

1 0 5 1 0 1 1 0 05

0 02e

s s s

s-

+ + +

.

(.) (.) (.)

Since the design is handled more conveniently in frequency domain in the presence of time delay, we

can translate damping ratio specification into equivalent phase margin specification and then proceed.

Using the standard frequency-domain design procedure9, we obtain the following analog compensator:

 D(s) =
0 67 1

2 1

. s

s

+
+

The bandwidth of the compensated system is wb = 10 rad/sec. Note that the sampling rate ws = 2p/T =

157 rad/sec is factor of 16 faster than wb; therefore, our selection of T = 0.04 sec is quite ‘safe’ (refer to

Section 2.13).

Using the bilinear transformation given by Eqn. (2.114), we obtain

 D(z) =

0 67
50 1

1
1

2
50 1

1
1

.
()

()

z

z

z

z

-
+

È
ÎÍ

˘
˚̇

+

-
+

È
ÎÍ

˘
˚̇

+
 =

34 5 32 5

101 99

. .z

z

-
-

 =
U z

E z

()

()

 9 Chapters 8–10 of reference [155].

110 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

which leads to

 u(k) = 0.9802 u(k – 1) + 0.3416 e(k) – 0.3218 e(k – 1), where e(k) = r(k) – y(k).

This is the proposed algorithm for the digital control system of Fig. 2.46a. To make sure that with the

proposed design, the system will behave as expected, we must analyze the system response. Methods for

analysis of digital control systems are covered in the next chapter.

In this section, we have presented several methods for obtaining discrete-time equivalents for continuous-

time systems. The re sponse between sampling points is different for each discretization method used.

Furthermore, none of the equivalent discrete-time systems can have complete fidelity. The actual

(continuous-time) response between any two consecutive sampling points, is always different from the

response between the same two consecutive sampling points that is taking place in each equivalent

discrete-time system, no matter what method of dis cretization is used.

It is not possible to say which equivalent discrete-time system is best for any given analog system, since

the degree of distor tions in transient response and frequency response characteris tics, depends on the

sampling frequency, the highest frequency component involved in the system, transpor tation lag present

in the system, etc. It may be advisable for the designer to try a few alternate forms of the equivalent

discrete-time systems, for the given analog system.

REVIEW EXAMPLES

Review Example 2.1

Consider a first-order discrete-time system described by the difference equation

 y(k + 1) + a1 y(k) = b0 r(k + 1) + b1 r(k) (2.118)

The input is switched to the system at k = 0 (r (k) = 0 for k < 0); the initial state y(–1) of the system is

specified. Obtain a simulation diagram for the system.

Solution State variable models of discrete-time systems can easily be translated into digital computer

simulation diagrams. Methods of conversion of difference equation models to state variable models, is

presented in Chapter 6.

It can easily be verified that the following state variable model represents the given difference equation

(2.118):

 x(k + 1) = – a1x(k) + r(k)

 y(k) = (b1 – a1b0) x(k) + b0r(k) (2.119)

In terms of the specified initial condition y(–1) of the difference equation model (2.118), the initial state

x(0) of the state variable model (2.119) is given by

 x(0) =
-
-

a

b a b

1

1 1 0

 y(–1)

 Signal Processing in Digital Control 111

Note that if the first-order discrete-time system is relaxed before switching on the input r(k) at k = 0, the

initial condi tion y(–1) = 0 for the model (2.118), and equivalently the initial condition x(0) = 0 for the

model (2.119).

Figure 2.47 shows a simulation diagram for the given discrete-time system.

Fig. 2.47

Review Example 2.2

Consider a discrete-time system

 y(k + 2) +
1

4
 y(k + 1) –

1

8
 y(k) = 3r(k + 1) – r(k) (2.120)

with input

 r(k) = (–1)k m(k)

and initial conditions

 y(–1) = 5, y(–2) = – 6

Find the output y(k); k ≥ 0.

Solution The difference equation (2.120) is first converted to the equiva lent form

 y(k) + 1
4

 y(k – 1) – 1
8

 y(k – 2) = 3r(k – 1) – r(k – 2) (2.121)

z-transformation of the linear difference equation (2.121) re quires the following results:

 Z [y(k – 1)] =
k =
Â

0

 y(k – 1)z–k

 = y(–1) + z–1
k =
Â

0

y(k)z–k = y(–1) + z–1 Y(z) (2.122a)

 Z [y(k – 2)] = y(–2) + z–1[y(–1) + z–1 Y(z)]

 = y(–2) + z–1 y(–1) + z–2 Y(z) (2.122b)

112 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

z-transformation of each term in Eqn. (2.121) yields

 Y(z) + 1
4

 [z–1 Y(z) + y(–1)] – 1
8

 [z–2 Y(z) + z–1 y(–1) + y(–2)]

 = 3 [z–1 R(z) + r(–1)] – [z–2 R(z) + z–1 r(–1) + r(–2)]

Since r(–1) = r(–2) = 0, we have

 1 1
4

1 1
8

2+ -()- -z z Y(z) = (3z–1 – z–2)R(z) + 5
8

 z–1 – 2

or z z2 1
4

1
8

+ -() Y(z) = (3z – 1) R(z) + 5
8

 z – 2z2

Therefore, Y(z) =
3 1 2

2 1
4

1
8

2 5
8

2 1
4

1
8

z

z z
R z

z z

z z

-

+ -
+

- +

+ -
()

For (refer to Example 2.10)

 R(z) = Z [(–1)k] =
z

z +1
,

 Y(z) =
z z

z z z

z z

z z

()

()

3 1

1

2

2 1
4

1
8

2 5
8

2 1
4

1
8

-

+ -() +
+

- +

+ -

 =
- + -

+() -() +

2

1

3 13
8

2 3
8

1
2

1
4

z z z

z z z()

Expanding Y(z)/z into partial fractions,

Y z

z

()
 =

- + -

+() -() +

2

1

2 13
8

3
8

1
2

1
4

z z

z z z()
 =

9
2

1
2

1
10

1
4

32
5

1z z z+
+

-

-
+

+

-

Then (refer to Table 2.1)

 y(k) = 9
2

1
2

1
10

1
4

32
5

1-() - () - -È
ÎÍ

˘
˚̇

k k k k() ()m

Review Example 2.3

Consider a second-order discrete-time system described by the difference equation

 y(k + 2) – 3
2

 y(k + 1) + 1
2

 y(k) = r(k + 1) + 1
2

 r(k)

 The system is initially relaxed (y(k) = 0 for k < 0) and is excited by the input

 r(k) =
0 0

1 0

;

;

k

k

=
>

Ï
Ì
Ó

Shifting the difference equation by two sampling intervals, we obtain

 y(k) – 3
2

 y(k – 1) + 1
2

 y(k – 2) = r(k – 1) + 1
2

 r(k – 2)

 Signal Processing in Digital Control 113

z-transformation of this equation gives

 Y(z) =
z z

z z

- -

- -

+

- +

1 1
2

2

3
2

1 1
2

21
 R(z) =

z

z z

+

-() -

1
2

1
2

1()
 R(z)

The system modes are 1
2()k

 and (l)k. The mode 1
2()k

 decays as k , and the mode (l)k is constant

(i.e., it remains within finite bounds for all k).

The input r(k) = m(k – 1)

Therefore, R(z) = z–1 z

z -
È

Î
Í

˘

˚
˙

1
 =

1

1z -

For this input, Y(z) =
z

z z

+

-() -

1
2

1
2

21()

It is observed that excitation pole matches one of the system poles. Though the system modes, as well as

the input, do not grow with increasing k, the effect of the pole-matching is to give rise to a time function,

in forced response of the system, that grows indefinitely as k . This is evident from the inverse

transform of Y(z) (refer to Table 2.1)

 Y(z) =
A

z

1

1

2
-

 +
A

z

2

21()-
 +

A

z

3

1-

 A1 = z Y z
z

-Ê
ËÁ

ˆ
¯̃

=

1

2 1

2

() = 4

 A2 = () ()z Y z
z

- =1 2

1
 = 3

 A3 =
d

dz
z Y z

z

[() ()]-
=

1 2

1

 = – 4

Therefore,

 Y(z) =
4 3

1

4

11
2

2z z z-
+

-
+

-
-()

 y(k) = 4 1
2

1 1 13 1 1 4 1() + - -
- - -k k kk() () ()

 = 4 1
2

1
3 1 4 1() + - - ≥

-k
k k() ;

 = 4 3 7 11
2

1() + - ≥
-k

k k;

114 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Review Example 2.4

Solve for y(k) the equation:

 y(k) = r(k) – r(k – 1) – y(k – 1), k ≥ 0

where r(k) =
1; k

k

even

0; odd

Ï
Ì
Ó

; y(–1) = r(–1) = 0

Solution The z-transformation of the given equation yields

 Y(z) =
1

1

1

1

-

+

-

-
z

z
R z() =

z

z

-
+

1

1
 R(z)

For the given input,

 R(z) = 1 + z–2 + z–4 + =
1

1 2- = -x x z

 =
1

1 2- -z
 =

z

z

2

2 1-

Thus Y(z) =
z

z

z

z

-
+

Ê
ËÁ

ˆ
¯̃ -

1

1 1

2

2
 =

z

z z

2

2 2 1+ +

We can expand Y(z) into a power series by dividing the numerator of Y(z) by its denominator:

)z z z

z z z

2 2

1 2 3

2 1

1 2 3 4

+ +

- + - +- - -

 z2 + 2z + 1

 – 2z – 1

 – 2z – 4 – 2z–1

 3 + 2z–1

 3 + 6z–1 + 3z–2

 – 4z–1 – 3z–2

Therefore, Y(z) = 1 – 2z –1 + 3z–2 – 4z–3 +

and the values of y(k) are {1, – 2, 3, – 4, …}

Review Example 2.5

Through this simple example, we explain the phenomenon of aliasing.

Suppose the sampling rate is 10 Hz; ws = 20 p rad/sec, T = 0.1 sec. The primary strip in the s-plane

corresponding to this sampling rate is shown in Fig. 2.48a.

 Signal Processing in Digital Control 115

We try to sample 6 Hz sine wave (w0 = 12p). Note that the signal lies outside the primary strip. Consider

mapping of the imaginary axis of the s-plane to the z-plane, as frequency increases from 0 to 6 Hz. The

paths followed as the frequency increases are shown in Fig. 2.48b.

Note that at a frequency of 5 Hz, the two paths meet at z = –1. The 6 Hz (w0 = 12 p) sine wave will appear

to be (10 Hz – 6 Hz) = 4 Hz sine wave. The high frequency w0 = 12 rad/sec is ‘folded in’ about the folding

frequency p/T = 10p; and appears as low frequency at (ws – w0) =
2

80

p
w p

T
-Ê

ËÁ
ˆ
¯̃

= .

The high frequency w0, which shows up at (ws – w0) after sampling, is called the ‘alias’ of the primary-

strip frequency (ws – w0). The superimposition of the high-frequency behavior onto the low frequency is

known as frequency folding or aliasing.

Take a sine wave of 6 Hz frequency and extract the samples with T = 0.1 sec. Examine the sampled

recording carefully; it has a frequency of 4 Hz.

The phenomenon of aliasing has a clear meaning in time. Two continuous sinusoids of different

frequencies (6 Hz and 4 Hz in the example under consideration) appear at the same frequency when

sampled. We cannot, therefore, distinguish between them, based on their samples alone.

To avoid aliasing, the requirement is that the sampling frequency ws , must be at least twice the highest

frequency wm present in the signal, i.e., ws > 2wm. This requirement is formally known as the sampling

theorem.

36°

12p

10p

8p

–8p

–10p

Im ()s

Re ()s

(a) (b)

Im ()z

f = 3 Hz

f = 4 Hz

f = 5 Hz

f = 6 Hz

Re ()z

(= 0.2 = 36°)w pT

f = 1 Hz

f = 2 Hz

f = –6 Hz

f = –5 Hz

f =
–4

Hz
f = –1 Hzf

=
–
2
H
z

f
=
–
3
H
z

Fig. 2.48

116 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Review Example 2.6

Find the response of the system shown in Fig. 2.49 to a unit-impulse input.

r t()
T = 1

r t*()
1 – e–sT

s
1

s s(+ 1)

y t()

Fig. 2.49

Solution The discrete-time transfer function of the given system is ob tained as follows (refer to

Eqns (2.100)):

 Gh0(s) =
1- -e

s

sT

, Ga(s) =
1

1s s()+

Y z

R z

()

()
 = Z [Gh0(s)Ga(s)] = (1 – z–1) Z

G s

s

a ()Ê
ËÁ

ˆ
¯̃

 = (1 – z–1) Z
1

12s s()+

È

Î
Í
Í

˘

˚
˙
˙

= (1 – z–1) Z
1 1 1

12s s s
- +

+
È

ÎÍ
˘

˚̇

Using Table 2.1, we obtain

Y z

R z

()

()
 = (1 – z–1)

Tz

z

z

z

z

z e T()-
-

-
+

-
È

Î
Í

˘

˚
˙-1 12

 =
() ()

() ()

ze z Tz e Te

z z e

T T T

T

- - -

-
- + + - -

- -

È

Î
Í
Í

˘

˚
˙
˙

1

1

For T = 1, we have

Y z

R z

()

()
 =

ze e

z z e

- -

-
+ -

- -

1 1

1

1 2

1() ()

 =
0 3678 0 2642

1 0 3679

. .

() (.)

z

z z

+
- -

 =
0 3678 0 2642

1 3678 0 36792

. .

. .

z

z z

+

- +

For unit-impulse input, R(z) = 1.

Therefore, Y(z) =
0 3678 0 2642

1 3678 0 36792

. .

. .

z

z z

+

- +
We can expand Y(z) into a power series by dividing the numerator of Y(z) by its denominator:

z z z

z z z
2

1 2

1 3678 0 3678 0 3678 0 2644

0 3678 0 7675 0 9145

- + +
+ +- -

. . . .

. . .

)

-- + º3

0 3678 0 5031 0 1353

0 7675 0 1353

0 7675 1 0497

1

1

1

. . .

. .

. .

z z

z

z

- +

+ -

+ -

-

-

- ++

-

-

- -
0 2823

0 9145 0 2823

2

1 2

.

. .

z

z z

 Signal Processing in Digital Control 117

This calculation yields the response at the sampling instants, and can be carried on as far as needed. In

this case we have obtained y(kT) as follows:

 y(0) = 0, y(T) = 0.3678, y(2T) = 0.7675, and y(3T) = 0.9145.

Review Example 2.7

A PID controller is described by the following relation between input e(t) and output u(t):

 u(t) = Kc e t
T

e t dt T
de t

dtI
D

t

() ()
()

+ +
È

Î
Í

˘

˚
˙Ú

1

0
 (2.123)

Using the trapezoidal rule for integration and backward-difference approximation for the derivatives,

obtain the difference-equation model of the PID algorithm. Also obtain the transfer function U(z)/E(z).

Solution By the trapezoidal rule for integration, we obtain

 e t dt
kT

()
0Ú = T

e e T e T e T e k T e kT() () () () (()) ()0

2

2

2

1

2

+
+

+
+ +

- +È

ÎÍ
˘

˚̇

 = T
e i T e iT

i

k
(()) ()- +È

Î

Í
Í

˘

˚

˙
˙=

Â 1

2
1

 By backward-difference approximation for the derivatives (refer to Eqn. (2.102)), we get

de t

dt t kT

()

=
 =

e kT e k T

T

() (())- -1

 A difference-equation model of the PID controller is, therefore, given by

 u(k) = Kc e k
T

T

e i e i T

T
e k e k

I

D

i

k

()
() ()

[() ()]+
- +

+ - -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂=
Â 1

2
1

1

 (2.124)

Let us now obtain the transfer function model of the PID control algorithm given by Eqn. (2.124).

Define (refer to Fig. 2.50)

e i e i() ()- +1

2
 = f (i); f(0) = 0

Then
e i e i

i

k
() ()- +

=
Â 1

2
1

 =
i

k

=
Â

1

f(i)

Taking the z-transform of this equation (refer to

Eqn. (2.51)), we obtain

 Z
e i e i

i

k
() ()- +È

Î

Í
Í

˘

˚

˙
˙=

Â 1

2
1

 = Z f i

i

k

()

=
Â

È

Î

Í
Í

˘

˚

˙
˙

1

 =
z

z
F z

-1
()

e t()

f T()

f (0)

f T(2)

–T 0 T 2T 3T t

Fig. 2.50 f kT

118 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Notice that F(z) = Z
e i e i() ()- +È

ÎÍ
˘

˚̇

1

2
 =

1

2

1+ -z
E z()

Hence Z
e i e i

i

k
() ()- +È

Î

Í
Í

˘

˚

˙
˙=

Â 1

2
1

 =
1

2 1

1

1

+

-

-

-
z

z
E z

()
() =

z

z
E z

+
-
1

2 1()
()

 The z-transform of Eqn. (2.124) becomes

 U(z) = Kc 1
2

1

1
1

1

1

1+
+

-
+ -

È

Î
Í
Í

˘

˚
˙
˙

-

-
-T

T

z

z

T

T
z E z

I

D () ()

 = Kc 1
2

1

1

1
+

+
-

Ê
ËÁ

ˆ
¯̃

+
-Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙

T

T

z

z

T

T

z

z
E z

I

D () (2.125)

This equation gives the transfer function model of the PID con trol algorithm. Note that we can obtain

the discrete-time transfer function model (2.125) by expressing the PID controller (2.123) in terms of

operator s and then using the mapping (2.104) for the derivative term, and the mapping (2.114) for the

integral term of the control ler.

Review Example 2.8

Derive the difference equation model for the numerical solution of the differential equation

d y t

dt
a

dy t

dt
a y t

2

2 1 2

() ()
()+ + = r(t); y(0) = y 0

1,
dy

dt
()0 = y2

0, 0 £ t £ tf (2.126)

Use backward-difference approximation for the derivatives.

Solution We divide the interval 0 £ t £ tf into N equal intervals of width equal to step-length T:

t

N

f
 = T; t = kT, k = 0, 1, 2, ..., N

 By backward-difference approximation,

dy t

dt t kT

()

=
 =D y k() =

y k y k

T

() ()- -1
 (2.127)

d y t

dt
t kT

2

2

()

=

 =D y k() =
 y k y k

T

() ()- -1
 =

1
2T

 [y(k) – 2y(k – 1) + y(k – 2)]

(2.128)

From Eqn. (2.127), we have

 y(0) = y0
2 =

y y

T

1
0 1- -()

Substituting Eqns (2.127) and (2.128) into (2.126) at t = kT, we obtain

1
2T

[y(k) – 2y(k – 1) + y(k – 2)] +
a

T

1 [y(k) – y(k – 1)] + a2 y(k) = r(k)

or a
a

T T
y k

a

T T
2

1

2

1

2

1 2
+ +Ê

ËÁ
ˆ
¯̃

- +Ê
ËÁ

ˆ
¯̃

() y(k – 1) +
1
2T

 y(k – 2) = r(k);

 Signal Processing in Digital Control 119

 y(0) = y 0
1, y(–1) = y 0

1 – Ty 0
2 (2.129)

Incrementing k to take on values k = 1, 2, ..., N, we can easily obtain y(1), ..., y(N) from Eqn. (2.129) by

the iterative proce dure.

PROBLEMS

 2.1 Consider the signal processing algorithm shown in Fig. P2.1.

 (a) Assign the state variables and obtain a state variable model for the system.

 (b) Represent the algorithm of Fig. P2.1 by a signal flow graph and from there obtain the transfer

function model of the system using Mason’s gain formula.

+

+

+
+

–

1.368

0.264

0.368

0.368

r k() y k()

Fig. P 2.1

 2.2 Consider the signal processing algorithm shown in Fig. P2.2. Represent the algorithm by (a)

difference equation model, (b) a state variable model, and (c) a transfer function model.

R z()

– 3 z–1 1 z–1 1

Y z()

– 5

– 3

1

Fig. P 2.2

120 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 2.3 Consider the discrete-time system shown in Fig. P2.3.

R z() +

+

– 1
2

2z–1

– 1

Y z()
+

+

Fig. P 2.3

 (a) Obtain the difference equation model and therefrom the trans fer function model of the

system.

 (b) Find the impulse response of the system.

 (c) Find the response of the system to unit-step input m(k).

 2.4 A filter often used as part of computer-controlled algorithms is shown in Fig. P2.4 (b and a are

real constants).

 (a) Find the impulse response to an impulse of strength A.

 (b) Find the step response to a step of strength A.

 (c) Find the ramp response to a ramp function with a slope A.

 (d) Find the response to sinusoidal input A cos(W k).

z–1

a

b+

+

R z() Y z()

Fig. P2.4

 2.5 Solve the following difference equations:

 (a) y(k + 2) + 3y(k + 1) + 2y(k) = 0; y(–1) = -
1

2
, y(–2) =

3

4

 (b) 2y(k) – 2y(k – 1) + y(k – 2) = r(k)

 y(k) = 0 for k < 0 and

 r(k) =
1 0 1 2

0 0

; , , , ...

;

k

k

=
<

Ï
Ì
Ó

 2.6 Consider the difference equation:

 y(k + 2) – 1.3679 y(k + 1) + 0.3679 y(k) = 0.3679 r(k + 1) + 0.2642 r(k)

 y(k) = 0 for k £ 0, and r(k) = 0 for k < 0,

 r(0) = 1, r(1) = 0.2142, r(2) = –0.2142; r(k) = 0, k = 3, 4, 5, ...

 Determine the output y(k).

 Signal Processing in Digital Control 121

 2.7 Solve the following difference equation using z-transforms:

 y(k) – 3y(k – 1) + 2y(k – 2) = r(k)

 where r(k) =
1 0 1

0 2

for

for

k

k

=
≥

Ï
Ì
Ó

,
 ; y(–2) = y(–1) = 0

 Will the final value theorem give the correct value of y(k) as k ? Why?

 2.8 For the transfer function models and inputs given below, find the response y(k) as a function of k:

 (a) G(z) =
Y z

R z

()

()
 =

2 3

0 5 0 3

z

z z

-
- +(.) (.)

 (b) G(z) =
Y z

R z

()

()
 =

- +

- +() - -()
6 1

1
2

1
4

1
2

1
4

z

z j z j

 r(k) =
1 1

0 0 2 3 4

;

; , , , ,

k

k

=
=

Ï
Ì
Ó …

 r(k) =
0 1

1 0 1 2 3

;

; , , , ,

k

k

<
=

Ï
Ì
Ó …

 2.9 For the transfer function models and inputs given below, find the response y(k) as a function of k:

 (a) G(z) =
Y z

R z

()

()
 =

1

0 5 0 3(.) (.)z z- +
 (b) G(z) =

Y z

R z

()

()
 =

1

0 5 0 12(.) (.)z z- -

 r(k) =
1

0

;

;

k

k

even

odd

Ï
Ì
Ó

 r(k) =
0 0

1 0 1 2 3

;

; , , , ,

k

k

<
=

Ï
Ì
Ó …

 2.10 Determine y() for the following Y(z) function (a is a real constant):

 Y(z) =
K z az a a a z

z z a z a

[()]

() () ()

3 2 3 2

2

2

1

- + - +

- - -
 Assuming stable response, determine what the value of K must be for y() = 1.

 2.11 Given: y(k) =
k

k m m
k m

k m!()

() ! () !
()

a
m

- +

- + -
- +

1

1 1
1

 Prove that y(k) decays to zero as k if |a| < 1.

 2.12 A system has the transfer function

 G(z) =
Y z

R z

()

()
 =

1

12z +
.

 Show that when the input r(k) is a unit-step function, the output y(k) is bounded; and when the

input

 r(k) = {1, 0, –1, 0, 1, 0, –1, ...},

 the output y(k) is unbounded.

 Explain why a bounded input produces a bounded output in the first case but an unbounded output

in the second case.

 2.13 Using Jury stability criterion, check if all the roots of the following characteristic equa tions lie

within the unit circle:

 (a) z3 – 1.3 z2 – 0.08z + 0.24 = 0

 (b) z4 – 1.368z3 + 0.4z2 + 0.08z + 0.002 = 0

 2.14 Using Jury stability criterion, find if all the poles of the following transfer function lie inside the

unit circle on the z-plane.

122 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 G(z) =
3 2 4 5

0 5 0 2 0 4

4 3 2

4 3 2

z z z z

z z z z

+ - + +

+ - + +. . .

 2.15 Figure P2.15 shows the input-output description of a D/A converter. The converter is designed

in such a way that the old value of the input sample is held constant, until a new sample arrives.

Treating each sample of the sequence r(kT) as an impulse

function of strength equal to the value of the sample, the

system of Fig. P2.15 becomes a continuous-time system.

Determine the transfer function model of the system.

 2.16 (a) State and prove the sampling theorem.

 (b) Given: E(s) =
10 2

2 22 2

()

()

s

s s s

+

+ +
 Based upon the sampling theorem, determine the maximum value of the sampling interval T

that can be used to enable us to recon struct e(t) from its samples.

 (c) Consider a system with sampling frequency 50 rad/sec. A noise signal cos 50t enters into the

system. Show that it can cause a dc component in the system output.

 2.17 Draw the magnitude and phase curves of the zero-order hold, and compare these curves with those

of the ideal low-pass filter.

 2.18 Consider a signal f(t), which has discrete values f(kT) at the sampling rate 1/T. If the signal f(t) is

imagined to be impulse sampled at the same rate, it becomes

 f *(t) = f kT t kT

k

() ()-
=

Â d

0

 (a) Prove that F z

z e
sT

()

=

 = F*(s)

 (b) Determine F z

z e
sT

()

=

 in terms of F(s). Using this result, explain the relationship between

 the z-plane and the s-plane.

 2.19 Figure P2.19 shows two root paths in the s-plane:

r kT()
D/A

y t()

Fig. P 2.15

jws/2 jws/2

– jws/2– jws/2

a w0

(i) (ii)

Fig. P 2.19

 Signal Processing in Digital Control 123

 (i) roots with the same time-constant t = 1/a, and

 (ii) roots with the same oscillation frequency w0.

 Derive and sketch the corresponding root paths in the z-plane under the impulse-invariant

transformation. Sampling frequency is ws.

 2.20 Figure P2.20 shows a discrete-time system. Determine the transfer function G(z) of this system

assuming that the samplers operate synchronously at intervals of T sec. Also find the unit-step

response of the system.

r t()
T

r t*()
ZOH

1

(+ 1)s

y t()
T

y k()

Fig. P 2.20

 2.21 Figure P2.21 shows the model of a plant driven by

a D/A converter. Derive the transfer function model

relating r(kT) and y(kT); T = 0.4 sec.

 2.22 Show that if y is the integral of a function r, then

 (i) by the backward rectangular rule for integration,

 Y(z) =
Tz

z -1
 R(z);

 (ii) by the trapezoidal rule for integration

 Y(z) =
T z

z2

1

1

+
-

 R(z)

 2.23 Consider the discretization method based on the backward-difference approximation of derivatives,

as a mapping from the s-plane to the z-plane. Show that the mapping transforms the left half of the

s-plane into a circle in the z-plane. Is the size of the circle dependent on the choice of the sampling

interval?

 2.24 Prove that the bilinear transformation maps the left half of the s-plane into the unit circle in the

z-plane.

 The transformation z = esT also maps the left half of the s-plane into the unit circle in the z-plane.

What is the difference between the two maps?

 2.25 A PID controller is described by the following relation between input e(t) and output u(t):

 u(t) = Kc e t
T

e t dt T
de t

dtI
D

t

() ()
()

+ +
È

Î

Í
Í

˘

˚

˙
˙Ú1

0

 Obtain the PID control algorithm by the discretization of the equation:

 u̇(t) = Kc e t
T

e t T e t
I

D() () ()+ +
È

Î
Í

˘

˚
˙

1

 using the backward-difference approximation of the derivatives. Also find the transfer function

U(z)/E(z).

r kT()
D/A

10

s s(+ 2)

y t()

Fig. P 2.21

124 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 2.26 For a plant 1.57/[s(s + 1)], we are required to design a digital controller so that the closed-loop

system acquires a damping ratio of 0.45 without loss of steady-state accuracy. The sampling

period T = 1.57 sec. The following design procedure may be followed:

 (i) First we design the analog controller D(s) defined in Fig. P2.26. The transfer function Gh(s)

has been inserted in the analog control loop, to take into account the effect of the hold that

 must be included in the equivalent digital control sys tem. Verify that D(s) =
25 1

62 5 1

s

s

+
+.

 meets

 the design requirements.

 (ii) Discretize D(s) using bilinear transformation.

r t() +

–

D s() G s() =h
sTe– /2

1.57

s s(+ 1)

y t()

Fig. P 2.26

 2.27 A PID controller is described by the following relation between input e(t) and output u(t):

 U(s) = Kc 1
1

+ +
È

Î
Í

˘

˚
˙

T s
T s E s

I
D ()

 (a) Derive the PID algorithm using the s-plane to z-plane maps—bilinear transformation for

integration and backward-difference approximation for the derivatives.

 (b) Convert the transfer function model of the PID controller obtained in step (a) into a difference

equation model.

 2.28 Derive difference equation models for the numerical solution of the following differential equation

using (a) the backward rectangular rule for integration, and (b) the forward rectangular rule for

integration:

 ẏ (t) + ay(t) = r(t); y(0) = y0

 2.29 Consider the second-order system

 ÿ + aẏ + by = 0; y(0) = a, ẏ (0) = b

 Approximate this equation with a second-order difference equation for computer solution. Use

backward-difference approxi mation for the derivatives.

 Models of Digital Control Devices and Systems 125

Models of Digital Control
Devices and Systems

3.1 INTRODUCTION

Now that we have developed the prerequisite signal processing techniques in Chapter 2, we can use them

to study closed-loop digital control systems. A typical topology of the type of sys tems to be considered

in this chapter, is shown in Fig. 3.1.

Fig. 3.1

Digital control systems with analog sensors include an analog prefilter between the sensor and the sampler

(A/D converter) as an anti-aliasing device. The prefilters are low-pass, and the simplest transfer function

is

Hpf (s) =
a

s a+
so that the noise above the prefilter breakpoint a, is attenuated. The design goal is to provide enough

attenuation at half the sample rate (ws /2) so that the noise above ws/2, when aliased into lower frequencies

by the sampler, will not be detrimental to the control-system performance.

Since the phase lag from the prefilter can significantly affect system stability, it is required that the control

design be carried out with the analog prefilter included in the loop trans fer function. An alternative design

Chapter 3

126 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

procedure is to select the breakpoint and ws sufficiently higher than the system bandwidth, so that the

phase lag from the prefilter does not significantly alter the system stability, and thus the prefilter design

problem can be divorced from the control-law design problem. Our treat ment of the subject is based on

this alternative design proce dure. We, therefore, ignore the prefilter design and focus on the basic control-

system design. The basic configuration for this design problem is shown in Fig. 3.2, where

G(s) = transfer function of the controlled plant (continuous-time system);

H(s) = transfer function of the analog sensor; and

D(z) = transfer function of the digital control algorithm.

Fig. 3.2

The analog and digital parts of the system are connected through D/A and A/D converters. The computer,

with its internal clock, drives the D/A and A/D converters. It compares the command signal r(k) with

the feedback signal b(k) and generates the control signal u(k), to be sent to the final control elements of

the controlled plant. These signals are computed from the digital control algorithm D(z), stored in the

memory of the computer.

There are two different approaches for the design of digital algorithms.

 (i) Discretization of Analog Design The controller design is done in the s-domain using analog

design methods.1 The resulting analog control law is then converted to discrete-time form, using

one of the approximation techniques given in Section 2.14.

 (ii) Direct Digital Design In this approach, we first develop the discrete-time model of the analog

part of the loop—from C to A in Fig. 3.2—that includes the controlled plant. The controller design

is then performed using discrete-time analysis.

An actual design process is often a combination of the two meth ods. First iteration to a digital design

can be obtained using discretization of an analog design. Then the result is tuned up using direct digital

analysis and design.

The intent of this chapter is to provide basic tools for the analysis and design of a control system that is to

be implemented using a computer. Mathematical models of commonly used digital control devices and

systems are developed. Different ways to implement digital controllers (obtained by the discretization of

analog design (Section 2.14) or by direct digital design (Chapter 4), are also given in this chapter.

 1 Chapters 7–10 of reference [155].

 Models of Digital Control Devices and Systems 127

3.2 z

Whenever a digital computer is used to control

a continuous-time plant, there must be some

type of interface system that takes care of the

communication between the discrete-time and the

continuous-time systems. In the system of Fig. 3.2,

the interface function is performed by A/D and

D/A converters.

Simple models of the interface actions of A/D and

D/A converters have been developed in Chapter 2.

A brief review is in order here.

A simple model of an A/D converter is shown in

Fig. 3.3a. A continuous-time function f (t), t ≥ 0, is

the input and the se quence of real numbers f (k), k = 0, 1, 2, ..., is the output. The following relation holds

between input and output:

 f (k) = f (t = kT); T is the time interval between samples. (3.1)

The sequence f (k) can be treated as a train of impulses repre sented by continuous-time function f *(t):

 f *(t) = f (0) d(t) + f (1) d (t – T) + f (2) d (t – 2T) +

 =
k =
Â

0

f (k) d (t – kT) (3.2)

The sampler of Fig. 3.3a can thus be viewed as an ‘impulse modu lator’ with the carrier signal

 dT (t) =
k =
Â

0

d (t – kT) (3.3)

and modulating signal f (t). A schematic representation of the modulation process is shown in Fig. 3.3b.

A simple model of a D/A converter is shown in Fig. 3.4a. A se quence of numbers f (k), k = 0, 1, 2, ...,

is the input, and the continuous-time function f +(t), t ≥ 0 is the output. The follow ing relation holds

between input and output:

 f +(t) = f (k); kT £ t < (k + 1)T (3.4)

Each sample of the sequence f(k) may be treated as an impulse function of the form f(k)d(t – kT). The

Zero-Order Hold (ZOH) of Fig. 3.4a can thus be viewed as a linear time-invariant system that converts

the impulse f (k)d (t – kT) into a pulse of height f (k) and width T. The D/A converter may, therefore, be

modeled by Fig. 3.4b, where the ZOH is a system whose response to a unit impulse d (t), is a unit pulse

f t()

f t f t t*() = () ()dT

0

(a)

(b)

0 1 2 3 4t k

T

Impulse
modulator

f k()

dT t()

f t()

Fig. 3.3

128 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

gh0(t) of width T. The Laplace transform

of gh0(t) is the transfer function of hold

operation, namely (refer to Eqn. (2.79))

 Gh0(s) = Z [gh0(t)] =
1- -e

s

sT

 (3.5)

Figure 3.5 illustrates a typical example

of an interconnection of discrete-time

and con tinuous-time systems. In order

to analyze such a system, it is often

convenient to represent the continuous-

time system together with the ZOH by an

equivalent discrete-time system.

We assume that the continuous-time system of Fig. 3.5 is a linear system with the transfer function

G(s). A block diagram model of the equivalent discrete-time system is shown in Fig. 3.6a. As seen

from this figure, the impulse modulated signal u*(t) is applied to two s-domain transfer functions in

tandem. Since the two blocks with transfer functions Gh0(s) and G(s) are not separated by an impulse

modulator, we can consider them as a single block with transfer function [Gh0(s)G(s)], as shown in

Fig. 3.6b. The continuous-time system with transfer function [Gh0(s)G(s)] has input u*(t) and output y(t).

The output signal y(t) is read off at discrete synchronous sampling instants kT; k = 0, 1, ..., by means of

a mathematical sampler T(M).

We assume that ĝ(t) is the impulse response of the continuous-time system Gh0(s)G(s):

 ĝ (t) = L
–1[Gh0(s)G(s)] (3.6)

The input signal to the system is given by (refer to Eqn. (3.2)),

 u*(t) =
k =
Â

0

u(kT)d (t – kT) (3.7)

0 0

(a)

(b)

k

T

t

ZOHf k() f t()+

f t()*f k() f t()+

G sh0() =
1 – e

s

–sT

Fig. 3.4

u k() u t+() y t()

T M()

y k()
ZOH

Digital
computer

Continuous-
time
system

Equivalent discrete-time system

Fig. 3.5

(a)

(b)

T

T
G s G sh0() ()

u k()

u k()
G sh0() G s()

y t() y k()

y t() y k()

T M()

T M()

u t*()

u t*()

Fig. 3.6

 Models of Digital Control Devices and Systems 129

This is a sequence of impulses with intensities given by u (kT). Since ĝ(t) is the impulse response of the

system (response to the input d (t)), by superposition from Eqn. (3.7),

y(t) =
j =
Â

0

u(jT) ĝ (t – jT)

At the sampling times t = kT, y(t) is given by

 y(kT) =
j =
Â

0

u(jT) ĝ (kT – jT) (3.8)

We can recognize it at once as discrete-time convolution (refer to Eqn. (2.25)). Taking the z-transform of

both sides of Eqn. (3.8), we obtain (refer to Eqn. (2.29)),

 Y(z) = U(z) Ĝ (z) (3.9a)

where Ĝ (z) = Z [ĝ (kT)]

 = Z [L
–1{Gh0(s)G(s)}|t = kT] (3.9b)

The z-transforming operation of Eqn. (3.9b) is commonly indicated as

 Ĝ (z) = Z [Gh0(s)G(s)] = Gh0G(z) (3.10)

It may be carefully noted that since the two blocks Gh0(s) and G(s) are not separated by an impulse

modulator,

 Ĝ (z) π Z [Gh0(s)] Z [G(s)] (3.11a)

 π Gh0(z) G(z) (3.11b)

It follows from Eqns (3.9), that the block diagram

of Fig. 3.6b becomes the z-domain block diagram

of Fig. 3.7. We could, of course, directly draw the

z-domain block diagram of Fig. 3.7 from Fig. 3.6b,

which implies that

 Y(s) = Gh0(s)G(s)U*(s) ´ Y(z) = Gh0G(z)U(z) (3.12a)

or Z [Gh0(s)G(s)U*(s)] = Z [Gh0(s)G(s)] Z [U*(s)]

 = Gh0G(z)U(z) (3.12b)

We can use the following relation (refer to Eqns (2.100 b) and (2.100 c)) for evaluation of Gh0G(z):

 Gh0G(z) = Z [Gh0(s)G(s)]

 = Z ()
()

1-
È

ÎÍ
˘

˚̇
-e

G s

s

sT

 = (1 – z–1) Z
G s

s

()È

ÎÍ
˘

˚̇
 (3.13)

Single factor building blocks of the Laplace and z-transform pairs are given in Table 2.1. Expanding

G(s)/s into partial fractions, Z [G(s)/s] can be found by using this table.

Consider now the basic sampled-data feedback system, whose block diagram is depicted in Fig. 3.8a. In

terms of impulse modulation, this block diagram can be redrawn as shown in Fig. 3.8b.

Fig. 3.7

130 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

r k()

y k()
A/D

u k()
D z() D/A G s()

y t()

Plant
Computer

(a)

u k()e k()r k() +

–

T

T

y t() y k()

y k()

(b)

G sh0() G s()
u t*()

T M()
D z()

Fig. 3.8

Using the relations previously established in this section, we have

 U(z) = D(z) E(z) (3.14a)

 Y(z) = Gh0G(z)U(z) (3.14b)

Since e(kT) = r (kT) – y(kT)

we have E(z) = R(z) – Y(z) (3.14c)

Combining Eqns (3.14a), (3.14b), and (3.14c) gives

Y z

R z

()

()
 =

D z G G z

D z G G z

h

h

() ()

() ()

0

01+
 (3.15)

Figure 3.9 gives the z-domain equivalent of Fig. 3.8.

Having become familiar with the technique, from now

onwards we may directly write z-domain relationships,

without introducing impulse modulators in block

diagrams of sampled-data systems.

Consider the sampled-data feedback system of Fig. 3.10 where the sensor dynamics is represented by

transfer function H(s). The following equations easily follow:

 E(z) = R(z) – B(z) (3.16a)

 U(z) = D(z) E(z) (3.16b)

 Y(z) = Gh0G(z) U(z) = Z [Gh0(s)G(s)] U(z) (3.16c)

 B(z) = Gh0GH(z)U(z) = Z [Gh0(s)G(s)H(s)]U(z) (3.16d)

Equations (3.16a), (3.16b) and (3.16d) give

E z

R z

()

()
 =

1

1 0+ D z G GH zh() ()
 (3.17)

–

+
G G zh0 ()D z()

R z() E z() U z() Y z()

Fig. 3.9

 Models of Digital Control Devices and Systems 131

Combining Eqns (3.16b), (3.16c) and (3.17), we get

Y z

R z

()

()
 =

D z G G z

D z G GH z

h

h

() ()

() ()

0

01+
 (3.18)

Figure 3.11 illustrates a phenomenon that we have not yet encoun tered. When an input signal is acted upon

by a dynamic element before being sampled, it is impossible to obtain a transfer function for the system.

The system in Fig. 3.11 differs from that in Fig. 3.10, in that the analog error e(t) is first ampli fied before

being converted to digital form for the control computer. The amplifier’s dynamics are given by G1(s).

+

–
D z() G s G sh0() ()

e t()r t() e t1() e k1() u t*() y t()u k()

H s()

b t()

T T
G s1()

Fig. 3.11

Consider first the subsystem shown in Fig. 3.12a. We can equiva lently represent it as a block [G1(s)E(s)]

with input d (t), as in Fig. 3.12b. Now the input, and therefore, the output, does not change by imagining

a fictitious impulse modulator through which d(t) is applied to [G1(s)E(s)] as in Fig. 3.12c.

On application of Eqn. (3.12), we can write

 E1(z) = Z [G1(s)E(s)] Z [d (k)] = Z [G1(s)E(s)] (3.19)

Now, for the system of Fig. 3.11,

 E(s) = R(s) – B(s) = R(s) – H(s)Y(s)

 = R(s) – H(s) Gh0(s) G(s) U*(s) (3.20)

Therefore, from Eqns (3.19) and (3.20), we obtain

 E1(z) = Z [G1(s)R(s)] – Z [G1(s)H(s)Gh0(s)G(s)]U(z)

 = G1R(z) – G1Gh0GH(z) U(z) (3.21)

Since U(z) = D(z) E1(z),

T

+

–
D z() ZOH G s()

y t()u k()e k()e t()r t()

b t()

H s()

Fig. 3.10

132 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

we can write from Eqn. (3.21),

 E1(z) =
G R z

D z G G H zh

1

1 01

()

() ()+
The output Y(z) = Gh0G(z) U(z) = D(z) Gh0G(z) E1(z)

 =
D z G G z G R z

D z G G GH z

h

h

() () ()

() ()

0 1

1 01+
 (3.22)

Since it is impossible to form the ratio Y(z)/R(z) from Eqn. (3.22), we can not obtain a transfer function

for the system of Fig. 3.11, and we cannot analyze it further without specifying a functional form for the

input r(t).

It is not permissible to create a transfer function for the system in Fig. 3.11 by inserting a fictitious

sampler at the input, because this would change the physics of the situation represented by the diagram

(the analog input would be replaced by the train of impulses). Fictitious samplers are permissible at only

the output, because they are simply a means of selecting the values of the output at the times of interest

to us, namely, the sample times.

Example 3.1

Consider the sampled-data system shown in Fig. 3.13a. From the block diagram, we obtain (refer to

Eqn. (3.15))

Y z

R z

()

()
 =

G G z

G G z

h

h

0

01

()

()+
 (3.23)

Figure 3.13b gives the z-domain equivalent of Fig. 3.13a. The forward path transfer function:

 Gh0G(z) =Z [Gh0(s)G(s)]

 = (1 – z–1) Z
G s

s

()È

ÎÍ
˘

˚̇
 = (1 – z–1) Z

1

12s s()+

È

Î
Í
Í

˘

˚
˙
˙

T
(a)

(b)

(c)

e k1()e t1()
G s1()

e t()

d()t

d()t

G s E s1() ()
e t1() e k1()

G s E s1() ()
e t1() e k1()d*() = ()t td

T T

T

Fig. 3.12 s

 Models of Digital Control Devices and Systems 133

 = (1 – z–1) Z
1 1 1

12s s s
- +

+
È

ÎÍ
˘

˚̇
 = (1 – z–1)

Tz

z

z

z

z

z e T()-
-

-
+

-

È

Î
Í
Í

˘

˚
˙
˙-1 12

 =
z T e e Te

z z e

T T T

T

() ()

() ()

- + + - -

- -

- - -

-

1 1

1

When T = 1, we have

Gh0G(z) =
ze e

z z e

- -

-

+ -

- -

1 1

1

1 2

1() ()
 =

0 3679 0 2642

1 3679 0 36792

. .

. .

z

z z

+

- +
Substituting in Eqn. (3.23), we obtain

Y z

R z

()

()
 =

0 3679 0 2642

0 63212

. .

.

z

z z

+

- +

For a unit-step input,

R(z) =
z

z -1

and therefore,

Y(z) =
z z

z z z

(. .)

() (.)

0 3679 0 2642

1 0 63212

+

- - +
 =

0 3679 0 2642

2 1 6321 0 6321

2

3 2

. .

. .

z z

z z z

+

- + -

By long-division process, we get

Y(z) = 0.3679 z–1 + z–2 + 1.3996 z–3 + 1.3996 z–4 + 1.1469 z–5 + 0.8944 z–6 + 0.8015 z–7+

Therefore, the sequence (k = 1, 2, ...)

 y(kT) = {0.3679, 1, 1.3996, 1.3996, 1.1469, 0.8944, 0.8015, ...}

Note that the final value of y(kT) is (refer to Eqn. (2.52),

lim
k

 y(kT) = lim
zÆ1

 (z – 1)Y(z) =
0 3679 0 2642

0 6321

. .

.

+
 = 1

T = 1 sec

(a)

(b)

+

+

–

–

G G zh0 ()

y t()r t()

R z() Y z()

G sh0() G s() =
1

(+ 1)s s

Fig. 3.13

134 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The unit-step response is shown in Fig. 3.14.

Also shown in this figure is the unit-step

response of the continuous-time system (i.e.,

when T = 0). The overshoot of the sampled

system is 45%, in contrast to 17% for the

continuous-time system.

The performance of the digital system is, thus,

dependent on the sampling period T. Larger

sampling periods usually give rise to higher

overshoots in the step response, and may

eventually cause instability if the sampling

period is too large.

Example 3.2

Let us compare the stability properties of the system shown in Fig. 3.15, with and without a sample-and-

hold on the error sig nal.

Without sample-and-hold, the system in Fig. 3.15 has the transfer function

Y s

R s

()

()
 =

K

s s K2 2+ +

This system is stable for all values of K > 0.

T

+

–

G sh0()
r t() e t() y t()K

s s(+ 2)

Fig. 3.15

For the system with sample-and-hold, the forward-path transfer function is given by

 Gh0G(z) = (1 – z–1) Z
K

s s2 2()+

È

Î
Í
Í

˘

˚
˙
˙

 = (1 – z–1) Z
K

s s s2

1 1 2 1 2

22
- +

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

/ /

 =
K

2
(1 – z–1)

Tz

z

z

z

z

z e T()

(/) (/)

-
-

-
+

-

È

Î
Í
Í

˘

˚
˙
˙-1

1 2

1

1 2
2 2

 =
K

2

2 1 1

2 1

2 2

2

T z e z e

z z e

T T

T

() () ()

() ()

- - - -

- -

È

Î
Í
Í

˘

˚
˙
˙

- -

-

1.6

1.2

0.8

0.4

0

y
t(
)

t (sec)

1 2 3 4 5 6 7

(a)

(b)

Fig. 3.14

 Models of Digital Control Devices and Systems 135

 The characteristic equation of the sampled-data system is

1 + Gh0G(z) = 0

or 4(z – 1)(z – e–2T) + 2KT(z – e–2T) – K(z – 1) (1 – e–2T) = 0

or z2 + z
1

2

1

2

1

2
12 2 2K T e e eT T T- +

Ê
ËÁ

ˆ
¯̃

- -
È

Î
Í

˘

˚
˙ +- - - +

1

2
K

1

2

1

2

2 2- -
È

ÎÍ
˘

˚̇
- -e TeT T

 = 0

Case 1: T = 0.4 sec

For this value of sampling period, the characteristic polynomial becomes

D(z) = z2 + (0.062K – 1.449)z + 0.449 + 0.048K

Applying the Jury stability test (refer to Eqns (2.73)–(2.75)), we find that the system is stable if the

following conditions are satisfied:

 D(1) = 1 + 0.062K – 1.449 + 0.449 + 0.048K > 0

 D(–1) = 1 – 0.062K + 1.449 + 0.449 + 0.048K > 0

| 0.449 + 0.048K | < 1

These conditions are satisfied for 0 < K < 11.479.

Case II: T = 3 sec

For this value of sampling period, the characteristic polynomial becomes

D(z) = z2 + (1.2506K – 1.0025) z + 0.0025 + 0.2457K

The system is found to be stable for 0 < K < 1.995.

Thus, the system which is stable for all K > 0 when T = 0 (contin uous-time system), becomes unstable

for K > 11.479 when T = 0.4 sec. When T is further increased to 3 sec, it becomes unstable for K > 1.995.

It means that increasing the sampling period (or decreasing the sampling rate), reduces the margin of

stability.

3.3

Figure 3.16 is the block diagram of a computer-controlled contin uous-time system with dead-time. We

assume that the continuous-time system is described by transfer function of the form

 Gp(s) = G(s) e Ds-t (3.24)

where tD is the dead-time, and G(s) contains no dead-time.

The equivalent discrete-time system, shown by dotted lines in Fig. 3.16, is described by the model

Y z

U z

()

()
 = Z [Gh0(s)Gp(s)] = Gh0Gp(z) (3.25a)

 = (1 – z–1) Z
1

s
e G sDs-È

ÎÍ
˘

˚̇
t () (3.25b)

136 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

If N is the largest integer number of sampling periods in tD, we can write

 tD = NT + DT; 0 £ D < 1 (3.26)

(Given the capabilities of modern microprocessors, we can adjust the sampling frequency slightly so that

tD = NT)

Therefore, Gh0Gp(z) = (1 – z–1)z– N Z
1

s
e G sTs-È

ÎÍ
˘

˚̇
D ()

Let us take an example where

 G(s) =
1

s a+
 (3.27)

For this example,
Y z

U z

()

()
 = Gh0Gp(z) = (1 – z–1)z–N Z

e

s s a

Ts-

+

È

Î
Í
Í

˘

˚
˙
˙

D

()

 =
1

a
(1 – z–1) z–N Z

e

s

e

s a

Ts Ts- -

-
+

È

Î
Í
Í

˘

˚
˙
˙

D D
 (3.28)

Now L
–1 e

s

Ts-È

Î
Í
Í

˘

˚
˙
˙

D

 = g1(t) = m(t – DT); L
–1 e

s a

Ts-

+

È

Î
Í
Í

˘

˚
˙
˙

D

 = g2(t) = e–a(t – DT) m(t – DT)

where m(t) is a unit-step function.

Therefore, g1(kT) = m (kT – DT); g2(kT) = e–a(kT – DT) m(kT – DT)

 Z [g1(kT)] =
k =
Â

0

 g1(kT)z–k = z–1 + z–2 + z–3 +

 = z–1 (1 + z–1 + z–2 +) = z–1
1

1

1

11-
Ê
ËÁ

ˆ
¯̃ --z z

= (3.29)

 Z [g2(kT)] =
k =
Â

0

 g2(kT)z–k = e–a(T – DT) z–1 + e–a(2T – DT) z–2 + e–a(3T – DT) z–3 +

We introduce a parameter m, such that

m = 1 – D
Then Z [g2(kT)] = e–amT z–1 + e–amT e–aT z–2 + e–amT e–2aT z–3 +

 = e–amT z–1 [1 + e–aT z–1 + e–2aT z–2 +]

Fig. 3.16

 Models of Digital Control Devices and Systems 137

 = e–amT z–1 1

1 1-
È

ÎÍ
˘

˚̇- -e zaT

 =
e

z e

amT

aT

–

–-
 (3.30)

Substituting the z-transform results given by Eqns (3.29) and (3.30) in Eqn. (3.28), we get

Y z

U z

()

()
 = Gh0Gp(z) =

1

a
(1 – z–1) z–N

1

1z

e

z e

amT

aT-
-

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

 =

1
1

1

a
e z e e

z z e

amT amT aT

N aT

-() + -È
Î

˘
˚

-

- - -

+ -()
 (3.31)

Table 3.1 has been generated by applying the procedure outlined above, to commonly occurring functions.

Laplace transform

F(s)e–DTs; 0 £ D < 1

z-transform

Z [F(s)e–DTs]; m = 1 – D

e

s

Ts-D 1

1z -

e

s

Ts-D

2

mT

z

T

z-
+

-1 1 2()

2
3

e

s

Ts-D

T
m z m m z m

z

2
2 2 2 2

3

2 2 1 1

1

+ - + + -

-

È

Î
Í
Í

˘

˚
˙
˙

() ()

()

e

s a

Ts-

+

D e

z e

amT

aT

-

--

e

s a s b

Ts-

+ +

D

() ()

1

()b a-
e

z e

e

z e

amT

aT

bmT

bT

-

-

-

--
-

-

È

Î
Í
Í

˘

˚
˙
˙

ae

s s a

Ts-

+

D

()

() ()

() ()

1

1

- + -

- -

- - -

-

e z e e

z z e

amT amT aT

aT

ae

s s a

Ts-

+

D

2 ()

T

z

amT

a z

e

a z e

amT

aT() () ()-
+

-
-

+
-

-

-1

1

12

138 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 3.3

 The scheme of Fig. 3.17 produces a steady-stream flow of fluid with controlled temperature q. A stream

of hot fluid is continu ously mixed with a stream of cold fluid, in a mixing valve. The valve characteristic

is such that, the total flow rate Q (m3/sec) through it is maintained constant, but the inflow qi (m
3/sec)

of hot fluid may be linearly varied by controlling valve stem posi tion x. The valve stem position x, thus

controls the temperature qi (ºC) of the outflow from the mixing valve. Due to the distance between the

valve and the point of discharge into the tank, there is a time delay between the change in qi and the

discharge of the flow with the changed temperature, into the tank.

Fig. 3.17

The differential equation governing the tank temperature is (assuming an initial equilibrium and taking

all variables as perturbations)

 Vrc
d

dt

q
 = Qrc (qid – q) (3.32)

where

 q = tank fluid temperature, ºC

 = temperature of the outflowing fluid from the tank;

 c = specific heat of the fluid, Joules/(kg)(ºC);

 V = volume of the fluid in the tank, m3;

 r = fluid density, kg/m3;

 Q = fluid flow rate, m3/sec; and

 qid = temperature of the fluid entering the tank, ºC.

The temperature qid at the input to the tank at time t, however, is the mixing valve output temperature tD

seconds in the past, which may be expressed as

 qid(t) = qi(t – tD) (3.33)

 Models of Digital Control Devices and Systems 139

From Eqns (3.32)–(3.33), we obtain

 q (t) + aq(t) = aqi(t – tD)

where a = Q/V

Therefore, Gp(s) =
q

q

()

()

s

si

 =
ae

s a

Ds-

+

t

 (3.34)

To form the discrete-time transfer function of Gp(s) preceded by a zero-order hold, we must compute

 Gh0Gp(z) = Z
1-Ê

Ë
Á

ˆ

¯
˜ +

È

Î
Í
Í

˘

˚
˙
˙

- -e

s

ae

s a

sT sDt

 = (1 – z–1) Z
a

s s a
e Ds

()+
È

Î
Í

˘

˚
˙

-t
 (3.35)

For the specific values of tD = 1.5, T = 1, a = 1, Eqn. (3.35) reduces to

 Gh0Gp(z) = (1 – z–1) Z
1

1

0 5

s s
e es s

()

.

+
È

Î
Í

˘

˚
˙

- -

 = (1 – z–1) z–1 Z
1

1

0 5

s s
e s

()

.

+
È

Î
Í

˘

˚
˙

-

Using transform pairs of Table 3.1, we obtain

 Gh0Gp(z) = (1 – z–1) z–1
() ()

() ()

. .1

1

0 5 0 5 1

1

- + -

- -

È

Î
Í
Í

˘

˚
˙
˙

- - -

-

e z e e

z z e

 =
0 3935 0 6066

0 36792

. (.)

(.)

z

z z

+

-
 =

q

q

()

()

z

zi

 (3.36)

The relationship between x and qi is linear, as is seen below.

(Qi + qi) rcqH + [Q – (Qi + qi)] rcqC = Qrc (qi + qi)

where qH and qC are constant temperatures of hot and cold streams, respectively.

qi = K
v
 x

where K
v
 is the valve gain.

The perturbation equation is obtained as (neglecting second-order terms in perturbation variables),

 K
v
(qH – qC) x(t) = Qqi(t)

or x(t) = Kqi(t); K = Q/[K
v
(qH – qC)]

Therefore,

q()

()

z

X z
 =

(. /)(.)

(.)

0 3935 0 6066

0 36792

K z

z z

+

-

140 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

3.4

The application of conventional 8- and 16-bit microprocessors to control systems, is now well established.

Such processors have general-purpose architectures which make them applicable for a wide range of tasks,

though none are remarkably efficient. In control applications, such devices may pose problems such as

inadequate speed, difficulties with numerical manipulation, and relatively high cost for the complete system;

the latter being due to both the programming effort and the cost of the peripheral hardware (memories,

I/O ports, timers/counters, A/D converters, D/A converters, PWM circuit, etc.).

In applications requiring small amounts of program ROM, data RAM, and I/O ports, single-chip

microcontrollers are ideally suited. In these chips, the capabilities in terms of speed of computa tion, on-

chip resources, and software facilities are optimized for control applications. Should the on-chip features

be insuffi cient to meet control requirements, the microcontroller chips allow for easy expansion.

The Intel microcontroller family (MCS-48 group, MCS-51 group, MCS-96 group) includes 8- and 16-bit

processors with the follow ing on-chip resources—ROM, RAM, I/O lines, timer/counter, A/D converter,

and PWM output. The Motorola microcontroller family (HC 05 group, HC 11 group, HC 16 group) also

provides microcontroller chips with similar features.

In many application areas, processing requirements for digital control systems, such as execution time

and algorithm complexity, have increased dramatically. For example, in motor control, short sampling

time constraints can place exacting requirements on algorithm execution time. New airframe designs

and extended aircraft performance envelopes, increase the complexity of flight control laws. Controller

complexity also increases with number of interacting loops (e.g., in robotics), or the number of sensors

(e.g., in vision systems). For a growing number of real-time control applications, conventional single-

processor systems are unable to satisfy the new demands for increased speed and greater complexity and

flexibility.

The dramatic advances in VLSI technology leading to high transis tor packing densities have enabled

computer architects to develop parallel-processing architectures consisting of multiple proces sors; thus

realizing high-performance computing engines at rela tively low cost. The control engineer can exploit a

range of architectures for a variety of functions.

Parallel-processing speeds up the execution time for a task. This is achieved by dividing the problem into

several subtasks, and allocating multiple processors to execute multiple subtasks simultaneously. Parallel

architectures differ from one another in respect of nature of interconnectivity between the processing

elements and the processing power of each individual processing element.

The transputer is a family of single-chip computers, which incor porates features to support parallel

processing. It is possible to use a network of transputers to reduce the execution time of a real-time

control law.

Digital signal processors (DSPs) offer an alternative strategy for implementation of digital controllers.

They use architectures and dedicated arithmetic circuits, that provide high resolution and high speed

arithmetic, making them ideally suited for use as controllers.

Many DSP chips, available commercially, can be applied to a wide range of control problems. The Texas

Instruments TMS 320 family provides several beneficial features through its architec ture, speed, and

instruction set.

 Models of Digital Control Devices and Systems 141

TMS 320 is designed to support both numeric-intensive operations, such as required in signal processing,

and also general-purpose computation, as would be required in high speed control. It uses a modified

architecture, which gives it speed and flexibility—the program and data memory are allotted separate

sections on the chip, permitting a full overlap of the instruction fetch and execution cycle. The processor

also uses hardware to implement functions which had previously been achieved using software. As a

result, a multiplication takes only 200 nsec, i.e., one instruc tion cycle, to execute. Extra hardware has

also been included to implement shifting and some other functions. This gives the design engineer the

type of power previously unavailable on a single chip.

Implementation of a control algorithm on a computer consists of the following two steps:

 (i) Block diagram realization of the transfer function (obtained by the discretization of analog controller

(Section 2.14), or by the direct digital design (Chapter 4) that represents the control algorithm.

 (ii) Software design based on the block diagram realization.

In the following, we present several different structures of block diagram realizations of digital controllers

using delay elements, adders, and multipliers. Different realizations are equivalent from the input-output

point of view if we assume that the calculations are done with infinite precision. With finite precision in

the calculations, the choice of the realization is very important. A bad choice of the realization may give

a con troller that is very sensitive to errors in the computations.

Assume that we want to realize the controller

 D(z) =
U z

E z

()

()
 =

b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 (3.37a)

where the ai’s and bi’s are real coefficients (some of them may be zero).

Transfer functions of all digital controllers can be rearranged in this form. For example, the transfer

function of PID control ler, given by Eqn. (2.113b), can be rearranged as follows:

 D(z) =
U z

E z

()

()
 = Kc 1

1

1
1

1

1+
-

Ê
ËÁ

ˆ
¯̃

+ -
È

Î
Í

˘

˚
˙-

-T

T z

T

T
z

I

D ()

 = Kc +
K T

T

c

I

1

1 1-
Ê
ËÁ

ˆ
¯̃-z

 +
K T

T

c D
(1 – z–1)

 =
b b b

a a

0
2

1 2

2
1 2

z z

z z

+ +

+ +
where

 a1 = –1; a2 = 0

 b0 = Kc 1+ +
Ê
ËÁ

ˆ
¯̃

T

T

T

TI

D ; b1 = – Kc 1
2

+
Ê
ËÁ

ˆ
¯̃

T

T

D ; b2 =
K T

T

c D

We shall now discuss different ways of realizing the transfer function (3.37a), or equivalently the transfer

function:

 D(z) =
U z

E z

()

()
 =

b b b b b

a a a

0 1
1

2
2

1
1

1
1

2
2

11

+ + + + +

+ + + +

- -
-

- - -

- -
-

-

z z z z

z z z

n
n

n
n

n
n

()

(-- -+1) an
nz

 (3.37b)

142 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The methods for realizing digital systems of the form (3.37) can be divided into two classes—recursive

and nonrecursive. The functional relation between the input sequence e(k) and the output sequence u(k)

for a recursive realization has the form

 u(k) = f (u(k – 1), u(k – 2),..., e(k), e(k – 1), ...) (3.38)

For the linear time-invariant system of Eqn. (3.37b), the recur sive realization has the form

 u(k) = – a1u(k – 1) – a2u(k – 2) – – anu(k – n) + b0e(k) + b1e(k – 1) + + bne(k – n) (3.39)

The current output sample u(k) is a function of past outputs and present and past input samples. Due to

the recursive nature, the errors in previous outputs may accumulate.

The impulse response of the digital system defined by Eqn. (3.39), where we assume not all ai’s are zero,

has an infinite number of nonzero samples, although their magnitudes may become negligibly small as k

increases. This type of digital system is called an Infinite Impulse Response (IIR) system.

The input-output relation for a nonrecursive realization is of the form

 u(k) = f (e(k), e(k – 1), ...) (3.40a)

For a linear time-invariant system, this relation takes the form

 u(k) = b0e(k) + b1e(k – 1) + b2e(k – 2) + + bNe(k – N) (3.40b)

The current output sample u(k) is a function only of the present and past values of the input.

The impulse response of the digital system defined by Eqn. (3.40b), is limited to a finite number of

samples defined over a finite range of time intervals, i.e., the impulse response se quence is finite. This

type of digital system is called a finite impulse response (FIR) system.

The digital controller given by Eqn. (3.37b) is obviously an FIR digital system when the coefficients ai

are all zero. When not all ai’s are zero, we can obtain FIR approximation of the digital system by dividing

its numerator by the denominator and truncat ing the series at z–N; N ≥ n:

U z

E z

()

()
 = D(z) @ a0 + a1z–1 + a2z–2 + + aN z

–N; N ≥ n (3.41)

Notice that we may require a large value of N to obtain a good level of accuracy.

In the following sections, we discuss the most common types of recursive and nonrecursive realizations

of digital controllers of the form (3.37).

3.4.1

The transfer function (3.37) represents an nth-order system. Recursive realization of this transfer function

will require at least n unit delayers. Each unit delayer will represent a first-order dynamic system. Each

of the three recursive realization structures given below, uses the minimum number (n) of delay elements

in realizing the transfer function (3.37).

Let us multiply the numerator and denominator of the right-hand side of Eqn. (3.37b) by a variable X(z).

This operation gives

 Models of Digital Control Devices and Systems 143

U z

E z

()

()
 =

() ()

(

()b b b b b

a a a

0 1
1

2
2

1
1

1
1

2
21

+ + + + +

+ + + +

- -
-

- - -

- -

z z z z X z

z z

n
n

n
n

 nn
n

n
nz z X z-

- - -+1
1()) ()a

 (3.42)

Equating the numerators on both sides of this equation gives

 U(z) = (b0 + b1 z–1 + + bn z
–n) X(z) (3.43a)

The same operation on the denominator brings

 E(z) = (1 + a1 z
–1 + + an z

–n) X(z) (3.43b)

In order to construct a block diagram for realization, Eqn. (3.43b) must first be written in a cause-and-

effect relation. Solving for X (z) in Eqn. (3.43b) gives

 X(z) = E(z) – a1 z–1 X(z) – – an z–n X(z) (3.43c)

A block diagram portraying Eqns (3.43a) and (3.43c) is now drawn in Fig. 3.18 for n = 3. Notice that we

use only three delay elements. The coefficients ai and bi (which are real quantities) appear as multipliers.

The block diagram schemes where the coe fficients ai and bi appear directly as multipliers are called

direct structures.

Basically, there are three sources of error that affect the accuracy of a realization (Section 2.1):

 (i) the error due to the quantization of the input signal into a finite number of discrete levels;

 (ii) the error due to accumulation of round-off errors in the arithmetic operations in the digital system;

and

 (iii) the error due to quantization of the coefficients a i and b i of the transfer function. This error may

become large for higher-order transfer functions. That is, in a higher-order digital controller in

direct structure, small errors in the coefficients a i and b i cause large errors in the locations of the

poles and zeros of the controller (refer to Review Example 3.3).

–
z–1 ++

+

b0

b1

b2

U z()X z()E z()
b3z–1z–1

a3

a2

a1

 Fig. 3.18 n =

144 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

These three errors arise because of the practical limitations of the number of bits that represent various

signal samples and coefficients. The third type of error listed above may be reduced by mathematically

decomposing a higher-order transfer function into a combination of lower-order transfer functions. In

this way, the system may be made less sensitive to coefficient inaccu racies.

For decomposing higher-order transfer functions in order to reduce the coefficient sensitivity problem,

the following two approaches are commonly used. It is desirable to analyze each of these structures for

a given transfer function, to see which one is better with respect to the number of arithmetic operations

required, the range of coefficients, and so forth.

The sensitivity problem may be reduced by implementing the trans fer function D(z) as a cascade

connection of first-order and/or second-order transfer functions. If D(z) can be written as a product of

transfer functions D1(z),... , Dm(z), i.e.,

D(z) = D1(z) D2(z) Dm(z),

then a digital realization for D(z) may be obtained by a cascade connection of m component realizations

for D1(z), D2(z), ... , and Dm(z), as shown in Fig. 3.19.

Dm()z
U z()

D2()zD1()z
E z()

Fig. 3.19 D(z

In most cases, the Di(z); i = 1, 2, ..., m, are chosen to be either first-order or second-order functions. If the

poles and zeros of D(z) are known, then Di(z) can be obtained by grouping real poles and real zeros to

produce first-order functions, or by grouping a pair of complex-conjugate poles and a pair of complex-

conjugate zeros to produce a second-order function. It is, of course, possible to group two real poles with

a pair of complex-conjugate zeros and vice versa. The grouping is, in a sense, arbitrary. It is desirable to

group several different ways, to see which one is best with respect to the number of arithmetic opera tions

required, the range of coefficients, and so forth.

In general, D(z) may be decomposed as follows:

 D(z) = P
i

p

= 1

1

1

1

1

+

+

-

-

b z

a z

i

i

P
j p

m

= + 1

1

1

1 2

1 2

+ +

+ +

- -

- -

e z f z

c z d z

j j

j j

The block diagram for

 Di(z) =
1

1

1

1

+

+

-

-
b z

a z

i

i

 =
U z

E z

i

i

()

()

and that for Dj(z) =
1

1

1 2

1 2

+ +

+ +

- -

- -

e z f z

c z d z

j j

j j

 =
U z

E z

j

j

()

()

are shown in Figs 3.20a and 3.20b, respectively. The realization for the digital controller D(z) is a cascade

connection of p first-order systems of the type shown in Fig. 3.20a, and (m – p) second-order systems of

the type shown in Fig. 3.20b.

 Models of Digital Control Devices and Systems 145

Fig. 3.20

Another approach to reduce the coefficient sensitivity problem is to expand the transfer function D(z)

into partial fractions. If D(z) is expanded so that

D(z) = A + D1(z) + D2(z) + + Dr(z),

where A is simply a constant, then a digital realization for D(z) may be obtained by a parallel connection

of (r + 1) component realizations for A, D1(z), ... , Dr(z), as shown in Fig. 3.21. Due to the presence of

the constant term A, the first-order and second-order functions can be chosen in simpler forms:

D(z) = A +
i

q

=
Â

1

b

a z

i

i
1 1+ - +

j q

r

= +
Â

1

e f z

c z d z

j j

j j

+

+ +

-

- -

1

1 21

The block diagram for

Dj(z) =
b

a z

i

i1 1+ - =
U z

E z

i ()

()
and that for

Dj(z) =
e f z

c z d z

j j

j j

+

+ +

-

- -

1

1 21
 =

U z

E z

j ()

()

are shown in Figs 3.22a and 3.22b, respectively.

3.4.2

Nonrecursive structures for D(z) are similar to the recursive structures presented earlier in this section.

In the nonrecursive form, the direct and cascade structures are commonly used; the parallel structure is

not used since it requires more elements.

146 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 3.4

 Consider the digital controller with transfer function model

D(z) =
U z

E z

()

()
 =

2 0 6

1 0 5

1

1

-

+

-

-

.

.

z

z

Recursive realization of D(z) yields the block diagram shown in Fig. 3.23a. By dividing the numerator

of D(z) by the denominator, we obtain

D(z) = 2 – 1.6z–1 + 0.8z–2 – 0.4z–3 + 0.2z–4 – 0.1z–5 + 0.05z–6 – 0.025z–7 +

Fig. 3.21 D(z

Fig. 3.22

 Models of Digital Control Devices and Systems 147

Truncating this series at z–5, we obtain the following FIR digital system:

U z

E z

()

()
 = 2 – 1.6 z–1 + 0.8 z–2 – 0.4 z–3 + 0.2 z–4 – 0.1 z–5

Figure 3.23b gives a realization for this FIR system. Notice that we need a large number of delay

elements to obtain a good level of accuracy. An advantage of this realization is that, because of the lack

of feedback, the accumulation of errors in past outputs is avoided in the processing of the signal.

Fig. 3.23

3.5

The ultimate goal of control systems engineering is to build real physical systems to perform some

specified tasks. To accomplish this goal, design and physical implementation of a control strate gy

are required. The standard approach to design this is as follows. A mathematical model is built making

necessary assumptions about various uncertain quantities on the dynamics of the system. If the objective

is well defined in precise mathematical terms, then control strategies can be derived mathematically (e.g.,

by opti mizing some criterion of performance). This is the basis of all model-based control strategies.

This approach is feasible when it is possible to specify the objective and the model, mathematical ly.

Many sophisticated methods based on model-based control approach will appear in later chapters of the

book.

148 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For motion control applications (position, and speed control systems), identification of mathematical

models of systems close enough to reality is usually possible. However, for process control applications

(pressure, flow, liquid-level, temperature, and composition control systems), identification of

process dynamics precisely can be expensive even if meaningful identifica tion is possible. This is

because industrial processes are relatively slow and complex. In process-control field, therefore, it is not

uncommon to follow an ad hoc approach for controller deve lopment, when high demands on control-

system performance are not made. In the ad hoc approach, we select a certain type of control ler based

on past experience with the process to be controlled, and then set controller parameters by experiment

once the con troller is installed. The ‘experimental design’ of controller settings has come to be known

as controller tuning.

Many years of experience have shown that a PID controller is versatile enough to control a wide variety

of industrial process es. The common practice is to interface a PID controller (with adjustment features)

to the process and adjust the parameters of the controller online, by trial-and-error, to obtain acceptable

performance. A number of tuning methods have been introduced to obtain fast convergence to control

solution. These methods con sist of the following two steps:

 (i) experimental determination of the dynamic characteristics of the control loop; and

 (ii) estimation of the controller tuning parameters that produce a desired response for the dynamic

characteristics determined in the first step.

It may be noted that for tuning purposes, simple experiments are performed to estimate important dynamic

attributes of the pro cess. The approximate models have proven to be quite useful for process control

applications (For processes whose dynamics are precisely known, the use of trial-and-error tuning is not

justi fied since many model-based methods to the design of PID control lers are available which predict

the controller parameters fairly well at the design stage itself). The predicted parameter values based on

approximate models simply provide initial trial values for the online trial-and-error approach. These trial

values may turn out to be a poor guess. Fine tuning the controller parame ters online is usually necessary

to obtain acceptable control performance.

Some of the tuning methods which have been successfully used in process industry, will be described

here.

3.5.1

Approximately 75% of feedback controllers in the process industry are PI controllers; most of the balance

are PID controllers. Some applications require only P, or PD controllers, but these are few.

The equation that describes the proportional controller is

 u(t) = Kce(t) (3.44a)

or U(s) = KcE(s) (3.44b)

where Kc is the controller gain, e is the error, and u is the perturbation in controller output signal from the

base value corresponding to the normal operating conditions; the base value on the controller is adjusted

to produce zero error under the conditions of no disturbance and/or set-point change.

 Models of Digital Control Devices and Systems 149

Some instrument manufacturers calibrate the controller gain as proportional band (PB). A 10% PB

means that a 10% change in the controller input causes a full-scale (100%) change in controller output.

The conversion relation is thus

 Kc =
100

PB
 (3.45)

A proportional controller has only one adjustable or tuning parameter: Kc or PB.

A proportionally controlled process with no integration property will always exhibit error at steady state in

the presence of disturbances and changes in set-point. The error, of course, can be made negligibly small

by increasing the gain of the proportional controller. However, as the gain is increased, the performance

of the closed-loop system becomes more oscillatory and takes longer to settle down after being disturbed.

Further, most process plants have a considerable amount of dead-time, which severely restricts the value

of the gain that can be used. In processes where the con trol within a band from the set-point is acceptable,

proportional control is sufficient. However, in processes which require per fect control at the set-point,

proportional controllers will not provide satisfactory performance [155].

To remove the steady-state offset in the controlled variable of a process, an extra amount of intelligence

must be added to the proportional controller. This extra intelligence is the integral or reset action, and

consequently, the controller becomes a PI controller. The equation describing a PI controller is as follows:

 u(t) = Kc e t
T

e t dt
I

t

() ()+
È

Î

Í
Í

˘

˚

˙
˙Ú

1

0

 (3.46a)

or U(s) = Kc
1

1
+

È

Î
Í

˘

˚
˙

T sI

E(s) (3.46b)

where TI is the integral or reset time.

A PI controller has thus two adjustable or tuning parameters: Kc (or PB) and TI. The integral or reset

action in this controller removes the steady-state offset in the controlled variable. However, the integral

mode of control has a considerable destabi lizing effect which, in most of the situations, can be compensa-

ted by adjusting the gain Kc [155].

Some instrument manufacturers calibrate the integral mode parame ter as the reset rate, which is simply

the reciprocal of the reset time.

Sometimes a mode faster than the proportional mode is added to the PI controller. This new mode of

control is the derivative action, also called the rate action, which responds to the rate of change of error

with time. This speeds up the controller action. The equation describing the PID controller is as follows:

 u(t) = Kc e t
T

e t dt T
de t

dtI

t

D() ()
()

+ +
È

Î

Í
Í

˘

˚

˙
˙Ú

1

0

 (3.47a)

150 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

or U(s) = Kc 1
1

+ +
È

Î
Í

˘

˚
˙

T s
T s

I
D E(s) (3.47b)

where TD is the derivative or rate time.

A PID controller has thus three adjustable or tuning parameters: Kc (or PB), TI, and TD. The derivative

action anticipates the error, initiates an early corrective action, and tends to in crease the stability of

the system. It does not affect the stea dy-state error directly. A derivative control mode, in isolation,

produces no corrective effort for any constant error, no matter how large, and would, therefore, allow

uncontrolled steady-state errors. Thus, we cannot consider derivative modes in isolation; they will always

be considered as augmenting some other mode [155].

The block diagram implementation of Eqn. (3.47b) is sketched in Fig. 3.24a. The alternative form,

Fig. 3.24b, is more commonly used, because it avoids taking the rate of change of the set-point input

Fig. 3.24

 Models of Digital Control Devices and Systems 151

to the controller, thus preventing the undesirable deriva tive ‘kick’ on set-point changes by the process

operator.

Due to the noise-accentuating characteristics of derivative operation, the low-pass-filtered derivative

TDs/(aTDs + 1) is actually preferred in practice (Fig. 3.24c). The value of the filter parameter a is not

adjustable but is built into the design of the controller. It is usually of the order of 0.05 to 0.3.

The controller of Fig. 3.24 is considered to be non-interacting in that its derivative and integral modes

operate independently of each other (although proportional gain affects all the three modes). Non-

interaction is provided by the parallel functioning of integral and derivative modes. By contrast, many

controllers have derivative and integral action applied serially to the controlled variable, resulting in

interaction between them. Many of the analog industrial controllers re alize the following interacting

PID control action.

 U(s) = K ¢c

¢ +
¢ +

È

Î
Í

˘

˚
˙

T s

T s

D

D

1

1a
1

1
+

¢
È

Î
Í

˘

˚
˙

T sI

E(s) (3.48)

The first term in brackets is a derivative unit attached to the standard PI controller serially, to create the

PID controller (Fig. 3.25a). The derivative unit installed on the controlled-varia ble input to the controller

avoids the derivative kick (Fig. 3.25b).

Fig. 3.25

Most commercially available tunable controllers use the non-interacting version of PID control. The

discussion that follows applies to non-interacting PID control.

152 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

3.5.2

A great number of manufacturers are now making available in the market, process controllers (electronic,

and computer-based) with features that permit adjusting the set-point, trans ferring between manual and

automatic control modes, adjusting the output signal from the control-action unit (tuning the parameters

Kc, TI, and TD), and displaying the controlled variable, set-point, and control signal. Figure 3.26 shows

the basic structure of an industrial controller. The controller has been broken down into the following

three main units:

 (i) the set-point control unit;

 (ii) the PID control unit; and

 (iii) the manual/automatic control unit.

 The set-point control unit receives the measurement y of con trolled variable of the process, together with

the set-point r of the control. A switch gives an option of choosing between local and remote (external)

set-point operation. If the set-point to the controller is to be set by the operating personnel, then the local

option rL is chosen. If the set-point to the controller is to be set by another control module, then remote

(external) option re is chosen. This is the case, for example, in cascade control where the drive of the

controller in the major loop constitutes the set-point of the minor-loop controller.

+

–

Set-point
control
unit

PID
control
unit

Manual/
Automatic
control
unit

A

uM
e

R

L r

y

rL

re

uC

uM

y
ProcessPID

Fig. 3.26

The PID control unit receives the error signal e developed by the set-point control unit, and generates an

appropriate control signal uC. Adjustment features provided in the control unit, for generating appropriate

control signals, include tuning of the three parameters Kc, TI, and TD.

The manual/automatic control unit has a switch which determines the mode of control action. When

the switch is in the auto (A) position, the control signal uC calculated by PID control unit is sent to the

process (in such a case, the process is controlled in closed loop). When the switch is in the manual (M)

position, the PID control unit ‘freezes’ its output. The control signal uM can then be changed manually

by the operating personnel (the process is then controlled in open loop).

The basic structure of a process controller shown in Fig. 3.26 is common for electronic, and computer-

based controllers. These controllers are different in terms of realization of ad justment features.

 Models of Digital Control Devices and Systems 153

3.5.3

This pioneer method, also known as the closed-loop or on-line tuning method, was proposed by J G Ziegler

and N B Nichols around 1940. In this method, the parameters by which the dynamic characteristics of

the process are represented are the ultimate gain and period. These parameters are used in tuning the

controller for a specified response: the quarter-decay ratio (QDR) response.

When the process is under closed-loop proportional (P) control, the gain of the P controller at which the

loop oscillates with constant amplitude, has been defined as the ultimate gain Kcu. Ultimate period Tu is

the period of these sustained oscillations. The ultimate gain is, thus, a measure of difficulty in controlling

a process; the higher the ultimate gain, the easier it is to control the process loop. The ultimate period is,

in turn, a measure of speed of response of the loop; the larger the period, the slower the loop.

By its definition, it can be deduced that the ultimate gain is the gain at which the loop is at the threshold

of instability. At gains just below the ultimate, the loop signals will oscillate with decreasing amplitude,

and at gains above the ultimate, the amplitude of the oscillations will grow with time.

For experimental determination of Kcu and Tu, the controller is set in ‘auto’ mode and the following

procedure is followed (refer to Fig. 3.26).

 (i) Remove the integral mode by setting the integral time to its highest value. Alternatively, if the PID

controller allows for switching off the integral mode, switch it off.

 (ii) Switch off the derivative mode, or set the derivative time to its lowest value, usually zero.

 (iii) Increase the proportional gain in steps. After each increase, disturb the loop by introducing a

small step change in set-point and observe the response of the controlled variable, preferably on

a trend recorder. The controlled variable should start oscil lating as the gain is increased. When

the amplitude of the oscil lations remains approximately constant, the ultimate controller gain has

been reached. Record it as Kcu.

 (iv) Measure the period of the oscillations from the trend record ing. This parameter is Tu.

The procedure just outlined is simple and requires a minimum upset to the process, just enough to be

able to observe the oscillations. Nevertheless, the prospect of taking a process control loop to the verge

of instability is not an attractive one from a process operation standpoint.

Ziegler and Nichols proposed that the parameters Kcu and Tu, characterizing a process, be used in tuning

the controller for QDR response. The QDR response is illustrated in Fig. 3.27 for a step change in

disturbance, and for a step change in set-point. Its characteristic is that each oscillation has an amplitude

that is one fourth of the previous oscillation.

Empirical relations [12] for calculating the QDR tuning parameters of P, PI and PID controllers, from the

ultimate gain Kcu and period Tu, are given in Table 3.2.

154 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

A

A

A

t

t

A

(a) Disturbance input

(b) Set-point change

y t()

y t()

1
4

1
4

Fig. 3.27

PI and PID tuning parameters that produce quarter-decay response, are not unique. For each setting

of the integral and derivative times, there will usually be a setting of the controller gain that produces

quarter-decay response. The settings given in Table 3.2 are the figures based on experience; these settings

have produced fast response for most industrial loops.

Controller Gain Integral time Derivative time

P Kc = 0.5 Kcu — —

PI Kc = 0.45 Kcu TI = Tu/1.2 —

PID Kc = 0.75 Kcu TI = Tu/1.6 TD = Tu/10

3.5.4

Although the tuning method based on ultimate gain and period is simple and fast, other methods of

characterizing the dynamic response of feedback control loops have been developed over the years. The

need for these alternative methods is based on the fact that, it is not always possible to determine the

ultimate gain and period of a loop; some loops would not exhibit sustained oscillations with a proportional

 Models of Digital Control Devices and Systems 155

controller. Also, the ultimate gain and period do not give insight into which process or control system

characteristics could be modified to improve the feedback controller performance. A more fundamental

method of characteriz ing process dynamics is needed to guide such modifications. In the following, we

present an open-loop method for characterizing the dynamic response of the process in the loop.

Process control is characterized by systems which are relatively slow and complex and which, in many

cases, include an element of pure time delay (dead-time). Even where a dead-time element is not present,

the complexity of the system which will typically contain several first-order subsystems, will often result

in a process reaction curve (dynamic response to a step change in input), which has the appearance of

pure time delay.

Process reaction curve may be obtained by carrying out the fol lowing step-test procedure.

With the controller on ‘manual’, i.e., the loop opened (refer to Fig. 3.26), a step change of magnitude

Du in the control signal u(t) is applied to the process. The magnitude Du should be large enough for

the consequent change Dy(t) in the process output variable to be measurable, but not so large that the

response will be distorted by process nonlinearities. The process output is recorded for a period from the

introduction of the step change in the input, until the process reaches a new steady state.

0

u t()

y t()

Du

Dyss

Fig. 3.28

A typical process reaction curve is sketched in Fig. 3.28. The most common model used to characterize

the process reaction curve is the following:

Y s

U s

()

()
 = G(s) =

Ke

s

Ds-

+

t

t 1
 (3.49)

where K = the process steady-state gain;

 tD = the effective process dead-time; and

 t = the effective process time-constant.

This is a first-order plus dead-time model. The model response for a step change in the input signal of

magnitude Du, is given by

 Y(s) =
Ke

s

Ds-

+

t

t 1

Du

s
 = KDu e

s s
Ds- -

+
È

ÎÍ
˘

˚̇
t t

t

1

1
 (3.50)

156 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Inverting with the help of a transform table (Table 2.1), and applying the real translation theorem of

Laplace transforms L [y (t – t0)m(t – t0)] = e–st0 Y(s); t0 > 0 [155], we get

 Dy(t) = KDu [1 – e t D- -()/t t] ; t > tD

 = 0 ; t £ tD

(3.51)

The term Dy is the perturbation or change in the output from its initial value:

Dy(t) = y(t) – y(0)

Figure 3.29 shows the model response to a step change of magni tude Du in the input signal. Dyss is the

steady-state change in the process output (refer to Eqn. (3.51)):

Dyss = lim
t

 Dy(t) = KDu

Fig. 3.29

At the point t = tD on the time axis, the process output variable leaves the initial steady state with a

maximum rate of change (refer to Eqn. (3.51)):

d

dt
y t

t D

D ()
=t

 = KDu
1

t

Ê
ËÁ

ˆ
¯̃ =

Dyss

t

The time-constant t is the distance on the time axis between the point t = tD, and the point at which the

tangent to the model response curve, drawn at t = tD, crosses the new steady state.

Note that the model response at t = tD + t is given by

Dy (tD + t) = KDu(1 – e–1) = 0.632 Dyss

The process reaction curve of Fig. 3.28 can be matched to the model response of Fig. 3.29 by the

following estimation proce dure.

The model parameter K is given by

 K =
Change in process output at steady state

Step change in proccess input
 =

D
D
y

u

ss (3.52)

The estimation of the model parameters tD and t can be done by, at least, three methods; each of which

results in different values.

This method makes use of the line that is tangent to the process reaction curve at the point of maximum rate

of change. The time-constant is then defined as the distance on the time axis, between the point where the

 Models of Digital Control Devices and Systems 157

tangent crosses the initial steady state of the

output variable, and the point where it crosses

the new steady-state value. The dead-time is

the distance on the time axis, between the

occurrence of the input step change, and the

point where the tangent line crosses the initial

steady state. These estimates are indicated in

Fig. 3.30a.

In this method, tD is determined in the same

manner as in the earlier method, but the value

of t is the one that forces the model response

to coincide with the actual response at t = tD + t.

Construction for this method is shown in

Fig. 3.30b. The value of t obtained by this

method is usually less than that obtained by

the earlier method, and the process reaction

curve is usually closer to the response of the

model obtained by this method compared to

the one obtained by the earlier method.

The least precise step in the determination of tD and t by the previous two methods, is the drawing

of the line tangent to the process reaction curve at the point of maximum rate of change. To eliminate

this dependence on the tangent line, it is proposed that the values of tD and t be selected such that the

model and the actual response coincide at two points in the region of high rate of change. The two points

recommended are (tD + 1
3

t) and (tD + t). To locate these points, we make use of Eqn. (3.51):

 Dy(tD + 1
3

t) = KDu[1 – e–1/3] = 0.283 Dyss

 Dy(tD + t) = KDu [1 – e–1] = 0.632 Dyss

These two points are labeled t1 and t2 in Fig. 3.30c. Knowing t1 and t2, we can obtain the values of tD

and t.

 tD + t = t2; tD + 1
3

t = t1

which reduces to

 t = 3
2

(t2 – t1); tD = t2 – t (3.53)

where t1 = time at which Dy(t) = 0.283 Dyss; and

 t2 = time at which Dy(t) = 0.632 Dyss.

t

t

(a) Tangent method

(b) Tangent-and-point method

(c) Two-points method

0

0

0 t

y t()

tD

y t()

0.632 Dyss
Dyss

tD t

y t()

0.632 Dyss
Dyss

0.283 Dyss
t1 t2

t

Fig. 3.30

158 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Besides the formulas for QDR response tuning based on the ulti mate gain and period of the loop (refer to

Table 3.2), Ziegler and Nichols also developed tuning formulas based on the parameters of a first-order

model fit to the process reaction curve. These formulas are given in Table 3.3 [12].

G(s
Ke

s 1

Ds-

+

t

t

Controller Gain Integral time Derivative time

P Kc = t /KtD — —

PI Kc = 0.9t /KtD TI = 3.33 tD —

PID Kc = 1.5t /KtD TI = 2.5tD TD = 0.4tD

Three major conclusions can be drawn from this table.

 (i) The controller gain is inversely proportional to the process gain K which represents the product

of gain of all the elements in the loop other than the controller. It means, that if the gain of any of

the elements were to change because of recalibration, resizing, or nonlinearity, the response of the

feedback loop will change, unless the controller gain is readjusted.

 (ii) The controller gain must be reduced when the ratio of the process dead-time to its time-constant,

increases. This means, that the difficulty in controlling the loop increases when the ratio of the

process dead-time to its time-constant, increases. This ratio, which can be used as a measure of

difficulty in control ling a process, will be called the normalized dead-time tND.

Apparent dead-time

Apparent time-constant

t

t
D

 = Normalized dead-time tND (3.54)

 tND can be estimated from the process reaction curve. Processes with small tND are easy to

control and processes with large tND are difficult to control. The parameter tND has been called the

controllability ratio in the literature. To avoid confusion with the standard terminology of modern

control theory (Chapter 5), the word normalized dead-time is used here.

 Notice that having a long dead-time parameter means that the loop is difficult to control only if

the time-constant is short. In other words, a loop with a dead-time of several minutes, would be

just as difficult to control as one with a dead-time of a few seconds—if the normalized dead-time

for both the loops is the same.

 (iii) The speed of response of the controller, which is determined by integral and derivative times,

must match the speed of re sponse of the process. The formulas in Table 3.3 match these response

speeds by relating the integral and derivative times of the controller to the process dead-time.

In using the formulas in Table 3.3, we must keep in mind that they were developed empirically for the

most common range of the normalized dead-time parameter, which is between 0.1 and 0.3, based on the

fact that most processes do not exhibit significant transportation lag (rather, the dead-time is the result of

sever al first-order lags in series).

 Models of Digital Control Devices and Systems 159

As was pointed out in the earlier discussion on QDR tuning based on ultimate gain and period, the

difficulty of the QDR perfor mance specification for PI and PID controllers is that there is an infinite set

of values of the controller parameters that can produce it; i.e., for each setting of the integral time on a

PI controller, and for each reset-derivative time combination on a PID controller, there is a setting of the

gain that results in QDR response. The settings given in Table 3.3 are the figures based on experience;

these settings have produced fast response for most industrial loops.

3.5.5

Most process industries today, use computers to carry out the basic feedback control calculations. The

formulas that are pro grammed to calculate the controller output are mostly the dis crete versions of the

analog controllers presented earlier in this section. This practice allows the use of established experi ence

with analog controllers and in principle, their well-known tuning rules which could be applied.

As there is no extra cost in programming all the three modes of control, most computer-based algorithms

contain all the three, and then use flags and logic to allow the process engineer to specify any single mode

or, a combination of two or three modes. Most tunable commercially available controllers use the non-

interacting version of PID con trol (refer to Eqn. (3.47b)). The discussion that follows applies to non-

interacting PID control.

The equation describing an idealized non-interacting PID control ler is as follows (refer to Eqn. (3.47a)):

 u(t) = Kc e t
T

e t dt T
de t

dtI

t

D() ()
()

+ +
È

Î

Í
Í

˘

˚

˙
˙Ú

1

0

 (3.55)

with parameters

Kc = controller gain; TI = integral time; and TD = derivative time.

For small sample times T, this equation can be turned into a difference equation by discretization. Various

methods of dis cretization were presented in Section 2.14.

Approximating the derivative mode by the backward-difference approximation and the integral mode by

backward integration rule, we obtain (refer to Eqns (2.112))

 u(k) = Kc e k
T

S k
T

T
e k e k

I

D() () (() ())+ + - -
È

Î
Í

˘

˚
˙

1
1 (3.56)

 S(k) = S(k – 1) + Te(k)

where u(k) = the controller output at sample k;

 S(k) = the sum of the errors; and

 T = the sampling interval.

This is a nonrecursive algorithm. For the formation of the sum, all past errors e(◊) have to be stored.

Equation (3.56) is known as the ‘absolute form’ or ‘position form’ of the PID algorithm. It suffers from one

particular disad vantage, which is manifest when the process it is controlling, is switched from manual

160 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

to automatic control. The initial value of the control variable u will simply be (e(k – 1) = S(k – 1) = 0 in

Eqn. (3.56)):

u(0) = Kc 1+ +
È

Î
Í

˘

˚
˙

T

T

T

TI

D
e(0)

Since the controller has no knowledge of the previous sample values, it is not likely that this output value

will coincide with that previously available under manual control. As a result, the transfer of control

will cause a ‘bump’, which may seriously disturb the plant’s operation. This can only be overcome by

la boriously aligning the manual and computer outputs or, by adding complexity to the controller so that

it will automatically ‘track’ the manual controller.

Practical implementation of the PID algorithm includes the fol lowing additional features:

 (i) It is seldom desirable for the derivative mode of the control ler to respond to set-point changes.

This is because the set-point changes cause large changes in the error that last for only one sample;

when the derivative mode acts on this error, undesir able pulses or ‘derivative kicks’ occur on the

controller output—right after the set-point is changed. These pulses, which last for one sampling

interval, can be avoided by having the deriva tive mode act on the controlled variable, rather than

on the error.

 (ii) A pure derivative term should not be implemented, because it will give a very large amplification

of the measurement noise. The gain of the derivative must thus be limited. This can be done by

approximating the transfer function TDs as follows:

TD s @
T s

T s

D

Da +1

 where a is the filter parameter, whose value is not adjustable but is built into the design of the

controller. It is usually of the order of 0.05 to 0.3.

The PID controller, therefore, takes the form (refer to Fig. 3.24c):

 U(s) = Kc E s
T s

E s
T s

T s
Y s

I

D

D

() () ()+ -
+

È

Î
Í

˘

˚
˙

1

1a
 (3.57)

Discretization of this equation results in the following PID algorithm:

 u(k) = Kc e k
T

S k D k
I

() () ()+ +
È

Î
Í

˘

˚
˙

1
 (3.58)

 S(k) = S(k – 1) + Te(k)

 D(k) =
a

a

T

T T

D

D +
D(k – 1) –

T

T T

D

Da +
 [y(k) – y(k – 1)]

This is a recursive algorithm characterized by the calculation of the current control variable u(k) based on

the previous control variable u(k – 1) and correction terms. To derive the recursive algorithm, we subtract

from Eqn. (3.56)

 Models of Digital Control Devices and Systems 161

 u(k – 1) = Kc e k
T

S k
T

T
e k e k

I

D() () (() ())- + - + - - -
È

Î
Í

˘

˚
˙1

1
1 1 2 (3.59)

This gives

 u(k) – u(k – 1) = Kc e k e k
T

T
e k

T

T
e k

I

D() () () [()- - + +
È

Î
Í 1 - - + -

˘

˚
˙2 1 2e k e k() ()] (3.60)

Now, only the current change in the control variable

 Du(k) = u(k) – u(k – 1) (3.61)

is calculated. This algorithm is known as the ‘incremental form’ or ‘velocity form’ of the PID algorithm.

The distinction between the position and velocity algorithms is significant only for controllers with integral

effect.

The velocity algorithm provides a simple solution to the require ment of bumpless transfer. The problem

of bumps arises mainly from the need for an ‘initial condition’ on the integral; and the solution adopted

is to externalize the integration, as shown in Fig. 3.31. The external integration may take the form of an

electronic integrator but frequently the type of actuating element is changed, so that recursive algorithm

is used with actuators which, by their very nature, contain integral action. Stepper motor (refer to

Section 3.8) is one such actuating element.

Incremental
PID

algorithm

Auto

Manual

1
s

Du k() u k()

e k()

Fig. 3.31

Practical implementation of this algorithm includes the features of avoiding derivative kicks and filtering

measurement noise. Using Eqn. (3.58) we obtain

 Du(k) = Kc e k e k
T

T
e k

T

T T
D k

I D

() () () ()- - + -
+

-
È

Î
Í 1 1

a
-

+
- -

˘

˚
˙

T

T T
y k y kD

Da
(() ())1 (3.62)

 D(k) =
a

a a

T

T T
D k

T

T T
y k y kD

D

D

D+
- -

+
- -() [() ()]1 1 (3.63)

where y(k) = controlled variable; Du(k) = incremental control variable = u(k) – u(k – 1);

 e(k) = error variable; Kc = controller gain;

 TI = integral time; TD = derivative time; and T = sampling interval.

162 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Though tuning formulas that are specifically applicable to digi tal control algorithms have been developed

[12], the most popular and widely used tuning approach for digital PID control lers is to apply rules in

Tables 3.2–3.3 with a simple correction to account for the effect of sampling. When a continuous-time

signal is sampled at regular intervals of time, and is then recon structed by holding the sampled values

constant for each sampling interval, the reconstructed signal is effectively delayed by approximately

one half of the sampling interval, as shown in Fig. 3.32a (also refer to Example 2.17). In the digital

control configu ration of Fig. 3.32b, the D/A converter holds the output of the digital controller constant

between updates, thus adding one half the sampling time to the dead-time of the process components.

The correction for sampling is then, simply, to add one half the sam pling time to the dead-time obtained

from the process reaction curve.

 tCD = tD + 1
2

T (3.64)

where tCD is the corrected dead-time, tD is the dead-time of the process, and T is the sampling interval.

Continuous
signal

(a)

(b)

Reconstructed
signal

T 2T 3T 4T 5T 6T t

+ Control
algorithm

Process

–

T
2

r k() e k() u k() y t()
D/A

A/D

Fig. 3.32

The tuning formulas given in Table 3.3 can directly be used for digital PID controllers with tD replaced

by tCD.

Notice that the online tuning method, based on ultimate gain and period, inherently incorporates the effect of

sampling when the ultimate gain and period are determined with the digital control ler included in the loop.

Tuning rules in Table 3.2 can, therefore, be applied to digital control algorithms without any correction.

 Models of Digital Control Devices and Systems 163

3.6

This section describes the hardware features of the design of a microprocessor-based controller for

temperature control in an air-flow system.

Figure 3.33 shows the air-flow system, provided with temperature measurement and having a heater grid

with controlled power input. Air, drawn through a variable orifice by a centrifugal blower, is driven past

the heater grid and through a length of tubing, to the atmosphere again. The temperature sensing element

consists of a bead thermistor fitted to the end of a probe, inserted into the air stream 30 cms from the

heater. The task is to implement a con troller, in the position shown by dotted box, to provide tempera ture

control of the air stream. It is a practical process-control problem in miniature, simulating the conditions

found in furnac es, boilers, air-conditioning systems, etc.

Fig. 3.33

The functions within the control loop can be broken down as follows:

 (a) sampling of the temperature measurement signal at an appro priate rate;

 (b) transfer of the measurement signal into the computer;

 (c) comparison of the measured temperature with a stored desired temperature, to form an error

signal;

 (d) operation on the error signal by an appropriate algorithm, to form an output signal; and

 (e) transfer of the output signal, through the interface, to the power control unit.

3.6.1

Figure 3.34 gives hardware description of the temperature control system. Let us examine briefly the

function of each block. The block labeled keyboard matrix, interfaced to the microcomputer through a

programmable keyboard/display interface chip, enables the user to feed reference input to the temperature

control system. The LED display unit provides display of the actual temperature of the heating chamber.

164 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The temperature range for the system under consideration is 20 to 60ºC. When a thermistor is used as

temperature sensor, it is necessary to convert the change in its resistance to an equiva lent analog voltage.

This is accomplished with Wheatstone bridge; the thermistor exposed to the process air, forms one arm

of the bridge. The millivolt range of the bridge error voltage is ampli fied to the range required by A/D

converter. The output of the A/D converter is the digital measurement of the actual tempera ture of the

process air. This data is fed to the microcomputer through an input port. The microcomputer compares

the actual temperature with the desired temperature at each sampling instant, and generates an error

signal. The error signal is then processed as per the control algorithm (to be given later), resulting in a

control signal in digital form. The control signal is, in fact, the amount of power required to be applied

to the plant, in order to reduce the error between the desired temperature and the actual temperature. The

power input to the plant may be con trolled with the help of triacs and firing circuit interface.

Fig. 3.34

A basic circuit using a triac (bidirectional thyristor) which controls the flow of alternating current through

the heater is shown in Fig. 3.35a. If the triac closes the circuit for tp seconds out of T seconds, the average

power applied to the plant over the sampling period T is

u =
1

T

V

R
dt

tp 2

0

Ú =
V

R

t

T

p
2

 V = rms value of the voltage applied to the heater; and

 R = resistance of the heater.

This gives tp =
u

V R
T

2/
 (3.65)

 Models of Digital Control Devices and Systems 165

Depending on the control signal u (power required to be applied to the plant), tp is calculated in the

microcomputer. A number is latched in a down counter (in the programmable timer/counter chip

interfaced with the microcomputer) which is determined by the value of tp and the counter’s clock

frequency. A pulse of required width tp is thus available at each sampling instant from the programmable

timer/counter chip. This, in fact, is a pulse width modulated (PWM) wave whose time period is constant

and width is varied in accordance with the power required to be fed to the plant (Fig. 3.35b).

R

Triac control
pulses

Heater

(a) (b)
0 tp T 2T Time

230 V
50 Hz

Fig. 3.35

The function of the triacs and firing circuit interface is thus, to process the PWM output of the

microcomputer, such that the heater is ON when the PWM output is logic 1, and OFF when it is logic 0.

Since the heater is operated off 230 V ac at 50 Hz, the firing circuit should also provide adequate isolation

between the high voltage ac signals and the low voltage digital signals.

3.6.2

A model for the temperature control system under study is given by the block diagram of Fig. 3.36. A

gain of unity in the feedback path corresponds to the design of feedback circuit (temperature transducer

+ amplifier + A/D converter) which enables us to interpret the magnitude of the digital output of A/D

converter directly as temperature in ºC. The temperature command is given in terms of the digital number

with magnitude equal to the desired temperature in ºC. The error e (ºC) is processed by the control

algorithm with transfer function D(z). The computer generates a PWM wave whose time period is equal

to the sampling interval, and width is varied in accordance with the control signal u (watts). The PWM

wave controls the power input to the plant through the triacs and the firing circuit interface. Since the

width of PWM remains constant over a sampling interval, we can use S/H to model the input-output

relation of the triacs and the firing circuit interface.

Controller

Digital number

Triacs and firing circuit

Feedback circuit

°C

Process

r +

–

e u

T

1

y
D z() G sh0() G s()

Fig. 3.36

166 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

To develop the digital controller D(z) for the process, we will follow the approach of controller tuning

(refer to Section 3.5). A simple tuning procedure consists of the following steps:

 (i) Obtain experimentally the dynamic characteristics of the process, either by open-loop or closed-loop

tests.

 (ii) Based on dynamic characteristics of a process, tuning rules have been developed by Ziegler

and Nichols (refer to Tables 3.2–3.3). Use these rules to obtain initial settings of the control ler

parameters Kc, TI, and TD of the PID controller

 D(s) = Kc 1
1

+ +
È

Î
Í

˘

˚
˙

T s
T s

I
D (3.66)

 (iii) Discretize the PID controller to obtain digital control algorithm for the temperature control

process. Thumb rules given in Section 2.13 may be followed for initial selection of sampling

interval T.

 In digital mode, the PID controller takes the form (refer to Eqn. (2.125))

 D(z) = Kc 1
2

1

1

1
+

+
-

Ê
ËÁ

ˆ
¯̃

+
-Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙

T

T

z

z

T

T

z

zI

D
 =

U z

E z

()

()
 (3.67)

 (iv) Implement the digital PID controller. Figure 3.37 shows a realization scheme for the controller;

the proportional, integral, and derivative terms are implemented separately and summed up at the

output.

 (v) Fine tune Kc, TI, TD and T to obtain acceptable performance.

+
+

+
+

+
+
+

+
–

T T/(2)I

z–1

z–1
E()z U()z

T TD/

Kc

Fig. 3.37

An open-loop test was performed on the air-flow system (Fig. 3.33) to obtain its dynamic characteristics.

 Input : heater power

 Output : air temperature

The test was carried out with a dc input signal. A wattmeter, on the input side, measured the heater

power, and a voltmeter, on the output side, measured the output (in volts) of the bridge circuit, which is

proportional to the air temperature in ºC.

Figure 3.38 shows the response for a step input of 20 watts. This process reaction curve was obtained for

a specific orifice set ting.

 Models of Digital Control Devices and Systems 167

Fig. 3.38

Approximation of the process reaction curve by a first-order plus dead-time model is obtained as follows

(refer to Fig. 3.29):

 The change in the process output at steady state is found to be Dyss = 24.8 volts. Therefore, the process

gain

K =
24 8

20

.
 = 1.24 volts/watt

The line that is tangent to the process reaction curve at the point of maximum rate of change gives

tD = 0.3 sec. The time at which the response is 0.632 Dyss is found to be 0.83 sec. There fore, t + tD =

0.83; which gives t = 0.53 sec. (It may be noted that the response is oscillatory in nature; therefore, a

second-order model will give a better fit. However, for coarse tuning, we have approximated the response

by a first-order plus dead-time model).

The process reaction curve of the air-flow system is thus repre sented by the model:

 G(s) =
Ke

s

Ds-

+

t

t 1
 =

1 24

0 53 1

0 3.

.

.e

s

s-

+
 (3.68)

Taking a sampling interval T = 0.1 sec, we have (refer to Eqn. (3.64)):

 tCD = tD +
1

2
T = 0.35 sec

Using tuning formulas of Table 3.3, we obtain the following parameters for the PID controller:

 Kc = 1.5t /(KtCD) = 1.832

 TI = 2.5tCD = 0.875 (3.69)

 TD = 0.4tCD = 0.14

3.7

This section describes hardware features of the design of a microprocessor-based controller for a

position control system. The plant of our digital control system is an inertial load, driven by an armature-

168 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

controlled dc servo motor. The plant also includes a motor-drive circuit. The output of the drive circuit

is fed to the armature of the motor which controls the position of the motor shaft. In addition, it also

controls the direction of rotation of the motor shaft.

Figure 3.39 gives hardware description of the position control system. Let us examine briefly the function

of each block.

Fig. 3.39

The block labeled digital signal generator, interfaced with the microcomputer through an input port,

enables the user to feed the desired position (set-point) of the motor shaft. A keyboard matrix can be used

for entering numerical commands into the digital system.

The microcomputer compares the actual position of the motor shaft with the desired position at each

sampling instant, and generates an error signal. The error signal is then processed as per the control

algorithm (to be given later), resulting in a control signal in digital form. The digital control signal

is converted to a bipolar (can be + ve or –ve) analog voltage in the D/A con verter interfaced to the

microcomputer. This bipolar signal is processed in a preamplifier and servo amplifier (power amplifier),

enabling the motor to be driven in one direction for positive vol tage at preamplifier input, and in opposite

direction for a negative voltage.

With these units, the block diagram of Fig. 3.39 also shows a shaft encoder for digital measurement of

shaft position/speed. We now examine in detail the principle of operation of this digital device.

3.7.1

The digital measurement of shaft position requires conversion from the analog quantity ‘shaft angle’ to a

binary number. One way of doing this would be to change shaft angle to a voltage using a potentiometer,

and then to convert it to a binary number through an electronic A/D converter. This is perfectly feasible,

but is not sensible because of the following reasons:

 Models of Digital Control Devices and Systems 169

 (i) high quality potentiometers of good accuracy are expensive and subject to wear; and

 (ii) the double conversion is certain to introduce more errors than a single conversion would.

We can go straight from angle to number, using an optical angular absolute-position encoder. It consists

of a rotary disk made of a transparent material. The disk is divided into a number of equal angular

sectors—depending on the resolution required. Several tracks, which are transparent in certain sectors

but opaque in others, are laid out. Each track represents one digit of a binary number. Detectors on these

tracks sense whether the digit is a ‘1’ or a ‘0’. Figure 3.40 gives an example. Here, the disk is divided

into eight 45º sectors. To represent eight angles in binary code requires three digits (23 = 8), hence, there

are three tracks. Each track has a light source sending a beam on the disk and, on the opposite side, a

photoelectric sensor receiving this beam. Depending upon the angular sector momentarily facing the

sensors, they transmit a bit pattern representing the angular disk position. For example, if the bit pattern

is 010, then Sector IV is facing the sensors.

Figure 3.40 is an example of an ‘absolute encoder’. It is so called because for a given angle, the digital

output must always be the same. Note that a cyclic (Gray) binary code is normally used on absolute

encoders (in cyclic codes, only one bit changes between adjacent numbers). If a natural binary-code

pattern were used, a transition from, say, 001 to 010, would produce a race between the two right-hand

bits. Depending on which photosensor responded faster, the output would go briefly through 011 or 000.

In either case, a momentary false bit pattern would be sent. Cyclic codes avoid such races. A cyclic code

can be converted into a natural binary code by using either hardware or computer software.

Encoders similar to Fig. 3.40 have been widely used. However, they have certain disadvantages.

Detectors

VIII

100

VII
101

VI
111

II
001

III
011

I
000

IV
010

V
110

Fig. 3.40

170 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (i) The resolution obtainable with these encoders is limited by the number of tracks on the encoder

disk. The alignment of up to ten detectors and the laying out of ten tracks is still quite difficult and

thus expensive.

 (ii) The resulting digital measurement is in a cyclic code and must usually be converted to natural

binary before use.

 (iii) The large number of tracks and detectors, inevitably in creases the chance of mechanical and/or

electrical failure.

For these reasons, another form of encoder is commonly used today and is known as the incremental

encoder. The basis of an incre mental encoder is a single track served by a single detector, and laid out

in equal segments of ‘0’ and ‘1’, as in Fig. 3.41. As the track moves relative to the detector, a pulse train

is generated, and can be fed to a counter to record how much motion has oc curred. With regard to this

scheme of measurement, the following questions may be raised:

 (i) How do we know which direction the motion was?

 (ii) If we can record only the distance moved, how do we know where we were?

Counter

Detector

Track motion
relative to
detector

Fig. 3.41

The answer to the first question involves the addition of a second detector. Figure 3.42a shows two

detectors, spaced one half of a segment apart. As the track moves relative to the detectors (we assume at

a constant rate), the detector outputs vary with time, as shown in the waveforms of Fig. 3.42b. We can

see that the relative ‘phasing’ of the A and B signals depends upon the direc tion of motion, and so gives

us a means of detecting the direc tion.

For example, if signal B goes from ‘0’ to ‘1’ while signal A is at ‘1’, the motion is positive. For the same

direction, we see that B goes from ‘1’ to ‘0’ whilst A is at ‘0’. For negative motion, a similar but different

pair of statements can be made. By application of some fairly simple logic, it is possible to control a

reversible counter as is indicated in Fig. 3.43

This method of direction-sensing is referred to as quadrature encoding. The detectors are one half of

a segment apart, but reference to the waveforms of Fig. 3.42 shows that there are two segments to one

cycle; so the detectors are one quarter of a cycle apart, and hence the name.

The solution to the second problem also requires an additional detector working on a datum track, as

shown in Fig. 3.44. The datum resets the counter every time it goes by.

We have thus three detectors in an incremental encoder. But this is still a lot less than on an absolute

encoder.

 Models of Digital Control Devices and Systems 171

In an analog system, speed is usually measured by a tachogenera tor attached to the motor shaft. This is

because the time differ entiation of analog position signal presents practical problems.

In a digital system, however, it is relatively easy to carry out step-by-step calculation of the ‘slope’ of

the position/time curve. We have the position data in digital form from the shaft encoder, so the rest is

fairly straightforward.

Segment

Time proportional to steady-state motion

(a)

(b)

Track motion
relative to
detector

Positive
motion

Negative
motion

A

A

1

0

0

1

1

0

B

B

B

+–

Fig. 3.42

Encoder

Up

Down

Logic Reversible
counter

Quadrature outputs

A

B

Fig. 3.43

172 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In a position control system, the load is connected

to the motor through a gear train. The encoder may

be connected to the load shaft/motor shaft directly

or through a pulley system.

To know the shaft position, the number of pulses

obtained at the output of detector A or detector

B have to be counted. To know the direction of

rotation, the relative phasing of the outputs of

detectors A and B has to be sensed. To implement

the direction sensing, a negative edge-triggered

D-flipflop may be used (Fig. 3.45). This flipflop has the following two inputs:

 (i) clock input, derived from the output of detector A of the encoder; and

 (ii) ‘D’ input, derived from the output of detector B of the encoder.

Every time the flipflop is triggered on the 1 Æ 0 transition of waveform A, the output of the D flipflop is

either 1 or 0, depend ing on the direction of rotation of the shaft. The output of the D flipflop thus serves

as the control for the up/down input of the counter, reversing the direction of its count whenever the shaft

reverses its direction.

Segment

Encoder

Up

Down

Logic Reversible
counter

Reset
Datum output

A

B

Datum detector

Datum trackA B

Fig. 3.44

D
Q

CLK
U/D

Reversible
counter

Digital output

Preset control
A B

Fig. 3.45

 Models of Digital Control Devices and Systems 173

3.7.2

The mathematical model of the position control under study is given by the block diagram of Fig. 3.46.

The magnitude of the digital output of the shaft encoder can be interpreted directly as the position of the

motor shaft in degrees, by proper design of the encoder interface. Similarly, the magnitude of the digital

reference input can be interpreted directly as reference input in degrees, by proper design of the keyboard

matrix interface. The error e (degrees) in position is processed by the control algo rithm with transfer

function D(z). The control signal u (in volts) is applied to the preamplifier through the D/A converter.

The plant (preamplifier + servo amplifier + dc motor + load) is described by the transfer function

q()

()

s

V s
 = G(s) =

94

0 3 1s s(.)+
 (3.70)

r e u
T

V+

–

Controller PlantD/A

volts

Digital number

Shaft encoder

Degrees
1

q
G sh0()D()z G()s

Fig. 3.46

To design the digital controller D(z) for this plant, we will follow the approach of discretization of analog

design (refer to Section 2.14). The design requirements may be fixed as z = 0.7 and wn @ 10. The first step

is to find a proper analog controller D(s) that meets the specifications. The transfer function

D(s) = Kc

(.)s

s

+
+
3 33

a

cancels the plant pole at s = –3.33. The characteristic roots of

1 + D(s)G(s) = 0

give z = 0.7 and wn = 10 if we choose Kc = 0.32 and a = 14.

The controller D(s) =
0 32 3 33

14

. (.)s

s

+
+

 (3.71)

gives the following steady-state behavior:

K
v
 = lim

s Æ 0
 sG(s)D(s) = 7.15

This may be considered satisfactory.

The discretized version of the controller D(s) is the proposed digital controller D(z) for the control loop

of Fig. 3.46. The D(z) will perform as per the specifications if the lagging effect of zero-order hold is

negligible. We take a small value for sampling interval T to satisfy this requirement. For a system with

wn = 10 rad/sec, a very ‘safe’ sample rate would be—a factor of 20 faster than wn, yielding

ws = 10 ¥ 20 = 200 rad/sec

174 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

and T =
2p

ws

 @ 0.03 sec

The dominant time constant of the plant is 0.3 sec. The sampling interval T is one tenth of this value.

We use the bilinear transformation given by

 s =
2 1

1T

z

z

-
+

Ê
ËÁ

ˆ
¯̃

to digitize D(s). This results in

 D(z) =
22 4 20 27

80 67 52 67

. .

. .

z

z

-
-

 =
0 278 0 25

1 0 653

1

1

. .

.

-

-

-

-

z

z
 =

U z

E z

()

()
 (3.72a)

The control algorithm is, therefore, given by

 u(k) = 0.653 u(k – 1) + 0.278 e(k) – 0.25 e(k – 1) (3.72b)

This completes the digital algorithm design.

3.8

The explosive growth of the computer industry in recent years has also meant an enormous growth for

stepping motors, because these motors provide the driving force in many computer peripheral devices.

Stepping motors can be found, for example, driving the paper-feed mechanism in printers. These motors

are also used exclusively in floppy disk drives, where they provide precise posi tioning of magnetic head

on the disks. The X and Y coordinate pens in plotters, are driven by stepping motors.

The stepping motor can be found performing countless tasks out side the computer industry as well. The

most common application is probably in analog quartz watches where tiny stepping motors drive the

hands. These motors are also popular in numerical-control applications (positioning of the workpiece

and/or the tool in a machine according to previously specified numerical data).

A stepping motor is especially suited for applications mentioned above because, essentially, it is a device

that serves to convert input information in digital form to an output that is mechani cal. It thereby provides

a natural interface with the digital computer. A stepping motor, plus its associated drive electronics,

accepts a pulse-train input and produces an increment of rotary displace ment for each pulse. We can

control average speed by manipulating pulse rate, and motor position by controlling the total pulse count.

Two types of stepping motors are in common use—the permanent magnet (PM), and the variable

reluctance (VR). We will discuss the PM motor first.

3.8.1

A PM stepping motor in its simplest form is shown in Fig. 3.47. The motor has a permanent magnet rotor

that, in this example, has two poles, though often many more poles are used. The stator is made of soft

 Models of Digital Control Devices and Systems 175

iron with a number of pole pieces and associated

windings. Only four windings (grouped into two

sets of two windings each) are used in this example.

These windings must be excited sequentially in a

certain order. Although this is common ly done by

solid-state switching circuits, mechanical switches

are shown in the figure since their operation is

easier to visua lize.

Assume the switches to be in the positions shown.

Windings 1 and 3 are energized and, as a result,

the pole pieces have the polar ities shown. The

rotor is thus found in the position shown with

its S pole centered between the two upper N pole

pieces, and its N pole between the two lower S pole

pieces. With the field maintained, if we try to twist

the shaft away from its standstill (equilibri um) position, we feel a ‘magnetic spring’ restoring torque.

However, a sufficiently large external torque can overcome the magnetic spring.

With the rotor energized and in equilibrium position, the torque required from an external source to

break away the motor from this position is called the holding torque. The holding torque is a basic

characteristic of the stepping motors, and provides posi tional integrity under standstill conditions.

If we now imagine the position of switch A changed, then winding 2 is energized instead of winding 1.

As a result, the right upper pole piece becomes S instead of N, and the left lower one N, so that the rotor

is forced to rotate 90º counterclockwise. Changing switch B produces the next 90º step, etc. The rotor

is thus forced to realign itself continuously according to the prevalent magnetic fields. If it is desired to

reverse the direction of rotation, the order of changing the switch positions need only be reversed.

One characteristic feature of PM stepping motors is that they have a so-called residual or detent torque

when power to the stator windings is cut off. It is the result of the permanent-magnet flux of the PM

motor acting on residual flux on stator poles. The detent torque is naturally much lower than the holding

torque, produced when the stator is energized, but it does help in keeping the shaft from moving due to

outside forces.

Many motors have more than four stator pole pieces—and possibly also more rotor poles—resulting

in smaller step angles. Typical step angles for PM motors range from 90º to as low as 1.8º. Stator pole

windings are connected in so-called phases, with all windings belonging to the same phase energized at

the same time. Typically, the phases can range from as low as two to as high as eight. The more phases

the motor has, the smoother is its output torque.

Figure 3.48 shows a simple power drive scheme; each time the power transistors are switched as per the

sequence given in the chart, the motor moves through a fixed angle, referred to as the step angle. The

chart is circular in the sense that, the next entry after Step 4 is Step 1. To rotate the motor in a clockwise

direction, the chart is traversed from top to bottom, and to rotate the motor in counterclockwise direction,

A

B

1

4

S

S

S

N

N

N2

3

Fig. 3.47

176 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the chart is traversed from bottom to top. Number of step movements/sec gives the stepping rate—a

parameter that gives a measure of the speed of operation of the stepping motor. The stepping rate is

controlled by changing the switching frequency of the transistors.

1

3

2

4

Step

C
W
ro
ta
ti
o
n

C
C
W
ro
ta
ti
o
n

1

2

3

4

ON

ON

OFF

OFF

OFF

OFF

ON

ON

ON

OFF

OFF

ON

OFF

ON

ON

OFF

Q1 Q2 Q3 Q4

Q4Q3Q2Q1

Fig. 3.48

From the foregoing description of the method of operation of a stepping motor, we observe that the

stepping action of the motor is dependent on a specific switching sequence that serves to energize and

de-energize the stator windings. In addition to the sequence requirement, the windings must be provided

with suffi cient current. These requirements are met by the stepping motor driver, whose block diagram is

shown in Fig. 3.49. The sequence-logic section of the motor driver accepts the pulse-train input, and also

receives a binary direction signal indicating the direction in which the motor is to step. It then produces

an appropriate switching sequence, so that each phase of the motor is energized at the proper time. The

drive-amplifier section con sists of power transistors supplying sufficient current to drive the motor.

Pulse train

Direction
CW/CCW logic input

Sequence
logic

Drive
amplifier

Motor
(four phase)

Fig. 3.49

 Models of Digital Control Devices and Systems 177

3.8.2

Figure 3.50 illustrates a typical Variable Reluctance (VR) motor. The rotor is made of magnetic material,

but it is not a permanent magnet, and it has a series of teeth (eight in this case) ma chined into it. As

with the PM stepping motor, the stator con sists of a number of pole pieces with windings connected in

phases; all windings belonging to the same phase are energized at the same time. The stator in Fig. 3.50

is designed for 12 pole pieces with 12 associated windings arranged in three phases (labeled 1, 2, and 3,

respectively). The figure shows a set of four windings for Phase 1; the windings for the other two phases

have been omitted for clarity.

1

1

3

2

Fig. 3.50

The operating principle of the VR motor is straightforward. Let any phase of the windings be energized with

a dc signal. The magnetomotive force set up will position the rotor such that the teeth of the rotor section

in the neighborhood of the excited phase of the stator, are aligned opposite to the pole pieces associat ed

with the excited phase. This is the position of minimum reluc tance, and the motor is in stable equilibrium.

Figure 3.50 illustrates the rotor in the position it would assume when Phase 1 is energized. If we now

de-energize Phase 1 and energize Phase 2, the rotor rotates counterclockwise so that the four rotor teeth

nearest to the four pole pieces belonging to Phase 2, align themselves with these. The step angle of

the motor equals the difference in angular pitch between adjacent rotor teeth and adjacent pole pieces;

in this case 45 – 30 = 15º. Due to this di fference relationship, VR motors can be designed to operate

with considerably smaller step angles than PM motors. Other advantages of VR motors include faster

dynamic response and the ability to accept higher pulse rates.

178 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Among the drawbacks—their output torque is lower than that of a PM motor of a similar size, and they

do not provide any detent torque when not energized.

3.8.3

Torque versus speed curves of a stepping motor give the dynamic torque, produced by the stepping

motor at a given stepping rate, on excitation under rated conditions. The dynamic torque of a motor is

the most important data and it plays a major role in the selection of a motor for a specified application.

In a load-positioning application, for instance, the rotor would typically start from rest and accelerate

the load to the desired position. To provide this type of motion, the motor must develop sufficient torque

to overcome friction, and to accelerate the total inertia. In accel erating the inertia, the motor may be

required to develop a large amount of torque, particularly if the acceleration must be com pleted in a short

time—so as to position the load quickly. Ina bility of the motor to develop sufficient torque during motion

may cause the motor to stall, resulting in a loss of synchroniza tion between the motor steps and phase

excitation, and conse quently, resulting in incorrect positioning of the load.

A typical torque versus stepping rate characteristic graph is shown in Fig. 3.51, in which curve a gives

pull-in torque versus rotor steps/sec and curve b gives pull-out torque versus rotor steps/sec.

Fig. 3.51

The pull-in range (the area between axes and curve a) of the motor is the range of switching speeds

at which the motor can start and stop, without losing steps. For a frictional load requiring torque T1 to

overcome friction, the maximum pull-in rate is S1 steps per sec. S2 is the maximum pull-in rate at which

the unloaded motor can start and stop, without losing steps.

When the motor is running, the stepping rate can be increased above the maximum pull-in rate, and

when this occurs, the motor is operating in the slew-range region (the area between horizontal axis,

and curves a and b). The slew range gives the range of switching speeds within which the motor can

run unidirectionally, but cannot be started or reversed (at shaft torque T1, the motor cannot be started

or reversed at step rate S3). When the motor is running in the slew range, it can follow changes in the

stepping rate without losing steps, but only with a certain acceleration limit.

 Models of Digital Control Devices and Systems 179

For a frictional load requiring torque T1 to overcome friction, the maximum slewing rate at which the

motor can run is S4. S5 is the maximum slewing rate at which the unloaded motor can run without losing

steps.

Curve c in Fig. 3.51 gives the pull-in torque with external inertia. It is obvious that if the external load

results in a pull-in torque curve c, the torque developed by the motor at step rate S1 is T2 < T1. Stepping

motors are more sensitive to the inertia of the load than they are to its friction.

3.8.4

In motion control technology, the rise of stepping motors, in fact, began with the availability of easy-to-

use integrated circuit chips to drive these stepping motors. These chips require, as inputs a pulse train

at the stepping frequency, a logic signal to specify CW and CCW rotation, and a logic signal for STOP/

START operation. An adjustable frequency pulse train is readily ob tained from another integrated circuit

chip—a voltage-controlled oscillator.

The application of stepping motors has shot up with the availa bility of low-cost microprocessors. A

simplified form of micro processor-based stepping motor drive is shown in Fig. 3.52. The system requires

an input port and an output port (this require ment is reduced to one port if a programmable I/O port is

used). Output port handles the binary pattern applied to the stepping motor (which is assumed to be a

four-phase motor). The excitation sequence is usually stored in a table of numbers. A pattern for four-

phase motor is shown in the chart of Fig. 3.52. The chart is circular in the sense that the next entry

after Step 4 is Step 1. To rotate the motor in a clockwise direction, the chart is traversed from top to

Fig. 3.52

180 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

bottom, and to rotate the motor in counterclockwise direc tion, the chart is traversed from bottom to top.

By controlling the number of bit-pattern changes, and the speed at which they change, it is possible to

control the angle through which the motor rotates and the speed of rotation. These controls can easily be

realized through software.

The system operator has control over the direction of rotation of the motor by means of a DIRECTION

switch, which is interfaced to the CPU through the input port. The operator is also provided with a STOP

switch which is connected to an interrupt line of the CPU. The interrupt routine must stop the motor

by sending out logic ‘0’s on the data bus lines connected to the stepping motor windings through the

output port.

Figure 3.52 also shows a simple drive circuit for the stepping motor. Power transistors Q1–Q4 act as

switching elements.

When a power transistor is turned off, a high voltage builds up due to di/dt, which may damage the

transistor. This surge in voltage can be suppressed by connecting a diode in parallel with each winding

in the polarity shown in Fig. 3.52. Now, there will be a flow of circulating current after the transistor is

turned off, and the current will decay with time.

3.8.5

Stepping motors present a number of pronounced advantages, as compared to conventional electric

motors:

 (i) Since the stepping-motor shaft angle bears an exact relation to the number of input pulses, the

motor provides an accurate open-loop positioning system without the need for closing the loop

with a position encoder, comparator, and servo amplifier, as is done in conventional closed-loop

systems.

 (ii) If the stepping motor receives a continuous train of pulses at constant frequency, it rotates at a

constant speed, provided neither the load torque nor the pulse frequency are excessive for the

given motor. The stepping motor can thus take the place of a velocity servo, again, without the

need for a closed-loop system. By changing pulse frequency, the motor speed can be controlled.

Even low velocities can be maintained accurately, which is diffi cult to do with conventional dc

motors.

 (iii) By driving several motors from the same frequency source, synchronized motions at different

points in a machine are easily obtained. Using standard frequency-divider chips, we can drive a

motor at a precise fraction of another motor’s speed, giving an electronic gear train.

 (iv) If the motor stator is kept energized during standstill, the motor produces an appreciable holding

torque. Thus, the load position can be locked without the need for clutch-brake arrange ments. The

motor can be stalled in this manner indefinitely, without adverse effects.

There are, of course, also certain drawbacks.

 (i) If the input pulse rate is too fast, or if the load is exces sive, the motor will ‘miss’ steps, making the

speed and position inaccurate.

 (ii) If the motor is at rest, an external disturbing torque greater than the motor’s holding torque, can

twist the motor shaft away from its commanded position by any number of steps.

 Models of Digital Control Devices and Systems 181

 (iii) With high load inertias, overshooting and oscillations can occur unless proper damping is applied,

and under certain condi tions, the stepping motor may become unstable.

 (iv) Stepping motors are only available in low or medium hp ratings, up to a couple of hp (in theory,

larger stepping motors could be built, but the real problem lies with the controller—how to get

large currents into and out of motor windings at a suffi ciently high rate, in spite of winding

inductance).

 (v) Stepping motors are inherently low-speed devices, more suited for low-speed applications because

gearing is avoided. If high speeds are required, this of course becomes a drawback.

Since the cost and simplicity advantages of stepping-motor con trol systems erode when motion sensors

and feedback loops are added, much effort has gone into improving the performance of open-loop

systems:

 (i) As explained earlier in connection with Fig. 3.51, the permissible pulse rate for starting an inertia

load (i.e., the pull-in rate), is much lower than the permissible pulse rate once the motor has

reached maximum speed (pull-out rate). A good controller brings the motor up to its maximum

speed gradually, a process called ramping2, in such a manner that no pulses are lost. Simi larly, a

good controller controls deceleration when the motor is to be stopped.

 (ii) Various schemes for improving damping to prevent overshoot ing and oscillations when the

motor is to be stopped, are availa ble. Mechanical damping devices provide a simple solution, but

these devices reduce the available motor torque and also, mostly, require a motor with a double-

ended shaft. Therefore, electronic damping methods are usually preferred. A technique called

back-phase damping consists of switching the motor into the reverse direction using the last few

pulses of a move.

 (iii) The more sophisticated controllers are able to provide so-called microstepping. This technique

permits the motor shaft to be positioned at places other than the natural stable points of the

motor. It is accomplished by proportioning the current in two adjacent motor windings. Instead

of operating the winding in the on-off mode, the current in one winding is decreased slightly, but

increased in the adjacent winding.

 (iv) Complex drive circuits that offer good current build-up without loss at high stepping rates, are

used.

Although the advantages of stepping-motor drives in open-loop systems are most obvious, closed-loop

applications also exist. A closed-loop stepping motor drive can be analyzed using classical techniques

employed for continuous-motion systems. For a detailed account of stepping motors, refer to [52].

3.9

A great deal of what has been said in this book so far about control systems seems exotic: algorithms

for radar tracking, drives for rolling mills, filters for extracting information from noisy data, methods for

numerical control of machine tools, fluid-temperature control in process plants, etc. Underlying most

of these are much more mundane tasks: turning equipment (pumps, conveyor belts, etc.) on and off;

 2 Refer to [96] for detailed description of hardware and software.

182 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

opening and closing of valves (pneumatic, hydraulic); checking sensors to be certain they are working;

sending alarms when monitored signals go out of range; etc. Process control plants and manufacturing

floors share this need for simple, but important, tasks.

These so-called logic control functions can be implemented using one of the most ingenious devices

ever devised to advance the field of industrial automation. So versatile are these devices, that they are

employed in the automation of almost every type of industry. The device, of course, is the programmable

controller, and thousands of these devices go unrecognized in process plants and factory environments—

quietly monitoring security, manipulat ing valves, and controlling machines and automatic production

lines.

Industrial applications of logic control are mainly of two types; those in which the control system is

entirely based on logic principles, and those that are mainly of a continuous feed back nature and use a

‘relatively small’ amount of logic in auxiliary functions, such as start-up/shut-down, safety interlocks

and overrides, and mode switching. Programmable controllers, origi nally intended for ‘100%’ logic

systems, have, in recent years, added the capability of conventional feedback control; making them

very popular—since one controller can now handle, in an integrated way, all aspects of operation of a

practical system, that includes both types of control problems. General-purpose digital computers could

also handle such situations, but they are not as popular as the programmable controllers, for the reasons

mentioned below.

In theory, general-purpose computers can be programmed to perform most of the functions of

programmable controllers. However, these machines are not built to operate reliably under industrial

conditions, where they can be exposed to heat, humidity, corro sive atmosphere, mechanical shock and

vibration, electromagnetic noise, unreliable ac power with dropping voltages, voltage spikes, etc. A

programmable controller is a special-purpose computer, especially designed for industrial environments.

A general-purpose computer is a complex machine, capable of executing several programs or tasks

simultaneously, and in any order. By contrast, a programmable controller typically executes its tiny

program continuously hundreds of millions of times before being interrupted to introduce a new program.

General-purpose computers can be interfaced with external equipment with special circuit cards. In

programmable controllers by comparison, the hardware interfaces for connecting the field devices are

actually a part of the controller and are easily connected. The software of the controllers is designed for

easy use by plant technicians. A programmable controller is thus a special-purpose device for industrial

automation applications—requiring logic control func tions and simple PID control functions; it cannot

compete with conventional computers when it comes to complex control algo rithms and/or fast feedback

loops, requiring high program execu tion speeds.

Early devices were called ‘programmable logic controllers (PLCs)’, and were designed to accept on-off

(binary logic) vol tage inputs from sensors, switches, relay contacts, etc., and produce on-off voltage

outputs to actuate motors, solenoids, control relays, lights, alarms, fans, heaters, and other electri cal

equipment. As many of today’s ‘programmable controllers’ also accept analog data, perform simple

arithmetic operations, and even act as PID (proportional-integral-derivative) process control lers, the

word ‘logic’ and the letter ‘L’ were dropped from the name long ago. This frequently causes confusion,

since the let ters ‘PC’ mean different things to different people; the most common usage of these letters

being for ‘Personal Computer’. To avoid this confusion, there has been a tendency lately to restore the

letter ‘L’ and revive the designation ‘PLC’. We have followed this practice in the book.

 Models of Digital Control Devices and Systems 183

Before the era of PLCs, hardwired relay control panels were, in fact, the major type of logic systems, and

this historical development explains why the most modern, microprocessor-based PLCs still are usually

programmed according to relay ladder diagrams. This feature has been responsible for much of the

widespread and rapid acceptance of PLCs; the computer was forced to learn the already familiar human

language rather than making the humans learn a new computer language. Originally cost-effective for

only large-scale systems, small versions of PLCs are now available.

A sequenced but brief presentation of building blocks of a PLC, ladder diagrams, and examples of

industrial automation, follows [23–25]. It is not appropriate to discuss here the internal details,

performance specifications and programming details for any particular manufacturer’s PLC. These

aspects are described in every manufacturers’ literature.

3.9.1

A definition of logic controls, that adequately describes most applications, is that they are controls that

work with one-bit binary signals. That is, the system needs only to know that a signal is absent or present;

its exact size is not important. This definition excludes the field of digital computer control discussed so

far in the book. Convention al computer control also uses binary signals (though usually with many bits);

the type of application and the analysis methods are quite different for logic controls and conventional

computer controls, which is why we make the distinction.

Logic control systems can involve both combinational and sequen tial aspects. Combinational aspects

are implemented by a proper interconnection of basic logic elements such as AND, OR, NOT, so as to

provide a desired output or outputs, when a certain combina tion of inputs exists. Sequential effects use

logic elements together with memory elements (counters, timers, etc.), to ensure that a chain of events

occurs in some desired sequence. The present status of outputs depends, both, on the past and pre sent

status of inputs.

It is important to be able to distinguish between the nature of variables in a logic control system, and

those in a conventional feedback control system. To define the difference, we consider an example that

employs both the control schemes.

Figure 3.53 shows a tank with a valve that controls flow of liquid into the tank, and another valve that

controls flow out of the tank. A transducer is available to measure the level of the liquid in the tank. Also

shown is the block diagram of a feedback control system, whose objective is to maintain the level of the

liquid in the tank at some preset, or set-point value. We assume that the controller operates according to

PID mode of control, to regulate the level against variations induced from external influences. This is a

continuous variable control system because, both the level and the control valve setting can vary over a

range to achieve the desired regulation.

The liquid-level control system is a part of the continuous bottle filling process. Periodically, a bottle

comes into posi tion under the outlet valve. The level must be maintained at the set-point while the outlet

valve is opened and the bottle is filled. This requirement is necessary to assure a constant pressure head

during bottle-filling. Figure 3.53 shows a pictorial representation of process hardware for continu ous

bottle-filling control. The objective is to fill bottles moving on a conveyor, from the constant-head tank.

This is a typical logic control problem. We are to implement a control program that will detect the

position of a bottle under the tank outlet via a mechanically actuated limit switch, stop the feed motor

184 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

M1 to stop the feed conveyor, open the solenoid-operated outlet valve V1, and then fill the bottle until

the photosensor detects the filled position. After the bottle is filled, it will close the valve V1, and restart

the conveyor to continue to the next bottle. The start and stop pushbuttons (PB) will be includ ed for the

outfeed motor, and for the start of the bottle-filling process. Once the start PB is pushed, the outfeed

motor M2 will be ON until the stop PB is pushed. The feed motor M1 is energized once the system starts

(M2 ON), and is stopped when the limit switch detects the correct position of the bottle.

The sensors used for the logic control problem have characteris tics different from those used for the

regulator problem. For the regulator problem, the level sensor is an analog device producing analog

signal as its output. For the logic control problem, sensors used are binary sensors producing on-off

(binary logic) signals. For example, a limit-switch consists of mechanically actuated electrical contacts.

The contacts open or close when some object reaches a certain position (i.e., limit), and actuates the

switch. Hence, limit-switches are binary sensors. Photoelec tric sensors consist, basically, of a source

emitting a light beam and a light-sensing detector receiving the beam. The object to be sensed interrupts

the beam, thereby making its presence known without physical contact between sensor and object. The

filled-bottle state of the product can thus be sensed by a binary photo electric sensor.

The system of Fig. 3.53 involves solenoid and electric motors as motion actuators. Thus, when the logic

controller specifies that ‘output valve be opened’, it may mean moving a solenoid. This is not done by a

simple toggle switch. Instead, one would logically assume that a small switch may be used to energize a

relay with contact ratings that can handle the heavy load. Similarly, an on-off voltage signal from the logic

controller may actuate a thyristor circuit to run a motor.

Controller Set-point

Solenoid
operated valve 1V

Photoelectric sensor

Filled bottlesEmpty bottles

Feed motor
drive
1M

Outfeed motor drive
(always ON
during process)

2M

Limit switch

Fixed
rollers

LS

Control valve

Input flow

Fig. 3.53

 Models of Digital Control Devices and Systems 185

3.9.2

The programmable logic controllers are basically computer-based; and therefore, their architecture is very

similar to computer architecture. The memory contains the operating system stored in fixed memory

(ROM), and the application programs stored in alter able memory (RAM). The Central Processing Unit

(CPU) is a micro processor that coordinates the activities of the PLC system. Figure 3.54 shows basic

building blocks of a PLC.

Power supply

Input
module

Output
module

CPU

Memory

Signals from
switches,
sensors, etc.

Signals to
solenoids,
motors, etc.

Fig. 3.54

Input devices such as pushbuttons, sensors, and limit switches are connected to the input interface

circuit, called the input module. This section gathers informa tion from the outside environment, and

sends it to the CPU. Output devices such as solenoids, motor controls, indicator lights and alarms are

connected to the output interface circuit, called the output module. This sec tion is where the calculation

results from the CPU are output to the outside environment. With the control application program (stored

within the PLC memory) in execution, the PLC constantly monitors the state of the system through the

field input devices; and based on the program logic, it determines the course of action to be carried out

at the field output devices. This pro cess of sequentially reading the inputs, executing the program in

memory, and updating the outputs is known as scanning.

Intelligence of an automated system is greatly dependent on the ability of a PLC to read in the signals

from various types of input field devic es. The most common class of input devices in an automated

system is the binary type. These devices provide input signals that are ON/OFF or OPEN/CLOSED.

To the input interface circuit, all binary input devices are essentially a switch that is either open or

closed, signaling a 1(ON) or 0(OFF). Some of the binary input field devices along with their symbolic

representation are listed in Fig. 3.55.

PB
LSLS

(a) (d)(b) (c)

LS

(e)
LS

Fig. 3.55

186 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

As mentioned earlier, a switch is a symbolic representation of the field input device, interfaced to the

input module of the PLC. The device may be a manually operated pushbutton, mechanically actuated

limit switch (the contacts open/close when some object reaches a certain position and actuates the

switch), proximity switch (device based on inductive/capacitive/magnetic effect which, with appropriate

electronics, can sense the presence of an object without a physical contact with the object), photoelectric

sensor, level sensor, temperature sensor, shaft encoder, etc. The main purpose of the input module is to

condition the various signals, received from the field devices, to produce an output to be sensed by the

CPU. The signal conditioning involves converting power-level signals from field devices to logic-level

signals acceptable to the CPU, and providing electrical isolation so that there is no electrical connection

between the field device (power) and the controller (logic). The coupling between the power and the

logic sections is normally provided by an optical coupler.

During our discussion on PLC programming, it will be helpful if we keep in mind the relationship

between the interface signals (ON/OFF) and their mapping and addressing used in the program. When

in operation, if an input signal is energized (ON), the input interface circuit senses the field device’s

supplied vol tage and converts it to a logic-level signal acceptable to the CPU, to indicate the status of the

device. The field status infor mation provided to the standard input module is placed into the input table

in memory through PLC instructions. The I/O address assignment document of the PLC manufacturer

identifies each field device by an address. During scanning, the PLC reads the status of all field input

devices, and places this information at the corresponding address locations.

An automation system is incomplete without means for interface to the field output devices. The output

module provides connections between the CPU and output field devices. The output module receives

from the CPU logic-level signals (1 or 0).

The main purpose of the output interface circuit is to condition the signals received from the CPU, to

produce outputs to actuate the output field devices. The signal conditioning circuit consists, primarily, of

the logic and power sections, coupled by an isola tion circuit. The output interface can be thought of as a

simple switch through which power can be provided to control the output device.

During normal operation, the CPU sends to the output table, at predefined address locations, the output

status according to the logic program. If the status is 1, ON signal will be passed through the isolation

circuit, which, in turn, will switch the voltage to the field device through the power section of the module.

The power section of the output module may be transistor based, triac based, or simply, relay ‘contact

based’ circuit. The relay circuit output interface allows the output devices to be switched by NO

(normally open) or NC (normally closed) relay contact. When the processor sends the status (1 or 0) to

the module (through output table) during the output update, the state of the contact will change. If a 1 is

sent to the module from the processor, a nor mally open contact will close, and a normally closed contact

will change to an open position. If a 0 is sent, no change occurs to the normal state of the contacts. The

contact output can be used to switch either ac or dc loads; switching small currents at low voltages. High

power contact outputs are also available for switching of high currents.

Some of the output field devices, along with their symbolic representation, are given in Fig. 3.56.

 Models of Digital Control Devices and Systems 187

M

SOL

NO

PL

(a)

(e)

(b)

(f)

(c)

(g)

(d)

H

NC

AH

Fig. 3.56

Once we have the CPU programmed, we get information in and out of the PLC through the use of

input and output modules. The input module terminals receive signals from switches, and other input

information devices. The output module terminals provide output voltages to energize motors and valves,

operate indicating devices, and so on.

For small PLC systems, the input and output terminals may be included on the same frame as the CPU.

In large systems, the input and output modules are separate units; modules are placed in groups on racks,

and the racks are connected to the CPU via appropriate connector cables.

Generally speaking, there are three categories of rack en closures—the master rack, the local rack, and

the remote rack. A master rack refers to the enclosure containing the CPU module. This rack may, or may

not, have slots available for the insertion of I/O modules. The larger the PLC system, the less likely that

the master rack will have I/O housing capability or space. A local rack is an enclosure which is placed

in the same location or area where the master rack is housed. If a master rack contains I/O, it can also be

considered a local rack. In general, a local rack contains a local I/O processor which re ceives and sends

data to and from the CPU.

As the name implies, remote racks are enclosures containing I/O modules located far away from the

CPU. A remote rack contains an I/O processor which communicates I/O information just like the local

rack.

Timers and counters play an important part in many industrial automation systems. The timers are used

to ini tiate events at defined intervals. The counters, on the other hand, are used to count the occurrences

of any defined event.

Basically the operation of both the timer and the counter is same, as a timer operates like a counter. The

counter shown in Fig. 3.57a, counts down from set value when its execution condition (count input) goes

from OFF to ON. When the value reaches zero, the counter contact point is turned ON. It is reset with a

reset input. The set value is decided by the programmer, and stored in the internal register of the counter

through control program instruc tions. The count input signal may refer to any event which may occur

randomly.

188 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

When a count input signal occurs at fixed frequency, i.e., after every fixed interval of time, the counter

performs as a timer. Now 10 pulses, i.e., counts, will mean an elapsed time of 5 seconds, if the signal

is occurring after a regular interval of 0.5 seconds. The timer, shown in Fig. 3.57b, is activated when its

execution condition goes ON and starts decreasing from the set value. When the value reaches zero, the

timer contact point is turned ON. It is reset to set value when the execution condition goes OFF.

It is unlikely that two different PLCs will have identical memory maps, but a generalization of memory

organization is still valid in the light of the fact that all PLCs have similar storage requirements. In

general, all PLCs must have memory allocated for the four items described below.

The executive software is a permanently stored collec tion of programs that are considered

a part of the system itself. These programs direct system activities such as execution of the control

program, communication with peripheral devices, and other housekeeping activities. The executive area

of memory is not accessible to the user.

It is a temporary storage used by the CPU to store a relatively small amount of data

for interim calculations or control.

This area stores any data associated with the control program, such as timer/counter set

values, and any other stored constants or variables that are used by the control program. This section also

retains the status information of the system inputs once they have been read, and the system outputs once

they have been set by the control program.

This area provides storage for any programmed in structions entered by the user. The

control program is stored in this area.

The Data Table and the User Program areas are accessi ble and are required by the user for control

application. The Executive and Scratch Pad areas together are normally referred to as ‘system memory’,

and Data Table and User Program areas to gether are labeled as ‘application memory’.

The data table area of the PLC’s application memory is composed of several sections described below.

The input table is an array of bits that stores the status of discrete inputs which are

connected to input interface circuit. The maximum number of bits in the input table is equal to the

maximum number of field inputs that can be connected to the PLC. For instance, a controller with 128

Counter Start input Timer

Set value

(a)

Set value

Count input

Reset input

(b)

Fig. 3.57

 Models of Digital Control Devices and Systems 189

inputs would require an input table of 128 bits. If the PLC system has 8 input mod ules, each with 16

terminal points, then the input table in PLC memory (assuming 16 bit word length) will look like that

in Fig. 3.58.

0
Bit

address

Terminal 12

Input module
with 16 terminals
placed in
master rack

In
p
u
t

S
lo
t
R
ac
k

002

004

007

Word
address

00 1

13 10 08 06 04 0215 00

000

Fig. 3.58

Each terminal point on each of the input modules will have an address by which it is referenced. This

address will be a pointer to a bit in the input table. Thus, each connected input has a bit in the input table

that corresponds exactly to the terminal to which the input is connected. The address of the input device

can be interpreted as word location in the input table corresponding to the input module, and bit location

in the word corresponding to the terminal of the input module, to which the device is con nected.

Several factors determine the address of the word loca tion of each module. The type of module, input or

output, deter mines the first number in the address from left to right (say, 0 for input, and 1 for output).

The next two address numbers are determined by the rack number and the slot location where the module

is placed. Figure 3.58 graphically illustrates a mapping of the input table, and the modules placed in rack

0 (master rack). Note that the numbers associated with address assignment depend on the PLC model

used. These addresses can be represented in octal, decimal, or hexadecimal. We have used decimal

numbers.

The limit switch connected to the input interface (refer to Fig. 3.58) has an address of 00012 for its

corresponding bit in the input table. This address comes from the word location 000 and the bit number

12; which are related to the rack position where the module is installed, and the module’s terminal

connect ed to the field device, respectively. If the limit switch is ON (closed), the corresponding bit 00012

will be 1; if the limit switch is OFF (open), its corresponding bit will be 0.

During PLC operation, the processor will read the status of each input in the input modules, and then

place this value (1 or 0) in the corresponding address in the input table. The input table is constantly

changing—to reflect the changes in the field devices connected to the input modules. These changes in

the input table take place during the reading part of the processor scan.

190 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The output table is an array of bits that controls the status of output devices, which

are connected to the output interface circuit. The maximum number of bits available in the output table

is equal to the maximum number of output field devices that can be interfaced to the PLC. For instance,

a con troller with a maximum number of 128 outputs would require an output table of 128 bits.

Each connected output has a bit in the output table that corre sponds exactly to the terminal to which the

output is connected. The bits in the output table are controlled (ON/OFF) by the processor, as it interprets

the control program logic. If a bit in the table is tuned ON (logic 1), then the connected output is switched

ON. If a bit is cleared or turned OFF (logic 0), the output is switched OFF. Remember that the turning

ON or OFF, of the field devices occurs during the update of outputs after the end of the scan.

This section of the data table may be subdivided in two parts consisting of a work

bit storage area and a word stor age area. The purpose of this data table section is to store data that can

change, whether it is a bit or a word (16 bits). Work bits are internal outputs which are normally used

to provide interlocking logic. The internal outputs do not directly control output field devices. When the

processor evaluates the control program, and any of these outputs is energized (logic 1), then this internal

output, in conjunction with other internal and/or real signals from field devices, forms an interlocking

logic sequence that drives an output device or another internal output.

The outputs of timers and counters are used as internal outputs which are generated after a time interval

has expired, or a count has reached a set value.

Assume that the timer/counter table in storage area has 512 points. Address assignment for these points

depends on the PLC model used. We will use TIM/CNT000 to TIM/CNT512 as the ad dresses of these

points. The word storage area will store the set values of timers/counters.

In our application examples given in the next subsection, we shall use word addresses 000 to 007 for

input table, and addresses 100 to 107 for output table. The input devices will be labeled with numbers

such as 00000,..., 00015, and output devices with numbers such as 10000, ..., 10015.

We shall use word addresses 010 to 017 for internal outputs. Examples of typical work bits (internal

outputs) are 01000, ..., 01015. TIM/CNT000 to TIM/CNT512 are the typical addresses of timer/counter

points.

3.9.3

Although specialized functions are useful in certain situations, most logic control systems may be

implemented with the three basic logic functions AND, OR, and NOT. These functions are used either

singly or in combinations, to form instructions that will determine if an output field device is to be

switched ON or OFF. The most widely used language for implementing these instructions are ladder

diagrams. Ladder diagrams are also called contact symbology, since the instructions, as we shall see, are

relay-equivalent contact symbols shown in Figs 3.56f and 3.56g.

An AND device may have any number of inputs and one output. To turn the output ON, all the inputs

must be ON. This function is most easily visualized in terms of switch arrangement of Fig. 3.59a, and

timing chart of Fig. 3.59b. The corresponding ladder diagram is given in Fig. 3.59c. Figure 3.59d gives

the Boolean algebra expression for the two-input AND, read as “A AND B equals C”.

 Models of Digital Control Devices and Systems 191

The timing chart in Fig. 3.59b is simply a series of graphs, each representing a logic variable, in which

the horizontal axis is time and the vertical axis is logic state, that is, 0 or 1. The graphs are placed so that

their time-axis are synchronized; in this way, a vertical line at any point on the graph describes a point in

time, and all input and output variables can be evaluat ed at that point. The graph of the output variable is

determined by the structure of the logic system and, of course, the pattern of the input.

The input contacts in Fig. 3.59c are normally open (NO) contacts (Do not confuse this symbol with

the familiar electrical symbol for capacitors). If the status of the input A is ‘1’, the contact A in ladder

diagram will close, and allow current to flow through the contact. If the status of the input A is ‘0’, the

contact will remain open, and not allow current to flow through the contact.

The ladder diagram of Fig. 3.59c can be thought of as a circuit having many inputs. A circuit is known

as the ‘rung’ of the ladder. A complete PLC ladder diagram consists of several rungs; a rung controls

an output field device either through an output module or an internal output. The input to a rung can be

logic commands from input modules, or from output modules connected to field devices, or from internal

outputs.

Figure 3.60 gives similar details for logical OR operation and should be self-explanatory. The Boolean

expression is read as “A OR B equals C”.

The contact in Fig. 3.61 in normally closed (NC) contact. If the status of the input A is ‘0’, the contact

will remain closed, thus allowing current to flow through the contact. If the status of the input A is ‘1’,

the contact will open and not allow current to flow through the contact. This symbol permits the use of

logic NOT operator. The Boolean expression is read as “NOT A equals B”; the overbar is used in general,

for applying NOT function.

Fig. 3.59

192 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Input
A

A
Input

Output

1

1

0
A

B
1

0

3

(a) Switch interpretation

Normally closed (NC)
contact

(b) Timing chart

(c) Ladder diagram

5 7 9

B

Output
B

Time

(d) Boolean expression

A B=

Fig. 3.61

1

1

0
A

B

C

1

1

0

0

3

(a) Switch interpretation (b) Timing chart

5 7 9

A

B

Inputs
Output

(c) Ladder diagram (d) Boolean expression

C

Input
A

Output
C

Input
B

Time

A B C+ =

Fig. 3.60

 Models of Digital Control Devices and Systems 193

Consider the logic system

A · B = C

read as “A AND NOT B equals C”.

The ladder diagram and timing chart for this system are given in Fig. 3.62.

1

1

0
A

B

C

1

1

0

0

3

A B

(a) Ladder diagram (b) Timing chart

5 7 9 Time

C

Fig. 3.62

Consider now the logic system

A + B = C

read as “A OR NOT B equals C”.

The ladder diagram and timing chart for this system are given in Fig. 3.63.

Fig. 3.63

Example 3.5 Start/Stop Pushbutton System

Most large industrial machines are turned on and off by means of sepa rate spring pushbuttons for start

and stop. This has safety implications in that the stop pushbutton can be given priority to shut down

the machine in an emergency, regardless of the status of the start pushbutton. The start/stop pushbutton

system is a logic control system with three variables, each of which can take on two, and only two values,

or states. These variables and their states are defined as follows:

194 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Assume that 000 is the word address of the input module, and 100 is the word address of the output

module of a PLC. Each module is assumed to have 16 terminals: 00 to 15. The start pushbutton is

connected to terminal 00, and stop pushbutton is connected to terminal 01 of the input module 000; and

the signal from terminal 00 of the output module 100 controls the machine. The system variables may,

therefore, be designated as 00000, 00001, and 10000.

The bit 00000 of the input table in PLC memory is 1 when the start pushbutton is pressed, and is 0 when

start pushbutton is released. The bit 00001 of the input table is 1 when the stop pushbutton is pressed,

and is 0 when the stop pushbutton is released. The bit 10000 of the output table is 1 when the machine is

running, and 0 when the machine is not running.

The logic system has three input variables and one output varia ble. There appears to be a contradiction,

but the statement is true. The variable 10000, representing the start of the machine, is both an input

variable and an output variable. This makes sense because the current state of the machine may affect

the future state.

Figure 3.64a illustrates a simple situation in which pushbutton 00000 turns ON machine 10000. This

of course would not be satis factory pushbutton switch because as soon as pushbutton is re leased, the

machine comes to OFF state. Figure 3.64b adds an OR condition that keeps the machine ON if it is

already ON. This is an improvement, but now there is a new problem; once turned ON, the output will

00000

00000

00000

10000

10000

00000

00001

10000

1

1

1

0

0

0

00001

10000

10000

(a)

(b)

(c)

(d)

10000

1 3 5 7 9

Fig. 3.64

 Models of Digital Control Devices and Systems 195

never be turned OFF by the logic system. We add another input switch in Fig. 3.64c. Note that 00001

contact is normally closed. Input 00000 turns ON output 10000; input 10000 keeps output 10000 ON

until input 00001 turns it OFF.

The timing chart of the logic system is shown in Fig. 3.64d.

Example 3.6 Automatic Weigh Station

Consider the conveyer system of Fig. 3.65, in which an automatic weigh station activates a trap door, or

diverter, in the event an overweight item passes over the weigh station. The trap door opens immediately,

and remains open for 4 seconds to allow suffi cient time for the item to drop through to the overweight

track (For the system to work properly, it is necessary for successive items on the conveyor to be separated

by distances of at least 5 seconds or so).

Automatic
weigh
station

Overweight track

Trap door

Fig. 3.65

The variables of the logic system are defined as follows (refer to Fig. 3.66a). 00000 represents the

pressure switch connected to terminal 00 of input module 000. It senses the overweight item on the

automatic weigh station. The bit 00000 in the input table latches 1 for the overweight item. 10000

represents a solenoid connected to terminal 00 of the output module 100, which pushes the trap door

open. When the bit 10000 in the output table latch es 1, the trap door is open and when the bit is 0, the

trap door is closed.

For a 4 sec delay, the set value 0040 is stored in word storage area of memory. Countdown of this number

to 0000 will give an elapsed time of 4 seconds in our PLC system, wherein we assume that the timer

counts time-based intervals of 0.1 sec (40 counts will mean an elapsed time of 4 sec).

Fig. 3.66

196 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The timer TIM000 is activated when its execution condition goes ON and starts decreasing from the set

value. When the value reaches 0000, the timer contact point is tuned ON. It is reset to set value when the

execution condition goes OFF. The timer con tact point works as internal work bit (A work bit/internal

output is for use of program only; it does not turn ON/OFF external field devices).

It is obvious from the ladder diagram of Fig. 3.66a that once an overweight item is detected, the trap

door opens; it remains open for 4 sec, and thereafter it closes. Figure 3.66b shows the timing chart for

the logic system.

Example 3.7 Packaging Line Control

Figure 3.67 shows a pictorial representation of process hardware of a conveyor system used for automatic

packaging. The objective is to fill boxes moving on Box Conveyor from the Part Conveyor System.

Input devices : Box proximity sensor 00003

 Part proximity sensor 00002

 Stop pushbutton 00001

 Start pushbutton 00000

Output devices : Part conveyor motor 10000

 Box conveyor motor 10001

Pushbutton 00000 starts the packaging line control which stops when pushbutton 00001 is pressed.

Let us generate a work bit (internal output) 01000, which depends on the state of both the pushbuttons

(refer to Fig. 3.68). The work bit is 1 when packaging line control is ON, and it is 0 when packaging line

control is OFF. The work bit is useful where the same combination of input signals appears repeatedly in

the ladder diagram. We will shortly see that work bit 01000 is helpful in simplifying the ladder diagram.

Part conveyor

Part sensor

Box sensor

Box conveyor

Fig. 3.67

 Models of Digital Control Devices and Systems 197

The event sequences are as follows.

 (i) Box proximity sensor in ‘0’ state; box conveyor

will start, keeping part conveyor standstill.

 (ii) Box proximity sensor in ‘1’ state; box conveyor

will stop, signaling the start of the part conveyor.

 (iii) Part proximity sensor in ‘1’ state and box proximity

sensor in ‘1’ state; this state signals the execution

of the counter.

A counter counts down how many times input is turned

ON. It counts down from set value, when its execution

condition (count input) goes from OFF to ON. It

decrements one count every time the input signal goes

from OFF to ON. When the value reaches 0000, the

counter contact point is turned ON. It is reset with a

reset input. The counter contact point works as internal

work bit.

The execution signal for our counter is generated by part

proxim ity sensor 00002 and reset signal is generated by

box proximity sensor 00003. For counting to occur, we

need both the part prox imity sensor and the box proximity sensor in ‘1’ state.

 (iv) Assume that set value 0010 of count has been loaded in word storage area of memory. When the

value reaches 0000, the work bit CNT010 takes ‘1’ state, which starts the box conveyor.

 (v) Box proximity switch gets deactivated and count stops. The timing chart is shown in Fig. 3.69.

00000

01000

01000

00002

00003

01000 10001

CNT010

0010Reset

Count input

10001 10000

0100000001

CNT010

00003

Fig. 3.68

10001

Time

10000

CNT010

00003

00002

01000

00001

00000

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

Fig. 3.69

198 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 3.8 Automatic Bottle Filling Control

In this application (shown in Fig. 3.53), we are to

implement a control program that will detect the

position of a bottle via a limit switch, wait for 5

seconds, and then fill the bottle until the photosensor

detects the filled position. After the bottle is filled, it

will wait for 7 seconds to continue to the next bot tle.

The start and stop circuits will also be included for

the outfeed motor and for the start of the process. The

I/O assign ment follows:

Start-process pushbutton : 00000

Stop-process pushbutton : 00001

Limit switch (position detect) : 00002

Photosensor (level detect) : 00003

Feed-motor drive : 10000

Outfeed-motor drive : 10001

Solenoid control : 10002

The work bits may be assigned

as follows :

Timer for 5 sec delay : TIM000

Timer for 7 sec delay : TIM001

Ladder diagram for automatic bottle filling controller is shown in Fig. 3.70. Rung 1 provides a start/stop

latch for the system. The outfeed motor is always ON during process operation. Rung 2 drives the feed

conveyor until a bottle is in position. Rung 3 introduces a time delay of 5 sec. The work bit TIM000

turns ON the valve solenoid (Rung 4). Rung 5 introduces a time delay of 7 sec after detecting bottle filled

position. Rung 6 is necessary to detect that the bottle is full and 7 sec waiting period is over, and to restart

the conveyor to move the bottle out (01000 is a work bit).

3.9.4

PLC programming methods vary from manufacturer to manufacturer, but the basic ladder diagram

approach appears to be the standard throughout the industry. A CRT connected to the CPU of the PLC

through a peripheral port, is perhaps the most common device used for programming the controller. A

CRT is a self-contained, video display unit with a keyboard and the necessary electronics to communicate

with the CPU. The graphic display on the CRT screen appears as a ladder diagram. This ladder diagram

takes form while the programmer builds it up using the keyboard. The keys themsel ves have symbols

such as: ; , which are interpreted exactly as explained earlier in this sec tion.

10001

10001

10001

10001

10001

10001

01000

00002 01000

01000

00003

00003

10002

00002

01000

00002

00000 00001 10001

10000

TIM001

TIM001

0070

TIM000

0050

TIM000

Fig. 3.70

 Models of Digital Control Devices and Systems 199

A limitation of CRT is that the device is not interchangeable from one manufacturer’s PLC family to

another. However, with the increasing number of products in the manufacturers’ product lines and user

standardization of products, these programming devices may be a good choice, especially if the user has

standardized with one brand of PLCs.

At the other end of the spectrum of PLC programming devices is a Programming Console for programming

small PLCs (up to 128 I/O). Physically, these devices resemble handheld calculators but have a larger

display and somewhat different keyboard. The Programming Console uses keys with two- or three-letter

abbreviations, to write programs that bear some semblance to computer coding. The display at the top

of the Console exhibits the PLC instruction located in the User Program memory area. As with CRTs,

Program ming Consoles are designed so that they are compatible with con trollers of the product family.

Common usage of a Personal Computer (PC) in our daily lives has led to a new breed of PLC programming

devices. Due to the PC’s gener al-purpose architecture and de facto standard operating system, PLC

manufacturers provide the necessary software to implement the ladder diagram entry, editing and real-

time monitoring of the PLC’s control program. PCs will soon be the programming device of choice, not

so much because of its PLC programming capabilities, but because these PCs may already be present at

the location where the user may be performing the programming.

The programming device is connected to the CPU through a per ipheral port. After the CPU has been

programmed, the programming device is no longer required for CPU and process operation; it can be

disconnected and removed. Therefore, we may need only one programming device for a number of

operational PLCs. The program ming device may be moved about in the plant as needed.

Program ming details for any manufacturer’s PLC are not included here. These aspects are described in

every manufacturers’ literature.

3.9.5

Programmable logic controllers are available in many sizes, covering a wide spectrum of capability. On

the low end are ‘relay replacers’ with minimum I/O and memory capability. At the high end are large

supervisory controllers, which play an important role in distributed control systems—by performing

a variety of control and data acquisition functions. In between these two ex tremes are multifunctional

controllers with communication capa bility which allow integration with various peripherals, and

expansion capability which allows the product to grow, as the application requirements change.

PLCs with analog input modules and analog output modules, for driving analog valves and actuators

using the PID control algo rithms, are being used in process industries.

Large PLCs are used for complicated control tasks that require a nalog control, data acquisition, data

manipulation, numerical computations and reporting. The enhanced capabilities of these controllers

allow them to be used effectively in applications where LAN (local area network) may be required.

Some PLCs offer the ability to program in other languages beside the conventional ladder language.

An example is the BASIC pro gramming language. Other manufacturers use what is called ‘Boolean

Mnemonics’, to program a controller. The Boolean language is a method used to enter and explain the

control logic which fol lows Boolean algebra.

200 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

REVIEW EXAMPLES

Review Example 3.1

We have so far used the z-transform technique to obtain system response at the sampling instants only.

In a large number of cases, this information is adequate because, if the sampling theorem is satisfied,

then the output will not vary too much between any two consecutive sampling instants. In certain

cases, however, we may need to find the response between consecutive sampling instants. Often, for

example, hidden oscillations, that may or may not decay with time, are present. We can compute ripple

(response between sampling instants) by introducing a fictitious delay of DT seconds at the output of

the system, where 0 £ D £ 1 and T is the sampling period. By varying D between 0 and 1, the output y(t) at

t = kT – DT (where k = 1, 2, ...) may be obtained.

In Example 3.1, unit-step response of the sampled-data system of Fig. 3.13a was obtained. The sampling

period T = 1 sec, and the output at the sampling instants is given by

y(T) = 0.3679, y(2T) = 1, y(3T) = 1.3996, y(4T) = 1.3996,

y(5T) = 1.1469, y(6T) = 0.8944, y(7T) = 0.8015, ...

We now introduce at the output a fictitious delay of DT seconds with D = 0.5 as shown in Fig. 3.71. The

output ŷ (kT) can be determined as follows:

 Ŷ (z) = Z [Gh0(s) e–DTs] E(z)

 E(z) = R(z) – Y(z)

 Y(z) = Z [Gh0(s)G(s)] E(z)

Therefore, E(z) =
R z

G s G sh

()

[() ()]1 0+ Z

 Ŷ (z) =
Z

Z

[() ()]

[() ()]

G s G s e

G s G s

h
Ts

h

0

01

-

+

D
 R(z) (3.73)

Referring to Example 3.1, we have

 Z [Gh0(s)G(s)] =
0 3679 0 2642

1 3679 0 36792

. .

. .

z

z z

+

- +

Referring to Table 3.1, we get

 Z [Gh0(s)G(s)e–DTs] = (1 – z–1)
1

1

0 5

1

0 6065

0 36792()

.

()

.

(.)z z z-
-

-
+

-

È

Î
Í
Í

˘

˚
˙
˙

 =
0 1065 0 4709 0 0547

1 3679 0 3679

2

3 2

. . .

. .

z z

z z z

+ +

- +

 Models of Digital Control Devices and Systems 201

Referring to Eqn. (3.73) and noting that R(z) = z/(z – 1), we have

 ˆ()Y z =
0 1065 0 4709 0 0547

1 2 1 6321 0 6321

1 2 3

1 2 3

. . .

. .

z z z

z z z

- - -

- - -

+ +

- + -

This equation can be expanded into an infinite series in z–1:

 ˆ()Y z = 0.1065 z–1 + 0.6839 z–2 + 1.2487 z–3 + 1.4485 z–4

 + 1.2913 z–5 + 1.0078 z–6 + 0.8236 z–7 + 0.8187 z–8 +

Therefore,

 ŷ (T) = y(0.5T) = 0.1065; ŷ(2T) = y(1.5T) = 0.6839; ŷ (3T) = y(2.5T) = 1.2487;

 ŷ(4T) = y(3.5T) = 1.4485; ŷ (5T) = y(4.5T) = 1.2913; ŷ(6T) = y(5.5T) = 1.0078;

 ŷ(7T) = y(6.5T) = 0.8236; ŷ(8T) = y(7.5T) = 0.8187;

These values give the response at the midpoints between pairs of consecutive sampling points. Note that

by varying the value of D between 0 and 1, it is possible to find the response at any point between two

consecutive sampling points.

Review Example 3.2

 Reconsider the sampled-data system of Example 3.2 (Fig. 3.15). The characteristic polynomial of the

system is

 D(z) = 1 + Gh0G(z) = z2 – az + b

where a = 1 + e–2T – 0.5K (T + 0.5e–2T – 0.5)

 b = e–2T + 0.5K (0.5 – 0.5e–2T – Te–2T).

Employing stability constraints (2.75a) of the Jury stability criterion, we get

 (i) D(1) = 1 – a + b > 0;

 (ii) D(– 1) = 1 + a + b > 0; and

 (iii) b < 1.

Thus, for a stable system, 1 + a + b > 0 (3.74a)

 1 – b > 0 (3.74b)

 1 – a + b > 0 (3.74c)

T

+

–

G sh0() e–DTs

e t*()r t() y t() y t()

G s() =
1

(+ 1)s s

Fig. 3.71

202 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Substituting a and b into (3.74a) and solving for K yields

K <
4

1 12 2T e eT T- - +- -()/()

From (3.74b), we get

K <
2

0 5 12 2. ()/()- -- -Te eT T

and from (3.74c),

e–2T < 1

Table 3.4 indicates the values of K obtained for various values of T from (3.74a) and (3.74b). A sketch of

T versus the boundary value of K for a stable system is shown in Fig. 3.72. Note that lim
T Æ 0

K =

T Inequality (3.74a) Inequality (3.74b) Value of K for stability

0.01 K < 3986844 K < 401.4 K < 401.4

0.1 K < 12042.7 K < 41.378 K < 41.378

1.0 K < 16.778 K < 5.8228 K < 5.8228

1.0 K < 4 K < 4 K < 4

Fig. 3.72 K

Review Example 3.3

Consider a digital control function

 D(z) =
N z

z

()

()D
 =

b b b

a a

0 1
1

1
1

z z

z z

n n
n

n n
n

+ + +

+ + +

-

-

 (3.75)

For direct realization of this control function, the computer must store the parameters a1, a2, ..., an, b0,

b1, ..., bn (refer to Fig. 3.18). If the machine uses fixed-point arithmetic, the parameter values will be

rounded off to the accuracy of the machine. Thus, a program designed to realize Eqn. (3.75) actually

realizes3

 3 In addition to parameter quantization error, accuracy of a realization is affected by the error due to quantization

of the input signal, and the error due to accumulation of round-off errors in arithmetic operations.

 Models of Digital Control Devices and Systems 203

D̂ (z) =
() () ()

() (

b db b db b db

a da a da

0 0 1 1
1

1 1
1

+ + + + + +

+ + + + +

-

-

z z

z z

n n
n n

n n
n

 nn)

To study the effects of this realization on the dynamic response, we consider the characteristic equation

and determine how a particular root changes when a particular parameter undergoes change.

 D (z, a1, a2, ..., an) = zn + a1 zn – 1 + + an = 0 (3.76)

is the characteristic equation with roots l1, l2, …, ln:

 D (z, a1, a2, ..., an) = (z – l1) (z – l2) (z – ln) (3.77)

We shall consider the effect of parameter aj on the root lk. By definition,

D(lk, aj) = 0

If aj is changed to aj + daj, then lk also changes and the new polynomial is

D(lk + dlk, aj + daj) = D(lk, aj) +
∂
∂ =

D
z z kl

dlk +
∂
∂

=

D
a

l
j

z k

daj + = 0

Neglecting the higher-order terms, we obtain

 dlk = –
∂ ∂

∂ ∂

Ê

ËÁ
ˆ

¯̃
=

D

D

/

/

a

l

j

z
z

k

 daj (3.78)

From Eqn. (3.76),

∂
∂

=

D
a

l
j

z k

 = lk
n j-

and from Eqn. (3.77),

∂
∂ =

D
z z kl

 = P
i k=

(lk – li)

Therefore, Eqn. (3.78) gives

 dlk = –
l

l l
da

k
n j

i k
k i

j

-

π
-P ()

A measure of the sensitivity of the root lk to the parameter aj is

 S
j

k

a

l
 =

∂
∂

l

a a

k

j j/

 =
-

-

-

π

l a

l l

k
n j

j

i k
k iP ()

 (3.79)

Following observations are made from Eqn. (3.79):

 (i) The numerator term in Eqn. (3.79) varies with j—the index number of the parameter whose

variation is under consideration. For a stable system, lk < 1 and, therefore, the numerator term

204 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

in Eqn. (3.79) is largest for j = n. Therefore, the most sensitive parameter in the characteristic

equation (3.76), is an.

 (ii) The denominator in Eqn. (3.79) is the product of vectors from the characteristic roots to lk. Thus,

if all the roots are in a cluster, the sensitivity is high.

In the cascade and parallel realizations, the coefficients, mechanized in the algorithm, are poles themselves;

these realiza tions are generally less sensitive than the direct realization.

PROBLEMS

 3.1 Find Y(z)/R(z) for the sampled-data closed-loop system of Fig. P3.1.

TT

+

–
G sh0()

y t()r t() e t*() u t*()
G s1() G sh0() G s2()

H s()

 3.2 For the sampled-data feedback system with digital network in the feedback path as shown in

Fig. P3.2, find Y(z)/R(z).

T T

T

+

–
G sh0() G s()

H z()

e t*()r t() r k() y t()

y k()

 3.3 Find Y(z) for the sampled-data closed-loop system of Fig. P3.3.

 Models of Digital Control Devices and Systems 205

 3.4 Obtain the z-transform of the system output for the block diagram of Fig. P3.4.

 3.5 Obtain the transfer function Y(z)/R(z) of the closed-loop control system shown in Fig. P3.5. Also

obtain the transfer function between X(z) and R(z).

 3.6 Consider the block diagram of a digital control system shown in Fig. P3.6; r(t) stands for reference

input and w(t) for dis turbance. Obtain the z-transform of the system output when r(t) = 0.

T T

+ +
+

–
G sh0() G s()

r t() e k()
D z()

u t*() y t()

w t()

 3.7 Shown in Fig. P3.7 is the block diagram of the servo control system for one of the joints of a

robot. With D(z) = 1, find the transfer function model of the closed-loop system. Sampling period

T = 0.25 sec.

+

–

Compensator

Motor

20

Shaft
encoder

GearsPreamplifier

D z()
qR()k qL()t1

20
1
s

1
+ 1s

D/A

qL()k

qM

206 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 3.8 The plant of the speed control system shown in Fig. P3.8 consists of load, armature-controlled dc

motor and a power ampli fier. Its transfer function is given by

w()

()

s

V s
 =

185

0 025 1. s +
 Find the discrete-time transfer function w(z)/wr(z) for the closed-loop system. Sampling period

T = 0.05 sec.

 3.9 For the system shown in Fig. P3.9, the computer solves the difference equation u(k) = u(k – 1) +

0.5 e(k), where e(k) is the filter input and u(k) is the filter output. If the sampling rate fs = 5 Hz,

find Y(z)/R(z).

+

–

Digital
filter

D/A

A/D

y k()

e k()r k() u k() y t()
1

(+ 1)s s

 3.10 Consider the sampled-data system shown in Fig. P3.10. Find Y(z)/R(z) when (i) tD = 0.4 sec, (ii)

tD = 1.4 sec.

+

–

r t() y t()
G sh0()

T = 1 sec

e–tDs

+ 1s

 Models of Digital Control Devices and Systems 207

 3.11 Figure P3.11 shows an electrical oven provided with tempera ture measurement by a thermocouple

and having a remotely con trolled, continuously variable power input. The task is to design a

microprocessor-based control system to provide temperature control of the oven.

Temperature-
measuring device

Continuously-variable
electrical input

Oven

Microcontroller

Power control unit

Power supply

 The functions within the control loop can be enumerated as follows:

 (i) sampling of the output of thermocouple;

 (ii) transfer of temperature signal into the computer;

 (iii) comparison of the measured temperature with the stored desired temperature, to form an

error signal;

 (iv) operation on the error signal by an appropriate algorithm, to form a control signal; and

 (v) processing of the control signal and its transfer through the interface to the power control

unit.

 Suggest suitable hardware to implement these control-loop func tions. Make a sketch of the system

showing how the hardware is connected.

 3.12 (a) A unity-feedback system has the open-loop transfer function

 G(s) =
5

1 2s s s()()+ +

 Using the Routh stability criterion, show that the closed-loop system is stable.

 (b) A sampler and ZOH are now introduced in the forward path (Fig. P3.12). Show that the stable

linear continuous-time system becomes unstable upon the introduction of sampler and ZOH.

208 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 3.13 The characteristic equation of a linear digital system is

z3 – 0.1 z2 + 0.2Kz – 0.1K = 0

 Using Jury stability criterion, determine the values of K > 0 for which the system is stable.

 3.14 Compare the stability properties of the system shown in Fig. P3.14 with (i) T = 0.5, and (ii) T = 1.

Assume K > 0.

 3.15 The block diagram of a digital control system is shown in Fig. P3.15. Apply the Jury stability

criterion to determine the range of values that K > 0 can have for a stable response. Also show

graphically how these values are affected by the sampling period T.

+

T
–

K
(+ 3)s

Y s()R s() 1 – e–Ts

s

+

T
–

K
(+ 1)s s

R s() Y s()
G sh0()

 3.16 Consider the system shown in Fig. P3.16. Using Jury stability criterion, find the range of K > 0

for which the system is stable.

 3.17 (a) A unity-feedback system has the open-loop transfer function

 G(s) =
Y s

R s

()

()
 =

4500

361 2

K

s s(.)+
; K = 14.5

 Find the response y(t) of the system to a unit-step input.

 Models of Digital Control Devices and Systems 209

 (b) A sampler and ZOH are now introduced in the forward path (Fig. P3.17). For a unit-step

input, determine the output y(k) for first five sampling instants when (i) T = 0.01 sec, and (ii)

T = 0.001 sec. Compare the result with that obtained earlier in part (a) above.

+

T
–

y t()r t()
G sh0() G s()

 3.18 For the sampled-data system shown in Fig. P3.18, find the output y(k) for r(t) = unit step.

 3.19 For the sampled-data system of Fig. P3.19, find the response y(kT); k = 0, 1, 2, ..., to a unit-step

input r(t). Also, obtain the output at the midpoints between pairs of consecutive sampling points.

+

T = 1 sec–

ZOH
1
+ 1s

y t()r t()

 3.20 Consider the digital controller defined by

 D(z) =
U z

E z

()

()
 =

4 1 1 2 1

0 1 0 3 0 8

2

2

() (.)

(.) (. .)

z z z

z z z

- + +

+ - +
 Realize this digital controller in the cascade scheme and in parallel scheme. Use one first-order

section and one second-order section.

 3.21 Consider the digital controller defined by

 D(z) =
U z

E z

()

()
 =

10 1

0 5 0 8

2

2

()

(.)(.)

z z

z z z

+ +

- -
 Draw a parallel realization diagram.

210 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 3.22 Consider the temperature control system shown in Fig. P3.22a. A typical experimental curve,

obtained by opening the steam valve at t = 0 from fully closed position to a position that allows a

flow Qm of 1 kg/min with initial sensor temperature q of 0 ºC is shown in Fig. P3.22b.

 (a) Approximate the process reaction curve by a first-order plus dead-time model using two-

points method of approximation.

 (b) Calculate the QDR tuning parameters for a PID controller. The PID control is to be carried

out with a sampling period of 1 min on a computer control installation.

Steam
boiler

Valve

Dial

Environment

(a)

(b)
0 t, min

Room

Radiator

Steam exhaust

25 65

10 °C

20 °C

30 °C

40 °C

0.632qss

qss = 30

q, °C

0.283qss

 3.23 Consider the liquid-level control system shown in Fig. 1.6. The digital computer was programmed

to act as adjustable-gain proportional controller with a sampling period of T = 10 sec. The

proportional gain was increased in steps. After each increase, the loop was disturbed by introduc-

ing a small change in set-point, and the response of the controlled variable (level in the tank) was

observed. The proportional gain of 4.75 resulted in oscil latory behavior, with amplitude of oscil-

lations approximately constant. The period of oscillations measured from the response is 800 sec.

 The PC implements the digital PI control algorithm. Determine tuning parameters for the

controller:

Du(k) = u(k) – u(k – 1) = Kc
e k e k

T

T
e k

I

() () ()- - +
È

Î
Í

˘

˚
˙1

 Models of Digital Control Devices and Systems 211

 where

 u(k) = output of controller at kth sampling instant;

 Du(k) = change in output of controller at kth sampling instant;

 e(k) = error at kth sampling instant;

 T = sampling time;

 TI = integral time; and

 Kc = proportional gain.

 3.24 A traffic light controller is to be designed for a road, partly closed to traffic for urgent repair work

(Fig. P3.24). North traffic light will go GREEN for 30 sec with South traffic light giving RED

signal. For the next 15 sec, both the traffic lights will give RED signals. Thereafter, South traffic

light will go GREEN for 30 sec with North traffic light giving RED signal. Both the traffic lights

will give RED signal for the next 15 sec. Then this cycle will repeat.

 Develop a PLC ladder diagram that accomplishes this objective.

S

N

 3.25 Consider the tank system of Fig. P3.25. Valve V1 opens on pressing a pushbutton PB1 and liquid

begins to fill the tank. At the same time, the stirring motor M starts operations. When the liquid

level passes LL2 and reaches LL1, the valve V1 closes and the stirring motor stops. When PB1 is

pressed again, the valve V2 opens and starts draining the liquid. When the liquid level drops below

LL2, valve V2 closes. This cycle is repeated five times. A buzzer will go high after 5 repetitions.

The buzzer will be silenced by pressing pushbutton PB2. The process will now be ready to take up

another filling-stirring-draining operation under manual control. Develop a PLC ladder diagram

that accomplishes this objective.

212 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

M

Liquid

LL1

V2

V1

LL2

 3.26 A control circuit is to be developed to detect and count the number of products being carried

on an assembly line (Fig. P3.26). A sensor activates a counter as a product leaves the conveyor

and enters the packaging section. When the counter counts five pro ducts, the circuit energizes a

solenoid. The solenoid remains energized for a period of 2 seconds; the time being measured by

a software timer. When the set time has lapsed, the solenoid is deenergized, causing it to retract;

and the control circuit is ready for the next cycle.

 Develop a suitable PLC ladder diagram.

Sensor

Conveyor

Solenoid

 3.27 In the system of Fig. P3.27, a PLC is used to start and stop the motors of a segmented conveyor

belt. This allows only belt sections carrying an object to move. Motor M3 is kept ON during

the operation. Position of a product is first detected by proxim ity switch S3, which switches on

the motor M2. Sensor S2 switches on the motor M1 upon detection of the product. When the

product moves beyond the range of sensor S2, a timer is activated and when the set time of 20 sec

has lapsed, motor M2 stops. Similar ly, when the product moves beyond the range of sensor S1,

another timer is activated and when the set time of 20 sec (for unloading the product) has lapsed,

motor M1 stops.

 Models of Digital Control Devices and Systems 213

 Develop a suitable ladder diagram for control.

M1

S1

M2

S2

M3

S3

 3.28 The system of Fig. P3.28 has the objective of drilling a hole in workpiece moved on a carriage.

When the start button PB1 is pushed and LS1 is ON (workpiece loaded), feed carriage motor runs

in CW direction, moving the carriage from left to right. When the work comes exactly under the

drill, which is sensed by limit switch LS2, the motor is cut-off and the work is ready for drilling

operation. A timer with a set time of 7 sec is activat ed. When the timer set value has lapsed, the

motor reverses, moving the carriage from right to left. When the work piece reaches LS1 position,

the motor stops. The motor can be stopped by a stop pushbutton while in opera tion.

 Develop a suitable ladder diagram for PLC control.

Drill

LS1 LS2

Clamp

214 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Design of
Digital Control Algorithms

4.1 INTRODUCTION

During recent decades, the design procedures for analog control systems have been well formulated and a

large body of knowledge has been accumulated. The analog-design methodology, based on conventional

techniques of root locus and Bode plots or the tuning methods of Ziegler and Nichols, may be applied

to designing digital control systems. The procedure would be to first design the analog form of the

controller, or compensator, to meet a particular set of performance specifications. Having done this, the

analog form can be transformed to a discrete-time formulation. This approach is based on the fact that

a digital system with a high sampling rate approximates to an analog system. The justification for using

digital control under these circumstances must be that the practical limitations of the analog controller

are overcome, the implementation cheaper, or that the supervisory control and communications more

easily implemented.

However, the use of high sampling rates wastes computer power, and can lead to problems of arithmetic

precision, etc. One is, therefore, driven to find methods of design which take account of the sampling

process.

The alternative approach is to design controllers directly in the discrete-time domain, based on the

specifications of closed-loop system response. The controlled plant is represented by a discrete-time

model which is a continuous-time system ob served, analyzed, and controlled at discrete intervals of time.

This approach provides a direct path to the design of digital controllers. The features of direct digital

design are that the sample rates are generally lower than those for discretized analog design, and the

design is directly ‘perfor mance based’.

Figure 4.1 shows the basic structure of a digital control system. The design problem generally evolves around

the choice of the control function D(z), in order to impart a satisfactory form to the closed-loop transfer

function. The choice is constrained by the function Gh0G(z) representing the fixed process elements.

A wide variety of digital-design procedures is available; these fall into the following two categories:

 (i) direct synthesis procedures; and

 (ii) iterative design procedures.

Chapter 4

 Design of Digital Control Algorithms 215

The direct synthesis procedures assume that the control function D(z) is not restricted in any way by

hardware or software limita tions, and can be allowed to take any form demanded by the nature of the

fixed process elements and the specifications of the re quired system performance. This design approach

has found wider applications in digital control systems—than has the equivalent technique used with

analog systems. In a digital control system, realization of the required D(z) may involve no more than

programming a special-purpose software-procedure. With analog systems, the limitation was in terms of

the complications involved in designing special purpose analog controllers.

The design obtained by a direct synthesis procedure will give perfect nominal performance. However,

the performance may be inadequate in the field because of the sensitivity of the design to plant disturbances

and modeling errors. It is important that a control system is robust in its behavior with respect to the

discrepancies between the model and the real process, and uncer tainties in disturbances acting on the

process. Robustness prop erty of some of the standard control structures, such as a three-term (PID)

control algorithm, has been very well established. The design of such algorithms calls for an iterative

design procedure where the choice of control function D(z) is restricted to using a standard algorithm

with variable parameters; the designer must then examine the effect of the choice of controller parameters

on the system performance, and make an appropriate final choice. The iterative design procedures for

digital control systems are similar to the techniques evolved for analog system design, using root locus

and frequency response plots.

Figure 4.2 summarizes the basic routes to the design of digital controllers for continuous-time processes.

The route: continuous-time modeling Æ continuous-time control design Æ discrete-time approximation of

the controller, was considered in Chapter 2 (refer to Example 2.17). This chapter is devoted to the

following route:

 Continuous-time modeling Æ discrete-time approximation of the model Æ discrete-time control

design.

Plant models can be obtained from the first principles of physics. The designer may, however, turn to

the other source of information about plant dynamics, which is the data taken from experiments directly

conducted to excite the plant, and to measure the response. The process of constructing models from

experimental data is called system identification. An introduction to system identification and adaptive

control is given in Chapter 10.

One obvious, but fundamental, point is that control design always begins with a sufficiently accurate

mathematical model of the process to be controlled. For a typical industrial problem, the effort required

for obtaining a mathematical model of the process to be controlled, is often an order of magnitude greater

than the effort required for control design proper. Any control-design method that requires only a simple

+

–
Control
algorithm

Sensor

T T
Process

G sh0() G s()D z()
y t()r t()

ZOH

H s()

Fig. 4.1 Basic structure of a digital control system

216 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

process model, therefore, has a high appeal to those faced with real industrial control problems. Tunable

PID controllers which require only simple process models, have already been described in Chapter 3.

The design approaches discussed in this chapter, use z-transform as the background tool. In Chapters 7

and 8, we will solve the identical problems using state-space formulation.

The discussion in this chapter is based on the material that the student has already studied in a prerequisite,

introductory course on control systems. The presentation given in this chapter is not sufficient to learn

control system design for the first time; rather, it states, only concisely, the key concepts and relationships

from the continuous-time control for ready reference, as we move to the new concepts of discrete-time

control. For an in-depth treatment of the principles of control system design, see the companion book

[155].

In this chapter, the following classes of feedback systems will be under consideration:

 The system can be represented by a unity-feedback structure shown in Fig. 4.3b.

 The open-loop transfer function G(s) in Fig. 4.3b has no poles in the right half of the s-plane.

 The feedback system of Fig. 4.3b is desired to be an underdamped system.

In Section 1.4, we have described a generalized, operational block diagram of a feedback system

(revisiting the section will be helpful). It was shown that the generalized, non-unity-feedback block

diagram can be converted to a unity-feedback structure when the sensor transfer function is equal to

the transfer function representing the reference input elements. This, in fact, is quite common; the two

Continuous-time process

Differential
equations

Experimentally obtained
discrete data

Differential
equations

Continuous-time
plant model Identification of discrete-

time model

Continuous-time
model

Continuous-time model
of plant with sample

and hold

Discrete-time model

Design

Continuous-time
controller

Mapping

and
Bode plots

z-plane
synthesis

Discrete-time
approximation

Digital controller

Mapping

z e=
and

Bode plots

sT

Root
locus
on

-planez

Design

Design Design

z =

Design

1 + /2
1 – /2

wT
wT

Fig. 4.2 Basic routes to the design of digital controllers

 Design of Digital Control Algorithms 217

transfer functions in many control system designs are assumed to have zero-order dynamics and are

equal.

The majority of the systems we deal with, in practice, belong to the class under consideration in this

chapter. However, the control system design techniques presented in the chapter, are not limited to this

class. There are control design problems wherein the sensor transfer function H(s) (of first or higher-

order), is explicitly present in the feedback path (Fig. 4.3a); the open-loop transfer function G(s) or

G(s)H(s), has poles in the right half of the s-plane; and/or the oscillations in feedback system cannot

be tolerated, and the system is required to be overdamped. A detailed treatment of such problems is

given in the companion book [155]; the principles given therein for continuous-time control, have direct

extension to discrete-time control. Our decision to leave these extensions to the reader, is prompted only

by the desire to save space for other topics.

4.2 z

The central concerns of controller design are for good relative stability and speed of response, good

steady-state accuracy, and sufficient robustness. Requirements on time response need to be expressed

as constraints on z-plane pole and zero locations, or on the shape of the frequency response in order to

permit design in the transform domain. In this section, we give an outline of specifications of controller

design in the z-plane.

Our attention will be focused on the unity-feedback systems1 of the form shown in Fig. 4.3b, with the

open-loop transfer function Gh0G(z) = Z [Gh0(s)G(s)], having no poles outside the unit circle in the

z-plane. Further, the feedback system of Fig. 4.3b is desired to be an underdamped system.

+

– T
G sh0() G s()

H s()

y t()r t()

+

–
G sh0() G s()

y t()r t()

T

e t*()

(a) A non-unity feedback discrete-time system

(b) A unity feedback discrete-time system

Fig. 4.3

 1 It is assumed that the reader is familiar with the design of unity and non-unity-feedback continuous-time

systems. With this background, the results presented in this chapter for unity-feedback discrete-time systems,

can easily be extended for the non-unity-feedback case.

218 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The nature of transient response of a linear control system is revealed by any of the standard test

signals—impulse, step, ramp, parabola—as this nature is dependent on system poles only and not on the

type of the input. It is, therefore, sufficient to specify the transient response to one of the standard test

signals; a step is generally used for this purpose. Steady-state response depends on both the system and

the type of input. From the steady-state viewpoint, the ‘easiest’ input is generally a step since it requires

only maintaining the output at a constant value, once the transient is over. A more difficult problem

is tracking a ramp input. Tracking a parabola is even more difficult since a parabolic function is one

degree faster than the ramp function. In practice, we seldom find it necessary to use a signal faster than a

parabolic function; characteristics of actual signals which the control systems encounter, are adequately

represented by step, ramp, and parabolic functions.

4.2.1

Steady-state accuracy refers to the requirement that after all transients become negligible, the error

between the reference input r and the controlled output y must be acceptably small. The specification on

steady-state accuracy is often based on polyno mial inputs of degree k: r(t) =
t

k
t

k

!
()m . If k = 0, the input

is a step of unit amplitude; if k = 1, the input is a ramp with unit slope; and if k = 2, the input is a parabola

with unit second derivative. From the common problems of mechanical motion con trol, these inputs are

called, respectively, position, velocity, and acceleration inputs.

For quantitative analysis, we consider the unity-feedback dis crete-time system shown in Fig. 4.3b. The

steady-state error is the difference between the reference input r(k) and the con trolled output y(k), when

steady state is reached, i.e., steady-state error

 e*
ss = lim

k
 e(k) = lim

k
[r(k) – y(k)] (4.1a)

Using the final value theorem (Eqn. (2.52)),

 e*
ss = lim

z Æ 1
[(z – 1)E(z)] (4.1b)

provided that (z – 1) E(z) has no poles on the boundary and outside of the unit circle in the z-plane.

For the system shown in Fig. 4.3b, define

 Gh0G(z) = (1– z–1) Z
G s

s

()È

ÎÍ
˘

˚̇

Then, we have
Y z

R z

()

()
 =

G G z

G G z

h

h

0

01

()

()+

and E(z) = R(z) – Y(z) =
R z

G G zh

()

()1 0+
 (4.2)

By substituting Eqn. (4.2) into Eqn. (4.1b), we obtain

 e*
ss = lim

zÆ1
 [(z – 1)E(z)] (4.3a)

 = lim
zÆ1

 ()
()

()
z

R z

G G zh

-
+

È

Î
Í

˘

˚
˙1

1 0

 (4.3b)

Thus, the steady-state error of a discrete-time system with unity feedback, depends on the reference

input signal R(z), and the forward-path transfer function Gh0G(z). By the nature of the limit in Eqns (4.3),

 Design of Digital Control Algorithms 219

we see that the result of the limit can be zero, or can be a constant different from zero. Also, the limit

may not exist, in which case, the final-value theorem does not apply. However, it is easy to see from basic

definition (4.1a) that e*
ss = in this case anyway, because E(z) will have a pole at z = 1 that is of order

higher than one. Discrete-time systems, having a finite nonzero steady-state error when the reference

input is a zero-order polynomial input (a constant), are labeled ‘Type-0’. Similarly, a system that has

finite nonzero steady-state error to a first-order polynomial input (a ramp), is called a ‘Type-1’ system,

and a system with finite nonzero steady-state error to a second-order polynomial input (a parabola), is

called a ‘Type-2’ system.

Let the reference input to the system of Fig. 4.3b be a step function of magnitude unity. The z-transform

of discrete form of r(t) = m (t) is (refer to Eqn. (2.40))

 R(z) =
z

z -1
 (4.4a)

Substituting R(z) into Eqn. (4.3b), we have

 e*
ss = lim

() lim ()z h
z

hG G z G G zÆ
Æ

+
=

+1 0
1

0

1

1

1

1

In terms of the position error constant Kp, defined as

 Kp = lim
z Æ 1

 Gh0G(z) (4.4b)

the steady-state error to unit-step input becomes

 e*
ss =

1

1+ K p

 (4.4c)

For a ramp input r(t) = tm (t); the z-transform of its discrete form is (refer to Eqn. (2.42))

 R(z) =
Tz

z()-1 2
 (4.5a)

Substituting into Eqn. (4.3b), we get

e*
ss = lim

()[()]z h

T

z G G zÆ - +1 01 1
 =

1

1

1
0lim ()

z
h

z

T
G G z

Æ

-È
ÎÍ

˘
˚̇

In terms of velocity error constant K
v
, defined as

 K
v
 =

1

1T z
lim

Æ
 [(z – 1)Gh0G(z)] (4.5b)

the steady-state error to unit-ramp input becomes

 e*
ss =

1

K
v

 (4.5c)

For a parabolic input r(t) = (t2/2) m (t); the z-transform of its discrete form is (from Eqns (2.41)–(2.42))

 R(z) =
T z z

z

2

3

1

2 1

()

()

+

-
 (4.6a)

220 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Substituting into Eqn. (4.3b), we get

e*
ss = lim

z Æ 1

T

z G G zh

2

2
01 1() [()]- +

 =
1

1

1

2

0lim ()
z

h

z

T
G G z

Æ

-Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

In terms of acceleration error constant Ka, defined as

 Ka =
1
2 1T z

lim
Æ

[(z – 1)2 Gh0G(z)] (4.6b)

the steady-state error to unit-parabolic input becomes

 e*
ss =

1

Ka

 (4.6c)

As said earlier, discrete-time systems can be classified on the basis of their steady-state response to

polynomial inputs. We can always express the forward-path transfer function Gh0G(z) as

 Gh0G(z) =

K z z

z z p

i
i

N

j
j

P

P

()

() ()

-

- -1
; pj π 1, zi π 1 (4.7)

Gh0G(z) in Eqn. (4.7) involves the term (z – 1)N in the denomina tor. As z Æ 1, this term dominates in

determining the steady-state error. Digital control systems are, therefore, classified in accordance with

the number of poles at z = 1 in the forward-path transfer function, as described below.

If N = 0, the steady-state errors to various standard inputs, obtained from Eqns (4.1)–(4.7), are

 e*
ss =

1

1
1

+
=

-

-
=

K
K

K z z

z pp
p

i
i

j
j

z

in response to unit step input

in

- ;

()

()

P

P

rresponse to unit ramp input

in response to unit parabolic input

-

-

Ï

ÌÌ

Ô
ÔÔ

Ó

Ô
Ô
Ô

 (4.8a)

Thus, a system with N = 0, or no pole at z = 1 in Gh0G(z), has a finite nonzero position error, and infinite

velocity and accelera tion errors at steady state.

If N = 1, the steady-state errors to various standard inputs are

 e*
ss =

0

1

in response to unit step input

in response to unit ramp input;

- ;

-
K
v

KK

K

T
z z

z p

i
i

j
j

z

v
=

-

-

Ï

=

P

P

()

()

-

1

in response to unit parabolic input

ÌÌ

Ô
Ô
Ô

Ó

Ô
Ô
Ô

 (4.8b)

 Design of Digital Control Algorithms 221

Thus, a system with N = 1, or one pole at z = 1 in Gh0G(z), has zero position error, a finite nonzero

velocity error, and infi nite acceleration error at steady state.

If N = 2, the steady-state errors to various standard inputs are

 e*
ss =

0

0

1

in response to unit step input

in response to unit ramp input

i

-

-

Ka

nn response to unit parabolic input;-

()

()
K

K

T
z z

z p
a

i
i

j
j

z

=
-

-

Ï

=

2

1

P

P

ÌÌ

Ô
Ô
Ô

Ó

Ô
Ô
Ô

 (4.8c)

Thus, a system with N = 2, or two poles at z = 1 in Gh0G(z), has zero position and velocity errors, and a

finite nonzero accelera tion error at steady state.

Steady-state errors for various inputs and systems are summarized in Table 4.1.

 Steady-state errors for various inputs and systems

Type of input Steady-state error

Type-0 system Type-1 system Type-2 system

Unit step 1

1+ K p

0 0

Unit ramp 1

K
v

0

Unit parabolic
1

Ka

Kp = lim (); lim [() ()];
z

h
z

hG G z K
T

z G G z
Æ Æ

= -
1

0
1

0

1
1

v
 Ka =

1
1

2 1

2
0

T
z G G z

z
hlim [() ()]

Æ
-

The development above indicates that, in general, increased system gain K, and/or addition of poles at

z = 1 to the open-loop transfer function Gh0G(z), tend to decrease steady-state errors. However, as will be

seen later in this chapter, both large system gain and the poles at z = 1 in the loop transfer function, have

destabilizing effects on the system. Thus, a control system design is usually a trade off between steady-

state accuracy and accepta ble relative stability.

Example 4.1

In the previous chapter, we have shown that sampling usually has a detrimental effect on the transient

response and the relative stability of a control system. It is natural to ask what the effect of sampling on

222 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the steady-state error of a closed-loop system will be? In other words, if we start out with a continu ous-

time system and then add S/H to form a digital control sys tem, how would the steady-state errors of the

two systems compare, when subject to the same type of input?

Let us first consider the system of Fig. 4.3b without S/H. Assume that the process G(s) is represented by

Type-1 transfer function:

 G(s) =
K s s s

s s s s

a b m

n

()() ()

()() ()

1 1 1

1 1 11 2

+ + +
+ + +

t t t

t t t

having more poles than zeros.

The velocity error constant

 K
v
 = lim

s Æ 0
sG(s) = K

The steady-state error of the system to unit-step input is zero, to unit-ramp input is 1/K, and to unit-

parabolic input is .

We now consider the system of Fig. 4.3b with S/H:

 Gh0G(z) = (1 – z–1) Z
K s s s

s s s s

a b m

n

()() ()

()() ()

1 1 1

1 1 12
1 2

+ + +

+ + +

È

Î
Í
Í

˘

˚
˙
˙

t t t

t t t

 = (1 – z–1) Z
K

s

K

s2

1+ +
È

ÎÍ
˘

˚̇
terms due to the nonzero poles

 = (1 – z–1)
KTz

z

K z

z()-
+

-
+

È

Î
Í
Í

˘

˚
˙
˙1 12

1 terms due to the nonzero poles

It is important to note that the terms due to the nonzero poles do not contain the term (z – 1) in the

denominator. Thus, the velocity error constant is

K
v
 =

1

1T z
lim

Æ
[(z – 1)Gh0G(z)] = K

The steady-state error of the discrete-time system to unit-step input is zero, to unit-ramp input is 1/K,

and to unit-parabolic input is . Thus, for a Type-1 system, the system with S/H has exactly the same

steady-state error as the continuous-time system with the same process transfer function (this, in fact, is

true for Type-0 and Type-2 systems also).

Equations (4.5b) and (4.6b) may purport to show that the velocity error constant and the acceleration

error constant of a digital control system depend on the sampling period T. However, in the process of

evaluation, T gets canceled, and the error depends only on the parameters of the process and the type

of inputs.

4.2.2

Transient performance in time domain is defined in terms of parameters of the system response to a step

in command input. The most frequently used parameters are rise time, peak time, peak overshoot, and

setting time. Figure 4.4 shows a typical unit-step response of a control system.

For underdamped systems, the rise time, tr, is normally defined as the time required for the step response

to rise from 0% to 100% of its final value.

 Design of Digital Control Algorithms 223

Allowable
tolerance

1.0

ts
tp

tr t

Mp

y t()

Fig. 4.4 Typical unit-step response of a digital control system

The peak overshoot, Mp, is the peak value of the response curve measured from unity. The time at which

peak occurs is referred to as the peak time, tp.

The time required for the response to damp out all transients, is called the settling time, ts. Theoretically,

the time taken to damp out all transients may be infinity. In practice, however, the transient is assumed

to be over when the error is reduced below some acceptable value. Typically, the acceptable level is set

at 2% or 5% of the final value.

The use of root locus plots for the design of digital control systems necessitates the translation of time-

domain performance specifications into desired locations of closed-loop poles in the z-plane. However,

the use of frequency response plots necessitates the translation of time-domain speci fications in terms of

frequency response features such as band width, phase margin, gain margin, resonance peak, resonance

frequency, etc.

z

Our approach is to first obtain the transient response specifica tions in terms of characteristic roots in the

s-plane, and then use the relation

 z = esT (4.9)

to map the s-plane characteristic roots to the z-plane.

The transient response of Fig. 4.4 resembles the unit-step response of an underdamped second-order system

Y s

R s

()

()
 =

w

zw w

n

n ns s

2

2 22+ +
 (4.10)

where

 z = damping ratio, and wn = undamped natural frequency.

The transient response specifications in terms of rise time tr, peak time tp, peak overshoot Mp, and

settling time ts can be approximated to the parameters z and wn of the second-order system defined by

224 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Eqn. (4.10), using the following correlations2:

 tr(0% to 100%) =
p z

w z

-

-

-cos 1

21n

 (4.11)

 tp =
p

w zn 1 2-
 (4.12)

 Mp = exp ()- -pz z1 2 (4.13)

 ts(2% tolerance band) =
4

zwn

 (4.14)

Peak overshoot is used mainly for relative stability. Values in excess of about 40% may indicate that the

system is dangerously close to absolute instability. Many systems are designed for 5% to 25% overshoot.

No overshoot at all is sometimes desirable. Howe ver, this usually penalizes the speed of response

needlessly.

The specification on speed of response in terms of tr, tp and/or ts, should be consistent as all these

depend on z and wn. The greater the magnitude of wn when z is constant, the more rapidly does the

response approach the desired steady-state value. The value of wn is limited by measurement noise

considerations—a system with large wn has large bandwidth and will, therefore, allow the high frequency

noise signals to affect its performance.

We need to now convert the specifications on z and wn into guide lines on the placement of poles and

zeros in the z-plane, in order to guide the design of digital controls. We do so through the mapping (4.9).

Figure 4.5 illustrates the translation of specifications on z and wn to the characteristic root locations in

the z-plane (referr ing to Section 2.14 will be helpful). The s-plane poles

 s1, 2 = – zwn ± jwn 1 2-z = – zwn ± jwd (4.15a)

for constant z, lie along a radial line in the s-plane (Fig. 4.5a). In the z-plane,

 z1, 2 = e en nT j T- ± -zw w z1 2

 = r e ± jq (4.15b)

The magnitude of z (i.e., the distance to the origin) is r = e nT-zw
 and the angles with the positive real

axis of the z-plane, measured positive in the counterclockwise direction, are q = wnT 1 2-z . It should

be observed that the z-plane pole locations depend on the s-plane positions, as well as the sampling

interval T.

As wn increases for a constant-z, the magnitude of z decreases and the phase angle increases; constant-z

locus is a logarithmic spiral in the z-plane (Fig. 4.5b). Increasing wn negatively, gives the mirror image.

In Fig. 4.5a, the s-plane has been divided into strips of width ws, where ws = 2p/T is the sampling

frequency. The primary strip extends from w = –ws/2 to + ws/2, and the complementary strips extend from

– ws/2 to –3ws/2, ... , for negative frequencies, and from ws/2 to 3ws/2,..., for positive frequencies.

We will assume that the low-pass analog filtering characteristics of the contin uous-time plant and the

 2 Chapter 6 of reference [155].

 Design of Digital Control Algorithms 225

ZOH device, attenuate the responses due to the poles in the complementary strips; only the poles in the

primary strip, generally, need be considered.

Figure 4.5 illustrates the mapping of constant-z locus in the primary strip of the s-plane to the z-plane.

As the imaginary parts ± jwd = ± jwn 1 2-z of the s-plane poles move closer to the limit ± jws/2 of the

primary strip, the angles q = ± wdT = ± wnT 1 2-z of the z-plane poles approach the direction of the

negative real axis. The negative real axis in the z-plane, thus, corresponds to the boundaries of the primary

strip in the s-plane. Figure 4.5 also shows the mapping of a constant-wn locus, in the primary strip of the

s-plane, to the z-plane.

In the z-plane, the closed-loop poles must lie on the constant-z spiral to satisfy peak overshoot

requirement, also the poles must lie on constant-wn curve to satisfy speed of response require ment. The

intersection of the two curves (Fig. 4.5b) provides the preferred pole locations, and the design aim is to

make the root locus pass through these locations.

If one chooses the following boundaries for the system response:

 T = 1 sec

 Peak overshoot £ 15% fi z ≥ 0.5

 Settling time £ 25 sec fi wn ≥
8

25
,

the acceptable boundaries for the closed-loop pole locations in z-plane are shown in Fig. 4.6.

In the chart of Fig. 4.6, the patterns are traced for various natural frequencies and damping ratios. Such

a chart is a useful aid in root-locus design technique. We will be using this chart in our design examples.

Fig. 4.5 Mapping of s z-plane

226 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

6

10

p
T

Im

4

10

p
T

z =
0

wn =
2

10

p
T

0.2

0.4

0.6

0.8

z = 1

0.8

0.6

0.4

0.2

z =
0

wn =
2

10

p
T

4

10

p
T

6

10

p
T

8

10

p
T

wn=
p
T

wn=
p
T

8

10

p
T

Re

Fig. 4.6

Most control systems found in practice are of high order. The preferred locations of closed-loop poles

given by Fig. 4.5b, realize the specified transient performance only if the other closed-loop poles and

zeros of the system have negligible effect on the dynamics of the system, i.e., only if the closed-loop

poles corresponding to specified z and wn, are dominant.

In the following, we examine the relationship between the pole-zero patterns and the corresponding step-

responses of discrete-time systems. Our attention will be restricted to the step responses of the discrete-

time system with transfer function

Y z

R z

()

()
 =

K z z z z

z p z re z rej j

()()

()()()

- -

- - - -
1 2

q q
 =

K z z z z

z p z r z r

()()

()(cos)

- -

- - +
1 2

2 22 q
 (4.16)

for a selected set of values of the parameters K, z1, z2, p, r and q.

 Design of Digital Control Algorithms 227

We assume that the roots of the equation

 z2 – 2r cosq z + r2 = 0

are the preferred closed-loop poles corresponding to

the speci fied values of z and wn. Complex-conjugate

pole pairs correspond ing to z = 0.5 with q = 18º, 45º

and 72º, will be considered in our study. The pole pair

with q = 18º is shown in Fig. 4.7.

To study the effect of zero location, we let z2 = p and

explore the effect of the (remaining) zero location z1

on the transient performance. We take the gain K to be

such that the steady-state output value equals the step

size. For a unit-step input,

 Y(z) =
K z z

z r z r

z

z

()

cos

-

- +

È

Î
Í
Í

˘

˚
˙
˙ -

Ê
ËÁ

ˆ
¯̃

1

2 22 1q
 (4.17)

with K =
1 2

1

2

1

- +
-

r r

z

cos

()

q

The major effect of the zero z1 on the step response y(k) is to change the peak overshoot, as may be

seen from the step responses plotted in Fig. 4.8a. Figure 4.8b shows plots of peak overshoot versus zero

location for three different cases of complex-conjugate pole pairs. The major observation from these

plots is that the zero has very little influence when on the negative real axis, but its influence is dramatic

when it comes near +1.

To study the influence of a third pole on a basically second-order response, we again consider the system

(4.16), but this time, we fix z1 = z2 = –1 and let p vary from near –1 to near +1. In this case, the major

influence of the moving singularity is on the rise time of the step response. Figure 4.8c shows plots of

rise time versus extra pole location, for three different cases of complex-conjugate pole pairs. We see

here that the extra pole causes the rise time to get very much longer as the location of p moves towards

z = +1, and comes to dominate the response.

Our conclusions from these plots are that the addition of a pole, or a zero, to a given system has only

a small effect—if the added singularities are in the range 0 to –1. However, a zero moving towards

z = +1 greatly increases the system overshoot. A pole placed towards z = +1 causes the response to

slow down and thus, primarily, affects the rise time—which is being progressively increased. The pole

pair corresponding to specified z and wn, is a dominant pole pair of the closed-loop system only if the

influence of addition al poles and zeros is negligibly small on the dynamic response of the system.

The translation of time-domain specifications into desired loca tions of pair of dominant closed-loop

poles in the z-plane, is useful if the design is to be carried out by using root locus plots. The use of

frequency response plots necessitates the translation of time-domain performance specifications in terms

of frequency response features.

Unit circle

Re

Im

18°

z-plane

z = 0.5

Fig. 4.7 A complex-conjugate pole pair of
the system (4.16)

228 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

All the frequency-domain methods of continuous-time systems can be extended for the analysis and

design of digital control sys tems. Consider the system shown in Fig. 4.3b. The closed-loop transfer

function of the sampled-data system is

Y z

R z

()

()
 =

G G z

G G z

h

h

0

01

()

()+
 (4.18)

Just as in the case of continuous-time systems, the absolute and relative stability conditions of the closed-

loop discrete-time system can be investigated by making the frequency response plots of Gh0G(z). The

frequency response plots of Gh0G(z) are obtained by setting z = e jwT, and then letting w vary from – ws/2

to ws/2. This is equivalent to mapping the unit circle in the z-plane onto the Gh0G(e jwT)-plane. Since the

unit circle in the z-plane is symmetrical about the real axis, the frequency response plot of Gh0G(e jwT)

P
er
ce
n
t
p
ea
k
o
v
er
sh
o
o
t
(l
o
g
sc
al
e)

k

1.0

5

10

– 0.5

– 0.5

– 1.0

– 1.0

0

0

Zero location

Pole location

R
is
e
ti
m
e
(L
o
g
sc
al
e)

N
u
m
b
er

o
f
sa
m
p
le
s

(b)

(c)

(a)

0.5

0.5

1.0

1.0

20

30

50

50

30

20

10

5

3

2

1

100

200

300

500

(= 0.5, = 18°)z q

(= 0.5, = 72°)z q

(= 0.5, = 45°)z q

z1 = 0.8

y
k(
)

z1 = 0.9

(= 0.5, = 18°)z q

(= 0.5, = 45°)z q

(= 0.5, = 72°)z q

 Fig. 4.8 z q = 18°

 Design of Digital Control Algorithms 229

will also be symmetrical about the real axis, so that only the portion that corresponds to w = 0 to w =

ws/2 needs to be plotted.

A typical curve of (refer to Eqn. (4.18))

Y

R
(e jwT) =

G G e

G G e

h
j T

h
j T

0

01

()

()

w

w+
, (4.19)

the closed-loop frequency response, is shown in Fig. 4.9. The amplitude ratio and phase angle will

approximate the ideal 1.0 – 0º for some range of ‘low’ frequencies, but will deviate for high frequencies.

The height Mr (resonance peak) of the peak is a relative stability criterion; the higher the peak, the poorer

the relative stability. Many systems are designed to exhibit a resonance peak in the range 1.2 to 1.4.

The frequency wr (resonance frequency) at which this peak occurs, is a speed of response criterion; the

higher the wr, the faster the system. For systems that exhibit no peak (sometimes the case), the bandwidth

wb is used for speed of response specifications. Bandwidth is the frequency at which amplitude ratio has

dropped to 1 2/ times its zero-frequency value. It can, of course, be specified even if there is a peak.

Alternative measures of relative stability and speed of response are stability margins and crossover

frequencies. To define these measures, a discussion of the Nyquist stability criterion in the z-plane is

Fig. 4.9 Closed-loop frequency response criteria

230 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

required. Given the extensive foundation for the Nyquist criterion for continuous-time systems, that we

laid in Chapter 10 of the companion book [155], it will not take us long to present the criterion for the

discrete-time case.

4.2.3 z

The concepts involved in z-plane Nyquist stability criterion, are identical to those for s-plane criterion.

In the s-plane, the region of stability is infinite in extent, namely, the entire left half of the s-plane. In the

z-plane, this is not the case. The region of stability is the interior of the unit circle. This makes drawing

the locus of Gh0G(e jwT), the open-loop frequency response on the polar plane, easier because the Nyquist

contour Gz in the z-plane is finite in extent, being simply the unit circle. We treat poles at z = 1 in the way

we treated poles at s = 0, by detouring around them on a contour of arbitrarily small radius.

Figure 4.10a shows a typical Nyquist contour along which we will evaluate Gh0G(z). Note that we detour

around the pole at z = 1, on a portion of a circle of radius e centered at z = 1. A typical Nyquist plot

Gh0G(e jwT) is shown in Fig. 4.10b. We see from this figure, that the Nyquist plot is similar to those we

obtain for continuous-time functions with a single pole at s = 0, with the following exception. The plot

does not touch the origin in the z-plane. The reason is that we evaluate Gh0G(e jwT) over a finite range of

values of w, namely, 0 £ w £ p /T, where T is the sampling interval.

We have labeled the segments of Gz in the same fashion as we did in the s-plane Nyquist analysis [155].

Segment C1 is the upper half of the unit circle, and segment C2 is the lower half of the unit circle.

Segment C3 is the portion of a circle with radius e centered at z = 1. There is no segment corresponding

to the s-plane portion of a circle with infinite radius centered at s = 0, because the Nyquist contour Gz in

the z-plane, unlike its counterpart in the s-plane, is of finite extent.

Note that the locus Gh0G(C1) in Fig. 4.10b, is directly obtained from Gh0G(e jwT) for 0 £ w £ p/T, whereas

the locus Gh0G(C2) is the same information, with the phase reflected about 180°; Gh0G(C3) is inferred

from Fig. 4.10a based on pole-zero configuration.

In the case of open-loop transfer function Gh0G(z) with no poles outside the unit circle, the closed-loop

system of Fig. 4.3b is stable if

 N = number of clockwise encirclements of the critical point –1 + j0 made by the Gh0G(e jwT) locus

of the Nyquist plot

 = 0

Note that the necessary information to determine relative stability is contained in the portion Gh0G(C1)

of the Nyquist plot, which corresponds to the frequency response of the open-loop system Gh0G(z). This

portion of the Nyqusit plot of Fig. 4.10b has been redrawn in Fig. 4.10c. Gain and phase margins are

defined so as to provide a two-dimensional measure of how close the Nyquist plot is to encircling the

–1 + j0 point, and they are identical to the definitions developed for continuous-time systems. The Gain

Margin (GM) is the inverse of the amplitude of Gh0G(e jwT) when its phase is 180°, and is a measure of

how much gain of the system can be increased before instability results. The Phase Margin (FM) is the

difference between 180° and the phase of Gh0G(e jwT) when its amplitude is 1. It is a measure of how

much additional phase lag, or time delay, can be tolerated before instability results, because the phase of

a system is highly related to these characteristics.

 Design of Digital Control Algorithms 231

The Nyquist plot in Fig. 4.10c intersects the negative real axis at frequency wf. This frequency at which

the phase angle of Gh0G(e jwT) is 180°, is referred to as phase crossover frequency. The gain margin of

the closed-loop system of Fig. 4.3b, is defined as the number

 GM =
1

0G G eh
j T

()
wf

For stable systems, GM is always a number greater than one.

A unit circle, centered at the origin, has been drawn in Fig. 4.10c in order to identify the point at which

the Nyquist plot has unity magnitude. The frequency at this point has been designated wg, the gain

crossover frequency. The phase margin of the closed-loop system of Fig. 4.3b, is defined as

 FM = 180° + –Gh0G(e jwgT)

For stable systems, FM is always positive.

The GM and FM are both measures of relative stability. General numerical design goals for these margins

cannot be given since systems that satisfy other specific performance criteria may exhibit a wide range

232 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

of these margins. It is possible, however, to give useful lower bounds—the gain margin should usually

exceed 2.5 and the phase margin should exceed 30°.

For continuous-time systems, it is often pointed out that the phase margin is related to the damping ratio z

for a standard second-order system; the approximate relation being z = FM/100. The FM, from a z-plane

frequency response analysis, carries the same implications about the damping ratio of the closed-loop

system.

The gain crossover frequency wg is related to the bandwidth of the system. The larger the wg, the wider

the bandwidth of the closed-loop system, and the faster is its response.

The translation of time-domain specifications in terms of fre quency response features, is carried out

by using the explicit correlations for second-order system (4.10). The following corre lations are valid

approximations for higher-order systems domi nated by a pair of complex conjugate poles3.

 Mr =
1

2 1 2z z-
; z £ 0.707 (4.20)

 wr = wn 1 2 2- z (4.21)

 wb = wn 1 2 2 4 42 2 4

1

2- + - +È
ÎÍ

˘
˚̇

z z z() (4.22)

 FM = tan–1 2 1 4 24 2

1

2z z z+ -È
ÎÍ

˘
˚̇

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

 @ 100z (4.23)

4.2.4

The effectiveness of a system in disturbance signal rejection is readily studied with the topology of

Fig. 4.11a. The response Y(z) to disturbance W(z), can be found from the closed-loop transfer function

Y z

W z

()

()
 =

1

1 0+ D z G G zh() ()
 (4.24a)

We now introduce the function

 S(z) =
1

1 0+ D z G G zh() ()
 (4.24b)

which we call the sensitivity function of the control system, for reasons to be explained later. To reduce

the effects of distur bances, it turns out that S(e jwT) must be made small over the frequency band of

disturbances. If constant disturbances are to be suppressed, S(1) should be made small. If D(z)Gh0G(z)

includes an integrator (which means that D(z) or Gh0G(z) has a pole at z = 1), then the steady-state error

due to constant disturbance is zero. This may be seen as follows. Since for a constant distur bance of

amplitude A, we have

W(z) =
Az

z -1
,

 3 Chapter 11 of reference [155].

 Design of Digital Control Algorithms 233

the steady-state value of the output is given by

 yss = lim
z Æ 1

(z – 1)Y(z) = lim
z Æ 1

(z – 1)S(z)W(z) = lim
z Æ 1

AS(z)

which is equal to zero if D(z)Gh0G(z) has a pole at z = 1.

Note that the point where the disturbance enters the system is very important in adjusting the gain of

D(z)Gh0G(z). For example, consider the system shown in Fig. 4.11b. The closed-loop transfer function

for the disturbance is

Y z

W z

()

()
 =

G G z

D z G G z

h

h

0

01

()

() ()+

In this case, the steady-state error due to constant disturbance W(z) is not equal to zero when Gh0G(z) has

a pole at z = 1. This may be seen as follows:

Let Gh0G(z) = Q(z)/(z – 1)

where Q(z) is a rational polynomial of z, such that Q(1) π 0 and Q(1) ; and D(z) is a controller which

does not have pole at z = 1. Then

yss = lim
z Æ 1

() ()

() ()

z G G z

D z G G z

h

h

-
+

1

1

0

0

 W(z) = lim
z Æ 1

AzQ z

z D z Q z

()

() ()- +1
 =

A

D()1

Thus, the steady-state error is nonzero; the magnitude of the error can be reduced by increasing the

controller gain.

Figure 4.11c gives a block diagram of the situation where meas urement noise Wn(z) enters the system

through the feedback link. The closed-loop transfer function for this disturbance is

(a)

+ + +

–

(b)

+

–

(c)

+

+

+

–

G G zh0 ()D z()

G G zh0 ()D z()

D z() G G zh0 ()

+

W z()

Y z()
R z() = 0

R z() = 0

W z()

Y z()

Y z()R z() = 0

W zn()

+

Fig. 4.11

234 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Y z

W zn

()

()
 =

D z G G z

D z G G z

h

h

() ()

() ()

0

01+
 (4.25)

Thus, the measurement noise is transferred to the output whenever |D(z)Gh0G(z)| > 1. Hence, large

gains of D(z)Gh0G(z) will lead to large output errors due to measurement noise. This is in conflict with

the disturbance-rejection property with respect to configu rations of Figs 4.11a and 4.11b. To solve this

problem, we can generally examine the measuring instrument and modify the filter ing, so that it satisfies

the requirements of a particular control problem.

4.2.5

Finally, in our design, we must take into account both the small and, often, the large differences between

the derived process model and the real process behavior. The differences may appear due to modeling

approximations, and the process behavior changes with time during operation. If, for simplicity, it is

assumed that the structure and order of the process model are chosen exactly, and they do not change

with time, then these differences are mani fested as parameter errors.

Parameter changes with respect to nominal parameter vector pn are assumed. The closed-loop behavior

for parameter vector

p = pn + Dp

is of interest. If the parameter changes are small, then sensi tivity methods can be used. For controller design,

both good control performance (steady-state accuracy, transient accuracy, and disturbance rejection),

and small parameter sensitivity, are required. The resulting controllers are then referred to as insensitive

controllers. However, for large parameter changes, the sensitivity design is unsuitable. Instead, one has to

assume several process models with different parameter vectors p1, p2, ..., pM, and try to design a robust

controller which, for all process models, will maintain stability and certain control per formance range.

For the design of insensitive controllers, the situation is very much like the disturbance-signal rejection.

The larger the gain of the feedback loop around the offending parameter, the lower the sensitivity of the

closed-loop transfer function to changes in that parameter.

Consider the digital control system of Fig. 4.11. The closed-loop input-output behavior corresponding to

the nominal parameter vector, is described by

 M(pn, z) =
Y z

R z

()

()
 =

D z G G z

D z G G z

h n

h n

() (,)

() (,)

0

01

p

p+
 (4.26)

The process parameter vector now changes by an infinitesimal value Dp. For the control loop, it follows

that

∂

∂ =

M z

n

(,)p

p
p p

 =
D z

D z G G z

G G z

h n

h

n

()

[() (,)]

(,)

1 0
2

0

+

∂
∂

=p

p

p
p p

For DGh0G(pn, z) =
∂

∂
Ê

ËÁ
ˆ

¯̃=

G G zh

T

n

0 (,)p

p
p

p p

D ,

 Design of Digital Control Algorithms 235

 DM (pn, z) =
D z

D z G G z

G G z

h n

h

T

n

()

[() (,)]

(,)

1 0
2

0

+

∂
∂

Ê

ËÁ
ˆ

¯̃=p

p

p
p

p p

D

 =
D z G G z

D z G G z

h n

h n

() (,)

() (,)

0

01

p

p+
Ï
Ì
Ó

¸
˝
˛

1

1 0+
Ï
Ì
Ó

¸
˝
˛D z G G zh n() (,)p

1

0G G zh n(,)p

Ï
Ì
Ó

¸
˝
˛

{DGh0G(pn, z)} (4.27)

From Eqns (4.26)–(4.27), it follows that

DM z

M z

n

n

(,)

(,)

p

p
 = S(pn, z)

DG G z

G G z

h n

h n

0

0

(,)

(,)

p

p
 (4.28a)

with the sensitivity function S(pn, z) of the feedback control given as

 SG G
M

h0
 = S(pn, z) =

1

1 0+ D z G G zh n() (,)p
 (4.28b)

This sensitivity function shows how relative changes of input/output behavior of a closed loop, depend

on changes of the process transfer function. Small parameter-sensitivity of the closed-loop behavior, can

be obtained by making S(pn, e jwT) small in the significant frequency range.

4.2.6

Control system design with high-gain feedback results in the following:

 (i) good steady-state tracking accuracy;

 (ii) good disturbance-signal rejection; and

 (iii) low sensitivity to process-parameter variations.

There are, however, factors limiting the gain:

 (i) High gain may result in instability problems.

 (ii) Input amplitudes limit the gain; excessively large mag nitudes of control signals will drive the

process to saturation region of its operation, and the control system design, based on linear model

of the plant, will no longer give satisfactory per formance.

 (iii) Measurement noise limits the gain; with high-gain feedback, measurement noise appears

unattenuated in the controlled output.

Therefore, in design, we are faced with trade-offs.

4.3

All the frequency response methods of continuous-time systems4, are directly applicable for the analysis

and design of digital control systems. For a system with closed-loop transfer function

Y z

R z

()

()
 =

G G z

G G z

h

h

0

01

()

()+
 (4.29)

 4 Chapters 10–12 of reference [155].

236 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the absolute and relative stability conditions can be investigat ed by making the frequency response plots

of Gh0G(z). The fre quency response plots of Gh0G(z) can be obtained by setting

 z = e jwT; T = sampling interval (4.30)

and then letting the frequency w vary from –ws/2 to ws/2; ws = 2p/T. Computer assistance is normally

required to make the fre quency response plots (refer to Problem A.8 in Appendix A).

Since the frequency appears in the form z = ejwT, the discrete-time transfer functions are typically not

rational functions and the simplicity of Bode’s design technique is altogether lost in the z-plane. The

simplicity can be regained by transforming the discrete-time transfer function in the z-plane, to a different

plane (called w) by the bilinear transformation (refer to Eqn. (2.115))

 z =
1 2

1 2

+
-

wT

wT

/

/
 (4.31a)

By solving Eqn. (4.31a) for w, we obtain the inverse relationship

 w =
2 1

1T

z

z

-
+

 (4.31b)

Through the z-transformation and the w-transformation, the prim ary strip of the left half of the s-plane

is first mapped into the inside of the unit circle in the z-plane, and then mapped into the entire left half

of the w-plane. The two mapping processes are depicted in Fig. 4.12. Notice that as s varies from 0 to

jws/2 along the jw-axis in the s-plane, z varies from 1 to –1 along the unit circle in the z-plane, and w

varies from 0 to along the imaginary axis in the w-plane. The bilinear transforma tion (4.31) does not

have any physical significance in itself and, therefore, all w-plane quantities are fictitious quantities that

correspond to the physical quantities of either the s-plane or the z-plane. The correspondence between

the real frequency w, and the fictitious w-plane frequency, denoted as n, is obtained as follows:

From Eqn. (4.31b),

s-plane

0 s 0

Im

Im

Re Re

z-plane
w-plane

(a)

1

(c) =w
2
T

z
z
– 1
+ 1

(b) =z esT

jw

jws/2

– /2jws

Fig. 4.12 Diagrams showing mappings from s-plane to z-plane and from z-plane to w-plane

 Design of Digital Control Algorithms 237

 jn =
2 1

1T

e

e

j T

j T

w

w

-

+
 =

2 2 2

2 2T

e e

e e

j T j T

j T j T

w w

w w

/ /

/ /

-

+

-

- =
2

2T
j

T
tan

w

or n =
2

2T

T
tan

w
 (4.32)

Thus, a nonlinear relationship or ‘warping’ exists between the two frequencies w and n. As w moves from

0 to ws/2, n moves from 0 to (Fig. 4.13).

Note that for relatively small
w wT T

2 2
17<Ê

ËÁ
ˆ
¯̃

º or about 0.3 rad ,

 n @
2

2T

Tw
w

Ê
ËÁ

ˆ
¯̃

@ (4.33)

and the ‘warping’ effect on the frequency response is negligible.

Fig. 4.13 n and actual frequency w

The distortion depicted in Fig. 4.13 may be taken into account in our design of digital compensation by

frequency ‘prewarping’. The idea of prewarping is simply to adjust the critical frequencies in our design.

For example, if the closed-loop bandwidth is specified as wb, then the corresponding bandwidth on the

w-plane is nb =
2

2T

Tbtan
wÊ

ËÁ
ˆ
¯̃

. Our design based on the frequency response plots of Gh0G(jn) attempts

to realize a closed-loop bandwidth equal to nb.

Example 4.2

Consider a process with transfer function

 G(s) =
10

11
5

s s()+
 (4.34)

238 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

which, when preceded by a ZOH (T = 0.1 sec), has the discrete-time transfer function (refer to Table 2.1)

 Gh0G(z) = (1 – z–1) Z
50

52s s()+

È

Î
Í
Í

˘

˚
˙
˙

 =
0 215 0 85

1 0 61

. (.)

()(.)

z

z z

+
- -

 (4.35)

By use of the bilinear transformation

z =

1
2

1
2

+

-

wT

wT
 =

1 0 05

1 0 05

+
-

.

.

w

w

Gh0G(z) can be transformed into Gh0G(w) given below.

 Gh0G(w) =

10 1
20

1
246 67

1
4 84

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

w w

w
w

.

.

 (4.36)

Notice that the gain of Gh0G(w) is precisely the same as that of G(s)—it is 10 in both the cases. This will

always be true for a Gh0G(w) computed using the bilinear transformation given by Eqns (4.31). The gain

of 10 in Eqn. (4.36) is the K
v
 of the uncompensated system (4.35).

We also note that in Eqn. (4.36), the denominator looks very much similar to that of G(s), and that

the denominators will be the same as T ap proaches zero. This would also have been true for any zeros

of Gh0G(w) that corresponded to zeros of G(s), but our example does not have any. Our example also

shows the creation of a right-half plane zero of Gh0G(w) at 2/T, and the creation of a fast left-half plane

zero when compared to the original G(s). The transfer function Gh0G(w) is thus a nonminimum phase

function.

To summarize, the w-transformation maps the inside of the unit circle in the z-plane, into the left half of

the w-plane. The magnitude and phase of Gh0G(jn) correspond to the magnitude and phase of Gh0G(z)

as z takes on values around the unit circle. Since Gh0G(jn) is a rational function of n, we can apply all

the stan dard straight-line approximations to the log-magnitude and phase curves.

To obtain Gh0G(w) = G G zh
z

wT

wT

0 1 2

1 2

() /

/
=

+
-

the following ready-to-use formula may be used:

 Gh0G(z) =

K z a

z z b

i

m

i

l

j

n

j

P

P

=

=

+

- +

1

1
1

()

() ()

 (4.37a)

 Gh0G(w) =

K a
w

T

w

T a ai

m

i

l m n

i

m

i i

P P
=

- +

=
+ -

Ê
ËÁ

ˆ
¯̃

+
+ -

Ê
1 1

1 1
2

1
2 1 1

()
/ (/) [()/()]ËËÁ

ˆ
¯̃

+ +
+ -

Ê

Ë
Á

ˆ

¯
˜= =

P P
j

n

j
l l

j

n

j j

b T w
w

T b b1 1
1 1

2 1 1
()

(/)[()/()]

 (4.37b)

 Design of Digital Control Algorithms 239

The design of analog control systems usually falls into one of the following categories: (1) lead

compensation, (2) lag compen sation, (3) lag-lead compensation. Other more complex schemes, of

course, do exist, but knowing the effects of these three basic types of compensation, gives a designer

much insight into the design problem. With reference to the design of digital control systems by Bode

plots, the basic forms of compensating network D(w) have also been classified as lead, lag, and lag-

lead. In the following paragraphs, we briefly review the fundamental frequen cy-domain features of these

compensators.

A simple lead compensator model in the w-plane is described by the transfer function

 D(w) =
1

1

+
+

w

w

t

a t
; 0 < a < 1, t > 0 (4.38)

The zero-frequency gain of the compensator is found by letting w = 0. Thus, in Eqn. (4.38), we are

assuming a unity zero-frequency gain for the compensator. Most of the designs require a compensa tor

with a non-unity zero-frequency gain to improve steady-state response, disturbance rejection, etc. A non-

unity zero-frequency gain is obtained by multiplying the right side of Eqn. (4.38) by a constant equal

to the value of the desired zero-frequency gain. For the purpose of simplifying the design procedure,

we normally add the required increase in gain to the plant transfer function, and design the unity zero-

frequency gain compensator given by Eqn. (4.38), based on the new plant transfer function. Then the

compensator is realized as the transfer function of (4.38) multi plied by the required gain factor.

The Bode plot of the unity zero-frequency gain lead compensator is shown in Fig. 4.14. The maximum

phase lead fm of the compensa tor is given by the relation

 a =
1

1

-
+

sin

sin

f

f
m

m

 (4.39)

and it occurs at the frequency

 nm =
1 1

t at

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 (4.40)

The magnitude of D(jn) at n = nm is 20 log (/)1 a .

The phase lead is introduced in the vicinity of the gain crosso ver frequency of the uncompensated

system—in order to increase the system’s phase margin. Lead compensation increases the system gain at

higher frequencies, thereby increasing the system band width and hence the speed of response. However,

a system with large bandwidth may be subjected to high-frequency noise prob lems.

A simple lag compensator model in the w-plane is described by the transfer function

 D(w) =
1

1

+
+

w

w

t

b t
; b > 1, t > 0 (4.41)

The Bode plot of this unity zero-frequency gain compensator is shown in Fig. 4.15.

240 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Since the lag compensator reduces the system gain in the high frequency range, without reducing the

gain at low frequen cies, the total system gain can be appreciably increased by a non-unity zero-frequency

gain obtained by multiplying the right side of Eqn. (4.41) by a constant. This is equivalent to increasing

the gain for the entire frequency range, and then attenuating the magnitude curve in the high frequency

region. This results in an appreciable increase in gain in the low frequency range of the lag-compensated

system, thereby improving steady-state accuracy.

Fig. 4.15 Bode plot of lag compensator

dB

0

90°

45°

0°

Slope = 20 dB /decade

20 log

20 log

log n

D j()n

–D j()n

1/t nm = 1/ at 1/at

fm

1
a

1
a

Fig. 4.14 Bode plot of lead compensator

 Design of Digital Control Algorithms 241

In the design method using Bode plots, the attenuation prop erty of lag compensator is utilized; the phase

lag characteristic is of no consequence. The attenuation provided by the lag compen sator in the high

frequency range shifts the gain crossover frequency to a lower value, and gives the system sufficient

phase margin. So that a significant phase lag will not be contributed near the new gain crossover, the

upper corner frequency 1/t of D(w) is placed far below the new gain crossover.

With the reduction in system gain at high frequencies, the system bandwidth gets reduced and thus the

system has a slower speed of response. This may be an advantage if high frequency noise is a problem.

Equations (4.38) and (4.41) describe simple first-order compensa tors. In many system design problems,

however, the system speci fications cannot be satisfied by a first-order compensator. In these cases, higher-

order compensators must be used. To illus trate this point, suppose that smaller steady-state errors to ramp

inputs are required for a Type-2 system; this requires an increase in the low-frequency gain of the system.

If phase-lead compensation is employed, this increase in gain must be reflected at all frequencies. It is

then unlikely that one first-order section of phase-lead compensation can be designed to give adequate

phase margin. One solution to this problem would be to cascade two first-order lead compensa tors.

However, if the noise in the control system is a problem, this solution may not be acceptable. A different

approach is to cascade a lag compensator with a lead compensator. This compen sator is usually referred

to as a lag-lead compensator.

Example 4.3

Consider the feedback control system shown in Fig. 4.16. The plant is described by the transfer

function

G(s) =
K

s s()+ 5

Design a digital control scheme for the system to meet the fol lowing specifications:

 (i) the velocity error constant K
v
 ≥ 10;

 (ii) peak overshoot Mp to step input £ 25%; and

 (iii) settling time ts (2% tolerance band) £ 2.5 sec.

Solution The design parameters are the sampling interval T, the system gain K, and the parameters of

the unity zero-frequency gain compensator D(z).

Let us translate the transient accuracy require ments to frequency response measures. z = 0.4 corresponds

to a peak overshoot of about 25% (Eqn. (4.13)), and a phase margin of about 40º (Eqn. (4.23)). The

requirement of ts @ 2.5 sec corresponds to wn = 4 rad/sec (Eqn. (4.14)) and closed-loop bandwidth

wb @ 5.5 rad/sec (Eqn. (4.22)). Taking the sampling frequency about 10 times the band width, we choose

the sampling interval

T =
2

10
0 1

p

wb

@ . sec

242 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Our design approach is to first fix the system gain K to a value that results in the desired steady-state

accuracy. A unity zero-frequency gain compensator, that satisfies the transient accuracy requirements

without affecting the steady-state accuracy, is then introduced.

Since sampling does not affect the error constant of the system, we can relate K with K
v
 as follows, for

the system of Fig. 4.16 with D(z) = 1 (i.e., for uncompensated system):

K
v
 = lim

s Æ 0
 sG(s) =

K

5

Thus, K = 50 meets the requirements on steady-state accuracy.

For T = 0.1 and K = 50, we have

 Gh0G(z) = Z
1 50

5

-
+

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-e

s s s

Ts

()
 =

0 215 0 85

1 0 61

. (.)

()(.)

z

z z

+
- -

 (4.42)

 Gh0G(w) = G G zh

z

wT

wT

0 1
2

1
2

()

=
+

-

 =

10 1
20

1
246 67

1
4 84

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

w w

w
w

.

.

 (4.43)

 Gh0G(jn) = G G wh

w j

0 ()

= n

 =

10 1
20

1
246 67

1
4 84

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

j j

j
j

n n

n
n

.

.

 (4.44)

The Bode plot of Gh0G(jn) (i.e., the uncompensated system) is shown in Fig. 4.17. We find from this

plot, that the uncompensated system has gain crossover frequency nc1 = 6.6 rad/sec and phase margin

FM1 @ 20º. The magnitude versus phase angle curve of the uncompensated system is drawn in Fig. 4.18.

The bandwidth5 of the system is read as

nb1 = 11

In terms of the real frequency, the bandwidth (Eqn. (4.32))

Compensator

T T

+

–

ZOH Plant

G s()

u t*()

y t()

u k()e k()e t()

r t()
D z() G sh0()

Fig. 4.16

 5 The –3dB closed-loop gain contour of the Nichols chart has been used to determine bandwidth. The contour

has been construct ed using the following table obtained from the Nichols chart.

Degrees –90 –100 –120 –140 –160 –180 –200 –220

dB 0 –1.5 –4.18 –6.13 –7.28 –7.66 –7.28 –6.13

 Design of Digital Control Algorithms 243

wb1 =
2

2

1 1

T

Tbtan- Ê
ËÁ

ˆ
¯̃

n
 = 10 rad/sec

It is desired to raise the phase margin to 40º without altering K
v
. Also the bandwidth should not increase.

Obviously, we should first try a lag compensator.

From the Bode plot of uncompensated system, we observe that the phase margin of 40º is obtained

if the gain crossover frequency is reduced to 4 rad/sec. The high frequency gain –20 log b of the lag

compensator (Fig. 4.15) is utilized to reduce the gain cross over frequency. The upper corner frequency 1/t

of the compensator is placed one octave to one decade below the new gain crossover, so that the phase lag

contribution of the compensator, in the vicinity of the new gain crossover, is made sufficiently small.

To nullify the small phase lag contribution which will still be present, the gain crossover frequency is

reduced to a value nc2 where the phase angle of the uncompensated system is

f = –180º + FMs + e;

FMs is the specified phase margin and e is allowed a value 5º–15º.

The uncompensated system (Fig. 4.17) has a phase angle

f = –180º + FMs + e = –180º + 40º + 10º = –130º

at nc2 = 3 rad/sec. Placing the upper corner frequency of the compensator two octaves below nc2, we have

Fig. 4.17 Compensator design (Example 4.3)

244 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

1

t
 =

nc2

22()
 =

3

4

To bring the magnitude curve down to 0 dB at nc2, the lag compen sator must provide an attenuation of

9 dB (Fig. 4.17). Therefore,

20 log b = 9 or b = 2.82

The lower corner frequency of the compensator is then fixed at

1

bt
 = 0.266

The transfer function of the lag compensator is then

 D(w) =
1

1

+
+

t

bt

w

w
 =

1 1 33

1 3 76

+
+

.

.

w

w

Phase lag introduced by the compensator at nc2 = tan–1(1.33 nc2) – tan–1 (3.76nc2) = 75.93º – 84.93º =

–9º. Therefore, the safety margin of e = 10º is justified.

The open-loop transfer function of the compensated system becomes

D(w)Gh0G(w) =

10 1
20

1
246 67

1
0 75

1
4 84

1

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+

w w w

w
w w

. .

. 00 266.

Ê
ËÁ

ˆ
¯̃

The Bode plot of D(w)Gh0G(w) is shown in Fig. 4.17, from where the phase margin of the compensated

system is found to be 40º and the gain margin is 15 dB. The magnitude versus phase angle curve of the

compensated system is shown on Nichols chart in Fig. 4.18. The bandwidth of the compensated system is

Fig. 4.18 Compensator design (Example 4.3)

 Design of Digital Control Algorithms 245

nb2 = 5.5 w
n

b
b

T

T
2

1 22

2
5 36= Ê

ËÁ
ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

-tan . rad/sec

Therefore, the addition of the compensator has reduced the band width from 10 rad/sec to 5.36 rad/sec.

However, the reduced value lies in the acceptable range.

Substituting w =
2 1

1T

z

z

-
+

in D(w), we obtain

 D(z) = 0.362
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 928

0 974

.

.
 =

0 362 0 336

0 974

. .

.

z

z

-
-

Zero-frequency gain of D(z) = lim .
.

.z

z

zÆ

-
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

1
0 362

0 928

0 974
 = 1

The digital controller D(z) has a pole-zero pair near z = 1. This creates a long tail of small amplitude

in the step response of the closed-loop system. This behavior of the lag-compensated system will be

explained shortly, with the help of root locus plots.

To evaluate the true effectiveness of the design, we write the closed-loop transfer function of the

compensated system (Fig. 4.19) and therefrom obtain the response to step input. Computer assistance is

usually needed for this analysis.

Lag compensator

+

–

Plant

0.215 (+ 0.85)

(– 1)(– 0.61)

z

z z

0.362 – 0.336

– 0.974

z

z

Y()zU()zE()zR()z

D() =z G G zh0 () =

Fig. 4.19 Compensator design (Example 4.3)

Comment We have obtained a digital control algorithm which meets the following objectives: K
v
 @ 10,

Mp @ 25%, ts @ 2.5 sec. We may attempt to improve upon this design to obtain K
v
 > 10, Mp < 25% and

ts < 2.5 sec. However, the scope of such an exercise is limited, because the improvement in steady-state

accuracy will be at the cost of stability margins and vice versa. Also, the con flicting requirements of

limiting the magnitudes of control signals to avoid saturation problems, limiting the bandwidth to avoid

high-frequency noise problems, etc., have to be taken into consideration.

Example 4.4

Reconsider the feedback control system of Example 4.3 (Fig. 4.16). We now set the following goal for our

design:

 (i) K
v
 ≥ 10;

246 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (ii) Phase margin @ 40º; and

 (iii) Bandwidth @ 12 rad/sec.

Sampling interval T = 0.1 sec corresponds to a sampling frequency which is about five times the closed-

loop bandwidth. A smaller value of T is more appropriate for the present design problem which requires

higher speed of response; we will, however, take T = 0.1 sec to compare our results with those of

Example 4.3.

Following the initial design steps of Example 4.3, we find that K = 50 meets the requirement on steady-

state accuracy. For K = 50 and T = 0.1 sec, we have (refer to Eqn. (4.44))

Gh0G(jn) =

10 1
20

1
246 67

1
4 84

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

j j

j
j

n n

n
n

.

.

The uncompensated system has a gain crossover frequency nc1 = 6.6 rad/sec, phase margin FM1 @ 20º

and bandwidth nb1 = 11(w b1 = 10 rad/sec). This follows from Figs 4.20 and 4.21.

It is desired to raise the phase margin to 40º without altering K
v
. The bandwidth should also increase.

Obviously, we should try a lead compensator for this situation.

The phase margin FM1 = 20º of the uncompensated system falls short of the specified phase margin

FMs = 40º by 20º. Additional phase margin can be provided by a lead compensator (Fig. 4.14), so placed

D j()n G G jh0 ()n

G G jh0 ()n

7.5

9.4

6.65.67

20
38

21

5 10 20 402

n

– 220

– 180

– 140

– 10

0

P
h
as
e
(d
eg
re
es
)

M
ag
n
it
u
d
e
(d
B
)

Compensator design (Example 4.4)

 Design of Digital Control Algorithms 247

that its corner frequencies 1/t and 1/at are on either side of the gain crossover frequency nc1 = 6.6

rad/sec. The compensator so placed will increase the system gain in the vicin ity of nc1; this will cause

the gain crossover to shift to the right—to some unknown value nc2. The phase lead provided by the

compensator at nc2 adds to the phase margin of the system.

Phase margin of the uncompensated system at nc1 is FM1. At nc2, which is expected to be close to nc1, let

us assume the phase margin of the uncompensated system to be (FM1 – e) where e is allowed a value

5º – 15º. The phase lead required at nc2 to bring the phase margin to the specified value FMs, is given by

fl = FMs – (FM1 – e) = FMs – FM1 + e

In our design, we will force the frequency nm of the compensator to coincide with nc2, so that maximum

phase lead fm of the compen sator is added to the phase margin of the system. Thus, we set

 nc2 = nm

Therefore, fm = fl

The a-parameter of the compensator can then be computed from (refer to Eqn. (4.39))

a =
1

1

-
+

sin

sin

f

f
m

m

Since at nm, the compensator provides a dB-gain of 20 log(/)1 a , the new crossover frequency nc2 = nm

can be determined as that fre quency at which the uncompensated system has a dB-gain of –20 log(/)1 a .

For the design problem under consideration,

 fl = 40º – 20º + 15º = 35º

Therefore, a =
1 35

1 35

-
+

sin

sin

°

°
 = 0.271

Fig. 4.21 Compensator design (Example 4.4)

248 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The magnitude contribution of the compensator at nm is 20 log (/ .)1 0 271 = 5.67dB.

From Bode plot of Fig. 4.20, we obtain

 nc2 = 9.4 = nm

Therefore (refer to Eqn. (4.40))

1 1

t at

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 = nm = 9.4

or
1

t
 = a ()vm = 4.893 and

1

at
 =

4 893

0 271

.

.
 = 18.055

Since the compensator zero is very close to a pole of the plant, we may cancel the pole with the zero,

i.e., we may choose

1

t
 = 4.84;

1

at
 = 17.86

The transfer function of the lead compensator becomes

 D(w) =
1

1

+
+

t

at

w

w
 =

1 0 21

1 0 056

+
+

.

.

w

w

Substituting

 w =
2 1

1T

z

z

-
+

in D(w), we obtain

 D(z) =
2 45 0 616

0 057

. (.)

.

z

z

-
-

The open-loop transfer function of the compensated system is

 D(w)Gh0G(w) =

10 1
20

1
246 67

1
17 86

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

w w

w
w

.

.

The Bode plot of D(w)Gh0G(w) is shown in Fig. 4.20, from where the phase margin of the compensated

system is found to be 38º, and gain margin is 7.5 dB. The magnitude versus phase angle curve of the

compensated system is shown in Fig. 4.21. The bandwidth of the compensated system is

nb2 = 22.5; wb2 =
2

2

1 2

T

Tbtan- Ê
ËÁ

ˆ
¯̃

n
 = 16.9 rad/sec

Thus, the addition of the lead compensator has increased the system bandwidth from 10 to 16.9 rad/sec.

It may lead to noise problems if the control system is burdened with high frequency noise.

A solution to noise problems involves the use of a lag compensa tor cascaded with lead compensator. The

lag compensation is employed to realize a part of the required phase margin, thus reducing the amount

of lead compensation required.

 Design of Digital Control Algorithms 249

4.4

Design of compensation networks using the root locus plots is a well established procedure in analog

control systems. This is essentially a trial-and-error method where, by varying the control ler parameters,

the roots of the characteristic equation are relocated to favorable locations. In the present section, we

shall consider the application of root locus method to the design of digital control systems.

4.4.1 z

The characteristic equation of a discrete-time system can always be written in the form

 1 + F(z) = 0 (4.45)

where F(z) is a rational function of z.

From Eqn. (4.45), it is seen that the roots of the characteristic equation (i.e., the closed-loop poles of the

discrete-time sys tem), occur only for those values of z where

 F(z) = – 1 (4.46)

Since z is a complex variable, Eqn. (4.46) is converted into two conditions given below.

 (i) Magnitude condition: |F(z)| = 1 (4.47a)

 (ii) Angle condition: –F(z) = ± 180º (2q + 1); q = 0, 1, 2, ... (4.47b)

In essence, the construction of the z-plane root loci is to find the points that satisfy these conditions. If

we write F(z) in the standard pole-zero form:

 F(z) =

K z z

z p

i
i

j
j

P

P

()

()

-

-
; K ≥ 0 (4.48a)

then the two conditions given in Eqns (4.47) become

 |F(z)| =

K z z

z p

i
i

j
j

P

P

| |

| |

-

-
 = 1 (4.48b)

and –F(z) =
j

Â –z – zi –
j

Â –z – pj = ± 180º (2q + 1); q = 0, 1, 2, … (4.48c)

Consequently, given the pole-zero configuration of F(z), the construction of the root loci in the z-plane

involves the follow ing steps:

 (i) A search for the points on the z-plane that satisfy the angle condition given by Eqn. (4.48c).

 (ii) The value of K at a given point on a root locus is deter mined from the magnitude condition given

by Eqn. (4.48b).

The root locus method developed for continuous-time systems can be extended to discrete-time systems

without modifications, except that the stability boundary is changed from the jw axis in the s-plane, to

the unit circle in the z-plane. The reason the root locus method can be extended to discrete-time systems

250 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

is that the characteristic equation (4.45) for the discrete-time system, is of exactly the same form as the

equation for root locus analysis in the s-plane. However, the pole locations for closed-loop systems in the

z-plane must be interpreted differently from those in the s-plane.

We assume that the reader is already familiar with the s-plane root locus technique. We shall concentrate

on the interpretation of the root loci in the z-plane with reference to the system performance, rather

than the construction of root loci in the z-plane. Rules of construction of root loci are summarized in

Table 4.2 for ready reference.6

F(z) = 0

F(z) =

K z z

z p

i

m

i

j

n

j

P

P

=

=

-

-

1

1

()

()

; K ≥ 0, n ≥ m; zi: m open-loop zeros; pj: n open-loop poles

 (i) The root locus plot consists of n root loci as K varies from 0 to . The loci are symmetric with

respect to the real axis.

 (ii) As K increases from zero to infinity, each root locus origi nates from an open-loop pole with

K = 0, and terminates either on an open-loop zero or on infinity with K = . The number of

loci terminating on infinity equals the number of open-loop poles minus zeros.

 (iii) The (n – m) root loci which tend to infinity, do so along straight-line asymptotes radiating out

from a single point z = – sA on the real axis (called the centroid), where

 – sA =
S S() (real parts of open-loop poles real parts of open-loop- zeros)

n m-
 These (n – m) asymptotes have angles

 fA =
()2 1 180q

n m

+
-

°
; q = 0, 1, 2, ..., (n – m – 1)

 (iv) A point on the real axis lies on the locus if the number of open-loop poles plus zeros on the

real axis to the right of this point, is odd. By use of this fact, the real axis can be divided into

segments on-locus and not-on-locus; the dividing points being the real open-loop poles and

zeros.

 (v) The intersections (if any) of root loci with the imaginary axis can be determined by use of the

Routh criterion.

 (vi) The angle of departure, fp of a root locus from a complex open-loop pole, is given by

 fp = 180º + f

 where f is the net angle contribution at this pole of all other open-loop poles and zeros.

 (vii) The angle of arrival, fz of a locus at a complex zero, is given by

 fz = 180º – f

 where f is the net angle contribution at this zero of all other open-loop poles and zeros.

 6 Chapter 7 of reference [155].

Contd.

 Design of Digital Control Algorithms 251

(viii) Points at which multiple roots of the characteristic equation occur (breakaway points of root

loci) are the solutions of

dK

dz
= 0, where K = –

P

P

j

n

j

i

m

i

z p

z z

=

=

-

-

1

1

()

()

 (ix) The gain K at any point z0 on a root locus, is given by

 K =

P

P

j

n

j

i

m

i

z p

z z

=

=

-

-

1
0

1
0

| |

| |

 =
[Product of phasor lengths (read to scale) from to poles0z of

Product of phasor lengths (read to scale)from

F z

z

()]

[00 to zeros of F z()]

Example 4.5

Consider a process with the transfer function

 G(s) =
K

s s()+ 2
 (4.49a)

which, when preceded by a zero-order hold (T = 0.2 sec), has the discrete-time transfer function (refer to

Table 2.1)

 Gh0G(z) = (1 – z – 1) Z
K

s s2 2()+

È

Î
Í
Í

˘

˚
˙
˙

 =
¢ -

- -
K z b

z a z a

()

()()1 2

 (4.49b)

where K¢ = 0.01758K, b = – 0.876, a1 = 0.67, a2 = 1.

The root locus plot of

 1 + Gh0G(z) = 0 (4.50)

can be constructed using the rules given in Table 4.2. Gh0G(z) has two poles at z = a1 and z = a2, and a

zero at z = b. From rule (iv), the parts of the real axis between a1 and a2, and between – and b constitute

sections of the loci. From rule (ii), the loci start from z = a1 and z = a2; one of the loci terminates at

z = b, and the other locus terminates at – . From rule (viii), the breakaway points (there are two) may

be obtained by solving for the roots of

dK

dz

¢
 = 0, where K ¢ = –

() ()

()

z a z a

z b

- -
-

1 2

However, we can show that for this simple two-pole and one zero configuration, the complex-conjugate

section of the root locus plot is a circle. The breakaway points are easily obtained from this result, which

is proved as follows:

Let z = x + jy

 (Contd.)

252 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Equation (4.49b) becomes

Gh0G(z) =
¢ + -

+ - + -
K x jy b

x jy a x jy a

()

()()1 2

 =
¢ - +

- - - + - -

K x b jy

x a x a y jy x a a

()

()() ()1 2
2

1 22

On the root loci, z must satisfy Eqn. (4.50).

Therefore,

–Gh0G(z) = tan–1 y

x b-
 – tan–1

y x a a

x a x a y

()

()()

2 1 2

1 2
2

- -

- - -
 = (2q + 1) 180º

Taking the tangent of both sides of this equation yields

y

x b

y x a a

x a x a y

y

x b

y x a a

x a x a

-
-

- -
- - -

+
-

- -
- -

()

() ()

()

() (

2

1
2

1 2

1 2
2

1 2

1 22
2) -

È

Î
Í

˘

˚
˙

y

 = 0

or
1 2 1 2

1 2
2x b

x a a

x a x a y-
-

- -

- - -() ()
 = 0

Simplifying, we get

 (x – b)2 + y2 = (b – a1)(b – a2) (4.51)

which is the equation of a circle with the center at the open-loop zero z = b, and the radius equal to

[(b – a1) (b – a2)]1/2.

The root locus plot for the system given by Eqn. (4.49b), is constructed in Fig. 4.22. The limiting value

of K for stability may be found by graphical construction or by the Jury stability test. We illustrate the

use of graphi cal construction.

P

Re

Unit circle

Im

K =K K = 0 K = 0

K = 22.18

– 0.876 0.67

Fig. 4.22 Root locus plot for the system of Example 4.5

 Design of Digital Control Algorithms 253

By rule (ix) of Table 4.2, the value of K ¢ at point P where the root locus crosses the unit circle is given by

 K ¢ =
(Phasor length from to pole at = 1) (Phasor length froP z ¥ mm to pole at = 0.67)

(Phasor length from to zero at

P z

P z = 0.876)

 =
0 85 0 78

1 7

. .

.

¥
 = 0.39 = 0.01758K

Therefore, K =
0 39

0 01758

.

.
 = 22.18

The relative stability of the system can be investigated by superimposing the constant-z loci on the system

root locus plot. This is shown in Fig. 4.23. Inspection of this figure shows that the root locus intersects the

z = 0.3 locus at point Q. The value of K ¢ at point Q is determined to be 0.1; the gain

K = K ¢/0.01758 = 5.7

Fig. 4.23

254 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The value of wn for K¢ = 0.1, may be obtained by superimposing constant-wn loci on the root locus plot and

locating the con stant-wn locus which passes through the point Q. From Fig. 4.23, we observe that none

of the constant-wn loci on the standard chart passes through the point Q; we have to make a guess for the

wn value. We can, instead, construct a constant-wd locus passing through the point Q and from there

obtain wn more accurately.

 s1, 2 = - ± -zw w zn nj 1 2 = – zw wn dj±

are mapped to z1, 2 = e en dT j T- ±zw w = re j± q

in the z-plane.

A constant-wd locus is thus a radial line passing through the origin at an angle q = wdT with the positive

real axis of the z-plane, measured positive in the counterclockwise direction.

The radial line passing through the point Q makes an angle q = 25º with the real axis (Fig. 4.23). This is

a constant-wd locus with wd given by

 wdT =
25

180

¥ p
 rad

Therefore, w znT 1 2- =
25

180

p

This gives wn = 2.29 rad/sec.

The value of K ¢ at the breakaway point R, located at z = 0.824, is determined to be 0.01594. Therefore,

the gain K = 0.01594/0.01758 = 0.9067 results in critical damping (z = 1) with the two closed-loop poles

at z = 0.824.

A pole in the s-plane at s = – a has a time constant of t = 1/a and an equivalent z-plane location of e–aT =

e–T/t. Thus, for the critically damped case,

 e–0.2/t = 0.824

or t = 1.033 = time constant of the closed-loop poles.

In the frequency-response design procedure described in the previous section, we attempted to reshape the

open-loop frequency response to achieve certain stability margins, steady-state response characteristics

and so on. A different design technique is presented in this section—the root-locus procedure. In this

procedure, we add poles and zeros through a digital controller, so as to shift the roots of the characteristic

equation to more appropriate locations in the z-plane. Therefore, it is useful to investigate the effects of

various pole-zero configurations of the digital controller on the root locus plots.

A simple lead compensator model in the w-plane is described by the transfer function (refer to Eqn.

(4.38))

D(w) =
1

1

+
+

w

w

t

a t
; a < 1, t > 0

 Design of Digital Control Algorithms 255

The bilinear transformation

w =
2 1

1T

z

z

-
+

transforms D(w) into the following D(z).

D(z) =
1 2

1 2

1 2 1 2

1 2 1 2

+
+

+ - +
+ - +

È

Î
Í

˘

˚

t

at

t t

at at

/

/

(/) /(/)

(/)/(/)

T

T

z T T

z T T
˙̇

Since t and a are both positive numbers and since a < 1, the pole and zero of D(z) always lie on the real

axis inside the unit circle in the z-plane; the zero is always to the right of the pole. A typical pole-zero

configuration of a lead compensator

 D(z) = Kc1

z

z

-
-

a

a
1

2

 (4.52)

is shown in Fig. 4.24a.

(a)

Re Re

(b)

Unit circleUnit circle
Im Im

Fig. 4.24

For the purpose of simplifying the design procedure, we normally associate the gain Kc1 with the plant

transfer function, and design the lead compensator

 D(z) =
z

z

-
-

a

a
1

2

 (4.53a)

based on the new plant transfer function. It may be noted that D(z) given by Eqn. (4.53a) is not a unity

gain model; the dc gain of D(z) is given by

 lim
z Æ 1

z

z

-
-

Ê
ËÁ

ˆ
¯̃

a

a
1

2

 =
1

1

1

2

-
-

Ê
ËÁ

ˆ
¯̃

a

a
 (4.53b)

To study the effect of a lead compensator on the root loci, we consider a unity-feedback sampled-data

system with open-loop transfer function

 Gh0G(z) =
K z

z z

(.)

(.)(.)

+
- -

0 368

0 368 0 135
; T = 1 sec (4.54)

256 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The root locus plot of the uncompensated system is shown in Fig. 4.25a. The plot intersects the z = 0.5

locus7 at point P. The value of gain K at this point is determined to be 0.3823.

Constant-wd locus passing through point P is a radial line at an angle of 82º with the real axis (Fig. 4.25a).

Therefore,

 wdT = wnT 1 2-z =
82

180

p

This gives wn = 1.65 rad/sec

Since Gh0G(z) given by Eqn. (4.54) is a Type-0 system, we will consider position error constant Kp to

study steady-state accu racy. For K = 0.3823,

Kp = lim
z Æ 1

Gh0G(z) =
0 3823 1 0 368

1 0 368 1 0 135

. (.)

(.)(.)

+
- -

 = 0.957

We now cancel the pole of Gh0G(z) at z = 0.135 by the zero of the lead compensator, and add a pole at

z = –0.135, i.e., we select

D(z) =
z

z

-
+

0 135

0 135

.

.

Figure 4.25b shows the root locus plot of lead compensated sys tem. The modified locus has moved to

the left, towards the more stable part of the plane. The intersection of the locus with the z = 0.5 line is

at point Q. The value of wn at this point is determined to be 2.2 rad/sec. The lead compensator has thus

increased wn and hence the speed of response of the system. The gain K at point Q is determined to be

0.433. The position error constant of the lead compensated system is given by

Kp = lim
z Æ 1

 D(z)Gh0G(z) = lim
z Æ 1

0 433 0 368

0 368 0 135

. (.)

(.)(.)

z

z z

+
- +

 = 0.82

The lead compensator has thus given satisfactory dynamic re sponse, but the position error constant is too

low. We will shortly see how Kp can be increased by lag compensation.

z = 0.3 Re 0.932 0.735 0.360 0 – 0.259 –0.380 –0.373

 Im 0.164 0.424 0.623 0.610 0.448 0.220 0

z = 0.4 Re 0.913 0.689 0.317 0 –0.201 –0.276 –0.254

 Im 0.161 0.398 0.549 0.504 0.347 0.160 0

z = 0.5 Re 0.891 0.640 0.273 0 –0.149 –0.191 –0.163

 Im 0.157 0.370 0.473 0.404 0.259 0.110 0

z = 0.6 Re 0.864 0.585 0.228 0 –0.104 –0.122 –0.095

 Im 0.152 0.338 0.395 0.308 0.180 0.070 0

z = 0.7 Re 0.830 0.519 0.179 0 –0.064 –0.067 –0.046

 Im 0.146 0.299 0.310 0.215 0.111 0.039 0

z = 0.8 Re 0.780 0.431 0.124 0 –0.031 –0.026 –0.015

 Im 0.138 0.249 0.215 0.123 0.053 0.015 0

{

{

{

{

{

{

 7 For a given z, the constant-z curve may be constructed using Eqn. (4.15b). The following table gives the real

and imaginary coordinates of points on some constant-z curves.

 Design of Digital Control Algorithms 257

The selection of the exact values of pole and zero of the lead compensator is done by experience and by

trial-and-error. In general, the zero is placed in the neighborhood of the desired dominant closed-loop

poles, and the pole is located at a reasona ble distance to the left of the zero location.

A simple lag compensator model in the w-plane is described by the transfer function (refer to Eqn.

(4.41))

D(w) =
1

1

+
+

w

w

t

b t
; b > 1, t > 0

The bilinear transformation

w =
2 1

1T

z

z

-
+

P

Re

Im
q = 82°

Locus for

z = 0.5

q = 109°

Q

q = 60°

R

Unit circle

Root locus

(a) (b)

(c)

Fig. 4.25 Root locus plot for (a) uncompensated; (b) lead compensated; and (c) lag compensated
system.

258 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

transforms D(w) into the following D(z).

D(z) =
1 2

1 2

1 2 1 2

1 2 1 2

+
+

+ - +
+ - +

È

Î
Í

˘

˚

t

bt

t t

bt bt

/

/

(/)/(/)

(/)/(/)

T

T

z T T

z T T
˙̇

Since t and b are both positive numbers and since b > 1, the pole and zero of D(z) always lie on

the real axis inside the unit circle; the pole is always to the right of the zero. A typical pole-zero

configuration of the lag compensa tor

 D(z) = Kc

z

z
2

1

2

-
-

b

b
 (4.55)

is shown in Fig. 4.24b. Note that both the pole and the zero have been shown close to z = 1. This, as we

shall see, gives better stability properties.

Again, we will associate the gain Kc2 with the plant transfer function and design the lag compensator,

 D(z) =
z

z

-
-

b

b
1

2

 (4.56)

based on the new plant transfer function. The dc gain of the lag compensator given by (4.56), is equal to

 lim
z

z

zÆ

-
-1

1

2

b

b
 =

1

1

1

2

-
-

b

b
 (4.57)

To study the effect of lag compensator on the root loci, we reconsider the system described by Eqn. (4.54):

Gh0G(z) =
K z

z z

(.)

(.)(.)

+
- -

0 368

0 368 0 135
; T = 1 sec

The root locus plot of the uncompensated system is shown in Fig. 4.25a. At point P, z = 0.5, wn = 1.65

and K = 0.3823 (Kp = 0.957).

We now cancel the pole of Gh0G(z) at z = 0.368 by the zero of the lag compensator, and add a pole at

z = 0.9, i.e., we select

D(z) =
z

z

-
-
0 368

0 9

.

.

Figure 4.25c shows the root locus plot of the lag compensated system. The intersection of the locus

with z = 0.5 line is at point R. The value of wn at this point is determined to be 1.2 rad/sec. The lag

compensator has thus reduced wn and hence the speed of response. The value of the gain K at point R is

deter mined to be 0.478. The position error constant of the lag compen sated system is

Kp = lim
z Æ 1

 D(z)Gh0G(z) = lim
z Æ 1

0 478 0 368

0 135 0 9

. (.)

(.)(.)

z

z z

+
- -

= 7.56

Thus, we have been able to increase position error constant appre ciably by lag compensation.

If both the pole and the zero of the lag compensator are moved close to z = 1, then the root locus plot of

the lag compensated system moves back towards its uncompensated shape. Consider the root locus plot

of the uncompensated system shown in Fig. 4.25a. The angle contributed at point P by additional pole-

zero pair close to z = 1 (called a dipole), will be negligibly small; therefore, the point P will continue to

lie on the lag compensated root locus plot. However, the lag compensator

 Design of Digital Control Algorithms 259

D(z) =
z

z

-
-

b

b
1

2

will raise the system Kp (refer to Eqn. (4.57)), by a factor of (1 – b1)/(1 – b2).

The following examples illustrate typical digital control system design problems carried out in the

z-plane, using the root locus technique. As we shall see, the design of digital compensation using root

locus plots is essentially a trial-and-error method. The designer may rely on a digital computer to plot

out a large number of root loci by scanning through a wide range of possible values of the compensator

parameters, and select the best solu tion. However, one can still make proper and intelligent initial

‘guesses’ so that the amount of trial-and-error effort is kept to a minimum.

Example 4.6

Consider the feedback control system shown in Fig. 4.26. The plant is described by the transfer

function

G(s) =
K

s s()+ 2

Design a digital control scheme for the system to meet the fol lowing specifications;

 (i) the velocity error constant K
v
 = 6;

 (ii) peak overshoot Mp to step input £ 15%; and

 (iii) settling time ts (2% tolerance band) £ 5 sec.

r

T T

e yu+

–
G()sG sh0()D()z

Fig. 4.26

Solution The transient accuracy requirements correspond to z = 0.5 and wn = 1.6. We select T = 0.2 sec.

Note that sampling frequency ws = 2p/T is about 20 times the natural frequency; therefore, our choice of

sampling period is satisfactory.

The transfer function Gh0G(z) of the plant, preceded by a ZOH, can be obtained as follows:

 Gh0G(z) = (1 – z–1) Z
K

s s2 2()+

È

Î
Í
Í

˘

˚
˙
˙

 =
0 01758 0 876

1 0 67

. (.)

()(.)

K z

z z

+
- -

=
¢ +
- -

K z

z z

(.)

()(.)

0 876

1 0 67
 (4.58)

The root locus plot of this system for 0 £ K ¢ < was earlier constructed in Fig. 4.22. Complex-conjugate

sections of this plot are shown in Fig. 4.27. The plot intersects the z = 0.5 locus at point P. At this point

wn = 1.7 rad/sec, K ¢ = 0.0546.

260 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Re

Im

Unit circle
Root locus

Locus

for = 0.5z

q =17°P

– 0.876 0.67

Fig. 4.27 Root locus plot for system (4.58)

Therefore, the transient accuracy requirements (z = 0.5, wn = 1.6) are almost satisfied by gain adjust-

ment only. Let us now examine the steady-state accuracy of the uncompensated system (D(z) = 1) with

K¢ = 0.0546.

The velocity error constant K
v
 of the system is given by

 K
v
 =

1

1T z
lim

Æ
 (z – 1)Gh0G(z)

 =
5 0 0546 1 0 876

1 0 67

(.)(.)

(.)

+
-

 = 1.55

The specified value of K
v
 is 6. Therefore, an increase in K

v
 by a factor of 3.87 (= 6/1.55) is required.

The objective before us now is to introduce a D(z) that raises the system K
v
 by a factor of 3.87, without

appreciably affecting the transient performance of the uncompensated system, i.e., without appreciably

affecting the root locus plot in the vicinity of point P. This objective can be realized by a properly

designed lag compensator, as is seen below.

We add the compensator pole and zero as shown in Fig. 4.28. Since both the pole and the zero are very

close to z = 1, the scale in the vicinity of these points has been greatly expanded. The angle contributed

by the compensator pole at point P, is almost equal to the angle contributed by the compensator zero.

Therefore, the addition of dipole near z = 1 does not appreciably disturb the root locus plot in the vicinity

of point P. It only slightly reduces wn. The lag compensator

D(z) =
z

z

-
-

0 96

0 99

.

.

raises the system K
v
 by a factor of (1 – 0.96)/(1 – 0.99) = 4.

 Design of Digital Control Algorithms 261

Note that because of lag compensator, a third closed-loop pole has been added. This pole, as seen from

Fig. 4.28, is a real pole lying close to z = 1. This pole, fortunately, does not disturb the dominance of the

complex conjugate closed-loop poles. The reason is simple.

P

– 0.876 0.67

Compensator
pole and zero

Expanded

Fig. 4.28 Compensator design (Example 4.6)

The closed-loop pole, close to z = 1, has a long time constant. However, there is a zero close to this

additional pole. The net effect is that the settling time will increase because of the third pole, but the

amplitude of the response term contributed by this pole will be very small. In system response, a long

tail of small amplitude will appear which may not appreciably degrade the performance of the system.

Example 4.7

Reconsider the feedback control system of Example 4.6 (Fig. 4.26). We now set the following goal for our

design:

 (i) K
v
 ≥ 2.5;

 (ii) z @ 0.5; and

 (iii) ts (2% tolerance band) £ 2 sec.

The transient accuracy requirements correspond to z = 0.5 and wn = 4. For sampling interval T = 0.2

sec, the sampling frequency is about eight times the natural frequency. A smaller value of T is more

appropriate for the present design problem—which requires higher speed of response. We will, however,

take T = 0.2 sec to compare our results with those of Example 4.6.

Following the initial design steps of Example 4.6, we find that

Gh0G(z) =
0 01758 0 876

1 0 67

. (.)

()(.)

K z

z z

+
- -

 =
¢ +
- -

K z

z z

(.)

()(.)

0 876

1 0 67

262 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Complex conjugate sections of the root locus plot superimposed on z = 0.5 line are shown in Fig. 4.27.

The root locus plot inter sects the constant-z locus at point P. At this point, wn = 1.7 rad/sec. The specified

value of wn is 4. Therefore, the transient accuracy requirements cannot be satisfied by only gain adjust-

ment.

The natural frequency wn can be increased by lead compensation. To design a lead compensator, we

translate the transient perfor mance specifications into a pair of dominant closed-loop poles, add open-

loop poles and zeros through D(z) to reshape the root locus plot, and force it to pass through the desired

closed-loop poles.

Point Q in Fig. 4.29 corresponds to the desired closed-loop pole in the upper half of z-plane. It is the

point of intersection of the z = 0.5 locus and the constant-wd locus, with wd given by

wd = wn 1 2-z = 3.464 rad/sec

For this value of wd, constant-wd locus is a radial line at an angle of wdT
180

p

Ê
ËÁ

ˆ
¯̃ = 39.7º with the real

axis.

If the point Q is to lie on the root locus plot of the compensat ed system, then the sum of the angles

contributed by open-loop poles and zeros of the plant, and the pole and zero of the compensator at the

point Q, must be equal to ± (2q + 1)180º; q = 0, 1, 2, …

The sum of the angle contributions due to open-loop poles and zero of the plant at plant Q, is

17.10º – 138.52º – 109.84º = – 231.26º

– 0.876

Unit circle

q = 39.7°

0.254

51.26°

Im

0.67

Q

Re

Locus

for = 0.5z

Fig. 4.29 Compensator design (Example 4.7)

 Design of Digital Control Algorithms 263

Hence, the compensator D(z) must provide +51.26º. The transfer function of the compensator may be

assumed to be

 D(z) =
z

z

-
-

a

a
1

2

If we decide to cancel the pole at z = 0.67 by the zero of the compensator at z = a1, then the pole of the

compensator can be determined (from the condition that the compensator must provide + 51.26º) as a

point at z = 0.254 (a2 = 0.254). Thus, the transfer function of the compensator is obtained as

 D(z) =
z

z

-
-

0 67

0 254

.

.

The open-loop transfer function now becomes

D(z)Gh0G(z) =
0 01758 0 876 0 67

0 254 1 0 67

. (.)(.)

(.)()(.)

K z z

z z z

+ -
- - -

 =
0 01758 0 876

0 254 1

. (.)

(.)()

K z

z z

+
- -

 =
¢ +

- -
K z

z z

(.)

(.)()

0 876

0 254 1

The value of K ¢ at point Q, obtained from Fig. 4.29 by graphical construction, is 0.2227. Therefore, K = 12.67.

The velocity error constant of the compensated system is given by

K
v
 =

1

1T z
lim

Æ
 [(z – 1)D(z)Gh0G(z)] = 2.8

It meets the specification on steady-state accuracy.

If it is required to have a large K
v
, then we may include a lag compensator. The lag-lead compensator can

satisfy the require ments of high steady-state accuracy and high speed of response.

From the viewpoint of microprocessor implementation of the lag, lead, and lag-lead compensators, the

lead compensators present the least coefficient quantization problems, because the loca tions of poles and

zeros are widely separated, and the numerical inaccuracies in realization of these compensators will result

in only small deviations in expected system behavior. However, in the case of lag compensators and lag-

lead compensators, the lag section may result in considerable coefficient quantization problems, because

the locations of poles and zeros are usually close to each other (they are near the point z = 1). Numerical

problems associated with realization of compensator coefficients, may lead to significant deviations in

expected system behavior.

4.5 z

Much of the style of the transform-domain techniques we have been discussing in this chapter, grew out

of the limitations of tech nology which was available for realization of the compensators with pneumatic

components, or electric networks and amplifiers. In digital computer, such limitations on realization

are, of course, not relevant, and one can ignore these particular con straints. One design method which

eliminates these constraints begins from the very direct point of view that we are given a process (plus

hold) transfer function, Gh0G(z), that we want to construct a desired transfer function, M(z), between

264 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

input r and output y and that we have the computer transfer function, D(z), to do the job as per the

feedback control structure of Fig. 4.30.

r

T T

Computer

e u y+

–

ZOH Process

G sh0() G s()
u+()t

D z()

The closed-loop transfer function is given by the formula

 M(z) =
D z G G z

D z G G z

h

h

() ()

() ()

0

01+
 (4.59)

from which we get the design formula

 D(z) =
1

10G G z

M z

M zh ()

()

()-
È

Î
Í

˘

˚
˙ (4.60)

As is seen from Eqn. (4.60), the controller transfer function consists of the inverse of the plant transfer

function and the additional term which depends on the system closed-loop transfer function. Thus, the

design procedure, outlined above, looks for a D(z) which will cancel the process effects and add whatever

is necessary to give the desired performance.

For prescribing the required closed-loop transfer function M(z), the following restrictions have to be

noted.

Assume that a digital controller

 D(z) =
Q z

P z

v ()

()m

 =
q z q z q

z p z p

v v
v0 1

1

1
1

+ + +

+ + +

-

-

m m
m

 (4.61)

is cascaded with the process

 GhoG(z) =
B z

A z

m

n

()

()
 =

b z b z b

z a z a

m m
m

n n
n

0 1
1

1
1

+ + +

+ + +

-

-

; m £ n (4.62)

in the control loop given by Fig. 4.30.

For D(z) to be physically realizable, n £ m.

The closed-loop transfer function

M(z) =
D z G G z

D z G G z

h

h

() ()

() ()

0

01+
 =

Q z B z

P z A z Q z B z

v m

n v m

() ()

() () () ()m +
 =

N z

D z

v m

n

+

+

()

()m

The order of the numerator polynomial of M(z) is n + m, and the order of the denominator polynomial of

M(z) is m + n. The pole excess8 of M(z) is, therefore, {(m – n) + (n – m)}.

 8 Pole excess of M(z) = {Number of finite poles of M(z) – Number of finite zeros of M(z)}.

 Design of Digital Control Algorithms 265

This means that because of the condition of realizability of digital controller, the pole excess of the

closed-loop transfer function M(z) has to be greater than or equal to the pole excess of the process

transfer function Gh0G(z).

If the digital controller D(z) given by Eqn. (4.60) and the process Gh0G(z) are in a closed loop, the

poles and zeros of the process are canceled by the zeros and poles of the controller. The cancellation

is perfect if the process model Gh0G(z) matches the process exactly. Since the process models used for

design practically never describe the process behavior exactly, the corresponding poles and zeros will

not be canceled exactly; the cancellation will be approximate. For poles and zeros of Gh0G(z) which

are sufficiently spread in the inner of the unit disc in the z-plane, the approximation in cancellation

leads to only small deviations of the assumed behavior M(z) in general. Howe ver, one has to be careful

if Gh0G(z) has poles or zeros on or outside the unit circle. Imperfect cancellation may lead to weakly

damped or unstable behavior. Therefore, the design of digital controllers, according to Eqn. (4.60), has

to be restricted to cancellation of poles and zeros of Gh0G(z) located inside the unit circle. This imposes

certain restrictions on the desired transfer function M(z) as is seen below.

Assume that Gh0G(z) involves an unstable (or critically stable) pole at z = a. Let us define

Gh0G(z) =
G z

z

1()

- a

where G1(z) does not include a term that cancels with (z – a). Then the closed-loop transfer function

becomes

 M(z) =

D z
G z

z

D z
G z

z

()
()

()
()

1

11

-

+
-

a

a

 (4.63)

Since we require that no zero of D(z) cancel the pole of Gh0G(z) at z = a, we must have

1 – M(z) =
1

1 1+
-

D z
G z

z
()

()

a

 =
z

z D z G z

-
- +

a

a () ()1

that is, 1 – M(z) must have z = a as a zero. This argument applies equally if Gh0G(z) involves two or more

unstable (or critically stable) poles.

Also note from Eqn. (4.63) that if poles of D(z) do not cancel zeros of Gh0G(z), then the zeros of Gh0G(z)

become zeros of M(z).

Let us summarize what we have stated concerning cancelation of poles and zeros of Gh0G(z).

 (i) Since the digital controller D(z) should not cancel unstable (or critically stable) poles of Gh0G(z),

all such poles of Gh0G(z) must be included in 1 – M(z) as zeros.

 (ii) Zeros of Gh0G(z) that lie on or outside the unit circle should not be canceled with poles of D(z);

all such zeros of Gh0G(z) must be included in M(z) as zeros.

266 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The design procedure, thus, essentially involves the following three steps:

 (I) The closed-loop transfer function M(z) of the final system is determined from the performance

specifications, and the fixed parts of the system, i.e., Gh0G(z).

 (II) The transfer function D(z) of the digital controller is found using the design formula (4.60).

 (III) The digital controller D(z) is synthesized.

Step (I) is certainly the most difficult one to satisfy. In order to pass step (I), a designer must fulfil the

following require ments:

 (i) the digital controller D(z) must be physically realizable;

 (ii) the poles and zeros of Gh0G(z) on or outside the unit circle should not be canceled by D(z); and

 (iii) the system specifications on transient and steady-state accuracy should be satisfied.

Example 4.8

The plant of sampled-data system of Fig. 4.30 is described by the transfer function

 G(s) =
1

10 1s s()+
 (4.64a)

The sampling period is 1 sec.

The problem is to design a digital controller D(z) to realize the following specifications:

 (i) K
v
 ≥ 1;

 (ii) z = 0.5; and

 (iii) ts (2% tolerance band) £ 8 sec.

The selection of a suitable M(z) is described by the following steps.

 (i) The z-transfer function of the plant is given by (refer to Table 2.1)

 Gh0G(z) = (1 – z–1) Z
1

10 12s s()+

È

Î
Í
Í

˘

˚
˙
˙

 = 0.04837
(.)

()(.)

z

z z

+
- -

0 9672

1 0 9048
 (4.64b)

 Since Gh0G(z) has one more pole than zero, M(z) must have a pole excess of at least one.

 (ii) Gh0G(z) has a pole at z = 1. This must be included in 1– M(z) as zero, i.e.,

 1 – M(z) = (z – 1)F(z) (4.65)

 where F(z) is a ratio of polynomials of appropriate dimensions.

 (iii) The transient accuracy requirements are specified as z = 0.5, wn = 1(ts = 4/zwn). With a sampling

period T = 1 sec, this maps to a pair of dominant closed-loop poles in the z-plane with

| z1, 2| = e–zwnT = 0.6065

– z1, 2 = ± wnT 1 2-z = ±
0 866 180

3 14

.

.

¥
 = ± 49.64º

This corresponds to

z1, 2 = 0.3928 ± j 0.4621

 Design of Digital Control Algorithms 267

 The closed-loop transfer function, M(z), should have dominant poles at the roots of the equation

 D(z) = z2 – 0.7856 z + 0.3678 = 0 (4.66)

The steady-state accuracy requirements demand that steady-state error to unit-step input is zero, and

steady-state error to unit-ramp input is less than 1/K
v
.

 E(z) = R(z) – Y(z) = R(z)[1 – M(z)] = R(z) (z – 1)F(z)

 ess
*

unit step
 = lim

z Æ 1

 z (z – 1) F(z) = 0

Thus, with the choice of M(z) given by Eqn. (4.65), the steady-state error to unit-step input is always

zero.

 ess
*

unit ramp
 = lim

z Æ 1
 (z – 1)

Tz

z()-1 2
(z – 1)F(z) = T F(1) = 1/K

v

For T = 1 and K
v
 = 1,

 F(1) = 1 (4.67)

From Eqns (4.65) and (4.66), we observe that

F(z) =
z

z z

-

- +

a
2 0 7856 0 3678. .

meets the requirements on realizability of D(z), cancellation of poles and zeros of Gh0G(z), and transient

accuracy. The require ment on steady-state accuracy is also met if we choose a such that (refer to

Eqn. (4.67))

1

1 0 7856 0 3678

-
- +

a

. .
 = 1

This gives a = 0.4178

Therefore, F(z) =
z

z z

-

- +

0 4178

0 7856 0 36782

.

. .
; 1 – M(z) =

()(.)

. .

z z

z z

- -

- +

1 0 4178

0 7856 0 36782

 M(z) =
0 6322 0 05

0 7856 0 36782

. .

. .

z

z z

-

- +
 (4.68)

Now, turning to the basic design formula (4.60), we compute

 D(z) =
1

10G G z

M z

M zh ()

()

()-
È

Î
Í

˘

˚
˙ =

()(.)

(.)(.)

. .

()(.

z z

z

z

z z

- -
+

-
- -

1 0 9048

0 04837 0 9672

0 6322 0 05

1 0 41778)

È

Î
Í

˘

˚
˙

 = 13.07
(.)(.)

(.)(.)

z z

z z

- -
+ -

0 9048 0 079

0 9672 0 4178
 (4.69)

A plot of the step response of the resulting design is provided in Fig. 4.31, which also shows the control

effort. The underdamped response settles within a two percent band of the desired value of unity in less

than 8 sec. We can see the oscillation of u(k)—associated with the pole of D(z) at z = –0.9672, which

is quite near the unit circle. Strong oscilla tions of u(k) are often considered unsatisfactory, even though

the process is being controlled as was intended. In the literature, poles near z = –1 are often referred to

as ringing poles.

268 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

k

yu

5

0

– 5

– 10

– 15

10

0

0.5

1.0

Fig. 4.31 Step response (Example 4.8)

To avoid the ringing effect, we could include the zero of Gh0G(z) at z = –0.9672 in M(z) as zero, so that

this zero of Gh0G(z) is not canceled with pole of D(z). M(z) may have additional poles at z = 0, where the

transient is as short as possible. The result will be a simpler D(z) with a slightly more complicated M(z).

REVIEW EXAMPLES

Review Example 4.1

Consider the digital control system shown in Fig. 4.32. The transfer function of the plant is G(s) = 1/[s(s

+ 1)]. Design a lead compensator D(z) in the w-plane such that the phase margin in 50º, the gain margin

is at least 10 dB, and the velocity error constant K
v
 is 2. Assume that the sampling period is 0.2 sec.

r
T T

e u y+

–

ZOH PlantCompensator

G s()G sh0()D z()

Fig. 4.32

 Design of Digital Control Algorithms 269

Solution The digital controller is assumed to be of the form

U z

E z

()

()
 = KD1(z) = D(z)

To simplify the design procedure, we will associate the gain K of the controller with the plant model. The

design problem is, therefore, to obtain compensator D1(z) for the plant

 G(s) =
K

s s()+1

to meet the specifications on steady-state and transient perfor mance.

We will fix the gain K to a value that realizes the given K
v
. A unity dc gain compensator D1(z) will then

be introduced to meet the transient accuracy requirements without affecting the steady-state accuracy.

 K
v
 = lim

s Æ 0
 sG(s) = K

Therefore, K = 2 meets the requirement on steady-state accuracy.

For T = 0.2 and K = 2, we have (refer to Table 2.1)

Gh0G(z) = (1 – z–1) Z
2

12s s()+

È

Î
Í
Í

˘

˚
˙
˙

= 0.03746
z

z z

+
- -

È

Î
Í

˘

˚
˙

0 9356

1 0 8187

.

()(.)

By use of the bilinear transformation

z =
1 2

1 2

+
-

wT

wT

/

/
 =

1 0 1

1 0 1

+
-

.

.

w

w

Gh0G(z) can be transformed to Gh0G(w) given below (refer to Eqns (4.37)).

Gh0G(w) =

2 1
10

1
300 6

1
0 997

-Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

w w

w
w

.

.

The Bode plot of Gh0G(jn) is shown in Fig. 4.33. The phase margin can be read from the Bode plot as

32º and the gain margin as 14.2 dB.

It is desired to raise the phase margin to 50º without altering K
v
. Also the gain margin should be at least

10 dB. We now design a lead compensator

D1(w) =
1

1

+
+

w

w

t

a t
; a < 1, t > 0

to meet these objectives. We choose the zero of the compensator at 0.997 (This choice cancels a pole

of Gh0G(w)). Addition of this zero shifts the gain crossover frequency of the uncompensat ed system to

nc = 1.8. The phase margin of the uncompensated system at nc is FM1 = 22º. The phase lead required at

nc to bring the phase margin to the specified value FMs = 50º, is given by

fl = FMs – FM1 + e = 50º – 22º + 3º = 31º

By using Eqn. (4.39), we obtain

a =
1 31

1 31

- ∞
+ ∞

sin

sin
 = 0.3

270 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The phase lead of 31° is provided at the frequency (refer to Eqn. (4.40))

nm =
1 1

t at

Ê
ËÁ

ˆ
¯̃ = 0 997 3 27. .¥ = 1.8

which is same as the gain crossover frequency.

Thus, the compensator transfer function is

 D1(w) =

1
0 997

1
3 27

+

+

w

w
.

.

 (4.70)

The magnitude and phase angle curves for the compensated open-loop transfer function are shown by solid

curves in Fig. 4.33. From these curves, we see that the phase margin is 51º and the gain margin is 11.5 dB.

The compensator transfer function given by Eqn. (4.70) will now be transformed back to the z-plane by

the bilinear transformation

 w =
2 1

1T

z

z

-
+

 = 10
z

z

-
+

1

1

This gives D1(z) = 2.718
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 5071

.

.

The system gain K was determined to be 2. Therefore, for the plant of the system of Fig. 4.32, the digital

controller is given by

D j()n G G jh0 ()n

G G jh0 ()n

10

0

– 10

– 140

– 180

1 2 5 100.5

– 220

P
h
as
e
(d
eg
re
es
)

M
ag
n
it
u
d
e
(d
B
)

1.8

11.5
14.21.25

51

32
22

3.2

n

Fig. 4.33 Compensator design (Review Example 4.1)

 Design of Digital Control Algorithms 271

U z

E z

()

()
 = D(z) = 2.718 K

z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 5071

.

.
 = 5.436

z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 5071

.

.

Review Example 4.2

Consider the digital control configuration shown in Fig. 4.32. The transfer function,

G(s) =
e

s

s-

+

1 5

1

.

describes a process of temperature control via mixing (refer to Example 3.3). In the following, we design

a digital compensator for the temperature control process; the sampling interval T is assumed to be 1 sec.

The transfer function Gh0G(z) derived in Example 3.3 is repeated below.

Gh0G(z) = 0.3935
z

z z

+

-

0 6066

0 36792

.

(.)

Since Gh0G(z) is a Type-0 transfer function, the system will have a steady-state error to a constant

command or disturbance. If we assume that such a behavior in steady-state is unacceptable, we can

correct the problem by including integral control through the transfer function

D1(z) =
Kz

z -1

The effective plant transfer function is now

D1(z)Gh0G(z) = 0.3935K
(.)

()(.)

z

z z z

+
- -

0 6066

1 0 3679
 =

¢ +
- -

K z

z z z

(.)

()(.)

0 6066

1 0 3679

The unity-feedback root locus plot for this transfer function is sketched in Fig. 4.34. The point P on the

root locus corresponds to z = 0.5, and wn = 0.423 q w z
p

= - =Ê
ËÁ

ˆ
¯̃nT 1

21

180

2
.

The natural frequency wn has to be raised to improve the speed of response. We employ a lead

compensation which cancels the plant pole at z = 0.3679 and the plant zero at z = –0.6066. The open-

loop transfer function of the lead-compensated system becomes

D2(z)D1(z)Gh0G(z) =
z

z

-
+

0 3679

0 6066

.

.

¢ +
- -

È

Î
Í

˘

˚
˙

K z

z z z

(.)

()(.)

0 6066

1 0 3679
 =

¢
-

K

z z()1

The root locus plot is sketched in Fig. 4.35. The point Q on the root locus corresponds to z = 0.5,

wn = 0.826, K
v
 = K¢ = 0.45.

Suppose we wish to raise K
v
 to 1. A lag compensator

D3(z) =
z

z

-
-

0 9

0 9545

.

.

will raise K
v
 by a factor of (1 – 0.9)/(1 – 0.9545). The lag pole-zero pair are very close to each other,

and do not change the root locus near the dominant roots significantly. However, the lag compensation

does introduce a small, but very slow transient, whose effect on dynamic response needs to be evaluated,

especial ly in terms of the response to disturbances.

272 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Q

Unit circle

Im

Re

Locus

for = 0.5z
q = 41°

Fig. 4.35

Locus

for = 0.5z

Re

q = 21°P

Unit circle

Im

Fig. 4.34

 Design of Digital Control Algorithms 273

PROBLEMS

 4.1 For the system shown in Fig. P4.1, find

 (i) position error constant, Kp;

 (ii) velocity error constant, K
v
; and

 (iii) acceleration error constant, Ka.

 Express the results in terms of K1, K2, J, and T.

 4.2 Consider the analog control system shown in Fig. P4.2a. Show that the phase margin of the system

is about 45º.

 We wish to replace the analog controller by a digital controller as shown in Fig. P4.2b. First,

modify the analog controller to take into account the effect of the hold that must be included

r

r

r

T = 1.57 T

+

+

+

–

–

–

(a)

(c)

(b)

y

y

y

D s() = 1
1.57
(+ 1)s s

D1()z
1 – e– sT

s
1.57
(+ 1)s s

D1()s
1.57e– /2sT

s s(+ 1)

274 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

in the equivalent digital control system (the zero-order hold may be approximated by a pure

time delay of one half of the sampling period T (Fig. P4.2c), and then a lag compensator D1(s)

may be designed to realize the phase margin of 45º). Then, by using the bilinear transformation,

determine the equivalent digital controller.

 Compare the velocity error constants of the original analog system of Fig. P4.2a, and the equivalent

digital system of Fig. P4.2b.

 4.3 A unity-feedback system is characterized by the open-loop transfer function

Gh0G(z) =
0 2385 0 8760

1 0 2644

. (.)

()(.)

z

z z

+
- -

 The sampling period T = 0.2 sec.

 Determine steady-state errors for unit-step, unit-ramp, and unit-acceleration inputs.

 4.4 Predict the nature of the transient response of a discrete-time system whose characteristic equation

is given by

z2 – 1.9z + 0.9307 = 0

 The sampling interval T = 0.02 sec.

 4.5 The system of Fig. P4.5 contains a disturbance input W(s), in addition to the reference input R(s).

 (a) Express Y(z) as a function of the two inputs.

 (b) Suppose that D2(z) and D3(z) are chosen such that D3(z) = D2(z)Gh0G(z). Find Y(z) as a

function of the two inputs.

 (c) What is the advantage of the choice in part (b) if it is desired to minimize the response Y(z)

to the disturbance W(s)?

+ + +
++

–T T

T

D1()z
Y s()

G s()

W s()D2()z

D3()z
R s()

G sh0()

 4.6 Consider the system of Fig. P4.6. The design specifications for the system require that

 (i) the steady-state error to a unit-ramp reference input be less than 0.01; and

 (ii) a constant disturbance w should not affect the steady-state value of the output.

 Show that these objectives can be met if D(z) is a proportional-plus-integral compensator.

+
+

w

yr

TT

+

–
G sh0()D z()

1
+ 1s

 Design of Digital Control Algorithms 275

 4.7 Consider the feedback system shown in Fig. P4.7. The nominal values of the parameters K and

t of the plant G(s) are both equal to 1. Find an expression for the sensitivity S(z) of the closed-

loop transfer function M(z), with respect to incremental changes in open-loop transfer function

Gh0G(z). Plot |S(ejwT)| for 0 £ w £ ws/2, where ws is the sampling frequency. Determine the band-

width of the system if it is designed to have |S(ejwT)| < 1.

r y+

T = 0.5 sec–
G sh0() G s() =

K

s + 1t

 4.8 A unity-feedback digital control system has open-loop trans fer function

 Gh0G(z) =
0 368 0 264

1 368 0 3682

. .

. .

z

z z

+

- +
; T = 1 sec

 The function Gh0G(e jwT) may be used to obtain frequency response plots of the system. This

function is, however, irrational. Prove that the relation

 w =
2

2

1

T

T
tan- n

 approximates Gh0G(e jwT) to a rational function Gh0G(jn).

 For Gh0G(jn), construct the Bode plot, and the log-magnitude versus phase angle plot and

obtain the gain margin, the phase margin and the bandwidth nb. What is the corresponding value

of wb? The –3 dB contour of the Nichols chart may be constructed using the follow ing table:

 Phase, degrees 0 –30 –60 –90 –120 –150 –180 –210

 Magnitude, dB 7.66 6.8 4.18 0 –4.18 – 6.8 –7.66 –6.8

 4.9 Consider the control system of Fig. P4.9, where the plant transfer function

 G(s) =
1

2s s()+
, and T = 0.1 sec

 (a) Increase the plant gain to the value that results in K
v
 = 5. Then find the phase margin.

 (b) Design a lead compensator that results in 55º phase margin with K
v
 = 5.

 (c) Design a lag compensator that results in 55º phase margin with K
v
 = 5.

 (d) Obtain the bandwidth realized by the three designs corre sponding to parts (a), (b) and (c).

Comment on the result.

 (e) Is the selection of T = 0.1 sec justified from closed-loop bandwidth considerations?

r e u y

T T

+

–
G sh0() G s()D z()

ZOH PlantCompensator

276 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 4.10 Consider the control system of Fig. P4.9, where the plant transfer function is G(s) = 1/s2, and

T = 0.1 sec. Design a lead compensator such that the phase margin is 50º and the gain margin is at

least 10 dB. Obtain the velocity error constant K
v
 of the compensated system.

 Can the design be achieved using a lag compensator? Justify your answer.

 4.11 Consider the control system of Fig. P4.9, where the plant transfer function is

 G(s) =
K

s s()+ 5
, and T = 0.1 sec

 The performance specifications are given as

 (i) velocity error constant K
v
 ≥ 10;

 (ii) phase margin FM ≥ 60º; and

 (iii) bandwidth wb = 8 rad/sec.

 (a) Find the value of K that gives K
v
 = 10. Determine the phase margin and the bandwidth of the

closed-loop system.

 (b) Show that if lead compensation is employed, the system band width will increase beyond

the specified value, and if lag com pensation is attempted, the bandwidth will decrease

sufficiently so as to fall short of the specified value.

 (c) Design a lag section of a lag-lead compensator to provide partial compensation for the phase

margin. Add a lead section to realize phase margin of 60º. Check the bandwidth of the lag-

lead compensated system.

 (d) Find the transfer function D(z) of the lag-lead compensator and suggest a realization scheme.

 4.12 Shown in Fig. P4.12a is a closed-loop temperature control system. Controlled electric heaters

maintain the desired temper ature of the liquid in the tank. The computer output controls electronic

switches (triacs), to vary the effective voltage sup plied to the heaters, from 0 V to 230 V. The

temperature is meas ured by a thermocouple whose output is amplified to give a vol tage in the

range required by A/D converter. A simplified block diagram of the system, showing perturbation

dynamics, is given in Fig. P4.12b.

 (a) Consider the analog control loop of Fig. P4.12c. Determine K that gives 2% steady-state

error to a step input.

 (b) Let D(z) = K obtained in part (a). Is the sampled-data system of Fig. P4.12b stable for this

value of D(z)?

 (c) Design a lag compensator for the system of part (b), such that 2% steady-state error is

realized, the phase margin is greater than 40º and the gain margin is greater than 6 dB. Give

the total transfer function D(z) of the compensator.

 (d) Can the design of part (c) be achieved using a lead compensa tor? Justify your answer.

 4.13 (a) Consider a unity-feedback system with open-loop transfer function

 Gh0G(z) =
K z z

z p z p

()

()()

-
- -

1

1 2

; 0 £ K <

 The poles and zero of this second-order transfer function lie on the real axis; the poles

are adjacent or congruent, with the zero to their left. Prove that the complex-conjugate

section of the root locus plot is a circle with the center at z = z1, and the radius equal to

() ()z p z p1 1 1 2- - .

 Design of Digital Control Algorithms 277

 (b) Given Gh0G(z) =
K z

z

(.)

()

-

-

0 9048

1 2

 Sketch the root locus plot for 0 £ K < . Using the information in the root locus plot,

determine the range of values of K for which the closed-loop system is stable. Also determine

the value of K for which the system closed-loop poles are real and multi ple.

 4.14 A sampled-data feedback control system is shown in Fig. P4.14. The controlled process of the

system is described by the transfer function

 G(s) =
K

s s()+1
; 0 £ K <

 The sampling period T = 1 sec.

 (a) Sketch the root locus plot for the system on the z-plane and from there obtain the value of K

that results in marginal stabil ity.

+

–

+

–

230 V rms
0-230 V

Heaters
Triac
circuit

Computer

A/D

Tank

Thermocouple

volts

(a)

(b)

(c)

q q
1

0.04
T = 0.5 sec

0.04 G sh0()D z()
20

3 + 1s

ZOH
Power
gain

Plant

qr

0.04

0.04

Power
gain

20
3 + 1s1K

qr °C q °C

q

T

278 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (b) Repeat part (a) for (i) T = 2 sec, (ii) T = 4 sec, and com pare the stability properties of the

system with different values of sampling interval.

r

T

y+

–
G sh0() G()s

 4.15 The digital process of a unity-feedback system is described by the transfer function

 Gh0G(z) =
K z

z z

(.)

()(.)

+
- -

0 717

1 0 368
; T = 1 sec

 Sketch the root locus plot for 0 £ K < and from there obtain the following information:

 (a) The value of K that results in marginal stability. Also find the frequency of oscillations.

 (b) The value of K that results in z = 1. What are the time constants of the closed-loop poles?

 (c) The value of K that results in z = 0.5. Also find the natural frequency wn for this value of K.

You may use the following table to construct a constant-z locus on the z-plane corresponding

to z = 0.5.

 Re 0.891 0.64 0.389 0.169 0 –0.113 –0.174 –0.188 –0.163

 Im 0.157 0.37 0.463 0.464 0.404 0.310 0.207 0.068 0

 4.16 The characteristic equation of a feedback control system is

 z2 + 0.2A z – 0.1 A = 0

 Sketch the root loci for 0 £ A < , and therefrom obtain the range of parameter A for which the

system is stable.

 4.17 The block diagram of a sampled-data system using a dc motor for speed control is shown in

Fig. P4.17. The encoder senses the motor speed, and the output of the encoder is compared with

the speed command. Sketch the root locus plot for 0 £ K < .

 (a) For K = 1, find the time constant of the closed-loop pole.

 (b) Find the value of K which results in a closed-loop pole whose time constant is less than or

equal to one fourth of the value found in part (a).

 Use the parameter values:

 Km = 1, tm = 1, T = 0.1 sec, P = 60 pulses/revolution.

 Design of Digital Control Algorithms 279

 4.18 Consider the system shown in Fig. P4.9 with G(s) =
1

1s s()+
 and T = 0.2 sec.

 (a) Design a lead compensator so that the dominant closed-loop poles of the system will have

z = 0.5 and wn = 4.5.

 (b) Obtain the velocity error constant K
v
 of the lead compensated system.

 (c) Add a lag compensator in cascade so that K
v
 is increased by a factor of 3. What is the effect

of the lag compensator on the transient response of the system?

 (d) Obtain the transfer function D(z) of the lag-lead compensator, and suggest a realization

scheme.

 Use root locus method.

 4.19 Consider the system shown in Fig. P4.9 with

 G(s) =
1

1 2()()s s+ +
; T = 1 sec

 Design a compensator D(z) that meets the following specifications on system performance:

 (a) z = 0.5;

 (b) wn = 1.5; and

 (c) Kp ≥ 7.5.

 Use root locus method.

 4.20 The block diagram of a digital control system is shown in Fig. P4.9. The controlled process is

described by the transfer function

 G(s) =
K

s2
; T = 1 sec

 which may represent a pure inertial load.

 (a) The dominant closed-loop poles of the system are required to have z = 0.7, wn = 0.3 rad/sec.

Mark the desired dominant closed-loop pole locations in the z-plane. The root loci must pass

through these points.

 (b) Place the zero of the compensator D(z) below the dominant poles and find the location of

pole of D(z), so that the angle criterion at the dominant poles is satisfied. Find the value of

K, so that the magnitude criterion at the dominant poles is satis fied.

 (c) Find the acceleration error constant, Ka.

 (d) Your design will result in specified values of z and wn for the closed-loop system response, only if

the dominance condition is satisfied. Find the third pole of the closed-loop system and

comment on the effectiveness of your design.

 4.21 The configuration of a commercial broadcast videotape posi tioning system is shown in Fig. P4.21.

The relationship between the armature voltage (applied to drive motor) and tape speed at the

recording and playback heads, is approximated by the transfer function G(s). The delay term

involved, accounts for the propaga tion of speed changes along the tape, over the distance of

physi cal separation of the tape drive mechanism and the recording and playback heads. The tape

position is sensed by a recorded signal on the tape itself.

280 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

+

–

Position sensor

1

qqr 1
s

G s() =

40
+ 40
e

s

– /120s

D z() D/A

A/D

 Design the digital controller that should result in zero steady-state error to any step change in

the desired tape position. The closed-loop poles of the system are required to lie within a circle of

radius 0.56. Take the sampling interval T = 1/120 sec.

 4.22 Consider the sampled-data system shown in Fig. P4.22; the plant is known to have the transfer

function

 G(s) =
1

1s s()+
 A sampling period of T = 0.1 sec is to be used.

 (a) Design a digital controller to realize the following specifi cations:

 (i) z = 0.8;

 (ii) wn = 2p/10T; and

 (iii) K
v
 ≥ 5.

 (b) Design a digital controller so that the response to unit-step input is

 y(k) = 0, 0.5, 1, 1, …

 Find the steady-state error to unit-ramp input.

+

– T T

e yur
G s()D z() G sh0()

 4.23 In the control configuration of Fig. P4.22, find the control algorithm D(z) so that the response to

a unit-step function will be y(t) = 1– e–t. The plant transfer function is

 G(s) =
1

10 1s +
 Assume that the sampling interval T = 2 sec.

 Control System Analysis using State Variable Methods 281

Part II
State Variable Methods in Automatic Control:
Continuous-Time and Sampled-Data Systems

In Part I of the book, we developed some general procedures for the design of controllers. Our discussion

was basically centered around the generalized operational block diagram of a feedback system, shown

in Fig. 1.8.

We have assumed in our presentation, that the dynamic behavior of the plant can be represented (or

approximated with ‘sufficient’ accuracy) by a linear time-invariant nth-order system, which is described

by a strictly proper, minimal (controllable and observable) rational transfer function GP(s). We have also

assumed that any external disturbances that affect the plant, can be represented by a single, additive

signal w(t), with known dynamic properties (refer to Fig.1.8). The dynamics in the feedback path (often

attributed to the sensor), was assumed to be characterized by the proper minimal transfer function H(s),

which produces a continuous measure of the potentially noisy output y(t).

We placed a restriction on the design of controllers: the controller can be represented by a linear time-

invariant system, whose single output (for the single-input single-output (SISO) systems) u(t) is produced

by the input r(t) – b(t) = ê(t). Therefore, its dynamic behavior can be described by

U(s) = D(s)[R(s) – B(s)]

where D(s) is the proper minimal transfer function of the controller, whose degree defines the order of

the controller.

We have observed that in many cases involving the so-called classical control techniques, the transfer

function A(s) (corresponding to the reference-input elements (Fig.1.8)), is assumed to be equal to H(s).

This implies the more restrictive unity-feedback configuration depicted in Fig. 1.12. However, the choice

of A(s) π H(s) would imply non-unity-feedback structure; the design procedures for this structure have

been developed in our companion book [155]. In the vast majority of applications, the unity-feedback

configuration is preferred because the error (e(t) = r(t) – y(t) = yr(t) – y(t)) is explicitly present—both to

drive the controller, and to be zeroed via feedback.

In this part of the book, we intend to relax the restrictions we have so far imposed on the development

of general procedures for the design of controllers. We know that the output y(t) does not represent the

complete dynamic state of the plant at time t; it is the state vector x(t)=[x1(t), …, xn(t)]T which carries

complete knowledge on the dynamics at time t. In the output-feedback configurations of the form shown

in Fig. 1.8, only partial information on the dynamical state of the plant is fed back. We will relax this

restriction and allow the complete state x(t) to be fed back.

In the classical configuration of Fig. 1.8, the controller output u(t) is produced by one input:

[r(t) – b(t)]. We will relax this restriction also, and allow the controller u(t) to be a function of r(t), and

b(t) independently.

282 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The control law will take the form

u(t) = kR r(t)–kx(t)

where kR (scalar) is the reference control gain, and k (1 ¥ n vector) is the state feedback gain.

Design procedures for such a control law will require state-space formulation for the dynamic systems

in the feedback loop. We, therefore, begin our discussion with development of state variable models, and

their analysis (Chapters 5 and 6). This will be followed by development of design procedures (Chapters

7 and 8).

 Control System Analysis using State Variable Methods 283

5.1 INTRODUCTION

In Part I of this book, we have seen that the root-locus method and the frequency-response method are

quite powerful for the analysis and design of feedback control systems. The analysis and design are

carried out using transfer functions, together with a variety of graphical tools such as root-locus plots,

Nyquist plots, Bode plots, Nichols chart, etc. These techniques of the so-called classical control theory

have been greatly enhanced by the availability, and low cost, of digital computers for system analysis and

simulation. The graphical tools can now be more easily used with computer graphics.

The classical design methods suffer from certain limitations, due to the fact that the transfer function

model is applicable only to linear time-invariant systems, and that, there too, it is generally restricted

to Single-Input, Single-Output (SISO) systems. This is because the classical design approach becomes

highly cumbersome for use in Multi-Input, Multi-Output (MIMO) systems. Another limitation of the

transfer function technique is that it reveals only the system output for a given input and provides no

information about the internal behavior of the system. There may be situations where the output of a

system is stable and yet some of the system elements may have a tendency to exceed their specified

ratings. In addition to this, it may sometimes be necessary, and advantageous, to provide a feedback

proportional to the internal variables of a system, rather than the output alone, for the purpose of

stabilizing and improving the performance of a system.

The limitations of classical methods, based on transfer function models, have led to the development of

state variable approach of analysis and design. It is a direct time-domain approach which provides a basis

for modern control theory. It is a powerful technique for the analysis and design of linear and nonlinear,

time-invariant or time-varying MIMO systems. The organization of the state variable approach is such

that it is easily amenable to solution through digital computers.

It will be incorrect to conclude from the foregoing discussion, that the state variable design methods can

completely replace the classical design methods. In fact, the classical control theory, comprising a large

body of use-tested knowledge, is still going strong. State variable design methods prove their mettle in

applications that are intractable by classical methods.

The state variable formulation contributes to the application areas of classical control theory

in a different way. To compute the response of G(s) to an input R(s), requires the expansion of

Control System Analysis using
State Variable Methods

Chapter 5

284 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

{G(s) R(s)} into partial fractions; which, in turn, requires computation of all the poles of {G(s)R(s)},

or all the roots of a polynomial. The roots of a polynomial are very sensitive to their coefficients

(refer to Review Example 3.3). Furthermore, to develop a computer program to carry out partial

fraction expansion is not simple. On the other hand, the response of state variable equations is easy

to program. Its computation does not require the computation of roots or eigenvalues. Therefore, it

is less sensitive to parameter variations. For these reasons, it is desirable to compute the response

of G(s) through state variable equations. State variable formulation is thus the most efficient form

of system representation—from the standpoint of computer simulation. For this reason, many

Computer-Aided-Design (CAD) packages, handling both the classical and the modern tools of control

system design, use this notation. It is, therefore, helpful for the control engineer to be familiar with state

variable methods of system representation and analysis.

Part-II of this text presents an introduction to a range of topics which fall within the domain of state

variable analysis and design. Our approach is to build on, and complement, the classical methods of

analysis and design. State variable analysis and design methods use vector and matrix algebra and are, to

some extent, different from those based on transfer functions. For this reason, we have not integrated the

state variable approach with the frequency-domain approach based on transfer functions.

We have been mostly concerned with SISO systems in the text so far. In the remaining chapters also, our

emphasis will be on the control of SISO systems. However, many of the analysis and design methods

based on state variable concepts are applicable to both SISO and MIMO systems with almost equal

convenience; the only difference being the additional computational effort for MIMO systems, which is

taken care of by CAD packages. A specific reference to such results will be made at appropriate places

in these chapters.

5.2 VECTORS AND MATRICES

This section is intended to be a concise summary of facts about vectors and matrices. Having them all at

hand will minimize the need to consult a book on matrix theory. It also serves to define the notation and

terminology which are, regrettably, not entirely standard.

No attempt has been made at proving every statement made in this section. The interested reader is urged

to consult a suitable book (for example [27, 28]) for details of proofs.

5.2.1 Matrices1

Basic definitions and algebraic operations associated with matrices are given below.

Matrix

The matrix

 A =

a a a

a a a

a a a

m

m

n n nm

11 12 1

21 22 2

1 2

�

�

� � �

�

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = [aij] (5.1)

 1 We will use upper case bold letters to represent matrices and lower case bold letters to represent vectors.

 Control System Analysis using State Variable Methods 285

is a rectangular array of nm elements. It has n rows and m columns. aij denotes (i, j)th element, i.e., the

element located in ith row and jth column. A is said to be a rectangular matrix of order n ¥ m.

When m = n, i.e., the number of columns is equal to that of rows, the matrix is said to be a square matrix

of order n.

A n ¥ 1 matrix, i.e., a matrix having only one column is called a column matrix. A 1 ¥ n matrix, i.e., a

matrix having only one row is called a row matrix.

Diagonal Matrix

A diagonal matrix is a square matrix whose elements off the principal diagonal are all zeros (aij = 0 for

i π j). The following matrix is a diagonal matrix.

 L =

a

a

ann

11

22

0 0

0 0

0 0

�

�

� � �

�

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = diag [a11 a12 ann] (5.2)

A unit matrix I is a diagonal matrix whose diagonal elements are all equal to unity (aii = 1, aij = 0 for

i π j).

I =

1 0 0

0 1 0

0 0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Whenever necessary, an n ¥ n unit matrix will be denoted by In.

A null matrix 0 is a matrix whose elements are all equal to zero.

0 =

0 0 0

0 0 0

0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Whenever necessary, the dimensions of the null matrix will be indicated by two subscripts: 0nm.

Lower-Triangular Matrix

A lower-triangular matrix L has all its elements above the principal diagonal equal to zero; lij = 0 if i < j

for 1 £ i £ n and 1 £ j £ m.

286 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

L =

l

l l

l l ln n nm

11

21 22

1 2

0 0

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Upper-Triangular Matrix

An upper-triangular matrix U has all its elements below the principal diagonal equal to zero; uij = 0 if

i > j for 1 £ i £ n and 1 £ j £ m.

U =

u u u

u u

u

m

m

nm

11 12 1

22 20

0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Matrix Transpose

If the rows and columns of an n ¥ m matrix A are interchanged, the resulting m ¥ n matrix, denoted as

A
T, is called the transpose of the matrix A. Namely, if A is given by Eqn. (5.1), then

A
T =

a a a

a a a

a a a

n

n

m m nm

11 21 1

12 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Some properties of the matrix transpose are

 (i) (AT)T = A (ii) (kA)T = kA
T, where k is a scalar

 (iii) (A + B)T = AT + BT (iv) (AB)T = BT
A

T

If a square matrix A is equal to its transpose;

A = AT,

then the matrix A is called a symmetric matrix.

If a square matrix A is equal to the negative of its transpose;

A = –A
T,

then the matrix A is called a skew-symmetric matrix.

Conjugate Matrix

If the complex elements of a matrix A are replaced by their respective conjugates, then the resulting

matrix is called the conjugate of A.

 Control System Analysis using State Variable Methods 287

Conjugate Transpose

The conjugate transpose is the conjugate of the transpose of a matrix. Given a matrix A, the conjugate

transpose is denoted by A*, and is equal to conjugate of AT.

If a square matrix A is equal to its conjugate transpose;

A = A*,

then the matrix A is called a Hermitian matrix. For matrices whose elements are all real (real matrices),

symmetric and Hermitian mean the same thing.

If a square matrix A is equal to the negative of its conjugate transpose;

A = – A*,

then the matrix A is called a skew-Hermitian matrix. For real matrices, skew-symmetric and skew-

Hermitian mean the same thing.

Determinants are defined for square matrices only. The determinant of the n ¥ n matrix A, written as |A|,

or det A, is a scalar-valued function of A. It is found through the use of minors and cofactors.

The minor mij of the element aij is the determinant of a matrix of order (n – 1) ¥ (n – 1), obtained from

A by removing the row and the column containing aij.

The cofactor cij of the element aij is defined by the equation

cij = (– 1)i + j mij

Determinants can be evaluated by the method of Laplace expansion. If A is an n ¥ n matrix, any arbitrary

row k can be selected and |A| is then given by

 |A| =
j

n

=
Â

1

akj ckj

Similarly, Laplace expansion can be carried out with respect to any arbitrary column l, to obtain

 |A| =
i

n

=
Â

1

ail cil

Laplace expansion reduces the evaluation of an n ¥ n determinant down to the evaluation of a string of

(n – 1) ¥ (n – 1) determinants, namely, the cofactors.

Some properties of determinants are

 (i) det AB = (det A)(det B)

 (ii) det AT = det A

288 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (iii) det kA = kn det A; A is n ¥ n matrix and k is scalar

 (iv) The determinant of any diagonal or triangular matrix is the product of its diagonal elements.

Singular Matrix

A square matrix is called singular if the associated determinant is zero.

Nonsingular Matrix

A square matrix is called nonsingular if the associated determinant is nonzero.

Adjoint Matrix

The adjoint matrix of a square matrix A is found by replacing each element aij of matrix A, by its

cofactor cij and then transposing.

 adj A = A+ =

c c c

c c c

c c c

n

n

n n nn

11 21 1

12 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = [cji]

Note that

 A(adj A) = (adj A)A = |A| I (5.3)

Matrix Inverse

The inverse of a square matrix is written as A–1, and is defined by the relation

 A
–1

A = AA
–1 = I

From Eqn. (5.3) and the definition of the inverse matrix, we have

 A
–1 =

adjA

A
 (5.4)

Some properties of matrix inverse are

 (i) (A–1)–1 = A (ii) (AT)
–1 = (A– 1)T (iii) (AB)–1 = B–1

A
–1

 (iv) det A–1 =
1

det A
 (v) det P–1

AP = det A

 (vi) Inverse of diagonal matrix given by Eqn. (5.2) is

L
–1 =

1 0 0

0 1 0

0 0 1

11

22

/

/

/

a

a

ann

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = diag
1 1 1

11 22a a ann

È

Î
Í

˘

˚
˙

 Control System Analysis using State Variable Methods 289

The rank r(A) of a matrix A is the dimension of the largest array in A with a nonzero determinant. Some

properties of rank are

 (i) r(AT) = r(A)

 (ii) The rank of a rectangular matrix cannot exceed the lesser of the number of rows and the number of

columns. A matrix whose rank is equal to the lesser of the number of rows and number of columns

is said to be of full rank.

 r(A) £ min (n, m); A is n ¥ m matrix

 (iii) The rank of a product of two matrices cannot exceed the rank of the either:

 r(AB) £ min [r(A), r(B)]

The trace of a square matrix A is the sum of the elements on the principal diagonal.

 tr A =
i

Â aii (5.5)

Some properties of trace are

 (i) tr AT = tr A (ii) tr (A + B) = tr A + tr B

 (iii) tr AB = tr BA; tr AB π (tr A)(tr B) (iv) tr P–1
AP = tr A

A matrix can be partitioned into submatrices or vectors. Broken lines are used to show the partitioning

when the elements of the submatrices are explicitly shown. For example,

A =

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The broken lines indicating the partitioning are sometimes omitted when the context makes it clear that

partitioned matrices are being considered. For example, the matrix A given above may be expressed as

A =
A A

A A

11 12

21 22

È

Î
Í

˘

˚
˙

We will be frequently using the following forms of partitioning.

 (i) Matrix A partitioned into its columns:

 A = [a1 a2 am]

 where

 ai =

a

a

a

i

i

ni

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = ith column in A

290 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (ii) Matrix A partitioned into its rows:

 A =

`

`

`

1

2

n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 where

 `i = [ai1 ai2 aim] = ith row in A

 (iii) A block diagonal matrix is a square matrix that can be partitioned so that the nonzero elements are

contained only in square submatrices along the main diagonal,

 A =

A 0 0

0 A 0

0 0 A

1

2

 m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = diag [A1 A2 Am]

 For this case

 (i) |A| = |A1| |A2| |Am|

 (ii) A
– 1 = diag [A1

– 1
A2

– 1 A–1
m], provided that A–1 exists.

5.2.2 Vectors

We will be mostly concerned with vectors and matrices that have real elements. We, therefore, restrict

our discussion to these cases only. An extension of the results to the situations where the vectors/matrices

have complex elements is quite straightforward.

The scalar product of two n ¥ 1 constant vectors x and y is defined as

 < x, y > = xT
y

 = [x1 x2 xn]

y

y

yn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = x1y1 + x2 y2 + + xn yn

 = yT
x

The concept of norm of a vector is a generalization of the idea of length. For the vector

 Control System Analysis using State Variable Methods 291

x =

x

x

xn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

the Euclidean vector norm || x || is defined by

 || x || = (x2
1 + x2

2 + + x2
n)1/2 = (xT

x)1/2 (5.6a)

In two or three dimensions, it is easy to see that this definition for the length of x satisfies the conditions

of Euclidean geometry. It is a generalization to n dimensions of the theorem of Pythagoras.

For any nonsingular matrix P, the vector

y = Px

has the Euclidean norm

 || y || = [(P x)T(P x)]1/2 = (xT
P

T P x)1/2

Letting Q = PT P, we write

 || y || = (xT
Q x)1/2

or

 || x ||Q = (xT
Q x)1/2 (5.6b)

We call || x ||Q the norm of x with respect to Q. It is, in fact, a generalization of the norm defined in (5.6a)

in that it is a measure of the size of x ‘weighted’ by the matrix Q.

The norm of a matrix is a measure of the ‘size’ of the matrix (not its dimension). For the matrix

A =

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

the Euclidean matrix norm || A || is defined by

 || A || = aij

i j

n
2

1

1 2

,

/

=
Â

È

Î

Í
Í

˘

˚

˙
˙

 = [tr (AT
A]1/2 (5.6c)

We can also describe the size of A by

|| A || = max
|| ||

|| ||x

Ax

x
; x π 0

i.e., the largest value of the ratio of the length || Ax || to the length || x ||.

292 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Using the Euclidean norm for vectors, we obtain

|| A || = max
x

x A Ax

x x

/

/

T T

T

()
()

1 2

1 2
 = max

/

x

x A Ax

x x

T T

T

Ê

Ë
Á

ˆ

¯
˜

1 2

The maximum value of the ratio in this expression can be determined in terms of the eigenvalues2 of the

matrix AT
A. The real symmetric matrix AT

A has all real and nonnegative eigenvalues and the maximum

value of the ratio (xT
A

T
Ax)/(xT

x) is equal to the maximum eigenvalue of AT
A (for proof, refer to [107]).

Therefore,

 || A || = (Maximum eigenvalue of AT
A)1/2 (5.6d)

This definition of the matrix norm is known as the spectral norm3 of A.

The square roots of the eigenvalues of AT
A are called the singular values of A. The spectral norm of A

is equal to its largest singular value.

Singular values of a matrix are useful in numerical analysis. The ratio of the largest to the smallest

singular values of A, called the condition number of A, is a measure of how close the matrix A comes to

being singular. The matrix A is, therefore, ‘ill-conditioned’ if its condition number is large.

Orthogonal Vectors

Any two vectors which have a zero scalar product are said to be orthogonal vectors. Two n ¥ 1 vectors

x and y are orthogonal if

x
T
y = 0

A set of vectors is said to be orthogonal if, and only if, every two vectors from the set are orthogonal:

x
T
y = 0 for all x π y in the set.

Unit Vector

A unit vector x̂ is, by definition, a vector whose norm is unity; || x̂ || = 1. Any nonzero vector x can be

normalized to form a unit vector.

x̂ =
x

x|| ||

A set of vectors is said to be orthonormal if, and only if, the set is orthogonal and each vector in this

orthogonal set is a unit vector.

Orthogonal Matrix

Suppose that {x1, x2, … , xn} is an orthogonal set:

x
T
i xi = 1, for all i

 2 The roots of the equation

|lI – A| = 0

 are called the eigenvalues of matrix A. Detailed discussion is given in Section 5.6.
 3 Refer to [105] for other valid vector and matrix norms.

 Control System Analysis using State Variable Methods 293

and

x
T
i xj = 0 for all i and j with i π j.

If we form the n ¥ n matrix

P = [x1 x2 xn],

it follows from partitioned multiplication that

 P
T
P = I

That is,

 P
T = P–1

Such a matrix P is called an orthogonal matrix.

Consider a set of m vectors {x1, x2, … , xm}, each of which has n components. If there exists a set of m

scalars ai , at least one of which is not zero, which satisfies

 a1x1 + a2x2 + + amxm = 0,

then the set of vectors {xi} is said to be linearly dependent.

Any set of vectors {xi} which is not linearly dependent is said to be linearly independent. That is, if

 a1x1 + a2x2 + + amxm = 0

implies that each ai = 0, then {xi} are linearly independent vectors.

Consider the set of m vectors {xi}, each of which has n components, with m π n. Assume that this set is

linearly dependent so that

 a1x1 + a2x2 + + amxm = 0

with at least one nonzero ai.

Premultiplying both sides of this equation by xT
i , gives a set of m simultaneous equations:

a1x
T
i x1 + a2 x

T
i x2 + + am x

T
i xm = 0; i = 1, 2, … , m

These equations can be written in the matrix form as

x x x x x x

x x x x x x

x x x x x x

1 1 1 2 1

2 1 2 2 2

1 2

T T T
m

T T T
m

m
T

m
T

m
T

m

È

Î

Í
Í
Í
Í
Í

˘̆

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

a

a

a

1

2

0

0

0

m

 (5.7a)

or G` = 0

294 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

If the m ¥ m matrix G has a nonzero determinant, then G– 1 exists, and

 ` = G
– 1

0 = 0 (5.7b)

This contradicts the assumption of at least one nonzero ai. The matrix G is called the Grammian matrix.

A necessary and sufficient condition for the set {xi} to be linearly dependent is that |G| = 0.

Linear Independence and Rank

The column rank of a matrix A is equal to maximum number of linearly independent columns in A.

The maximum number of linearly independent columns of a matrix is equal to the maximum number of

linearly independent rows. Therefore, the column rank of A = the row rank of A = r(A), which is, in turn,

equal to the order of the largest square array in A whose determinant does not vanish.

In Section 5.8, we will require a test for the linear independence of the rows of a matrix whose elements

are functions of time.

Consider a matrix

F(t) =

f t f t f t

f t f t f t

tm

n n nm

11 12 1

1 2

1() () ()

() () ()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
()

f

ffn t()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

fi(t); i = 1, … , n are the n row vectors of matrix F; each vector has m components.

The scalar product of two 1 ¥ m vector functions fi(t) and fj(t) on [t0, t1] is by definition,

< fi, fj > =

t

t

0

1

Ú fi(t)fj
T(t) dt

The set of n row-vector functions {f1(t), … , fn(t)} are linearly dependent if there exists a set of n scalars

ai, at least one of which is not zero, which satisfies

a1f1(t) + a2f2(t) + + anfn(t) = 01 ¥ m

or a1

f t

f tm

11

1

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 + a2

f t

f tm

21

2

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 + + an

f t

f t

n

nm

1()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Equivalently, the n rows fi(t) are linearly dependent if

 `
T

F(t) = 0 (5.8a)

for some

` =

a

a

1

n

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 π 0

 Control System Analysis using State Variable Methods 295

The Grammian matrix of functions fi(t), i = 1, … , n; where fi(t) is the ith row of the matrix F(t), is given

by (refer to Eqns (5.7))

 W(t0, t1) =

t

t

0

1

Ú F(t)FT(t) dt (5.8b)

The functions f1(t), … , fn(t), which are the rows of the matrix F(t), are linearly dependent on [t0, t1] if,

and only if, the n ¥ n constant matrix W(t0, t1) is singular.

5.2.3

An expression such as

V(x1, x2, … , xn) =
i

n

j

n

= =
Â Â

1 1

qij xi xj

involving terms of second degree in xi and xj, is known as the quadratic form of n variables. Such scalar-
valued functions are extensively used in stability analysis and modern control design.

In practice, one is usually concerned with quadratic forms V(x1, x2, … , xn) that assume only real values.

When xi, xj, and qij are all real, the value of V is real, and the quadratic form can be expressed in the

vector-matrix notation as

 V(x) = [x1 x2 xn]

q q q

q q q

q q q

x

x

x

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘̆

˚

˙
˙
˙
˙

or V(x) = x
T
Qx

Any real square matrix Q may be written as the sum of a symmetric matrix Qs and a skew-symmetric

matrix Qsk, as shown below.

Let

Q = Qs + Qsk

Taking transpose of both sides,

Q
T = Q Qs

T
sk
T+ = Qs – Qsk

Solving for Qs and Qsk, we obtain

Qs =
Q Q+ T

2
; Qsk =

Q Q– T

2

For a real matrix Q, the quadratic function V(x) is, therefore, given by

 V(x) = x
T
Qx = xT(Qs + Qsk)x = x Q x x Qx x Q x

T
s

T+ 1
2

1
2

T T-

Since x
T
Qx = (xT

Qx)T = xT
Q

T
x, we have

 V(x) = xT
Qsx

296 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Thus, in quadratic function V(x), only the symmetric portion of Q is of importance. We shall, therefore,
tacitly assume that Q is symmetric.

It may be noted that real vector x and real matrix Q do not constitute necessary requirements for V(x)

to be real. V(x) can be real when Q and x are possibly complex; it can easily be established that for a

Hermitian matrix Q,

V(x) = x*Qx

has real values.

Our discussion will be restricted to real symmetric matrices Q.

If for all x π 0,

 (i) V(x) = xT
Qx ≥ 0,

 then V(x) is called a positive semidefinite function and Q is called a positive semidefinite matrix;

 (ii) V(x) = xT
Qx > 0,

 then V(x) is called a positive definite function and Q is called a positive definite matrix;

 (iii) V(x) = xT
Qx £ 0,

 then V(x) is called a negative semidefinite function and Q is called a negative semidefinite matrix;

and

 (iv) V(x) = xT
Qx < 0,

 then V(x) is called a negative definite function and Q is called a negative definite matrix.

(i) Eigenvalues of Q and the nature of quadratic form

A real symmetric matrix Q has all real eigenvalues, and the signs of the eigenvalues of Q determine the

nature of the quadratic form xT
Qx, as summarized in Table 5.1.

Table 5.1

Eigenvalues of Q Nature of quadratic form xT
Qx

All li > 0 Positive definite

All li ≥ 0 Positive semidefinite

All li < 0 Negative definite

All li £ 0 Negative semidefinite

Some li ≥ 0, some lj £ 0 Indefinite

(ii) Sylvester’s Criterion

The Sylvester’s criterion states that the necessary and sufficient conditions for

V(x) = xT
Qx = [x1 x2 xn]

q q q

q q q

q q q

x

x

x

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙

 Control System Analysis using State Variable Methods 297

to be positive definite are that all the successive principal minors of Q be positive, i.e.,

 q11 > 0;
q q

q q

q q q

q q q

q q q

11 12

21 22

11 12 13

21 22 23

31 32 33

0> ; > 0; ; | Q | > 0 (5.9)

The necessary and sufficient conditions for V(x) to be positive semidefinite are that Q is singular and all

the other principal minors of Q are non-negative.

V(x) is negative definite if [–V(x)] is positive definite. Similarly, V(x) is negative semidefinite if [–V(x)]

is positive semidefinite.

5.3 STATE VARIABLE REPRESENTATION

We will be mostly concerned with SISO system configurations of the type shown in the block diagram

of Fig. 5.1. The plant in the figure is a physical process, characterized by the state variables x1, x2, … , xn,

the output variable y and the input variable u.

yu
Plant

–

+r

+

k1

kR

k2

kn
xn

x2

x1

Fig. 5.1

5.3.1 State Variable Concepts

The modeling process of linear systems involves setting up a chain of cause-effect relationships,

beginning from the input variable and ending at the output variable. This cause-effect chain includes

a number of internal variables. These variables are eliminated, both in the differential equation model

and in the transfer function model, to obtain the final relationship between the input and the output.

298 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Analysis of systems with the input-output model will not give any information about the behavior of the

internal variables for different operating conditions. For a better understanding of the system behavior,

its mathematical model should include the internal variables also. The state variable techniques of system

representation and analysis, make the internal variables an integral part of the system model, and thus

provide more complete information about the system behavior. In order to appreciate how the internal

variables are included in the system representation, let us examine the modeling process by means of a

simple example.

Consider the network shown in Fig. 5.2a. The set of voltages and currents associated with all the branches

of the network at any time t, represents the status of the network at that time. Application of Kirchhoff’s

current law at nodes 1 and 2 of the network gives the following equations:

de

dt

de

dt

1 22+ =
u e- 1

2

 2 3de

dt
 = 2 2de

dt

Application of Kirchhoff’s voltage law to the loop consisting of the three capacitors yields

 e1(t) – e2(t) = e3(t)

K

Force
M

Zero
friction

B

(b)(a)

2 W

+ –y

1 F
–

+

2 F

2 Fu
+

–

1 + – 2

–

+

Displacement
y t()

Velocity ()tv

e1 e3

e2

()F t

Fig. 5.2

All other voltage and current variables associated with the network are related to e1, e2, e3 and input u,

through linear algebraic equations. This means that their values (at all instants of time) can be obtained

from the knowledge of the network variables e1, e2, e3 and the input variable u, merely by linear

combinations. In other words, the reduced set {e1(t), e2(t), e3(t)} of network variables with the input

variable u(t), completely represents the status of the network at time t.

For the purpose of finding a mathematical model to represent a system, we will naturally choose a

minimal set of variables that describes the status of the system. Such a set would be obtained when none

of the selected variables is related to other variables and the input, through linear algebraic equations.

A little consideration shows that there is redundancy in the set{e1(t), e2(t), e3(t)} for the network of

Fig. 5.2a; a set of two variables, say, {e1(t), e2(t)}, with the input u(t) represents the network completely

at time t.

 Control System Analysis using State Variable Methods 299

Manipulation of the network equations obtained earlier, gives

de t

dt
e t u t1 1

4 1
1
4

()
= - () + ()

de t

dt
e t u t2 1

8 1
1
8

()
= - () + ()

This set of equations constitutes a mathematical model for the system. It is a set of two first-order

differential equations. Its complete solution for any given u(t) applied at t = t0, will require a knowledge

of the value of the selected variables {e1, e2} at t = t0. To put it differently, we can say that if the values

of {e1, e2} at t = t0 are known, then the values of these variables at any time t > t0, in response to a given

input u(t0, t], can be obtained by the solution of the two first-order differential equations. A set of system

variables having this property, is called a set of state variables. The set of values of these variables at any

time t is called the state of the system at time t. The set of first-order differential equations relating the

first derivative of the state variables with the variables themselves and the input, is called a set of state

equations. It is also to be noted that the number of state variables needed to form a correct and complete

model of the system is equal to the order of the system.

An important point regarding the concept of state of a system is that the choice of state variables is not

unique. In the network of Fig. 5.2a, instead of voltages {e1, e2}, the voltages {e2, e3} or {e3, e1} may be

taken as state variables to define the state of the system. In fact, any set of variables x1(t) and x2(t), given

by

x t

x t

1

2

()
()

È

Î
Í
Í

˘

˚
˙
˙
 =

p p

p p

e t

e t

11 12

21 22

1

2

È

Î
Í

˘

˚
˙

()
()

È

Î
Í
Í

˘

˚
˙
˙

where pij are constants such that the matrix

 P =
p p

p p

11 12

21 22

È

Î
Í

˘

˚
˙

is nonsingular, is qualified to describe the state of the system of Fig. 5.2a because we can express the

capacitor voltages in terms of the selected variables x1(t) and x2(t). This brings out additional facts that

there are infinitely many choices of state variables for any given system, and that the selected state

variables may not correspond to physically measurable quantities of the system. Later in this chapter,

we will see that all the choices of state variables are not equally convenient. Usually, state variables are

chosen so that they correspond to physically measurable quantities, or lead to particularly simplified

calculations.

For a particular goal of study of a given physical system, we may not be interested in the total information

about the system at a particular time. We may be interested only in a part of the total information. This is

called the output of the system, which can be obtained algebraically from the information of the system

state and the input. The output is, by definition, a physical attribute of the system and is measurable. For

example, in the electric network of Fig. 5.2a, the information of interest may be the voltage across the

resistor. The output

y(t) = – e1(t) + u(t)

As another example of the state of a system, consider the mechanical network shown in Fig. 5.2b. The

force F(t) is the input variable. Defining the displacement y(t) of the mass as the output variable, we

obtain the following input-output model for the system:

300 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

M
d y t

dt

2

2

()
 + B

dy t

dt

()
 + Ky(t) = F(t)

An alternative form of the input-output model is the transfer function model:

Y s

F s Ms Bs K

()

() =
+ +

1
2

The set of forces, velocities, and displacements, associated with all the elements of the mechanical

network at any time t, represents the status of the network at that time. A little consideration shows that

values of all the system variables (at all instants of time) can be obtained from the knowledge of the

system variables y(t) and v(t), and the input variable F(t), merely by linear combinations. The dynamics

of y(t) and v(t) are given by the following first-order differential equations:

dy t

dt

()
 = v(t)

d t

dt

v()
= –

K

M
y(t) –

B

M
v(t) +

1

M
F(t)

The variables {y(t), v(t)} are, therefore, the state variables of the system of Fig. 5.2b, and the two

first-order differential equations given above, are the state equations of the system. Using standard

symbols for state variables and input variable, we can write the state equations as

 x1 = x2

 x2 = –
K

M
x1 –

B

M
x2 +

1

M
u

 x1(t) =D y(t); x2(t) =D v(t); u(t) =D F(t)

Defining y(t) as the output variable, the output equation becomes

y = x1

We can now appreciate the following definitions:

State

The state of a dynamic system is the smallest set of variables (called state variables) such that

the knowledge of these variables at t = t0, together with the knowledge of the input for t ≥ t0, completely

determines the behavior of the system for any time t ≥ t0.

State Vector

If n state variables x1, x2, … , xn, are needed to completely describe the behavior of a given system, then

these n state variables can be considered the n components of a vector x. Such a vector is called a state

vector.

State Space

The n-dimensional space whose coordinate axes consist of the x1-axis, x2-axis, … , xn-axis, is called a

state space.

 Control System Analysis using State Variable Methods 301

At any time t0, the state vector (and hence the state of the system) defines a point in the state space. As

time progresses and the system state changes, a set of points will be defined. This set of points, the locus

of the tip of the state vector as time progresses, is called the state trajectory of the system.

State space and state trajectory in two-dimensional cases are referred to as the phase plane and phase

trajectory, respectively.

5.3.2 State Variable Modeling

We know through our modeling experience that the application of physical laws to mechanical, electrical,

thermal, liquid-level, and other physical processes results in a set of first-order and second-order

differential equations.4 Linear time-invariant differential equations can be rearranged in the following

form:

 x1(t) = a11 x1(t) + a12 x2(t) + + a1n xn(t) +b1 u(t)

 x2(t) = a21 x1(t) + a22 x2(t) + + a2n xn(t) + b2 u(t) (5.10a)

 xn(t) = an1 x1(t) + an2 x2(t) + + ann xn(t) + bnu(t)

where the coefficients aij and bi are constants. These n first-order differential equations are called state

equations of the system.

Integration of Eqn. (5.10a) gives

xi(t) = xi(t0) +

t

t

0

Ú [ai1 x1(t) + + ain xn(t) + bi u(t)]dt; i = 1, 2, … , n

Thus, the n state variables and hence the state of the system can be determined uniquely at any

t > t0, if each state variable is known at t = t0, and the control force u(t) is known throughout the interval

t0 to t.

The output y(t) at any time t will be a function of x1(t), x2(t), …, xn(t). However, in some cases, the output

may also depend upon the instantaneous value of the input u(t). For linear systems, the output is a linear

combination of the state variables and the input:

 y(t) = c1 x1(t) + c2 x2(t) + + cn xn(t) + d u(t) (5.10b)

where ci and d are constants. The algebraic equation (5.10b) is called output equation of the system.

Since every real-world system has some nonlinearity, a mathematical model of the form (5.10) is an

approximation to reality. Many real-world nonlinearities involve a ‘smooth’ curvelinear relation between

independent and dependent variables. Nonlinear functions fi(◊) and g(◊) of the form

 xi(t) = fi (x1(t), x2(t), … , xn(t), u(t)); xi(t0) =D xi
0 (5.11a)

 y(t) = g(x1(t), x2(t), … , xn(t), u(t)) (5.11b)

 4 Chapter 2 of reference [155]

302 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

may be linearized about a selected operating point using the multivariable form of the Taylor series:

 f(x1, x2, x3,) = f(x10, x20, …) +
∂

∂

f

x x x1 10 20, ,

È

Î
Í
Í

˘

˚
˙
˙

 (x1 – x10) +
∂

∂

f

x x x2 10 20, ,

È

Î
Í
Í

˘

˚
˙
˙

(x2 – x20) + (5.11c)

One of the advantages of state variable formulation is that an extremely compact vector-matrix notation

can be used for the mathematical model. Using the laws of matrix algebra, it becomes much less

cumbersome to manipulate the equations.

In the vector-matrix notation, we may write Eqns (5.10) as

x t

x t

x tn

1

2

()
()

()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

a a a

a a a

a a a

x t

x t

x

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

()
()

tt()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 +

b

b

bn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 u(t);

x t

x t

x tn

1 0

2 0

0

()
()

()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =D

x

x

xn

1
0

2
0

0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (5.12a)

 y(t) = [c1 c2 cn]

x t

x t

x tn

1

2

()
()

()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 + d u(t) (5.12b)

In compact notation, Eqns (5.12) may be expressed as

 x (t) = Ax(t) + bu(t); x(t0) =D x0 : State equation (5.13a)

 y(t) = cx(t) + du(t) : Output equation (5.13b)

where

 x(t) = n ¥ 1 state vector of nth-order dynamic system

 u(t) = system input

 y(t) = defined output

 A = n ¥ n matrix

 b = n ¥ 1 column matrix

 c = 1 ¥ n row matrix

 d = scalar, representing direct coupling between input and output (direct coupling is rare in control

systems, i.e., usually d = 0)

Example 5.1 Two very usual applications of dc motors are in speed and position

control systems.

Figure 5.3 gives the basic block diagram of a speed control system. A separately excited dc motor drives

the load. A dc tachogenerator is attached to the motor shaft; speed signal is fed back and the error signal

is used to control the armature voltage of the motor.

 Control System Analysis using State Variable Methods 303

Error signal

Controller
u

Armature voltage

dc motor
+

load

Controlled output (speed)

+

Reference signal corresponding
to desired speed

–

Tachogenerator

Feedback signal corresponding
to actual speed

wer

Fig. 5.3

In the following, we derive the plant model for the speed control system. A separately excited dc motor

with armature voltage control, is shown in Fig. 5.4.

The voltage loop equation is

 u(t) = La
di t

dt

a ()
 + Ra ia(t) + eb(t) (5.14a)

where

 La = inductance of armature winding (henrys);

 Ra = resistance of armature winding (ohms);

 ia = armature current (amperes);

 eb = back emf (volts); and

 u = applied armature voltage (volts).

Fig. 5.4

304 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The torque balance equation is

 TM(t) = J
d t

dt

w ()
 + Bw(t) (5.14b)

where

 TM = torque developed by the motor (newton-m);

 J = equivalent moment of inertia of motor and load referred to motor shaft (kg-m2);

 B = equivalent viscous friction coefficient of motor and load referred to motor shaft ((newton-m)/

(rad/sec)); and

 w = angular velocity of motor shaft (rad/sec).

In servo applications, the dc motors are generally used in the linear range of the magnetization curve.

Therefore, the air gap flux f is proportional to the field current. For the armature controlled motor, the

field current if is held constant. Therefore, the torque TM developed by the motor, which is proportional

to the product of the armature current and the air gap flux, can be expressed as

 TM(t) = KT ia(t) (5.14c)

where

 KT = motor torque constant ((newton-m/amp))

The counter electromotive force eb, which is proportional to f and w, can be expressed as

 eb(t) = Kb w(t) (5.14d)

where

 Kb = back emf constant5 (volts/(rad/sec))

Equations (5.14) can be reorganized as

di t

dt

a()
 = –

R

L

a

a

 ia(t) –
K

L

b

a

w(t) +
1

La

u(t) (5.15)

d t

dt

w ()
 =

K

J

T ia(t) –
B

J
w(t)

x1(t) = w (t), and x2(t) = ia(t) is the obvious choice for state variables. The output variable is y(t) = w(t).

The plant model of the speed control system, organized into the vector-matrix notation, is given below.

x t

x t

1

2

()
()

È

Î
Í
Í

˘

˚
˙
˙
 =

-

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

B

J

K

J

K

L

R

L

T

b

a

a

a

x t

x t

1

2

()
()

È

Î
Í
Í

˘

˚
˙
˙
 +

0

1

La

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u(t)

 y(t) = x1(t)

Let us assign numerical values to the system parameters.

 5 In MKS units, Kb = KT ; Section 3.2 of reference [155].

 Control System Analysis using State Variable Methods 305

For the parameters6

 Ra = 1 ohm, La = 0.1 H, J = 0.1 kg-m2, B = 0.1 (newton-m)/(rad/sec), Kb = KT = 0.1, (5.16)

the plant model becomes

 x(t) = Ax(t) + bu(t)
(5.17)

 y(t) = cx(t)

where A =
-
- -

È

Î
Í

˘

˚
˙

1 1

1 10
; b =

0

10

È

Î
Í

˘

˚
˙ ; c = [1 0]

Example 5.2

Figure 5.5 gives the basic block diagram of a position control system. The controlled variable is now the

angular position q (t) of the motor shaft:

d t

dt

q ()
 = w (t) (5.18)

–

+

Error signal Armature voltage

Controller
u dc motor

+
load

Controlled output (position)
Reference signal corresponding

to desired position

Position sensor

Feedback signal corresponding
to actual position

er q

Fig. 5.5

We make the following choice for state and output variables.

x1(t) = q (t), x2(t) = w (t), x3(t) = ia(t), y(t) = q (t)

For this choice, we obtain the following plant model from Eqns (5.15) and (5.18).

x t

x t

x t

1

2

3

()
()
()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

0 1 0

0

0

-

- -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

B

J

K

J

K

L

R

L

T

b

a

a

a

x t

x t

x t

1

2

3

()
()
()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 +

0

0

1

La

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

u(t)

y(t) = x1(t)

 6 These parameters have been chosen for computational convenience

306 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For the system parameters given by (5.16), the plant model for position control system becomes

 x(t) = Ax(t) + bu(t)

 y(t) = cx(t)
(5.19)

where

A =

0 1 0

0 1 1

0 1 10

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

10

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

In Examples 5.1 and 5.2 discussed above, the selected state variables are the physical quantities of the

systems which can be measured.

We will see in Chapter 7 that in a physical system, in addition to output, other state variables could be

utilized for the purpose of feedback. The implementation of design with state variable feedback becomes

straightforward if the state variables are available for feedback. The choice of physical variables of

a system as state variables, therefore, helps in the implementation of design. Another advantage of

selecting physical variables for state variable formulation is that the solution of state equation gives time

variation of variables which have direct relevance to the physical system.

5.3.3

It frequently happens that the state variables used in the original formulation of the dynamics of a system

are not as convenient as another set of state variables. Instead of having to reformulate the system

dynamics, it is possible to transform the set {A, b, c, d} of the original formulation (5.13), to a new set

{A, b, c, d }. The change of variables is represented by a linear transformation

 x = P x (5.20a)

where x is a state vector in the new formulation, and x is the state vector in the original formulation. It

is assumed that the transformation matrix P is a nonsingular n ¥ n matrix, so that we can always write

 x = P–1
x (5.20b)

We assume, moreover, that P is a constant matrix.

The original dynamics are expressed by

 x(t) = Ax(t) + bu(t); x(t0) =D x
0 (5.21a)

and the output by

 y(t) = cx(t) + du(t) (5.21b)

Substitution of x, as given by Eqn. (5.20a), into these equations gives

 P x (t) = AP x (t) + bu(t)

 y(t) = cP x (t) + du(t)

or

 x (t) = A x (t) + b u(t); x (t0) = P–1
x(t0) (5.22a)

 y(t) = c x (t) + d u(t) (5.22b)

 Control System Analysis using State Variable Methods 307

with

A = P–1
AP, b = P–1

b, c = cP, d = d

In the next section, we will prove that both the linear systems (5.21) and (5.22) have identical output

responses for the same input. The linear system (5.22) is said to be equivalent to the linear system (5.21),

and P is called an equivalence or similarity transformation.

It is obvious that there exist an infinite number of equivalent systems since the transformation matrix P

can be arbitrarily chosen. Some transformations have been extensively used for the purposes of analysis

and design. Five of such special (canonical) transformations will be used in the present and the next two

chapters.

Example 5.3 Example 5.1 Revisited

For the system of Fig. 5.4, we have taken angular velocity w(t) and armature current ia(t) as state variables:

x =
x

x

1

2

È

Î
Í

˘

˚
˙ =

w

ia

È

Î
Í

˘

˚
˙

We now define new state variables as

x1 = w, x2 = – w + ia

or

x =
x

x

1

2

È

Î
Í

˘

˚
˙ =

x

x x

1

1 2- +
È

Î
Í

˘

˚
˙ =

1 0

1 1

1

2-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

x

x

We can express velocity x1(t) and armature current x2(t) in terms of the variables x1(t) and x 2(t):

 x = P x (5.23)

with

 P =
1 0

1 1

È

Î
Í

˘

˚
˙

Using Eqns (5.22) and (5.17), we obtain the following state variable model for the system of Fig. 5.4, in

terms of the transformed state vector x (t):

 x (t) = Ax (t) + b u(t)
(5.24)

 y(t) = c x (t)

where

 A = P–1
A P =

1 0

1 1-
È

Î
Í

˘

˚
˙

-
- -

È

Î
Í

˘

˚
˙

1 1

1 10

1 0

1 1

È

Î
Í

˘

˚
˙ =

0 1

11 11- -
È

Î
Í

˘

˚
˙

 b = P
–1

b =
1 0

1 1-
È

Î
Í

˘

˚
˙

0

10

È

Î
Í

˘

˚
˙ =

0

10

È

Î
Í

˘

˚
˙

308 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 c = cP = [1 0]
1 0

1 1

È

Î
Í

˘

˚
˙ = [1 0]

 x1(t0) = x1(t0); x2(t0) = – x1(t0) + x2(t0)

Equations (5.24) give an alternative state variable model of the system previously represented by Eqns

(5.17). x (t) and x(t) both qualify to be state vectors of the given system (the two vectors individually

characterize the system completely at time t), and the output y(t), as we shall see shortly, is uniquely

determined from either of the models (5.17) and (5.24). State variable model (5.24) is thus equivalent to

the model (5.17), and the matrix P given by Eqn. (5.23) is an equivalence or similarity transformation.

The state variable model given by Eqns (5.24) is in a canonical (special) form. In Chapter 7, we will use

this form of model for pole-placement design by state feedback.

5.3.4

An important advantage of state variable formulation is that it is a straightforward method to obtain a

simulation diagram for the state equations. This is extremely useful if we wish to use computer simulation

methods to study dynamic systems. In the following, we give an example of analog simulation diagram.

Examples of digital simulation will appear in Chapter 6.

For brevity, we consider a second-order system:

 x1(t) = a11 x1(t) + a12 x2(t) + b1u(t)

 x2(t) = a21 x1(t) + a22 x2(t) + b2u(t) (5.25)

 y(t) = c1x1(t) + c2x2(t)

It is evident that if we knew x1 and x 2, we could obtain x1 and x2 by simple integration. Hence x1 and

 x2 should be the inputs to two integrators. The corresponding integrator outputs are x1 and x2. This

leaves only the problem of obtaining x1 and x2 for use as inputs to the integrators. In fact, this is

already specified by state equations. The completed state diagram is shown in Fig. 5.6. This diagram is

essentially an analog-computer program for the given system.

5.4 CONVERSION OF STATE VARIABLE
 MODELS TO TRANSFER FUNCTIONS

We shall derive the transfer function of a SISO system from the Laplace-transformed version of the state

and output equations. Refer to Section 5.2 for the vector and matrix operations used in the derivation.

Consider the state variable model (Eqns (5.13)):

 x(t) = Ax(t) + bu(t); x(t0) =D x0

(5.26)
 y(t) = cx(t) + du(t)

Taking the Laplace transform of Eqns (5.26), we obtain

 sX(s) – x0 = AX(s) + bU(s)

 Y(s) = cX(s) + dU(s)

 Control System Analysis using State Variable Methods 309

where

 X(s) =D L [x(t)]; U(s) =D L [u(t)]; Y(s) =D L [y(t)]

Manipulation of these equations gives

 (sI – A)X(s) = x0 + bU(s); I is n ¥ n identity matrix

or X(s) = (sI – A)–1
x

0 + (sI – A)–1
bU(s) (5.27a)

 Y(s) = c(sI – A)–1
x

0 + [c(sI – A)–1
b + d]U(s) (5.27b)

Equations (5.27) are algebraic equations. If x0 and U(s) are known, X(s) and Y(s) can be computed from

these equations.

In the case of a zero initial state (i.e., x0 = 0), the input-output behavior of the system (5.26) is determined

entirely by the transfer function

Y s

U s

()

()
 = G(s) = c(sI – A)–1

b + d (5.28)

We can express the inverse of the matrix (sI – A) as

 (sI – A)–1 =
()

| |

s

s

I A

I A

-
-

+

 (5.29)

+

+

+

+

+ +

+

+

+
yu

+
+

+

b1

b2

a22

a12

a21

a11

c1

c2x2

x1

x02

x01

Ú

Ú

Fig. 5.6

310 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where

 |sI – A| = determinant of the matrix (sI – A)

(sI – A)+= adjoint of the matrix (sI – A)

Using Eqn. (5.29), the transfer function G(s) given by Eqn. (5.28) can be written as

 G(s) =
c I A b

I A

()

| |

s

s

-

-

+

 + d (5.30)

For a general nth-order matrix

 A =

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

�

�

� � �

�

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

,

the matrix (sI – A) has the following appearance:

 (sI – A) =

s a a a

a s a a

a a s a

n

n

n n nn

- - -

- - -

- - -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

11 12 1

21 22 2

1 2

�

�

� � �

�

If we imagine calculating det (sI – A), we see that one of the terms will be the product of diagonal

elements of (sI – A):

(s – a11)(s – a22) � (s – ann) = sn + a ¢1 sn – 1 + � + a ¢n,

a polynomial of degree n with the leading coefficient of unity. There will be other terms coming from

the off-diagonal elements of (sI – A), but none will have a degree as high as n. Thus | sI – A| will be of

the following form:

 | sI – A| = D(s) = sn + a1 sn – 1 + � + an (5.31)

where ai are constant scalars.

This is known as the characteristic polynomial of the matrix A. It plays a vital role in the dynamic

behavior of the system. The roots of this polynomial are called the characteristic roots or eigenvalues

of matrix A. These roots, as we shall see in Section 5.7, determine the essential features of the unforced

dynamic behavior of the system (5.26).

The adjoint of an n ¥ n matrix is itself an n ¥ n matrix, whose elements are the cofactors of the original

matrix. Each cofactor is obtained by computing the determinant of the matrix that remains when a

row and a column of the original matrix are deleted. It thus follows that each element in (sI – A)+ is a

polynomial in s of maximum degree (n – 1). Adjoint of (sI – A) can, therefore, be expressed as

 (sI – A)+ = Q1 sn – 1 + Q2 sn – 2 + � + Qn – 1 s + Qn (5.32)

where Qi are constant n ¥ n matrices.

We can express transfer function G(s) given by Eqn. (5.30) in the following form:

 G(s) =
c Q Q Q Q b[]1

1
2

2
1

1
1

1

s s s

s s s

n n
n n

n n
n n

- -

-

-

-

+ + + +

+ + + +

�

�a a a

 + d (5.33)

 Control System Analysis using State Variable Methods 311

G(s) is thus a rational function of s. When d = 0, the degree of numerator polynomial of G(s) is strictly

less than the degree of the denominator polynomial and, therefore, the resulting transfer function is a

strictly proper transfer function. When d π 0, the degree of numerator polynomial of G(s) will be equal

to the degree of the denominator polynomial, giving a proper transfer function. Further,

 d = lim
s

[G(s)] (5.34)

From Eqns (5.31) and (5.33) we observe that the characteristic polynomial of matrix A of the system

(5.26) is same as the denominator polynomial of the corresponding transfer function G(s). If there

are no cancellations between the numerator and denominator polynomials of G(s) in Eqn. (5.33), the

eigenvalues of matrix A are same as the poles of G(s). We will take up in Section 5.9, this aspect of

the correspondence between state variable models and transfer functions. It will be proved that for a

completely controllable and completely observable state variable model, the eigenvalues of matrix A are

same as the poles of the corresponding transfer function.

5.4.1

It is recalled that the state variable model for a system is not unique, but depends on the choice of a set

of state variables. A transformation

 x(t) = P x(t); P is a nonsingular matrix (5.35)

results in the following alternative state variable model (refer to Eqns (5.22)) for the system (5.26):

 x (t) = Ax (t) + bu(t); x(t0) = P–1
x(t0) (5.36a)

 y(t) = c x (t) + du(t) (5.36b)

where A = P–1
AP, b = P–1

b, c = cP

The definition of new set of internal state variables should, evidently, not affect the eigenvalues or

input-output behavior. This may be verified by evaluating the characteristic polynomial and the transfer

function of the transformed system.

 (i) | sI – A | = | sI – P–1
AP| = |sP

–1
P – P

– 1
AP| = |P–1(sI – A)P| = |P–1| |sI – A| |P| = |sI – A| (5.37)

 (ii) System output in response to input u(t) is given by the transfer function

 G (s) = c (sI – A)–1
b + d = cP(sI – P–1

AP)–1
P

–1
b

 + d

 = cP(sP
–1

P – P–1
AP)–1 P–1

b + d = cP[P–1(sI – A)P]–1
P

–1
b + d

 = cPP
–1(sI– A)–1

PP
–1

b + d = c(sI – A)–1
b + d = G(s) (5.38)

 (iii) System output in response to initial state x (t0) is given by (refer to Eqn. (5.27b))

 c(sI – A)–1
x(t0) = cP(sI – P–1

AP)–1
P

–1
x(t0) = c(sI – A)–1

x(t0) (5.39)

The input-output behavior of the system (5.26) is, thus, invariant under the transformation (5.35).

Example 5.4

Consider the position control system of Example 5.2. The plant model of the system is reproduced

below:

 x (t) = Ax(t) + bu(t)
(5.40)

 y(t) = cx(t)

312 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

with

A =

0 1 0

0 1 1

0 1 10

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

10

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

The characteristic polynomial of matrix A is

 |sI – A| =

s

s

s

–1 0

0 1 1

0 1 10

+ -
+

 = s(s2 + 11s + 11)

The transfer function

 G(s) =
Y s

U s

()

()
 =

c I b

I

()

| |

s

s

-
-

+
A

A

 =

[] ()

()

1 0 0

11 11 10 1

0 10

0 1

0

0

10

2s s s

s s s

s s s

+ + +
+
- +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙̇
˙
˙

+ +s s s()2 11 11

 =
10

11 112s s s()+ +
 (5.41)

Alternatively, we can draw the state diagram of the plant model in signal-flow graph form and from there,

obtain the transfer function using Mason’s gain formula. For the plant model (5.40), the state diagram is

shown in Fig. 5.7. Application of Mason’s gain formula7 yields

Y s

U s

()

()
 = G(s) =

10

1 10 10

3

1 1 2 2

s

s s s s

-

- - - -- - - - +()

 =
10

11 113 2s s s+ +
 =

10

11 112s s s()+ +

u 10 s–111

–10

–1

–1

s–1 s–1 x2x3 x1 = y

Fig. 5.7

5.4.2

The matrix

 F(s) = (sI – A)–1 =
()

| |

s

s

I A

I A

-
-

+

 (5.42)

 7 Section 2.12 of reference [155]

 Control System Analysis using State Variable Methods 313

is known in mathematical literature as the resolvent of A. Resolvent matrix F(s) can be expressed in the

following form (refer to Eqns (5.31) and (5.32)):

 F(s) = (sI – A)–1 =
Q Q Q Q1

1
2

2

1
1

1

1s s s

s s s

n n
n n

n n
n n

- -
-

-
-

+ + + +

+ + + +

 a a a
 (5.43)

where Qi are constant (n ¥ n) matrices and a j are constant scalars.

An interesting and useful relationship for the coefficient matrices Qi of the adjoint matrix, can be

obtained by multiplying both sides of Eqn. (5.43) by |sI – A|(sI – A). The result is

| sI – A| I = (sI – A)(Q1sn– 1 + Q2sn – 2 + + Qn–1s + Qn)

or

sn
I + a1sn – 1

I + + anI = sn
Q1 + sn – 1(Q2 – AQ1) + + s(Qn – AQn – 1) – AQn

Equating the coefficients of si on both the sides gives

 Q1 = I

 Q2 = AQ1 + a1I

 Q3 = AQ2 + a2I (5.44a)

 Qn = AQn – 1 + an – 1I

 0 = AQn + anI

We have thus determined that the leading coefficient of (sI – A)+ is the identity matrix, and that the

subsequent coefficients can be obtained recursively. The last equation in (5.44a) is redundant, but can be

used as a check when these recursion equations are used as the basis of a numerical algorithm.

An algorithm based on Eqns (5.44a) requires the coefficients ai (i = 1, 2, ..., n) of the characteristic

polynomial. Fortunately, the determination of these coefficients can be included in the algorithm, for it

can be shown that8

 ai = –
1

i
 tr(AQi); i = 1, 2, ..., n (5.44b)

where tr(M), the trace of M, is the sum of all the diagonal elements of the matrix M.

The algorithm given by Eans (5.44), called the resolvent algorithm, is convenient for hand calculation

and also easy to implement on a digital computer.

Example 5.5

Here we again compute (sI – A)–1 which appeared in Example 5.4, but this time using the resolvent

algorithm (5.44).

 Q1 = I, a1 = – tr(A) = 11

 Q2 = A + a1I

 8 The proof of relation (5.44b) is quite involved and will not be presented here. Refer to [108].

314 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 =

11 1 0

0 10 1

0 1 1-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; a2 = – 1
2

tr(AQ2) = 11

 Q3 = AQ2 + a2I

 =

11 10 1

0 0 0

0 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; a3 = – 1
3

 tr(AQ3) = 0

As a numerical check, we see that the relation

 0 = AQ3 + a3I

is satisfied. Therefore,

 (sI – A)–1 = F(s) =
Q Q Q1

2
2 3

3
1

2
2 3

s s

s s s

+ +

+ + +a a a

 =
1

11 11

11 11 10 1

0 10

0 1
2

2

s s s

s s s

s s s

s s s
()

()

()
+ +

+ + +
+
- +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Using resolvent algorithm, we develop here a fundamental property of the characteristic equation. To this

end, we write from Eqns (5.44a)

 Q2 = A + a1I

 Q3 = AQ2 + a2I = A2 + a1A + a2I

 Qn = An – 1 + a1A
n – 2 + + an – 1I

 AQn = An + a1A
n – 1 + + an – 1A = – anI

Therefore,

 A
n + a1A

n – 1 + + an – 1A + anI = 0 (5.45)

This is the well-known result known as the Cayley–Hamilton theorem. Note that this equation is same as

the characteristic equation

 sn + a1sn – 1 + + an – 1s + an = 0 (5.46)

with the scalar si in the latter replaced by the matrix Ai (i = 1, 2, … , n).

Thus, another way of stating the Cayley–Hamilton theorem is as follows: Every matrix satisfies its own

characteristic equation.

Later we will use the resolvent algorithm and the Cayley–Hamilton theorem for evaluation of the state

transition matrix required for the solution of the state equations.

 Control System Analysis using State Variable Methods 315

5.5 CONVERSION OF TRANSFER FUNCTIONS TO
 CANONICAL STATE VARIABLE MODELS

In the last section, we studied the problem—finding the transfer function from the state variable model of

a system. The converse problem—finding a state variable model from the transfer function of a system,

is the subject of discussion in this section. This problem is quite important because of the following

reasons:

 (i) Quite often the system dynamics is determined experimentally using standard test signals like a

step, impulse, or sinusoidal signal. A transfer function is conveniently fitted to the experimental

data in some best possible manner.

 There are, however, many design techniques developed exclusively for state variable models. In

order to apply these techniques, experimentally obtained transfer function descriptions must be

realized into state variable models.

 (ii) Realization of transfer functions into state variable models is needed even if the control system

design is based on frequency-domain design methods. In these cases, the need arises for the

purpose of transient response simulation. Many algorithms and numerical integration computer

programs designed for solution of systems of first-order equations are available, but there is not

much software for the numerical inversion of Laplace transforms. Thus, if a reliable method

is needed for calculating the transient response of a system, one may be better off converting

the transfer function of the system to state variable description, and numerically integrating the

resulting differential equations, rather than attempting to compute the inverse Laplace transform

by numerical methods.

 We shall discuss here the problem of realization of transfer function into state variable models.

Note the use of the term ‘realization’. A state variable model that has a prescribed rational function

G(s) as its transfer function, is the realization of G(s). The term ‘realization’ is justified by the

fact that by using the state diagram corresponding to the state variable model, the system with the

transfer function G(s) can be built in the real world by an op amp circuit.9

The following three problems are involved in the realization of a given transfer function into state

variable models:

 (i) Is it possible at all, to obtain state variable description from the given transfer function?

 (ii) If yes, is the state variable description unique for a given transfer function?

 (iii) How do we obtain the state variable description from the given transfer function?

The answer to the first problem has been given in the last section. A rational function G(s) is realizable

by a finite dimensional linear time-invariant state model if, and only if, G(s) is a proper rational function.

A proper rational function will have state model of the form:

 x(t) = Ax(t) + bu(t)
(5.47)

 y(t) = cx(t) + du(t)

where A, b, c and d are constant matrices of appropriate dimensions. A strictly proper rational function

will have state model of the form

 9 Section 7.9 of reference [155]

316 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 x(t) = Ax(t) + bu(t)
(5.48)

 y(t) = cx(t)

Let us now turn to the second problem. In the last section, we saw that there are innumerable systems that

have the same transfer function. Hence, the representation of a transfer function in state variable form is

obviously, not unique. However, all these representations will be equivalent.

In the remaining part of this section, we deal with the third problem. We shall develop three standard, or

‘canonical’ representations of transfer functions.

A linear time-invariant SISO system is described by transfer function of the form

G(s) =
b b b

a a

0 1
1

1
1

s s

s s
m n

m m
m

n n
n

+ + +

+ + +
£

-

–

;

where the coefficients ai and bi are real constant scalars. Note that there is no loss in generality to assume

the coefficient of sn to be unity.

In the following, we derive results for m = n; these results may be used for the case m < n by setting

appropriate bi coefficients equal to zero. Therefore, our problem is to obtain a state variable model

corresponding to the transfer function

 G(s) =
b b b

a a

0 1
1

1
1

s s

s s

n n
n

n n
n

+ + +

+ + +

-

-

 (5.49)

5.5.1

Our development starts with a transfer function of the form

Z s

U s

()
()

 =
1

1
1s sn n

n+ + +-a a
 (5.50)

which can be written as

(sn + a1sn – 1 + + an) Z(s) = U(s)

The corresponding differential equation is

pnz(t) + a1pn – 1z(t) + + anz(t) = u(t)

where

pkz(t) =D
d z t

dt

k

k

()

Solving for highest derivative of z(t), we obtain

 pnz(t) = – a1pn – 1z(t) – a2pn – 2 z(t) – – anz(t) + u(t) (5.51)

Now consider a chain of n integrators as shown in Fig. 5.8. Suppose that the output of the last integrator

is z(t); then, the output of the just previous integrator is pz = dz/dt, and so forth. The output from the

first integrator is pn – 1z(t), and thus, the input to this integrator is pnz(t). This leaves only the problem

of obtaining pnz(t) for use as input to the first integrator. In fact, this is already specified by Eqn. (5.51).

Realization of this equation is shown in Fig. 5.8.

 Control System Analysis using State Variable Methods 317

+
+ +

+
+

+

u + z

–

a1

pnz pn – 1z pn – 2z pz

a2 an – 1 an

Ú Ú Ú Ú

Fig. 5.8

Having developed a realization of the simple transfer function (5.50), we are now in a position to consider

the more general transfer function (5.49). We decompose this transfer function into two parts, as shown

in Fig. 5.9. The output Y(s) can be written as

 Y(s) = (b0sn + b1sn – 1 + + bn) Z(s) (5.52a)

where Z(s) is given by

Z s

U s

()
()

 =
1

1
1s sn n

n+ + +-a a
 (5.52b)

Z s()U s() Y s()1

+ + … +s sn n
n1

–1a a
b b b0 1

–1s sn n
n+ + … +

Fig. 5.9

A realization of the transfer function (5.52b) has already been developed. Figure 5.8 shows this

realization. The output of the last integrator is z(t) and the inputs to the integrators in the chain—from

the last to the first— are the n successive derivatives of z(t).

Realization of the transfer function (5.52a) is now straightforward. The output

y(t) = b0 p
nz(t) + b1pn – 1z(t) + + bnz(t),

is the sum of the scaled versions of the inputs to the n integrators. Figure 5.10 shows complete realization

of the transfer function (5.49). All that remains to be done is to write the corresponding differential

equations.

To get one state variable model of the system, we identify the output of each integrator in Fig. 5.10 with

a state variable starting at the right and proceeding to the left. The corresponding differential equations,

using this identification of state variables, are

 x1 = x2

 x2 = x3

(5.53a)

 xn – 1 = xn

 xn = – an x1 – an – 1 x2 – – a1 xn + u

318 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The output equation is found by careful examination of the block diagram of Fig. 5.10. Note that there

are two paths from the output of each integrator to the system output—one path upward through the box

labeled bi, and a second path down through the box labeled ai and hence, through the box labeled b0. As

a consequence,

 y = (bn – anb0) x1 + (bn – 1 – an – 1b0) x2 + + (b1 – a1b0) xn + b0u (5.53b)

Fig. 5.10

The state and output equations (5.53), organized in vector-matrix form, are given below.

 x(t) = Ax(t) + bu(t)
(5.54)

 y(t) = cx(t) + du(t)

with

 A =

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; b =

0

0

0

1

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 c = [bn – anb0, bn–1 – an–1 b0, ... , b1 – a1b0]; d = b0

If the direct path through b0 is absent (refer to Fig. 5.10), then the scalar d is zero and the row matrix c

contains only the bi coefficients.

The matrix A in Eqns (5.54) has a very special structure: the coefficients of the denominator of the

transfer function preceded by minus signs, form a string along the bottom row of the matrix. The rest

of the matrix is zero except for the ‘superdiagonal’ terms which are all unity. In matrix theory, a matrix

 Control System Analysis using State Variable Methods 319

with this structure is said to be in companion form. For this reason, we identify the realization (5.54)

as companion-form realization of the transfer function (5.49). We call this the first companion form;

another companion form, second companion from, is discussed in the following section.

5.5.2

In the first companion form, the coefficients of the denominator of the transfer function appear in one of

the rows of the A matrix. There is another companion form in which the coefficients appear in a column

of the A matrix. This can be obtained by writing Eqn. (5.49) as

 (sn + a1sn –1 + + an) Y(s) = (b0sn + b1sn – 1 + + bn) U(s)

or sn [Y(s) – b0U(s)] + sn – 1 [a1Y(s) – b1U(s)] + + [anY(s) – bnU(s)] = 0

On dividing by sn and solving for Y(s), we obtain

 Y(s) = b0U(s) +
1

s
 [b1U(s) – a1Y(s)] + +

1

sn
[bnU(s) – anY(s)] (5.55)

Note that 1/sn is the transfer function of a chain of n integrators. Realization of
1

sn
 [bnU(s) – anY(s)]

requires a chain of n integrators with input [bnu – an y] to the first integrator in the chain from left-

to-right. Realization of
1

1sn-
 [bn – 1U(s) – an – 1Y(s)], requires a chain of (n–1) integrators, with input

[bn – 1u – an – 1 y] to the second integrator in the chain, from left-to-right, and so forth. This immediately

leads to the structure shown in Fig. 5.11. The signal y is fed back to each of the integrators in the chain,

and the signal u is fed forward. Thus the signal [bnu – an y] passes through n integrators; the signal

[bn – 1u – an – 1y] passes through (n – 1) integrators, and so forth—to complete the realization of

Eqn. (5.55). The structure retains the ladder-like shape of the first companion form, but the feedback

paths are in different directions.

We can now write differential equations for the realization given by Fig. 5.11. To get one state variable

model, we identify the output of each integrator in Fig. 5.11 with a state variable starting at the left and

proceeding to the right. The corresponding differential equations are

+

+

y

+

+
+

–

+
+

+
+

–

xn

u

––

bn b0b1bn – 1 bn – 2

an a1an – 1 an – 2

Ú Ú Ú Ú

x2x1 xn – 1

Fig. 5.11

320 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 xn = xn – 1 – a1 (xn + b0u) + b1u

 xn – 1 = xn – 2 – a2 (xn + b0u) + b2u

 x2 = x1 – an – 1 (xn + b0u) + bn – 1u

 x1 = – an (xn + b0u) + bnu

and the output equation is

 y = xn + b0u

 The state and output equations, organized in vector-matrix form, are given below.

 x(t) = Ax(t) + bu(t)

 y(t) = cx(t) + du(t)
(5.56)

with

 A =

0 0 0

1 0 0

0 1 0

0 0 1

1

2

1

-
-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

a

a

a

a

n

n

n ; b =

b a b

b a b

b a b

n n

n n

-
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

- -

0

1 1 0

1 1 0

 c = [0 0 0 1]; d = b0

Compare A, b, and c matrices of the second companion form with that of the first. We observe that

A, b, and c matrices of one companion form correspond to the transpose of the A, c, and b matrices,

respectively, of the other.

There are many benefits derived from the companion forms of state variable models. One obvious benefit

is that both the companion forms lend themselves easily to simple analog computer models. Both the

companion forms also play an important role in pole-placement design through state feedback. This will

be discussed in Chapter 7.

5.5.3

In the two canonical forms (5.54) and (5.56), the coefficients of the denominator of the transfer function

appear in one of the rows or columns of matrix A. In another of the canonical forms, the poles of

the transfer function form a string along the main diagonal of the matrix. This canonical form follows

directly from the partial fraction expansion of the transfer function.

The general transfer function under consideration is (refer to Eqn. (5.49))

G(s) =
b b b

a a

0 1
1

1
1

s s

s s

n n
n

n n
n

+ + +

+ + +

-

-

By long division, G(s) can be written as

G(s) = b0 +
¢ + ¢ + + ¢

+ + +

- -

-

b b b

a a

1
1

2
2

1
1

s s

s s

n n
n

n n
n

 = b0 + G¢(s)

 Control System Analysis using State Variable Methods 321

The results are simplest when the poles of the transfer function are all distinct. The partial fraction

expansion of the transfer function, then has the form

 G(s) =
Y s

U s

()

() = b0 +
r

s

1

1- l
 +

r

s

2

2- l
 + +

r

s

n

n- l
 (5.57)

The coefficients ri (i = 1, 2, …, n) are the residues of the transfer function G¢(s) at the corresponding

poles at s = li (i = 1, 2, …, n). In the form of Eqn. (5.57), the transfer function consists of a direct

path with gain b0, and n first-order transfer functions in parallel. A block diagram representation of

Eqn. (5.57) is shown in Fig. 5.12. The gains, corresponding to the residues, have been placed at the

outputs of the integrators. This is quite arbitrary. They could have been located on the input side, or

indeed, split between the input and the output.

+

+

+

+

+

+

+

+

+

+
+

Ú

Ú

u

b0

l1

l2

ln

x1

x2

xn
rn

r2

r1
y

Ú

Fig. 5.12 G s

Identifying the outputs of the integrators with the state variables results in the following state and output

equations:

 x(t) = Lx(t) + bu(t)

 y(t) = cx(t) + du(t)
(5.58)

with

L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b =

1

1

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [r1 r2 rn]; d = b0

322 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

It is observed that for this canonical state variable model, the matrix L is a diagonal matrix with the poles

of G(s) as its diagonal elements. The unique decoupled nature of the canonical model is obvious from

Eqns (5.58); the n first-order differential equations are independent of each other:

 xi (t) = li xi(t) + u(t); i = 1, 2, … , n (5.59)

This decoupling feature, as we shall see later in this chapter, greatly helps in system analysis.

The block diagram representation of Fig. 5.12 can be turned into hardware only if all the poles at

s = l1, l2, ..., ln are real. If they are complex, the feedback gains and the gains corresponding to the

residues, are complex. In this case, the representation must be considered as being purely conceptual;

valid for theoretical studies, but not physically realizable. A realizable representation can be obtained by

introducing an equivalence transformation.

Suppose that s = s + jw , s = s – jw and s = l are the three poles of a transfer function. The residues at

the pair of complex conjugate poles must be themselves complex conjugates. Partial fraction expansion

of the transfer function, with a pair of complex conjugate poles and a real pole, has the form

G(s) = d +
p j q

s j

+
- +()s w

 +
p j q

s j

-
- -()s w

 +
r

s - l

A state variable model for this transfer function is given below (refer to Eqns (5.58)):

 x = Lx + bu

 y = cx + du
(5.60)

with

L =

s w

s w

l

+
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j

j

0 0

0 0

0 0

; b =

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [p + jq p – jq r]

Introducing an equivalence transformation

 x = P x

with P =

1 2 1 2 0

1 2 1 2 0

0 0 1

/ /

/ /

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j

j

we obtain (refer to Eqns (5.22))

 x(t) = A x(t) + b u(t)
(5.61)

 y(t) = c x(t) + du(t)

where

 A = P
–1
LP =

1 1 0

0

0 0 1

j j-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

s w

s w

l

+
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j

j

0 0

0 0

0 0

1 2 1 2 0

1 2 1 2 0

0 0 1

/ /

/ /

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j

j =

s w

w s

l

0

0

0 0

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 b = P
–1

b =

2

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = cP = [p q r]

 Control System Analysis using State Variable Methods 323

When the transfer function G(s) has repeated poles, the partial fraction expansion will not be as simple

as Eqn. (5.57). Assume that G(s) has m distinct poles at s = l1, l2, …, lm of multiplicity n1, n2, …, nm,

respectively; n = n1 + n2 + + nm. That is, G(s) is of the form

 G(s) = b0 +
¢ + ¢ + + ¢

- - -

- -b b b

l l l

1
1

2
2

1 2
1 2

s s

s s s

n n
n

n n
m

nm

 () () ()
 (5.62)

The partial fraction expansion of G(s) is of the form.

 G(s) = b0 + H1(s) + + Hm(s) =
Y s

U s

()

()
 (5.63)

where

 Hi(s) =
r

s

i

i
ni

1

()- l
 +

r

s

i

i
ni

2

1()- -l
 + +

r

s

in

i

i

()- l
 =

Y s

U s

i()

()

The first term in Hi(s) can be synthesized as a chain of ni identical, first-order systems, each having

transfer function 1/(s – li). The second term can be synthesized by a chain of (ni – 1) first-order systems,

and so forth. The entire Hi(s) can be synthesized by the system having the block diagram shown in

Fig. 5.13.

Fig. 5.13 Hi s

 We can now write differential equations for the realization of Hi(s), given by Fig. 5.13. To get one state

variable formulation, we identify the output of each integrator with a state variable—starting at the right

and proceeding to the left. The corresponding differential equations are

 x i1 = li xi1 + xi2

 x i2 = li xi2 + xi3 (5.64a)

 xini
= li xini

+ u

and the output is given by

 yi = ri1 xi1 + ri2 xi2 + + rini
 xini

 (5.64b)

324 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

If the state vector for the subsystem is defined by

 xi = [xi1 xi2 xini
]T

then Eqns (5.64) can be written in the standard form

 xi = Lixi + biu

 yi = ci xi
(5.65)

where

Li =

l

l

l

l

i

i

i

i

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

; bi =

0

0

0

1

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

; ci = [ri1 ri2 rini
]

 Note that matrix Li has two diagonals—the principal diagonal has the corresponding characteristic root

(pole), and the superdiagonal has all 1s. In matrix theory, a matrix having this structure is said to be in

Jordan form. For this reason, we identify the realization (5.65) as Jordan canonical form.

 According to Eqn. (5.63), the overall transfer function G(s) consists of a direct path with gain b0 and m

subsystems, each of which is in the Jordan canonical form, as shown in Fig. 5.14. The state vector of the

overall system consists of the concatenation of the state vectors of each of the Jordan blocks:

 x =

x

x

x

1

2

m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (5.66a)

Since there is no coupling between any of the subsystems, the L matrix of the overall system is ‘block

diagonal’:

u

+

+

+

+

+ yx x b

c x

= +v 1u

y =
1 1 1

1 1 1

x x b

c x

= +v 2u

y =
2 2 2

2 2 2

x x b

c x

= +v mu

y =
m m m

m m m

ym

y2

y1

b0

Fig. 5.14

 Control System Analysis using State Variable Methods 325

 L =

L

L

L

1

2

0 0

0 0

0 0

 m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (5.66b)

where each of the submatrices Li is in the Jordan canonical form (5.65). The b and c matrices of the

overall system are the concatenations of the bi and ci matrices, respectively, of each of the subsystems:

 b =

b

b

b

1

2

m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2 … cm]; d = b0 (5.66c)

The state variable model (5.58) derived for the case of distinct poles, is a special case of Jordan canonical

form (5.66) where each Jordan block is of 1 ¥ 1 dimension.

Example 5.6

In the following, we obtain three different realizations for the transfer function

G(s) =
s

s s s

+

+ + +

3

9 24 203 2
 =

Y s

U s

()

()

First Companion Form Note that the given G(s) is a strictly proper fraction; the realization will,

therefore, be of the form (5.48), i.e., the parameter d in the realization {A, b, c, d} is zero.

The state variable formulation in the first companion form, can be written just by inspection of the given

transfer function. Referring to Eqns (5.54), we obtain

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 =

0 1 0

0 0 1

20 24 9- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

u

1

2

3

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 y = [3 1 0]

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Figure 5.15a shows the state diagram in signal flow graph form.

Second Companion Form Referring to Eqns (5.56), we obtain

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 =

0 0 20

1 0 24

0 1 9

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

u

1

2

3

3

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 y = x3

Figure 5.15b shows the state diagram.

326 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Fig. 5.15 G s

Jordan Canonical Form The given transfer function G(s) in the factored form:

 G(s) =
s

s s

+

+ +

3

2 52() ()

Using partial fraction expansion, we obtain

 G(s) =
1 3

2

2 9

2

2 9

52

/

()

/ /

s s s+
+

+
+

-
+

A matrix of the state variable model in Jordan canonical form will be block-diagonal; consisting of two

Jordan blocks (refer to Eqns (5.65)):

 L1 =
-

-
È

Î
Í

˘

˚
˙

2 1

0 2
; L2 = [–5]

The corresponding bi and ci vectors are (refer to Eqns (5.65)):

 b1 =
0

1

È

Î
Í

˘

˚
˙ ; c1 = [1

3
2
9

]; b2 = [1] ; c2 = [– 2
9

]

The state variable model of the given G(s) in Jordan canonical form is, therefore, given by (refer to

Eqns (5.66))

 Control System Analysis using State Variable Methods 327

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 1 0

0 2 0

0 0 5

 +

x

x

x

u

1

2

3

0

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 y = [1
3

2
9

2
9

-]

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Figure 5.15c shows the state diagram. We note that Jordan canonical state variables are not completely

decoupled. The decoupling is blockwise; state variables of one block are independent of state variables of

all other blocks. However, the state variables of one block, among themselves, are coupled; the coupling

is unique and simple.

5.6 EIGENVALUES AND EIGENVECTORS

The last section was concerned with the derivation of state variable models for a given transfer function.

Out of infinitely many realizations possible for a given transfer function, we have derived the following

three ‘standard’ or canonical forms:

 (i) First companion form

 (ii) Second companion form

 (iii) Jordan form

Consider now the situation where the system dynamics is already known in the form of a state variable

model. For example, state equations representing the dynamics of a physical system may be obtained by

the application of physical laws. However, state variables in such a formulation may not be as convenient

as some other canonical state variables. Transformation of an original state variable model to a canonical

form may, therefore, be helpful in solving analysis and design problems.

In this section, we deal with the problem of transformation of a given state variable model to Jordan

canonical form (transformation of a given model to other canonical forms will be taken up in Section 5.9,

and to companion forms in Chapter 7).

Given state variable model:

 x(t) = Ax(t) + bu(t)

 y(t) = cx(t) + du(t)
(5.67)

where A, b, c and d are constant matrices of dimensions n ¥ n, n ¥ 1, 1 ¥ n and 1 ¥ 1, respectively.

 The problem is to find an equivalence transformation

 x = P x (5.68)

such that the equivalent model (refer to Eqns (5.22))

 x(t) = P– 1
AP x(t) + P–1

bu(t)
(5.69)

 y(t) = cP x(t) + du(t)

is in Jordan canonical form.

328 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

5.6.1 Eigenvalues

For a general nth-order matrix

 A =

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

the determinant

 |l I – A| =

l

l

l

- - -
- - -

- - -

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

On expanding the determinant we find that |l I – A | , called the characteristic polynomial of the matrix

A, is a polynomial of degree n:

|l I – A| = D(l) = ln + a1l n – 1 + + an – 1l + an

where ai are constant scalars.

The equation

 D(l) = ln + a1ln – 1 + + an – 1l +an = 0 (5.70)

is called the characteristic equation of the matrix A, and its n roots are called characteristic roots, or

characteristic values, or eigenvalues of the matrix A. When A represents the dynamic matrix of a linear

system, the eigenvalues determine the dynamic response of the system (the next section will establish

this fact), and also turn out to be the poles of the corresponding transfer function (refer to Eqn. (5.31)).

Eigenvalues of a matrix A are invariant under equivalence transformation (refer to Eqn. (5.37)), i.e.,

|lI – A| = |lI – P–1
AP|

for any nonsingular matrix P.

5.6.2 Eigenvectors

Consider an n ¥ n matrix A with eigenvalues {l1, l2, …, ln}. We start with the assumption of distinct

eigenvalues; later we will relax this assumption.

 State transformation to Jordan canonical form requires a

transformation matrix P such that

 P
–1

AP = L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (5.71)

 Control System Analysis using State Variable Methods 329

Let the transformation matrix P required to transform A to L, be of the form

 P = [v1 v2 vn]; (5.72a)

 vi =

v

v

v

1

2

i

i

ni

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = ith column of P (5.72b)

Equation (5.71) shows that

 AP = PL

or A[v1 v2 vn] = [v1 v2 vn]

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

By equating the ith columns, we obtain

 Avi = livi

or (liI – A)vi = 0 (5.73)

This is a set of n homogeneous equations in n unknowns v1i, v2i, …, vni.

There are two questions of interest with regard to Eqn. (5.73):

 (i) whether a solution to Eqn. (5.73) exists; and

 (ii) if the answer to the first question is yes, how many linearly independent solutions occur?

We consider an example to answer these questions. Refer to Section 5.2 for the basic definitions from

linear algebra used in the sequel.

Example 5.7

The matrix

A =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 1 0

0 3 1

0 0 2

has the characteristic equation

 |l I – A| =

l

l

l

+ -
+ -

+

4 1 0

0 3 1

0 0 2

 = (l + 4)(l + 3)(l + 2) = 0

Therefore, the eigenvalues of A are l1 = – 2, l2 = – 3 and l 3 = – 4.

Consider a set of homogeneous equations

(l1I – A)v1 = 0

330 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

or

2 1 0

0 1 1

0 0 0

11

21

31

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

v

v

v

 =

0

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 (5.74)

It is easy to check that rank of the matrix (l1I – A) is two, i.e.,

r (l1I – A) = 2

A highest-order array having a nonvanishing determinant, is

2 1

0 1

-È

Î
Í

˘

˚
˙ ,

which is obtained from (l1I – A) by omitting the third row and the third column. Consequently, a set of

linearly independent equations is

 2v11 – v21 = 0

 v21 = v31

or
2 1

0 1

11

21

-È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

v

v

 =
0

31v

È

Î
Í

˘

˚
˙

Therefore,
v

v

11

21

È

Î
Í

˘

˚
˙ =

2 1

0 1

1-È

Î
Í

˘

˚
˙

-

0

31v

È

Î
Í

˘

˚
˙ =

v

v

31

31

2/È

Î
Í

˘

˚
˙

There are three components in v1 and two equations governing them; therefore, one of the three

components can be arbitrarily chosen. For v31 = 2, a solution to Eqn. (5.74) is

v1 =

1

2

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

A different choice for v31 leads to a different solution to Eqn. (5.74). In fact, this set of equations has

infinite solutions as demonstrated below.

For v31 = 2a (with a arbitrary), the solution

v1 = a

1

2

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Obviously, this solution is non-unique. However, all nontrivial solutions have a unique direction, and

they differ only in terms of a scalar multiplier. There is, thus, only one independent solution.

 Corresponding to the eigenvalue l2 = – 3, a linearly independent solution to homogeneous equations

(l2I – A)v2 = 0

is given by

v2 =

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Control System Analysis using State Variable Methods 331

And for l3 = – 4, the equations

(l3I – A)v3 = 0

have a linearly independent solution

v3 =

2

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

In general, the number of equations that the vector vi in (5.73) has to obey, is equal to r(liI – A) where

r(M) denotes the rank of matrix M. There are n components in vi (n = number of columns of (liI – A));

therefore, (n – r(liI – A)) components of vi can be arbitrarily chosen. Thus, the number of linearly

independent solutions of the homogeneous equation (5.73) = [n – r(liI – A)] = g (l iI – A), where g (M)

denotes the nullity of matrix M.

We have the following answers to the two questions raised earlier with regard to Eqn. (5.73):

 (i) For Eqn. (5.73) to have a nontrivial solution, rank of (liI – A) must be less than n, or, equivalently,

det (liI – A) = 0. This condition is satisfied by virtue of the fact that li is an eigenvalue.

 (ii) The number of linearly independent solutions to Eqn. (5.73), is equal to nullity of (l iI – A).

The nullity of matrix (liI – A) does not exceed the multiplicity of the eigenvalue li (refer to Lancaster

and Tismenetsky [28] for proof of the result). Therefore, for distinct eigenvalue li, there is one, and only

one, linearly independent solution to Eqn. (5.73). This solution is called the eigenvector of A associated

with the eigenvalue li.

Theorem 5.1 Let v1, v2, …, vn be the eigenvectors associated with the distinct eigenvalues l1, l2,

…, ln, respectively, of matrix A. The vectors v1, v2, …, vn are linearly independent and the nonsingular

matrix

P = [v1 v2 vn]

transforms matrix A into Jordan canonical form.

Proof Let a1v1 + a2v2 + + anvn = 0 (5.75)

If it can be shown that this implies that a1 = a2 = = an = 0, then the set {vi} is linearly independent.

Define

 Ti = liI – A

Note that Tivi = 0

and Tivj = (li – lj)vj if i π j

Multiplying Eqn. (5.75) by T1 gives

a2(l1 – l2)v2 + a3(l1 – l3) v3 + + an(l1 – ln)vn = 0

332 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Multiplying this in turn by T2, T3, …, Tn – 1 gives

 a3 (l1 – l3)(l2 – l3)v3 + + an(l1 – ln)(l2 – ln)vn = 0

 an – 1 (l1 – ln – 1)(l2 – ln – 1) (ln – 2 – ln – 1)vn – 1

 + an (l1 – ln)(l2 – ln) (ln – 2 – ln)vn = 0 (5.76)

 an(l1 – ln)(l2 – ln) (ln – 2 – ln)(ln – 1 – ln)vn = 0 (5.77)

Since vn π 0 and ln π li for i π n, Eqn. (5.77) requires that an = 0. This, plus Eqn. (5.76), requires that

an – 1 = 0.

Continuing this reasoning shows that Eqn. (5.75) requires ai = 0 for i = 1, 2, …, n; so the eigenvectors

vi are linearly independent.

The matrix P, constructed by placing the eigenvectors (columns) together, is therefore a nonsingular

matrix.

As per Eqns (5.71)–(5.73), P–1
AP = L.

Example 5.8

Consider the matrix

A =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 1 0

0 3 1

0 0 2

for which we found, in Example 5.7, the eigenvalues and eigenvectors to be

l1 = – 2, v1 =

1

2

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; l2 = – 3, v2 =

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; l3 = – 4, v3 =

2

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The transformation matrix

P =

1 1 2

2 1 0

2 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

This gives

P
–1

AP =
1

4

0 0 2

0 4 4

2 2 1

4 1 0

0 3 1

0 0 2

1 1 2

2 1 0

2 0 0

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚̊

˙
˙
˙

 =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 0 0

0 3 0

0 0 4

 = L

which is the diagonal matrix (a special case of Jordan canonical form) with eigenvalues of A as its

diagonal elements. In fact, L could be written down directly without computing P–1
AP.

The eigenvectors vi which satisfy the equations

 (liI – A)vi = 0 (5.78)

 Control System Analysis using State Variable Methods 333

can be computed by solving the set of linear algebraic equations. The method of Gauss elimination is

a straightforward and powerful procedure for reducing systems of linear equations to a simple reduced

form, easily solved by substitution (refer to Noble and Daniel [27]). High quality software is available

commercially; for example, the MATLAB system from the Math Works [152].

In the following, we give an analytical procedure of computing the eigenvectors. This procedure is quite

useful for hand calculations.

Using the property (refer to Eqn. (5.3))

M adj M = |M|I

and letting M = (liI – A) yields

(liI – A) adj (liI – A) = |liI – A| I

Since |liI – A| is the characteristic polynomial and li is an eigenvalue, this equation becomes

 (liI – A) adj (liI – A) = 0 (5.79)

A comparison of Eqn. (5.78) with (5.79) shows that vi is proportional to any nonzero column of

adj (liI – A).

Example 5.9

Consider the state variable model

 x = Ax + bu

 y = cx

with A =

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

9 1 0

26 0 1

24 0 0

; b =

2

5

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 2 – 1]

The characteristic equation

 |lI – A| = 0

yields the roots l1 = – 2, l 2 = – 3, and l 3 = – 4.

 adj(lI – A) = adj

l

l

l

+ -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

9 1 0

26 1

24 0

 =

l l

l l l l

l l l

2

2

2

1

26 24 9 9

24 24 9 26

- - + +

- - + +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

For l1 = – 2, adj(l1I – A) =

4 2 1

28 14 7

48 24 12

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v1 =

1

7

12

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

For l2 = – 3, adj(l2I – A) =

9 3 1

54 18 6

72 24 8

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v2 =

1

6

8

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

334 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For l3 = – 4, adj(l3I – A) =

16 4 1

80 20 5

96 24 6

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v3 =

1

5

6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

In each case, the columns of adj(liI – A) are linearly related. In practice, it is necessary to calculate only

one (nonzero) column of the adjoint matrix.

The transformation matrix

 P = [v1 v2 v3] =

1 1 1

7 6 5

12 8 6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

State transformation

 x = P x

results in the following model (refer to Eqns (5.22)):

 x = L x + bu

 y = c x

with

 L = P
–1

AP = –
1

2

4 2 1

18 6 2

16 4 1

9 1 0

26 0 1

24 0 0

1 1 1

7 6 5

- -
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙ 112 8 6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 0 0

0 3 0

0 0 4

b = P–1
b =

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

3

6

; c = cP = [3 5 5]

Case II: Some Eigenvalues are Multiple Roots of the Characteristic Equation For notational

convenience, we assume that matrix A has an eigenvalue l1 of multiplicity n1, and all other eigenvalues

ln1 1+
, …, ln are distinct, i.e.,

|lI – A| = () ()l l l l- - +1 1
1

1

n
n (l – ln)

 Recall the result stated earlier: the nullity g of matrix (liI – A) does not exceed the multiplicity of li.

Therefore,

 1 £ g (l1I – A) £ n1

 g (ln1 1+ I – A) = 1

 g (lnI – A) = 1

We know that the number of linearly independent eigenvectors associated with an eigenvalue li is equal

to the nullity g of the matrix (liI – A). Thus, when one or more eigenvalues is a repeated root of the

characteristic equation, a full set of n linearly independent eigenvectors may, or may not, exist.

It is convenient to consider three subclassifications for Case II.

 Control System Analysis using State Variable Methods 335

Case II1: Nullity of (l1I – A) = n1 In this case, the vector equation

(l1I – A)v = 0

has n1 linearly independent solutions, say, v1, v2, …, vn1. We have thus, a full set of n1 eigenvectors

associated with multiple eigenvalue l1.

The remaining (n – n1) eigenvectors are obtained from the vector equations

(ljI – A)vj = 0, j = n1 + 1, …, n

Each of these vector equations has only one linearly independent solution.

The matrix

 P = [v1 v2 vn1 vn1+1 vn]

gives P
–1

AP = L =

l

l

l

l

l

1

1

1

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

n

n

+

È

Î

Í
Í
ÍÍ
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

Case II2: Nullity of (l1I – A) = 1 For this case, there is only one eigenvector associated with l1,

regardless of multiplicity n1. This eigenvector is given by the linearly independent solution of the vector

equation

(l1I – A)v = 0

The solution to this equation may be found as in Case I.

 We have seen in Cases I and II1, that the transformation matrix P yields a diagonal matrix L if, and

only if, P has a set of n linearly independent eigenvectors. When nullity of the matrix (l1I – A) is one, n

linearly independent eigenvectors cannot be constructed and, therefore, the transformation to a diagonal

matrix is not possible.

 The simplest form to which matrix A, having a multiple eigenvalue l1 of multiplicity n1 with g (l1I – A)

= 1 and all other distinct eigenvalues, can be reduced is the Jordan canonical form:

 L =

L

L

L

1

11

0 0

0 0

0 0

n

n

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

where the Jordan blocks Li are

 L1 =

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

336 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Ln1 +1 = [ln1 + 1]; ; Ln = [ln]

The transformation matrix P is given by

P = [v1 v2 vn1
 vn1+1 vn]

with v1 v2 , vn1
 determined as follows:

 A [v1 v2 vn1
] = [v1 v2 vn1

]

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

or Av1 = l1v1

 Av2 = v1 + l1v2

 Avn1 = vn1 – 1 + l1vn1

Rearranging these equations, we obtain

 (l1I – A)v1 = 0

 (l1I – A)v2 = – v1

 (l1I – A)vn1
 = – vn1 – 1

It can easily be established that each of these vector equations gives one linearly independent solution,

and the solutions v1, v2, ..., vn1
 form a linearly independent set of vectors. We shall call the set of vectors

{v1, ..., vn1
} the chain of generalized eigenvectors. Note that the vector v1 in the chain is, in fact, the

eigenvector associated with multiple eigenvalue l1.

Eigenvectors for the Jordan blocks Ln1 + 1, ..., Ln are given by the solution of the vector equations

 (ljI – A)vj = 0; j = n1 + 1, ..., n

The eigenvectors corresponding to distinct eigenvalues, and the chains of generalized eigenvectors

corresponding to multiple eigenvalues, form the transformation matrix P.

Case II3: 1 < g (l1I – A) < n1 For this case, there are g eigenvectors associated with l1. There will

be one Jordan block for each eigenvector; that is, l1 will have g blocks associated with it. This case is

just a combination of the Cases II1 and II2; there is only one ambiguity—the knowledge of n1 and g does

not directly give the information about the dimension of each of the Jordan blocks associated with l1.

Assume that l1 is a fourth-order root of the characteristic equation and g (l1I – A) = 2. The two

eigenvectors associated with l1 satisfy

 (l1I – A)va = 0, (l1I – A)vb = 0

To form the transformation matrix, we require two generalized eigenvectors—but it is still uncertain

whether the generalized eigenvectors are both associated with va, or both with vb, or one with each. That

is, the two Jordan blocks could take one of the following forms:

 Control System Analysis using State Variable Methods 337

 L1 =

l

l

l

1

1

1

1 0

0 1

0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, L2 = [l1]

or L1 =
l

l

1

1

1

0

È

Î
Í

˘

˚
˙ , L2 =

l

l

1

1

1

0

È

Î
Í

˘

˚
˙

The first pair corresponds to the equations

 (l1I – A)v1 = 0

 (l1I – A)v2 = – v1

 (l1I – A)v3 = – v2

 (l1I – A)v4 = 0

The second pair corresponds to the equations

 (l1I – A)v1 = 0

 (l1I – A)v2 = – v1

 (l1I – A)v3 = 0

 (l1I – A)v4 = – v3

Ambiguities such as this, can be resolved by the trial-and-error procedure.

An n-dimensional SISO system with m distinct eigenvalues l1, l2, ..., lm, of multiplicity n1, n2, ..., nm,

respectively n ni

i

m

=
Ê

Ë
Á

ˆ

¯
˜

=
Â

1

, has the following Jordan canonical representation:

 x = Lx + bu

 y = cx + du

where L is a block diagonal matrix with Jordan blocks L1, ..., Lm corresponding to the eigenvalues

l1, ..., lm, respectively, on its principal diagonal; each Jordan block Li corresponding to the eigenvalue

li is again a block diagonal matrix with g (i) sub-blocks on its principal diagonal; g (i) being the number

of linearly independent eigenvectors associated with the eigenvalue li:

 L
()n n¥

 =

L

L

L

1

2

0 0

0 0

0 0

 m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Li
n ni i()¥

 =

L

L

L

1

2

i

i

i i

0 0

0 0

0 0

 g ()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; i = 1, 2, …, m

338 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Lki =

l

l

l

i

i

i

1 0 0

0 1 0

0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; k = 1, 2, …, g (i)

The topic of computation of eigenvectors and generalized eigenvectors for systems with multiple

eigenvalues is much too detailed and specialized for this book to treat (Refer to Gopal [105] and Brogan

[106]). Over the years, experts have developed excellent general-purpose computer programs for the

efficient and accurate determination of eigenvectors and generalized eigenvectors [152-154].

In this book, the usefulness of the transformation of state variable models to Jordan canonical form will

be illustrated through system examples having distinct eigenvalues.

5.7 SOLUTION OF STATE EQUATIONS

In this section, we investigate the solution of the state equation

 x(t) = Ax(t) + bu(t); x(t0) =D x0 (5.80)

where x is n ¥ 1 state vector, u is a scalar input, A is n ¥ n constant matrix, and b is n ¥ 1 constant vector.

5.7.1

Functions of square matrices arise in connection with the solution of vector differential equations. Of

immediate interest to us are matrix infinite series.

Consider the infinite series in a scalar variable x:

 f(x) = a0 + a1x + a2 x
2 + =

i=
Â

0

ai x
i (5.81a)

with the radius of convergence r.

 We can define infinite series in a matrix variable A, as

 f(A) = a0I + a1A + a2A
2 + =

i=
Â

0

aiA
i (5.81b)

An important relation between the scalar power series (5.81a) and the matrix power series (5.81b) is

that if the absolute values of eigenvalues of A are smaller than r, then the matrix power series (5.81b)

converges (for proof, refer to Lefschetz [33]).

Consider, in particular, the scalar power series

 f (x) = 1 + x +
1

2!
x2 + +

1

k !
xk + =

1

0
i

xi

i
!

=
Â (5.82a)

It is well-known that this power series converges on to the exponential ex for all finite x, so that

 f (x) = ex (5.82b)

 Control System Analysis using State Variable Methods 339

It follows from this result that the matrix power series

 f (A) = I + A +
1

2!
 A2 + +

1

k !
 Ak + =

1

0
i

i

i
!
A

=
Â

converges for all A. By analogy with the power series in Eqns (5.82) for the ordinary exponential

function, we adopt the following nomenclature:

If A is an n ¥ n matrix, the matrix exponential of A is

 eA =D I + A +
1

2!
 A2 + +

1

k !
A

k + =
1

0
i

i

i
!
A

=
Â

The following matrix exponential will appear in the solution of state equations:

 eAt = I + At +
1

2!
A

2t2 + +
1

k !
A

ktk + =
i=
Â

0

1

i!
A

iti (5.83)

It converges for all A and all finite t.

 In the following, we examine some of the properties of the matrix exponential.

 (i) eA0 = I (5.84)

 This is easily verified by setting t = 0 in Eqn. (5.83).

 (ii) eA(t + t) = eAteAt = eAteAt (5.85)

 This is easily verified by multiplying out the first few terms for eAt and eAt .

 (iii) (eAt)–1 = e– At (5.86)

 Setting t = – t in Eqn. (5.85), we obtain

 eAte– At = eA0 = I

 Thus the inverse of eAt is e– At.

 Since the inverse of eAt always exists, the matrix exponential is nonsingular for all finite values

of t.

 (iv)
d

dt
eAt = AeAt = eAt

A (5.87)

 Term-by-term differentiation of Eqn. (5.83) gives

d

dt
eAt = A + A2t +

1

2!
A

3t2 + +
1

1()!k -
A

k tk – 1 +

 = A[I + At +
1

2!
A

2t2 + +
1

1()!k -
A

k – 1tk – 1 +] = AeAt

 = [I + At +
1

2!
A

2t2 + +
1

1()!k -
A

k – 1tk – 1 +]A = eAt
A

340 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

5.7.2

The simplest form of the general differential equation (5.80) is the homogeneous, i.e., unforced equation

 x(t) = Ax(t); x(t0) =
D x0 (5.88)

We assume a solution x(t) of the form

 x(t) = eAt
k (5.89)

where eAt is the matrix exponential function defined in Eqn. (5.83), and k is a suitably chosen constant

vector.

The assumed solution is, in fact, the true solution since it satisfies the differential equation (5.88) as is

seen below.

 x(t) =
d

dt
[eAt

k] =
d

dt
[eAt]k

Using property (5.87) of the matrix exponential, we obtain

 x(t) = AeAt k = Ax(t)

To evaluate the constant vector k in terms of the known initial state x(t0), we substitute t = t0 in Eqn.

(5.89):

 x(t0) = eAt0 k

Using property (5.86) of the matrix exponential, we obtain

 k = (eAt0)–1
x(t0) = e– At0x(t0)

Thus, the general solution to Eqn. (5.88) for the state x(t) at time t, given the state x(t0) at time t0, is

 x(t) = eAt e–At0 x(t0) = eA(t – t0) x(t0) (5.90a)

We have used the property (5.85) of the matrix exponential to express the solution in this form.

If the initial time t0 = 0, i.e., the initial state x0 is known at t = 0, we have from Eqn. (5.90a):

 x(t) = eAt
x(0) (5.90b)

From Eqn. (5.90b), it is observed that the initial state x(0) =
D x0 at t = 0 is driven to a state x(t) at time t.

This transition in state is carried out by the matrix exponential eAt. Due to this property, eAt is known as

the state transition matrix, and is denoted by e(t).

Properties of the matrix exponential, given earlier in Eqns (5.84)–(5.87), are restated below in terms of

state transition matrix e(t).

 (i)
d

dt
e (t) = Ae(t); e(0) = I

 (ii) e(t2 – t1)e(t1 – t0) = e(t2 – t0) for any t0, t1, t2
 This property of the state transition matrix is important since it implies that a state transition

process can be divided into a number of sequential transitions. The transition from t0 to t2:

 x(t2) = e(t2 – t0)x(t0);

 Control System Analysis using State Variable Methods 341

 is equal to the transition from t0 to t1 and then from t1 to t2:

 x(t1) = e(t1 – t0)x(t0)

 x(t2) = e(t2 – t1)x(t1)

 (iii) e–1(t) = e(–t)

 (iv) e(t) is a nonsingular matrix for all finite t.

The state transition matrix e(t) = eAt of an n ¥ n matrix A, is given by the infinite series (5.83). The series

converges for all A and all finite t. Hence, eAt can be evaluated within prescribed accuracy by truncating

the series at, say, i = N. An algorithm for evaluation of matrix series is given in Section 6.3.

In the following, we discuss the commonly used methods for evaluating eAt in closed form.

Taking the Laplace transform on both

sides of Eqn. (5.88) yields

sX(s) – x
0 = AX(s)

where X(s) =D L [x(t)]; x0
=D x(0)

Solving for X(s), we get

X(s) = (sI – A)– 1
x

0

The state vector x(t) can be obtained by inverse transforming X(s):

x(t) = L
– 1[(sI – A)–1]x0

Comparing this equation with Eqn. (5.90b), we get

 eAt = e(t) = L
– 1[(sI – A)–1] (5.91)

The matrix (sI – A)– 1 = F(s) is known in mathematical literature as the resolvent of A. The entries of the

resolvent matrix F(s) are rational functions of s. Resolvent matrix F(s) can be expressed in the following

form (refer to Eqn. (5.43)):

 F(s) =
Q()

()

s

sD
 =

Q Q Q Q1
1

2
2

1

1
1

1

s s s

s s s

n n
n n

n n
n n

- -
-

-
-

+ + + +

+ + + +

 a a a
 (5.92a)

where Qi are constant (n ¥ n) matrices and aj are constant scalars. The coefficients of the scalar polynomial

D(s) and the matrix polynomial Q(s) may be determined sequentially by resolvent algorithm (convenient

for digital computer) given in Eqns (5.44).

The inverse transform

 L
–1[Q(s)/D(s)] = eAt (5.92b)

can be expressed as a power series in t.

342 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 5.10

Consider the system

 x =

0 0 2

0 1 0

1 0 3

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x; x(0) =

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

By direct computation, we have

 (sI – A)– 1 =

s

s

s

0 2

0 1 0

1 0 3

1

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

 =
()

| |

s

s

I A

I A

-
-

+

 |sI – A| = (s – 1)2 (s – 2); (sI – A)+ =

() () ()

() ()

() ()

s s s

s s

s s s

- - - -
- -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 3 0 2 1

0 1 2 0

1 0 1

 eAt = L
– 1[(sI – A)– 1] = L

–1

()

() () () ()

()

() () () (

s

s s s s

s

s s

s

s s

-
- -

-
- -

-

- - - -

3

1 2
0

2

1 2

0
1

1
0

1

1 2
0

1 2))

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 =

2 0 2 2

0 0

0 2

2 2

2 2

e e e e

e

e e e e

t t t t

t

t t t t

- -

- + -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Consequently, the free response of the system is

x(t) = eAt
x(0) =

0

0

et

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Note that x(t) could be more easily computed by taking the inverse Laplace transform of

X(s) = [(sI – A)– 1
x(0)].

Suppose that A is an n ¥ n nondiagonal

matrix with distinct eigenvalues l1, l2, ..., ln. We define the diagonal matrix L as

L =

l

l

l

1

2

0 0 0

0 0 0

0 0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Control System Analysis using State Variable Methods 343

A and L are similar matrices; there exists a nonsingular transformation matrix P such that (refer

to Eqns (5.22))

L = P–1
AP

Now

 P
–1eAt

P = P–1[I + At +
1

2!
 A

2t2+] P = I + P–1
APt +

1

2!
 P

–1
A

2 Pt2 +

 = I + P–1
APt +

1

2!
 P–1

APP
–1

APt2 + = I + Lt +
1

2!
 L2t2 + = eLt

Thus the matrices eAt and eLt are similar. Since L is diagonal, eLtis given by

eLt =

e

e

e

t

t

tn

l

l

l

1

2

0 0 0

0 0 0

0 0 0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The matrix exponential eAt of matrix A with distinct eigenvalues l1, l2, ..., ln may, therefore, be evaluated

using the following relation:

 eAt
 = P eLt

P
–1 = P

e

e

e

t

t

tn

l

l

l

1

2

0 0

0 0

0 0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 P–1 (5.93)

where P is a transformation matrix that transforms A into the diagonal form.

(For the general case wherein matrix A has multiple eigenvalues, refer to [105]. Also refer to Review

Example 5.3 given at the end of this chapter).

Example 5.11

Consider the system
 x =

0 1

2 3- -
È

Î
Í

˘

˚
˙ x; x(0) =

0

1

È

Î
Í

˘

˚
˙

The characteristic equation for this system is

|lI – A| =
l

l

-
+
1

2 3()
 = 0

or (l + 1)(l + 2) = 0

Therefore, the eigenvalues of system matrix A are

l1 = – 1, l2 = – 2

Eigenvectors v1 and v2 corresponding to the eigenvalues l1 and l2, respectively, can be determined from

the adjoint matrix (lI – A)+ (refer to Eqn. (5.79)).

344 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (lI – A)+ =
()l

l

+
-

È

Î
Í

˘

˚
˙

3 1

2

For l = l1 = – 1,

 (l1I – A)+ =
2 1

2 1- -
È

Î
Í

˘

˚
˙ ; v1 =

1

1-
È

Î
Í

˘

˚
˙

For l = l2 = – 2,

 (l2I – A)+ =
1 1

2 2- -
È

Î
Í

˘

˚
˙ ; v2 =

1

2-
È

Î
Í

˘

˚
˙

 The transformation matrix P that transforms A into diagonal form, is

 P =
1 1

1 2- -
È

Î
Í

˘

˚
˙

The matrix exponential

 eAt = P
e

e

t

t

-

-

È

Î
Í
Í

˘

˚
˙
˙

0

0 2
 P–1 =

1 1

1 2- -
È

Î
Í

˘

˚
˙

e

e

t

t

-

-

È

Î
Í
Í

˘

˚
˙
˙

0

0 2

2 1

1 1- -
È

Î
Í

˘

˚
˙

 =
2

2 2 2

2 2

2 2

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- + - +

È

Î
Í
Í

˘

˚
˙
˙

Consequently, the free response of the system is

 x(t) = eAt
x(0) =

e e

e e

t t

t t

- -

- -

-

- +

È

Î
Í
Í

˘

˚
˙
˙

2

22

The state transition matrix may be

evaluated using a technique based on the Cayley–Hamilton theorem. To begin with, we restate the

theorem proved earlier in Section 5.4 (refer to Eqns (5.45)–(5.46)).

Every square matrix A satisfies its own characteristic equation.

Thus if we have, for an n ¥ n matrix A, the characteristic equation

D(l) = |lI – A| = ln + a1ln –1 + + an– 1 l + an = 0,

then, according to this theorem

D(A) = An + a1 An– 1 + + an–1 A + an I = 0

where I is an identity matrix and 0 is a null matrix.

This theorem provides a simple procedure for evaluating the function of a matrix. In the study of linear

systems, we are mostly concerned with functions which can be represented as a series of the powers of

a matrix. Consider the matrix polynomial

 f (A) = a0I + a1A + a2A
2 + + anA

n + an + 1A
n + 1 + (5.94a)

 Control System Analysis using State Variable Methods 345

This matrix polynomial, which is of degree higher than the order of A, can be computed by consideration

of the scalar polynomial

 f (l) = a0 + a1l + a2l2 + + anln + an + 1ln + 1 + (5.94b)

Dividing f (l) by the characteristic polynomial D(l), we get

f()

()

l

lD
 = q(l) +

g()

()

l

lD
 (5.95a)

where g(l) is the remainder polynomial of the following form:

 g(l) = b0 + b1l + + bn – 1ln – 1 (5.95b)

Equation (5.95a) may be written as

 f (l) = q(l)D(l) + g(l) (5.96)

Assume that the n ¥ n matrix A has n distinct eigenvalues l1, l2, ..., ln;

D(li) = 0; i = 1, 2, ..., n

If we evaluate f (l) in Eqn. (5.96) at the eigenvalues l1, l2, ..., ln, we have

 f (li) = g(li), i = 1, 2, ..., n (5.97)

The coefficients b0, b1, ... , bn–1 in Eqn. (5.95b) can be computed by solving the set of n simultaneous

equations obtained by successively substituting l1, l2, ... , ln in Eqn. (5.97).

Substituting A for l in Eqn. (5.96), we get

f (A) = q(A)D(A) + g(A)

Since D(A) is identically zero, it follows that

f(A) = g(A) = b0I + b1A + + bn –1 An – 1

If A possesses an eigenvalue lk of multiplicity nk, then only one independent equation can be obtained by

substituting lk into Eqn. (5.97). The remaining (nk –1) linear equations, which must be obtained in order

to solve for bi’s, can be found by differentiating both sides of Eqn. (5.97).

Since
d

d

j

j

k

l
l

l l

D()
È

Î
Í
Í

˘

˚
˙
˙ =

= 0 ; j = 0, 1, ..., (nk – 1),

it follows that

d

d
f

j

j

k

l
l

l l

()
È

Î
Í
Í

˘

˚
˙
˙ =

=
d

d
g

j

j

k

l
l

l l

()
È

Î
Í
Í

˘

˚
˙
˙ =

; j = 0, 1, ... , (nk – 1)

The formal procedure of evaluation of the matrix polynomial f(A) is given below.

 (i) Compute D(l) =D |lI – A|

 (ii) Find the roots of D(l) = 0, say,

 D(l) = (l – l1)n1 (l – l2)n2 (l – lm)nm (5.98a)

 where n1 + n2 + + nm = n. In other words, D(l) has root li with multiplicity ni. If li is a complex

number, then its complex conjugate is also a root of D(l).

346 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (iii) Form a polynomial g(l) of degree (n – 1); i.e.,

 g(l) = b0 + b1l + + bn – 1ln – 1 (5.98b)

 where the unknown parameters b0, b1, ..., bn – 1 are to be solved in Step (v).

 (iv) Form the following n equations:

d

d
f

j

j
il

l
l l

()
È

Î
Í
Í

˘

˚
˙
˙ =

=
d

d
g

j

j

i

l
l

l l

()
È

Î
Í
Í

˘

˚
˙
˙ =

;
j n

i m

i=
=

0 1 1

1 2

, , , ()

, , ,

…

…

–
 (5.98c)

 (v) Solve for the n unknown parameters b0, b1, ... , bn – 1 from the n equations in Step (iv).

 Then

 f(A) = g(A) = b0I + b1A + + bn – 1A
n – 1 (5.98d)

Example 5.12

Find f (A) = A10 for

A =
0 1

2 3- -
È

Î
Í

˘

˚
˙

Solution The characteristic polynomial is

D(l) = |lI – A| =
l

l

-
+
1

2 3
 = (l + 1)(l + 2)

The roots of D(l) = 0 are l1 = – 1, l2 = – 2.

Since A is of second order, the polynomial g(l) will be of the following form:

g(l) = b0 + b1l

The coefficients b0 and b1 are evaluated from equations

f(l1) = (l1)10 = g(l1) = b0 + b1l1

f(l2) = (l2)10 = g(l2) = b0 + b1l2

The result is

b0 = – 1022, b1 = – 1023

Therefore,

f(A) = A10 = b0I + b1A =
- -È

Î
Í

˘

˚
˙

1022 1023

2046 2047

The Cayley–Hamilton technique allows us to solve the problem of evaluation of eAt, where A is a constant

n ¥ n matrix. Since the matrix power series

eAt = I + At +
A

2 2

2

t

!
 + +

A
n nt

n!
 +

converges for all A and for all finite t, the matrix polynomial f(A) = eAt can be expressed as a polynomial

g(A) of degree (n – 1). This is illustrated below with the help of an example.

 Control System Analysis using State Variable Methods 347

Example 5.13

Consider the system

 x = Ax

with

 A =

0 0 2

0 1 0

1 0 3

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 ; x(0) =

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

In the following, we evaluate the function

 f(A) = eAt

using the Cayley–Hamilton technique.

The characteristic polynomial of matrix A is

 D(l) = |lI – A| =

l

l

l

0 2

0 1 0

1 0 3

()

()

-
- -

 = (l – 1)2 (l – 2)

The characteristic equation D(l) = 0 has a second-order root at l1 = 1 and a simple root at l2 = 2.

Since A is of third order, the polynomial g(l) will be of the form

g(l) = b0 + b1l + b2l2

The coefficients b0, b1, and b2 are evaluated using the following relations:

 f(l1) = g(l1)

d

d
f

l
l

l l

()
= 1

 =
d

d
g

l
l

l l

()
= 1

 f(l2) = g(l2)

These relations yield the following set of simultaneous equations:

 et = b0 + b1 + b2

 tet = b1 + 2b2

 e2t = b0 + 2b1 + 4b2

Solving these equations, we obtain

 b0 = – 2tet + e2t

 b1 = 3tet + 2et – 2e2t, and

 b2 = e2t – et – tet

Hence, we have

 eAt = g(A) = b0I + b1A + b2A
2

 = (– 2tet + e2t)I + (3tet + 2et – 2e2t)A + (e2t – et – tet)A2

348 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 =

2 0 2 2

0 0

0 2

2 2

2 2

e e e e

e

e e e e

t t t t

t

t t t t

- -

- + -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Consequently, the free response (u(t) = 0) of the system is

x(t) = eAt
x(0) =

0

0

et

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

This result is identical to the one obtained earlier in Example 5.10.

5.7.3

When an input u(t) is present, the complete solution x(t) is obtained from the nonhomogeneous

equation (5.80).

By writing Eqn. (5.80) as

 x(t) – Ax(t) = bu(t)

and premultiplying both sides of this equation by e–At, we obtain

 e–At [x(t) – Ax(t)] = e–At bu(t) (5.99)

By applying the rule for the derivative of the product of two matrices, we can write (refer to Eqn. (5.87))

d

dt
[e– At

x(t)] = e–At d

dt
(x(t)) +

d

dt
(e–At)x(t) = e–At x(t) – e– At Ax(t)

 = e–At [x(t) – Ax(t)]

Use of this equality in Eqn. (5.99) gives

d

dt
[e–At

x(t)] = e– At
bu(t)

Integrating both sides with respect to t between the limits 0 and t, we get

 e–At
x(t)

0

t

 = e u

t

-Ú A
b

t

0

(t)dt

or e–At
x(t) – x(0) = e

t

-Ú At

0

bu(t)dt

Now, premultiplying both sides by eAt, we have

 x(t) = eAt
x(0) +

0

t

Ú eA(t – t)
bu(t)dt (5.100)

 Control System Analysis using State Variable Methods 349

If the initial state is known at t = t0, rather than t = 0, Eqn. (5.100) becomes

 x(t) = e
t tA()- 0 x(t0) +

t

t

0

Ú eA(t – t)
bu(t)dt (5.101)

Equation (5.101) can also be written as

 x(t) = e(t – t0) x(t0) +

t

t

0

Ú e(t – t) bu(t) dt (5.102)

where

e(t) = eAt

Equation (5.102) is the solution of Eqn. (5.80). This equation is called the state transition equation. It

describes the change of state relative to the initial conditions x(t0) and the input u(t).

Example 5.14

For the speed control system of Fig. 5.3, the following plant model was derived in Example 5.1 (refer to

Eqns (5.17)):

 x = Ax + bu

 y = cx

with

 A =
-
- -

È

Î
Í

˘

˚
˙

1 1

1 10
; b =

0

10

È

Î
Í

˘

˚
˙ ; c = [1 0]

State variables x1 and x2 are the physical variables of the system:

 x1(t) = w (t), angular velocity of the motor shaft

 x2(t) = ia(t), armature current

The output

y(t) = x1(t) = w (t)

In the following, we evaluate the response of this system to a unit-step input, under zero initial conditions.

 (sI – A)–1 =
s

s

+ -
+

È

Î
Í

˘

˚
˙

-
1 1

1 10

1

 =
1

11 11

10 1

1 12s s

s

s+ +

+
- +

È

Î
Í

˘

˚
˙

 =

s

s a s a s a s a

s a s a

s

s a s a

+
+ + + +

-
+ +

+
+ +

10 1

1 1

1 2 1 2

1 2 1 2

()() ()()

()() ()()

ÈÈ

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; a1 = 1.1125, a2 = 9.8875

 eAt = L
–1[(sI – A)–1]

 =
1 0128 0 0128 0 114 0 114

0 114 0

1 2 1 2

1

. . . .

. .

e e e e

e

a t a t a t a t

a t

- - - -

-

- -

- + 1114 0 0128 1 01282 1 2e e ea t a t a t- - -- +

È

Î
Í
Í

˘

˚
˙
˙. .

 u(t) = 1; t ≥ 0; x(0) = 0

350 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Therefore,

 x(t) =

0

t

Ú eA(t – t)
bdt =

0

t

Ú
114

114 0 1123 8 8842

1 2

1 2

.

. . .

() ()

() (

e e

e e

a t a t

a t a t

- - - -

- - -

-()
- +

t t

t --()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

t)
 dt

 =
0 9094 1 0247 0 1153

0 0132 0 1151 0 1019

1 2

1

. . .

. . .

- +

- + -

- -

- -

e e

e e

a t a t

a t aa t2

È

Î
Í
Í

˘

˚
˙
˙

The output

y(t) = w(t) = 0.9094 – 1.0247 e–1.1125t + 0.1153e–9.8875t; t ≥ 0

5.8

Controllability and observability are properties which describe structural features of a dynamic system.

These properties play an important role in modern control system design theory; the conditions on

controllability and observability often govern the control solution.

To illustrate the motivation of investigating controllability and observability properties, we consider the

problem of the stabilization of an inverted pendulum on a motor-driven cart.

Example 5.15

Figure 5.16 shows an inverted pendulum with its pivot

mounted on a cart. The cart is driven by an electric motor.

The motor drives a pair of wheels of the cart; the whole

cart and the pendulum become the ‘load’ on the motor. The

motor at time t exerts a torque T(t) on the wheels. The linear

force applied to the cart is u(t); T(t) = Ru(t), where R is the

radius of the wheels.

The pendulum is obviously unstable. It can, however, be

kept upright by applying a proper control force u(t). This

somewhat artificial system example represents a dynamic

model of a space booster on take off—the booster is

balanced on top of the rocket engine thrust vector.

From inspection of Fig. 5.16, we construct the differential

equations describing the dynamics of the inverted pendulum

and the cart. The horizontal displacement of the pivot on

the cart with respect to the fixed nonrotating frame, is z(t), while the rotational angle of the pendulum is

q (t). The parameters of the system are as follows:

 M = the mass of the cart;

 L = the length of the pendulum = 2l;

 m = the mass of the pendulum; and

dm

r

Carriage

Pendulum

z

l
l

CG

q

u t()

Inverted pendulum system

 Control System Analysis using State Variable Methods 351

 J = the moment of inertia of the pendulum with respect to center of gravity (CG).

 J = r dm r Adr A
r2 2

3

3
= =

È

Î
Í
Í

˘

˚
˙
˙- --

Ú Ú
l

l

l

l

l

l

()r r = r rA A
2

3
2

3

3 2l
l

lÊ

Ë
Á

ˆ

¯
˜ =

Ê

Ë
Á

ˆ

¯
˜()

 =
ml2

3

where A = area of cross section, and r = density.

The horizontal and vertical positions of the CG of the pendulum are given by (z + l sinq) and (l cosq),

respectively.

The forces exerted on the pendulum are—the force mg on the center of gravity, a horizontal reaction

force H and a vertical reaction force V (Fig. 5.17a). H is the horizontal reaction force that the cart exerts

on the pendulum, whereas –H is the force exerted by the pendulum on the cart. Similar convention

applies to forces V and –V.

Pivot

(a) (b)

CG

V

V u

mg
z

H

H

0

q

Taking moments around CG of the pendulum, we get

 J
d t

dt

2

2

q()
 = V(t) l sin q (t) – H(t) l cos q(t) (5.103a)

Summing up all forces on the pendulum in vertical and horizontal directions, we obtain

 m
d

dt

2

2
(l cosq (t)) = V(t) – mg (5.103b)

 m
d

dt

2

2
(z(t) + l sinq (t)) = H(t) (5.103c)

Summing up all the forces on the cart in the horizontal direction (Fig. 5.17b), we get

 M
d z t

dt

2

2

()
 = u(t) – H(t) – Fc (5.103d)

where

 Fc = Bc sign () z (5.103e)

is the model of the frictional force of the cart wheels on the track; Bc is the cart friction coefficient.

352 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Performing the required differentiation in Eqns (5.103b) and (5.103c), we get

 ml(cos cos)- - q q q q2
 = V mg- (5.104a)

 m z l + - +()(sin cos)q q q q2
 = H (5.104b)

Substituting (5.103d) into (5.104b) gives

 mz ml ml Fc + - +q q q qcos sin2 = u M z- (5.104c)

Now, substituting Eqns (5.104a) and (5.103d) into (5.103a) yields

 J q = mg ml ml l F l u M z lc- -È
Î

˘
˚ + - - q q q q q q q2 cos sin sin cos () cos (5.104d)

We next substitute ()u M z- from (5.104c) into (5.104d) and perform manipulations to get

 J q = mgl ml mzlsin cosq q q- -2 (5.104e)

Let a =
1

m M+
Then, we can represent (5.104e) as

 z = – mal mal aF auc
 q q q qcos sin+ - +2

 (5.104f)

We substitute (5.104f) into (5.104e), to obtain

 q =
mgl m l a mal F mal u

J m l a

csin (sin)/ (cos) (cos)

cos

q q q q q- + -

-

2 2 2

2 2

2 2

22 2q + ml
 (5.104g)

We next substitute q from (5.104e) into (5.104f) to get

 z =
- + + - +

+ -

(sin)/ (sin ())()

cos

m l ag mal a u F J ml

J ml m l a

c
2 2 2 2

2 2 2

2 2q q q

22q
 (5.104h)

 Since J =
1

3

2ml , Eqns (5.104g) and (5.104h) reduce to the following nonlinear set of equations.

 q =
g mla a F u

l mla

csin (sin)/ cos ()

/ cos

q q q q

q

- -

-

 2

2

2 2

4 3

+
 (5.105a)

 z =
- + + -

-

(sin)/ (sin) / () /

/ cos

mag a ml u F a

ma

c2 2 4 3 4 3

4 3 2

q q q

q
 (5.105b)

Suppose that the system parameters are as follows:

M = 1 kg; m = 0.15 kg; and l = 0.5 m.

Recall that g = 9.81 m/sec2.

In our problem, since the objective is to keep the pendulum upright, it seems reasonable to assume that
 q()t and q()t will remain close to zero. In view of this, we can set with sufficient accuracy sin q q ;

cos q 1. Also, the second-order deviations q q q q¥ ¥ 0 0; . We further assume, for simplified

analysis, that Fc = 0.

With these assumptions, we have from Eqns (5.105)

 q (t) = 16.3106 q (t) – 1.4458 u(t)

 z(t) = – 1.0637 q (t) + 0.9639 u(t)

 Control System Analysis using State Variable Methods 353

Choosing the states x1 = q, x2 = q , x3 = z, and x4 = z , we obtain the following state model for the inverted

pendulum on moving cart:

 x = Ax + bu (5.106)

with

A =

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b =

0

1 4458

0

0 9639

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

The plant (5.106) is said to be completely controllable if every state x(t0) can be affected or controlled to

reach a desired state in finite time, by some unconstrained control u(t). Shortly, we will see that the plant

(5.106) satisfies this condition, and therefore, a solution exists to the following control problem:

Move the cart from one location to another without causing the pendulum to fall.

The solution to this control problem is not unique. We normally look for a feedback control scheme so

that the destabilizing effects of disturbance forces (due to wind, for example) are filtered out. Figure 5.18a

shows a state-feedback control scheme for stabilizing the inverted pendulum. The closed-loop system is

formed by feeding back the state variables through a real constant matrix k:

u(t) = – kx(t)

The closed-loop system is thus described by

 x(t) = (A – bk)x(t)

The design objective in this case is to find the feedback matrix k such that the closed-loop system is

stable. The existence of a solution to this design problem is directly based on the controllability property

of the plant (5.106). This will be established in Chapter 7.

Implementation of the state-feedback control solution requires access to all the state variables of the

plant model. In many control situations of interest, it is possible to install sensors to measure all the

state variables. This may not be possible or practical in some cases. For example, if the plant model

includes nonphysical state variables, measurement of these variables using physical sensors is not

possible. Accuracy requirements or cost considerations may prohibit the use of sensors for some physical

variables also.

The input and the output of a system are always physical quantities, and are normally easily accessible

to measurement. We, therefore, need a subsystem that performs the estimation of state variables based

on the information received from the input u(t) and the output y(t). This subsystem is called an observer

whose design is based on observability property of the controlled system.

The plant (5.106) is said to be completely observable if all the state variables in x(t) can be observed from

the measurements of the output y(t) = q (t) and the input u(t). Shortly, we will see that the plant (5.106)

does not satisfy this condition and therefore, a solution to the observer-design problem does not exist

when the inputs to the observer subsystem are u(t) and q(t).

Cart position z(t) is easily accessible to measurement and as we shall see, the observability condition is

satisfied with this choice of input information to the observer subsystem. Figure 5.18b shows the block

354 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

diagram of the closed-loop system with an observer that estimates the state vector from measurements of

u(t) and z(t). The observed or estimated state vector, designated as x̂, is then used to generate the control

u through the feedback matrix k.

Control system with state feedback

A study of controllability and observability properties, presented in this section, provides a basis for the

state-feedback design problems discussed in Chapter 7. Further, these properties establish the conditions

for complete equivalence between the state variable and transfer function representations.

In this section, we study the controllability and observability of linear time-invariant systems described

by state variable model of the following form:

 x(t) = Ax(t) + bu(t) (5.107a)

 y(t) = cx(t) + du(t) (5.107b)

where A, b, c and d are respectively n ¥ n, n ¥ 1, 1 ¥ n and 1 ¥ 1 matrices, x(t) is n ¥ 1 state vector, y(t)

and u(t) are, respectively, output and input variables.

For the linear system given by Eqns (5.107), if there exists an input u[0, t1] which transfers the initial

state x(0) =D x0 to the state x1 in a finite time t1, the state x0 is said to be controllable. If all initial states

are controllable, the system is said to be completely controllable, or simply controllable. Otherwise, the

system is said to be uncontrollable.

From Eqn. (5.100), the solution of Eqn. (5.107a) is

x(t) = eAt
x

0 +

0

t

Ú eA(t – t) bu(t) dt

To study the controllability property, we may assume, without loss of generality, that x1 ∫ 0. Therefore,

if the system (5.107) is controllable, there exists an input u[0, t1] such that

 – x0 =

0

1t

Ú e–At bu(t) dt (5.108)

 Control System Analysis using State Variable Methods 355

From this equation, we observe that complete controllability of a system depends on A and b, and is

independent of output matrix c. The controllability of the system (5.107) is frequently referred to as the

controllability of the pair {A, b}.

It may be noted that according to the definition of controllability, there is no constraint imposed on the

input or on the trajectory that the state should follow. Further, the system is said to be uncontrollable

although it may be ‘controllable in part’.

From the definition of controllability, we observe that by complete controllability of a plant we mean

that we can make the plant do whatever we please. Perhaps this definition is too restrictive in the sense

that we are asking too much of the plant. But if we are able to show that system equations satisfy this

definition, certainly there can be no intrinsic limitation on the design of the control system for the plant.

However, if the system turns out to be uncontrollable, it does not necessarily mean that the plant can

never be operated in a satisfactory manner. Provided that a control system will maintain the important

variables in an acceptable region, the fact that the plant is not completely controllable, is immaterial.

Another important point which the reader must bear in mind, is that almost all physical systems are

nonlinear in nature to a certain extent, and a linear model is obtained after making certain approximations.

Small perturbations of the elements of A and b may cause an uncontrollable system to become

controllable. It may also be possible to increase the number of control variables and make the plant

completely controllable (controllability of multi-input systems is discussed in Section 5.10).

A common source of uncontrollable state variable models arises when redundant state variables are

defined. No one would intentionally use more state variables than the minimum number needed to

characterize the behavior of a dynamic system. In a complex system with unfamiliar physics, one may

be tempted to write down differential equations for everything in sight and, in doing so, may write down

more equations than are necessary. This will invariably result in an uncontrollable model for the system.

For the linear system given by Eqns (5.107), if the knowledge of the output y and the input u over a finite

interval of time [0, t1] suffices to determine the state x(0) =D x
0, the state x0 is said to be observable. If

all initial states are observable, the system is said to be completely observable, or simply observable

otherwise, the system is said to be unobservable.

The output of the system (5.107) is given by

y(t) = c eAt
 x

0 + c

0

t

Ú eA(t – t)
bu(t)dt + du(t)

The output and the input can be measured and used, so that the following signal h (t) can be obtained

from u and y.

 h(t) =D y(t) – c

0

t

Ú eA(t – t)
b u(t)dt – d u(t) = c eAt

x
0 (5.109)

Premultiplying by e
TtA
c

T and integrating from 0 to t1 gives

 e e dt e t dt
T Tt T t

t

t

t

TA A A
c c x c

0

0

0

1 1

Ú Ú
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= h() (5.110)

356 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

When the signal h(t) is available over a time interval [0, t1], and the system (5.107) is observable, then

the initial state x0 can be uniquely determined from Eqn. (5.110).

From Eqn. (5.110) we see that complete observability of a system depends on A and c, and is independent

of b. The observability of the system (5.107) is frequently referred to as the observability of the pair

{A, c}.

Note that the system is said to be unobservable, although it may be ‘observable in part’. Plants that are

not completely observable can often be made observable by making more measurements (observability

of multi-output systems will be discussed in Section 5.10). Alternately, one may examine feedback

control schemes which do not require complete state feedback.

5.8.2

It is difficult to guess whether a system is controllable or not from the defining equation (5.108). Some

simple mathematical tests which answer the question of controllability, have been developed. The

following theorem gives two controllability tests.

The necessary and sufficient condition for the system (5.107) to be completely

controllable is given by any one of the following:

 I. W(0, t1) = e e dtt

t

T tT-Ú A
b b

0

1

–A (5.111)

 is nonsingular.

 II. The n ¥ n controllability matrix

 U =D [b Ab A
2
b An – 1

b] (5.112)

 has rank equal to n, i.e., r(U) = n.

 Since Test II can be computed without integration, it allows the controllability of a system to be

easily checked.

Sufficiency: If W(0, t1) given in Eqn. (5.111) is nonsingular, the input

 u(t) = – bT e
Tt-A

W
–1(0, t1)x0 (5.113)

can be applied to the system. This input satisfies the condition given in Eqn. (5.108):

 e dtt

t

-Ú A
b

0

1

u t() = - - - -Ú e e t dtt T t

t
T

A A
bb W x

1
1

0

0

0

1

(,)

 = – e e dtt T

t
Tt- -Ú

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

A A
bb

0

1

W
–1(0, t1)x0 = – x0

Necessity: Assume that the system is controllable, though W(0, t1) is singular for any t1. Then, as per

the results given in Eqns (5.8), the n rows of e– At
b are linearly dependent, i.e., there exists a nonzero

n ¥ 1 vector ` such that

 `Te–At b = 0 (5.114)

 Control System Analysis using State Variable Methods 357

From the assumption of controllability, there exists an input u satisfying Eqn. (5.108); therefore, from

Eqns (5.108) and (5.114),

 – `T
x

0 =

0

1t

Ú `Te–At
b u(t) dt = 0 (5.115)

holds for any initial state x0. By choosing x0 = `, Eqn. (5.115) gives (refer to Eqn. (5.6a)),

`T ̀ = [||` ||]2 = 0

This is true only for ` = 0, which contradicts the nonzero property of `. Therefore, the nonsingularity

of W(0, t1) is proved.

Sufficiency: It is first assumed that though r (U) = n, the system is not controllable, and by showing that

this is a contradiction, the controllability of the system is proved.

By the above assumption,

r (U) = n and W(0, t1) is singular.

Therefore, Eqn. (5.114) holds, i.e.,

`Te– At
b = 0; t ≥ 0, ` π 0

Derivatives of the above equation at t = 0, yield (refer to Eqn. (5.87)),

`T
A

k
b = 0; k = 0, 1, ..., (n – 1)

which is equivalent to

`T [b Ab ◊◊◊ An – 1
b] = `T

U = 0

Therefore, n rows of controllability matrix U are linearly dependent (refer to Eqn. (5.8a)). This contradicts

the assumption that r(U) = n; hence the system is completely controllable.

Necessity: It is assumed that the system is completely controllable but r (U) < n. From this assumption,

there exists nonzero vector ` satisfying

`T
U = 0

or

 `T
A

k b = 0; k = 0, 1, ..., (n – 1) (5.116a)

Also from the Cayley–Hamilton theorem, e–At can be expressed as a linear combination of I, A, ..., An–1:

 e–At = b0I + b1A + + bn – 1 An–1 (5.116b)

From Eqns (5.116a) and (5.116b), we obtain

`Te–At
b = 0, t ≥ 0, ` π 0

and therefore (refer to Eqns (5.8)),

0

1t

Ú `Te–At
b b

T e
Tt-A ` dt = `T

W(0, t1) ` = 0

Since the system is completely controllable, W(0, t1) should be nonsingular from Test I; this contradicts

the assumption that ` is nonzero. Therefore, r(U) = n.

358 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 5.16

Recall the inverted pendulum of Example 5.15, shown in Fig. 5.16, in which the object is to apply a force

u(t) so that the pendulum remains balanced in the vertical position. We found the linearized equations

governing the system to be

 x = Ax + bu

where x = [q q z z]T

A =

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b =

0

1 4458

0

0 9639

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

z(t) = horizontal displacement of the pivot on the cart; and

q (t) = rotational angle of the pendulum.

To check the controllability of this system, we compute the controllability matrix U:

U = [b Ab A
2
b A

3
b] =

0 1 4458 0 23 5816

1 4458 0 23 5816 0

0 0 9639 0 1 5379

0 9639 0 1 5

- -
- -

. .

. .

. .

. . 3379 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Since |U| = 420.4851, U has full rank, and by Theorem 5.2, the system is completely controllable. Thus,

if the angle q departs from equilibrium by a small amount, a control always exists which will drive it

back to zero.10 Moreover, a control also exists which will drive both q and z, as well as their derivatives,

to zero.

It may be noted that Eqn. (5.113) suggests a control law to prove the sufficiency of the controllability test.

It does not necessarily give an acceptable solution to the control problem. The open-loop control given

by Eqn. (5.113) is normally, not acceptable. In Chapter 7, we will derive a state-feedback control law for

the inverted pendulum. As we shall see, for such a control to exist, complete controllability of the plant

is a necessary requirement.

Example 5.17

Consider the electrical network shown in Fig. 5.19. Differential equations governing the dynamics of

this network, can be obtained by various standard methods. By use of nodal analysis, for example, we

get

 C1

de

dt

e e

R

e e

R

1 1 2

3

1 0

1

+
-

+
-

 = 0

 C2

de

dt

e e

R

e e

R

2 2 1

3

2 0

2

+
-

+
-

 = 0

 10 This justifies the assumption that q (t) @ 0, provided we choose an appropriate control strategy.

 Control System Analysis using State Variable Methods 359

The appropriate state variables for the network are the capacitor

voltages e1 and e2. Thus, the state equations of the network are

 x = Ax + be0

where x = [e1 e2]T

 A =

- +
Ê
ËÁ

ˆ
¯̃

- +
Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 1 1 1

1 1 1 1

1 3 1 3 1

3 2 2 3 2

R R C R C

R C R R C

; b =

1

1

1 1

2 2

R C

R C

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

The controllability matrix of the system is

U = [b Ab] =

1 1 1 1 1

1 1 1 1

1 1 1 1
2

3 1 2 2 1 1

2 2 2 2
2

3 2

RC R C R C R C R C

R C R C R C

- + -
Ê
ËÁ

ˆ
¯̃

- +

()

() RR C R C1 1 2 2

1
-

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

We see that under the condition

R1C1 = R2C2

r (U) = 1 and the system becomes ‘uncontrollable’. This condition is the one required to balance the

bridge, and in this case, the voltage across the terminals of R3 cannot be influenced by the input e0.

5.8.3

The following theorem gives two observability tests.

The necessary and sufficient condition for the system (5.107) to be completely

observable, is given by any one of the following:

 I. M(0, t1) = e
T
t

t

A

0

1

Ú c
T
ceAtdt (5.117)

 is nonsingular.

 II. The n ¥ n observability matrix

 V =D

c

cA

cA

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 (5.118)

 has rank equal to n, i.e., r(V) = n.

+ R1

R3

R2

e2

C2C1

e1

e0

360 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Proof Using the defining equation (5.110), this theorem can be proved in a manner similar to

Theorem 5.2.

Example 5.18

We now return to the inverted pendulum of Example 5.16. Assuming that the only output variable to be

measured is q (t), the position of the pendulum, then the linearized equations governing the system are

 �x = Ax + bu

 y = cx

where A =

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 ; b =

0

1 4458

0

0 9639

– .

.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 c = [1 0 0 0]

The observability matrix

 V =

c

cA

cA

cA

2

3

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

1 0 0 0

0 1 0 0

16 3106 0 0 0

0 16 3106 0 0

.

.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

|V| = 0, and therefore, by Theorem 5.3, the system is not completely observable.

Consider now, the displacement z(t) of the cart as the output variable. Then

c = [0 0 1 0]

and the observability matrix

V =

0 0 1 0

0 0 0 1

1 0637 0 0 0

0 1 0637 0 0

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

|V| = 1.1315 π 0; the system is, therefore, completely observable. The values of �z(t), q (t) and �q (t) can

all be determined by observing z(t) over an arbitrary time interval. Observer design for the inverted-

pendulum system is given in Chapter 7.

5.8.4 Invariance Property

It is recalled that the state variable model for a system is not unique, but depends on the choice of a set

of state variables. A transformation

x(t) = P x (t); P is a nonsingular constant matrix,

 Control System Analysis using State Variable Methods 361

results in the following alternative state variable model (refer to Eqns (5.22)) for the system (5.107):

 x (t) = A x (t) + bu(t); x(t0) = P–1
x(t0)

 y(t) = c x(t) + du(t)

where

 A = P–1
AP, b = P–1

b, c = cP

The definition of a new set of internal state variables should, evidently, not affect the controllability and

observability properties. This may be verified by evaluating the controllability and observability matrices

of the transformed system.

 I. U = [()]b A b b A
n - 1 (5.119a)

 b = P–1
b

 A b = P–1
APP

– 1
b = P–1

Ab

 ()A
2 b = A A b() = P–1

APP
–1

Ab = P–1
A

2
b

 ()A b
n - 1 = P–1

A
n–1

b

 Therefore,

 U = [P–1
b P

–1
Ab P–1

A
n –1

b] = P–1
U

 where U = [b Ab An – 1
b] (5.119b)

 Since P–1 is nonsingular,

 r (U) = r(U) (5.119c)

 II. A similar relationship can be shown for the observability matrices.

5.8.5

If the system equations are known in Jordan canonical form, then one need not resort to controllability

and observability tests given by Theorems 5.2 and 5.3. These properties can be determined almost by

inspection of the system equations, as will be shown below.

Consider a SISO system with distinct eigenvalues l1, l2, ..., ln. The Jordan canonical state model of this

system is of the form

 x = Lx + bu

 y = cx + du
(5.120)

with L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b =

b

b

bn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2 cn]

362 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The system (5.120) is completely controllable if, and only if, none of the elements of

the column matrix b is zero, and (5.120) is completely observable if, and only if, none of the elements

of the row matrix c is zero.

The controllability matrix

 U = [b Lb Ln – 1
b]

 =

b b b

b b b

b b b

n

n

n n n n n
n

1 1 1 1 1
1

2 2 2 2 2
1

1

l l

l l

l l

-

-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙̇

 |U| = b1 ¥ b2 ¥ ¥ bn

1

1

1

1 1
1

2 2
1

1

l l

l l

l l

n

n

n n
n

-

-

-

 π 0 if bi π 0, i = 1, 2, ..., n.

This proves the first part of the theorem. The second part can be proved in a similar manner.11

In frequency-domain analysis, it is tacitly assumed that the dynamic properties of a system are completely

determined by the transfer function of the system. That this is not always the case is illustrated by the

following examples.

Example 5.19

Consider the system

 x = Ax + bu

 y = cx (5.121)

with A =
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
; b =

1

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

The controllability matrix

U = [b Ab] =
1 1

1 1

-
-

È

Î
Í

˘

˚
˙

 11 Refer to Gopal [105] for controllability and observability tests using Jordan canonical representation of systems

with multiple eigenvalues

 Control System Analysis using State Variable Methods 363

Since r(U) = 1, the second-order system (5.121) is not completely controllable. The eigenvalues of

matrix A are the roots of the characteristic equation

|sI – A| =
s

s

+ -
- +

2 1

1 2
 = 0

The eigenvalues are obtained as – 1, – 3. The modes of the transient response are, therefore, e– t and e–3t.

The transfer function of the system (5.121) is calculated as

 G(s) = c(sI – A)–1
b = [0 1]

s

s

+ -
- +

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

-
2 1

1 2

1

1

1

 = [0 1]

s

s s s s

s s

s

s s

+
+ + + +

+ +
+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙

2

1 3

1

1 3

1

1 3

2

1 3

()() () ()

() () () ()

˙̇
˙

1

1

È

Î
Í

˘

˚
˙ =

1

1s +

We find that because of pole-zero cancellation, both the eigenvalues of matrix A do not appear as poles

in G(s). The dynamic mode e–3t of the system (5.121), does not show up in input-output characterization

given by the transfer function G(s). Note that the system under consideration is not a completely

controllable system.

Example 5.20

Consider the system

 x = Ax + bu

 y = cx (5.122)

with A =
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
; b =

1

0

È

Î
Í

˘

˚
˙ ; c = [1 –1]

The observability matrix

 V =
c

cA

È

Î
Í

˘

˚
˙ =

1 1

3 3

-
-

È

Î
Í

˘

˚
˙

Since r(V) = 1, the second-order system (5.122) is not completely observable.

The eigenvalues of matrix A are – 1, – 3. The transfer function of the system (5.122) is calculated as

 G(s) = c(sI – A)–1
b

 = [1 –1]

s

s s s s

s s

s

s s

+
+ + + +

+ +
+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙

2

1 3

1

1 3

1

1 3

2

1 3

()() () ()

() () () ()

˙̇
˙

1

0

È

Î
Í

˘

˚
˙ =

1

3s +

The dynamic mode e–t of the system (5.122), does not show up in the input-output characterization given

by the transfer function G(s). Note that the system under consideration is not a completely observable system.

364 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In the following, we give two specific state transformations to reveal the underlying structure imposed

upon a system by its controllability and observability properties (for proof, refer to [105]). These results

are then used to establish equivalence between transfer function and state variable representations.

Consider an nth-order system

 x = Ax + bu

 y = cx
(5.123a)

Assume that

 r(U) = r[b Ab An – 1
b] = m < n

Consider the equivalence transformation

 x = P x = [P1 P2] x (5.123b)

where P1 is composed of m linearly independent columns of U, and (n – m) columns of P2 are chosen

arbitrarily so that matrix P is nonsingular.

The equivalence transformation (5.123b) transforms the system (5.123a) to the following form:

x

x

1

2

È

Î
Í

˘

˚
˙ =

A A

0 A

x

x

b

0

c c12

22

1

2

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ u

 = A x + bu (5.123c)

 y = []c c
x

x
c x1 2

1

2

È

Î
Í

˘

˚
˙ =

where the m-dimensional subsystem

 x A x b A x1 1 12 2= + +c c u

is controllable from u (the additional driving term A x12 2 has no effect on controllability); the (n – m)

dimensional subsystem
 x A x2 22 2=

is not affected by the input and is, therefore, entirely uncontrollable.

This theorem shows that any system which is not completely controllable, can be decomposed into

controllable and uncontrollable subsystems shown in Fig. 5.20. The state model (5.123c) is said to be in

controllability canonical form.

In Section 5.4, it was shown that the characteristic equations and transfer functions of equivalent systems

are identical. Thus, the set of eigenvalues of matrix A of system (5.123a) is same as the set of eigenvalues

of matrix A of system (5.123c), which is a union of the subsets of eigenvalues of matrices Ac and A22 .

Also the transfer function of system (5.123a) must be the same as that of (5.123c). The transfer function

of (5.123a) is calculated from Eqn. (5.123c) as12

12 A A

0 A

1 2

3

È

Î
Í
Í

˘

˚
˙
˙

B B

B B

1 2

3 4

È

Î
Í
Í

˘

˚
˙
˙

 =
I 0

0 I

È

Î
Í
Í

˘

˚
˙
˙

 gives
B B

B B

1 2

3 4

È

Î
Í
Í

˘

˚
˙
˙

 =
A A A A

0 A

1
1

1
1

2 3
1

3
1

- - -

-

-È

Î
Í
Í

˘

˚
˙
˙

 Control System Analysis using State Variable Methods 365

 G(s) = c c
I A A

0 I A

b

0
1 2

12

22

1

[] - -
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

-
s

s

c c

 = c c1 2[]
() () ()

()

s s s

s

c cI A I A A I A

0 I A

- - -

-

È

Î
Í
Í

˘

˚
˙
˙

– – –

–

1 1
12 22

1

22
1

 = c I A1
1()s c- –
bc

Therefore, the input-output relationship for the system is dependent only on the controllable part of

the system. We will refer to the eigenvalues of Ac as controllable poles and the eigenvalues of A22 as

uncontrollable poles.

Only the controllable poles appear in the transfer function model; the uncontrollable poles are canceled

by the zeros.

Consider the nth-order system

 x = Ax + bu

 y = cx (5.124a)

Assume that

 r (V) = r

c

cA

cA

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 = l < n

Consider the equivalence transformation

 x = Qx =
Q

Q

1

2

È

Î
Í

˘

˚
˙ x (5.124b)

where Q1 is composed of l linearly independent rows of V, (n – l) rows of Q2 are chosen arbitrarily so

that matrix Q is nonsingular.

The equivalence transformation (5.124b) transforms the system (5.124a) to the following form:

x

x

1

2

È

Î
Í

˘

˚
˙ =

A 0

A A

x

x

b

b

0

21 22

1

2

1

2

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ u = A x + bu (5.124c)

u

y
+

x A x b A x= + +u 21 1 12c c

x1

x2
c2

c1

x A x=2 22 2

The controllability canonical form of a state variable model

366 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 y = [c 00]
x

x
c x

1

2

È

Î
Í

˘

˚
˙ =

where the l-dimensional subsystem

 x1 = A x b0 1 1+ u

 y = c x0 1

is observable from y, and the (n – l)-dimensional subsystem

 x2 = A x b A x22 2 2 21 1+ +u

has no effect upon the output y, and is therefore entirely unobservable, i.e., nothing about x2 can be

inferred from output measurement.

This theorem shows that any system which is not completely observable, can be decomposed into the

observable and unobservable subsystems shown in Fig. 5.21. The state model (5.124c) is said to be in

observability canonical form.

The observability canonical form of a state variable model

Since systems (5.124a) and (5.124c) are equivalent, the set of eigenvalues of matrix A of system (5.124a)

is same as the set of eigenvalues of matrix A of system (5.124c), which is a union of the subsets of

eigenvalues of matrices A0 and A22. The transfer function of the system (5.124a) may be calculated from

(5.124c) as follows:

 G(s) = []c 0
I A 0

A I A

b

b
0

0

21 22

1

1

2

s

s

-
- -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

-

 = []
()

() () ()
c 0

A

A A A A

b

b
0

0
1

22
1

21 0
1

22
1

1s

s s s

I 0

I I I

-

- - -

È

Î
Í
Í

˘

˚
˙
˙

-

- - -
22

È

Î
Í

˘

˚
˙

 = c I A b0 0
1

1()s - - (5.125)

which shows that the unobservable part of the system does not affect the input-output relationship. We

will refer to the eigenvalues of A0 as observable poles and the eigenvalues of A22 as unobservable

poles.

We now examine the use of state variable and transfer function models of a system to study its dynamic

properties.

We know that a system is asymptotically stable if all the eigenvalues of the characteristic matrix A

of its state variable model, are in the left half of the complex plane. Also, we know that a system is

 Control System Analysis using State Variable Methods 367

(Bounded-Input Bounded-Output) BIBO stable if all the poles of its transfer function model are in the

left half of the complex plane. Since, in general, the poles of the transfer function model of a system

are a subset of the eigenvalues of the characteristic matrix A of the system, asymptotic stability always

implies BIBO stability.

The reverse, however, may not always be true because the eigen values of the uncontrollable and/or

unobservable part of the system are hidden from the BIBO stability analysis. These may lead to instability

of a BIBO stable system. When a state varia ble model is both controllable and observable, all the eigen-

values of characteristic matrix A appear as poles in the corre sponding transfer function. Therefore, BIBO

stability implies asymptotic stability only for completely controllable and com pletely observable system.

To conclude, we may say that the transfer function model of a system represents its complete dynamics

only if the system is both controllable and observable.

Many of the analysis results developed in earlier sections of this

chapter for SISO systems have obvious extensions for MIMO

systems.

Consider a general MIMO system shown in the block diagram

of Fig. 5.22. The input variables are represented by u1, u2, ...,

up, and the output variables by y1, y2, ..., yq. The state, as in the

case of SISO systems, is represented by variables x1, x2, ..., xn.

The state variable model for a MIMO system takes the following

form:

 x()t = Ax(t) + Bu(t); x(t0) =D x0 (5.126a)

 y(t) = Cx(t) + Du(t) (5.126b)

where

 A =

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; B =

b b b

b b b

b b b

p

p

n n np

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 C =

c c c

c c c

c c c

n

n

q q qn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

, D =

d d d

d d d

d d d

p

p

q q qp

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

A, B, C and D are, respectively, n ¥ n, n ¥ p, q ¥ n, and q ¥ p constant matrices; x is n ¥ 1 state vector, u is

p ¥ 1 input vector, and y is q ¥ 1 output vector.

The solution of the state equation (5.126a) is given by (refer to Eqn. (5.100))

yq

MIMO

system

up

x1 x2 xn

y2

y1

u2

u1

A general MIMO system

368 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 x(t) = eAt
x(0) +

0

t

Ú eA(t – t) Bu(t) dt (5.127a)

The output

 y(t) = C e e dt t

t

A A
x Bu() ()()0

0

+
È

Î

Í
Í

˘

˚

˙
˙

-Ú t
t t + Du(t) (5.127b)

 In the transform domain, the input-output behavior of the system (5.126) is determined entirely by the

matrix (refer to Eqn. (5.28))

 G(s) = C(sI – A)–1 B + D (5.128a)

 This matrix is called the transfer function matrix of system (5.126), and it has the property that the input

U(s) and output Y(s) of Eqns (5.126) are related by

 Y()
()

s
q¥1

 = G U() ()
() ()

s s
q p p¥ ¥1

 (5.128b)

whenever x0 = 0.

 In an expanded form, Eqn. (5.128b) can be written as

Y s

Y s

Y sq

1

2

()

()

()

�

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

G s G s G s

G s G s G s

G s G s G

p

p

q q qp

11 12 1

21 22 2

1 2

() () ()

() () ()

() () (

�

�

� � �

� ss

U s

U s

U sp)

()

()

()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

2

�

The (i, j)th element Gij(s) of G(s) is the transfer function relating the ith output to the jth input.

Example 5.21

The scheme of Fig. 5.23 describes a simple concentration control process. Two concentrated solutions of

some chemical with constant concentrations C1 and C2 are fed with flow rates Q1(t) = Q1 + q1(t), and

Q2(t) = Q2 +q2(t), respectively, and are continu ously mixed in the tank. The outflow from the mixing

tank is at a rate Q(t) = Q + q(t) with concentration C(t) = C + c(t). Let it be assumed that stirring causes

perfect mixing so that the con centration of the solution in the tank is uniform throughout, and equals that

of the outflow. We shall also assume that the density remains constant.

Let V(t) = V + v(t) be the volume of the fluid in the tank.

The mass balance equations are

d

dt
[V + v(t)] = Q1 + q1(t) + Q2 +q2(t) – Q – q(t) (5.129a)

d

dt
[{C + c(t)}{V + v(t)}] = C1[Q1 + q1(t)] + C2[Q2 + q2(t)] – [C + c(t)][Q + q(t)] (5.129b)

 Control System Analysis using State Variable Methods 369

 The flow Q(t) is characterized by the turbulent flow relation

 Q(t) = k H t() = k
V t

A

()
 (5.130)

where H(t) = H + h(t) is the head of the liquid in the tank, A is the cross-sectional area of the tank and

k is a constant.

The steady-state operation is described by the equations (ob tained from Eqns (5.129) and (5.130))

 0 = Q Q Q1 2+ -

 0 = C Q C Q CQ1 1 2 2+ -

 Q = k
V

A

 For small perturbations about the steadystate, Eqn. (5.130) can be linearized using Eqn. (5.11c):

 Q(t) – Q =
k

A

V t

V t
V V

∂
∂

=

()

()
 (V(t) – V)

or q(t) =
k

V2

V

A
v(t) =

Q

V2
 v(t)

370 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 From the foregoing equations, we obtain the following relations describing perturbations about

steadystate:

 �v(t) = q1(t) + q2(t) –
1

2

Q

V
 v(t) (5.131a)

 C t c t� �v V() ()+ = C1 q1(t) + C2 q2(t) –
1

2

CQ

V
 v(t) – Q c(t) (5.131b)

(Second-order terms in perturbation variables have been neglect ed)

The hold-up time of the tank is

t =
V

Q

Let us define

 x1(t) = v(t), x2(t) = c(t), u1(t) = q1(t), u2(t) = q2(t), y1(t) = q(t), and y2(t) = c(t)

In terms of these variables, we get the following state model from Eqns (5.131):

 �x (t) =

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2
0

0
1

t

t

x(t) +

1 1

1 2C C

V

C C

V

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 u(t) (5.132a)

 y(t) =

1

2
0

0 1

t

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x(t) (5.132b)

For the parameters

Q1 = 10 liters/sec, Q2 = 20 liters/sec, C1 = 9 g-moles/liter, C2 = 18 g-moles/liter, V = 1500 liters, the state

variable model becomes

 �x (t) = Ax(t) + Bu(t) (5.133a)

 y(t) = Cx(t) (5.133b)

with

A =
-

-

È

Î
Í

˘

˚
˙

0 01 0

0 0 02

.

.
; B =

1 1

0 004 0 002-

È

Î
Í

˘

˚
˙

. .
; C =

0 01 0

0 1

.È

Î
Í

˘

˚
˙

 In the transform domain, the input-output behavior of the system is given by

 Y(s) = G(s) U(s)

where

 G(s) = C(sI – A)–1
B

 For A, B, and C given by Eqns (5.133), we have

(sI – A) =
s

s

+

+

È

Î
Í

˘

˚
˙

0 01 0

0 0 02

.

.

 Control System Analysis using State Variable Methods 371

 G(s) = C(sI – A)–1
B =

0 01 0

0 1

.È

Î
Í

˘

˚
˙

1

0 01
0

0
1

0 02

s

s

+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

1 1

0 004 0 002-
È

Î
Í

˘

˚
˙

. .

 =

0 01

0 01

0 01

0 01

0 004

0 02

0 002

0 02

.

.

.

.

.

.

.

.

s s

s s

+ +
-
+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (5.134)

The necessary and sufficient condition for the system (5.126) to be completely controllable, is that the

n ¥ np matrix

 U =D [B AB A
2
B An – 1

B] (5.135)

has rank equal to n, i.e., r (U) = n.

The necessary and sufficient condition for the system (5.126) to be completely observable, is that the

nq ¥ n matrix

 V =D

C

CA

CA

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 (5.136)

has rank equal to n, i.e., r (V) = n.

The controllability and observability properties can be deter mined by the inspection of the system

equations in Jordan canoni cal form. A MIMO system with distinct eigenvalues l1, l2, ..., ln has the

following Jordan canonical state model:

 x = Lx + Bu (5.137a)

 y = Cx + Du (5.137b)

with

L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; B =

b b b

b b b

b b b

p

p

n n np

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; C =

c c c

c c c

n

q q qn

11 12 1

1 2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

372 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The system (5.137) is completely controllable if, and only if, none of the rows of B matrix is a zero

row, and (5.137) is completely observable if, and only if, none of the columns of C matrix is a zero

column.

We have been using Jordan canonical structure only for systems with distinct eigenvalues. Refer to [105]

for controllability and observability tests using Jordan canonical representation of systems with multiple

eigenvalues.

Example 5.22

Consider the mixing-tank system discussed in Example 5.21. Sup pose the feeds Q1 and Q2 have equal

concentrations, i.e., C1 = C2 = C0 (Fig. 5.23). Then the steady-state concentration in the tank is also C0,

and from Eqn. (5.132a) we have

 x(t) =

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2
0

0
1

t

t

 x(t) +
1 1

0 0

È

Î
Í

˘

˚
˙ u(t)

This state variable model is in Jordan canonical form. Since one row of the B matrix is a zero row,

the system is not completely controllable. As is obvious from the Jordan canonical model, the input

u(t) affects only the state variable x1(t), the incremental volume. The variable x2(t), the incremental

concentration, has no connection with the input u(t).

If C1 π C2, the system is completely controllable.

REVIEW EXAMPLES

Review Example 5.1

A feedback system has a closed-loop transfer function

Y s

R s

()

()
 =

10 4

1 3

()

()()

s

s s s

+
+ +

Construct the following three different state models for this system:

 (a) One where the system matrix A is a diagonal matrix.

 (b) One where A is in first companion form.

 (c) One where A is in second companion form.

Solution

 (a) The given transfer function can be expressed as

Y s

R s

()

()
 =

10 4

1 3

()

()()

s

s s s

+
+ +

 =
40 3 15

1

5 3

3

/ /

s s s
+

-
+

+
+

 Control System Analysis using State Variable Methods 373

 Therefore,

 Y(s) =
40 3/

s
 R(s) +

-
+
15

1s
 R(s) +

5 3

3

/

s +
 R(s)

 Let X1(s) =
40 3/

s
 R(s); this gives x1 =

40

3
r

 X2(s) =
-

+
15

1s
R(s); this gives x2 + x2 = – 15r

 X3(s) =
5 3

3

/

s +
 R(s); this gives x3 + 3x3 =

5

3
r

 In terms of x1, x2 and x3, the output y(t) is given by

 y(t) = x1(t) + x2(t) + x3(t)

 A state variable formulation, for the given transfer function, is defined by the following matrices:

 L =

0 0 0

0 1 0

0 0 3

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

40 3

15

5 3

/

/

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 1 1]; d = 0

 Note that the coefficient matrix A is diagonal, and the state model is in Jordan canonical form.

 We now construct two state models for the given transfer function in companion form. To do this,

we express the transfer function as

Y s

R s

()

()
 =

10 4

1 3

()

()()

s

s s s

+
+ +

 =
10 40

4 33 2

s

s s s

+

+ +
 =

b b b b

a a a

0
3

1
2

2 3

3
1

2
2 3

s s s

s s s

+ + +

+ + +
;

 b0 = b1 = 0, b2 = 10, b3 = 40, a1 = 4, a2 = 3, a3 = 0

 (b) With reference to Eqns (5.54), we obtain the following state model in the first companion form:

 A =

0 1 0

0 0 1

0 3 4- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [40 10 0]; d = 0

 (c) With reference to Eqns (5.56), the state model in second companion form becomes

 A =

0 0 0

1 0 3

0 1 4

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

40

10

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

, c = [0 0 1]; d = 0

Review Example 5.2

A linear time-invariant system is characterized by the homogene ous state equation

x

x

1

2

È

Î
Í

˘

˚
˙ =

0 1

0 2

1

2-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

x

x

 (a) Compute the solution of the homogeneous equation assuming the initial state vector

x(0) =
1

0

È

Î
Í

˘

˚
˙

 Employ both the Laplace transform method and the canonical trans formation method.

374 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (b) Consider now that the system has a forcing function and is represented by the following

nonhomogeneous state equation:

x

x

1

2

È

Î
Í

˘

˚
˙ =

0 1

0 2

0

1

1

2-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

x

x
u

 where u is a unit-step input.

 Compute the solution of this equation assuming initial conditions of part (a).

Solution

 (a) Since

 (sI – A) =
s

s

-
+

È

Î
Í

˘

˚
˙

1

0 2

 we obtain

 (sI – A)–1 =

1 1

2

0
1

2

s s s

s

()+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Hence

 eAt = L –1 [(sI – A)–1] =
1 1

0

1
2

2

2

()-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

 To obtain the state transition matrix eAt by the canonical trans formation method, we compute the

eigenvalues and eigenvectors of matrix A. The roots of the characteristic equation

 |lI – A| = 0

 are l1 = 0, and l2 = – 2. These are the eigenvalues of matrix A. Eigenvectors corresponding to the

distinct eigenvalues l i, may be obtained from the nonzero columns of adj(l iI – A).

 For the given A matrix

 adj(lil – A) =
l

l

i

i

+È

Î
Í

˘

˚
˙

2 1

0

 For l1 = 0, adj(l1I – A) =
2 1

0 0

È

Î
Í

˘

˚
˙

 The eigenvector v1 corresponding to the eigenvalue l1 is, there fore, given by

 v1 =
1

0

È

Î
Í

˘

˚
˙

 For l2 = – 2, adj (l2I – A) =
0 1

0 2-
È

Î
Í

˘

˚
˙

 The eigenvector v2 corresponding to the eigenvalue l2 is given by

 v2 =
1

2-
È

Î
Í

˘

˚
˙

 Control System Analysis using State Variable Methods 375

 The transformation matrix

 P =
1 1

0 2-
È

Î
Í

˘

˚
˙

 gives

 P
–1

AP = L =
0 0

0 2-
È

Î
Í

˘

˚
˙

 The state transition matrix (refer to Eqn. (5.93))

 eAt = PeLt P–1 =
1 1

0 2-
È

Î
Í

˘

˚
˙

e

e t

0

2

1
2

1
2

0

0

1

0-

È

Î
Í
Í

˘

˚
˙
˙ -

È

Î
Í
Í

˘

˚
˙
˙

 =
1 1

0

1
2

2

2

()-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

 x(t) = eAt
x(0) =

1

0

È

Î
Í

˘

˚
˙

 (b) x(t) = eAt
x(0) +

0

t

Ú eA(t – t)
bu(t)dt

 Now

0

t

Ú eA(t – t)
bu(t)dt =

1
2

2

0

2

0

1[]()

()

-
È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -

- -

Ú

Ú

e d

e d

t

t

t

t

t

t

t

t

 =
- + +

-

È

Î

Í
Í

˘

˚

˙
˙

-

-

1
4

1
2

1
4

2

1
2

21

t e

e

t

t()

 Therefore,

 x1(t) = - + + -1
4

1
2

1
4

2t e t

 x2(t) =
1
2 (1 – e–2t)

Review Example 5.3

Given

L
n n¥

 =

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0 1

0 0 0

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Compute eLt using the Cayley–Hamilton technique.

Solution Equations (5.98) outline the procedure of evaluation of matrix exponential using the Cayley–

Hamilton technique.

376 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The matrix L has n eigenvalues at l = l1. To evaluate f (L) = eLt, we define (refer to Eqn. (5.98b)) the

polynomial g(l) as

g(l) = b0 + b1l + + bn – 1ln – 1

 This polynomial may be rearranged as

g(l) = b0 + b1(l – l1) + + bn – 1(l – l1)n – 1

 The coefficients b0, b1, …, bn – 1 are given by the following equations (refer to Eqns (5.98c)):

 f(l1) = g(l1)

d

d
f

l
l

l l

()
= 1

 =
d

d
g

l
l

l l

()
= 1

d

d
f

n

n

-

-
=

1

1

1

l
l

l l

() =
d

d
g

n

n

-

-
=

1

1

1

l
l

l l

()

 Solving, we get

 b0 = el1t

 b1 =
t

e t

1
1

!

l

 b2 =
t

e t
2

2
1

!

l

 bn – 1 =
t

n
e

n
t

-

-

1

1
1

()!

l

Therefore,

eLt = b0I + b1(L – l1I) + + bn –1(L – l1I)n – 1

 (L – l1I) =

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (L – l1I)(L – l1I) =

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Control System Analysis using State Variable Methods 377

 eLt =

b b b b

b b b

b

n

n

0 1 2 1

0 1 2

0

0

0 0 0

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =

e te t e t e n

e te t e n

t t t n t

t t n t

l l l l

l l l

1 1 1 1

1 1 1

2 1

2

2 1

0 2

/ ! /()!

/(

-

-

-

-))!

 0 0 0 1e tl

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

Review Example 5.4

The motion of a satellite in the equatorial (r, q) plane is given by [122] the state equation

x

x

x

x

1

2

3

4

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =

0 1 0 0

3 0 0 2

0 0 0 1

0 2 0 0

2w w

w-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

x

x

x

x

1

2

3

4

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 +

0 0

1 0

0 0

0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

u

u

1

2

È

Î
Í

˘

˚
˙ = Ax + Bu

where w is the angular frequency of the satellite in circular, equatorial orbit; x1(t) and x3(t) are, respectively,

the devia tions in position variables r(t) and q(t) of the satellite; and x2(t) and x4(t) are, respectively, the

deviations in velocity variables r (t) and q (t). The inputs u1(t) and u2(t) are the thrusts ur and uq in the

radial and tangential directions, respec tively, applied by small rocket engines or gas jets (u = 0 when

x = 0).

 (a) Prove that the system is completely controllable.

 (b) Suppose that the tangential thruster becomes inoperable. Determine the controllability of the

system with the radial thruster alone.

 (c) Suppose that the radial thruster becomes inoperable. Deter mine the controllability of the system

with the tangential thruster alone.

 (d) Prove that the system is completely observable from radial (x1 = r) and tangential (x3 = q) position

measurements.

 (e) Suppose that the tangential measuring device becomes inopera ble. Determine the observability of

the system from radial posi tion measurement alone.

 (f) Suppose that the radial measurements are lost. Determine the observability of the system from

tangential position measurement alone.

Solution
 (a) The controllability matrix

 U = [B AB A
2
B A

3
B]

378 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Consider the matrix:

 U1 = [B AB] =

0 0 1 0

1 0 0 2

0 0 0 1

0 1 2 0

w

w-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 |U1| = –1

 Therefore, r(U1) = r(U) = 4; the system is completely controlla ble.

 (b) With u2 = 0, the B matrix becomes

 b =

0

1

0

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 The controllability matrix

 U = [b Ab A
2
b A

3
b] =

0 1 0

1 0 0

0 0 2 0

0 2 0 2

2

2

3

-

-
-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

w

w

w

w w

 |U| = –

1 0

0 2 0

2 0 2

2

3

-
-

-

w

w

w w

 = –[– 2w (2w3 – 2w3)] = 0

 Therefore, r (U) < 4, and the system is not completely controlla ble with u1 alone.

 (c) With u1 = 0, the B matrix becomes

 b =

0

0

0

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 The controllability matrix

 U =

0 0 2 0

0 2 0 2

0 1 0 4

1 0 4 0

3

2

2

w

w w

w

w

-

-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 |U| = 2w

0 2 2

0 1 4

1 0 0

3

2

w w

w

-

- = –12w4 π 0

 Therefore, r(U) = 4, and the system is completely controllable with u2 alone.

 Control System Analysis using State Variable Methods 379

 (d) The observability matrix

 V =

C

CA

CA

CA

2

3

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 Taking radial and tangential position measurements as the out puts, we have

 y1 = x1; y2 = x3

 or y = Cx =
1 0 0 0

0 0 1 0

È

Î
Í

˘

˚
˙ x

 Consider the matrix

 V1 =
C

CA

È

Î
Í

˘

˚
˙ =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 |V1| π 0

 Therefore, r(V1) = r(V) = 4, and the system is completely ob servable.

 (e) With x3 = 0, the C matrix becomes

 c = [1 0 0 0]

 The observability matrix

 V =

c

cA

cA

cA

2

3

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

1 0 0 0

0 1 0 0

3 0 0 2

0 0 0

2

2

w w

w-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 |V| = 0

 Therefore, r(V) < 4, and the system is not completely observable from y1 = x1 alone.

 (f) With x1 = 0, the C matrix becomes

 c = [0 0 1 0]

 The observability matrix

 V =

0 0 1 0

0 0 0 1

0 2 0 0

6 0 0 43 2

-

- -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

w

w w

 |V| = – 12w4 π 0

 Therefore, r (V) = 4, and the system is completely observable from y2 = x3 alone.

380 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

PROBLEMS

 5.1 Figure P5.1 shows a control scheme for controlling the azi muth angle of a rotating antenna. The

plant consists of an arma ture-controlled dc motor with dc generator used as an amplifier. The

parameters of the plant are given below.

 Motor torque constant, KT = 1.2 newton-m/amp

 Motor back emf constant, Kb = 1.2 V/(rad/sec)

 Generator gain constant, Kg = 100 V/amp

 Motor to load gear ratio, n = (q qL M/) = 1/2

 Rf = 21 W, Lf = 5H, Rg = 9 W, Lg = 0.06 H, Ra = 10 W, La = 0.04 H,

 J = 1.6 newton-m/(rad/sec2), B = 0.04 newton-m/(rad/sec), motor inertia and friction are negligible.

 Taking physically meaningful and measurable variables as state variables, derive a state model for

the system.

u

+ –

J B,

Rg Lg Ra La

eg eb

Lf
Rf

qL

qM

 5.2 Figure P5.2 shows a position control system with state varia ble feedback. The plant consists of a field-

controlled dc motor with a dc amplifier. The parameters of the plant are given below.

 Amplifier gain, KA = 50 volt/volt

 Motor field resistance, Rf = 99 W
 Motor field inductance, Lf = 20 H

 Motor torque constant, KT = 10 newton-m/amp

 Moment of inertia of load, J = 0.5 newton-m/(rad/sec2)

 Coefficient of viscous friction of load, B = 0.5 newton-m/(rad/sec)

 Motor inertia and friction are negligible.

 Taking x1 = q, x2 = q , and x3 = if as the state variables, u = ef as the input, and y = q as the output,

derive a state variable model for the plant.

 Control System Analysis using State Variable Methods 381

Tachogenerator

Potentiometer

–

+

–

–

Rf

Ia

Lf

x1 = q

u = ef

x i3 = f

x2 = q

R = 1W

KA
r t()

J B,

 5.3 Figure P5.3 shows the block diagram of a motor-driven, single-link robot manipulator with

position and velocity feedback. The drive motor is an armature-controlled dc motor; ea is armature

voltage, ia is armature current, qM is the motor shaft position and qM is motor shaft velocity. qL is

the position of the robot arm.

 Taking qM, qM and ia as state variables, derive a state model for the feedback system.

–

38

0.5

qM

+

–

+ +

–
1

20
1
s

1
2 + 1s

1
2 + 21s

k2

iaea qM qL

k1

qR

 5.4 Figure P5.4 shows the block diagram of a speed control system with state variable feedback. The

drive motor is an armature-controlled dc motor with armature resistance Ra, armature induc tance

382 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

La, motor torque constant KT, inertia referred to motor shaft J, viscous friction coefficient referred

to motor shaft B, back emf constant Kb, and tachogenerator constant Kt. The applied armature

voltage is controlled by a three-phase full-converter. We have assumed a linear relationship

between the control voltage ec and the armature voltage ea; er is the reference voltage corre-

sponding to the desired speed.

 Taking x1 = w (speed) and x2 = ia (armature current) as the state variables, u = er as the input, and

y = w as the output, derive a state variable model for the feedback system.

 5.5 Consider the system

 x =
-
-

È

Î
Í

˘

˚
˙

3 1

2 0
 x +

0

1

È

Î
Í

˘

˚
˙ u

 y = [1 0] x

 A similarity transformation is defined by

 x = Px =
2 1

1 1

-
-

È

Î
Í

˘

˚
˙ x

 (a) Express the state model in terms of the states x (t).

 (b) Draw state diagrams in signal-flow graph form for the state models in x(t) and x (t).

 (c) Show by Mason’s gain formula that the transfer functions for the two state diagrams in (b)

are equal.

 5.6 Consider a double-integrator plant described by the differen tial equation

d t

dt

2

2

q()
 = u(t)

 (a) Develop a state equation for this system with u as the input, and q and q as the state variables

x1 and x2, respectively.

 (b) A similarity transformation is defined as

 x = P x =
1 0

1 1

È

Î
Í

˘

˚
˙ x

 Express the state equation in terms of the states x (t).

 (c) Show that the eigenvalues of the system matrices of the two state equations in (a) and (b), are

equal.

+ +

–

–
+

–

k1
er ec

Kc

ea

ia

Kb

Kt

KT
1
+Js B

1
+sL Ra a

k2

 Control System Analysis using State Variable Methods 383

 5.7 A system is described by the state equation

 x =

0 1 0

0 0 1

1 0 3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 x +

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 u; x(0) = x0

 Using the Laplace transform technique, transform the state equa tion into a set of linear algebraic

equations in the form

 X(s) = G(s)x0 + H(s)U(s)

 5.8 Give a block diagram for the programming of the system of Problem 5.7 on an analog computer.

 5.9 The state diagram of a linear system is shown in Fig. P5.9. Assign the state variables, and write

the dynamic equations of the system.

1

U Y

1

1

– 1

– 1

–1

– 2

1 2 1s–1s–1s–1

 5.10 Construct a state model for the system of Fig. P5.10.

3

3

3

4
2

4

+ + + +
+

+++

+

+

+–

–

–

–

y1(0)

y2(0)

u2

u1

y2

y1
ÚÚ

Ú Ú

384 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.11 Derive transfer functions corresponding to the following state models:

 (a) x =
0 1

2 3- -
È

Î
Í

˘

˚
˙ x +

1

0

È

Î
Í

˘

˚
˙ u; y = [1 0] x (b) x =

-
-

È

Î
Í

˘

˚
˙

3 1

2 0
 x +

0

1

È

Î
Í

˘

˚
˙ u; y = [1 0] x

 5.12 Derive the transfer function matrix corresponding to the following state model, using resolvent

algorithm.

 x =

2 1 0

1 1 2

1 0 1

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
 x +

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0

1 0

0 2

u

 y =
1 1 0

1 0 1

È

Î
Í

˘

˚
˙ x

 5.13 Figure P5.13 shows the block diagram of a control system with state variable feedback and integral

control. The plant model is

x

x

1

2

È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

3 2

4 5

1

0

1

2

x

x
u

 y = [0 1] x

 (a) Derive a state model of the feedback system.

 (b) Derive the transfer function Y(s)/R(s).

yr u+

2

1.5

– –

+

–
– 3.5 Plant– ()Ú ◊ dt

x1 x2

x3

 5.14 Construct state models for the systems of Fig. P5.14a and Fig. P5.14b, taking outputs of simple

lag blocks as state varia bles.

u

u y

+

+ + +

+
+

–

–

y

(a)

(b)

1
+ 2s

1
+ 1s

1
+ 1s

1
+ 2s

1
s

 Control System Analysis using State Variable Methods 385

 5.15 Derive a state model for the two-input, two-output feedback control system shown in Fig. P5.15.

Take outputs of simple lags as state variables.

+ +

+

+

–

–

+ +

1
+ 1s

5
+ 5s

0.4
+ 0.5s

4
+ 2s

K1

u1 y1

y2u2r2
K2

r1

 5.16 Construct state models for the following transfer functions. Obtain different canonical form for

each system.

 (i)
s

s s

+

+ +

3

3 22 (ii)
5

1 22() ()s s+ +
 (iii)

s s s

s s s

3 28 17 8

1 2 3

+ + +
+ + +() () ()

 Give block diagrams for the analog computer simulation of these transfer functions.

 5.17 Construct state models for the following differential equa tions. Obtain a different canonical form

for each system.

 (i) y y y+ +3 2 = u + u (ii) y y y+ +6 11 + 6y = u

 (iii) y y y+ +6 11 + 6y = u u u+ +8 17 + 8u

 5.18 Derive two state models for the system with transfer func tion

Y s

U s

()

()
 =

50 1 5

1 2 1 50

(/)

(/) (/)

+
+ +

s

s s s

 (a) One for which the system matrix is a companion matrix.

 (b) One for which the system matrix is diagonal.

 5.19 (a) Obtain state variable model in Jordan canonical form for the system with transfer function

Y s

U s

()

()
 =

2 6 5

1 2

2

2

s s

s s

+ +

+ +() ()

 (b) Find the response y(t) to a unit-step input using the state variable model in (a).

 (c) Give a block diagram for analog computer simulation of the transfer function.

386 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.20 Find the eigenvalues and eigenvectors for the following matrices:

 (i)
1 1

0 2

È

Î
Í

˘

˚
˙ (ii)

-
-

È

Î
Í

˘

˚
˙

3 2

1 0
 (iii)

0 1 0

3 0 2

12 7 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.21 (a) If l1, l2, …, ln are distinct eigenvalues of

 A =

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

 prove that the matrix

 P =

1 1 1

1 2

1
2

2
2 2

1
1

2
1 1

l l l

l l l

l l l

n

n

n n
n
n- - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 transforms A into Jordan canonical form.

 (b) Using the result in (a), find the eigenvalues and eigenvec tors of the following matrix:

 A =

0 1 0

0 0 1

24 26 9- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.22 Consider the matrix

 A =

0 1 0

0 0 1

2 4 3- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 (a) Suggest a transformation matrix P such that L = P–1
AP is in Jordan canonical form.

 (b) Matrix L in (a) has complex elements. Real arithmetic is often preferable, and can be

achieved by further transformation. Suggest a transformation matrix Q such that Q–1LQ has

all real elements.

 5.23 Given the system

 x =
-
-

È

Î
Í

˘

˚
˙

4 3

6 5
 x = Ax

 Determine eigenvalues and eigenvectors of matrix A, and use these results to find the state

transition matrix.

 Control System Analysis using State Variable Methods 387

 5.24 Using Laplace transform method, find the matrix exponential eAt for

 (a) A =
0 3

1 4

-
-

È

Î
Í

˘

˚
˙ (b) A =

0 1

3 4- -
È

Î
Í

˘

˚
˙

 5.25 Using the Cayley–Hamilton technique, find eAt for

 (a) A =
0 1

6 5- -
È

Î
Í

˘

˚
˙ (b) A =

0 2

2 4- -
È

Î
Í

˘

˚
˙

 5.26 Given the system

 x =
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
 x +

1

1

È

Î
Í

˘

˚
˙ u

 (a) Obtain a state diagram in signal-flow graph form.

 (b) From the signal-flow graph, determine the state equation in the form

 X(s) = G(s)x(0) + H(s)U(s)

 (c) Using inverse Laplace transformation, obtain the

 (i) zero-input response to initial condition

 x(0) = [x0
1 x 0

2]T;

 (ii) zero-state response to unit-step input.

 5.27 A linear time-invariant system is described by the following state model:

 x =

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 x +

0

0

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u

 y = [1 0 0] x

 Diagonalize the coefficient matrix of the state model using a similarity transformation, and from

there obtain the explicit solutions for the state vector and output when the control force u is a unit-

step function and the initial state vector is

 x(0) = [0 0 2]T

 5.28 Consider the system

 x =
0 1

2 3- -
È

Î
Í

˘

˚
˙ x +

0

1

È

Î
Í

˘

˚
˙ u; x(0) =

1

1

È

Î
Í

˘

˚
˙

 y = [1 0] x

 (a) Determine the stability of the system.

 (b) Find the output response of the system to unit-step input.

 5.29 Find the response of the system

 x =
0 1

2 3- -
È

Î
Í

˘

˚
˙ x +

2 1

0 1

È

Î
Í

˘

˚
˙ u; x(0) =

0

0

È

Î
Í

˘

˚
˙

 y =
1 0

1 1

È

Î
Í

˘

˚
˙ x

 to the following input:

 u(t) =
u t

u t

1

2

()

()

È

Î
Í

˘

˚
˙ =

m

m

()

()

t

e tt-

È

Î
Í

˘

˚
˙3

; m (t) is unit-step function.

388 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.30 Figure P5.30 shows the block diagram of a control system with state variable feedback and

feedforward control. The plant model is

 x =
-

-
È

Î
Í

˘

˚
˙

3 2

4 5
 x +

1

0

È

Î
Í

˘

˚
˙ u

 y = [0 1]x

 (a) Derive a state model for the feedback system.

 (b) Find the output y(t) of the feedback system to a unit-step input r(t); the initial state is assumed

to be zero.

r u
7 Plant

3

1.5

+

+

+

–

y x= 2

x1

 5.31 Consider the state equation

 x =
0 1

1 2- -
È

Î
Í

˘

˚
˙ x

 Find a set of states x1(1) and x2(1) such that x1(2) = 2.

 5.32 Consider the system

 x =

0 1 0

3 0 2

12 7 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

 (a) Find the modes of the system.

 (b) Find the initial condition vector x(0) which will only excite the mode corresponding to the

eigenvalue with the most negative real part.

 5.33 Consider the system

 x (t) =
0 1

2 1

È

Î
Í

˘

˚
˙ x(t)

 y(t) = [1 2] x(t)

 (a) Show that the system modes are e–t and e2t.

 (b) Find a set of initial conditions such that the mode e2t is suppressed in y(t).

 5.34 The following facts are known about the linear system

 x(t) = Ax(t).

 If x(0) =
1

2-
È

Î
Í

˘

˚
˙ , then x(t) =

e

e

t

t

-

--

È

Î
Í
Í

˘

˚
˙
˙

2

22

 Control System Analysis using State Variable Methods 389

 If x(0) =
1

1-
È

Î
Í

˘

˚
˙ , then x(t) =

e

e

t

t

-

--

È

Î
Í
Í

˘

˚
˙
˙

 Find eAt and hence A.

 5.35 Show that the pair {A, c} is completely observable for all values of ai’s.

 A =

0 0 0

1 0 0

0 1 0

0 0 1

1

2

1

-
-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

a

a

a

a

n

n

n

 c = [0 0 0 1]

 5.36 Show that the pair {A, b} is completely controllable for all values of ai’s.

 A =

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; b =

0

0

0

1

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 5.37 Given the system

 x =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

x +

0 1

2 0

0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u; y =
0 1 2

0 1 0

È

Î
Í

˘

˚
˙ x

 What can we say about controllability and observability—without making any further calculations?

 5.38 Determine the controllability and observability properties of the following systems:

 (i) A =
-

-
È

Î
Í

˘

˚
˙

2 1

1 2
 ; b =

1

0

È

Î
Í

˘

˚
˙ ; c = [1 –1]

 (ii) A =
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
; b =

2

5

È

Î
Í

˘

˚
˙ ; c = [0 1]

 (iii) A =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

; B =

1 0

1 2

2 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; C =
1 1 2

3 1 5

È

Î
Í

˘

˚
˙

 (iv) A =

0 1 0

0 0 1

0 2 3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [10 0 0]

 (v) A =

0 0 0

1 0 3

0 1 4

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

40

10

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]

390 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.39 The following models realize the transfer function G(s) =
1

1s +
.

 (i) A =
–

–

2 1

1 2

È

Î
Í

˘

˚
˙; b =

1

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

 (ii) A =
-

-
È

Î
Í

˘

˚
˙

1 0

0 3
; b =

1

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

 (iii) A =
-

-
È

Î
Í

˘

˚
˙

2 0

0 1
; b =

0

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

 Investigate the controllability and observability properties of these models.

 Find a state variable model, for the given transfer function, which is both controllable and

observable.

 5.40 Consider the systems

 (i) A =
0 2

1 3

-
-

È

Î
Í

˘

˚
˙ ; b =

1

1

È

Î
Í

˘

˚
˙ ; c = [0 1]

 (ii) A =

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [4 5 1]

 Determine the transfer function in each case. What can we say about controllability and

observability properties—without making any further calculations?

 5.41 Consider the system

 x =

1 1 0

0 2 1

0 0 1

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x +

0

1

2-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u; y = [1 0 0] x

 (a) Find the eigenvalues of A and from there determine the sta bility of the system.

 (b) Find the transfer function model and from there determine the stability of the system.

 (c) Are the two results the same? If not, why?

 5.42 Given a transfer function

 G(s) =
10

1s s()+
 =

Y s

U s

()

()

 Construct the following three different state models for this system:

 (a) One which is both controllable and observable.

 (b) One which is controllable but not observable.

 (c) One which is observable but not controllable.

 5.43 Prove that the transfer function

 G(s) = Y(s)/U(s)

 of the system

 x (t) = Ax(t) + bu(t)

 y(t) = cx(t) + du(t)

 is invariant under state transformation x(t) = P x (t); P is a constant nonsingular matrix.

 State Variable Analysis of Digital Control Systems 391

State Variable Analysis of
Digital Control Systems

6.1 INTRODUCTION

In the previous chapter of this book, we treated in considerable detail, the analysis of linear continuous-

time systems using state variable methods. In this chapter, we give a condensed review of the same

methods for linear discrete-time systems. Since the theory of linear discrete-time systems—very

closely—parallels the theory of linear continuous-time systems, many of the results are similar. For this

reason, the comments in this chapter are brief, except in those cases where the results for discrete-time

systems deviate markedly from the continuous-time situation. For the same reason, many proofs are

omitted.

We will be mostly concerned with Single-Input, Single-Output (SISO) system configurations of the

type shown in the block diagram of Fig. 6.1. The plant in the figure, is a physical pro cess characterized

by continuous-time input and output variables. A digital computer is used to control the continuous-

time plant. The interface system that takes care of the communication between the digital computer

and the continuous-time plant consists of analog-to-digital (A/D) converter and digital-to-analog (D/A)

converter. In order to analyze such a system, it is often conven ient to represent the continuous-time plant,

together with the D/A converter and the A/D converter, by an equivalent discrete-time system.

The discrete-time systems we will come across can, therefore, be classified into two types.

 (i) Inherently discrete-time systems (digital processors), where it makes sense to consider the system

at discrete instants of time only, and what happens in between is irrelevant.

Chapter 6

Digital set-point
Digital

computer D/A

Sensor

Controlled
output

A/D

Plant

Fig. 6.1 Basic structure of digital control systems

392 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (ii) Discrete-time systems that result from considering continuous-time systems at discrete instants of

time only.

6.2 STATE DESCRIPTIONS OF DIGITAL PROCESSORS

A discrete-time system is a transformation, or operator, that maps a given input sequence u(k) into

an output sequence y(k). Classes of discrete-time systems are defined by placing constraints on the

transformation. As they are relatively easy to characterize mathematically, and as they can be designed

to perform useful signal processing functions, the class of linear time-invariant systems will be studied

here.

In the control structure of Fig. 6.1, the digital computer transforms an input sequence into a form which

is, in some sense, more desirable. Therefore, the discrete-time systems we consider here, are in fact

computer programs. Needless to say, digital computers can do many things other than control dynamic

systems; it is our purpose to examine their characteristics when doing this elementary control task.

State variable model of a SISO discrete-time system consists of a set of first-order difference equations

relating state variables x1(k), x2(k), ... , xn(k) of the discrete-time system to the input u(k); the output y(k)

is algebraically related to the state variables and the input. Assuming that the input is switched on to the

system at k = 0 (u(k) = 0 for k < 0), then the initial state is given by

 x(0) =
D x

0; a specified n ¥ 1 vector

The dynamics of a linear time-invariant system is described by equations of the form

 x(k + 1) = Fx(k) + gu(k); x(0) =
D x

0 (6.1a)

 y(k) = cx(k) + du(k) (6.1b)

where x(k) =

x k

x k

x kn

1

2

()

()

()

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = n ¥ 1 state vector of nth-order system

 u(k) = system input

 y(k) = defined output

 F =

f f f

f f f

f f f

n

n

n n nn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = n ¥ n constant matrix

 g =

g

g

gn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = n ¥ 1 constant column matrix

 c = [c1 c2 cn] = 1 ¥ n constant row matrix

 d = scalar, representing direct coupling between input and output

 State Variable Analysis of Digital Control Systems 393

Equation (6.1a) is called the state equation of the system, Eqn. (6.1b) is called the output equation; the

two equations together give the state variable model of the system.

6.2.1

In the study of linear time-invariant discrete-time equations, we may also apply the z-transform

techniques. Taking the z-transform of Eqns (6.1), we obtain:

 zX(z) – zx
0 = FX(z) + gU(z)

 Y(z) = cX(z) + dU(z)

where X(z) =D Z [x(k)]; U(z) =D Z [u(k)]; Y(z) =D Z [y(k)]

Manipulation of these equations, gives

 (zI – F) X(z) = zx
0 + gU(z); I is n × n identity matrix

or X(z) = (zI – F)–1 zx
0 + (zI – F)–1 gU(z) (6.2a)

 Y(z) = c(zI – F)–1 zx
0 + [c(zI – F)–1 g + d] U(z) (6.2b)

Equations (6.2) are algebraic equations. If x0 and U(z) are known, X(z) can be computed from these

equations.

In the case of zero initial state (i.e., x0 = 0), the input-output behavior of the system (6.1) is determined

entirely by the transfer function

Y z

U z

()

()
 = G(z) = c(zI – F)–1 g + d (6.3a)

 = c
()

| |

z

z

I F g

I F

-
-

+
 + d (6.3b)

where (zI – F)+ = adjoint of the matrix (zI – F)

 |zI – F | = determinant of the matrix (zI – F)

|lI – F | is the characteristic polynomial of matrix F. The roots of this polynomial are the characteristic

roots or eigenvalues of matrix F.

From Eqn. (6.3b), we observe that the characteristic polynomial of matrix F of the system (6.1), is same

as the denominator polyno mial of the corresponding transfer function G(z). If there are no cancellations

between the numerator and denominator polynomials of G(z) in Eqn. (6.3b), the eigenvalues of matrix

F are same as the poles of G(z).

In a later section, we shall see that for a completely controllable and observable state variable model, the

eigenvalues of matrix F are same as the poles of the corresponding transfer function.

6.2.2

 Canonical State Variable Models

In Chapters 2–4, we have seen that transform-domain design techniques yield digital control algorithms

in the form of trans fer functions of the form

 D(z) =
b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 (6.4)

394 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where the coefficients ai and bi are real constant scalars. Equation (6.4) represents an nth-order digital

controller. Several different structures for realization of this controller—using delay elements, adders,

and multipliers—were presented in Section 3.4. Each of these realizations is a dynamic system with n

first-order dynamic elements—the unit delayers. We know that output of a first-order dynamic element

represents the state of that ele ment. Therefore, each realization of Eqn. (6.4) is, in fact, a state diagram;

by labeling the unit-delayer outputs as state variables, we can obtain the state variable model.

In the following discussion, we shall use two of the structures presented in Section 3.4 for obtaining

canonical state variable models corre sponding to the general transfer function

 G(z) =
Y z

U z

()

()
 =

b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 (6.5)

Revisiting Section 3.4 at this stage will be helpful in our discussion.

First Companion Form

A direct realization structure for the system described by Eqn. (6.5) is shown in Fig. 6.2. Notice that

n delay elements have been used in this realization. The coefficients a1, a2, ..., an appear as feedback

elements, and the coefficients b0, b1, ..., bn appear as feedforward elements. To get one state variable

model, we identify the output of each unit delayer with a state variable—starting at the right and

proceeding to the left. The corresponding difference equations are

 x1(k + 1) = x2(k)

 x2(k + 1) = x3(k)

 (6.6a)

 xn – 1(k + 1) = xn(k)

 xn(k + 1) = – an x1(k) – an – 1 x2(k) – – a1 xn(k) + u(k)

+

–

+

+

+ +

+

+

+

+
+

+

b0

y k()

u k()

b1 bn – 1 bn

x1()kx2()kxn()k

a1 an – 1 an

Fig. 6.2

 State Variable Analysis of Digital Control Systems 395

Careful examination of Fig. 6.2 reveals that there are two paths from the output of each unit delayer to

the system output: one path upward through the box labeled bi, and a second path down through the box

labeled ai and thence through the box labeled b0. As a consequence

 y(k) = (bn – anb0) x1(k) + (bn–1 – an–1 b0) x2(k) + + (b1 – a1 b0) xn(k) + b0 u(k) (6.6b)

The state and output equations (6.6), organized in vector-matrix form, are given below.

 x(k + 1) = Fx(k) + gu(k) (6.7)

 y(k) = cx(k) + du(k)

with F =

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; g =

0

0

0

1

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 c = [bn – anb0, bn–1 – an –1b0, …, b1 – a1b0]; d = b0

The matrix F in Eqns (6.7) has a very special structure—the coefficients of the denominator of the

transfer function preceded by minus signs form a string along the bottom row of the matrix. The rest of

the matrix is zero except for the ‘superdiagonal’ terms which are all unity. A matrix with this structure

is said to be in companion form. We call the state variable model (6.7) the first companion form1 state

model for the transfer function (6.5); another companion form follows.

Second Companion Form

In the first companion form, the coefficients of the denominator of the transfer function appear in one of

the rows of the F matrix. There is another companion form in which the coefficients appear in a column

of the F matrix. This can be obtained from another direct realization structure shown in Fig. 6.3. We

+ + + +

++ +

–––

b0b1bn – 1bn

a1an – 1an

u k()

xn – 1()kx1()k

xn()k

y k()

Fig. 6.3

 1 The pair (F, g) of Eqns (6.7) is completely controllable for all values of ai’s (Refer to Problem 5.36).

396 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

iden tify the output of each unit delayer with a state variable—start ing at the left and proceeding to the

right. The corresponding difference equations are

 xn(k + 1) = xn–1(k) – a1(xn(k) + b0u(k)) + b1u(k)

 xn–1(k + 1) = xn–2(k) – a2(xn(k) + b0u(k)) + b2u(k)

 x2(k + 1) = x1(k) – an–1(xn(k) + b0u(k)) + bn–1u(k)

 x1(k + 1) = – an(xn(k) + b0u(k)) + bnu(k)

 y(k) = xn(k) + b0u(k)

The state and output equations, organized in vector-matrix form, are given below.

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k) + du(k)
(6.8)

with F =

0 0 0

1 0 0

0 1 0

0 0 1

1

2

1

-
-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

a

a

a

a

n

n

n ; g =

b a b

b a b

b a b

n n

n n

-
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

- -

0

1 1 0

1 1 0

 c = [0 0 0 1]; d = b0

Comparing the F, g and c matrices of the second companion form2 with that of the first, we observe

that F, g, and c matrices of one companion form correspond to the transpose of F, c, and g matrices,

respectively, of the other.

Both the companion forms of state variable models play an impor tant role in pole-placement design

through state feedback. This will be discussed in Chapter 7.

Jordan Canonical Form

In the two canonical forms (6.7) and (6.8), the coefficients of the denominator of the transfer function

appear in one of the rows or columns of matrix F. In another of the canonical forms, the poles of

the transfer function form a string along the main diagonal of the matrix. The canonical form follows

directly from the parallel realization structure of transfer function. We shall first discuss the case where

all poles are distinct. Then we shall consider the case where multiple poles are involved.

Case I: The transfer function involves distinct poles only

Assume that z = li (i = 1, 2, ..., n) are the distinct poles of the given transfer function (6.5). Partial-

fraction expansion of the transfer function gives

Y z

U z

()

()
 = G(z) =

b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 = b0 +
¢ + ¢ + + ¢

+ + +

- -

-
b b b

a a

1
1

2
2

1
1

z z

z z

n n
n

n n
n

 2 The pair {F, c} of Eqns (6.8) is completely observable for all values of ai’s (Refer to Problem 5.35).

 State Variable Analysis of Digital Control Systems 397

 = b0 +
¢ + ¢ + + ¢
- - -

- -b b b

l l l
1

1
2

2

1 2

z z

z z z

n n
n

n

 ()() ()
 = b0 + G¢(z)

 = b0 +
r

z

r

z

r

z

n

n

1

1

2

2-
+

-
+ +

-l l l
 (6.9)

The coefficients ri (i = 1, 2, ..., n) are the residues of the transfer function G¢(z) at the corresponding poles

at z = li(i = 1, 2, ..., n). A parallel realization structure of the transfer function (6.9) is shown in Fig. 6.4.

+ +
+

+ +

+

+

b0

u k() y k()

l1

ln

x1()k
r1

rn
xn()k

Fig. 6.4

Identifying the outputs of the delayers with the state variables results in the following state and output

equations:

 x(k + 1) = Lx(k) + gu(k) (6.10)

 y(k) = cx(k) + du(k)

with L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g =

1

1

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 c = [r1 r2 rn]; d = b0

It is observed that for this canonical state variable model, the matrix L is a diagonal matrix with the poles

of G(z) as its diagonal elements.

Case II: The transfer function involves multiple poles

When the transfer function G(z) involves multiple poles, the partial fraction expansion will not be as

simple as (6.9). In the discussion that follows, we assume that G(z) involves a multiple pole of order m at

398 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

z = l1, and that all other poles are distinct. Performing the partial fraction expansion for this case, we get

Y z

U z

()

()
 = G(z) =

b b b b

a a a

0 1
1

1

1
1

1

z z z

z z z

n n
n n

n n
n n

+ + + +

+ + + +

-
-

-
-

 = b0 +
¢ + ¢ + + ¢

+ + +

- -

-
b b b

a a

1
1

2
2

1
1

z z

z z

n n
n

n n
n

 = b0 +
¢ + ¢ + + ¢

- - -

- -

+

b b b

l l l

1
1

2
2

1 1

z z

z z z

n n
n

m
m n

 () () ()

 = b0 + H1(z) + Hm+1(z) + + Hn(z) (6.11a)

where Hm+1(z) =
r

z
H zm

m
n

+

+-
1

1l
, , ()… =

r

z

n

n- l
, (6.11b)

and H1(z) =
r

z

r

z

r

zm m

m11

1

12

1
1

1

1() () ()-
+

-
+ +

--l l l
 (6.11c)

A realization of H1(z) is shown in Fig. 6.5. Other terms of Eqn. (6.11a) may be realized as per Fig. 6.4.

Fig. 6.5 H1 z

Identifying the outputs of the delayers with the state variables results in the following state and output

equations:

 x(k + 1) = Lx(k) + gu(k)

 y(k) = cx(k) + du(k)
(6.12)

with m ¥ m Jordan block

 L =

l

l

l

l

l

1

1

1

1

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

m+

nn

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

; g =

0

0

1

1

1

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

 State Variable Analysis of Digital Control Systems 399

 c = r r r r rm m n11 12 1 1 +ÈÎ ˘̊ ; d = b0

Note that the L matrix in Eqns (6.12) is block diagonal:

 L =

L

L

L

1

1

0 0

0 0

0 0

m

n

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

with L1 =

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 = m m¥ submatrix corresponding
 to eigenvalue of multiplicity1l m

 Lm + 1 = lm + 1 = 1 ¥ 1 submatrix corresponding to simple eigen value lm+1

 Ln = ln = 1 ¥ 1 submatrix corresponding to simple eigenvalue ln

The matrix L1 has two diagonals: the principal diagonal has the corresponding pole l1 and the super

diagonal has all 1s. This structure is said to be in Jordan form; for this reason the model (6.12) is

identified as Jordan canonical form state model.

The state variable model (6.10) derived for the case of distinct poles, is a special case of Jordan canonical

form wherein each Jordan block is of 1 ¥ 1 dimension.

6.3 STATE DESCRIPTION OF SAMPLED

Systems that consist of an interconnection of a discrete-time system and a continuous-time system are

frequently encountered. An example of particular interest occurs when a digital computer is used to

control a continuous-time plant. Whenever such interconnections exist, there must be some type of

interface system that takes care of the communication between the discrete-time and continuous-time

systems. In the system of Fig. 6.1, the interface function is performed by D/A and A/D converters.

Simple models of the interface actions of D/A and A/D converters have been developed in Chapter 2.

A brief review is in order here.

A simple model of A/D converter is shown in Fig. 6.6. A continuous-time function f(t), t ≥ 0, is the input,

and the se quence of real numbers f (k), k = 0, 1, 2, ..., is the output; the following relation holds between

input and output:

 f (k) = f(t = kT); T is the time interval between samples (6.13a)

A simple model of D/A converter is shown in Fig. 6.7. A sequence of numbers f (k), k = 0, 1, 2, ..., is the

input, and the continuous-time function f +(t), t ≥ 0, is the output; the follow ing relation holds between

input and output:

 f +(t) = f (k); kT £ t < (k + 1)T (6.13b)

400 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Figure 6.8 illustrates a typical example of an interconnection of discrete-time and continuous-time

systems. In order to analyze such a system, it is often convenient to represent the continuous-time system

together with the zero-order hold (ZOH) and the sampler, by an equivalent discrete-time system.

We assume that the continuous-time system of Fig. 6.8 is a linear system with state variable model

 x (t) = Ax(t) + bu+(t) (6.14a)

 y(t) = cx(t) + du+(t) (6.14b)

where x(t) is n ¥ 1 state vector, u+(t) is scalar input, y(t) is scalar output; A, b, c, and d are, respectively,

n ¥ n, n ¥ 1, 1 ¥ n, and 1 ¥ 1 real constant matrices.

The solution of Eqn. (6.14a) with t0 as initial time is

 x(t) = e tt tA
x

() ()- 0
0 +

t

t

0

Ú eA(t – t) bu+(t) dt (6.15)

Since we use a ZOH (refer to Eqn. (6.13b)),

 u+(t) = u(kT); kT £ t < (k + 1)T; k = 0, 1, 2, ...

Fig. 6.6

Zero-order hold

0 1 2 3 k t

f k() f +()t

Fig. 6.7

Discrete-
time
system

Discrete-
time

system

Continuous-
time

system
ZOH Sampler

Equivalent discrete-time system

y k()y t()u k() u+()t

Fig. 6.8

 State Variable Analysis of Digital Control Systems 401

Then from Eqn. (6.15), we can write

 x(t) = eA(t – kT) x(kT) +

kT

t

te dÚ -
È

Î

Í
Í

˘

˚

˙
˙

A
b

()t t u(kT); kT £ t < (k + 1)T (6.16)

In response to the input u(kT), the state settles to the value x((k + 1)T) prior to the application of the input

u((k + 1)T), where

 x((k + 1)T) = eAT x(kT) + e dk T

kT

k T

A[(+)]
b

1

1

-
+

Ú
È

Î

Í
Í

˘

˚

˙
˙

t t

()

 u(kT)

 = Fx(kT) + gu(kT) (6.17)

Letting s = (t – kT) in Eqn. (6.17), we have

 g =

0

T

Ú eA(T – s) bds

With q = T – s, we get

 g =

0

T

Ú eAq bdq

If we are interested in the value of x(t) (or y(t)) between sampling instants, we first solve for x(kT) for

any k using Eqn. (6.17), and then use Eqn. (6.16) to determine x(t) for kT £ t < (k + 1)T.

Since we have a sampler in configuration of Fig. 6.8 (refer to Eqn. (6.13a)), we have from Eqn. (6.14b),

 y(kT) = cx(kT) + du(kT)

State description of the equivalent discrete-time system of Fig. 6.8 is, therefore, of the form

 x(k + 1) = Fx(k) + gu(k) (6.18a)

 y(k) = cx(k) + du(k) (6.18b)

where F = eAT (6.18c)

 g =

0

T

Ú eAq bdq (6.18d)

e
AT

There are several methods available for computing eAT. Some of these methods have been discussed in

the earlier chapter. Stan dard computer programs based on these methods are available.

In the following, we present an alternative technique of comput ing eAT. The virtues of this technique are

its simplicity and the ease of programming.

The infinite series expansion for F = eAT is

 F = eAT = I + AT +
1

2!
 A2T2 +

1

3!
 A3T 3 +

 =
A

i i

i

T

i!
=
Â

0

; A0 = I (6.19)

402 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For a finite T, this series is uniformly convergent (Section 5.7). It is, therefore, possible to evaluate F

within prescribed accuracy. If the series is truncated at i = N, then we may write the finite series sum as

 F =
A

i i

i

N
T

i!
=
Â

0

 (6.20)

which represents the infinite series approximation. The larger the N, the better is the approximation. We

evaluate F by a series in the form

 F = I A I
A

I
A

I
A

I
A

+ + + + +
-

+Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

Ê

Ë
Á

ˆ

¯
˜T

T T T

N

T

N2 3 1
 (6.21)

which has better numerical properties than the direct series of powers. Starting with the innermost factor,

this nested product expansion lends itself easily to digital programming. The empiri cal relation giving

the number of terms, N, is

 N = min {3 || AT || + 6, 100} (6.22)

where || AT || is a norm of the matrix AT. There are several different forms of matrix norms commonly

used. Any one of them may be used in Eqn. (6.22). Two forms of matrix norms are defined in Section 5.2.

The relation (6.22) assumes that no more than 100 terms are included. The series eAT will be accurate to,

at least, six signifi cant figures.

The integral in Eqn. (6.18d) can be evaluated term by term, to give

 g = I A A+ + +Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙Ú q q q

1

2

2 2

0
!

 d

T

 b =
A

i i

i

T

i

+

=
+Â

1

0
1()!

b (6.23)

 =
A

i i

i

T

i()!+
=
Â 1

0

Tb

 = I
A A

+ + +
Ê

Ë
Á

ˆ

¯
˜

T T

2 3

2 2

! !
 Tb = (eAT – I) A–1

b (6.24)

The transition from Eqn. (6.23) to (6.24) is possible only for a nonsingular matrix A. For a singular A,

we may evaluate g from Eqn. (6.23) by the approximation technique described above. Since the series

expansion for g converges faster than that for F, it suffices to determine N for F from Eqn. (6.22) and

apply the same value for g.

Example 6.1

Figure 6.9 shows the block diagram of a digital positioning system. Defining the state variables as

 x1(t) = q (t), x2(t) = q (t),

the state variable model of the plant becomes

 x(t) = Ax(t) + bu+(t)

 y(t) = cx(t) (6.25)

with A =
0 1

0 5-
È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

 State Variable Analysis of Digital Control Systems 403

T
= 0.1 sec

Digital Processor
ZOH

Plant

+

–

u+()tu k()e k()

r t() 1
(+ 5)s s

G sh0()
k z1

2 + +k z k

z z
2 3

(– 1)

q()t

Fig. 6.9

Here we apply the Cayley–Hamilton technique to evaluate the state transition matrix eAt.

Eigenvalues of matrix A are given by

 |lI – A| =
l

l

-
+

È

Î
Í

˘

˚
˙

1

0 5
 = 0

Therefore, l1 = 0, l2 = – 5

Since A is of second order, the polynomial g(l) will be of the form (refer to Eqns (5.98)),

 g(l) = b0 + b1l

The coefficients b0 and b1 are evaluated from the following equations:

 1 = b0

 e–5t = b0 – 5b1

The result is b0 = 1

 b1 =
1

5
 (1 – e–5t)

Hence eAt = b0I + b1A =
1 1

0

1
5

5

5

()-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

The equivalent discrete-time plant with input u(k) and output q (k) (refer to Fig. 6.9) is described by the

equations

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k)
(6.26)

where F = eAT =
1 1

0

1
5

5

5

()-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

T

T

 g =

0

T

Ú eAq bdq =

1
5

5

0

5

0

1()-
È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

Ú

Ú

e d

e d

T

T

q

q

q

q

 =

1
5

1
5

1
5

5

1
5

51

()

()

T e

e

T

T

- +

-

È

Î

Í
Í

˘

˚

˙
˙

-

-

404 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For T = 0.1 sec,

 F =
1 0 0787

0 0 6065

.

.

È

Î
Í

˘

˚
˙ ; g =

0 0043

0 0787

.

.

È

Î
Í

˘

˚
˙

Consider now the digital processor. The input-output model of the processor is

U z

E z

()

()
 =

k z k z k

z z

1
2

2 3

1

+ +
-()

Direct digital realization of the processor is shown in Fig. 6.10. Taking outputs of unit delayers as state

variables, we get the following state description for the processor dynamics (refer to Eqns (6.8)):

x k

x k

3

4

1

1

()

()

+
+

È

Î
Í

˘

˚
˙ =

0 0

1 1

3

4

3

2 1

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

+
È

Î
Í

˘

˚
˙

x k

x k

k

k k

()

()
e(k) (6.27)

 u(k) = x4(k) + k1e(k)

e
1 1

1

u
z–1z–1

x3

k3

k2

k1

x4

Fig. 6.10

The processor input is derived from the reference input and the position feedback (Fig. 6.9):

 e(k) = r(k) – x1(k) (6.28)

From Eqns (6.26)–(6.28), we get the following state variable model for the feedback system of Fig. 6.9.

x k

x k

x k

x k

1

2

3

4

1

1

1

1

()

()

()

()

+
+
+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =

1 0 0043 0 0787 0 0 0043

0 0787 0 6065 0 0 0787

0 0 0

1

1

3

2 1

-
-

-
- +

. . .

. . .

(

k

k

k

k k)) 0 1 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

x k

x k

x k

x k

1

2

3

4

()

()

()

()

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 +

0 0043

0 0787

1

1

3

2 1

.

.

k

k

k

k k+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 r(k)

(6.29)

 y(k) = [1 0 0 0]

x k

x k

x k

x k

1

2

3

4

()

()

()

()

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 State Variable Analysis of Digital Control Systems 405

6.4

Consider a state equation of a single-input system which includes delay in control action:

 x (t) = Ax(t) + bu+(t – tD) (6.30)

where x is n ¥ 1 state vector, u+ is scalar input, tD is the dead-time, and A and b are, respectively, n ¥ n and

n ¥ 1 real constant matrices.

The solution of Eqn. (6.30) with t0 as initial time is

 x(t) = e t tA()- 0 x(t0) + e u dt
D

t

t

A
b

() ()- + -Ú t t t t

0

If we let t0 = kT and t = kT + T, we obtain

 x(kT + T) = eAT x(kT) +

kT

kT T+

Ú eA(kT + T – t) bu+(t – tD) dt

With s = kT + T – t, we get

 x(kT + T) = eAT x(kT) +

0

T

Ú eAs bu+(kT + T – tD – s) ds (6.31)

If N is the largest integer number of sampling periods in tD, we can write

 tD = NT + DT; 0 £ D < 1 (6.32a)

Substituting in Eqn. (6.31), we get

 x(kT + T) = eAT x(kT) +

0

T

Ú eAs bu+(kT + T – NT – DT – s) ds

We introduce a parameter m such that

 m = 1 – D (6.32b)

Then

 x(kT + T) = eAT x(kT) +

0

T

Ú eAs bu+(kT – NT + mT – s)ds (6.33)

Since we use a ZOH, u+ is piecewise constant. The nature of the integral in Eqn. (6.33), with respect to

variable s, becomes clear from the sketch of the piecewise constant input u+ over a segment of time axis

near t = kT – NT (Fig. 6.11). The integral runs for s from 0 to T—which corresponds to t from kT – NT

+ mT backward to kT – NT – T + mT. Over this period, the control first takes on the value u(kT – NT)

and then the value u(kT – NT – T). Therefore, we can break the integral in Eqn. (6.33) into two parts as

follows:

 x(kT + T) = eAT x(kT) + e d

mT

A
b

s s

0

Ú
È

Î

Í
Í

˘

˚

˙
˙

 u(kT – NT) + e d

mT

T

A
b

s sÚ
È

Î

Í
Í

˘

˚

˙
˙

 u(kT – NT – T)

 = Fx(kT) + g1u(kT – NT – T) + g2u(kT – NT) (6.34a)

406 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where F = eAT (6.34b)

 g1 =

mT

T

Ú eAs bds (6.34c)

 g2 =

0

mT

Ú eAs bds (6.34d)

Setting q = s – mT in Eqn. (6.34c), we get

 g1 =

0

DT

Ú eA(mT + q) bdq = eAmT

0

DT

Ú eAq bdq (6.34e)

The matrices/vectors F, g1 and g2 can be evaluated by series truncation method discussed in the earlier

section.

Equation (6.34a) can be expressed in the standard state variable format. To do this, we consider first the

case of N = 0. For this case, Eqn. (6.34a) becomes

 x(k + 1) = Fx(k) + g1u(k – 1) + g2u(k)

We must eliminate u(k – 1) from the right-hand side, which we do by defining a new state

 xn +1(k) = u(k – 1)

The augmented state equation is given by

x()

()

k

x kn

+
+

È

Î
Í

˘

˚
˙

+

1

11

 =
F g

0

1

0

È

Î
Í

˘

˚
˙

x g()

()

k

x kn+

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

1

2

1
 u(k) (6.35)

For N > 0, Eqn. (6.34a) can be expressed as

 x(k + 1) = Fx(k) + g1u(k – N – 1) + g2u(k – N)

t

u+()t

u kT NT(–)

u kT NT T(– –)

kT NT T– –

kT NT T mT– – +
kT NT–

kT NT mT– +

kT NT T– +

s = mT

s = T s = 0

Fig. 6.11

 State Variable Analysis of Digital Control Systems 407

Let us introduce (N + 1) new states, defined below as

 xn + 1(k) = u(k – N – 1)

 xn + 2(k) = u(k – N)

 xn + N +1(k) = u(k – 1)

The augmented state equation now becomes

x()

()

()

()

()

k

x k

x k

x k

x k

n

n

n N

n N

+
+
+

+
+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
+

+

+

+ +

1

1

1

1

1

1

2

1

˙̇
˙
˙
˙
˙
˙
˙

 =

F g g 0 0

0

0

0

0

x1 2

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

(()

()

()

()

()

k

x k

x k

x k

x k

n

n

n N

n N

+

+

+

+ +

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

+

1

2

1

0

0

00

0

1

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

u k() (6.36)

Example 6.2

In the following, we reconsider the tank fluid temperature control system discussed in Example 3.3

(refer to Fig. 3.17). The differential equation governing the tank fluid temperature was found to be

 x1 (t) = – x1(t) + u(t – 1.5) (6.37)

where

 x1(t) = q(t) = tank fluid temperature;

 u(t) = qi(t) = temperature of the incoming fluid (control temper ature); and

 tD = 1.5 sec.

Assume that the system is sampled with period T = 1 sec. From Eqn. (6.32), we have

 N = 1, D = 0.5, m = 0.5

Equations (6.34b), (6.34d), and (6.34e) give

 F = e–1 = 0.3679

 g2 =

0

0 5.

Ú e–s ds = 1 – e–0.5 = 0.3935

 g1 = e–0.5

0

0 5.

Ú e–q dq = e–0.5 – e–1 = 0.2387

The discrete-time model of the tank fluid temperature control system becomes (refer to Eqn. (6.34a))

 x1(k + 1) = 0.3679 x1(k) + 0.2387 u(k – 2) + 0.3935 u(k – 1) (6.38)

Let us introduce two new states, defined below as

 x2(k) = u(k – 2)

 x3(k) = u(k – 1)

408 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The augmented state equation becomes

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k)
(6.39)

with F =

0 3679 0 2387 0 3935

0 0 1

0 0 0

. . .È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 c = [1 0 0]

From Eqns (6.39), the transfer function model is given as fol lows:

 G(z) =
Y z

U z

()

()
 = c(zI – F)–1 g

 = []

. . .

1 0 0

0 3679 0 2387 0 3935

0 1

0 0

0

0

1

1
z

z

z

- - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙

-

˙̇

 =
1

0 3679
1 0 0

0 2387 0 2387 0 3935

0 0 3679 0 3
2

2

z z

z z z

z z z
(.)

[]

. . .

(.) .
-

+
- - 6679

0 0 0 3679

0

0

1z z(.)-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =
0 2387 0 3935

0 36792

. .

(.)

+

-

z

z z
 =

0 3935 0 6066

0 36792

. (.)

(.)

z

z z

+

-
 (6.40)

Note that the same result was obtained earlier in Example 3.3.

6.5 SOLUTION OF STATE DIFFERENCE EQUATIONS

6.5.1

In this section, we investigate the solution of the state equa tion

 x(k + 1) = Fx(k) + gu(k); x(0) =D x
0 (6.41)

where x is n ¥ 1 state vector, u is a scalar input, F is n ¥ n real constant matrix, and g is n ¥ 1 real constant

vector.

In general, discrete-time equations are easier to solve than differential equations because the former

can be solved easily by means of a recursion procedure. The recursion procedure is quite simple and

convenient for digital computations.

The solution of Eqn. (6.41) for any positive integer k may be obtained directly by recursion as follows.

From x(0) and u(0), x(1) can be calculated:

 x(1) = Fx(0) + gu(0) (6.42a)

Then using x(1) and u(1):

 x(2) = Fx(1) + gu(1) (6.42b)

 State Variable Analysis of Digital Control Systems 409

From x(2) and u(2):

 x(3) = Fx(2) + gu(2) (6.42c)

From x(k – 1) and u(k – 1):

 x(k) = Fx(k – 1) + gu(k – 1) (6.42d)

6.5.2

In the following, we obtain the closed-form solution of state equation (6.41).

From Eqns (6.42a)–(6.42b), we obtain

 x(2) = F[Fx(0) + gu(0)] + gu(1)

 = F2
x(0) + Fgu(0) + gu(1) (6.43)

From Eqns (6.43) and (6.42c), we get

 x(3) = F[F2
x(0) + Fgu(0) + gu(1)] + gu(2)

 = F3
x(0) + F2

gu(0) + Fgu(1) + gu(2)

By repeating this procedure, we obtain

 x(k) = Fk
x(0) + Fk – 1 gu(0) + Fk – 2 gu(1) + + F0 gu(k – 1); F0 = I

 = Fk
x(0) +

i

k

=

-

Â
0

1

F
k–1– i gu(i) (6.44)

Clearly x(k) consists of two parts: one representing the contri bution of the initial state x(0), and the other

the contribution of the input u(i); i = 0, 1, 2, ..., (k – 1).

Notice that it is possible to write the solution of the homogene ous state equations

 x(k + 1) = Fx(k); x(0) =D x
0 (6.45a)

as x(k) = Fk
x(0) (6.45b)

From Eqn. (6.45b) it is observed that the initial state x(0) at k = 0 is driven to the state x(k) at the sampling

instant k. This transition in state is carried out by the matrix Fk. Due to this property, Fk is known as the

state transition matrix, and is denoted by e(k):

 e(k) = Fk; e(0) = I (Identity matrix) (6.46)

In the following, we discuss commonly used methods for evaluating state transition matrix in closed form.

Taking the z-transform on both sides of

Eqn. (6.45a), yields

 zX(z) – zx(0) = FX(z)

410 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where X(z) =D Z [x(k)]

Solving for X(z), we get

 X(z) = (zI – F)–1zx(0)

The state vector x(k) can be obtained by inverse transforming X(z):

 x(k) = Z–1[(zI – F)–1z] x(0)

Comparing this equation with Eqn. (6.45b), we get

 F
k = e(k) = Z–1[(zI – F)–1z] (6.47)

Example 6.3

 Consider the matrix F =
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.

 For this F, (zI – F)–1 =
z

z

-
+

È

Î
Í

˘

˚
˙

-
1

0 16 1

1

.

 =

z

z z z z

z z

z

z

+
+ + + +

-
+ + +

1

0 2 0 8

1

0 2 0 8

0 16

0 2 0 8 0 2

(.)(.) (.)(.)

.

(.)(.) (.))(.)z +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0 8

 =

4 3

0 2

1 3

0 8

5 3

0 2

5 3

0 8

0 8 3

0 2

0 8 3

0 8

/

.

/

.

/

.

/

.

. /

.

. /

.

z z z z

z z

+
+

-
+ +

+
-
+

-
+

+
+

--
+

+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 3

0 2

4 3

0 8

/

.

/

.z z

Therefore e(k) = F
k = Z–1[(zI – F)–1z]

 = Z–1

4
3

1
3

5
3

5
3

0 8
3

0 8
3

1

0 2 0 8 0 2 0 8

0 2 0 8

z

z

z

z

z

z

z

z

z

z

z

z

+
-

+ +
-

+

+
+

+
- -

. . . .

. .

. .
33

4
30 2 0 8

z

z

z

z+
+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙. .

 =

4
3

1
3

5
3

5
3

0 8
3

0 8
3

0 2 0 8 0 2 0 8

0 2 0

(.) (.) (.) (.)

(.) (. .

- - - - - -

- + --

k k k k

k ..) (.) (.)8 0 2 0 81
3

4
3

k k k- - + -

È

Î

Í
Í

˘

˚

˙
˙

Suppose that F is an n ¥ n nondiagonal

matrix with distinct eigenvalues l1, l2, ..., ln. We define the diagonal matrix

 L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 State Variable Analysis of Digital Control Systems 411

F and L are similar matrices; there exists a nonsingular matrix P such that (refer to Eqns (5.22))

 L = P–1 FP

Now P
–1 Fk

P = P–1 [FF F]P

 = P–1 [(PLP
–1) (PLP

–1) (PLP
–1)]P = Lk

Thus the matrices Fk and Lk are similar. Since L is diagonal, Lk is given by

 Lk =

l

l

l

1

2

0 0

0 0

0 0

k

k

n
k

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The state transition matrix Fk of matrix F with distinct eigen values l1, l2, ..., ln may, therefore, be

evaluated using the following relation:

 F
k = PLk P–1 = P

l

l

l

1

2

0 0

0 0

0 0

k

k

n
k

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

P
–1 (6.48)

where P is a transformation matrix that transforms F into the diagonal form (For the general case where

matrix F has multiple eigenvalues, refer to [105]; also refer to Review Example 6.5 given at the end of

this chapter).

Example 6.4 Consider the Matrix

 F =
0 1

2 3- -
È

Î
Í

˘

˚
˙

The characteristic equation of the system is

 |lI – F| = l2 + 3l + 2 = 0

which yields l1 = – 1 and l2 = – 2 as the eigenvalues of F.

Since the matrix F is in companion form, the eigenvectors3, and hence the transformation matrix, can

easily be obtained (refer to Problem 5.21).

 P =
1 1

1 2l l

È

Î
Í

˘

˚
˙ =

1 1

1 2- -
È

Î
Í

˘

˚
˙

gives the diagonalized matrix

 L = P–1 FP =
-

-
È

Î
Í

˘

˚
˙

1 0

0 2

 3 Refer to Section 5.6 for methods of determination of eigenvectors for a given general matrix F.

412 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

From Eqn. (6.48), we may write

 F
k = P

()

()

-

-

È

Î
Í
Í

˘

˚
˙
˙

1 0

0 2

k

k
 P–1

 =
1 1

1 2

1 0

0 2

2 1

1 1- -

È

Î
Í
Í

˘

˚
˙
˙

-

-

È

Î
Í
Í

˘

˚
˙
˙ - -

È

Î
Í
Í

˘

˚
˙
˙

()

()

k

k

 =
2 1 2 1 2

2 1 2 2 1 2 2

() () () ()

() () () ()

- - - - - -

- - + - - - + -

È

Î
Í
Í

˘

˚
˙
˙

k k k k

k k k k

The Cayley–Hamilton technique has

already been explained in the earlier chapter. We illustrate the use of this technique for evaluation of Fk

by the following example.

Example 6.5 Consider the Matrix

 F =
0 1

1 2- -
È

Î
Í

˘

˚
˙

Let us evaluate f(F) = Fk.

Matrix F has two eigenvalues at l1 = l2 = –1.

Since F is of second order, the polynomial g(l) will be of the form (refer to Eqns (5.98)):

 g(l) = b0 + b1l

The coefficients b0 and b1 are evaluated from the following equations:

 f (–1) = (–1)k = b0 – b1

d

d
f

l
l

l

()
= -1

 = k(–1)k –1 =
d

d
g

l
l

l

()
= -1

 = b1

The result is b0 = (1 – k) (–1)k

 b1 = – k(–1)k

Hence f(F) = Fk = b0I + b1F

 = (1 – k) (–1)k
1 0

0 1

È

Î
Í

˘

˚
˙ – k(–1)k

0 1

1 2- -
È

Î
Í

˘

˚
˙

 = (–1)k
()

()

1

1

- -
+

È

Î
Í

˘

˚
˙

k k

k k

 State Variable Analysis of Digital Control Systems 413

The solution of the nonhomogeneous state difference equation (6.41) is given by Eqn. (6.44). In terms of

the state transition matrix e(k), Eqn. (6.44) can be written in the form

 x(k) = e(k) x(0) + e

i

k

=

-

Â
0

1

(k – 1 – i) gu(i) (6.49)

This equation is called the state transition equation; it describes the change of state relative to the initial

conditions x(0) and the input u(k).

Example 6.6 Consider the System

x k

x k

1

2

1

1

()

()

+
+

È

Î
Í

˘

˚
˙ =

0 1

2 3

0

1
1

1

2- -
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ -

x k

x k

k()

()
()

 x1(0) = 1 = x2(0)

 y(k) = x1(k)

Find y(k) for k ≥ 1.

Solution For the given state equation, we have

 F =
0 1

2 3- -
È

Î
Í

˘

˚
˙

For this F, e(k) = Fk was evaluated in Example 6.4:

 e(k) = Fk =
2 1 2 1 2

2 1 2 2 1 2 2

() () () ()

() () () ()

- - - - - -

- - + - - - + -

È

Î
Í
Í

˘

˚
˙
˙

k k k k

k k k k

The state x(k) = Fk x(0) +
i

k

=

-

Â
0

1

F
k – 1 – i gu(i)

With g =
0

1

È

Î
Í

˘

˚
˙ , x(0) =

1

1

È

Î
Í

˘

˚
˙ , and u(k)= (–1)k,

we get

 y(k) = x1(k) = 3(–1)k – 2(–2)k +
i

k

=

-

Â
0

1

 [(–1)k – 1 – i – (–2)k – 1 – i] (–1)i

 = 3(–1)k – 2(–2)k + k(–1)k – 1 – (–2)k – 1
1
2

0

1

()
=

-

Â i

i

k

Since4

1
2

0

1

()
=

-

Â i

i

k

 =
1

1

1
2

1
2

- ()
-

k

 = – 2 1
2

1() -È
ÎÍ

˘
˚̇

k
, we have

 4 a j

j

k

=
Â

0

 =
1

1

1-
-

+a

a

k

; a π 1.

414 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 y(k) = 3(–1)k – 2(–2)k – k(–1)k + (–2)k []1 1
2

- ()k

 = 3(–1)k – 2(–2)k – k(–1)k + (–2)k – (–1)k = (2 – k) (–1)k – (–2)k

6.6 CONTROLLABILITY AND OBSERVABILITY

In this section, we study the controllability and observability properties of linear time-invariant systems

described by state variable model of the following form:

 x(k + 1) = Fx(k) + gu(k) (6.50a)

 y(k) = cx(k) + du(k) (6.50b)

where F, g, c and d are, respectively, n ¥ n, n ¥ 1, 1 ¥ n, and 1 ¥ 1 matrices. x is n ¥ 1 state vector, and y

and u are, respectively, output and input variables.

6.6.1

For the linear system given by Eqns (6.50), if there exists an input u(k); k Œ [0, N – 1] with N a finite

positive integer, which transfers the initial state x(0) =D x
0 to the state x1 at k = N, the state x0 is said to be

controllable. If all initial states are controllable, the system is said to be completely controllable or simply

controllable. Otherwise, the system is said to be uncontrollable.

The following theorem gives a simple controllability test.

The necessary and sufficient condition for the system (6.50) to be completely

controllable is that the n ¥ n controllability matrix,

 U =D [g Fg F
2
g Fn –1

g] (6.51)

has rank equal to n, i.e., r (U) = n.

Solution of Eqn. (6.50a) is

 x(k) = Fk
x(0) +

i

k

=

-

Â
0

1

F
k–1– i gu(i)

Letting x(0) =D x
0 and x(n) =D x

1, we obtain

 x
1 – Fn

x
0 = Fn – 1

gu(0) + Fn – 2
gu(1) + + gu(n – 1)

or x
1 – Fn

x
0 = [g Fg Fn–1

g]

u n

u n

u

()

()

()

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2

0

 (6.52)

Since g is an n ¥ 1 matrix, we find that each of the matrices g, Fg, ..., Fn–1
g is an n ¥ 1 matrix. Therefore,

 U = [g Fg Fn –1
g]

 State Variable Analysis of Digital Control Systems 415

is an n ¥ n matrix. If the rank of U is n, then for arbitrary states x0 and x1, there exists a sequence of

unconstrained con trol signals u(0), u(1), ..., u(n – 1) that satisfies Eqn. (6.52). Hence, the condition that

the rank of the controllability matrix is n gives a sufficient condition for complete controlla bility.

To prove that the condition r (U) = n is also a necessary condi tion for complete controllability, we

assume that

 r[g Fg Fn–1
g] < n

 The matrix U is, therefore, singular and for arbitrary x0 and x1, a solution {u(0), u(1), ..., u(n – 1)}

satisfying Eqn. (6.52) does not exist.

Let us attempt a solution of the form {u(0), u(1), ..., u(N – 1)}; N > n. This will amount to adding

columns Fn
g, Fn+1

g, ..., FN–1 g in the U matrix. But by Cayley–Hamilton theorem, f(F) = Fj; j ≥ n is a linear

combination of Fn–1, …, F1, F0 (refer to Eqn. (5.98d)) and therefore, columns Fn
g, Fn+1

g, ..., FN–1
g add

no new rank. Thus, if a state cannot be transferred to some other state in n sampling intervals, no matter

how long the input sequence {u(0), u(1), ..., u(N – 1)}; N > n is, it still cannot be achieved. Consequently,

we find that the rank condition given by Eqn. (6.51) is necessary and sufficient condition for complete

controllability.

6.6.2

For the linear system given by Eqns (6.50), if the knowledge of the input u(k); k Œ [0, N – 1] and the

output y(k); k Œ [0, N – 1] with N a finite positive integer, suffices to determine the state x(0) =D x
0, the

state x0 is said to be observable. If all initial conditions are observable, the system is said to be completely

observable, or simply observable. Otherwise, the system is said to be unobservable.

The following theorem gives a simple observability test.

The necessary and sufficient condition for the system (6.50) to be completely

observable is that the n ¥ n observability matrix

 V =

c

cF

cF

cF

2

1

n -

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 (6.53)

has rank equal to n, i.e., r (V) = n.

The solution of Eqns (6.50) is

 y(k) = cF
k
x(0) + cF g

k i

i

k

u i- -

=

-

Â
È

Î

Í
Í

˘

˚

˙
˙

1

0

1

() + du(k)

This gives y(0) = cx(0) + du(0)

 y(1) = cFx(0) + cg u(0) + du(1)

 y(n – 1) = cF
n – 1

x(0) + cF
n – 2

g u(0) + cF
n – 3

g u(1) + + cg u(n – 2) + du(n – 1)

416 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

From these equations, we may write

y du

y u du

y n u un n

() ()

() () ()

() () ()

0 0

1 0 1

1 0 12 3

-
- -

- - - -- -

cg

cF g cF g

 -- - - -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙cg u n du n() ()2 1

 =

c

cF

cF

cF

2

1

n-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 x0 = V x
n n n¥ ¥

¥ 0

1

(6.54)

If the rank of V is n, then there exists a unique solution x0 of Eqn. (6.54). Hence, the condition that the

rank of the observability matrix is n, gives a sufficient condition for com plete observability.

It can easily be proved (refer to proof of Theorem 6.1) that the condition r (V) = n is also a necessary

condition for complete observability.

6.6.3

 State Variable Model in Jordan Canonical Form

The following result for discrete-time systems easily follows from the corresponding result for

continuous-time systems, given in the earlier chapter.

Consider a SISO system with distinct eigenvalues5 l1, l2, ..., ln.

The Jordan canonical state model of the system is of the form

 x(k + 1) = Lx(k) + gu(k) (6.55)

 y(k) = cx(k) + du(k)

with L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g =

g

g

gn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [c1 c2 cn]

The system (6.55) is completely controllable if, and only if, none of the elements of the column matrix

g, is zero. The system (6.55) is completely observable if, and only if, none of the elements of the row

matrix c, is zero.

6.6.4

The following result for discrete-time systems easily follows from the corresponding result for

continuous-time systems, given in the earlier chapter.

The general state variable model of nth-order linear time-invariant discrete-time system is given by

Eqns (6.50):

 x(k + 1) = Fx(k) + gu(k); x(0) =D x
0

 y(k) = cx(k) + du(k)
(6.56)

 5 Refer to Gopal [105] for the case of multiple eigenvalues.

 State Variable Analysis of Digital Control Systems 417

The corresponding transfer function model is

Y z

U z

()

()
 =

c I F g I F

I F

() | |

| |

z d z

z

- + -
-

+

 (6.57)

The uncontrollable and unobservable modes of the state variable model (6.56) do not show up in the

corresponding transfer func tion representation (6.57); the poles of the transfer function are, therefore, a

subset of the eigenvalues of matrix F, and the asymptotic stability of the system always implies bounded-

input, bounded-output (BIBO) stability. The reverse, however, may not be true because the eigenvalues

of uncontrollable and/or unobservable parts of the system are hidden from the BIBO stabil ity analysis.

When the state variable model (6.56) is both controllable and observable, all the eigenvalues of F appear

as poles in the transfer function (6.57), and therefore, BIBO stabil ity implies asymptotic stability only

for controllable and ob servable systems.

Conclusion The transfer function model of a system represents its complete dynamics only if the

system is both controllable and observable.

6.6.5

Sampling of a continuous-time system gives a discrete-time system with system matrices that depend

on the sampling period. How will that influence the controllability and observability of the sampled

system? To get a controllable sampled system, it is necessary that the continuous-time system also be

controllable, because the allowable control signals for the sampled system—piecewise constant signals—

are a subset of allowable control signals for the continuous-time system. However, it may happen that the

controllability is lost for some sampling peri ods.

The conditions for unobservability are more restricted in the continuous-time case because the output

has to be zero over a time interval, while the sampled system output has to be zero only at the sampling

instants. This means that the continuous output may oscillate between the sampling times and be zero at the

sampling instants. This condition is sometimes called hidden oscillations. The sampled system can thus be

unobservable—even if the corresponding continuous-time system is observable.

The harmonic oscillator can be used to illustrate the preceding discussion. The transfer function model

of the oscillator system is

Y s

U s

()

()
 =

w

w

2

2 2s +
 (6.58)

From this model, we have

 y + w2y = w2u

Define x1 = y; x2 =
1

w
 y

This gives the following state variable representation of the oscillator system:

x

x

1

2

È

Î
Í

˘

˚
˙ =

0

0

01

2

w

w w-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

x

x
u

 y = [1 0]
x

x

1

2

È

Î
Í

˘

˚
˙

(6.59)

418 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The discrete-time state variable representation of the system is obtained as follows. Noting that

 A =
0

0

w

w-
È

Î
Í

˘

˚
˙ , b =

0

w

È

Î
Í

˘

˚
˙

we have

 F = eAT = L –1 [(sI – A)–1]|t = T = L–1
s

s
t T

-È

Î
Í

˘

˚
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-

=

w

w

1

 = L –1

s

s s

s

s

s t T

2 2 2 2

2 2 2 2

+ +
-

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

w

w

w

w

w w

 =
cos sin

sin cos

w w

w w

T T

T T-
È

Î
Í

˘

˚
˙

and

 g = e d

T

Aq q

0

Ú
È

Î

Í
Í

˘

˚

˙
˙

 b =
cos sin

sin cos

wq wq

wq wq
q

-
Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙Ú d

T

0

0

w

È

Î
Í

˘

˚
˙ =

1-È

Î
Í

˘

˚
˙

cos

sin

w

w

T

T

Hence, the discrete-time state variable representation of the oscillator system becomes

x k

x k

1

2

1

1

()

()

+
+

È

Î
Í

˘

˚
˙ =

cos sin

sin cos

w w

w w

T T

T T-
È

Î
Í

˘

˚
˙

x k

x k

1

2

()

()

È

Î
Í

˘

˚
˙ +

1-È

Î
Í

˘

˚
˙

cos

sin

w

w

T

T
u(k) (6.60)

 y(k) = [1 0]
x k

x k

1

2

()

()

È

Î
Í

˘

˚
˙

The determinants of the controllability and observability matric es are

 |U| = |[g Fg]| = – 2 sinwT (1 – coswT)

 |V| =
c

cF

È

Î
Í

˘

˚
˙ = sinwT

Both controllability and observability are lost for wT = np, n = 1, 2, ... (i.e., when the sampling interval

is half the period of oscillation of the harmonic oscillator, or an integer multiple of that period), although

the corresponding continuous-time system given by Eqns (6.59), is both controllable and observable.

Loss of controllability and/or observability due to sampling occurs only when the continuous-time

system has oscillatory modes and the sampling interval is half the period of oscillation of an oscillatory

mode, or an integer multiple of that period. This implies that controllability and observability properties

of a continuous-time system, are preserved after introduction of sampling if, and only if, for every

eigenvalue of the character istic equation, the relation

 Re li = Re lj (6.61)

implies Im (li – lj) π
2n

T

p

where T is the sampling period and n = ± 1, ± 2,

 State Variable Analysis of Digital Control Systems 419

We know that controllability and/or observability is lost when the transfer function corresponding to a

state model has common poles and zeros. The poles and zeros are functions of sampling interval. This

implies that if the choice of sampling interval does not satisfy the condition given by (6.61), pole-zero

cancellation will occur in passing from the continuous-time to the discrete-time case; the pole-zero

cancellation will not take place if the continuous-time system does not contain complex poles.

It is very unlikely that the sampling interval chosen for a plant control system, would be precisely the

one resulting in loss of con trollability and/or observability. In fact the rules of thumb, for the choice of

sampling interval given in Section 2.13, imply a sampling interval of about one tenth of the period of

oscillation of an oscillatory mode, and not just half.

6.7 MULTIVARIABLE SYSTEMS

The state variable model of the multi-input, multi-output (MIMO) system takes the following form (refer

to Eqns (2.14)–(2.15)):

 x(k + 1) = Fx(k) + Gu(k); x(0) =D x
0 (6.62a)

 y(k) = Cx(k) + Du(k) (6.62b)

F, G, C, and D are, respectively, n ¥ n, n ¥ p, q ¥ n and q ¥ p constant matrices, x is n ¥ 1 state vector,

u is p ¥ 1 input vector, and y is q ¥ 1 output vector.

Many of the analysis results developed in earlier sections of this chapter for SISO systems, have obvious

extensions for the system (6.62).

The solution of the state equation (6.62a) is given by (refer to Eqn. (6.44))

 x(k) = Fk
x(0) + F Gu

k i

i

k

i- -

=

-

Â 1

0

1

() (6.63a)

The output

 y(k) = C F x F Gu
k k i

i

k

i() ()0 1

0

1

+
È

Î

Í
Í

˘

˚

˙
˙

- -

=

-

Â + Du(k) (6.63b)

In the transform domain, the input-output behavior of the system (6.62) is determined entirely by the

transfer function matrix (refer to Eqns (6.3))

 G(z) = C(zI – F)–1
G + D (6.64a)

The output Y()z
q ¥ 1

 = G()z
q p¥

U()z
p ¥ 1

 (6.64b)

The necessary and sufficient condition for the system (6.62) to be completely controllable is that the

n ¥ np matrix

 U =D [G FG F
2
G Fn –1

G] (6.65)

has rank equal to n.

420 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The necessary and sufficient condition for the system (6.62) to be completely observable is that the

nq ¥ n matrix

 V =D

C

CF

CF

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 (6.66)

has rank equal to n.

A MIMO system with distinct eigenvalues6 l1, l2, ..., ln has the following Jordan canonical state model.

 x(k + 1) = Lx(k) + Gu(k)

 y(k) = Cx(k) + Du(k)
(6.67)

with

 L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; G =

g g g

g g g

g g g

p

p

n n np

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; C =

c c c

c c c

n

q q qn

11 12 1

1 2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The system (6.67) is completely controllable if, and only if, none of the rows of G matrix is a zero row,

and (6.67) is completely observable if, and only if, none of the columns of C matrix is a zero column.

Example 6.7

The scheme of Fig. 5.23 (refer to Example 5.21) describes a simple concentration control process.

Mathematical model of the plant, given by Eqns (5.133), is reproduced below.

 x = Ax + Bu

 y = Cx
(6.68)

with A =
-

-
È

Î
Í

˘

˚
˙

0 01 0

0 0 02

.

.
; B =

1 1

0 004 0 002- -
È

Î
Í

˘

˚
˙

. .
; C =

0 01 0

0 1

.È

Î
Í

˘

˚
˙

The state, input, and output variables are deviations from stea dy-state values:

 x1 = incremental volume of fluid in the tank (liters)

 x2 = incremental outgoing concentration (g-moles/liter)

 u1 = incremental feed 1 (liters/sec)

 u2 = incremental feed 2 (liters/sec)

 y1 = incremental outflow (liters/sec)

 y2 = incremental outgoing concentration (g-moles/liter)

Matrix A in Eqns (6.68) is in diagonal form; none of the rows of B matrix is a zero row, and none of the

columns of C matrix is a zero column. The state model (6.68) is, therefore, completely controlla ble and

observable.

 6 Refer to Gopal [105] for the case of multiple eigenvalues.

 State Variable Analysis of Digital Control Systems 421

With initial values of x1 and x2 equal to zero at t = 0, a step of 2 liters/sec in feed 1 results in

 y(t) = C e dt

t

A(
Bu

-Ú
È

Î

Í
Í

˘

˚

˙
˙

t t t) ()

0

with eAt =
e

e

t

t

-

-

È

Î
Í
Í

˘

˚
˙
˙

0 01

0 02

0

0

.

.

and u(t) =
2

0

È

Î
Í

˘

˚
˙

Solving for y(t), we get

 y(t) = C

2

0 008

0 01

0

0 02

0

e d

e d

t

t

t

t

- -

- -

Ú

Ú-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

. ()

. ().

t

t

t

t

 = C

2
0 01

0 01

0 02

1

0 4 1

.

.

.

()

. ()

-

- -

È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

Therefore, y1(t) = 2(1 – e–0.01t) (6.69a)

 y2(t) = – 0.4(1 – e–0.02t) (6.69b)

Suppose that the plant (6.68) forms part of a process commanded by a process control computer.

As a result, the valve settings change at discrete instants only and remain constant in between.

Assuming that these instants are separated by time period T = 5 sec, we derive the discrete-time

description of the plant.

 x(k + 1) = Fx(k) + Gu(k) (6.70a)

 y(k) = Cx(k) (6.70b)

 F = eAT =
e

e

T

T

-

-

È

Î
Í
Í

˘

˚
˙
˙

0 01

0 02

0

0

.

.
 =

0 9512 0

0 0 9048

.

.

È

Î
Í

˘

˚
˙ (6.70c)

 G =

0

T

Ú eAq Bdq =

e d e d

e d e d

T T

T T

- -

- -

Ú Ú

Ú-

0 01

0

0 01

0

0 02

0

0 02

0

0 004 0 002

. .

. .. .

q q

q q

q q

q qÚÚ

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 =
4 88 4 88

0 019 0 0095

. .

. .-
È

Î
Í

˘

˚
˙ (6.70d)

Matrix F in Eqns (6.70) is in diagonal form; none of the rows of G matrix is a zero row, and none of the

columns of C matrix is a zero column. The state model (6.70) is, therefore, completely controllable and

observable.

With initial values of x1 and x2 equal to zero at k = 0, a step of 2 liters/sec in feed 1 results in

 y(k) = C F Gu
k i

i

k

i- -

=

-

Â
È

Î

Í
Í

˘

˚

˙
˙

1

0

1

()

422 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

with F
k =

(.)

(.)

0 9512 0

0 0 9048

k

k

È

Î
Í
Í

˘

˚
˙
˙

 and u(i) =
2

0

È

Î
Í

˘

˚
˙

Solving for y(k), we get

 y1(k) = 0.01x1(k) = 0.01
i

k

=

-

Â
0

1

9.76(0.9512)k –1 – i

Since (refer to footnote 4)

1

0 9512
0

1

.

Ê
ËÁ

ˆ
¯̃

=

-

Â
i

i

k

 =

1
1

0 9512

1
1

0 9512

- Ê
ËÁ

ˆ
¯̃

-

.

.

k

 =
0 9512

0 0488

.

.-
 [1 – (0.9512)– k]

we have y1(k) = 2[1 – (0.9512)k] (6.71a)

 y2(k) = x2(k) = – 0.038
i

k

=

-

Â
0

1

(0.9048)k –1– i = – 0.4 [1 – (0.9048)k] (6.71b)

Comparison of y1(k) and y2(k) with y1(t) and y2(t), shows that the two sets of responses match exactly at

the sampling instants.

REVIEW EXAMPLES

Review Example 6.1

Give three different canonical state variable models correspond ing to the transfer function

 G(z) =
4 12 13 7

1 2

3 2

2

z z z

z z

- + -

- -() ()

Solution The given transfer function is

 G(z) =
Y z

U z

()

()
 =

4 12 13 7

4 5 2

3 2

3 2

z z z

z z z

- + -

- + -
 =

b b b b

a a a

0
3

1
2

2 3

3
1

2
2 3

z z z

z z z

+ + +

+ + +

The controllable canonical state model (first companion form) follows directly from Eqns (6.5) and (6.7):

x k

x k

x k

1

2

3

1

1

1

()

()

()

+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

0 1 0

0 0 1

2 5 4-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x k

x k

x k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 +

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u(k)

 y(k) = [1 – 7 4]

x k

x k

x k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 + 4u(k)

 State Variable Analysis of Digital Control Systems 423

The observable canonical state model (second companion form) follows directly from Eqns (6.5) and (6.8):

x k

x k

x k

1

2

3

1

1

1

()

()

()

+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

0 0 2

1 0 5

0 1 4

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x k

x k

x k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 +

1

7

4

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u(k)

 y(k) = [0 0 1]

x k

x k

x k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 + 4u(k)

The state variable model in Jordan canonical form follows from Eqns (6.11) and (6.12):

Y z

U z

()

()
 = G(z) =

4 12 13 7

4 5 2

3 2

3 2

z z z

z z z

- + -

- + -
 = 4 +

4 7 1

1 2

2

2

z z

z z

- +

- -() ()

 = 4 +
2

1

1

1

3

22() () ()z z z-
+

-
+

-

ˆ ()

ˆ ()

ˆ ()

x k

x k

x k

1

2

3

1

1

1

+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

1 1 0

0 1 0

0 0 2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

ˆ ()

ˆ ()

ˆ ()

x k

x k

x k

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 +

0

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u(k)

 y(k) = [2 1 3]

ˆ ()

ˆ ()

ˆ ()

x k

x k

x k

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 + 4u(k)

Review Example 6.2

Prove that a discrete-time system obtained by zero-order-hold sampling of an asymptotically stable

continuous-time system is also asymptotically stable.

Solution Consider an asymptotically stable continuous-time system

 x (t) = Ax(t) (6.72)

We assume for simplicity, that the eigenvalues l1, l2, ..., ln of matrix A are all distinct. Let P be a

transformation matrix such that

 P
–1

AP = L =

l

l

l

1

2

0 0

0 0

0 0

 n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

424 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

This gives (refer to Eqn. (5.93))

 P
–1eAt

P = eLt

 =

e

e

e

t

t

tn

l

l

l

1

2

0 0

0 0

0 0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The zero-order-hold sampling of the continuous-time system (6.72) results in a discrete-time system

 x(k + 1) = Fx(k)

where F = eAT; T = sampling interval

The characteristic polynomial of the system is

 |zI – F| = |zI – eAT| = |P–1| |zI – eAT| |P|

 = |zP
–1

P – P–1eAT P | = |zI – eLT |

 = (z – e
Tl1) (z – e Tl2) (z – e nTl

)

Notice that the eigenvalues of F are given by zi = eliT; i = 1, 2, ..., n. We see the equivalence of Reli < 0

and | zi | < 1. Thus, the discrete-time system, obtained by zero-order-hold sam pling of an asymptotically

stable continuous-time system, is also asymptotically stable.

The proof for the case where matrix A has multiple eigenvalues follows on identical lines.

Review Example 6.3

Consider a unity-feedback system with the plant

 x = Ax + bu

 y = cx

where A =
0 1

0 2-
È

Î
Í

˘

˚
˙ ; b =

0

K

È

Î
Í

˘

˚
˙ ; c = [1 0]

 (a) Find the range of values of K for which the closed-loop system is stable.

 (b) Introduce now a sampler and zero-order hold in the forward path of the closed-loop system. Show

that sampling has a destabilizing effect on the stability of the closed-loop system. To establish this

result, you may find the range of values of K for which the closed-loop digital system is stable when

(i) T = 0.4 sec, and (ii) T = 3 sec; and then compare with that obtained in (a) above.

Solution Consider the feedback system of Fig. 6.12a. Substituting

 u = r – y = r – x1

in the plant model, we get the following state variable descrip tion of the closed-loop system:

x

x

1

2

È

Î
Í

˘

˚
˙ =

0 1

2- -
È

Î
Í

˘

˚
˙

K

x

x

1

2

È

Î
Í

˘

˚
˙ +

0

K

È

Î
Í

˘

˚
˙ r

 State Variable Analysis of Digital Control Systems 425

The characteristic equation of the closed-loop system is

l2 + 2l + K = 0

The closed-loop system is stable for all values of K > 0.

Figure 6.12b shows a block diagram of the closed-loop digital system. The discrete-time description of

the plant is obtained as follows:

 x(k + 1) = Fx(k) + g u(k)

 y(k) = cx(k)

where F = eAT; and g =

0

T

Ú eAq b dq

Now eAt = L–1 [()]sI A- -1
 = L –1

s

s

-
+

È

Î
Í

˘

˚
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-
1

0 2

1

 = L –1

1 1

2

0
1

2

s s s

s

()+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =
1 1

0

1
2

2

2

()-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

Therefore, F = eAT =
1 1

0

1
2

2

2

()-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

T

T

 g =

0

T

Ú
K

e

Ke

2
1 2

2

()-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

-

q

q

 dq = 1
2

K
T e

e

T

T

- +

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

1
2

1
2

2

21

r

r e u

T

Plant

(a)

(b)

PlantZOH

u
c

x+

+

–

–

x Ax b= + u
y x= 1

y x= 1

Fig. 6.12

426 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The state variable description of the closed-loop digital system, becomes

 x(k + 1) =
1 1

1

1
2

1
2

1
2

2 1
2

2

1
2

2 2

- - + -

- -

È

Î

Í
Í

˘

˚

˙
˙

- -

- -

K T e e

K e e

T T

T T

() ()

()
 x(k) + 1

2
K

T e

e

T

T

- +

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

1
2

1
2

2

21
r(k)

The characteristic equation is given by

 l2 + [() ()]- + + - +- -1 2 1
2

1
2

1
2

2e K T eT T l + e–2T + 1
2

K(1
2

 – 1
2

e–2T – Te–2T) = 0

Case I: T = 0.4 sec

For this value of sampling period, the characteristic polynomial becomes

 D(l) = l2 + (0.062K – 1.449)l + 0.449 + 0.048K

Applying the Jury stability test (refer to Eqns (2.73)–(2.75)), we find that the system is stable if the

following conditions are satisfied:

 D(1) = 1 + 0.062K – 1.449 + 0.449 + 0.048K > 0

 D(–1) = 1 – 0.062K + 1.449 + 0.449 + 0.048K > 0

 | 0.449 + 0.048K| < 1

These conditions are satisfied for 0 < K < 11.479.

Case II: T = 3 sec

For this value of the sampling period, the characteristic polyno mial becomes

 D(l) = l2 + (1.2506K – 1.0025)l + 0.0025 + 0.2457K

The system is found to be stable for 0 < K < 1.995.

Thus, the system which is stable for all K > 0 when T = 0 (contin uous-time system), becomes unstable for

K > 11.479 when T = 0.4 sec. When T is increased to 3 sec, it becomes unstable for K > 1.995. It means

that increasing the sampling period (or decreas ing the sampling rate) reduces the margin of stability.

Review Example 6.4

A closed-loop computer control system is shown in Fig. 6.13. The digital controller is described by the

difference equation

 e2(k + 1) + ae2(k) = be1(k)

The state variable model of the plant is given below.

 x = Ax + bu

 y = cx

with A =
0 1

0 1-
È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

 State Variable Analysis of Digital Control Systems 427

Obtain discrete-time state description for the closed-loop sys tem.

+ u

T =1sec

r Digital
compensator

ZOH Plant

–

y x= 1e1()ke1()t e2()k

Fig. 6.13

Solution

Given A =
0 1

0 1-
È

Î
Í

˘

˚
˙

 eAt = L –1[(s I – A) –1] = L –1

1 1

1

0
1

1

s s s

s

()+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =
1 1

0

-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

The discretized state equation of the plant is

 x(k + 1) = Fx(k) + gu(k) (6.73a)

where F = eAT =
1 1

0

-È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

T

T

 g =

0

T

Ú eAq b dq =

()1

0

0

-
È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

Ú

Ú

e d

e d

T

T

q

q

q

q

 =
T e

e

T

T

- +

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

1

1
 (6.73b)

For T = 1 sec, we have

 F =
1 0 632

0 0 368

.

.

È

Î
Í

˘

˚
˙ ; g =

0 368

0 632

.

.

È

Î
Í

˘

˚
˙ (6.73c)

Consider now, the feedback system of Fig. 6.13 with the plant described by the equation (refer to Eqns 6.73)):

x k

x k

1

2

1

1

()

()

+
+

È

Î
Í

˘

˚
˙ =

1 0 632

0 0 368

.

.

È

Î
Í

˘

˚
˙

x k

x k

1

2

()

()

È

Î
Í

˘

˚
˙ +

0 368

0 632

.

.

È

Î
Í

˘

˚
˙ e2(k) (6.74)

e2(k) may be taken as the third state variable x3(k) whose dynam ics are given by

 x3(k + 1) = – a x3(k) + b e1(k) = – a x3(k) + b (r(k) – x1(k)) = – b x1(k) – a x3(k) + b r(k) (6.75)

From Eqns (6.74)–(6.75), we get the following state variable model for the closed-loop digital system of

Fig. 6.13:

428 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

x k

x k

x k

1

2

3

1

1

1

()

()

()

+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

1 0 632 0 368

0 0 368 0 632

0

. .

. .

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙b a

x k

x k

x k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

0

0

b

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r(k)

 y(k) = [1 0 0]

x k

x k

x k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Review Example 6.5

Given

 L
n n¥

 =

l

l

l

1

1

1

1 0 0

0 1 0

0 0 0 1

0 0 0

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Compute Lk using the Cayley–Hamilton technique.

Solution Equations (5.98) outline the procedure of evaluation of functions of a matrix using the

Cayley–Hamilton technique.

The matrix L has n eigenvalues at l = l1. To evaluate f (L) = Lk, we define (refer to Eqn. (5.98b)) the

polynomial g(l) as

 g(l) = b0 + b1 l + + b n –1 ln–1

This polynomial may be rearranged as

 g(l) = b0 + b1(l – l1) + + bn –1 (l – l1)n–1

The coefficients b0, b1, ..., bn–1 are given by the following equations (refer to Eqns (5.98c)):

 f (l1) = g(l1)

d

d
f

l
l

l l

()
= 1

 =
d

d
g

l
l

l l

()
= 1

d

d
f

n

n

-

-
=

1

1

1

l
l

l l

() =
d

d
g

n

n

-

-
=

1

1

1

l
l

l l

()

Solving, we get

 b0 = l k
1

 b1 =
k k

1 1

1

!
l

-

 b2 =
k k k()

!

- -1

2
1

2l

 State Variable Analysis of Digital Control Systems 429

 bn–1 =
k k k k n

n

k n()() ()

()!

- - - +
-

- +1 2 2

1 1

1
l

 =
k k k k n k n k n

k n k n n

()() ()()()

()() ()!

- - - + - + -
- + - -

È

Î
Í

˘1 2 2 1 1

1 1

1

1

 ˚̊
˙

- +
l

1

1k n

 =
k

k n n

k n!

()!()!- + -
- +

1 1 1

1
l

Therefore (refer to Review Example 5.3),

 Lk = b0I + b1(L – l1I) + + bn–1 (L – l1I)n–1

 =

l l l
l

l l

1 1
1

1
2 1

1

1 1

1

1

2 1 1

0
1

k k k
k n

k k

k k k k

k n n

k

!

()

!

!

()!()!

!

- -
- +-

- + -

-- ∑

∑

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

1

1

1

0 0

0 0 0

l

l

k

k

PROBLEMS

 6.1 A system is described by the state equation

 x(k + 1) =

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 1 0

4 0 1

1 0 0

 x(k) +

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3

7

0

 u(k); x(0) = x0

 Using the z-transform technique, transform the state equation into a set of linear algebraic

equations in the form

 X(z) = G(z)x0 + H(z)U(z)

 6.2 Give a block diagram for digital realization of the state equation of Problem 6.1.

 6.3 Obtain the transfer function description for the following system:

x k

x k

1

2

1

1

()

()

+
+

È

Î
Í

˘

˚
˙ =

2 5

1

1

0
1
2

1

2

-
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

x k

x k

()

()
u(k); y(k) = 2x1(k)

 6.4 A second-order multivariable system is described by the following equations:

x k

x k

1

2

1

1

()

()

+
+

È

Î
Í

˘

˚
˙ =

2 5

11
2

-
-

È

Î
Í

˘

˚
˙

x k

x k

1

2

()

()

È

Î
Í

˘

˚
˙ +

1 2 0

0 1 3

-È

Î
Í

˘

˚
˙

u k

u k

u k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

y k

y k

1

2

()

()

È

Î
Í

˘

˚
˙ =

2 0

1 1-
È

Î
Í

˘

˚
˙

x k

x k

1

2

()

()

È

Î
Í

˘

˚
˙ +

0 4 0

0 0 2-
È

Î
Í

˘

˚
˙

u k

u k

u k

1

2

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Convert the state variable model into a transfer function matrix.

430 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 6.5 The state diagram of a linear system is shown in Fig. P6.5. Assign the state variables and write the

dynamic equations of the system.

8

5
1

6

1/4

1/2

1/3

–1/2

–1

–1

–7
2

2

3

z–1

z–1

z–1

Y()zU()z

Fig. P6.5

 6.6 Set up a state variable model for the system of Fig. P6.6.

+

+ +

+

+

+

+ +
+

+

+

3

2

2

2

12

7

6

–

–

u1
y1

y2u2

Fig. P6.6

 State Variable Analysis of Digital Control Systems 431

 6.7 Obtain the companion form realizations for the following transfer functions. Obtain different

companion form for each system.

 (i)
Y z

R z

()

()
 =

3 32

2 1
3

2
3

z z

z z

- -

+ -

 (ii)
Y z

R z

()

()
 =

- + - +

+ - -

2 2 23 2

3 2 3
4

z z z

z z z

 6.8 Obtain the Jordan canonical form realizations for the follow ing transfer functions.

 (i)
Y z

R z

()

()
 =

z z z

z z z

3 28 17 8

1 2 3

+ + +
+ + +() () ()

 (ii)
Y z

R z

()

()
 =

3 4 63

1
3

3

z z

z

- +

-()

 6.9 Find state variable models for the following difference equations. Obtain different canonical form

for each system.

 (i) y(k + 3) + 5 y(k + 2) + 7 y(k + 1) + 3 y(k) = 0

 (ii) y(k + 2) + 3 y(k + 1) + 2 y(k) = 5 r(k + 1) + 3 r(k)

 (iii) y(k + 3) + 5 y(k + 2) + 7 y(k + 1) + 3 y(k) = r(k + 1) + 2 r(k)

 6.10 Given

 F =
0 1

3 4-
È

Î
Í

˘

˚
˙

 Determine f(k) = Fk using

 (a) the z-transform technique;

 (b) similarity transformation; and

 (c) Cayley–Hamilton technique.

 6.11 Consider the system

 x(k + 1) = Fx(k) + gu(k); x(0) =
1

1-
È

Î
Í

˘

˚
˙

 y(k) = cx(k)

 with F =
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.
; g =

1

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

 Find the closed-form solution for y(k) when u(k) is unit-step sequence.

 6.12 Consider the system

 x(k + 1) = Fx(k) + gu(k)

 y(k) = Cx(k) + du(k)

 with F =

3
2

1

1 1

-

-

È

Î
Í
Í

˘

˚
˙
˙

; g =
3

2

È

Î
Í

˘

˚
˙ ; x(0) =

-È

Î
Í

˘

˚
˙

5

1

 C =
-
-

È

Î
Í

˘

˚
˙

3 4

1 1
; d =

-È

Î
Í

˘

˚
˙

2

0
; u(k) = 1

2()k
, k ≥ 0

 Find the response y(k), k ≥ 0.

432 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 6.13 Consider the system

 x(k + 1) = Fx(k)

 with F =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1 0

0 1 0

0 0 2

 (a) Find the modes of the free response.

 (b) Find x(k) for

 x(0) = [0 1 1]T

 6.14 Consider the continuous-time system

 Ga(s) =
Y s

R s

()

()
 =

1

2s s()+

 Insert sample-and-hold devices and determine the vector difference state model for digital

simulation of the continuous-time system when the computation interval is T = 1 sec. Use the

following methods to obtain the simulation model.

 (a) Obtain G(z) by taking the z transform of Ga(s) when it is preceded by a sampler-and-hold;

convert G(z) into a vector di fference state model.

 (b) Obtain a continuous-time state model for the given Ga(s); insert sample-and-hold and

discretize the model.

 6.15 Consider a continuous-time system

 x(t) =
-

-
È

Î
Í

˘

˚
˙

2 2

1 3
 x(t) +

-È

Î
Í

˘

˚
˙

1

5
 u(t)

 y(t) = [2 – 4] x(t) + 6 u(t)

 Insert sample-and-hold devices and determine the vector di fference state model for digital

simulation of the continuous-time system when the computation interval T = 0.2.

 6.16 The plant of a single-input, single-output digital control system is shown in the block diagram of

Fig. P6.16, where u(t) is the control input and w(t) is a unit-step load disturbance. Obtain the state

difference equations of the plant. Sampling period T = 0.1 second.

10
+

+
y t()u t() 1

10 + 1s

1
s

w t()

Fig. P6.16

 6.17 The mathematical model of the plant of a two-input, two-output temperature control system is

given below.

 x = Ax + Bu

 y = Cx

 A =
-

-
È

Î
Í

˘

˚
˙

0 1 0

0 1 0 1

.

. .
; B =

100 0

0 100

È

Î
Í

˘

˚
˙ ; C =

1 0

0 1

È

Î
Í

˘

˚
˙

 State Variable Analysis of Digital Control Systems 433

 For the computer control of this system, obtain the discrete-time model of the plant. Sampling

period T = 3 seconds.

 6.18 Consider the closed-loop control system shown in Fig. P6.18.

 (a) Obtain the z-transform of the feedforward transfer function.

 (b) Obtain the closed-loop transfer function, and convert it into a state variable model for digital

simulation.

T= 1 sec

+

–

1
(+ 1)s s

1– e–Ts

s

R s() Y s()

Fig. P6.18

 6.19 The mathematical model of the plant of a control system is given below.

Y s

U s

()

()
 = Ga(s) =

e

s

s-

+

0 4

1

.

 For digital simulation of the plant, obtain a vector difference state model with T = 1 sec as the

sampling period. Use the fol lowing methods to obtain the plant model:

 (a) Sample Ga(s) with a zero-order hold and convert the resulting discrete-time transfer function

into a state model.

 (b) Convert the given Ga(s) into a state model and sample this model with a zero-order hold.

 6.20 Determine zero-order hold sampling of the process

 x (t) = – x(t) + u(t – 2.5)

 with sampling interval T = 1.

 6.21 Convert the transfer function

Y s

U s

()

()
 = Ga(s) =

e

s

s D- t

2
; 0 £ tD < T

 into a state model and sample this model with a zero-order hold; T is the sampling interval.

 6.22 The plant of a unity-feedback continuous-time control system is described by the equations

 x =
0 1

0 2-
È

Î
Í

˘

˚
˙ x +

0

2

È

Î
Í

˘

˚
˙ u

 y = x1

 (a) Show that the continuous-time closed-loop system is stable.

 (b) A sampler and zero-order hold are now introduced in the forward loop. Show that the stable

linear continuous-time system becomes unstable upon the introduction of a sampler and a

zero-order hold with sampling period T = 3 sec.

 6.23 The block diagram of a sampled-data system is shown in Fig. P6.23.

 (a) Obtain a discrete-time state model for the system.

 (b) Obtain the equation for intersample response of the system.

434 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

r u

T

y+
ZOH

Plant

–

1
+ 2s

1
+ 1s

1
s

Fig. P6.23

 6.24 The block diagram of a sampled-data system is shown in Fig. P6.24. Obtain the discrete-time state

model of the system.

 Given A =
0 1

2 3- -
È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

Fig. P6.24

 6.25 A closed-loop computer control system is shown in Fig. P6.25. The digital compensator is

described by the difference equation

 e2(k + 1) + 2e2(k) = e1(k)

 The state model of the plant is, as given in Problem 6.24. Obtain the discrete-time state model for

the system.

y
ZOH Plant

r uDigital
compensatorT=1 sec

+

–

e2()ke1()k

Fig. P6.25

 6.26 Consider the closed-loop analog control system shown in Fig. P6.26. For computer control of

the process, transform the controller transfer function into a difference equation using backward-

difference approximation of the derivative.

 Sample the process model with a zero-order hold and obtain the state variable model of the closed-

loop computer-controlled system. Take T = 0.1 sec as sampling interval.

+

–
Controller

E()sR()s U()s Y()s

Process

10
(10 + 1)s s

9 + 4.1 s

Fig. P6.26

 State Variable Analysis of Digital Control Systems 435

 6.27 Investigate the controllability and observability of the following systems:

 (a) x(k + 1) =
1 2

1 1

-
-

È

Î
Í

˘

˚
˙ x(k) +

1 1

0 0

-È

Î
Í

˘

˚
˙ u(k)

 y(k) =
1 0

0 1

È

Î
Í

˘

˚
˙ x(k)

 (b) x(k + 1) =
-

-
È

Î
Í

˘

˚
˙

1 1

0 1
x(k) +

0

1

È

Î
Í

˘

˚
˙ u(k)

 y(k) = [1 1] x(k)

 6.28 Consider the following continuous-time control system:

x t

x t

1

2

()

()

È

Î
Í

˘

˚
˙ =

0 1

1 0

0

1

1

2-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

x t

x t
u t

()

()
()

 y(t) = x1(t)

 Show that the system is completely controllable and completely observable. The control signal

u+(t) is now generated by process ing the signal u(t), through a sampler and a zero-order hold. Study

the controllability and observability properties of the system under this condition. Determine the

values of the sampling period for which the discretized system may exhibit hidden oscil lations.

 6.29 For the digital system shown in Fig. P6.29, determine what values of T must be avoided so that

the system will be assured of complete controllability and observability.

r y

T
ZOH +

1
+ 1s

p

(+ 0.02) +s 22 p

Fig. P6.29

 6.30 Consider the state variable model

 x(k + 1) = Fx(k) + g r(k)

 y(k) = cx(k)

 with F =
0 1
1
8

3
4

-
È

Î
Í

˘

˚
˙ ; g =

0

1

È

Î
Í

˘

˚
˙ ; c = []- 1

2
1

 (a) Find the eigenvalues of matrix F.

 (b) Find the transfer function G(z) = Y(z)/R(z) and determine the poles of the transfer function.

 (c) Comment upon the controllability and observability properties of the given system without

making any further calculations.

436 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Pole-Placement Design and
State Observers

7.1 INTRODUCTION

The design techniques presented in the preceding chapters are based on either frequency response or the

root locus. These transfer function-based methods have been referred to as classi cal control design. The

goal of this chapter is to solve the identical problems using different techniques based on state variable

formulation. The use of the state-space approach has often been referred to as modern control design.

However, since the state-space method of description for differential equations is over 100 years old,

and was introduced in control design in the late 1950s, it seems somewhat mis leading to refer to it as

‘modern’. We prefer to refer to the two approaches to design as state variable methods and transform

methods.

The transform methods of design are powerful methods of practical design. Most control systems are

designed using variations of these methods. An important property of these methods is robust ness. The

resultant closed-loop system characteristics tend to be insensitive to small inaccuracies in the system

model. This property is very important because of the difficulty in finding an accurate linear model of a

physical system and also, because many systems have significant nonlinear operations.

The state variable methods appear to be much more dependent on having an accurate system model for

the design process. An advantage of these methods is that the system representation provides a complete

(internal) description of the system, including possible internal oscillations or instabilities that might be

hidden by inappropriate cancellations in the transfer function (input/output) description. The power of

state variable techniques is especially apparent when we design controllers for systems with more than

one control input or sensed output. Howe ver, in this chapter, we will illustrate the state variable design

methods using Single-Input, Single-Output (SISO) systems. Methods for Multi-Input, Multi-Output

(MIMO) design are discussed in Chapter 8.

In this chapter, we present a design method known as pole placement or pole assignment. This method is

similar to the root-locus design in that, the closed-loop poles may be placed in desired locations. However,

pole-placement design allows all closed-loop poles to be placed in desirable locations, whereas the root-

locus design procedure allows only the two dominant poles to be placed. There is a cost associated with

placing all closed-loop poles, however, because placing all closed-loop poles requires measurement and

feedback of all the state variables of the system.

Chapter 7

 Pole-Placement Design and State Observers 437

In many applications, all the state variables cannot be measured because of cost considerations, or

because of the lack of suitable transducers. In these cases, those state variables that cannot be measured

must be estimated from the ones that are measured. Fortunately, we can separate the design into two

phases. During the first phase, we design the system as though all states of the system will be measured.

The second phase is concerned with the design of the state estimator. In this chapter, we consider both

phases of the design process, and the effects that the state estimator has on closed-loop system operation.

Figure 7.1 shows how the state-feedback control law and the state estimator fit together, and how the

combination takes the place of, what we have been previously referring to as, dynamic compensa tion. We

will see in this chapter that the estimator-based dyna mic compensators are very similar to the classical

compensators of Chapter 4, in spite of the fact that they are arrived at by entirely different means.

u y+

–

Plant

Control law

Compensation

Estimator

Sensor

k

x

r
kR

State vector
estimateConstant

gain matrix

Fig. 7.1

7.2 Stability Improvement by State Feedback

An important aspect of feedback system design is the stability of the control system. Whatever we want

to achieve with the control system, its stability must be assured. Sometimes the main goal of feedback

design is actually to stabilize a system if it is initially unstable, or to improve its stability if transient

phenomena do not die out sufficiently fast.

The purpose of this section is to investigate how the stability properties of linear systems can be improved

by state feedback.

Consider the single-input linear time-invariant system with nth-order state differential equation

 x(t) = Ax(t) + bu(t) (7.1)

If we suppose that all the n state variables x1, x2, ..., xn can be accurately measured at all times, it is

possible to implement a linear control law of the form

 u(t) = – k1x1(t) – k2x2(t) – – knxn(t) = – kx(t) (7.2)

where k = [k1 k2 kn]

438 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

is a constant state-feedback gain matrix. With this state-feedback control law, the closed-loop system is

described by the state differential equation

 x(t) = (A – bk) x(t) (7.3)

and the characteristic equation of the closed-loop system is

 | sI – (A – bk) | = 0 (7.4)

When evaluated, this yields an nth-order polynomial in s contain ing the n gains k1, k2, ..., kn. The control-

law design then consists of picking the gains so that the roots of Eqn. (7.4) are in desirable locations.

In the next section, we find that under a mildly restrictive condition (namely, the system (7.1) must be

completely controllable), all the eigenvalues of (A – bk) can be arbitrarily located in the complex plane

by choosing k suitably (with the restriction that complex eigenvalues occur in complex-conjugate pairs).

If all the eigenvalues of (A – bk) are placed in

the left-half plane, the closed-loop system is,

of course, asymptotically stable; x(t) will decay

to zero irrespective of the value of x(0)—the

initial perturbation in the state. The system

state is thus maintained at zero value in spite of

disturbances that act upon the system. Systems

with this property are called regulator systems.

The origin of state space is the equilibrium

state of the system.

Control configuration for a state regulator is

shown in Fig. 7.2. In this structure, there is

no command input (r = 0). Control systems

in which the output must follow the command

signals (called servo systems) will be

considered later.

Selection of desirable locations for the closed-

loop poles requires some iteration by the

designer. Some of the issues in their selection will be discussed later in this chapter. For now, we will

assume that the desired locations are known, say,

 s = l1, l2, …, ln

Then the desired characteristic equation is

 (s – l1)(s – l2) (s – ln) = 0 (7.5)

The required elements of k are obtained by matching coefficients in Eqns (7.4) and (7.5), thus forcing

the system characteristic equation to be identical with the desired equation. An example should clarify

this pole-placement idea.

Example 7.1

Consider the problem of designing an attitude control system for a rigid satellite. Satellites usually require

attitude control so that antennas, sensors, and solar panels are properly oriented. For example, antennas

–

u

+

+

+

Plant

+

k1

k2

kn

x1

x2

xn

Fig. 7.2

 Pole-Placement Design and State Observers 439

are usually pointed towards a particular location

on the earth, while solar panels need to be oriented

towards the sun for maximum power generation. To

gain an insight into the full three-axis attitude-control

system, we often consider one axis at a time. Figure

7.3 depicts this case. The angle q that describes the

satellite orientation, must be measured with respect to

an ‘inertial’ reference, that is, a reference that has no

angular acceleration. The control signal comes from

the reaction jets that produce a torque T(t) (= Fd)

about the mass center.

The satellite is assumed to be in frictionless environ-

ment. If T(t) is the system input and q (t) is the system

output, we have

 T(t) = J
d t

dt

2

2

q()

where J is the moment of inertia of the satellite.

Normalizing, we define

 u = T(t)/J

and obtain

 q = u or
q()

()

s

U s
 =

1
2s

This is a reasonably accurate model of a rigid satellite in a frictionless environment, and is useful in

examples because of its simplicity.

Choosing x1 = q and x2 = q as state variables, we obtain the following state equation for the system.

 x = Ax + bu =
0 1

0 0

È

Î
Í

˘

˚
˙ x +

0

1

È

Î
Í
˘

˚
˙ u (7.6)

To stabilize the system, the input signal is chosen to be of the form

 u(t) = – k1x1(t) – k2x2(t) = – kx(t)

The state equation for the closed-loop system (Fig. 7.4), then becomes

 x = (A – bk)x =
0 1

0 0

0

1
1 2

È

Î
Í

˘

˚
˙ -

È

Î
Í
˘

˚
˙

Ê

ËÁ
ˆ

¯̃
[]k k x =

0 1

1 2-
È

Î
Í

˘

˚
˙

k k
 x

The characteristic equation of the closed-loop system is

 |sI – (A – bk)| = s2 + k2s + k1 = 0 (7.7)

Suppose that the design specifications for this system require z = 0.707 with a settling time of

1 sec
4

1 4
zw

zw
n

n= =
Ê
ËÁ

ˆ
¯̃

or . The closed-loop pole locations needed are at s = – 4 ± j4. The desired

characteristic equation is

 (s + 4 + j4) (s + 4 – j4) = s2 + 8s + 32 (7.8)

F

d

Inertial reference

Gas jet

q

Fig. 7.3

440 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

u

Satellite

– –

1 1
s s

x2 x1

k2

k1

Fig. 7.4

Equating the coefficients with like powers of s in Eqns (7.7) and (7.8) yields

 k1 = 32, k2 = 8

The calculation of the gains using the technique illustrated in this example, becomes rather tedious when

the order of the system is larger than three. There are, however, ‘canonical’ forms of the state variable

equations where the algebra for finding the gains is especially simple. One such canonical form—useful

in control-law design—is the controllable canonical form. Consider a system represented by the transfer

function

Y s

U s

()

()
 =

b b b

a a

1
1

2
2

1
1

s s

s s

n n
n

n n
n

- -

-

+ + +

+ + +

A companion-form realization of this transfer function is given below (refer to Eqns (5.54)):

 x = Ax + bu

 y = cx
(7.9)

where

 A =

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; b =

0

0

0

1

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 c = [bn bn–1 b2 b1]

The matrix A in Eqns (7.9) has a very special structure: the coefficients of the denominator of the transfer

function preceded by minus signs, form a string along the bottom row of the matrix. The rest of the matrix

is zero except for the superdiagonal terms, which are all unity. It can easily be proved that the pair (A,b)

is completely controllable for all values of ai’s. For this reason, the companion-form realization given by

Eqns (7.9) is referred to as the controllable canonical form.

 Pole-Placement Design and State Observers 441

One of the advantages of the controllable canonical form is that the controller gains can be obtained from

it, just by inspection. The closed-loop system matrix

 A – bk =

0 1 0 0

0 0 1 0

0 0 0 1

1 1 2 2 3 1

 - - - - - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚- -a a a an n n nk k k k

˙̇
˙
˙
˙
˙
˙

has the characteristic equation

 sn + (a1 + kn)sn–1 + + (an – 2 + k3)s2 + (an–1 + k2)s + an + k1 = 0

and the controller gains can be found by comparing the coeffi cients of this characteristic equation with

Eqn. (7.5).

We now have the basis for a design procedure. Given an arbitrary state variable model and a desired

characteristic polynomial, we transform the model to controllable canonical form and solve for the

controller gains, by inspection. Since these gains are for the state in the controllable canonical form,

we must transform the gains back to the original state. We will develop this pole-placement design

procedure in the subsequent sections.

7.3 NECESSARY AND SUFFICIENT CONDITIONS FOR

Consider the linear time-invariant system (7.1) with state-feedback control law (7.2); the resulting

closed-loop system is given by Eqn. (7.3). In the following, we shall prove that a necessary and sufficient

condition for arbitrary placement of closed-loop eigenvalues in the complex plane (with the restriction

that complex eigenvalues occur in complex-conjugate pairs), is that the system (7.1) is completely

controllable. We shall first prove the sufficient condition, i.e., if the system (7.1) is completely

controllable, all the eigenvalues of (A – bk) in Eqn. (7.3) can be arbitrarily placed.

In proving the sufficient condition on arbitrary pole-placement, it is convenient to transform the state

equation (7.1) into the controllable canonical form (7.9). Let us assume that such a transformation exists

and is given by

 x = Px (7.10)

 =

p p p

p p p

p p p

n

n

n n nn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 x =

p

p

p

1

2

n

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 x

 pi = [pi1 pi2 pin]; i = 1, 2, ..., n

Under the transformation (7.10), system (7.1) is transformed to the following controllable canonical

model:

 x = A x b+ u (7.11)

442 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where

 A = PAP
–1 =

0 1 0 0

0 0 1 0

0 0 0 1

1 2 1

 - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -a a a an n n

; b = Pb =

0

0

0

1

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 | sI – A | = sn + a1 sn–1 + + an–1 s + an = |sI – A|

(Characteristic polynomial is invariant under equivalence trans formation)

The first equation in the set (7.10) is given by

 x1 = p11 x1 + p12 x2 + + p1n xn = p1x

Taking the derivative on both sides of this equation, we get

 x1 = p1 x = p1Ax + p1bu

But x1 (= x2) is a function of x only as per the canonical model (7.11).

Therefore,

 p1b = 0 and x2 = p1Ax

Taking derivative on both sides once again, we get

 p1Ab = 0 and x3 = p1A
2
x

Continuing the process, we obtain

 p1A
n –2

b = 0 and xn = p1A
n –1

x

Taking derivative once again, we obtain

 p1 An –1
b = 1

Thus

 x = Px =

p

p A

p A

1

1
1

1

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 x

where p1 must satisfy the conditions

 p1b = p1Ab = = p1A
n –2

b = 0, p1A
n – 1

b = 1

From Eqn. (7.11), we have

 Pb =

0

0

0

1

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 =

p b

p Ab

p A b

p A b

1

1

1
2

1
1

n

n

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 Pole-Placement Design and State Observers 443

or

 p1[b Ab An –2
b A

n –1
b] = [0 0 0 1]

This gives

 p1 = [0 0 0 1]U –1

where

 U = [b Ab An–1
b]

is the controllability matrix, which is nonsingular because of the assumption of controllability of the

system (7.1).

 Therefore, the controllable state model (7.1) can be transformed to the canonical form (7.11) by the

transformation.

 x = Px (7.12)

where P =

p

p A

p A

1

1

1
1

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; p1 = [0 0 0 1]U–1

Under the equivalence transformation (7.12), the state-feedback control law (7.2) becomes

 u = – kx = – k x (7.13)

where k = kP
–1 = []k k kn1 2

With this control law, system (7.11) becomes

 x = (A bk) x-

 =

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

1 1 2 2 3 2 1 1

 - - - - - - - - - -- - -a a a a an n n nk k k k kkn

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

x (7.14)

 |sI – (A bk)- | = sn + (a1 + kn)sn–1 + (a2 + kn-1)sn–2 + + (an–1 + k2) s + (an + k1) (7.15)

 Since the coefficients ki are arbitrarily chosen real numbers, the coefficients of the characteristic

polynomial of (A – bk) can be given any desired values. Hence, the closed-loop poles can be placed at

any desired locations in the complex plane (subject to conjugate pairing: coefficients of a characteristic

polynomial will be real only if the complex poles are present in conjugate pairs).

Assume that the desired characteristic polynomial of (A – bk), and hence (A bk)- , is

sn + a1 sn –1 + + an

From Eqn. (7.15), it is obvious that this requirement is met if k is chosen as

 k = [an – an an–1 – an–1 a1 – a1]

444 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Transforming the feedback controller (7.13) to the original coordinates, we obtain

 k = k P = [an – an an–1 – an–1 a1 – a1]P (7.16)

This proves that if (7.1) is controllable, the closed-loop poles can be arbitrarily assigned (sufficient

condition).

We now derive the necessary condition by proving that if the system (7.1) is not completely controllable,

then there are eigenvalues of (A – bk) that cannot be controlled by state feed back.

It was shown in Section 5.9 that an uncontrollable system can be transformed into controllability

canonical form (Eqn. (5.123c))

x

x

1

2

È

Î
Í

˘

˚
˙ =

A A

0 A

c 12

22

È

Î
Í

˘

˚
˙

x

x

1

2

È

Î
Í

˘

˚
˙ +

b

0

cÈ

Î
Í

˘

˚
˙ u = A x b+ u

where the pair (,)A bc c
 is completely controllable.

The set of eigenvalues of A is the union of the sets of eigen values of Ac and A22 . In view of the form

of b , it is obvious that the matrix A22 is not affected by the introduction of any state feedback of the

form u = – k x . Therefore, the eigenvalues of A22 cannot be controlled. This proves the necessary

condition.

7.4 STATE REGULATOR DESIGN

Consider the nth-order, single-input linear time-invariant system

 x(t) = Ax(t) + bu(t) (7.17)

with state-feedback control law

 u(t) = – kx(t) (7.18)

The resulting closed-loop system is

 x(t) = (A – bk) x(t) (7.19)

The eigenvalues of (A – bk) can be arbitrarily placed in the complex plane (with the restriction that

complex eigenvalues occur in complex-conjugate pairs) by choosing k suitably if, and only if, the system

(7.17) is completely controllable.

This important result on pole placement was proved in the previous section. The following design steps

for pole placement, emerge from the proof.

Step 1 From the characteristic polynomial of matrix A:

 |sI – A| = sn + a1 sn–1 + + an–1 s + an (7.20)

 determine the values of a1, a2, ..., an–1, an.

Step 2 Determine the transformation matrix P that transforms the system (7.17) into controllable

canonical form:

 Pole-Placement Design and State Observers 445

 P =

p

p A

p A

1

1

1

n-1

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

;
p U

U [b Ab A b]

1
1

1

= [0 0 0 1]

=

-

-n
 (7.21)

Step 3 Using the desired eigenvalues (desired closed-loop poles) l1, l2, ..., ln, write the desired

characteristic polynomial:

 (s – l1)(s – l 2) (s – ln) = sn + a1 sn–1 + + an–1 s + an (7.22)

 and determine the values of a1, a2, , an–1, an.

Step 4 The required state-feedback gain matrix is determined from the following equation:

 k = [an – an an–1 – an–1 a1 – a1] P (7.23)

There are other approaches also, for the determination of the state-feedback gain matrix k. In what

follows, we shall present a well-known formula, known as the Ackermann’s formula, which is convenient

for computer solution.

From Eqns (7.23) and (7.21), we get

 k = [an – an an–1 – an–1 a1 – a1]

[]

[]

[]

0 0 0 1

0 0 0 1

0 0 0 1

1

1

1 1

U

U A

U A

-

-

- -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙n

 = [0 0 0 1]U–1 [(a1 – a1)An–1 + (a2 – a2)An–2 + + (an – an)I] (7.24)

The characteristic polynomial of matrix A is (Eqn. (7.20))

 |sI – A | = sn + a1s n–1 + a2sn–2 + + an–1s + an

Since the Cayley–Hamilton theorem states that a matrix satisfies its own characteristic equation, we have

A
n + a1A

n –1 + a2A
n –2 + + an –1A + anI = 0

Therefore, A
n = – a1A

n–1 – a2A
n –2 – – an –1A – anI (7.25)

From Eqns (7.24) and (7.25), we get

 k = [0 0 0 1]U–1 e(A) (7.26a)

where

 e(A) = An + a1A
n–1 + a2A

n –2 + + an–1A + anI (7.26b)

 U = [b Ab An–1
b] (7.26c)

Equations (7.26) describe the Ackermann’s formula for the deter mination of the state-feedback gain matrix

k.

446 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 7.2

Recall the inverted pendulum of Example 5.15, shown in Fig. 5.16, in which the object is to apply a force

u(t) so that the pendulum remains balanced in the vertical position. We found the linear ized equations

governing the system to be

 x = Ax + bu

where x = [q q z z]T

 A =

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b =

0

1 4458

0

0 9639

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

z(t) = horizontal displacement of the pivot on the cart

q (t) = rotational angle of the pendulum

It is easy to verify that the characteristic polynomial of matrix A is

 | sI – A| = s4 – 16.3106s2

Since there are poles at 0, 0, 4.039, and – 4.039, the system is quite unstable, as one would expect from

physical reasoning.

Suppose we require a feedback control of the form

 u(t) = – kx = – k1x1 – k2x2 – k3x3 – k4x4,

such that the closed-loop system has the stable pole configura tion given by multiple poles at –1. We

verified in Example 5.16 that the system under consideration is a controllable system; therefore, such

a feedback gain matrix k does exist. We will determine the required k by using the design equations

(7.17)–(7.23).

The controllability matrix

 U = [b Ab A
2
b A

3
b] =

0 1 4458 0 23 5816

1 4458 0 23 5816 0

0 0 9639 0 1 5379

0 9639 0 1 5

- -
- -

. .

. .

. .

. . 3379 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 U
–1 =

0 0 0750 0 1 1500

0 0750 0 1 1500 0

0 0 0470 0 0 0705

0 0470 0 0 070

. .

. .

. .

. .

- -
- 55 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Therefore,

 p1 = [– 0.0470 0 – 0.0705 0]

 Pole-Placement Design and State Observers 447

 P =

p

p A

p A

p A

1

1

1
2

1
3

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

- -
- -

-
-

È

Î

Í
Í
Í
Í

0 0470 0 0 0705 0

0 0 0470 0 0 0705

0 6917 0 0 0

0 0 6917 0 0

. .

. .

.

.

˘̆

˚

˙
˙
˙
˙

 |sI – A| = s4 + a1 s3 + a2 s2 + a3 s + a4 = s4 + 0s3 – 16.3106s2 + 0 s + 0

 |sI – (A – bk) | = s4 + a1 s3 + a2 s2 + a3 s + a4 = (s + 1)4 = s4 + 4s3 + 6s2 + 4s + 1

 k = [a4 – a4 a3 – a3 a2 – a2 a1 – a1]P

 = [1 4 22.3106 4]P = [–15.4785 –2.9547 –0.0705 –0.2820]

This feedback control law yields a stable closed-loop system so that the entire state vector, when disturbed

from the zero state, returns asymptotically to this state. This means that not only is the pendulum balanced

(q Æ 0), but that the cart returns to its origin as well (z Æ 0).

Example 7.3

Let us use Ackermann’s formula to the state-regulator design problem of Example 7.1 (satellite-attitude

control system). The plant model is given by (Eqn. (7.6))

 x = Ax + bu =
0 1

0 0

È

Î
Í

˘

˚
˙ x +

0

1

È

Î
Í

˘

˚
˙ u

The desired characteristic polynomial is (Eqn. (7.8))

 s2 + a1s + a2 = s2 + 8s + 32

To use Ackermann’s formula (7.26) to calculate the gain matrix k, we first evaluate U–1 and e(A):

 U = [b Ab] =
0 1

1 0

È

Î
Í

˘

˚
˙ ; U–1 =

0 1

1 0

È

Î
Í

˘

˚
˙

 e(A) = A2 + a1A + a2I =
0 1

0 0

È

Î
Í

˘

˚
˙

0 1

0 0

È

Î
Í

˘

˚
˙ + 8

0 1

0 0

È

Î
Í

˘

˚
˙ + 32

1 0

0 1

È

Î
Í

˘

˚
˙ =

32 8

0 32

È

Î
Í

˘

˚
˙

Now using Eqn. (7.26a), we obtain

 k = [0 1] U–1 e(A) = [0 1]
0 1

1 0

È

Î
Í

˘

˚
˙

32 8

0 32

È

Î
Í

˘

˚
˙ = [32 8]

The solution is seen to be the same as that obtained in Example 7.1.

Comments

1. Through the pole-placement design procedure described in the present section, it is always possible to

stabilize a completely controllable system by state feedback, or to improve its stabili ty by assigning the

closed-loop poles to locations in the left-half complex plane. The design procedure, however, gives no

guidance as to where, in the left-half plane, the closed-loop poles should be located.

448 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

It appears that we can choose the magnitude of the real part of the closed-loop poles to be arbitrarily large,

making the system re sponse arbitrarily fast. However, to increase the rate at which the plant responds,

the input signal to the plant must become larger, requiring large values of gains. As the magnitudes of

the signals in a system increase, the likelihood of the system enter ing nonlinear regions of operation,

increases. For very large signals, this nonlinear operation will occur for almost every physical system.

Hence, the linear model that is used in design no longer accurately models the physical system.

Thus, the selection of desired closed-loop poles requires a proper balance of bandwidth, overshoot,

sensitivity, control effort, and other design requirements. If the system is of sec ond-order, then the

system dynamics (response characteristics) can be precisely correlated to the locations of the desired

closed-loop poles. For higher-order systems, the location of the closed-loop poles and the response

characteristics are not easily correlated. Hence, in determining the state-feedback gain matrix k for a

given system, it is desirable to examine, by computer simulations, the response characteristics for several

different matrices k (based on several different characteristic equations), and choose the one that gives

the best overall performance.

2. For the case of single-input systems, the gain matrix k, which places the closed-loop poles at the

desired locations, is unique.

If the dynamic system under consideration

 x = Ax + Bu

has more than one input, that is, B has more than one column, then the gain matrix K in the control law

 u = – Kx

has more than one row. Since each row of K furnishes n gains (n is the order of the system) that can be

adjusted, it is clear that in a controllable system there will be more gains available—than are needed—to

place all of the closed-loop poles. This is a benefit: the designer has more flexibility in the design;

it is possible to specify all the closed-loop poles and still be able to satisfy other requirements. How

should these other requirements be specified? The answer to this question may well depend on the

circumstances of the particular application. A number of results using the design freedom in multi-input

systems to improve robustness of the control system, have appeared in the literature. We will not be able

to accommodate these results in this book.

The non-uniqueness in the design of state-feedback control law for multi-input systems, is removed by

optimal control theory which is discussed in Chapter 8.

7.5 DESIGN OF STATE OBSERVERS

The pole-placement design procedure introduced in the preceding sections results in control law of the

form

 u(t) = – kx(t) (7.27)

which requires the ability to directly measure the entire state vector x(t). Full state-feedback control

for many second-order systems, requires feedback of position and rate variables which can easily be

measured. However, for most of the higher-order systems, full state measurements are not practical.

 Pole-Placement Design and State Observers 449

Thus, either a new approach that directly accounts for the non-availability of the entire state vector

(Chapter 8) is to be devised, or a suita ble approximation of the state vector must be determined. The latter

approach is much simpler in many situations.

The purpose of this section is to demonstrate the estimation of all the state variables of a system, from

the measurements that can be made on the system. If the estimate of the state vector is denoted by x̂, it

would be nice if the true state in the control law given by Eqn. (7.27), could be replaced by its estimate

 u(t) = – kx̂ (t) (7.28)

This indeed is possible, as we shall see in the next section.

A device (or a computer program) that estimates the state variables is called a state observer, or simply an

observer. If the state observer estimates all the state variables of the system, regardless of whether some

state variables are available for direct measurement, it is called a full-order state observer. However, if

accurate measurements of certain states are possible, we may estimate only the remaining states, and

the accurately measured signals are then used directly for feedback. The result ing observer is called a

reduced-order state observer.

7.5.1 Full-Order State Observer

Consider a process described by the state equation

 x(t) = Ax(t) + bu(t) (7.29a)

where A and b are, respectively, n × n and n × 1 real constant matrices. The measurement y(t) is related

to the state by the equation

 y(t) = cx(t) (7.29b)

where c is 1 ¥ n real constant matrix. Without loss of generali ty, the direct transmission part has been

assumed to be zero.

One method of estimating all the state variables that we may consider, is to construct a model of the plant

dynamics

 ̂x(t) = Ax̂(t) + bu(t) (7.30)

where x̂ is the estimate of the actual state

x. We know A, b and u(t), and hence this

estimator is satisfactory if we can obtain

the correct initial condition x(0) and set

x̂(0) equal to it. Figure 7.5 depicts this

‘open-loop’ estimator. However, it is

precisely the lack of information on x(0) that

requires the construction of an estimator.

If ̂x(0) π x(0), the estimated state x̂(t)

obtained from the open-loop scheme of

Fig. 7.5 would have a continually growing

error or an error that goes to zero too slowly, to be of any use. Furthermore, small errors in our knowl-

edge of the system (A, b), and the disturbances that enter the system, but not the model, would also cause

the estimate to slowly diverge from the true state.

u

Plant

Model

y

y

c

c

x

x

x Ax b= + u

x Ax b= + u

Fig. 7.5

450 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In order to speed up the estimation process and provide a useful state estimate, we feed back the

difference between the measured and the estimated outputs—and correct the model continuously with

this error signal. This scheme, commonly known as ‘Luenberger state observer’, is shown in Fig. 7.6,

and the equation for it is

 ̂x(t) = A x̂(t) + bu(t) + m(y(t) – ŷ (t)) (7.31)

where m is an n ¥ 1 real constant gain matrix.

The state error vector

 x(t) = x(t) – x̂(t) (7.32)

Differentiating both sides, we get

 x(t) = x(t) – ̂x(t)

Substituting for x (t) and ̂x(t) from Eqns (7.29) and (7.31) re spectively, we get

 x(t) = Ax(t) + bu(t) – Ax̂(t) – bu(t) – mc(x(t) – x̂(t))

 = (A – mc) x(t) (7.33)

The characteristic equation of the error is given by

 | sI – (A – mc) | = 0 (7.34a)

If m can (we hope) be chosen so that (A – mc) has stable and reasonably fast roots, x(t) will decay to

zero irrespective of x(0). This means that x̂(t) will converge to x(t) regardless of the value of x̂(0), and

furthermore, the dynamics of the error can be chosen to be faster than the open-loop dynamics. Note

that Eqn. (7.33) is independent of applied control. This is a conse quence of assuming A, b and c to be

identical in the plant and the observer. Therefore, the estimation error x converges to zero and remains

there, independent of any known forcing function u(t) on the plant and its effect on the state x(t). If we

u

Plant

Observer

y
c

x

b

m

A

c
+

++

+

x yx –

x Ax b= + u

n-parallel
integrators

Ún

Fig. 7.6

 Pole-Placement Design and State Observers 451

do not have a very accurate model of the plant (A, b, c), the dynamics of the error are no longer governed

by Eqn. (7.33). However, m can typically be chosen so that the error system is stable and the error is

acceptably small, even with small modeling errors and disturbance inputs.

The selection of m can be approached in exactly the same fashion as the selection of k in the control law

design. If we specify the desired location of the observer-error roots as

 s = l1, l2, …, ln,

the desired observer characteristic equation is

 (s – l1) (s – l2) (s – ln) = 0 (7.34b)

and one can solve for m by comparing coefficients in Eqns (7.34a) and (7.34b). However, as we shall see

shortly, this can be done only if the system (7.29) is completely observable.

The calculation of the gains using this simple technique becomes rather tedious when the order of the

system is larger than three. As in the controller design, there is an observable canonical form for which

the observer design equations are particularly simple. Consider a system represented by the transfer

function

Y s

U s

()

()
 =

b b b

a a

1
1

2
2

1
1

s s

s s

n n
n

n n
n

- -

-

+ + +

+ + +

A companion-form realization of this transfer function is given below (refer to Eqns (5.56)):

 x = Ax + bu (7.35)

 y = cx

where

 A =

0 0 0

1 0 0

0 1 0

0 0 1

1

2

1

-
-
-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

-

a

a

a

a

n

n

n ; b =

b

b

b

b

n

n

n

-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1

2

1

; c = [0 0 0 1]

It can easily be proved that the pair (A,c) is completely ob servable for all values of ai’s. For this reason,

the companion form realization given by Eqn. (7.35) is referred to as observa ble canonical form.

One of the advantages of the observable canonical form is that the observer gains m can be obtained from

it, just by inspection. The observer-error matrix is

 (A – mc) =

0 0 0

1 0 0

0 1 0

0 0 1

1

1 2

2 3

1

- -
- -
- -

- -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

-

-

a

a

a

a

n

n

n

n

m

m

m

m

˙̇
˙
˙
˙
˙
˙

which has the characteristic equation

 sn + (a1 + mn) sn –1 + + (an –2 + m3)s2 + (an –1 + m2) s + an + m1 = 0

and the observer gains can be found by comparing the coefficients of this equation with Eqn. (7.34b).

452 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

A procedure for observer design, therefore, consists of transforming the given state variable model

to observable canonical form, solving for the observer gains, and transforming the gains back to the

original state.

We can, however, directly use the equations of the control-law design for computing the observer gain

matrix m, if we examine the resemblance between the estimation and control problems. In fact, the

two problems are mathematically equivalent. This property is called duality. The design of a full-order

observer requires the determination of the gain matrix m such that (A – mc) has desired eigenvalues

li ; i = 1, 2, ..., n. This is mathematically equivalent to designing a full state-feedback controller for the

‘transposed auxiliary system’,

 y (t) = ATy (t) + cTh(t) (7.36a)

with feedback

 h(t) = – mTy (t) (7.36b)

so that the closed-loop auxiliary system

 y (t) = (AT – cT
m

T)y (t) (7.37)

has eigenvalues li; i = 1, 2, ..., n.

Since

 det W = det WT,

one obtains

 det [sI – (AT – cT
m

T)] = det [sI – (A – mc)]

i.e., the eigenvalues of (AT – cT
m

T) are same as the eigenvalues of (A – mc).

By comparing the characteristic equation

of the closed-loop system (7.19) and

that of the auxiliary system (7.37), we

obtain the duality relations given in Table

7.1 between the control and estimation

problems. The Ackermann’s control-

design formula given by Eqns (7.26)

becomes the observer-design formula if

the substi tutions of Table 7.1 are made.

A necessary and sufficient condition for determination of the observer gain matrix m for the desired

eigenvalues of (A – mc), is that the auxiliary system (7.36) be completely controllable. The controllability

condition for this system is that the rank of

[cT A
T
c

T (AT)n–1 cT]

is n. This is the condition for complete observability of the original system defined by Eqns (7.29). This

means that a necessary and sufficient condition for estimation of the state of the system defined by Eqns

(7.29), is that the system be complete ly observable.

Again by duality, we can say that for the case of single-output systems, the gain matrix m, which places

the observer poles at desired locations, is unique. In the multi-output case, the same pole configuration

Table 7.1

Control Estimation

A A
T

b c
T

k m
T

 Pole-Placement Design and State Observers 453

can be achieved by various feedback gain matrices. This non-uniqueness is removed by optimal control

theory which is discussed in Chapter 8.

Example 7.4

We will consider the satellite-attitude control system of Example 7.3. The state equation of the plant is

 x = Ax + bu

with A =
0 1

0 0

È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í

˘

˚
˙

 x1 = q, the orientation of the satellite; x2 = q

We assume that the orientation q can be accurately measured from the antenna signal. Therefore,

 y = cx(t)

with c = [1 0]

Let us design a state observer for the system. We choose the observer to be critically damped with a

settling time of 0.4 sec
4

0 4 10
zw

zw
n

n= =
Ê
ËÁ

ˆ
¯̃

. ; . To satisfy these specifications, the observer poles will

be placed at s = – 10, – 10.

The transposed auxiliary system is given by

 y = ATy + cTh; h = – mTy

The desired characteristic equation of the closed-loop auxiliary system is

 s2 + a1s + a2 = (s + 10)(s + 10) = s2 + 20s + 100

To apply Ackermann’s formula given by Eqns (7.26), we compute

 U
–1 = [cT A

T
c

T]–1 =
1 0

0 1

È

Î
Í

˘

˚
˙

 e(AT) = (AT)2 + a1A
T + a2I

 =
0 0

1 0

È

Î
Í

˘

˚
˙

0 0

1 0

È

Î
Í

˘

˚
˙ + 20

0 0

1 0

È

Î
Í

˘

˚
˙ + 100

1 0

0 1

È

Î
Í

˘

˚
˙ =

100 0

20 100

È

Î
Í

˘

˚
˙

The observer gain matrix is given by the equation

 m
T = [0 1]

100 0

20 100

È

Î
Í

˘

˚
˙ = [20 100]

Therefore, m =
20

100

È

Î
Í

˘

˚
˙

454 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 7.5

Consider once again the inverted-pendulum system of Example 7.2. Suppose that the only output

available for measurement is z(t), the position of the cart. The linearized equations governing this system

are

 x = Ax + bu; y = cx

where A =

0 1 0 0

16 3106 0 0 0

0 0 0 1

1 0637 0 0 0

.

.-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; b =

0

1 4458

0

0 9639

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

; c = [0 0 1 0]

We verified in Example 5.18 that this system is completely observable. In the following, we design a

full-order observer for this system. We choose the observer pole locations as – 2, – 2 ± j1, – 3. The

corresponding characteristic equation is

 s4 + 9s3 + 31s2 + 49s + 30 = 0

The transposed auxiliary system is given by

 y (t) = ATy (t) + cTh(t); h(t) = – mTy (t)

We will determine the gain matrix m using the design equations (7.17)–(7.23).

The controllability matrix

 U = [cT A
T
c

T (AT)2
c

T (AT)3
c

T] =

0 0 1 0637 0

0 0 0 1 0637

1 0 0 0

0 1 0 0

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

 U
–1 =

0 0 1 0

0 0 0 1

0 9401 0 0 0

0 0 9401 0 0

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

Therefore,

 p1 = [0 – 0.9401 0 0]

 P =

p

p A

p A

p A

1

1

1
2

1
3

()

()

()

T

T

T

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

0 0 9401 0 0

0 9401 0 0 0

0 15 3333 0 1

15 3333 0 1 0

-
-

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

.

.

 | sI – AT| = s4 + a1s3 + a2s2 + a3s + a4 = s4 + 0s3 – 16.3106s2 + 0s + 0

 | sI – (AT – cT
m

T)| = s4 + a1s3 + a2s2 + a3s + a4 = s4 + 9s3 + 31s2 + 49s + 30

 Pole-Placement Design and State Observers 455

 m
T = [a4 – a4 a3 – a3 a2 – a2 a1 – a1] P

 = [30 49 47.3106 9] P = [–184.0641 –753.6317 9 47.3106]

Therefore, m =

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

184 0641

753 6317

9

47 3106

.

.

.

With this m, the observer

 ̂x = (A – mc) x̂ + bu + my

will process the cart position y(t) = z(t) and input u(t), to continuously provide an estimate x̂(t) of the

state vector x(t); and any errors in the estimate will decay at least as fast as e–2t.

7.5.2 Reduced-Order State Observer

The observer developed in the previous subsection reconstructs the entire state vector. However,

the measurements usually available are some of the states of the plant. For example, for the satellite-

attitude control problem considered in the previous subsection, the meas urement is orientation of the

satellite, which is x1(t). The measurement of a state, in general, will be more accurate than any estimate

of the state based on the measurement. Hence, it is not logical in most cases to estimate states that we are

measuring. One possible exception is the case in which a measurement is very noisy. The state observer

for this case may furnish some benefi cial noise filtering.

Since we will not usually want to estimate any state that we are measuring, we prefer to design an

observer that estimates only those states that are not measured. This type of observer is called a reduced-

order state observer. We develop design equations for such an observer in this subsection. We consider

only the case of one measurement. It is assumed that the state variables are always chosen such that the

state measured is x1(t); we can do this without loss of generality. The output equation then is given by

 y(t) = x1(t) = cx(t)

where c = [1 0 0 0]

To derive the reduced-order observer, we partition the state vector into two parts: one part is x1 which

is directly measured and the other part is xe, representing the state variables that need to be estimated:

 x(t) =
x t

te

1()

()x

È

Î
Í

˘

˚
˙

If we partition the system matrices accordingly, the complete description of the system is given by

x

e

1

x

È

Î
Í

˘

˚
˙ =

a e

e ee

11 1

1

a

a A

È

Î
Í

˘

˚
˙

x

e

1

x

È

Î
Í

˘

˚
˙ +

b

e

1

b

È

Î
Í

˘

˚
˙ u (7.38a)

 y = [1 0]
x

e

1

x

È

Î
Í

˘

˚
˙ (7.38b)

The dynamics of the unmeasured state variables are given by

 xe = Aee xe + a be ex u1 1 +
known input

 (7.39)

456 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where the two rightmost terms are known and can be considered as an input into the xe dynamics. Since

x1 = y, measured dynamics are given by the scalar equation

 x1 = y = a11 y + a1e xe + b1u (7.40)

If we collect the known terms of Eqn. (7.40) on one side, we get

y a y b u- -11 1

known measurement

 = a1exe (7.41)

Note that Eqns (7.39) and (7.41) have the same relationship to the state xe that the original equations (7.38)

had to the entire state x. Following this line of reasoning, we can establish the following substitutions in

the original observer-design equations, to obtain an (reduced-order) observer of xe:

 x ¨ xe

 A ¨ Aee

 bu ¨ ae1y + beu

 y ¨ y – a11y – b1u
(7.42)

 c ¨ a1e

Making these substitutions into the equation for full-order observer (Eqn. (7.31)), we obtain the equation

of the reduced-order observer:

 ̂xe = Aee x̂e + a be ey u1 +
input

 + m (

y a y b u- -11 1

measurement

 – a1e x̂ e) (7.43)

If we define the estimation error as

 xe = xe – x̂e (7.44)

the dynamics of error are given by subtracting Eqn. (7.43) from Eqn. (7.39):

 xe = (Aee – ma1e) xe (7.45)

Its characteristic equation is given by

 | sI – (Aee – ma1e) | = 0 (7.46)

We design the dynamics of this observer by selecting m so that Eqn. (7.46) matches a desired reduced-

order characteristic equation. To carry out the design using state regulator results, we form a ‘transposed

auxiliary system’

 y (t) = AT
ee y (t) + aT

1e h(t)

 h(t) = – mTy (t)
(7.47)

Use of Ackermann’s formula given by Eqns (7.26) for this auxili ary system gives the gains m of the

reduced-order observer. We should point out that the conditions for the existence of the reduced-order

observer are the same as for the full-order ob server—namely observability of the pair (A, c).

Let us now look at the implementational aspects of the reduced-order observer given by Eqn. (7.43). This

equation can be rewrit ten as

 ̂xe = (Aee – ma1e) x̂e + (ae1 – ma11)y + (be – mb1)u + m y (7.48)

 Pole-Placement Design and State Observers 457

The fact that the reduced-order observer requires the derivative of y(t) as an input, appears to present

a practical difficulty. It is known that differentiation amplifies noise, so if y is noisy the use of y is

unacceptable. To get around this difficulty, we define the new state as

 x¢e =D x̂e – my (7.49a)

Then, in terms of this new state, the implementation of the reduced-order observer is given by

 ¢ xe = (Aee – ma1e) x̂e + (ae1 – ma11)y + (be – mb1)u (7.49b)

and y no longer appears directly. A block-diagram representation of the reduced-order observer is

shown in Fig. 7.7.

y

u

+

m
a me1 – a11

b me – b1
+ + +

+x¢e x¢e xe
Ún – 1

n – 1 parallel
integrators

A maee – 1e

Fig. 7.7

Example 7.6

In Example 7.4, a second-order observer for the satellite-attitude control system was designed with the

observer poles at s = – 10, – 10. We now design a reduced-order (first-order) observer for the system with

observer pole at s = – 10.

The plant equations are

x

x

1

2

È

Î
Í

˘

˚
˙ =

0 1

0 0

È

Î
Í

˘

˚
˙

x

x

1

2

È

Î
Í

˘

˚
˙ +

0

1

È

Î
Í

˘

˚
˙ u

 y = [1 0]
x

x

1

2

È

Î
Í

˘

˚
˙

The partitioned matrices are

a a

a A

e

e ee

11 1

1

È

Î
Í
Í

˘

˚
˙
˙

 =
0 1

0 0

È

Î
Í
Í

˘

˚
˙
˙

 =
b

be

1È

Î
Í
Í

˘

˚
˙
˙

 =
0

1

È

Î
Í
Í

˘

˚
˙
˙

458 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

From Eqn. (7.46), we find the characteristic equation in terms of m:

 s – (0 – m) = 0

We compare it with the desired equation

 s + 10 = 0

which yields,

 m = 10

The observer equations are (refer to Eqns. (7.49))

 ¢x2 = – 10 x̂2 + u

 x̂2 = ¢x2 + 10y

This completes the design of the reduced-order observer which estimates the angular velocity of the

satellite from the measure ment of the angular position.

7.6
 THE SEPARATION PRINCIPLE

In Sections 7.2–7.4, we studied the design of control laws for systems in which the state variables are all

accessible for measurement. We promised to overcome the difficulty of not being able to measure all the

state variables by the use of an observer to estimate those state variables that cannot be measured. Then

in Section 7.5, we studied the design of observers for systems with known inputs, but not when the state

estimate is used for the purpose of control. We are now ready to combine the state-feedback control law

with the observer to obtain a compensator for linear systems in which not all the state variables can be

measured.

Consider the completely controllable and completely observable system defined by the equations

 x = Ax + bu
(7.50)

 y = cx

Suppose we have designed a state-feedback control law

 u = – kx (7.51)

using the methods of Section 7.4. And also suppose we have de signed a full-order observer

 ̂x = A x̂ + bu + m(y – c x̂) (7.52)

using the methods of Section 7.5.

For the state-feedback control based on the observed state x̂,

 u = – k x̂ (7.53)

The control system based on combining the state-feedback control law and state observer, has the

configuration shown in Fig. 7.8. Note that the number of state variables in the compensator is equal to

the order of the embedded observer and hence is equal to the order of the plant. Thus, the order of the

overall closed-loop system, when a full-order observer is used in the compensa tor, is 2n for a plant of

 Pole-Placement Design and State Observers 459

order n. We are interested in the dynamic behavior of the 2nth-order system comprising the plant and the

compensator. With the control law (7.53) used, the plant dynamics become

 x = Ax – bk x̂ = (A – bk)x + bk(x – x̂) (7.54)

The difference between the actual state x and observed state x̂, has been defined as the error x:

 x = x – x̂

Substitution of the error vector into Eqn. (7.54) gives

 x = (A – bk)x + bk x (7.55)

Note that the observer error was given by Eqn. (7.33), repeated here

 x = (A – mc) x (7.56)

Combining Eqns (7.55) and (7.56), we obtain

x

x

È

Î
Í

˘

˚
˙ =

A bk bk

0 A mc

-
-

È

Î
Í

˘

˚
˙

x

x

È

Î
Í

˘

˚
˙ (7.57)

Equation (7.57) describes the dynamics of the 2n-dimensional system of Fig. 7.8. The characteristic

equation for the system is

 | sI – (A – bk)| |sI – (A – mc)| = 0

In other words, the poles of the combined system consist of the union of control and observer roots. This

means that the design of the control law and the observer can be carried out indepen dently. Yet, when they

are used together, the roots are unchanged. This is a special case of the separation principle, which holds

in much more general contexts and allows for the separate design of control law and estimator in certain

stochastic cases.

To compare the state-variable method of design with the transform methods discussed in earlier chapters,

we obtain the transfer function model of the compensator used in the control system of Fig. 7.8. The state

variable model for this compensator is ob tained by including the feedback law u = – kx̂ (since it is part

of the compensator) in the observer equation (7.52).

 ̂x = (A – bk – mc) x̂ + my (7.58)

 u = – k x̂

yu x
c

SensorPlant

Compensator

–k
x

x Ax b= + u

x Ax b= + u

+ (–)m cxy

Control law Observer

Fig. 7.8

460 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The formula for conversion of state variable model to the trans fer function model is given by Eqn. (5.28).

Applying this result to the model given by Eqn. (7.58), we obtain

U s

Y s

()

()-
 = D(s) = k(sI – A + bk + mc)–1

m (7.59)

Figure 7.9 shows the block diagram representation of the system with observer-based controller.

–
Plant

R s() = 0
D s()

U s() Y s()

 Fig. 7.9

Note that the poles of D(s) in Eqn. (7.59) were neither specified nor used during the state-variable design

process. It may even happen that D(s) has one or more poles in the right-half plane; the compensator, in

other words, could turn out to be unstable. But the closed-loop system, if so designed, would be stable.

There is, however, one problem if the compensator is unstable. The open-loop poles of the system are

the poles of the plant and also the poles of the compensator. If the latter are in the right-half plane, then

the closed-loop poles may be in the right-half plane when the loop gain becomes too small. Robustness

considerations put certain restrictions on the use of unstable compensators to stabilize a system.

Example 7.7

In this example, we study the closed-loop system obtained by implementing the state-feedback control

law of Example 7.3 and state-observer design of Examples 7.4 and 7.6, for the attitude control of a

satellite. The plant model is given by

 x = Ax + bu; y = cx

with

 A =
0 1

0 0

È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

In Example 7.3, the gain matrix required to place the closed-loop poles at s = – 4 ± j4 was calculated to

be

 k = [32 8]

If both the state variables are available for feedback, the control law becomes

 u = – kx = – [32 8]x

resulting in the closed-loop system

 x = (A – bk)x =
0 1

32 8- -
È

Î
Í

˘

˚
˙ x

 Pole-Placement Design and State Observers 461

Figure 7.10a shows the response of the system to an initial condition x(0) = [1 0]T. Assume now that

the state-feedback control law is implemented using a full-order observer. In Exam ple 7.4, the observer

gain matrix was calculated to be

 m =
20

100

È

Î
Í

˘

˚
˙

0

0.5

(a)

(b)

(c)

0.8

t (sec)

1.0

– 0.5

1

0.2 0.4 0.6

Fig. 7.10

The state variable model of the compensator, obtained by cascading the state-feedback control law and

the state observer, is obtained as (refer to Eqns (7.58))

 ̂x = (A – bk – mc) x̂ + my =
-
- -

È

Î
Í

˘

˚
˙

20 1

132 8
x̂ +

20

100

È

Î
Í

˘

˚
˙ y

 u = – k x̂ = – [32 8] x̂

The compensator transfer function is (refer to Eqn. (7.59))

 D(s) =
U s

Y s

()

()-
 = k(sI – A + bk + mc)–1

m =
1440 3200

28 2922

s

s s

+

+ +
The state variable model of the closed-loop system can be con structed as follows:

 x1 = x2

 x2 = u = – 32 x̂1 – 8 x̂2

 ̂x1 = – 20 x̂1 + x̂2 + 20y = – 20 x̂1 + x̂2 + 20x1

 ̂x2 = – 132 x̂1 – 8 x̂2 + 100x1

462 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Therefore,

x

x

x

x

1

2

1

2

ˆ

ˆ

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

0 1 0 0

0 0 32 8

20 0 20 1

100 0 132 8

- -
-

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

x

x

x

x

1

2

1

2

ˆ

ˆ

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Figure 7.10b shows the response to an initial condition

[1 0 0 0]T

Consider now the implementation of state-feedback control law using reduced-order observer. In

Example 7.6, the following model was obtained to estimate the state x2 (state x1 is directly measured and

fed back, and is not estimated using an observer):

 ˆ ¢x2 = x ¢2 + 10y

 ¢ x2 = –10 x̂2 + u

The control law is given by

 u = – 32x1 – 8 x̂2

From these equations, the following transfer function model of the compensator is obtained:

U s

Y s

()

()-
 =

112 2 86

18

(.)s

s

+
+

The reduced-order compensator is precisely the lead network; this is a pleasant discovery, as it shows

that the classical and state variable methods can result in exactly the same type of compensa tion.

The state variable model of the closed-loop system with the reduced-order compensator is derived below.

 x1 = x2

 x2 = u = – 32x1 – 8 x̂2 = – 32x1 – 8(x ¢2 + 10x1) = – 112x1 – 8x ¢2
 ¢x2 = – 10 x̂2 + u = – 10 x̂2 – 32x1 – 8 x̂2

 = – 18(x ¢2 + 10x1) – 32x1 = – 18x ¢2 – 212x1

Therefore,

x

x

x

1

2

2¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

0 1 0

112 0 8

212 0 18

- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

1

2

2¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Figure 7.10c shows the response to an initial condition

[1 0 0]T

Comments

1. Underlying the separation principle is a critical assumption, namely, that the observer includes an

exact dynamic model of the plant—the process under control. This assumption is almost never valid in

reality. In practical systems, the precise dynamic model is rarely known. Even that which is known about

 Pole-Placement Design and State Observers 463

the real process dynamics, is often too complicated to include in the observer. Thus, the observer must, in

practice, be configured to use only an approximate model of the plant. This encounter with the real world

does not vitiate the separation principle, but means that the effect of an inaccurate plant model must be

considered. If the design achieved through use of the separation principle is robust, it will be able to

tolerate uncertainty of the plant dynamics. Doyle and Stein [124] have proposed a ‘design adjust ment

procedure’ to improve robustness with observers.

2. One of the considerations in the design of a gain matrix k in the state-feedback control law, is that the

resulting control signal u must not be too large; the use of large control effort in creases the likelihood of

the system entering nonlinear regions of operation. Since the function of the observer is only to process

data, there is no limitation on the size of the gain matrix m for its realization. (Nowadays, it is all but

certain that the entire compensator would be realized by a digital compu ter. With floating-point numerics,

a digital computer would be capable of handling variables of any reasonable dynamic range). Though

the realization of observer may impose no limitation on the observer dynamics, it may, nevertheless, be

desirable to limit the observer speed of response (bandwidth). Remember that real sensors are noisy,

and much of the noise occurs at relatively high frequencies. By limiting the bandwidth of the observer,

we can attenuate and smoothen the noise contribution to the compensa tor output—which is the control

signal.

3. The desired closed-loop poles, to be generated by state feedback are chosen to satisfy the performance

requirements. The poles of the observer are usually chosen so that the observer response is much faster

than the system response. A rule of thumb is to choose an observer response at least two to five times

faster than the system response. This is to ensure a faster decay of estimation errors compared with the

desired dynamics, thus causing the closed-loop poles generated by state feedback to dominate the total

response. If the sensor noise is large enough to be a major concern, one may decide to choose the observer

poles to be slower than two times the system poles, which would yield a system with lower bandwidth

and more noise-smoothing. However, the total system response in this case will be strongly influenced

by the observer poles. Doyle and Stein [124] have shown that the commonly suggested approach of

‘speeding-up’ observer dynamics will not work in all cases. They have suggested that procedures which

drive some observer poles towards stable plant zeros and the rest towards infinity achieve the desired

objective.

4. A final comment concerns the reduced-order observer. Due to the presence of a direct transmission

term (refer to Fig. 7.7), the reduced-order observer has much higher bandwidth from sensor to control,

compared with the full-order observer. Therefore, if sensor noise is a significant factor, the reduced-order

observer is less attractive, since the potential savings in complexity is more than offset by the increased

sensitivity to noise.

7.7 SERVO DESIGN: INTRODUCTION OF THE
 REFERENCE INPUT BY FEEDFOR WARD CONTROL

In the state regulator design studied in Section 7.4, the characteristic equation of the closed-loop system

is chosen so as to give satisfactory transients to disturbances. However, no mention is made of a reference

input or of design considerations to yield good transient response with respect to command changes. In

464 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

general, these considerations should be taken into account in the design of a control system. This can be

done by proper introduction of the reference input into the system equations.

Consider the completely controllable SISO linear time-invariant system with nth-order state variable

model

 x(t) = Ax(t) + bu(t)

 y(t) = cx(t)
(7.60)

We assume that all the n state variables can be accurately measured at all times. Implementation of

appropriately designed control law of the form

 u(t) = – kx(t)

results in a state regulator system; any perturbation in the system state will asymptotically decay to the

equilibrium state x = 0.

Let us now assume that for the system given by Eqns (7.60), the desired steady-state value of the

controlled variable y(t) is a constant reference input r. For this servo system, the desired equilibrium

state xs is a constant point in state space and is governed by the equations

 cxs = r (7.61)

We can formulate this command-following problem as a ‘shifted regulator problem’, by shifting the origin

of the state space to the equilibrium point xs. Formulation of the shifted regulator problem is as follows.

Let us be the needed input to maintain x(t) at the equilibrium point xs, i.e. (refer to Eqns (7.60)),

 0 = Axs + bus (7.62)

 Assuming for the present that a us exists that satisfies Eqns (7.61)–(7.62), we define shifted input,

shifted state, and shifted controlled variable as

 u(t) = u(t) – us

 x(t) = x(t) – xs (7.63)

 y(t) = y(t) – r

The shifted variables satisfy the equations

 x = A x + b u

 y = c x
(7.64)

This system possesses a time-invariant asymptotically stable control law

 u = – k x (7.65)

The application of this control law ensures that

 x Æ 0 (x(t) Æ xs, y(t) Æ r)

In terms of the original state variables, total control effort

 u(t) = – kx(t) + us + kxs (7.66)

Manipulation of Eqn. (7.62) gives

 (A – bk)xs + b(us + kxs) = 0 or xs = – (A – bk)–1
b(us + kxs)

or cxs = r = – c(A – bk)–1
b(us + kxs)

 Pole-Placement Design and State Observers 465

This equation has a unique solution for (us + kxs):

 (us + kxs) = Nr

where N is a scalar feedforward gain, given by

 (N)–1 = – c(A – bk)–1
b (7.67)

The control law (7.66), therefore, takes the form

 u(t) = – kx(t) + Nr (7.68)

The block diagram of Fig. 7.11 shows the configuration of feed back control system with feedforward

compensation for nonzero equilibrium state.

x

w

+

–

N Plant

k

r u y

Fig. 7.11

Example 7.8

The system considered in this example is the attitude control system for a rigid satellite. The plant

equations are (refer to Example 7.1)

 x = Ax + bu; y = cx

where

 A =
0 1

0 0

È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í

˘

˚
˙ ; c = [1 0]

 x1(t) = position q (t); x2(t) = velocity q (t)

The reference input r = qr is a step function. The desired steady state is

xs = [qr 0]T,

which is a non-null state.

As the plant has integrating property, the steady-state value us of the input must be zero (otherwise the

output cannot stay con stant). For this case, the shifted regulator problem may be formulated as follows:

 x1 = x1 – qr; x2 = x2

Shifted state variables satisfy the equation

 x = A x + bu

466 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The state-feedback control

u = – k x

results in dynamics of x given by

 x = (A – bk) x

In Example 7.1, we found that the eigenvalues of (A – bk) are placed at the desired locations – 4 ± j4

when

k = [k1 k2] = [32 8]

The control law expressed in terms of the original state varia bles is given as

u = – k1 x1 – k2 x2 = – k1x1 – k2x2 + k1qr = – kx + k1qr

As t approaches infinity, x Æ 0 (x Æ [qr 0]T), and u Æ 0.

Figure 7.12 shows a configuration for attitude control of the satellite.

In fact, control configuration of the form shown in Fig. 7.12 may be used for any SISO plant with

integrating property.

u

– –

+ +qr k1
1 1

ss

x2 y = =x1 q

k2

Fig. 7.12

7.8 STATE FEEDBACK WITH INTEGRAL CONTROL

Control configuration of Fig. 7.12 produces a generalization of proportional and derivative feedback

but it does not include integral control unless special steps are taken in the design process. One way to

introduce integral control is to augment the state vector with the desired integral. More specifically, for

the system (7.60), we can feedback the state x as well as the integral of the error in output by augmenting

the plant state x with the extra ‘integral state’ z, defined by the equation

 z(t) =

0

t

Ú (y(t) – r)dt (7.69a)

where r is the constant reference input of the system. Since z(t) satisfies the differential equation

 z(t) = y(t) – r = cx(t) – r (7.69b)

it is easily included by augmenting the original system (7.60) as follows:

x

z

È

Î
Í

˘

˚
˙ =

A 0

c 0

È

Î
Í

˘

˚
˙

x

z

È

Î
Í

˘

˚
˙ +

b

0

È

Î
Í

˘

˚
˙ u +

0

-
È

Î
Í

˘

˚
˙

1
 r (7.70)

 Pole-Placement Design and State Observers 467

Since r is constant, in the steady state x = 0, z = 0, provided that the system is stable. This means that

the steady-state solutions xs, zs and us must satisfy the equation

0

-
È

Î
Í

˘

˚
˙

1
 r = –

A 0

c 0

È

Î
Í

˘

˚
˙

xs

sz

È

Î
Í

˘

˚
˙ –

b

0

È

Î
Í

˘

˚
˙ us

Substituting this for the last term in Eqn. (7.70), gives

x

z

È

Î
Í

˘

˚
˙ =

A 0

c 0

È

Î
Í

˘

˚
˙

x x-
-

È

Î
Í

˘

˚
˙

s

sz z
 +

b

0

È

Î
Í

˘

˚
˙ (u – us) (7.71)

Now define new state variables as follows, representing the deviations from the steady state:

 x =
x x-

-
È

Î
Í

˘

˚
˙

s

sz z
; u = u – us (7.72a)

In terms of these variables, Eqn. (7.71) becomes

 x = Ax b + u (7.72b)

 A =
A 0

c 0

È

Î
Í

˘

˚
˙ , b =

b

0

È

Î
Í

˘

˚
˙

The significance of this result is that, by defining the deviations from steady state as state and control

variables, the design problem has been reformulated to be the standard regulator problem, with x = 0 as

the desired state. We assume that an asymptotically stable solution to this problem exists, and is given by

 u = – k x

Partitioning k appropriately and using Eqns (7.72a) yields

k = [kp ki]

 u – us = – [kp ki]
x x-

-
È

Î
Í

˘

˚
˙

s

sz z
 = – kp(x – xs) – ki(z – zs)

The steady-state terms must balance, therefore,

 u = – kp x – ki z = – kp x – ki

0

t

Ú (y(t) – r)dt (7.73)

The control, thus, consists of proportional state feedback and integral control of output error. At steady-

state, x = 0; there fore,

 lim
t

 z(t) Æ 0 or lim
t

 y(t) Æ r

Thus, by integrating action, the output y is driven to the no-offset condition.

This will be true even in the presence of constant disturbances acting on the plant. Block diagram of

Fig. 7.13 shows the configuration of feedback control system with proportional state feedback and

integral control of output error.

468 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

w

r

x

u
Plant

y

– –

+ +
kiÚ

kp

Fig. 7.13

Example 7.9

Suppose the system is given by

Y s

U s

()

()
 =

1

3s +
with a constant reference command signal. We wish to have integral control with closed-loop poles at

wn = 5 and z = 0.5, which is equivalent to asking for a desired characteristic equa tion

s2 + 5s + 25 = 0

The plant model is

 x = – 3x + u; y = x

Augmenting the plant state x with the integral state z—defined by the equation

 z(t) =

0

t

Ú (y(t) – r)dt

we obtain

x

z

È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

3 0

1 0

x

z

È

Î
Í

˘

˚
˙ +

1

0

È

Î
Í

˘

˚
˙ u +

0

1-
È

Î
Í

˘

˚
˙ r

In terms of state and control variables representing deviations from the steady state:

 x =
x x

z z

s

s

-
-

È

Î
Í

˘

˚
˙ ; u = u – us

the state equation becomes

 x =
-È

Î
Í

˘

˚
˙

3 0

1 0
 x +

1

0

È

Î
Í

˘

˚
˙ u

We can find k from

 det sI k-
-È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

Ê

ËÁ
ˆ

¯̃

3 0

1 0

1

0
 = s2 + 5s + 25

 Pole-Placement Design and State Observers 469

or s2 + (3 + k1)s + k2 = s2 + 5s + 25

Therefore,

 k = [2 25] = [kp ki]

The control

 u = – kp x – ki z = – 2x – 25

0

t

Ú(y(t) – r)dt

The control configuration is shown in Fig. 7.14, along with a disturbance input w. This system will

behave according to the desired closed-loop roots (wn = 5, z = 0.5) and will exhibit the characteristics of

integral control: zero steady-state error to a step r and zero steady-state error to a constant disturbance w.

r

– –

+ +
+

w

y
25

2

1 1

s + 3s

Fig. 7.14

7.9
 STATE FEEDBACK

This section covers the key results on the pole-placement design, and state observers for discrete-time

systems. Our discussion will be brief because of the strong analogy between the discrete-time and

continuous-time cases. Consider the discretized model of the given plant:

 x(k + 1) = Fx(k) + gu(k)
(7.74)

 y(k) = cx(k)

where x is the n ¥ 1 state vector, u is the scalar input, y is the scalar output; F, g, and c are, respectively,

n ¥ n, n ¥ 1 and 1 ¥ n real constant matrices; and k = 0, 1, 2, … .

We will carry out the design of digital control system for the plant (7.74) in two steps. One step assumes

that we have all the elements of the state vector at our disposal for feedback purposes. The next step is to

design a state observer which estimates the entire state vector, when provided with the measurements of

the system indicated by the output equation in (7.74).

The final step will consist of combining the control law and the observer, where the control law

calculations are based on the estimated state variables rather than the actual state.

470 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

7.9.1 State Regulator Design

Consider the nth-order, single-input, linear time-invariant system (7.74) with state-feedback control law

 u(k) = – kx(k) (7.75)

where

 k = [k1 k2 kn]

The resulting closed-loop system is

 x(k + 1) = (F – gk)x(k) (7.76)

If all the eigenvalues of (F – gk) are placed inside the unit circle in the complex plane, the state x(k) will

decay to the equilibrium state x = 0 irrespective of the value of x(0)—the initial perturbation in the state.

A necessary and sufficient condition for arbitrary placement of closed-loop eigenvalues (with the

restriction that complex eigen values occur in conjugate pairs), is that the system (7.74) is completely

controllable.

The characteristic equation of the closed-loop system is

 |zI – (F – gk)| = 0 (7.77a)

Assuming that the desired characteristic equation is

 (z – l1)(z – l2) (z – ln) = zn + a1zn–1 + + an –1z + an = 0 (7.77b)

the required elements of k are obtained by matching coefficients in Eqns (7.77a) and (7.77b).

The calculation of the gains using this method becomes rather tedious when the order of the system is

greater than three. The algebra for finding the gains becomes especially simple when the state variable

equations are in controllable canonical form. A design procedure based on the use of controllable

canonical state variable model, is given below (refer to Eqns (7.20)–(7.23)).

Step 1 From the characteristic polynomial of matrix F:

 | zI – F| = zn + a1zn–1 + + an–1 z + an (7.78)

 determine the values of a1, a2, ..., an.

Step 2 Determine the transformation matrix P that transforms the system (7.74) into controllable

canonical form:

 P =

p

p F

p F

1

1

1
1

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

;
p U

U g Fg F g

1
1

1

0 0 0 1=

=

-

-

[]

[]

 n
 (7.79)

Step 3 Using the desired eigenvalues (desired closed-loop poles) l1, l2, ..., ln, write the desired

characteristic polynomial:

 (z – l1)(z – l2) (z – ln) = zn + a1 zn–1 + + an–1 z + an, (7.80)

 and determine the values of a1, a2, , an–1, an.

 Pole-Placement Design and State Observers 471

Step 4 The required state-feedback gain matrix is determined from the following equation:

 k = [an – an an–1 – an–1 a1 – a1]P (7.81)

 The Ackermann’s formula given below is more convenient for compu ter solution (refer to Eqns

(7.26)).

 k = [0 0 0 1]U–1e(F) (7.82)

 where e(F) = Fn + a1F
n–1 + + an–1 F + anI

 U = [g Fg Fn–1
g]

Example 7.10

Consider the problem of attitude control of a rigid satellite. A state variable model of the plant is (refer

to Eqn. (7.6))

 x = Ax + bu =
0 1

0 0

È

Î
Í

˘

˚
˙ x +

0

1

È

Î
Í

˘

˚
˙ u

where x1 = q is the attitude angle and u is the system input.

The discrete-time description of the plant (assuming that the input u is applied through a zero-order hold

(ZOH)) is given below (refer to Section 6.3).

 x(k + 1) = Fx(k) + gu(k) (7.83)

where F = eAT =
1

0 1

TÈ

Î
Í

˘

˚
˙ ; g =

0

T

Ú eAt bdt =
T

T

2 2/È

Î
Í
Í

˘

˚
˙
˙

The characteristic equation of the open-loop system is

 | zI – F| =
z T

z

- -
-

1

0 1
 = (z – 1)2 = 0

With the control law

 u(k) = – kx(k) = – [k1 k2] x(k)

the closed-loop system becomes

 x(k + 1) = (F – gk)x(k)

The characteristic equation of the closed-loop system is

 |zI – (F – gk)| = z2 + (Tk2 + (T 2/2)k1 – 2) z + (T 2/2)k1 – Tk2 + 1 = 0 (7.84a)

We assume that T = 0.1 sec, and the desired characteristic roots of the closed-loop system are z1.2 =

0.875 – ± 17.9º.

Note that these roots correspond to z = 0.5, and wn = 3.6 (refer to Eqns (4.15)):

 z1, 2 = e nT-zw
 e

j Tn± -w z1 2

The desired characteristic equation is then (approximately)

 z2 – 1.6z + 0.70 = 0 (7.84b)

472 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Matching coefficients in Eqns (7.84a) and (7.84b), we obtain

 k1 = 10, k2 = 3.5

7.9.2 Design of State Observers

The control law designed in the last subsection assumed that all states were available for feedback.

Since, typically, not all states are measured, the purpose of this subsection is to show how to determine

algorithms which will reconstruct all the states, given measurements of a portion of them. If the state is

x, then the estimate is x̂ and the idea is to let u = – kx̂; replacing the true states by their estimates in the

control law.

An estimation scheme employing a full-order observer is shown in Fig. 7.15, and the equation for it is

 x̂(k + 1) = Fx̂(k) + gu(k) + m(y(k) – cx̂(k)) (7.85)

where m is an n ¥ 1 real constant gain matrix. We will call this a prediction observer because the estimate

x̂ (k + 1) is one sam pling period ahead of the measurement y(k).

g

m

F

c

c
+

+

+ +

Observer

–

u k()
x Fx g(+ 1) = () + ()k k u k

x()k y k()

x(+ 1)k x()k y k()

n-parallel
unit delayers

Fig. 7.15

A difference equation describing the behavior of the error is obtained by subtracting Eqn. (7.85) from

Eqn. (7.74):

 x(k + 1) = (F – mc) x(k) (7.86)

where

 x = x – x̂

 Pole-Placement Design and State Observers 473

The characteristic equation of the error is given by

 | zI – (F – mc)| = 0 (7.87a)

Assuming that the desired characteristic equation is

 (z – l1)(z – l2) � (z – ln) = 0, (7.87b)

the required elements of m are obtained by matching coefficients in Eqns (7.87a) and (7.87b). A necessary

and sufficient condition for the arbitrary assignment of eigenvalues of (F – mc), is that the system (7.74)

is completely observable.

The problem of designing a full-order observer is mathematically equivalent to designing a full state-

feedback controller for the ‘transposed auxiliary system’

 y (k + 1) = FTy (k) + cTh(k) (7.88a)

with feedback

 h(k) = – mTy (k) (7.88b)

so that the closed-loop auxiliary system

 y (k + 1) = (FT – cT
m

T)y (k) (7.88c)

has eigenvalues li; i = 1, 2, ..., n.

This duality principle may be used to design full-order state observers by Ackermann’s formula (7.82),

or by design procedure given in Eqns (7.78)–(7.81).

Current Observer

The prediction observer given by Eqn. (7.85) arrives at the state estimate x̂(k) after receiving

measurements up through y(k – 1). Hence the control u(k) = – k x̂(k) does not utilize the information on

the current output y(k). For higher-order systems controlled with a slow computer, or any time the sample

rates are fast compared to the computation time, this delay between making a measurement and using it

in control law may be a blessing. In many systems, however, the computation time required to evaluate

Eqn. (7.85) is quite short—compared to the sample period—and the control based on prediction observer

may not be as accurate as it could be.

An alternative formulation of the state observer is to use y(k) to obtain the state estimate x̂(k). This can

be done by separating the estimation process into two steps. In the first step we determine x(k + 1), an

approximation of x(k + 1) based on x̂(k) and u(k), using the model of the plant. In the second step, we

use y(k + 1) to improve x(k + 1). The improved x(k + 1) is x̂(k + 1). The state observer based on this

formulation is called the current ob server. The current observer equations are given by

 x(k + 1) = Fx̂(k) + gu(k) (7.89a)

 x̂(k + 1) = x(k + 1) + m[y(k + 1) – cx(k + 1)] (7.89b)

In practice, the current observer cannot be implemented exactly because it is impossible to sample,

perform calculations, and output with absolutely no time elapse. However, the errors introduced due to

computational delays will be negligible if the computation time is quite short—compared to the sample

period.

474 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The error equation for the current observer is similar to the error equation for the prediction observer,

given in (7.86). The current-estimate error equation is obtained by sub tracting Eqns (7.89) from (7.74).

 x(k + 1) = x(k + 1) – x̂(k + 1)

 = Fx(k) + gu(k) – F x̂(k) – gu(k) – mc[x(k + 1) – x(k + 1)]

 = F x(k) – mcF x(k) = (F – mcF) x(k) (7.90)

Therefore, the gain matrix m is obtained exactly as before, except that c is replaced by cF.

Reduced-Order Observer

The observers discussed so far, are designed to reconstruct the entire state vector, given measurements

of some of the states. To pursue an observer for only the unmeasured states, we partition the state

vector into two parts: one part is x1 which is directly measured, and the other part is xe, representing the

state varia bles that need to be estimated. If we partition the system ma trices accordingly, the complete

description of the system (7.74) is given by

x k

ke

1 1

1

()

()

+
+

È

Î
Í

˘

˚
˙

x
 =

f e

e ee

11 1

1

f

f F

È

Î
Í

˘

˚
˙

x k

ke

1()

()x

È

Î
Í

˘

˚
˙ +

g

e

1

g

È

Î
Í

˘

˚
˙ u(k) (7.91a)

 y(k) = [1 0]
x k

ke

1()

()x

È

Î
Í

˘

˚
˙ (7.91b)

The portion describing the dynamics of unmeasured states is

 xe(k + 1) = Fee xe(k) + f ge ex k u k1 1() ()+
known input

 (7.92)

The measured dynamics are given by the scalar equation

 y k f y k g u k() () ()+ - -1 11 1

known measurement
 = f1exe(k) (7.93)

Equations (7.92) and (7.93) have the same relationship to the state xe that the original equation (7.74) had

to the entire state x. Following this reasoning, we arrive at the desired observer by making the following

substitutions into the observer equations:

 x ¨ xe

 F ¨ Fee

 gu(k) ¨ fe1 y(k) + geu(k) (7.94)

 y(k) ¨ y(k + 1) – f11y(k) – g1u(k)

 c ¨ f1e

Thus, the reduced-order observer equations are

 x̂e(k + 1) = Fee x̂e(k) + f ge ey k u k1 () ()+
input

 + m (7.95)

Subtracting Eqn. (7.95) from (7.92) yields the error equation

 xe(k + 1) = (Fee – mf1e) xe(k) (7.96)

 Pole-Placement Design and State Observers 475

where

 xe = xe – x̂e

The characteristic equation is given by

 |zI – (Fee – mf1e)| = 0 (7.97)

We design the dynamics of this observer by selecting m so that Eqn. (7.97) matches a desired reduced-

order characteristic equation. The design may be carried out directly or by using duality principle.

7.9.3

If we implement the state-feedback control law using an estimated state vector, the control system can be

completed. A schematic of such a scheme, using a prediction observer1, is shown in Fig. 7.16. Note that

by the separation principle, the control law and the state observer can be designed separately, and yet

used together.

The portion within the dotted line in Fig. 7.16 corresponds to dynamic compensation. The state variable

model of the compensator is obtained by including the state-feedback control (since it is a part of the

compensator) in the observer equations, yielding

 x̂(k + 1) = (F – gk – mc) x̂(k) + my(k) (7.98)

 u(k) = – kx̂(k)

Fig. 7.16

The formula for conversion of a discrete-time state variable model to the transfer function model is given

by Eqn. (6.3). Applying this result to the model (7.98), we obtain

U z

Y z

()

()-
 = D(z) = k(zI – F + gk + mc)–1

m (7.99)

 1 We will design the compensator only for the prediction ob server case. The other observers give very similar

results.

476 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 7.11

As an example of complete design, we will add a state observer to the satellite-attitude control

considered in Example 7.10. The system equations of motion are (refer to Eqn. (7.83))

 x(k + 1) = Fx(k) + gu(k) =
1

0 1

TÈ

Î
Í

˘

˚
˙ x(k) +

T

T

2 2/È

Î
Í
Í

˘

˚
˙
˙

 u(k)

We assume that the position state x1 is measured and the velocity state x2 is to be estimated; the

measurement equation is, there fore,

 y(k) = cx(k) = [1 0] x(k)

We will design a first-order observer for the state x2(k).

The partitioned matrices are

f f

f F

e

e ee

11 1

1

È

Î
Í
Í

˘

˚
˙
˙

 =
1

0 1

TÈ

Î
Í
Í

˘

˚
˙
˙

;
g

ge

1È

Î
Í
Í

˘

˚
˙
˙

 =
T

T

2 2/È

Î
Í
Í

˘

˚
˙
˙

From Eqn. (7.97), we find the characteristic equation in terms of m:

z – (1 – mT) = 0

For the observer to be about four times faster than the control, we place the observer pole at

 z = 0.5 (@ (0.835)4); therefore, 1 – mT = 0.5

For: T = 0.1 sec, m = 5. The observer equation is (refer to Eqn. (7.95))

 x̂2(k + 1) = x̂2(k) + Tu(k) + m(y(k + 1) – y(k) –
T 2

2
 u(k) – T x̂2 (k))

 = 0.5 x̂2 (k) + 5(y(k + 1) – y(k)) + 0.075u(k)

Substituting for u(k) from the control law (refer to Example 7.10)

 u(k) = – 10y(k) – 3.5 x̂2(k), (7.100a)

we obtain

 x̂2(k + 1) = 0.2375 x̂2(k) + 5y(k + 1) – 5.75y(k) (7.100b)

The two difference equations (7.100a) and (7.100b) complete the design and can be used to control the

plant to the desired speci fications.

To relate the observer-based state-feedback design to a classical design, one needs to compute the

z-transform of Eqns (7.100a) and (7.100b), obtaining

U z

Y z

()

()-
 =

27 5 0 818

0 2375

. (.)

.

z

z

-
-

The compensation looks very much like the classical lead compen sation that would be used for 1/s2 plant.

7.9.4 Servo Design

Let us assume that for the system given by Eqns (7.74), the desired steady-state value for the controlled

variable y(k) is a constant reference input r. For this servo system, the desired equilibrium state xs is a

 Pole-Placement Design and State Observers 477

constant point in state space, and is governed by the equation

 cxs = r (7.101a)

We formulate this command-following problem as a ‘shifted regulator problem’ by shifting the origin of

the state space to the equilibrium point xs. Let us be the needed input to maintain x(k) at the equilibrium

point xs, i.e. (refer to Eqns (7.74)),

 xs = Fxs + gus (7.101b)

Assuming for the present, that a us exists that satisfies Eqns (7.101a)–(7.101b), we define shifted input,

shifted state, and shifted controlled variable as

 u(k) = u(k) – us

 x(k) = x(k) – xs (7.102)

 y(k) = y(k) – r

The shifted variables satisfy the equations

 x(k + 1) = F x(k) + g u(k) (7.103)

 y(k) = c x(k)

This system possesses a time-invariant asymptotically stable control law (assuming {F, g} is controllable)

 u = – k x

The application of this control law ensures that

 x(k) Æ 0 (x(k) Æ xs; y(k) Æ r)

In terms of the original state variables, total control effort

 u(k) = –kx(k) + us + kxs (7.104)

Manipulation of Eqn. (7.101b) gives

 (F – gk – I)xs + g(us + kxs) = 0

or xs = – (F – gk – I)–1
g(us + kxs)

or cxs = r = – c(F – gk – I)–1
g(us + kxs)

This equation has a unique solution for (us + kxs):

 (us + kxs) = Nr

where N is a scalar feedforward gain, given by

 (N)–1 = – c(F – gk – I)–1
g (7.105)

The control law (7.104), therefore, takes the form

 u(k) = – kx(k) + Nr (7.106)

7.9.5 State Feedback with Integral Control

In the following, we study a control scheme for the system (7.74) where we feedback the state x as well

as the integral of the error in the output.

478 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

One way to introduce an integrator is to augment the plant state vector x with the ‘integral state’ v that

integrates the di fference between the output y(k) and the constant reference input r. The ‘integral state’

v is defined by

 v(k) = v(k – 1) + y(k) – r (7.107a)

This equation can be rewritten as follows:

 v(k + 1) = v(k) + y(k + 1) – r = v(k) + c[Fx(k) + gu(k)] – r

 = cFx(k) + v(k) + cgu(k) – r (7.107b)

From Eqns (7.74) and (7.107b), we obtain

x()

()

k

k

+
+

È

Î
Í

˘

˚
˙

1

1v

 =
F 0

cF 1

È

Î
Í

˘

˚
˙

x()

()

k

kv

È

Î
Í

˘

˚
˙ +

g

cg

È

Î
Í

˘

˚
˙ u(k) +

0

-
È

Î
Í

˘

˚
˙

1
 r (7.108)

Since r is constant, in the steady state x(k + 1) = x(k) and v(k + 1) = v(k) provided that the system is

stable. This means that the steady-state solutions xs, vs and us must satisfy the equa tion

0

-
È

Î
Í

˘

˚
˙

1
 r =

xs

sv

È

Î
Í

˘

˚
˙ –

F 0

cF 1

È

Î
Í

˘

˚
˙

xs

sv

È

Î
Í

˘

˚
˙ –

g

cg

È

Î
Í

˘

˚
˙ us

Substituting this for the last term in Eqn. (7.108) gives

 x(k + 1) = F x (k) + g u(k) (7.109)

where

 x =
x x-

-
È

Î
Í

˘

˚
˙

s

sv v

; u = u – us

 F =
F

cF

0

1

È

Î
Í

˘

˚
˙ ; g =

g

cg

È

Î
Í

˘

˚
˙

The significance of this result is that by defining the deviations from steady state as state and control

variables, the design problem has been reformulated to be the standard regulator problem, with x = 0 as

the desired state. We assume that an asymptotically stable solution to this problem exists and is given by

 u(k) = – k x(k)

Partitioning k appropriately and using Eqn. (7.109) yields

 k = [kp ki]

 u – us = – [kp ki]
x x-

-
È

Î
Í

˘

˚
˙

s

sv v

 = – kp(x – xs) – ki(v – vs)

The steady-state terms must balance, therefore,

 u(k) = – kpx(k) – kiv(k) (7.110)

At steady state, x(k + 1) – x(k) = 0; therefore,

 v(k + 1) – v(k) = 0 = y(k) – r, i.e., y(k) Æ r

The block diagram of Fig. 7.17 shows the control configuration.

 Pole-Placement Design and State Observers 479

r

+

w

Plant
+ ++

– –

– v()k
ki

u k() y k()

x()k

kp

– v(– 1)k

Fig. 7.17

Example 7.12

Consider the problem of digital control of a plant described by the transfer function

 G(s) =
1

3s +
Discretization of the plant model gives

 Gh0G(z) =
Y z

U z

()

()
 = Z

1 1

3

-Ê

Ë
Á

ˆ

¯
˜ +

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-e

s s

sT

 = (1 – z–1) Z
1

3s s()+
È

Î
Í

˘

˚
˙ =

1

3

1 3

3

-

-

Ê

Ë
Á

ˆ

¯
˜

-

-

e

z e

T

T

For a sampling interval T = 0.1 sec,

 Gh0G(z) =
0 0864

0 741

.

.z -

The difference equation model of the plant is

 y(k + 1) = 0.741y(k) + 0.0864u(k)

The plant has a constant reference command signal. We wish to design a PI control algorithm that results

in system response characteristics: z = 0.5, wn = 5. This is equivalent to asking for the closed-loop poles

at

 z1,2 = e en nT j T- ± -zw w z1 2

 = 0.7788 – ± 24.82º = 0.7068 ± j0.3269

The desired characteristic equation is, therefore,

 (z – 0.7068 – j0.3269)(z – 0.7068 + j0.3269) = z2 – 1.4136z + 0.6065 = z2 + a1z + a2 = 0

Augmenting the plant state y(k) with the ‘integral state’ v(k) defined by

 v(k) = v(k – 1) + y(k) – r,

we obtain

y k

k

()

()

+
+

È

Î
Í

˘

˚
˙

1

1v

 =
0 741 0

0 741 1

.

.

È

Î
Í

˘

˚
˙

y k

k

()

()v

È

Î
Í

˘

˚
˙ +

0 0864

0 0864

.

.

È

Î
Í

˘

˚
˙ u(k) +

0

1-
È

Î
Í

˘

˚
˙ r

480 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In terms of state variables representing deviations from the steady state:

 x =
y ys

s

-
-

È

Î
Í

˘

˚
˙

v v

,

the state equation becomes

 x(k + 1) = F x (k) + g u (k)

where

 F =
0 741 0

0 741 1

.

.

È

Î
Í

˘

˚
˙ ; g =

0 0864

0 0864

.

.

È

Î
Í

˘

˚
˙

By Ackermann’s formula (7.82),

 k = [0 1]U–1e(F)

where

 e(F) = F
2 + a1 F + a2I =

0 108 0

0 2425 0 1929

.

. .

È

Î
Í

˘

˚
˙

 U
–1 = []g F g

-1
 =

0 0864 0 064

0 0864 0 15

1
. .

. .

È

Î
Í

˘

˚
˙

-

 =
1

7 43 10 3. ¥ -
0 15 0 064

0 0864 0 0864

. .

. .

-
-

È

Î
Í

˘

˚
˙

This gives

 k = [1.564 2.243]

The control algorithm is given by

 u(k) = – 1.564y(k) – 2.243v(k)

7.10 DEADBEAT CONTROL BY STATE
 FEEDBACK AND DEADBEAT OBSERVERS

A completely controllable and observable SISO system of order n is considered.

 x(k + 1) = Fx(k) + gu(k)

 y(k) = cx(k)
(7.111)

With the state-feedback control law

 u(k) = – kx(k) (7.112a)

the closed-loop system becomes

 x(k + 1) = (F – gk)x(k) (7.112b)

with the characteristic equation

 | zI – (F – gk) | = 0 (7.112c)

The control-law design consists of picking the gains k so that Eqn. (7.112c) matches the desired

characteristic equation

 zn + a1zn –1 + + an–1z + an = 0

 Pole-Placement Design and State Observers 481

A case of special interest occurs when a1 = a2 = = an–1 = an = 0, that is, desired characteristic

equation is

 zn = 0 (7.113)

By the Cayley–Hamilton theorem (a matrix satisfies its own char acteristic equation),

 (F – gk)n = 0

This result implies that the force-free response of closed-loop system (7.112b),

 x(k) = (F – gk)k
x(0) = 0 for k ≥ n

In other words, any initial state x(0) is driven to the equilib rium state x = 0 in (at most) n steps. The

feedback control law that assigns all the closed-loop poles to origin is, therefore, a deadbeat control law.

A state observer de fined by the equation

 x̂(k + 1) = F x̂(k) + gu(k) + m[y(k) – c x̂(k)] (7.114)

gives an estimate x̂ (k) of the state x(k); the observer design procedure consists of picking the gains m

so that the error system

 x(k + 1) = (F – mc) x(k) (7.115)

has the desired characteristic equation. A case of special interest occurs when all the observer poles (i.e.,

eigenvalues of (F – mc)) are zero. In analogy with the deadbeat control law, we refer to observers with

this property as deadbeat observers.

Comments

The concept of deadbeat performance is unique to discrete-time systems. By deadbeat control, any

nonzero error vector will be driven to zero in (at most) n sampling periods if the magnitude of the scalar

control u(k) is unbounded. The settling time depends on the sampling period T. If T is chosen very small,

the settling time will also be very small, which implies that the control signal must have an extremely

large magnitude. The designer must choose the sampling period for which an extremely large control

magnitude is not required in normal operation of the system. Thus, in deadbeat control, the sampling

period is the only design parame ter.

Example 7.13

The system considered in this example is the attitude control system for a rigid satellite.

The plant equations are (refer to Example 7.10)

 x(k + 1) = Fx(k) + gu(k)

where

 F =
1

0 1

TÈ

Î
Í

˘

˚
˙ ; g =

T

T

2 2/È

Î
Í
Í

˘

˚
˙
˙

 x1(k) = position state q ; x2(k) = velocity state w

482 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The reference input r = qr, a step function. The desired steady state

 xs = [qr 0]T

which is a non-null state.

As the plant has integrating property, the steady-state value us of the input must be zero (otherwise the

output cannot stay constant). For this case, the shifted regulator problem may be formulated as follows:

 x1 = x1 – qr; x2 = x2

Shifted state variables satisfy the equations

 x(k + 1) = F x(k) + gu(k)

The state-feedback control

 u(k) = – k x(k)

results in the dynamics of x given by

 x(k + 1) = (F – gk) x(k)

We now determine the gain matrix k such that the response to an arbitrary initial condition is deadbeat.

The desired characteris tic equation is

 z2 = 0

Using Ackermann’s formula (7.82), we obtain

 k = [0 1]U–1 e (F)

where

 e(F) = F2 =
1 2

0 1

TÈ

Î
Í

˘

˚
˙ ; U–1 = [g Fg]–1 =

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 3

2

1 1

2

2

2

T T

T T

This gives

 k =
1 3

22T T

È

ÎÍ
˘

˚̇

For T = 0.1 sec, k = [100 15]

The control law expressed in terms of original state variables is given as

 u(k) = – k1 x1 (k) – k2 x2 (k) = – 100(x1(k) – qr) – 15x2(k)

Example 7.14

Reconsider the problem of attitude control of a satellite. For implementation of the design of the

previous example, we require the states x1(k) and x2(k) to be measurable. Assuming that the output

y(k) = x1(k) is the only state variable that can be meas ured, we design a state observer for the system. It

is desired that the error vector exhibits deadbeat response. The measurement equation is

 y(k) = cx(k) = [1 0]x(k)

 Pole-Placement Design and State Observers 483

The prediction observer for the system is given as

 x̂(k + 1) = F x̂(k) + gu(k) + m(y(k) – c x̂(k))

The gains m may be calculated by solving the state regulator design problem for the ‘transposed auxiliary

system’

 y (k + 1) = FTy (k) + cTh(k)

 h(k) = – mTy (k)

The desired characteristic equation is

 z2 = 0

Using Ackermann’s formula, we obtain

 m
T = [0 1]U–1e (FT)

where

 e (FT) = (FT)2 =
1 0

2 1T

È

Î
Í

˘

˚
˙ ; U–1 = [cT F

T
c

T]–1 =
1 1

0 1

-È

Î
Í

˘

˚
˙

/

/

T

T

This gives

 m
T = [2 1/T]

For T = 0.1 sec, m =
2

10

È

Î
Í

˘

˚
˙

REVIEW EXAMPLES

Review Example 7.1

DC motors are widely used in speed-control drives. In most applications, the armature voltage of

the motor is controlled in a closed-loop feedback system. Figure 7.18a shows a plant model of a speed

control system.

The state variables of the plant can be chosen as the motor shaft velocity w (t), and the armature current

ia(t). If both the state variables are used in feedback, then two voltages proportional, respectively, to these

two state variables must be generated. The generation of the voltage proportional to w(t) can be achieved

by use of a tachogenerator. A voltage proportional to ia(t) can be generated by inserting a sampling

resistor Rs in the armature circuit, as shown in Fig. 7.18a. It may, however, be noted that if Rs is very

small, the voltage across Rs may consist largely of noise; and if Rs is large, the voltage is more accurate,

but a considerable amount of power is wasted in Rs and the efficiency of the system is re duced.

In modern speed-control drives, thyristor rectifier is used as a power amplifier [5]. The thyristor rectifier

is supplied by an exter nal single-phase or three-phase ac power, and it amplifies its input voltage u, to

produce an output voltage ea, which is supplied to the armature of the dc motor. The state-feedback

control, requiring the feedback of both the motor-shaft velocity and the armature current can, in fact, be

effectively used to provide current-limiting protective feature to prevent damage to the thyristors.

484 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

+ +

–

–

(a)

(b)

Motor

Tacho

u

w

w

ac supply

Thyristor
rectifier

u ea

La Ra

ia

T
L , ,J B

Rs

Kr
1

Las R R+ +a s

x2 = ia

KT

TL

1
Js B+

Kb

Kt

Rs

x1 = w

Fig. 7.18

The voltage u is fed to the driver of the thyristor rectifier. The driver produces time-gate pulses that

control the conduction of the thyristors in the rectifier module. The rectified output voltage ea depends

on the firing angle of the pulses relative to the ac supply waveform. A linear relationship between the

input voltage u and the output voltage ea can be obtained when a proper firing control scheme is used.

The time constants associated with the rectifier are negligibly small. Neglecting the dynamics of the

rectifier, we get

 ea(t) = Kr u(t)

where Kr is the gain of the rectifier.

Figure 7.18b shows the functional block diagram of the plant with

 B = viscous-friction coefficient of motor and load;

 J = moment of inertia of motor and load;

 Pole-Placement Design and State Observers 485

 KT = motor torque constant;

 Kb = motor back-emf constant;

 TL = constant load torque;

 La = armature inductance; and

 Ra + Rs = armature resistance.

As seen from Fig. 7.18b, the plant is a type-0 system. A control law of the form

 u(t) = – kx + Nr

can shape the dynamics of the state variables x1(t) = w (t) and x2(t) = ia(t) with zero steady-state error in

w (t) to constant reference input r. The closed-loop system will, however, be a type-0 system resulting

in steady-state errors to constant dis turbances. We assume that steady-state performance specifications

require a Type-1 system. Hence we employ state feedback with integral control. A block diagram of the

control configuration is shown in Fig. 7.19.

u
Plant+

w
Kt

wr er + +

– –

k1
Kt

k3
sKt

ia

Rsk2/Rs

Kt

Fig. 7.19

The state equations of the plant are

 J x1 + Bx1 = KT x2 – TL

 La x2 + (Ra + Rs)x2 = Kr u – Kbx1

or x = Ax + bu + g TL

where

 A =

-

- -
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

B

J

K

J

K

L

R R

L

T

b

a

a s

a

()
 ; b =

0

K

L

r

a

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

0

J

Let the parameter values be such that these matrices become

 A =
-
- -

È

Î
Í

˘

˚
˙

0 5 10

0 1 10

.

.
; b =

0

100

È

Î
Í

˘

˚
˙ ; g =

-È

Î
Í

˘

˚
˙

10

0

We define an additional state variable x3 as

 x3 =

0

t

Ú (w – r) dt,

486 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

i.e., x3 = w – r = x1 – r

Augmenting this state variable with the plant equations, we obtain

 x = A x + b u + Gw

where

 x = [x1 x2 x3]T; w = [TL r]T

 A =

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 5 10 0

0 1 10 0

1 0 0

.

. ; b =

0

100

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; G =

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

10 0

0 0

0 1

The controllability matrix

 U = [b A b A b]
2

 =

0 1 000 10 500

100 1 000 9 900

0 0 1 000

, ,

, ,

,

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The determinant of U is nonzero. The pair (A, b) is, therefore, com pletely controllable and the conditions

for pole placement by state feedback and integral control, are satisfied.

The characteristic polynomial of the closed-loop system is given by

 | |sI (A bk)- - =

s

k s k k

s

+ -
+ + +
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 5 10 0

0 1 100 10 100 100

1 0

1 2 3

.

.

 = s3 + (10.5 + 100k2) s2 + (6 + 50k2 + 1,000k1)s + 1,000k3 (7.116a)

Let the desired characteristic polynomial be

 s3 + 87.5 s2 + 5,374.5 s + 124,969 = (s + 35.4)(s + 26.05 + j53.4)(s + 26.05 – j53.4) (7.116b)

The quadratic term has a natural frequency wn = 59.39 rad/sec, and a damping ratio z = 0.44.

Matching the corresponding coefficients of Eqns (7.116a) and (7.116b), we obtain

 k1 = 5.33, k2 = 0.77, k3 = 124.97

With these values of the feedback gains, the state variable model of the closed-loop system becomes

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

-
- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 5 10 0

533 1 87 12497

1 0 0

.

.

x

x

x

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 +

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

10 0

0 0

0 1

T

r

LÈ

Î
Í

˘

˚
˙

At steady state, x = 0 and, therefore, the motor velocity x1 = w (t) will approach the constant reference

set point r as t approaches infinity, independent of the disturbance torque TL.

 Pole-Placement Design and State Observers 487

Review Example 7.2

One of the most common uses of feedback control is to position an inertia load using an electric

motor. The inertia load may consist of a very large, massive object such as a radar antenna or a small

object such as a precision instrument. Armature-controlled dc motors are used in many applications for

position ing the load.

We consider here a motor-driven inertia system described by the following equations (refer to Eqns

(5.14)).

 u(t) = Ra ia(t) + Kb w (t) = Ra ia(t) + Kb

d t

dt

q()

 KT ia(t) = J
d t

dt

w()
 = J

d t

dt

2

2

q()

where

 u = applied armature voltage;

 Ra = armature resistance;

 ia = armature current;

 q = angular position of the motor shaft;

 w = angular velocity of the motor shaft;

 Kb = back emf constant;

 KT = motor torque constant; and

 J = moment of inertia referred to the motor shaft.

Taking x1 = q, and x2 = q = w as the state variables, we obtain the following state variable equations for

the system.

 x1 = x2

 x2 = –
K K

JR

T b

a

x2 +
K

JR

T

a

 u = – a x2 + b u

Assume that the physical parameters of the motor and the load yield a = 1, b = 1. Then

 x = Ax + bu

where

 A =
0 1

0 1-
È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í

˘

˚
˙

The discrete-time description of this system, with sampling period T = 0.1 sec, is given by the following

equations (refer to Section 6.3).

 x(k + 1) = Fx(k) + gu(k) (7.117)

where

 F = eAT =
1 0 0952

0 0 905

.

.

È

Î
Í

˘

˚
˙ ; g =

0

T

Ú eAt bdt =
0 00484

0 0952

.

.

È

Î
Í

˘

˚
˙

488 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In this model, x1(k) is the shaft position and x2(k) is the shaft velocity. We assume that x1(k) and x2(k) can

easily be measured using shaft encoders.

We choose the control configuration of Fig. 7.20 for digital positioning of the load; qr is a constant

reference command. In terms of the error variables

 �x1(k) = x1(k) – qr; �x2(k) = x2(k) (7.118)

the control signal

 u(k) = – k1 �x1(k) – k2 �x2(k) = – k �x(k) (7.119)

where the gain matrix

 k = [k1 k2]

PlantZOH
++

––

qr
k1

u k() q

w

T = 0.1 sec

T = 0.1 sec

k2

x2()k

x1()k

Fig. 7.20

The dynamics of the error-vector �x(k) are given by the equations

 �x1 (k + 1) = x1(k + 1) – qr = x1(k) + 0.0952 x2(k) + 0.00484 u(k) – qr

 = �x1(k) + 0.0952 �x2(k) + 0.00484 u(k)

 �x2(k + 1) = 0.905 �x2(k) + 0.0952 u(k)

or �x(k + 1) = F �x(k) + gu(k)

where F and g are given by Eqn. (7.117).

Substituting for u(k) from Eqn. (7.119), we obtain the following closed-loop model of the error dynamics:

 �x(k + 1) = (F – gk) �x(k)

 =
1 0 00484 0 0952 0 00484

0 0952 0 905 0 0952

1 2

1 2

- -

- -

È

Î
Í

˘

˚
˙

. . .

. . .

k k

k k
�x(k) (7.120)

The characteristic equation is

 | zI – (F – gk)| = z2 + (0.00484k1 + 0.0952k2 – 1.905)z + 0.00468k1 – 0.0952k2 + 0.905 = 0 (7.121a)

We choose the desired characteristic-equation zero locations, to be

 z1, 2 = 0.888 ± j0.173 = 0.905 – ± 11.04º

Note that this corresponds to z = 0.46 and wn = 2.17 (refer to Eqns (4.15)):

 z1, 2 = e en nT j T- ± -zw w z1 2

 Pole-Placement Design and State Observers 489

The desired characteristic equation is given by

 (z – 0.888 – j0.173)(z – 0.888 + j0.173) = z2 – 1.776z + 0.819 = 0 (7.121b)

Equating coefficients in Eqns (7.121a) and (7.121b) yields the equations

 0.00484k1 + 0.0952k2 = – 1.776 + 1.905

 0.00468k1 – 0.0952k2 = 0.819 – 0.905

These equations are linear in k1 and k2 and upon solving, yield

 k1 = 4.52, k2 = 1.12

The control law is, therefore, given by

 u(k) = – k1 x1 (k) – k2 x2 (k) = – 4.52(x1(k) – qr) – 1.12x2(k)

The implementation of this control law, requires the feedback of the states x1(k) and x2(k). If we measure

x1(k) using a shaft encoder and estimate x2(k) using a state observer, the control configuration will take

the form shown in Fig. 7.21.

The state-feedback control has been designed for z = 0.46, wn = 2.17; zwn @ 1 sec. The reduced-order

observer for estimating velocity x2(k) from measurements of position x1(k) is a first-order system; we

choose the time constant of this system to be 0.5 sec. Hence, the desired pole location3 in the observer

design problem is

z = e–T/t = e–0.1/0.5 = 0.819

The observer characteristic equation is then

 z – 0.819 = 0 (7.122)

–
Plant

Observer

ZOH
–

++qr
k1

u k() q

T = 0.1 sec

k2
x2()k x1()k

Fig. 7.21

From the plant state equation (7.117), and Eqns (7.91), the partitioned matrices are seen to be

 f11 = 1, f1e = 0.0952, fe1 = 0, Fee = 0.905, g1 = 0.00484, ge = 0.0952

The observer equation is (refer to Eqn. (7.95))

 x̂2(k + 1) = 0.905 x̂2(k) + 0.0952u(k) + m(q (k + 1) – q(k) – 0.00484u(k) – 0.0952 x̂2(k))

 = (0.905 – m(0.0952)) x̂2 (k) + mq (k + 1) – mq(k) + (0.0952 – m(0.00484))u(k)

 (7.123)

 3 The pole at s = – 1/t is mapped to z = e–T/t; T = sampling interval.

490 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The characteristic equation is given by

 z – (0.905 – 0.0952m) = 0

Comparing the coefficients with those of Eqn. (7.122), we obtain

 m = 0.903

Substituting in Eqn. (7.123), we get

 x̂2(k + 1) = 0.819 x̂2(k) + 0.903q (k + 1) – 0.903q(k) + 0.0908u(k)

The control system is implemented as follows. A measurement q (k) is made at t = kT. The observer state

is calculated from

 x̂2(k) = 0.819 x̂2(k – 1) + 0.903q(k) – 0.903q(k – 1) + 0.0908u(k – 1)

Then the control input is calculated, using

 u(k) = – 4.52(q(k) – qr) – 1.12 x̂2(k)

PROBLEMS

 7.1 Consider an nth-order Single-Input, Single-Output system

 �x = Ax + bu; y = cx

 and assume that we are using feedback of the form

 u = – kx + r

 where r is the reference input signal.

 Show that the zeros of the system are invariant under state feed back.

 7.2 A regulator system has the plant

 �x =

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 x +

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 u; y = [1 0 0] x

 (a) Design a state-feedback controller which will place the closed-loop poles at – 2 ± j3.464,

– 5. Give a block diagram of the control configuration.

 (b) Design a full-order state observer; the observer-error poles are required to be located at

– 2 ± j3.464, – 5. Give all the relevant observer equations and a block diagram description of

the observer structure.

 (c) The state variable x1(which is equal to y) is directly meas urable and need not be observed.

Design a reduced-order state observer for the plant; the observer-error poles are required to

be located at – 2 ± j3.464. Give all the relevant observer equa tions.

 7.3 A regulator system has the plant

 �x = Ax + bu; y = cx

 with

 A =

0 0 6

1 0 11

0 1 6

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

1

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]

 Pole-Placement Design and State Observers 491

 (a) Compute k so that the control law u = – kx, places the closed-loop poles at – 2 ± j3.464, – 5.

Give the state variable model of the closed-loop system.

 (b) For the estimation of the state vector x, we use an observer defined by

 ̂x = (A – mc) x̂ + bu + my

 Compute m so that the eigenvalues of (A – mc) are located at – 2 ± j3.464, – 5.

 (c) The state variable x3 (which is equal to y) is directly measurable and need not be observed.

Design a reduced-order observer for the plant; the observer-error poles are required to be

located at – 2 ± j3.464. Give all the relevant observer equa tions.

 7.4 Consider the system

 x = Ax + Bu; y = cx + du

 where

 A =
- -È

Î
Í

˘

˚
˙

2 1

1 0
; B =

1 0

1 1

È

Î
Í

˘

˚
˙ ; c = [0 1]; d = [2 0]

 Design a full-order state observer so that the estimation error will decay in less than 4 seconds.

 7.5 Consider the system

 x =
1 0

0 0

È

Î
Í

˘

˚
˙ x +

1

1

È

Î
Í

˘

˚
˙ u; y = [2 – 1] x

 Design a reduced-order state observer that makes the estimation error to decay at least as fast as

e–10t.

 7.6 Consider the system with the transfer function

Y s

U s

()

()
 =

9

92s -
 (a) Find (A, b, c) for this system in observable canonical form.

 (b) Compute k so that the control law u = – kx places the closed-loop poles at – 3 ± j3.

 (c) Design a full-order observer such that the observer-error poles are located at – 6 ± j6. Give

all the relevant observer equations.

 (d) Suppose the system has a zero such that

Y s

U s

()

()
 =

9 1

92

()s

s

+

-
 Prove that if u = – kx + r, there is a feedback matrix k such that the system is unobservable.

 7.7 The equation of motion of an undamped oscillator with fre quency w 0 is

 y + w0
2 y = u

 (a) Write the equations of motion in the state variable form with x1 = y and x2 = y as the state

variables.

 (b) Find k1 and k2 such that u = – k1x1 – k2x2 gives closed-loop characteristic roots with wn = 2w0

and z = 1.

 (c) Design a second-order observer that estimates x1 and x2, given measurements of x1. Pick

the characteristic roots of the state-error equation with wn = 10w0 and z = 1. Give a block

diagram of the observer-based state-feedback control system.

492 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (d) Design a first-order observer that estimates x2, given meas urements of x1. The characteristic

root of the state-error equa tion is required to be located at –10w0. Give a block diagram of

the observer-based state-feedback control system.

 7.8 A regulator system has the plant

 x =
0 1

20 6 0.

È

Î
Í

˘

˚
˙ x +

0

1

È

Î
Í

˘

˚
˙ u; y = [1 0] x

 (a) Design a control law u = – kx so that the closed-loop system has eigenvalues at –1.8 ± j2.4.

 (b) Design a full-order state observer to estimate the state vector. The observer matrix is required

to have eigenvalues at – 8, – 8.

 (c) Find the transfer function of the compensator obtained by combining (a) and (b).

 (d) Find the state variable model of the complete observer-based state-feedback control system.

 7.9 A regulator system has the double integrator plant

Y s

U s

()

()
 =

1
2s

 (a) Taking x1 = y and x2 = y as state variables, obtain the state variable model of the plant.

 (b) Compute k such that u = – kx gives closed-loop characteristic roots with wn = 1, z = 2 2/ .

 (c) Design a full-order observer that estimates x1 and x2, given measurements of x1. Pick the

characteristic roots of the state-error equation with wn = 5, z = 0.5.

 (d) Find the transfer function of the compensator obtained by combining (b) and (c).

 (e) Design a reduced-order observer that estimates x2 given measurements of x1; place the single

observer pole at s = – 5.

 (f) Find the transfer function of the compensator obtained by combining (b) and (e).

 7.10 A servo system has the Type-1 plant described by the equa tion

 x = Ax + bu; y = cx

 where

 A =

0 1 0

0 1 1

0 0 2

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

 (a) If u = – kx + Nr, compute k and N so that the closed-loop poles are located at –1 ± j1, – 2;

and y() = r, a constant reference input.

 (b) For the estimation of the state vector x, we use a full-order observer

 ̂x = (A – mc) x̂ + bu + my

 Compute m so that observer-error poles are located at – 2 ± j2, – 4.

 (c) Replace the control law in (a) by u = – k x̂ + Nr, and give a block diagram of the observer-

based servo system.

 7.11 A plant is described by the equation

 x =
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
 x +

1

1

È

Î
Í

˘

˚
˙ u; y = [1 3] x

 Pole-Placement Design and State Observers 493

 Add to the plant equations an integrator z = y – r (r is a constant reference input) and select gains

k, ki so that if u = – kx – ki z, the closed-loop poles are at – 2, –1 ± j 3 . Give a block diagram of

the control configuration.

 7.12 Figure P7.12 shows the block diagram of a position control system employing a dc motor in

armature control mode; q (rad) is the motor shaft position, q(rad/sec) is the motor shaft veloci ty,

ia (amps) is the armature current, and KP (volts/rad) is the sensitivity of the potentiometer. Find

k1, k2 and k3 so that the dominant poles of the closed-loop system are characterized by z = 0.5,

wn = 2, nondominant pole is at s = –10; and the steady-state error to constant reference input is zero.

0.1

1

u

s

+

qr

KP

– – – –

+ +k1

KP

1 1

0.1 + 1s s + 1

x3 = ia x2 = q x1 = q

KP

k3

k2

Fig. P7.12

 7.13 A dc motor in armature control mode has been used in speed control system of Fig. P7.13

employing state-feedback with inte gral control; w (rad/sec) is the motor shaft velocity, ia (amps)

is the armature current and Kt (volts/(rad/sec)) is the tachogenerator constant. Find k1, k2 and k3 so

that the closed-loop poles of the system are placed at –1 ± j 3 , –10; and the steady-state error

to constant reference input is zero.

u

1 1
+

0.1

– ––

wr

Kt

+ + +k1

Kt

k3

sKt 0.1 + 1s s + 1

x2 = ia x1 = w

Kt

k2

Fig. P7.13

494 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 7.14 The control law u = – kx – k1qr for position control system of Fig. P7.12 is to be replaced by

u = – k x̂ + k1qr where x̂ is the estimate of the state vector x given by the observer system

 ̂x = (A – mc) x̂ + bu + mq

 Find the gain matrix m which places the eigenvalues of (A – mc) at – 3 ± j 3 , – 10. Give a block

diagram of the observer-based posi tion control system.

 7.15 Consider the position control system of Fig. P7.15 employing a dc motor in armature control

mode with state variables defined on the diagram. Full state-feedback is employed, with position

feedback being obtained from a potentiometer, rate feedback from a tachogenerator and current

feedback from a voltage sample across a resistance in the armature circuit. KA is the amplifier

gain. Find the adjustable parameters KA, k2, and k3 so that the closed-loop poles of the system are

placed at – 3 ± j3, – 20.

Pot

Tacho

–

+

–

–

qr KP

k1 = 1
x1 = KPq

KA

La Ra

ia

k3

k2

x3 = 0.1ia

x2 = Ktq

0.1 W

J B,

Fig. P7.15

 Given:

 Potentiometer sensitivity, KP = 1 volt/rad

 Tachogenerator constant, Kt = 1 volt/(rad/sec)

 Armature inductance, La = 0.005 H

 Armature resistance, Ra = 0.9 W
 Moment of inertia of motor and load, J = 0.02 newton-m/(rad/sec2)

 Viscous-friction coefficient of motor and load, B = 0

 Back emf constant, Kb = 1 volt/(rad/sec)

 Motor torque constant, KT = 1 newton-m/amp

 Pole-Placement Design and State Observers 495

 7.16 Consider the position control system of Fig. P7.16 employing a dc motor in the field control

mode, with state variables defined on the diagram. Full state-feedback is employed with position

feedback being obtained from a potentiometer, rate feedback from a tachogenerator and current

feedback from a voltage sample across a resistor connected in the field circuit. KA is the amplifier

gain.

 Find the adjustable parameters KA, k2, and k3 so that the closed-loop system has dominant poles

characterized by z = 0.5, wn = 2, and the third pole at s = – 10.

 Given:

 Potentiometer sensitivity, KP = 1 volt/rad

 Tachogenerator constant, Kt = 1 volt/(rad/sec)

 Field inductance, Lf = 20 H

 Field resistance, Rf = 99 W
 Moment of inertia of motor and load, J = 0.5 newton-m/(rad/sec2)

 Viscous-friction coefficient of motor and load, B = 0.5 newton-m/(rad/sec)

 Motor torque constant, KT = 10 newton-m/amp

Pot

Tacho

–

+
–

–

qr
KP

KA

Rf
Ia

k1 = 1
x1 = KPq

Lf

k3

k2
x2 = Ktq

x3 = if

1 W

J B,

Fig. P7.16

 7.17 Figure P7.17 shows control configuration of a Type-1 servo system. Both the state variables x1

and x2, are assumed to be measurable. It is desired to regulate the output y to a constant value

r = 5. Find the values of k1, k2 and N so that

 (i) y() = r = 5; and

 (ii) the closed-loop characteristic equation is

 s2 + a1s + a2 = 0.

496 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 7.18 A speed control system, employing a dc motor in the armature control mode, is described by the

following state equations:

d t

dt

w()
 = –

B

J
t

K

J
i t

J
TT

a Lw() ()+ -
1

di t

dt

a ()
 = –

K

L
t

R

L
i t

L
u tb

aw() () ()- +
1

 where

 ia(t) = armature current, amps;

 u(t) = armature applied voltage, volts;

 w (t) = motor velocity, rad/sec;

 B = viscous-friction coefficient of motor and load = 0;

 J = moment of inertia of motor and load = 0.02 newton-m/(rad/sec2);

 KT = motor torque constant = 1 newton-m/amp;

 Kb = motor back emf constant = 1 volt/(rad/sec);

 TL = constant disturbance torque (magnitude not known);

 L = armature inductance = 0.005 H; and

 R = armature resistance = 1 W.

 The design problem is to find the control u(t) such that

 (i) lim
()

t

adi t

dt
 = 0 and lim

()

t

d t

dt

w
 = 0, and (ii) lim

t
w (t) = constant set-point r.

 Show that the control law of the form

 u(t) = – k1w (t) – k2ia(t) – k3

0

t

Ú (w (t) – r)dt

 can meet these objectives. Find k1, k2, and k3 so that the closed-loop poles are placed at

–10 ± j10, –300. Suggest a suitable scheme for implementation of the control law.

r u+

–
N

s

b

s s(+)a

y = x1

k2

k1

x2

Fig. P7.17

 Pole-Placement Design and State Observers 497

 7.19 Figure P7.19 shows a process consisting of two interconnect ed tanks. h1 and h2 representing

deviations in tank levels from their steady-state values H1 and H2 , respectively; q represents

deviation in the flow rate from its steady-state value Q . The flow rate q is controlled by signal

u via valve and actuator. A disturbance flow rate w enters the first tank via a returns line from

elsewhere in the process. The differential equations for levels in the tanks are given by

 h1 = – 3h1 + 2h2 + u + w

 h2 = 4h1 – 5h2

 (a) Compute the gains k1 and k2 so that the control law u = – k1h1(t) – k2h2(t) places the closed-

loop poles at – 4, – 7.

 (b) Show that the steady-state error in the output y(t) = h2(t), in response to constant disturbance

input w, is nonzero.

 (c) Add to the plant equations, an integrator z(t) = y(t) and select gains k1, k2 and k3 so that the

control law u = – k1h1(t) – k2h2(t) – k3z(t) places the closed-loop poles at –1, –2, – 7. Find the

steady-state value of the output in response to constant disturbance w. Give a block diagram

depicting the con trol configuration.

Actuator
u

w

Q q+

H1 + h1 H2 + h2

Fig. P7.19

 7.20 The plant of a servo system is described by the equations

 x = Ax + bu + bw; y = cx

 where

 A =
-

-
È

Î
Í

˘

˚
˙

3 2

4 5
; b =

1

0

È

Î
Í

˘

˚
˙ ; c = [0 1]

 w is a disturbance input to the system.

 A control law of the form u = – kx + Nr is proposed; r is a constant reference input.

 (a) Compute k so that the eigenvalues of (A – bk) are – 4, – 7.

 (b) Choose N so that the system has zero steady-state error to reference input, i.e., y() = r.

 (c) Show that the steady-state error to a constant disturbance input w, is nonzero for the above

choice of N.

498 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (d) Add to the plant equation, an integrator equation (z(t) being the state of the integrator):

 z(t) = y(t) – r

 and select gains k1, k2 and k3 so that the control law u = – k1x1(t) – k2 x2(t) – k3 z(t) places the

eigenvalues of closed-loop system matrix at – 1, – 2, – 7.

 (e) Draw a block diagram of the control scheme employing integral control and show that the

steady-state error to constant distur bance input, is zero.

 7.21 Consider a plant consisting of a dc motor, the shaft of which has the angular velocity w (t) and

which is driven by an input voltage u(t). The describing equation is

 w (t) = – 0.5 w (t) + 100 u(t) = Aw(t) + bu(t)

 It is desired to regulate the angular velocity at the desired value w0 = r.

 (a) Use control law of the form u = – Kw (t) + Nr. Choose K that results in closed-loop pole with

time constant 0.1 sec. Choose N that guarantees zero steady-state error, i.e., w() = r.

 (b) Show that, if A changes to A + dA subject to (A + dA – bK) being stable, then the above

choice of N will no longer make w () = r. Therefore, the system is not robust under changes

in system parameters.

 (c) The system can be made robust by augmenting it with an inte grator

 z = w – r

 where z is the state of the integrator. To see this, first use a feedback of the form u = – K1w(t) – K2z(t)

and select K1 and K2 so that the characteristic polynomial of the closed-loop system becomes D(s) =

s2 + 11s + 50. Show that the resulting system will have w () = r no matter how the matrix A

changes so long as the closed-loop system remains asymptotically stable.

 7.22 A discrete-time regulator system has the plant

 x(k + 1) =

0 1 0

0 0 1

4 2 1- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 x(k) +

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 u(k)

 Design a state-feedback controller which will place the closed-loop poles at – 1
2

 ± j 1
2

, 0. Give a

block diagram of the control configu ration.

 7.23 Consider a plant defined by the following state variable model:

 x(k + 1) = Fx(k) + Gu(k); y(k) = cx(k) + du(k)

 where

 F =

1
2

1 0

1 0 1

0 0 0

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; G =

1 4

0 0

3 2-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]; d = [0 4]

 Design a prediction observer for the estimation of the state vector x; the observer-error poles are

required to lie at – 1
2

 ± j 1
4

, 0. Give all the relevant observer equations and a block diagram

description of the observer structure.

 7.24 Consider the system defined by

 x(k + 1) =

0 1 0

0 0 1

0 5 0 2 1 1- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙. . .

 x(k) +

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 u(k)

 Pole-Placement Design and State Observers 499

 Determine the state-feedback gain matrix k such that when the control signal is given by u(k) =

– kx(k), the closed-loop system will exhibit the deadbeat response to any initial state x(0). Give

the state variable model of the closed-loop system.

 7.25 Consider the system

 x(k + 1) =
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.
 x(k) +

0

1

È

Î
Í

˘

˚
˙ u(k); y(k) = [1 1] x(k)

 Design a current observer for the system; the response to the initial observer error is required to

be deadbeat. Give all the relevant observer equations.

 7.26 Consider the plant defined in Problem 7.24. Assuming that only y(k) = x2(k) is measurable, design

a reduced-order observer such that the response to the observer error is deadbeat. Give all the

relevant observer equations.

 7.27 A discrete-time regulator system has the plant

 x(k + 1)
2 1

1 1

-
-

È

Î
Í

˘

˚
˙ x(k) +

4

3

È

Î
Í

˘

˚
˙ u(k); y(k) = [1 1] x(k) + 7u(k)

 (a) Design a state-feedback control algorithm u(k) = –kx(k) which places the closed-loop

characteristic roots at ± j 1
2

.

 (b) Design a prediction observer for deadbeat response. Give the relevant observer equations.

 (c) Combining (a) and (b), give a block diagram of the control configuration. Also obtain state

variable model of the observer-based state-feedback control system.

 7.28 A regulator system has the plant with transfer function

Y z

U z

()

()
 =

z

z z

-

- -+ +

2

1 11 0 8 1 0 2(.) (.)

 (a) Find (F, g, c) for the plant in controllable canonical form.

 (b) Find k1 and k2 such that u(k) = – k1x1(k) – k2x2(k) gives closed-loop characteristic roots at

0.6 ± j0.4.

 (c) Design a first-order observer that estimates x2, given meas urements of x1; the response to

initial observer error is re quired to be deadbeat.

 (d) Give a z-domain block diagram of the closed-loop system.

 7.29 Consider the system

 x(k + 1) = Fx(k) + gu(k); y(k) = cx(k)

 where

 F =
0 16 2 16

0 16 1 16

. .

. .- -
È

Î
Í

˘

˚
˙ ; g =

-È

Î
Í

˘

˚
˙

1

1
; c = [1 1]

 (a) Design a state-feedback control algorithm which gives closed-loop characteristic roots at

0.6 ± j 0.4.

 (b) Design a reduced-order observer for deadbeat response.

 (c) Find the transfer function of the compensator obtained by combining (a) and (b). Give a

block diagram of the closed-loop system showing the compensator in the control loop.

500 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 7.30 A double integrator plant is to be controlled by a digital computer employing state feedback.

Figure P7.30 shows a model of the control scheme. Both the state variables x1 and x2 are as sumed

to be measurable.

 (a) Obtain the discrete-time state variable model of the plant.

 (b) Compute k1 and k2 so that the response y(t) of the closed-loop system has the parameters:

z = 0.5, wn = 4.

 (c) Assume now that only x1 is measurable. Design a prediction observer to estimate the state

vector x; the estimation error is required to decay in a deadbeat manner.

 (d) Find the transfer function of the compensator obtained by combining (b) and (c).

s

Plant

u k()

– –

1 – e–sT 1 1
s s

x1 = yx2

T = 0.1 sec

T = 0.1 sec

k2

k1

Fig. P 7.30

 7.31 Figure P7.31 shows the block diagram of a digital positioning system. The plant is a dc motor

driving inertia load. Both the position q, and velocity q , are measurable.

 (a) Obtain matrices (F, g, c) of the discrete-time state variable model of the plant.

 (b) Compute k1 and k2 so that the closed-loop system positions the load in a deadbeat manner in

response to any change in step command qr.

 (c) Assume now that the position q is measured by a shaft encoder and a second-order state

observer is used to estimate the state vector x from plant input u and measurements of q.

s s

Plant

qr + +

– –
k1

u k() 1 – e–sT 1 1

s + 1

x2 = w x1 = q

x2()k

x1()k

k2
T = 0.1 sec

T = 0.1 sec

Fig. P7.31

 Pole-Placement Design and State Observers 501

Design a deadbeat observer. Give a block diagram of the observer-based digital positioning

system.

 (d) Design a first-order deadbeat observer to estimate velocity w from measurements of

position q.

 7.32 A continuous-time plant described by the equation

 y = – y + u + w

 is to be controlled by a digital computer; y is the output, u is the input, and w is the disturbance

signal. Sampling interval T = 1 sec.

 (a) Obtain a discrete-time state variable model of the plant.

 (b) Compute K and N so that the control law

 u(k) = – Ky(k) + Nr

 results in a response y(t) with time constant 0.5 sec, and y() = r (r is a constant reference

input).

 (c) Show that the steady-state error to a constant disturbance input w is nonzero for the above

choice of the control scheme.

 (d) Add to the plant equation, an integrator equation (v(k) being the integral state)

 v(k) = v(k – 1) + y(k) – r

 and select gains K1 and K2 so that the control law

 u = – K1y(k) – K2v(k)

 results in a response y(t) with parameters: z = 0.5, wn = 4.

 (e) Give a block diagram depicting the control configuration employing integral control and

show that the steady-state error to constant disturbance w, is zero.

502 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Linear Quadratic Optimal Control
through Lyapunov Synthesis

8.1 INTRODUCTION

It should be obvious by now that stability plays a major role in control systems design. We have earlier

introduced, in Chapters 2 and 5, the concept of stability based on the dynamic evolution of the system

state in response to arbitrary initial state, representing initial energy storage. State variable model

 x(t) = Ax(t); x(t = 0) =
D x

0 (8.1)

is most appropriate to study dynamic evolution of the state x(t), in response to the initial state x0 with zero

external input. At the origin of the state space, x(t) = 0 for all t; the origin is, thus, the equilibrium point

of the system and xe = 0 is the equilibrium state. This system is marginally stable if, for all possible initial

states, x0, x(t) remains thereafter within finite bounds for t > 0. This is true if none of the eigenvalues of

A are in the right half of the complex plane, and eigenvalues on the imaginary axis, if any, are simple

(A multiple eigenvalue on the imaginary axis would have a response that grows in time and could not be

stable). Furthermore, the system is asymptotically stable if for all possible initial states x0, x(t) eventually

decays to zero as t approaches infinity. This is true if all the eigenvalues of A are inside the left half of

the complex plane.

A.M. Lyapunov considered the stability of general nonlinear systems described by state equation of the

form

 x(t) = f(x (t)); x(0) =
D x0 (8.2)

We assume that the equation has been written so that x = 0 is an equilibrium point, which is to say that

f (0) = 0, i.e., the system will continue to be in equilibrium state xe = 0 for all time. This equilibrium point

is said to be stable in the sense of Lyapunov, if we are able to select a bound on initial condition x0, that

will result in state trajectories x(t), that remain within a chosen finite limit. The system is asymptotically

stable at x = 0, if it is stable in the sense of Lyapunov and, in addition, the state x(t) approaches zero as

time t approaches infinity.

No new results are obtained by the use of Lyapunov’s method for the stability analysis of linear time-

invariant systems. Simple and powerful methods discussed in earlier chapters are adequate for such

Chapter 8

 Linear Quadratic Optimal Control through Lyapunov Synthesis 503

systems. However, Lyapunov functions supply certain performance indices and synthesis data for linear

time-invariant systems. Chapter 10 will demonstrate the use of Lyapunov functions in variable structure

sliding mode control, and model reference adaptive control. In this chapter, we introduce the concept of

Lyapunov stability and the role it plays in optimal control design.

The Lyapunov’s method of stability analysis, in principle, is the most general method for determination of

stability of nonlinear systems. The major drawback which seriously limits its use in practice, is the difficulty

often associated with the construction of the Lyapunov function required by the method. Guidelines

for construction of Lyapunov functions for nonlinear systems are given in Chapter 9. For linear time-

invariant systems of main concern in this chapter, the quadratic function (refer to Section 5.2) is adequate

for demonstrating Lyapunov stability. The concept of Lyapunov stability, and working knowledge

required for synthesis of linear time-invariant systems, will be provided here, in this chapter, before

we start the discussion on optimal control. Detailed account of Lyapunov stability will be given later in

Chapter 9.

8.2 THE CONCEPT OF LYAPUNOV STABILITY

8.2.1

We shall confine our attention to systems described by state equation of the form

 x(t) = f(x(t)); f(0) = 0; x(0) =D x0 (8.3)

Note that the origin of the state space has been taken as the equilibrium state of the system, i.e.,

x
e = 0

The system described by Eqn. (8.3) is stable in the sense of Lyapunov, if we are able to select a bound

on initial conditions x0, that will result in state trajectories that remain within a chosen finite limit. More

formally, the system described by Eqn. (8.3) is stable in the sense of Lyapunov at x = 0 if, for every real

number e > 0, there exists a real number d > 0 such that ||x(0)|| < d results in ||x(t)|| < e for all t ≥ 0;

||x|| = a norm of vector x (refer to Section 5.2). The system is asymptotically stable at x = 0 if it is stable

in the sense of Lyapunov and, in addition, the state x(t) approaches zero as time t approaches infinity.

Responses that are stable in the sense of Lyapunov, and asymptotically stable, are shown in Fig. 8.1.

To prove stability results for systems described by equations of the form (8.3), Lyapunov introduced a

function that has many of the properties of energy. The basic Lyapunov stability result is given below.

8.2.2

For the system (8.3), sufficient conditions of stability are as follows.

Theorem 8.1 Suppose that there exists a scalar function V (x) which satisfies the following

properties:

 (i) V (x) > 0; x π 0

 (ii) V (0) = 0 (8.4)

504 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (iii) V (x) is continuous and has continuous partial derivatives with respect to all components of x.

 (iv) V (x) £ 0 along trajectories of Eqn. (8.3).

We call V (x) having these properties, a Lyapunov function for the system. Properties (i) and (ii) mean

that, like energy, V(x) > 0 if any state is different from zero, but V(x) = 0 when the state is zero. Property

(iii) ensures that V(x) is a smooth function and, generally, has the shape of a bowl near the equilibrium.

A visual analysis may be obtained by considering the surface

V(x1, x2) = 1
2

p1x2
1 + 1

2
p2x2

2; p1 > 0, p2 > 0

This is a paraboloid (a solid generated by rotation

of parabola about its axis of symmetry) surface as

shown in Fig. 8.2. The value V (x1, x2) = ki (a con-

stant) is represented by the intersection of V (x1, x2)

surface and the plane z = ki. This intersection results

in a closed curve, an oval. If one plots a trajectory

from the point (x0
1, x0

2, V(x0)), the trajectory crosses

the ovals V(x1, x2) = ki for successively smaller val-

ues of V(x1, x2), and moves towards the point cor-

responding to V(x1, x2) = 0, which is the equilibrium

point. Figure 8.2 shows a typical trajectory.

Property (iv) guarantees that any trajectory moves

in a way, so as never to climb higher on the bowl,

than where it started out. If property (iv) was

made stronger so that V (x) < 0 for x π 0, then

the trajectory must be drawn to the origin (The

trajectory in Fig. 8.2, in fact, corresponds to this

case, i.e., V (x) < 0).

The Lyapunov stability theorem states that, given the system of equations x = f (x) with f (0) = 0, if

there exists a Lyapunov function for this equation, then the origin is stable in the sense of Lyapunov; in

addition, if V (x) < 0, x π 0, then the stability is asymptotic.

|| ()|| <x t e

x()t

x(0)
0

|| (0)|| <x d

|| ()|| <x t e

0

x(0)

x()t

(a) (b)

|| (0)|| <x d

Fig. 8.1

V k= 3 z V= ()x

V k= 2

V k= 1

x2

x1

(, , ())x x V0
1

0
2

0x

Fig. 8.2 V

 Linear Quadratic Optimal Control through Lyapunov Synthesis 505

This theorem on asymptotic stability and stability in the sense of Lyapunov applies in a local sense if

the region ||x(0)|| < d is small (refer to Fig. 8.1); the theorem applies in the global sense when the region

includes the entire state space. The value of Lyapunov function for global stability becomes infinite with

infinite deviation (i.e., V(x) Æ as ||x|| Æ).

The determination of stability through Lyapunov analysis centers around the choice of a Lyapunov

function V(x). Unfortunately, there is no universal method for selecting the Lyapunov function which is

unique for a given nonlinear system. Several techniques have been devised for the systematic construction

of Lyapunov functions; each is applicable to a particular class of systems. If a Lyapunov function cannot

be found, it in no way implies that the system is unstable. It only means that our attempt in trying to

establish the stability of an equilibrium state has failed. Therefore, faced with specific systems, one has

to use experience, intuition, and physical insights to search for an appropriate Lyapunov function. An

elegant and powerful Lyapunov analysis may be possible for complex systems if engineering insight and

physical properties are properly exploited. In spite of these limitations, Lyapunov’s method is the most

powerful technique available today for the stability analysis of nonlinear systems.

For linear time-invariant systems of main concern in this chapter, the quadratic function (refer to

Section 5.2) is adequate for demonstrating Lyapunov stability. Consider the function

 V(x) = xT Px (8.5)

where P is a symmetric positive definite matrix. The quadratic function (8.5) satisfies properties (i), (ii)

and (iii) of a Lyapunov function. We need to examine property (iv), the derivative condition, to study the

stability properties of the system under consideration.

Discrete-Time Systems: In the following, we extend the Lyapunov stability theorem to discrete-time

systems:

 x (k + 1) = f(x(k)); f(0) = 0 (8.6)

Our discussion will be brief because of the strong analogy between the discrete-time and continuous-

time cases.

Theorem 8.2 Suppose that there exists a Lyapunov function V (x(k)) which satisfies the following

properties:

 (i) V (x) > 0; x π 0

 (ii) V (0) = 0

 (iii) V (x) is a smooth function; it is continuous for all x.
(8.7)

 (iv) DV (x(k)) = [V(x(k + 1)) – V(x(k))] £ 0 along trajectories of Eqn. (8.6).

The Lyapunov stability theorem states that, given the system of equations, x (k + 1) = f(x (k)); f(0) = 0, if

there exists a Lyapunov function for this equation, then the origin is stable in the sense of Lyapunov; in

addition, if DV(x(k)) < 0 for x π 0, then the stability is asymptotic.

8.3 LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS

As has been said earlier, the Lyapunov theorems give only sufficient conditions on the stability of the

equilibrium state of a nonlinear system and, furthermore, there is no unique way of constructing a

506 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Lyapunov function. For a linear system, a Lyapunov function can always be constructed and both the

necessary and sufficient conditions on stability established.

8.3.1

Consider a linear system described by the state equation

 x = Ax (8.8)

where A is n ¥ n real constant matrix.

Theorem 8.3 The linear system (8.8) is globally asymptotically stable at the origin if, and only if,

for any given symmetric positive definite matrix Q, there exists a symmetric positive definite matrix P,

that satisfies the matrix equation

 A
T
P + PA = – Q (8.9)

Proof Let us first prove the sufficiency of the result. Assume that a symmetric positive definite matrix

P (refer to Section 5.2) exists, which is the unique solution of Eqn. (8.9). Consider the scalar function

V(x) = xT
Px

Note that

V(x) > 0 for x π 0 and V(0) = 0

The time derivative of V(x) is

 V (x) = x
T
Px + xT

P x

Using Eqns (8.8) and (8.9), we get

 V (x) = xT
A

T
Px + xT

PAx

 = xT(AT
P + PA)x = – xT

Qx

Since Q is positive definite, V (x) is negative definite. Norm of x may be defined as (Eqn. (5.6b))

||x || = (xT
Px)1/2

Then

V(x) = ||x ||2

V(x) as ||x ||

Therefore, the system is globally asymptotically stable at the origin.

To prove the necessity of the result, the reader is advised to refer to [105] where the proof has been

developed in the following two parts:

 (i) If (8.8) is asymptotically stable, then for any Q there exists a matrix P satisfying (8.9).

 (ii) If Q is positive definite, then P is also positive definite.

Comments

 (i) The implication of Theorem 8.3 is that if A is asymptotically stable and Q is positive definite,

then the solution P of Eqn. (8.9) must be positive definite. Note that it does not say that if A is

asymptotically stable and P is positive definite, then Q computed from Eqn. (8.9) is positive

definite. For an arbitrary P, Q may be positive definite (semidefinite) or negative definite

(semidefinite).

 Linear Quadratic Optimal Control through Lyapunov Synthesis 507

 (ii) Since matrix P is known to be symmetric, there are only n(n + 1)/2 independent equations in (8.9)

rather than n2.

 (iii) In very simple cases, Eqn. (8.9), called the Lyapunov equation, can be solved analytically,

but usually numerical solution is required. A number of computer programs for this purpose are

available [152–154].

 (iv) Since Theorem 8.3 holds for any positive definite symmetric matrix Q, the matrix Q in Eqn. (8.9)

is often chosen to be a unit matrix.

 (v) If V (x) = – xT
Qx does not vanish identically along any trajectory, then Q may be chosen to be

positive semidefinite.

A necessary and sufficient condition that V (x) does not vanish identically along any trajectory (meaning

that V (x) = 0 only at x = 0), is that

 r

H

HA

HA

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 = n; Q = HT
H (8.10)

where r (.) stands for rank of a matrix.

This can be proved as follows. Since V (x) can be written as

 V (x) = – xT
Qx = – xT

H
T
Hx,

 V (x) = 0 means that Hx = 0

Differentiating with respect to t, gives

H x = HAx = 0

Differentiating once again, we get

HA x = HA
2
x = 0

Repeating the differentiation process and combining the equations, we obtain

H

HA

HA

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 x = 0

A necessary and sufficient condition for x = 0 to be the only solution of this equation is given by (8.10).

Example 8.1

Let us determine the stability of the system described by the following equation:

 x = Ax

with

A =
- -

-
È

Î
Í

˘

˚
˙

1 2

1 4

508 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

We will first solve Eqn. (8.9) for P for an arbitrary choice of real symmetric positive definite matrix Q.

We may choose Q = I, the identity matrix. Equation (8.9) then becomes

A
T
P + PA = – I

or
-
- -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

- -
-

È1 1

2 4

1 2

1 4

11 12

12 22

11 12

12 22

p p

p p

p p

p p ÎÎ
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

1 0

0 1
 (8.11)

Note that we have taken p12 = p21. This is because the solution matrix P is known to be a positive definite

real symmetric matrix for a stable system.

From Eqn. (8.11), we get

 – 2 p11 + 2 p12 = – 1

 – 2 p11 – 5 p12 + p22 = 0

 – 4 p12 – 8 p22 = – 1

Solving for pij’s, we obtain

P =
p p

p p

11 12

12 22

23
60

7
60

7
60

11
60

È

Î
Í

˘

˚
˙ =

-

-

È

Î
Í
Í

˘

˚
˙
˙

Using Sylvester’s test (Section 5.2), we find that P is positive definite. Therefore, the system under

consideration is globally asymptotically stable at the origin.

In order to illustrate the arbitrariness in the choice of Q, consider

 Q =
0 0

0 1

È

Î
Í

˘

˚
˙ (8.12)

This is a positive semidefinite matrix. This choice of Q is permissible since it satisfies the condition

(8.10), as is seen below.

 Q =
0 0

0 1

0

1

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ [0 1] = HT

H

 r
H

HA

È

Î
Í

˘

˚
˙ = r

0 1

1 4–

È

Î
Í

˘

˚
˙ = 2

It can easily be verified that with the choice of Q given by Eqn. (8.12), we derive the same conclusion

about the stability of the system as obtained earlier with Q = I.

8.3.2

Consider a linear system described by the state equation

 x(k + 1) = Fx(k) (8.13)

where F is n ¥ n real constant matrix.

Theorem 8.4 The linear system (8.13) is globally asymptotically stable at the origin if, and only if,

for any given symmetric positive definite matrix Q, there exists a symmetric positive definite matrix P,

that satisfies the matrix equation

 F
T PF – P = – Q (8.14)

 Linear Quadratic Optimal Control through Lyapunov Synthesis 509

Proof Let us first prove the sufficiency of the result. Assume that a symmetric positive definite

matrix P exists, which is the unique solution of Eqn. (8.14). Consider the scalar function

V(x) = xT
Px

Note that

V(x) > 0 for x π 0 and V(0) = 0

The difference

 DV(x) = V(x(k + 1)) – V(x(k))

 = xT(k + 1)Px(k + 1) – xT(k)Px(k)

Using Eqns (8.13) – (8.14), we get

 DV(x) = xT(k)FT
PFx(k) – xT(k)Px(k)

 = xT(k)[FT
PF – P]x(k) = – x

T(k)Qx(k)

Since Q is positive definite, DV(x) is negative definite. Further V(x) as ||x || . Therefore, the

system is globally asymptotically stable at the origin.

The proof of necessity is analogous to that of continuous-time case (refer to [105]).

Comments

 (i) In very simple cases, Eqn. (8.14), called the discrete Lyapunov equation, can be solved analytically,

but usually a numerical solution is required. A number of computer programs for this purpose are

available [152–154].

 (ii) If DV(x(k)) = –x
T(k)Qx(k) does not vanish identically along any trajectory, then Q may be chosen

to be positive semidefinite.

A necessary and sufficient condition that DV(x(k)) does not vanish identically along any trajectory

(meaning that DV(x(k)) = 0 only at x = 0), is that

 r

H

HF

HF

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 = n; Q = HT
H (8.15)

where r (.) stands for rank of a matrix.

Example 8.2

Let us determine the stability of the system described by the following equation:

 x(k + 1) = Fx(k)

with

 F =
- -

-
È

Î
Í

˘

˚
˙

1 2

1 4

510 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

We will first solve Eqn. (8.14) for P for an arbitrary choice of real symmetric positive definite matrix Q.

We may choose Q = I, the identity matrix. Equation (8.14) then becomes

F
T
PF – P = – I

or
-
- -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

- -
-

È

Î
Í

˘

˚
˙ -

È1 1

2 4

1 2

1 4

11 12

12 22

11 12

12 22

p p

p p

p p

p pÎÎ
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

1 0

0 1

or – 2p12 + p22 = – 1

 2p11 + p12 – 4p22 = 0

 4p11 + 16p12 + 15p22 = – 1

Solving for pij’s, we obtain

P =
p p

p p

11 12

12 22

43
60

11
30

11
30

4
15

È

Î
Í

˘

˚
˙ =

-

-

È

Î
Í
Í

˘

˚
˙
˙

Using Sylvester’s test (Section 5.2) we find that P is negative definite. Therefore, the system under

consideration is unstable.

8.4 PARAMETER OPTIMIZATION AND
 OPTIMAL CONTROL PROBLEMS

In previous chapters, we encountered various methods for design ing feedback control laws, ranging from

root-locus and Bode-plot techniques to pole-placement by state feedback and state estima tion. In each

case, the designer was left with decisions regard ing the locations of closed-loop poles. We have given

a fairly complete treatment of these design techniques for linear time-invariant single-variable systems.

Here in this chapter, a somewhat different approach to design is taken. The performance of the system

is measured with a single scalar quantity—the performance index. A configuration of the controller is

selected and free parameters of the controller that optimize (minimize or maximize as the case may be)

the performance index are determined. In most industrial control problems, the nature of the performance

index is such that the design process requires its minimization.

The design approach based on parameter optimization consists of the following steps:

 (i) Compute the performance index J as a function of the free parameters k1, k2, …, kn, of the system

with fixed configuration:

 J = J(k1, k2, …, kn) (8.16)

 (ii) Determine the solution set ki of the equations:

∂
∂

J

ki

 = 0; i = 1, 2, …, n (8.17)

 Equations (8.17) give the necessary conditions for J to be mini mum. From the solution set of these

equations, find the subset that satisfies the sufficient conditions, which require that the Hes sian

matrix given below is positive definite.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 511

 H =

∂

∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂

∂

∂
∂ ∂

∂

2

1
2

2

1 2

2

1

2

2 1

2

2
2

2

2

2

J

k

J

k k

J

k k

J

k k

J

k

J

k k

J

n

n

∂∂ ∂
∂

∂ ∂
∂

∂

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙k k

J

k k

J

kn n n1

2

2

2

2

 (8.18)

 Since
∂

∂ ∂

2J

k ki j

 =
∂

∂ ∂

2J

k kj i

,

 the matrix H is always symmetric.

 (iii) If there are two or more sets of ki satisfying the necessary as well as sufficient conditions of

minimization of J, then compute the corresponding J for each set. The set that gives the smallest

J is the optimum set.

Selection of an appropriate performance index is as much a part of the design process, as the minimization

of the index. We know that the performance of a control system can be adequately specified in terms of

settling time, peak overshoot, and steady-s tate error. The performance index could then be chosen as

J =D K1(settling time) + K2(peak overshoot) + K3(steady-state error)

where the Ki are weighing factors.

Although the criterion seems reasonable, it is not trackable analytically. A compromise must be made

between specifying a performance index which includes all the desired system characteristics, and a

performance index which can be minimized with a reasonable amount of computation.

In the following, we present several performance indices which include the desired system characteristics

and, in addition, have good mathematical trackability. These indices often involve integrating some

function of system error over some time interval when the system is subjected to a standard command or

disturbance such as step. A common example is the integral of absolute error (IAE) defined by

IAE =D

0

Ú |e(t)| dt

If the index is to be computed numerically, the infinite upper limit can be replaced by the limit tf , where

tf is large enough so that e(t) is negligible for t > tf . This index is not unreasonable since both the fast

but highly oscillatory systems and the sluggish systems will give large IAE value (refer to Fig. 8.3).

Minimization of IAE by adjusting system parameters will provide acceptable relative stability and speed

of response. Also, a finite value of IAE implies that the steady-state error is zero.

Another similar index is the integral of time multiplied by absolute error (ITAE), which exhibits the

additional useful features that the initial large error (unavoidable for a step input) is not heavily weighted,

whereas errors that persist are more heavily weighted.

ITAE =D
0

Ú t |e(t)| dt

512 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The integral of square error (ISE) and integral of time multiplied by square error (ITSE) indices are

analogous to IAE and ITAE criteria, except that the square of the error is employed for three reasons:

(i) in some applications, the squared error represents the system’s power consumption, (ii) squaring the

error weighs large errors more heavily than small errors, and (iii) the squared error is much easier to

handle analytically.

 ISE =D
0

Ú e2(t) dt

 ITSE =D
0

Ú te2(t) dt

The system whose design minimizes (or maximizes) the selected performance index with no constraints

on controller configuration is, by definition, optimal.

The difference between parameter optimization and optimal control problems is that no constraint on

controllers is imposed on the latter. In optimal design, the designer is permitted to use con trollers of

any degree and any configuration, whereas in parame ter optimization the configuration and the type of

controllers are predetermined. Since there is no constraint imposed on con trollers, optimal design results

in a better system, i.e., lower value of the performance index.

However, because of considerations other than minimization of the performance index, one may not

build an optimal control system. For example, optimal solutions to the problem of control of a linear

time-invariant plant may result in a nonlinear and/or time-varying system. Hardware realization of such

an optimal control law may be quite difficult and expensive. Also, in many control problems, the optimal

solution gives an open-loop control system which is successful only in the absence of meaningful

disturbances. In practical systems, then, it may be more sensible to seek suboptimal control laws: we

select a feedback control configuration and the type of controller, based on considerations of cost,

availability of components, etc., and then determine the best possible values of the free parameters of

the controller that minimize the given performance index. Modifications in control configuration and the

type of controller are made until a satisfactory system is obtained—which has performance character-

istics close to the optimal control system we have worked out in theory.

r
y

Gain
too high

t

Gain
optimum

Gain
too low

IAE

t

Fig. 8.3

 Linear Quadratic Optimal Control through Lyapunov Synthesis 513

There exists an important class of optimal control problems for which quite general results have been

obtained. It involves control of linear systems with the objective of minimizing the integral of a quadratic

performance index. An important feature of this class of problems is that optimal control is possible by

feedback controllers. For linear time-invariant plants, the optimal control results in a linear time-invariant

closed-loop system. The implementation of optimal control is, therefore, simple and less expensive.

Many problems of industrial control belong to this class of problems—linear quadratic optimal control

prob lems.

As we shall see later in this chapter, the linear quadratic optimal control laws have some computational

advantage, and a number of useful properties. The task of the designer shifts to the one of specifying

various parameters in the performance index.

In the previous chapters, we have been mostly concerned with the design of single-variable systems.

Extensions of the root-locus method and the Bode/Nyquist-plot design to multivariable cases have

been reported in the literature. However, the design of multivariable systems using these techniques is

much more compli cated than the single-variable cases. Design of multivariable systems through pole-

placement can also be carried out; the computations required are however highly complicated.

The optimal control theory provides a simple and powerful tool for designing multivariable systems.

Indeed, the equations and computations required in the design of optimal single-variable systems and

those in the design of optimal multivariable systems are almost identical. We will use, therefore, in

this chapter, the Multi-Input, Multi-Output (MIMO) state variable model in the formulation of optimal

control problem.

The objective set for the rest of this chapter is the presentation of simple, and analytically solvable, optimal

control and parameter optimization problems. This will provide insight into optimal and suboptimal

structures and algorithms that may be applied in practical cases. For detailed study, specialized books

on optimal control [109–124] should be consulted. A moderate treatment of the sub ject is also available

in reference [105].

Commercially available software [152–154] may be used for solving complex optimal/suboptimal control

problems.

8.5 QUADRATIC PERFORMANCE INDEX

A commonly used performance criterion is the integral square error (ISE):

 J =

0

Ú [y(t) – yr]
2 dt (8.19a)

 =

0

Ú e2(t) dt (8.19b)

where yr is the command or set-point value of the output, y(t) is the actual output, e(t) = y(t) – yr is the

error of the system.

This criterion, which has good mathematical trackability proper ties, is acceptable in practice, as a

measure of system perfor mance. The criterion penalizes positive and negative errors equally. It penalizes

514 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

heavily on large errors; hence, a small J usually results in a system with small overshoot. Since the

integration is carried out over [0,), a small J limits the effect of small error lasting for long time and,

thus, results in a small settling time. Also, a finite J implies that the steady-state error is zero.

The optimal design obtained by minimizing the performance index given by Eqns (8.19) may be

unsatisfactory, because it may lead to excessively large magnitudes of control signals. A more realistic

solution to the problem is reached, if the performance index is modified to account for physical constraints

like saturation in physical devices. Therefore, a more realistic performance index is of the form

 J =

0

Ú e2(t) dt (8.20a)

subject to the following constraint on control signal u(t),

 max |u(t)| £ M (8.20b)

for some constant M. The constant M is determined by the linear range of the plant.

Although the criterion expressed in (8.20) can be used in the design, it is not convenient to work with. In

a number of prob lems, u2(t) is a measure of the instantaneous rate of expenditure of energy. To minimize

energy expenditure, we minimize

0

Ú u2(t) dt (8.21)

We would, very much, like to replace the performance criterion given by (8.20) by the following quadratic

performance index:

 J =

0

Ú [e2(t) + u2(t)] dt

To allow greater generality, we can insert a real positive con stant l to obtain

 J =

0

Ú [e2(t) + l u2(t)] dt (8.22)

By adjusting the weighting factor l, we can weigh the relative importance of the system error and the

expenditure of energy. By increasing l, i.e., by giving sufficient weight to control effort, the amplitude of

the control signal, which minimizes the overall performance index, may be kept within practical bounds,

although at the expense of the increased system error. Note that as l Æ 0, the performance index

reduces to the integral square error criterion. In this case, the magnitude of u(t) will be very large and the

constraint given by (8.20b) may be violated. If l Æ , the performance index reduces to the one given

by Eqn. (8.21), and the optimal system that minimizes this J is one with u = 0. From these two extreme

cases, we conclude that if l is properly chosen, then the constraint of Eqn. (8.20b) will be satisfied.

Example 8.3

For the system of Fig. 8.4, let us compute the value of K that minimizes ISE for the unit-step input.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 515

For the system under consideration,

E s

R s

()

()
 =

s

s K+
For unit-step input,

 E(s) =
1

s K+

Therefore, e(t) = e–Kt

 ISE =

0

Ú e2(t) dt =
1

2K

Obviously, the minimum value of ISE is obtained as K Æ . This is an impractical solution, resulting in

excessive strain on the physical components of the system.

Sound engineering judgment tells us that we must include the ‘cost’ of the control effort in our

performance index. The quadrat ic performance index

J =

0

Ú [e2(t) + u2(t)] dt

may serve the objective.

From Fig. 8.4, u(t) = K e(t) = K e–Kt

Therefore,

J =
1

2 2K

K
+

The minimum value of J is obtained when

∂
∂

J

K
 = –

1

2

1

22K
+ = 0 or K = 1

Note that

∂

∂

2

2

J

K
 =

1
3K

 > 0

The minimum value of J is 1.

This solution, which weighs error and control effort equally, seems to be acceptable.

The following performance index assigns larger weight to error minimization:

J =

0

Ú [e2(t) + lu2(t)] dt; l = 0.5

For the system under consideration,

J =
1

2 2K

K
+ l

–

r + e K u 1
s

y

Controller Plant

Fig. 8.4

516 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

∂
∂

J

K
 = 0 gives

 K = 2 , Jmin = 0.707

When l is greater than unity, it means that more

importance is given to the constraint on amplitude

of u(t) compared to the performance of the system.

A suitable value of l is chosen so that relative

importance of the system performance is contrasted

with the importance of the limit on control effort.

Figure 8.5 gives a plot of the performance index

versus K for various values of l.

Example 8.4

Consider the liquid-level system shown in Fig. 8.6. h represents the deviation of liquid head from the

steady-state value H.

The pump controls the liquid head h by supplying liquid at a rate (Qi + qi) m
3/sec to the tank. We shall

assume that the flow rate qi is proportional to the error in liquid level (desired level – actual level). Under

these assumptions, the system equations are [155]:

(i) A
dh

dt
 = qi –

rgh

R

where A = area of cross-section of the tank;

 R = total resistance offered by the tank outlet and pipe (R =D incremental change in pressure

across the restriction/incremental change in flow through the restriction);

 r = density of the liquid; and

 g = acceleration due to gravity.

Desired
level

Controller
Actual level

Measurement
system

Qi + qi

H h+

RPump

Fig. 8.6

J

2

1

0 0.5 1 1.5 2 K

l = 1

l = 0.5

l = 0

Fig. 8.5

 Linear Quadratic Optimal Control through Lyapunov Synthesis 517

(ii) qi = Ke

where e = error in liquid level and K = gain constant

Let A = 1, and
R

gr
 = 1. Then

H s

Q si

()

()
 =

1

1s +
The block diagram representation is given in Fig. 8.7. The output y(t) = h(t) is the deviation in liquid

head from steady-state value. Therefore, the output y(t) is itself the error which is to be minimized. Let

us pose the problem of computing the value of K that minimizes the ISE for the initial condition y(0) = 1.

e
K

qi = u +

y(0)

+
+ y t h t() = ()

Process

Ú
– –

Fig. 8.7

From Fig. 8.7, we get

Y(s) =
s

s K

y

s+ +
Ê
ËÁ

ˆ
¯̃1

0()
 =

1

1s K+ +
Therefore,

 y(t) = e–(1 + K)t

 ISE =

0

Ú y2(t) dt =
1

2 1()+ K

Obviously, the minimum value of ISE is obtained as K Æ .

This is an impractical solution, resulting in excessive strain on the physical components of the system.

Increasing the gain means, in effect, increasing the pump size.

Now, consider the problem of minimization of

 J =

0

Ú [y2(t) + u2(t)] dt

From Fig. 8.7, we have

 u(t) = – Ky(t)

Therefore,

 u(t) = – Ke–(1 + K)t

518 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 J =
1

2 1()+ K
 +

K

K

2

2 1()+

∂
∂

J

K
 = 0 gives K = 2 1-()

Note that

∂

∂

2

2

J

K
 =

2

1 3()+ K
 > 0

The minimum value of J is 2 1-() .

8.5.1 State Regulator Problem

The performance index given by Eqn. (8.22), is a translation of the requirement of regulation of the

system output, with constraints on amplitude of the input applied to the plant. We now extend the

proposed performance index for the control problem where all the state variables of the system are to be

regulated. We use multi variable formulation of the plant model.

Consider the control problem where the objective is to maintain the system state given by the n ¥ 1 state

vector x(t), near the desired state xd (which, in many cases, is the equilib rium point of the system) for

all time.

Relative to the desired state xd, (x(t) – xd) can be viewed as the instantaneous system error. If we transform

the system coordinates such that the desired state becomes the origin of the state space, then the new state

x(t) is itself the error.

One measure of the magnitude of the state vector x(t) (or of its distance from the origin) is the norm

||x(t)|| defined by

||x(t)||2 = xT(t)x(t)

Therefore,

J =

0

Ú [xT(t)x(t)] dt =

0

Ú [x 2
1 (t) + x 2

2 (t) + + x 2
n (t)] dt

is a reasonable measure of the system transient response.

In practical systems, the control of all the states of the system is not equally important. To be more

general,

 J =

0

Ú [xT(t)Qx(t)]dt (8.23)

with Q as n ¥ n real, symmetric, positive definite (or positive semidefinite) constant matrix, can be used

as a performance measure. The simplest form of Q one can use is the diagonal matrix:

 Q =

q

q

qn

1

2

0 0

0 0

0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Linear Quadratic Optimal Control through Lyapunov Synthesis 519

The ith entry of Q represents the weight the designer places on the constraint on the state variable xi(t).

The larger the value of qi relative to the other values of q, the more control effort is spent to regular xi(t).

The design obtained by minimizing the performance index of the form (8.23) may be unsatisfactory in

practice. A more realistic solution is obtained if the performance index is modified by adding a penalty

term for physical constraints on the p ¥ 1 control vector u(t). One of the ways of accomplishing this is to

introduce the following quadratic control term in the performance index:

 J =

0

Ú [uT(t)Ru(t)] dt (8.24)

where R is p ¥ p real, symmetric, positive definite,1 constant matrix.

By giving sufficient weight to control terms, the amplitudes of control signals which minimize overall

performance index may be kept within practical bounds, although at the expense of in creased error in

x(t).

For the state regulator problem, a useful performance measure is, therefore2,

 J =
1
2

0

Ú [xT(t)Qx(t) + uT(t)Ru(t)] dt (8.25)

8.5.2 Output Regulator Problem

In the state regulator problem, we are concerned with maintaining the n ¥ 1 state vector x(t) near the

origin of the state space for all time. In the output regulator problem, on the other hand, we are concerned

with maintaining the q ¥ 1 output vector y(t) near origin for all time. A useful performance measure for

the output regulator problem is

 J = 1
2

0

Ú [yT(t)Qy(t) + uT(t)Ru(t)] dt (8.26a)

where Q is a q ¥ q positive definite (or positive semidefinite) real, symmetric constant matrix, and R is a

p ¥ p positive defi nite, real, symmetric, constant matrix.

Substituting y = Cx in Eqn. (8.26a), we get

 J =
1
2

0

Ú (xT
C

T
QCx + uT

Ru) dt (8.26b)

Comparing Eqn. (8.26b) with Eqn. (8.25) we observe that the two indices are identical in form; Q in

Eqn. (8.25) is replaced by CT
QC in Eqn. (8.26b). If we assume that the plant is completely observable,

then C cannot be zero; CT
QC will be positive definite (or positive semidefinite) whenever Q is positive

definite (or positive semidefinite).

Thus, the solution to the output regulator problem directly follows from that of the state regulator problem.

 1 As we shall see in Section 8.7, positive definiteness of R is a necessary condition for the existence of the optimal

solution to the control problem.

 2 Note that multiplication by 1/2 does not affect the minimization problem. The constant helps us in mathematical

manipulations as we shall see later in Section 8.7.

520 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

8.6 CONTROL CONFIGURATIONS

8.6.1 State Regulator

Consider the plant represented by linear state equations of the form

 x(t) = Ax(t) + Bu(t); x(0) =D x0 (8.27a)

 y(t) = Cx(t) (8.27b)

where x(t) is the n ¥ 1 state vector, u(t) is the p ¥ 1 input vector, y(t) is the q ¥ 1 output vector; A, B and

C are, respectively, n ¥ n, n ¥ p and q ¥ n real constant matrices. We will assume that the null state x = 0

is the desired state; x(t) is thus system-error vector at time t.

We shall be interested in selecting the controls u(t) which quickly move the system state x(t) to the null

state x = 0 for any initial perturbation x0. The control problem is, thus, to determine u(t) which minimizes

performance index of the form

 J = 1
2

0

Ú [xT(t)Qx(t) + uT(t)Ru(t)] dt (8.28)

where Q is a positive definite (or positive semidefinite), real, symmetric constant matrix, and R is a

positive definite, real, symmetric, constant matrix.

An important feature (proved later in Section 8.7) of this class of problems, is that optimal control is

possible by feedback control law of the form

 u(t) = – Kx(t) (8.29a)

where K is a p ¥ n constant matrix, or

u

u

up

1

2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 = –

k k k

k k k

k k k

n

n

p p pn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

x

x

xn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (8.29b)

If the unknown elements of the matrix K are

determined so as to minimize the performance

index given by Eqn. (8.28), then the control

law given by Eqns (8.29) is optimal. The

configuration of the optimal closed-loop control

system is represented by the block diagram of

Fig. 8.8. As we shall see later in this chapter,

controllability of the plant (8.27) and positive

definiteness of matrix Q in the performance

index (8.28), are sufficient conditions for the

existence of asymptotically stable (x(t) Æ 0 as

t Æ) optimal solution to the control problem.

It may be noted that the optimal solution obtained by minimizing the performance index (8.28) may not

be the best solution in all circumstances. For example, all the elements of the matrix K may not be free;

Disturbance w

Input u Output y

State x

–

+0
Plant

K

Fig. 8.8

 Linear Quadratic Optimal Control through Lyapunov Synthesis 521

some gains are fixed by the physical constraints of the system and are, therefore, relatively inflexible.

Similarly, if all the states x(t) are not accessible for feedback, one has to go for a state observer whose

complexity is comparable to that of the system itself. It is natural to seek a procedure that relies on the

use of feedback from the accessible state variables only, constraining the gain elements of matrix K

corresponding to the inaccessible state variables, to have zero value (Section 8.9). Thus, whether one

chooses an optimal or suboptimal solution depends on many factors in addition to the performance

required out of the system.

8.6.2

Implementation of the optimal control law given by Eqns (8.29) requires the ability to directly measure

the entire state vector x(t). For many systems, full state measurements are not practical. In Section 7.5,

we found that the state vector of an observable linear system can be estimated using a state observer

which operates on input and output measurements. We assumed that all inputs can be specified exactly

and all outputs can be meas ured with unlimited precision. The dynamic behavior of the ob server was

assumed to be specified in terms of its characteris tic equation.

Here, we are concerned with the optimal design of the state ob server for the multivariable system given

by Eqns (8.27).

We postulate the existence of an observer of the form

 ̂x(t) = Ax̂(t) + Bu(t) + M[y(t) – Cx̂(t)] (8.30)

where x̂ is the estimate of state x and M is an n × q real constant gain matrix. The observer structure is

shown in Fig. 8.9, which is of the same form as that considered in Section 7.5. The estimation error is

given by

 x(t) = x(t) – x̂(t) (8.31a)

Plant

xu y

Ún

Cx Ax Bu= +

A

B
+

+ +

+

x
C

y

n-parallel
integrators

M

Observer

x –

Fig. 8.9

522 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

From Eqns (8.27) and (8.30), we have

 x(t) = (A – MC) x(t) (8.31b)

To design gain matrix M, we may use the duality between control and estimation problems, developed in

Section 7.5. (refer to Table 7.1). As per the duality principle, the problem of determination of gain matrix

M for the optimal state observer, is mathematically equivalent to designing optimal state regulator for the

‘trans posed auxiliary system’ (refer to Eqns (7.36))

 y (t) = ATy (t) + CTg(t) (8.32a)

The design problem is to determine n ¥ q gain matrix M such that

 g (t) = – MTy (t) (8.32b)

minimizes a quadratic performance index of the form

 J =
1
2

0

Ú (y T
Q0y + gT

R0g) dt (8.33)

where Q0 is a positive definite (or positive semidefinite), real, symmetric constant matrix, and R0 is a

positive definite, real, symmetric, constant matrix.

The solution to this problem exists if the auxiliary system (8.32) is completely controllable. This

condition is met, if the original system (8.27) is completely observable.

The separation principle (refer to Section 7.6) allows for the separate designs of state-feedback control

law and state ob server; the control law and the observer are then combined as per the configuration of

Fig. 8.10. The weighting matrices Q0 and R0, for the observer design, can be assumed to be equal to the

weighting matrices Q and R, respectively, of the

control-law design. Generally, however, one would

design a faster observer in comparison with the

regulator, i.e., for Q0 = Q, the elements of R0 are

chosen smaller than those of R.

The above solution, to the state estimation problem

based on duality between the control and estima-

tion, can be formalized by using “Optimal Filtering

Theory”. The formal development of the result ex-

tends beyond the scope of this text [105]. We may,

however, use the term “optimal filter” for the state

observer designed by the procedure given here in

the text.

An optimal filter whose weighting matrices Q0 and R0 are determined by the “spectral properties” of the

exogenous noise signals is termed a Kalman filter [105].

8.6.3

The control configuration of Fig. 8.8, implicitly assumes that the null state x = 0 is the desired equilibrium

state of the system. It is a state regulator with zero command input.

u
Plant

x

Sensor
y

C

–K
x

x Ax Bu M y Cx= + + (–)

Control law Observer

x Ax Bu= +

Fig. 8.10

 Linear Quadratic Optimal Control through Lyapunov Synthesis 523

In servo systems, where the output y(t) is required to track a constant command input, the equilibrium

state is a constant point (other than the origin) in state space. This servo problem can be formulated as a

‘shifted regulator problem’, by shifting the origin of the state space to the equilibrium point. Formulation

of the shifted regulator problem for single-input systems was given in Section 7.7. Extension of the

formulation to the multi-input case is straightforward.

8.6.4

In a state-feedback control system (which is a generalization of proportional plus derivative feedback),

it is usually required that the system have one or more integrators within the closed loop. This will lead

to zero steady-state error when the command input and disturbance have constant steady-state values.

Unless the plant to be controlled has integrating property, it is generally necessary to add one or more

integrators within the loop.

For the system (8.27), we can feedback the state x as well as the integral of the error in output by

augmenting the plant state x with the extra ‘integral state’. For single-input systems, the problem of

state feedback with integral control was formulated as a state regulator problem in Section 7.8. This was

done by augmenting the plant state with ‘integral state’, and shifting the origin of the state space to the

equilibrium point. Multivariable generalization of state feedback with integral control is straightforward.

8.7 OPTIMAL STATE REGULATOR

The parameter optimization problem, as explained earlier, refers to the problem of obtaining the

optimum values of free parameters in a predetermined control configuration. In optimal control design,

the designer is permitted to use controllers of any degree and any configuration. Optimal solutions to the

problem of control of a linear time-invariant plant, may result in a nonlinear and/or time-varying system

[105]. Also, in many control problems, the optimal solution gives an open-loop control system [105].

For an important class of control problems, which involves control of linear time-invariant plants with

the objective of minimizing the integral of a quadratic performance index, the optimal control is possible

by state-feedback control that results in a linear time-invariant closed-loop system. Many problems of

industrial control belong to this class of problems—linear quadratic optimal control problems.

To prove this important result, we consider the optimal control problem for a linear multivariable

completely controllable plant

 x = Ax + Bu (8.34)

where x is the n ¥ 1 state vector, u a p ¥ 1 input vector; A and B are, respectively, n ¥ n and n ¥ p real

constant matrices, and the null state x = 0 is the desired steady state.

The objective is to find the optimal control law that minimizes the following performance index, subject

to the initial conditions x(0) =D x0:

 J = 1
2

0

()x Qx u Ru
T T dt+Ú (8.35)

524 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where Q is n ¥ n positive definite, real, symmetric, constant matrix, and R is p ¥ p positive definite, real,

symmetric, constant matrix.

Since the (A, B) pair is completely controllable3, there exists a state-feedback control law

 u = – Kx (8.36)

where K is p ¥ n real, constant, unconstrained gain matrix, that results in an asymptotically stable closed-

loop system (refer to Section 7.3)

 x(t) = (Ax – BKx) = (A – BK)x (8.37)

This implies that there is a Lyaponov function V T= 1
2

x Px for the closed-loop system (8.37); that is, for

some positive definite matrix P, the time derivative dV/dt evaluated on the trajectories of the closed-loop

system is negative definite. We now state and prove a condition for u = – Kx (t) to be optimal [35].

Theorem 8.5 If the state-feedback controller u = – Kx (t) is such that it minimizes the function

 f (u) =
dV

dt

T T+ +()1
2

x Qx u Ru , (8.38)

and the minimum value of f (u) = 0 for some V T= 1
2

x Px, then the controller is optimal.

Proof We can represent (8.38) as (denoting minimizing u by u*)

dV

dt

T T

u u

x Qx u Ru
=

+ + =
*

* *

1

2

1
2

0

Hence

dV

dt

T T

u u

x Qx u Ru
=

= +
*

* *
 -

1

2

1

2

Integrating both sides with respect to time from 0 to , we obtain

V V dtT T
x x x Qx u Ru()() - ()() - +()Ú0 1

2
0

= * *

Because, by assumption, the closed-loop system is asymptotically stable, we have x() = 0; therefore,

V dtT T T
x x Px x Qx u Ru0 0 01

2
1
2

0
()() = () () = +()Ú * *

Thus, if a linear stabilizing controller satisfies the hypothesis of the theorem, then the value of the

performance index (8.35) for such a controller is

J T
u x Px

*() = () ()1
2

0 0

 3 The controllability of the (A, B) pair is not a necessary condition for the existence of the optimal solution. If the

(A, B) pair is not completely controllable, we can transform the plant model to controllability canonical form

given in Eqn. (5.123c). It decomposes the model into two parts: the controllable part and the uncontrollable part.

If the uncontrollable part is stable, then the model is said to be stabilizable. Stabilizability of the (A, B) pair is

a necessary condition for the existence of optimal solution.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 525

Since u* minimizes the function in (8.38) and the minimum value is zero, for any u different from u*, the

value of the function will be greater than/equal to zero.

dV

dt

T T

u u

x Qx u Ru
=

+ +() ≥
ˆ

ˆ ˆ1
2

0

or

dV

dt

T T

u u

x Qx u Ru
=

+()
ˆ

ˆ ˆ≥ -
1
2

Integrating both sides with respect to time from 0 to , yields

V dtT T
x x Qx u Ru0 1

2
0

()() £ +()Ú ˆ ˆ

implying that

J Ju u
*() ()Ä ˆ

for any ˆ .*
u uπ Therefore, the controller u* is optimal.

It follows from the above theorem that the synthesis of optimal control law involves finding an appropriate

Lyapunov function, or equivalently, the matrix P. The matrix P is found by minimizing

 f
dV

dt

T T
u x Qx u Ru() = + +1

2
1
2

 (8.39)

We first apply to (8.39) the necessary conditions for unconstrained minimization.

∂
∂

+
Ê
ËÁ

ˆ
¯̃ =u

Ru
u u

dV

dt

T T1
2

1
2

x Qx u 0+
*

=

Differentiating the above yields

∂
∂

+
Ê
ËÁ

ˆ
¯̃

∂
∂ (+()+

u
Ru

u
x Px x Px

dV

dt

T T T T T1
2

1
2

1
2

1
2

1
2

x Qx + u x Qx + u= TT

T T T

T T T T

Ru

u
x Px Ru

u
x PAx x PBu R

)
∂

∂
+()

∂
∂

+ +

=

=

 1
2

1
2

1
2

1
2

x Qx + u

x Qx + u uu

B P x Ru B Px Ru

()
+ += = =T T T

0

Hence, a candidate for an optimal control law has the form

 u
*
 = –R

–1
 B

T
Px = –Kx (8.40)

where K = R
–1

B
T
P

Note that
∂

∂
() =

∂
∂

+() = =
2

2
u

u
u

B P x Ru R Rf T T T , a positive definite matrix.

526 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Thus, the second-order sufficiency condition, for u* to minimize (8.39), is satisfied.

We now turn our attention to finding an appropriate P. The optimal closed-loop system has the form

 x A BR B P x x x= () () =– ;–1 T D
0 0

Our optimal controller satisfies the equation

dV

dt

T T

u u

x Qx u Ru
=

+ + =
*

* *1
2

1
2

0

that is,

x PAx x PBu x Qx u Ru
T T T T+ + + =* * *1

2
1
2

0

We substitute u* given by (8.40) into the above equation, and represent it as

1
2

1 1
2

1
2

1 0x A P PA x x PBR B Px x Qx x PBR B Px
T T T T T T T+() + + =-

- -

Factoring out x yields
1
2

0x (A P + PA + Q PBR B P x
T T T– –1) =

The above equation should hold for any x. For this to be true, we have to have

 A P + PA + Q PBR B P
T T– –1() = 0 (8.41)

The above equation is referred to as algebraic Riccati equation. In conclusion, the synthesis of the

optimal linear state-feedback controller, minimizing the performance index

J dtT T= +()Ú1
2

0
x Qx u Ru

subject to

 x Ax Bu x x= + () =; D
0 0

requires solving the matrix Riccati equation given by (8.41).

Controllability of (A, B) pair and positive definiteness of Q are sufficient conditions for the existence

of asymptotically stable optimal solution to the control problem. This implies that there is a Lyapunov

function V T= 1
2

x Px for the closed-loop system (8.37); that is, for positive definite matrix P, the time

derivative evaluated on the trajectories of the closed-loop system,

dV

dt
 = V = - -1

2
1
2

x Qx u Ru
T T

 = +-
1
2

x Q K RK x
T T() (8.42)

is always negative definite.

We now study the effect of choosing a positive semidefinite Q in the performance index J. If Q is positive

semidefinite and in addition the following rank condition is satisfied,

 Linear Quadratic Optimal Control through Lyapunov Synthesis 527

 r

H

HA

HA

�

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

 = n; Q = HT
H, (8.43)

then �V (x) < 0 for all x π 0.

We prove this result by contradiction: the rank condition is satisfied but �V (x) = 0 for some x π 0.

Substituting Q = HT
H in Eqn. (8.42), we obtain (refer to Eqns (5.6))

�V (x) = – 1
2

(xTHT
Hx + xTKT

RKx) = –
1
2 [||Hx||2 + || ||Kx R

2]

Therefore, Hx = 0 and Kx = 0 should be simultaneously satisfied. Kx = 0 reduces the closed-loop system

(8.37) to the open-loop system

�x = Ax

From the condition

Hx = 0

we obtain

H �x = HAx = 0

Continuing the process of taking derivative, we get

 HA
2
x = 0

 �

 HA
n – 1

x = 0

or

H

HA

HA

�

n-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙1

 x = Vx = 0

Since r[V] = n, Vx = 0 only when x = 0. This proves the result.

Let us see an alternative interpretation of the rank condition (8.43). The rank condition implies that the

system

�x = Ax + Bu

with the ‘auxiliary output’

y (t) = Hx(t)

is completely observable. Since the performance index

 J =
1
2

0

Ú (xTQx + uT
Ru)dt =

1
2

0

Ú (xTHT
Hx + uT

Ru) dt

 =
1
2

0

Ú (y Ty + uT
Ru)dt,

528 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the observability of the pair (A, H) implies that all the modes of the state trajectories are reflected in

the performance index. A finite value of J, therefore, ensures that unstable modes (if any) have been

stabilized4 by the control u = – Kx.

The observability condition is always satisfied when the matrix Q is positive definite.

The design steps may now be stated as follows:

 (i) Solve the matrix Riccati equation (8.41) for the positive definite matrix P.

 (ii) Substitute this matrix P into Eqn. (8.40); the resulting equation gives optimal control law.

This is a basic and well-known result in the theory of optimal control. Once the designer has

specified Q and R, representing his/her assessment of the relative importance of various terms in the

performance index, the solution of Eqn. (8.41) specifies the optimal control law (8.40). This yields the

optimal closed-loop system. If the resulting transient response is unsatisfactory, the designer may alter

the weighting matrices Q and R, and try again.

Comments

 (i) The matrix R has been assumed to be positive definite. This is a necessary condition for the

existence of the optimal solu tion to the control problem, as seen from Eqn. (8.40).

 (ii) We have assumed that the plant (8.34) is completely control lable, and the matrix Q in performance

index J, given by Eqn. (8.35), is positive definite. These are sufficient conditions for the existence

of asymptotically stable optimal solution to the control problem. The requirement on matrix Q,

may be relaxed to a positive semidefinite matrix with the pair (A,H) completely observable, where

Q = HT
H.

 (iii) It is important to be able to find out whether the sought-after solution exists or not, before we

start working out the solution. This is possible only if necessary conditions for the existence of

asymptotically stable optimal solution are estab lished. A discussion on this subject entails not only

controlla bility and observability, but also the concepts of stabilizability and detectability. Basic

ideas about these concepts have been given in footnotes of this chapter; a detailed discussion is

beyond the scope of this book.

 (iv) Equation (8.41) is a set of n2 nonlinear algebraic equa tions. Since P is a symmetric matrix, we

 need to solve only
n n()+1

2
 equations.

 (v) The solution of Eqn. (8.41) is not unique. Of the several possible solutions, the desired answer is

obtained by enforcing the requirement that P be positive definite. The positive defi nite solution of

Eqn. (8.41) is unique.

 (vi) In very simple cases, the Riccati equation can be solved analytically, but usually a numerical

solution is required. A number of computer programs for the purpose are available [152–154].

Appendix A provides some MATLAB support.

 4 Observability canonical form for a state model which is not completely observable, is given in Eqn. (5.124c). It

decomposes the model into two parts: the observable part and the unobservable part. If the unobservable part is

stable, then the model is said to be detectable.

 In the optimization problem under consideration, the observability of the pair (A, H) is not a necessary

condition for the existence of a stable solution. If the pair (A, H) is detectable, then the modes of state trajectories,

not reflected in J, are stable and a finite value of J will ensure asymptotic stability of the closed-loop system.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 529

 (vii) Note that the optimal state regulator requires that all the parameters of matrix K in the control

law (8.36), are free parameters. However, all the parameters of matrix K may not be available for

adjustments. The gain elements of matrix K, corresponding to inaccessible state variables, may

be constrained to zero value (otherwise, a state observer will be required). Also, some gains may

be fixed by physical constraints of the system. This leads to the parameter optimization problem:

optimization of free parameters in the matrix K. The difference between parameter optimization

and optimal control problems is that no constraint on controllers is imposed on the latter. A

solution to parameter optimization (suboptimal control) problem will be given in Section 8.9.

Example 8.5

Consider the problem of attitude control of a rigid satellite which was discussed in Example 7.1. An attitude

control system for the satellite that utilizes rate feedback is shown in Fig. 8.11; q (t) is the actual attitude,

qr(t) is the reference attitude which is a step function, and u(t) is the torque developed by the thrusters.

qr +

–

k1
+

–

u x2 1
s

1
s

k2

y = = qx1

Fig. 8.11

The state variable model of the system is

 x = Ax + Bu

 y = Cx
(8.44)

with

A =
0 1

0 0

È

Î
Í

˘

˚
˙ ; B =

0

1

È

Î
Í

˘

˚
˙ ; C = [1 0]

The problem is to obtain the optimal control law

u = – k1(x1 – qr) – k2x2; x1 = q, x2 = q

that minimizes the performance index

 J =

0

Ú [(qr – q)2 + u2] dt (8.45)

In terms of the shifted state variables

 x1 = x1 – qr; x2 = x2

530 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the state equation becomes

 x = A x + Bu (8.46)

where A and B are given by Eqns (8.44).

Now, the problem is to find optimal values of the parameters k1 and k2, such that the control law

 u = – k1 x1 – k2 x2

minimizes the performance index

 J =

0

Ú (x1
2 + u2)dt (8.47)

The Q and R matrices are

 Q =
2 0

0 0

È

Î
Í

˘

˚
˙ ; R = 2

Note that Q is positive semidefinite matrix.

Q = HT
H =

2

0

È

Î
Í
Í

˘

˚
˙
˙

 []2 0

The pair (A,H) is completely observable. Also, the pair (A,B) is completely controllable. Therefore,

sufficient conditions for the existence of asymptotically stable optimal solution are satis fied.

The matrix Riccati equation is

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or
0 0

1 0

0 1

0 0

11 12

12 22

11 12

12 22

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

p p

p p

p p

p p

 –
p p

p p

p p

p p

11 12

12 22

1
2

11 12

12 22

0

1
0 1

2 0

0 0

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È
[] []

ÎÎ
Í

˘

˚
˙ =

0 0

0 0

È

Î
Í

˘

˚
˙

Upon simplification, we get

- p12

2

2
 + 2 = 0

 p11 –
p p12 22

2
 = 0

- p22

2

2
 + 2p12 = 0

Solving these three simultaneous equations for p11, p12, and p22, requiring P to be positive definite, we

obtain

P =
2 2 2

2 2 2

È

Î
Í
Í

˘

˚
˙
˙

 Linear Quadratic Optimal Control through Lyapunov Synthesis 531

The optimal control law is given by

 u = – R–1
B

T
P x(t) = – [] []1

2

1

2

0 1
2 2 2

2 2 2

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙

x

x

 = – x1 (t) – 2 2 x (t) = – (x1 – qr) – 2 x2

It can easily be verified that the closed-loop system is asymp totically stable.

Example 8.6

Consider the liquid-level system of Fig. 8.6. In Example 8.4, we designed an optimal regulator for this

process by direct parameter optimization. In the following, we use the Riccati equation for designing the

optimal regulator. The state equation of the pro cess is

dy

dt
 = – y + u (8.48)

where

 y = deviation of the liquid head from the steady state; and

 u = rate of liquid inflow.

The performance index

J =

0

Ú (y2 + u2) dt

For this design problem,

A = –1, B = 1, Q = 2, R = 2

The Riccati equation is

ATP + PA – PBR–1BTP + Q = 0

or – P – P –
P2

2
 + 2 = 0

Solving for P, requiring it to be positive definite, we get

P = 2 2 1-()
The optimal control law is

u = – R–1BTPy(t) = – 2 1-() y(t)

Substituting in Eqn. (8.48), we get the following equation for the closed-loop system:

dy

dt
 = – 2 y

532 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Obviously, y(t) Æ 0 for any initial displacement

y(0).

Assume now that a constant disturbance due to

the pump enters the system as shown in Fig. 8.12.

This Type-0 regulator system cannot reject the

disturbance; there will be a steady-state offset

in the liquid head y. Let us introduce integral

control to elimi nate this offset.

Defining the integral state z by

 z(t) = y(t),

we get the following augmented system:

y

z

È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

1 0

1 0

y

z

È

Î
Í

˘

˚
˙ +

1

0

È

Î
Í

˘

˚
˙ u (8.49)

Now the design problem is to obtain the control law

 u = – k1y(t) – k2z(t)

that minimizes

 J =

0

Ú (y2 + u2)dt

The Q and R matrices are

 Q =
2 0

0 0

È

Î
Í

˘

˚
˙ , R = 2

The state equation (8.49) is completely controllable, satisfying one of the sufficient conditions for the

existence of the optimal solution.

The matrix Q is positive semidefinite;

Q = HT
H =

2

0
2 0

È

Î
Í
Í

˘

˚
˙
˙

[]

The pair
-È

Î
Í

˘

˚
˙ ÈÎ ˘̊

Ê

ËÁ
ˆ

¯̃

1 0

1 0
2 0, is not completely observable. Therefore, the other sufficient condition for

the existence of the asymptotically stable optimal solution is not satisfied. It can easily be veri fied that a

positive definite solution to the matrix Riccati equation does not exist in this case; the chosen matrix Q

cannot give a closed-loop stable optimal system.

We now modify the performance index to the following:

J =

0

Ú (y2 + z2 + u2)dt

(2 – 1)

Disturbance w

Process
y

–

+
+

u

Fig. 8.12

 Linear Quadratic Optimal Control through Lyapunov Synthesis 533

The Q and R matrices are

Q =
2 0

0 2

È

Î
Í

˘

˚
˙ , R = 2

Since Q is positive definite matrix, the asymptotically stable optimal solution exists.

The matrix Riccati equation is

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or
-È

Î
Í

˘

˚
˙

1 1

0 0

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙ +

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙

-È

Î
Í

˘

˚
˙

1 0

1 0

 –
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙

1

0

È

Î
Í

˘

˚
˙ []1

2 [1 0]
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙ +

2 0

0 2

È

Î
Í

˘

˚
˙ =

0 0

0 0

È

Î
Í

˘

˚
˙

From this equation, we obtain the following three simultaneous equations:

 – 2p11 + 2p12 – 1
2

p2
11 + 2 = 0

 – p12 + p22 –
p p11 12

2
 = 0

- p12

2

2
 + 2 = 0

Solving for p11, p12 and p22, requiring P to be positive defi nite, we obtain

P =
2 2

2 4

È

Î
Í

˘

˚
˙

The gain matrix

K = [k1 k2] = R–1
B

T
P = []1

2 [1 0]
2 2

2 4

È

Î
Í

˘

˚
˙ = [1 1]

Therefore,

u = – y(t) – z(t) = – y(t) –

0

Ú y(t)dt

The block diagram of Fig. 8.13 shows the configu-

ration of the optimal control system employing

state-feedback and integral control. It is a Type-1

regulator system.

Since at steady state

 z(t) Æ 0,

therefore,

 y(t) Æ 0,

and there will be no steady-state offset in the liquid head y, even in the presence of constant disturbances

acting on the plant.

Ú
+ u

Process
y

– –

Fig. 8.13

534 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

8.8 OPTIMAL DIGITAL CONTROL SYSTEMS

This section covers the key results on the design of optimal controllers for discrete-time systems. Our

discussion will be brief because of the strong analogy between the discrete-time and continuous-time

cases.

Consider the discretized model of the given plant:

 x(k + 1) = Fx(k) + Gu(k); x(0) =D x0

 y(k) = Cx(k)
(8.50)

where x is the n ¥ 1 state vector, u is the p ¥ 1 input vector, y is the q ¥ 1 output vector; F, G, and C

are, respectively, n ¥ n, n ¥ p, and q ¥ n real constant matrices; and k = 0, 1, 2, … . We will assume that

the null state x = 0 is the desired steady state; x(k) is, thus, the system-error vector at t = kT , where T

is the sampling interval. The state variable model (8.50) is assumed to be completely controllable and

observable.

We shall be interested in selecting the controls u(k); k = 0, 1, …, which minimize a performance index

of the form

 J = 1
2

0k =
Â [xT(k)Qx(k) + uT(k)Ru(k)] (8.51)

where Q is an n ¥ n positive definite, real, symmetric, constant matrix (or a positive semidefinite, real,

symmetric, constant matrix with the restriction that the pair (F,H) is observable, where HT
H = Q), and R

is a p ¥ p positive definite, real, symmetric, constant matrix. This criterion is the discrete analog of that

given by Eqn. (8.25); a summation replaces integration.

An important feature (proved later in this section) of this class of problems is that optimal control is

possible by feedback control law of the form (refer to Fig. 8.14)

 u(k) = – Kx(k) (8.52)

where K is a p ¥ n constant matrix. If the unknown elements of matrix K are determined so as to

minimize the performance index given by Eqn. (8.51), the control law given by Eqn. (8.52) is optimal.

The control problem stated above, as we know, is a

state regula tor design problem. The equations devel-

oped below for the state regulator design, can also

be used for servo design by an appropriate transfor-

mation of the state variables (refer to Section 7.9 for

details). State regulator design equations can also be

used for state-feedback control schemes with inte-

gral control. This is done by the augmentation of the

plant state with integral state and appropriate trans-

formation of the state variables (refer to Section 7.9

for details).

In the following, we develop state regulator design equations through Lyapunov synthesis.

With the linear feedback control law (8.52), the closed-loop system is described by

 x(k + 1) = (F – GK)x(k) (8.53)

x Fx Gu(+ 1) = () + ()k k k

u()k

K

–

u()k

Plant

Fig. 8.14

 Linear Quadratic Optimal Control through Lyapunov Synthesis 535

We will assume that a matrix K exists such that (F – GK) is a stable matrix. The controllability of the

model (8.50) is suffi cient to ensure this. This implies that there exists a Lyapunov function V(x(k))

= 1
2

x
T(k) Px(k) for the closed-loop system (8.53). Therefore, the first forward difference, DV(x(k)) =

V (x (k + 1)) – V(x(k)), evaluated on the trajectories of the closed-loop system, is negative definite. We

now state and prove a condition for u(k) = – Kx(k) to be optimal [35].

Theorem 8.6 If the state-feedback controller u(k) = – Kx(k) is such that it minimizes the function

 f (u) = D ()() + () () + () ()V k k k k kT T
x x Qx u Ru1

2
1
2

 (8.54)

and the minimum value of f (u) = 0 for some V k kT= () ()1
2

x Px , then the controller is optimal.

Proof We can represent (8.54) as (denoting minimizing u by u*)

D ()() + () () + () () =
=

V k k k k kT T
x x Qx u Ru

u u*

* *1
2

1
2

0

Hence

V k V kx x
u u

+()() ()() =
1 -

*
 = – 1

2
1
2

x Qx u Ru
T Tk k k k() () () ()- * *

We sum both sides from k = 0 to to get

V V k k k kT T

k

x x x Qx u Ru()() ()() = () () + () ()()Â- -0 1
2

0

* *

=

Because, by assumption, the closed-loop system is stable, we have x() = 0. Hence

V k k k kT T T

k

x x Px x Qx u Ru0 0 01
2

1
2

0

()() = () () = () () + () ()()Â * *

=

Thus, if a linear stabilizing controller satisfies the hypothesis of the theorem, then the value of the

performance index (8.51) resulting from applying the controller is

J T
u x Px

*() = () ()1
2

0 0

Since u* minimizes the function in (8.54) and the minimum value is zero, for any u different from u*, the

value of the function will be greater than/equal to zero.

 D ()() + () () + () () ≥
=

V k k k k kT T
x x Qx u Ru

u û
ˆ ˆ1

2
1
2

0

or,

D ()() () () () ()
=

V k k k k kT T
x x Qx u Ru

u û
– – ˆ ˆ≥ 1

2
1
2

Summing the above from k = 0 to , yields

 V k k k kT T

k

x x Qx u Ru0 1
2

1
2

0

()() £ () () + () ()()Â ˆ ˆ ;

=

536 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

that is,

J Ju u
*() £ ()

for any ˆ .*
u uπ Therefore, the controller u* is optimal.

Finding an optimal controller involves finding an appropriate quadratic Lyapunov function V(x(k)) =

1
2

x Px
T k k() () , which is used to construct the optimal controller. We first find u* that minimizes the

function

f k V k k k k k

k k

T T

T

u x x Qx u Ru

x Px

()() = D ()() + () () + ()
= +() +(

1
2

1
2

1
2

1 1

()

)) - () () + () () + ()
= () + ()()

1
2

1
2

1
2

1
2

x Px x Qx u Ru

Fx Gu

T T T

T

k k k k k k

k k

()

PP Fx Gu

x Px x Qx u Ru

k k

k k k k k kT T T

() + ()()
() () + () () + ()-

1
2

1
2

1
2

()

(8.55)

Necessary condition for unconstrained minimization is
∂

∂
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃x

f g
f

x
g

g

x
f()T =

∂

∂
∂ +

∂
+

f k

k

k k

k
k k

(())

()

(() ())

()
[(() ())]

u

u

Fx Gu

u
P Fx Gu= 1

2

 +
∂ +

∂
+ +

∂
∂

1
2

1
2

((() ()))

()
[() ()]

(() ())

(

P Fx Gu

u
Fx Gu

u Ru

u

k k

k
k k

k k

k

T

))

 =
1
2

1
2

G P Fx Gu G P Fx Gu Ru
T Tk k k k k(() ()) (() ()) ()+ + + +

 = GT
P(Fx(k) + Gu(k)) + Ru(k)

 = G
T
 PFx(k) + (R + G

T
PG)u(k) = 0

The matrix R + GT
PG is positive definite, and therefore, it is invertible. Hence

 u R G PG G PFx Kx
* k k kT T() = - +() () = - ()

-1
 (8.56)

where K R G PG G PF= +()-
T T

1

We next check if u* satisfies the second-order sufficient condition for a relative minimizer of the function

(8.55).

∂

∂

∂ +()È
Î

˘
˚

∂

2

2

f k

k

k k

k

T T
(())

()

() ()

()

u

u

G PFx R G PG u

u
=

 = R + G
T
PG; a positive-definite matrix

that is, u* satisfies the second-order sufficient condition for a relative minimizer of the function (8.55).

The optimal controller (8.56) can be constructed if we have found an appropriate positive definite matrix

P. Our next task is to devise a method that would allow us to compute the desired matrix P. For this, we

first find the equation describing the closed-loop system driven by the optimal controller (8.56):

 x F GS G PF x
1k kT+() = () ()-1 – (8.57)

where S = R + GT
PG

 Linear Quadratic Optimal Control through Lyapunov Synthesis 537

Our controller satisfies the hypothesis of Theorem (8.6), that is

1
2

1
2

1
2

1
2

1 1x Px x Px x Qx u Ru
T T T Tk k k k k k k k+() +() - () () + () () + () =* *() 00

or,

1
2

1
2

1
2

x F GS G PF P F GS G PF x x Px x
1 1T T T T T Tk k k k k()[] [] () () ()- - - () +- -

QQx

x F PGS RS G PF x

()

()[] ()

k

k kT T T
 +

1

2

- - =1 1 0

or,

1
2

1
2

1 1
2

1
x F PFx x F PGS G PFx x F PGS G PF

T T T T T T T Tk k k k k() () () () ()- -- -
xx

x F PGS G PGS G PFx x Px

()

() () () ()

k

k k k kT T T T T
 + - +- -1

2

1 1 1
2

1
2

xx Qx

x F PGS RS G PFx

T

T T T

k k

k k

() ()

() () + =- -1

2

1 1 0
or,

1
2

1
2

1
2

1
x F PFx x Px x Qx x F PGS G PF

T T T T T T Tk k k k k k k() () () () () () ()- + - -
xx

x F PGS R G PG S G PFx

()

() () ()

k

k kT T T T
 + + =- -1

2

1 1 0
or,

1
2

1
2

1
2

1
x F PFx x Px x Qx x F PGS G PF

T T T T T T Tk k k k k k k() () () () () () ()- + - -
xx

x F PGS G PFx

()

() ()

k

k kT T T
 + =-1

2

1 0
or,

1
2

1 0[()[] ()]x F PF P Q F PGS G PF x
T T T Tk k- + - =-

The above equation should hold for any x. For this to be true we have to have

 F PF P Q F PG R G PG G PF 0
T T T T- + - +() =

-1

 (8.58)

This equation is called the discrete algebraic Riccati equation.

The discrete matrix Riccati equation given in (8.58), is one of the many equivalent forms which satisfy

the optimal regulator design. The analytical solution of the discrete Riccati equation is possible only for

very simple cases. A number of computer programs for the solution of the discrete Riccati equation are

available [152–154]. Appendix A provides some MATLAB support.

Example 8.7

Consider the problem of digital control of a plant described by the transfer function

G(s) =
1

1s +
Discretization of the plant model gives

Gh0G(z) =
Y z

U z

()

()
 = Z

1 1

1

-Ê
ËÁ

ˆ
¯̃ +

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-e

s s

sT

 = (1 – z–1) Z
1

1s s()+
È

Î
Í

˘

˚
˙ =

1-

-

-

-

e

z e

T

T

For a sampling interval T = 1 sec,

Gh0G(z) =
0 632

0 368

.

.z -

538 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The difference equation model of the plant is

 y(k + 1) = 0.368 y(k) + 0.632 u(k) (8.59)

The design specifications are given below.

 (i) Minimize

 J = 1
2

0k =
Â [y2(k) + u2(k)]

 where y and u are, respectively, the deviations of the output and the control signal from their

steady-state values.

 (ii) For a constant yr , y() = yr, i.e., there is zero steady-state error.

For this design problem, we select the feedback plus feedforward control scheme shown in Fig. 8.15. The

feedback gain K is ob tained from the solution of the shifted regulator problem, as is seen below.

yr
N

+

–

u k() 0.632
– 0.368z

y k()

K

Fig. 8.15

Let ys and us be the steady-state values of the output and the control signal, respectively. Equation (8.59)

at steady state becomes

ys = 0.368 ys + 0.632 us

The state equation (8.59) may equivalently be expressed as

 y (k + 1) = 0.368 y (k) + 0.632 u(k)

where

 y = y – ys; u = u – us

In terms of this equivalent formulation, the optimal control problem is to obtain

 u (k) = – K y(k)

so that

J = 1
2

0k =
Â [y

2(k) + u 2(k)]

is minimized.

For this shifted regulator problem,

F = 0.368, G = 0.632, Q = 1, R = 1

 Linear Quadratic Optimal Control through Lyapunov Synthesis 539

The Riccati equation (8.58) gives

 P = Q + FTPF – FTPG(R + GTPG)–1GTPF

 = 1 + (0.368)2P – (0.368)P(0.632)[1 + (0.632)2P]–1(0.632)P(0.368)

 = 1 + 0.135P –
0 054

1 0 4

2.

.

P

P+

Solving for P, requiring it to be positive definite, we obtain,

P = 1.11

Feedback gain (refer to Eqn. (8.56))

K = (R + GTPG)–1GTPF = 0.18

The feedforward gain (refer to Eqn. (7.105)) N, is given by

1

N
 = – C(F – GK – I)–1G = – [0.368 – 0.632 (0.18) – 1]–1 (0.632)

or N =
0 746

0 632

.

.
 = 1.18

The optimal control sequence (refer to Eqn. (7.106))

u(k) = – Ky(k) + Nyr = – 0.18 y(k) + 1.18 yr

Substituting in Eqn. (8.59), we obtain

 y(k + 1) = 0.254 y(k) + 0.746 yr

At steady state,

 y() = ys =
0 746

0 746

.

.
 yr = yr

8.9 CONSTRAINED STATE FEEDBACK CONTROL

In classical control theory, as we have seen in Chapters 1–4, output feedback controller is the common

control structure. These controllers are designed in the context of an input-output transfer function

model. When we move to a state variable model for the system, we have time-domain information about

the internal structure of the system, available in the form of a state vector. To investigate a link between

the state information and output feedback, we set up an output feedback regulator system.

The system equations are

 x u x = +
¥ ¥

A x
() ()

; ()
n p1 1

0B =D x0

 y x
()q¥

=
1

C (8.60)

and the output feedback control law is

 u K y() ()t t= – 0 (8.61)

540 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

If we now progress this analysis for the closed-loop system, we substitute for the control law in system

equations. This gives

 x A BK= ()– 0C x (8.62)

The design problem can be stated through the closed-loop characteristic polynomial D(s) that specifies

the poles of the closed-loop system (eigenvalues of the matrix (A – BK0C)):

D()s s sn n
n= + + +-a a1

1

The problem is to choose the available controller gain matrix K0 so that the specified characteristic

polynomial D(s) equals the characteristic polynomial of the matrix (A – BK0C):

 s s sn n
n+ + + = - -()-a a1

1
0 I A BK C (8.63)

The output feedback in a state variable framework does not necessarily have sufficient degrees of free-

dom to satisfy this design requirement. The output feedback gain K0 will have p ¥ q parameters to tune

n coefficients of the closed-loop characteristic polynomial. In most real systems, the order of the system

n will be very much greater than the number of measurements q and/or control p. The important issue

here is that the output vector is only a partial view of the state vector.

With full state feedback, a closed-form solution to the pole-placement problem exists under mildly

restrictive condition on controllability of the system. In case of single-input systems, the solution is

unique (given earlier in Chapter 7). In case of multi-input systems, the solution is not unique. In fact,

there is lot of freedom available in the choice of state-feedback gain matrix; this freedom is utilized to

serve other objectives on system performance [105].

With partial state feedback (output feedback), a closed-form solution to the pole-placement problem may

not exist. The designer often solves the problem numerically; tuning the output feedback gain matrix

by trial and error to obtain approximate pole-placement solution and checking the acceptability of the

approximation by simulation.

The output feedback law is restricted in design achievements, while the state-feedback law is able to give

total control over system dynamics. In fact, as we have seen, the design flexibility of the state-feedback law

is supported by deep technical results to guarantee the design properties. However, this design flexibility of

state feedback is achieved because it has been assumed that we can access each state variable. In practice,

this means that we must have a more complicated system where we include an observer which provides

us with the state information. Since an observer incorporates model of the process, dependence on very

accurate representation of the process being controlled for accurate state information, is obvious. We

know that industrial process models are not usually so well known or accurate. Therefore, inclusion of

an observer is bound to deteriorate the robustness properties of the feedback system.

Therefore, in spite of excellent design flexibility in state feedback, we are, many a times, forced to look

at the alternatives, not so excellent in terms of design flexibility but not dependent on inclusion of an

observer. Constrained state feedback is an interesting alternative. Here, we set the gains of the state-

feedback gain matrix corresponding to unmeasurable states, to zero and try to exploit the rest of the gains

to achieve the desired properties of the closed-loop system. This, in fact, may also be viewed as an output

feedback problem where the state x passes through an appropriately selected output matrix C to give the

output variables in the vector y.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 541

The constrained state-feedback control law is not supported by deep technical results and does not

guarantee the design properties; nonetheless, it yields robust feedback control systems for many industrial

control problems. Existence of a control law that stabilizes the feedback system is a pre-requisite of

the design algorithm. Unfortunately, general conclusions for existence of a stabilizing control law with

constrained state feedback cannot be laid down; therefore, one resorts to numerical methods to establish

the existence.

In the following, we outline a procedure for the design of constrained state-feedback control law that

minimizes a quadratic performance index. By constrained state feedback we mean that all the parameters

of the matrix K are not available for adjustments. Some of them may have zero values (output feedback).

The procedure described below is equally applicable to situations wherein some of the parameters of K

have fixed values.

Let us consider the system (8.60). It is desired to minimize the following performance index:

 J =
1
2

0

Ú (xT
Qx + uT

Ru) dt (8.64)

where Q is n ¥ n positive definite, real, symmetric, constant matrix, and R is p ¥ p positive defi nite, real,

symmetric, constant matrix.

We shall obtain a direct relationship between Lyapunov functions and quadratic performance measures,

and solve the constrained parameter-optimization problem using this relationship. We select the feedback

control configuration described by the control law

 u = – K0C x = – Kx (8.65)

where K is p × n matrix which involves adjustable parameters. With this control law, the closed-loop

system becomes

 x = Ax – BKx = (A – BK)x (8.66)

All the parameters of the matrix K are not available for adjustments. Some of them have fixed values

(zero values). We will assume that a matrix K satisfying the imposed constraints on its parameters exists

such that (A – BK) is a stable matrix.

The optimization problem is to determine the values of free parameters of the matrix K so as to minimize

the performance index given by Eqn. (8.64).

Substituting the control vector u from Eqn. (8.65) in the perfor mance index J of Eqn. (8.64), we have

 J =
1
2

0

Ú (xT
Qx + xT

K
T
RKx)dt

 =
1
2

0

Ú x
T(Q + KT

RK)xdt (8.67)

Let us assume a Lyapunov function

V(x(t)) =
1
2

0

Ú x
T(Q + KT

RK)xdt

542 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Note that the value of the performance index for system trajec tory starting at x(0) is V(x(0)).

The time derivative of the Lyapunov function is

 V (x) = 1
2

x
T (Q + K RK)x

T

t

 = 1
2

x
T() [Q + KT

RK]x() – 1
2

x
T(t) [Q + KT

RK] x(t)

Assuming that the matrix (A – BK) is stable, we have from Eqn. (8.66),

x() Æ 0

Therefore,

 V (x) = – 1
2

x
T(Q + KT

RK)x (8.68)

Since V (x) is quadratic in x and the plant equation is linear, let us assume that V(x) is also given by the

quadratic form:

 V(x) = 1
2

x
T
Px (8.69)

where P is a positive definite real, symmetric, constant matrix. Therefore,

 V (x) = 1
2

() x Px x Px
T T+

Substituting for x from Eqn. (8.66), we get

 V (x) = 1
2

x
T[(A – BK)T P + P(A – BK)]x

Comparison of this result with Eqn. (8.68) gives

1
2

x
T[(A – BK)T

P + P(A – BK)]x = – 1
2

x
T(Q + KT

RK)x

Since the above equality holds for arbitrary x(t), we have

 (A – BK)T P + P(A – BK) + KT
RK + Q = 0 (8.70)

This equation is of the form of Lyapunov equation defined in Section 8.3. In Eqn. (8.70) we have n2

nonlinear algebraic equations. However, since n ¥ n matrix P is symmetric, we need to solve only

n n()+1

2
 equations for the elements pij of the matrix P. The solution will give pij as functions of the

feedback matrix K.

As pointed out earlier, V(x(0)) is the value of the performance index for the system trajectory starting at

x(0). From Eqn. (8.69), we get,

 J = 1
2

x
T(0) Px(0) (8.71)

A suboptimal control law may be obtained by minimizing J with respect to the available elements kij of

K, i.e., by setting

∂

∂
[() ()]x Px

T

ijk

0 0
 = 0 (8.72)

If for the suboptimal solution thus obtained, the matrix (A – BK) is stable, then the minimization of J

as per the procedure described above gives the correct result. From Eqn. (8.68) we observe that for a

 Linear Quadratic Optimal Control through Lyapunov Synthesis 543

positive definite Q, V (x) < 0 for all x π 0 (note that KT
RK is non-negative definite). Also Eqn. (8.69)

shows that V(x) > 0 for all x π 0 if P is positive definite. Therefore, minimization of J with respect to

kij (Eqn. (8.72)) will lead to a stable closed-loop system if the optimal kij result in a posi tive definite

matrix P.

One would like to examine the existence of a solution to the optimization problem before actually

starting the optimization procedure. For the problem under consideration, existence of K that minimizes

J is ensured if, and only if, there exists a K satisfying the imposed constraints on the parameters, such

that (A – BK) is asymptotically stable. The question of existence of K has, as yet, no straightforward

answer. We resort to numerical trial-and-error to find a stabilizing matrix K (such a matrix is required

by numerical algorithms for optimization of J [105]). Failure to do so does not mean that a suboptimal

solution does not exist.

Also note that the solution is dependent on initial condition (Eqn. (8.72)). If a system is to operate satis-

factorily for a range of initial disturbances, it may not be clear which is the most suitable for optimization.

The dependence on initial conditions can be avoided by averaging the performance obtained for a linearly

independent set of initial conditions. This is equivalent to assuming the initial state x (0) to be a random

variable, uniformly distributed on the surface of an n-dimensional sphere, i.e.,

E T{ () ()}x x I0 0 =

where E{.} denotes the expected value.

We define a new performance index

 ˆ () ()

{ () (

J E J E

E trace

T

T

= { } = { }
=

1
2

1
2

0 0

0 0

x

P

Px

x x ()))}

{ () ()}) (

=

=

1
2

1

0 0trace E T
P xx

22
trace P

 (8.73)

Reference [105] describes a numerical algorithm for the minimization of Ĵ . When feedback matrix K

is unconstrained, the resulting value of J is optimal; J(optimal) < J (suboptimal).

As we have seen earlier in this chapter, the optimal solution is independent of initial conditions. It is

computationally convenient to use Riccati equation (8.41) for obtaining optimal control law (8.40).

Consider now the discretized model of the given plant:

 x(k + 1) = Fx(k) + Gu(k); x(0) =D x0

 y(k) = Cx(k)
(8.74)

where x is the n ¥ 1 state vector, u is the p ¥ 1 input vector, y is the q ¥ 1 output vector; F, G, and C are,

respectively, n ¥ n, n ¥ p, and q ¥ n real constant matrices; and k = 0, 1, 2,

We shall be interested in selecting the controls u(k); k = 0, 1, . . ., which minimize a performance index

of the form

 J = 1
2

0k =
Â [xT(k)Qx(k) + uT(k)Ru(k)] (8.75)

544 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where Q is an n ¥ n positive definite, real, symmetric, constant matrix, and R is a p ¥ p positive definite,

real, symmetric, constant matrix.

The constrained state-feedback control law is

 u(k) = – K0C x (k) = – Kx(k) (8.76)

where K is a p × n constant matrix.

With the linear feedback control law (8.76), the closed-loop system is described by

 x(k + 1) = (F – GK)x(k) (8.77)

We will assume that a matrix K exists such that (F – GK) is a stable matrix.

Substituting for the control vector u(k) from Eqn. (8.76) in the performance index J given by Eqn. (8.75),

we get

 J = 1
2

0k =
Â x

T(k) [Q + KT
RK]x(k) (8.78)

Let us assume a Lyapunov function

 V(x(k)) = 1
2

i k=
Â x

T(i) [Q + KT
RK]x(i) (8.79)

Note that the value of the performance index for system trajectory starting at x(0) is V(x(0)). The

difference

 V(x(k + 1)) – V(x(k)) = DV(x(k)) = – 1
2

x
T(k)[Q + KT

RK]x(k) (8.80)

(Note that x() has been taken as zero under the assumption of asymptotic stability of the closed-loop

system).

Since DV(x(k)) is quadratic in x(k) and the plant equation is linear, let us assume that V(x(k)) is also given

by the quadratic form

 V(x(k)) = 1
2

x
T(k) Px(k) (8.81)

where P is a positive definite, real, symmetric, constant matrix.

Therefore,

DV(x(k)) = 1
2

x
T(k + 1)Px(k + 1) – 1

2
x

T(k)Px(k)

 Substituting for x(k + 1) from Eqn. (8.77), we get

DV(x(k)) = 1
2

x
T(k) [(F – GK)T

P(F – GK) – P]x(k)

Comparing this result with Eqn. (8.80), we obtain

 (F – GK)T
P(F – GK) – P + KT

RK + Q = 0 (8.82)

This equation is of the form of Lyapunov equation defined in Section 8.3.

Since V(x(0)) is the value of the performance index, we have

 J = 1
2

x
T(0)Px(0) (8.83)

 Linear Quadratic Optimal Control through Lyapunov Synthesis 545

Assuming x(0) to be a random variable uniformly distributed on the surface of n-dimensional sphere, the

problem reduces to minimization of

 Ĵ trace= 1
2

P (8.84)

Reference [105] describes a numerical algorithm for this minimization problem.

REVIEW EXAMPLES

Review Example 8.1

Using the Lyapunov equation, determine the stability range for the gain K of the system shown in

Fig. 8.16.

K
s + 1

1
+ 2s

1
s

x3 x2 x1r +

–

Fig. 8.16

Solution The state equation of the system is

x

x

x K

x

x

x

1

2

3

1

2

3

0 1 0

0 2 1

0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

++
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0

K

r

For the investigation of asymptotic stability, we consider the system

 x = Ax

with

A =

0 1 0

0 2 1

0 1

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙K

Clearly, the equilibrium state is the origin.

Let us choose a Lyapunov function

V(x) = xT
Px

where P is to be determined from the Lyapunov equation

A
T
P + PA = – Q

546 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The matrix Q could be chosen as identity matrix. However, we make the following choice for Q:

Q =

0 0 0

0 0 0

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

This is a positive semidefinite matrix which satisfies the condition (8.10) as is seen below.

 Q =

0 0 0

0 0 0

0 0 1

0

0

1

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

[] = HT
H

 r

H

HA

HA
2

0 0 1

0 1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r K

K K

 = 3

With this choice of Q, as we shall see, manipulation of the Lyapunov equation for its analytical solution

becomes easier.

Now let us solve the Lyapunov equation

A
T
P + PA = – Q

or

0 0

1 2 0

0 1 1

11 12 13

12 22 23

13 23 33

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙

K p p p

p p p

p p p ˙̇
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
- -

È

Î

Í
Í
Í

˘p p p

p p p

p p p K

11 12 13

12 22 23

13 23 33

0 1 0

0 2 1

0 1˚̊

˙
˙
˙

 =

0 0 0

0 0 0

0 0 1-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Solving this equation for pij’s, we obtain

P =

K K

K

K

K

K

K

K

K

K

K

K

K K

2 12

12 2

6

12 2
0

6

12 2

3

12 2 12 2

0
12 2

6

12 2

+
- -

- - -

- -

È

Î

Í
Í
Í
Í
ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

For P to be positive definite, it is necessary and sufficient that

(12 – 2K) > 0 and K > 0 or 0 < K < 6

Thus for 0 < K < 6, the system is asymptotically stable.

Review Example 8.2

Consider the system described by the equations

 x1(k + 1) = 2x1(k) + 0.5x2(k) – 5

 x2(k + 1) = 0.8x2(k) + 2

Investigate the stability of the equilibrium state using Lyapunov equation.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 547

Solution The equilibrium state xe =
x

x

e

e

1

2

È

Î
Í
Í

˘

˚
˙
˙

 can be determined from the equations

 xe
1 = 2xe

1 + 0.5xe
2 – 5

 xe
2 = 0.8xe

2 + 2

Solving, we get

x

x

e

e

1

2

0

10

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙

Define

 x1 (k) = x1(k) – xe
1

 x2(k) = x2(k) – xe
2

In terms of the shifted variables, the system equations become

x k

x k

x k

x k

1

2

1

2

1

1

2 0 5

0 0 8

()

()

.

.

()

()

+
+

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

or x(k +1) = F x(k) (8.85)

Clearly x = 0 is the equilibrium state of this autonomous system.

Let us choose a Lyapunov function

V(x) = x
T
P x

where P is to be determined from the Lyapunov equation

F
T
PF – P = – I

or
2 0

0 5 0 8

2 0 5

0 0 8

11 12

12 22

11 12

12 2. .

.

.

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ -

p p

p p

p p

p p 22

È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

1 0

0 1

Solving for pij’s, we get

P =
-È

Î
Í
Í

˘

˚
˙
˙

1
3

5
9

5
9

1225
324

By applying the Sylvester’s test for positive definiteness, we find that the matrix P is not positive definite.

Therefore, the origin of the system (8.85) is not asymptotically stable.

In terms of the original state variables, we can say that the equilibrium state

x
e = [0 10]T of the given system is not asymptotically stable.

Review Example 8.3

Referring to the block diagram of Fig. 8.17, consider that G(s) = 100/s2 and R(s) = 1/s. Determine the

optimal values of parameters k1 and k2 such that

J =

0

Ú [e2(t) + 0.25u2(t)]dt

is minimized.

548 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

R s() + E s() +
k1

U s()
G s()

Y s()

– –

sk2

Fig. 8.17

Solution From Fig. 8.17, we obtain

 y(t) = 100u(t); y(0) = y(0) = 0

 u(t) = k1[r – y(t) – k2
 y(t)]

In terms of the state variables

 x1(t) = y(t) – r

 x2(t) = y (t),

the state variable model of the system becomes

 x =
0 1

0 0

È

Î
Í

˘

˚
˙ x +

0

100

È

Î
Í

˘

˚
˙ u; x(0) =

-È

Î
Í

˘

˚
˙

1

0

 u = – k1
 x1 – k1k2

 x2 = – K x (8.86)

where

K = [k1 k1k2]

The optimization problem is to find K such that

J =

0

Ú (x1
2 + 0.25u2)dt

is minimized.

Note that

A =
0 1

0 0

È

Î
Í

˘

˚
˙ ; B =

0

100

È

Î
Í

˘

˚
˙ ; Q =

2 0

0 0

È

Î
Í

˘

˚
˙ ; R = 0.5

The matrix Riccati equation is

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or

0 0

1 0

È

Î
Í

˘

˚
˙

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙ +

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙

0 1

0 0

È

Î
Í

˘

˚
˙

–
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙

0

100

È

Î
Í

˘

˚
˙ []

.
1

0 5
 [0 100]

p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙ +

2 0

0 0

È

Î
Í

˘

˚
˙ =

0 0

0 0

È

Î
Í

˘

˚
˙

 Linear Quadratic Optimal Control through Lyapunov Synthesis 549

Solving for p11, p12, and p22, requiring P to be positive defi nite, we obtain

P =
2 10 10

10 10

1 2

2 3

¥È

Î
Í
Í

˘

˚
˙
˙

- -

- -

The feedback gain matrix

 K = R–1
B

T
P

 = 1
0 5.

 [0 100]
2 10 10

10 10

1 2

2 3

¥È

Î
Í
Í

˘

˚
˙
˙

- -

- -
 = [2 0.2]

From Eqn. (8.86), we obtain

[k1 k1k2] = [2 0.2] or k1 = 2, k2 = 0.1

Review Example 8.4

Figure 8.18 shows the optimal control configuration of a position servo system.

Both the state variables—angular position q and angular velocity q—are assumed to be measurable.

qr ++
k1

u 20
+ 2s

1
s

x1 = qx2 = q

k2

– –

Fig. 8.18

It is desired to regulate the angular position to a unit-step function qr. Find the optimum values of the

gains k1 and k2 that minimize

J =

0

Ú [(x1 – qr)
2 + u2]dt

Solution The state variable description of the system, obtained from Fig. 8.18, is given by

 x =
0 1

0 2-
È

Î
Í

˘

˚
˙ x +

0

20

È

Î
Í

˘

˚
˙ u

 y = x1

In terms of the shifted state variables

 x1 = x1 – qr

 x2 = x2,

550 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the state variable model becomes

 x = A x + Bu (8.87)

with

A =
0 1

0 2-
È

Î
Í

˘

˚
˙ , B =

0

20

È

Î
Í

˘

˚
˙

The design problem is to determine optimal control

 u = – k1 x1 – k2 x2 (8.88)

that minimizes

 J =

0

Ú (x1
2 + u2)dt

For this J,

 Q =
2 0

0 0

È

Î
Í

˘

˚
˙ ; R = 2

The matrix Q is positive semidefinite;

Q = HT
H =

2

0

È

Î
Í
Í

˘

˚
˙
˙

 []2 0

The pair (A,H) is completely observable. Also, the pair (A,B) is completely controllable. Therefore, the

sufficient conditions for the existence of asymptotically stable optimal closed-loop system are satisfied.

The matrix Riccati equation is

A
T
P + PA – PBR

–1
B

T
P + Q = 0

or
0 0

1 2

0 1

0 2

11 12

12 22

11 12

12 22-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚

p p

p p

p p

p p
˙̇

 –
p p

p p

p p

p p

11 12

12 22

1
2

11 12

12 22

0

20
0 20

2 0

0

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +[] []

00

È

Î
Í

˘

˚
˙ =

0 0

0 0

È

Î
Í

˘

˚
˙

or
0 2

2 2 4

11 12

11 12 12 22

p p

p p p p

-
- -

È

Î
Í

˘

˚
˙ –

200 200

200 200

12
2

12 22

12 22 22
2

p p p

p p p

È

Î
Í
Í

˘

˚
˙
˙

 +
2 0

0 0

È

Î
Í

˘

˚
˙ =

0 0

0 0

È

Î
Í

˘

˚
˙

or 2 – 200 P 2
12 = 0

 2p12 – 4p22 – 200p2
22 = 0

 p11 – 2p12 – 200p12 p22 = 0

The positive definite solution of the Riccati equation is

P =
0 664 0 1

0 1 0 0232

. .

. .

È

Î
Í

˘

˚
˙

 Linear Quadratic Optimal Control through Lyapunov Synthesis 551

The optimal gain matrix

K = R–1
B

T
P = [1 0.232]

The minimum value of J for an initial condition x (0) = [–1 0]T, is

J = 1
2

 x
T (0)P x(0) =

p11

2
 = 0.332

It can easily be verified that the optimal closed-loop system is stable.

Review Example 8.5

Figure 8.19a illustrates a typical sampled-data system. The transfer functions G(s) and Gh0(s) of the

controlled plant and the hold circuit, respectively, are known. The data-processing unit D(z) which

operates on the sampled error signal e(k) is to be designed.

Assuming the processing unit D(z) to be simply an amplifier of gain K, let us find K so that the sum

square error

J = [() . ()]e k u k

k

2 2

0

0 75+
=

Â
is minimized.

Solution From Fig. 8.19a, we have

Gh0(s)G(s) =
1

2

- -e

s

sT

Therefore,

Gh0G(z) = (1 – z–1) Z
1
2s

È

ÎÍ
˘

˚̇
 =

1

1z -

Figure 8.19b shows an equivalent block diagram of the sampled-data system.

r = unit step T = 1 sec

+

–

e t()
D z() Gh0 = G =

1 – e–sT

s

1
s

y t()

(a)

r + e k()
K

u k() 1
– 1z

y k()

(b)

–

Fig. 8.19

552 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

From this figure, we obtain the following state variable model:

 y(k + 1) = y(k) + u(k)

 u(k) = – K [y(k) – r]
(8.89)

 In terms of the shifted state variable,

 x (k) = y(k) – r,

the state equation becomes

 x (k + 1) = x (k) + u(k) (8.90)

The problem is to obtain optimal control sequence

u(k) = – K x (k)

that minimizes the performance index

 J =
k =
Â

0

[x2(k) + 0.75u2(k)]

For this problem,

 F = 1, G = 1, Q = 2, R = 1.5

The Riccati equation is (refer to Eqn. (8.58))

 P = Q + FTPF – FTPG(R + GTPG)–1GTPF

 = 2 + P –
P

P

2

1 5. +

Solving for P, requiring it to be positive definite, we get

P = 3

The optimal control (refer to Eqn. (8.56))

u(k) = – K x (k)

where

K = (R + GTPG)–1GTPF =
P

P1 5. +
 =

2

3
.

PROBLEMS

 8.1 Consider the linear system

 x =
0 1

1 2- -
È

Î
Í

˘

˚
˙ x

 Using Lyapunov analysis, determine the stability of the equilibrium state.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 553

 8.2 Using Lyapunov analysis, determine the stability of the equilibrium state of the system

 x = Ax

 with A =
0 1

1 1-
È

Î
Í

˘

˚
˙

 8.3 Consider the system described by the equations

 x1 = x2

 x2 = – x1 – x2 + 2

 Investigate the stability of the equilibrium state. Use Lyapunov analysis.

 8.4 A linear system is described by the state equation

 x = Ax

 where

 A =
-

-
È

Î
Í

˘

˚
˙

4 4

2 6

K K

K K

 Using Lyapunov analysis, find restrictions on the parameter K to guarantee the stability of the

system.

 8.5 Consider the system of Fig. P8.5. Find the restrictions on the parameter K to guarantee system

stability. Use Lyapunov’s analysis.

K
s + 1

1
+ 1s

1
+ 1s

–

x1 x2 x3

Fig. P8.5

 8.6 Consider the linear system

 x(k + 1) =
0 5 1

1 1

.

- -
È

Î
Í

˘

˚
˙ x(k)

 Using Lyapunov analysis, determine the stability of the equilibrium state.

 8.7 Using Lyapunov analysis, determine the stability of the equilibrium state of the system

 x(k + 1) = Fx(k)

 with

 F =
0 0 5

0 5 1

.

.- -
È

Î
Í

˘

˚
˙

 8.8 Consider the system shown in Fig. P8.8. Determine the optimal feedback gain matrix K, such that

the following performance index is minimized:

 J =
1
2

0

Ú (xT
Qx + 2u2)dt; Q =

2 0

0 2

È

Î
Í

˘

˚
˙

554 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

–K

u 1
s

1
s

x2 x1

Fig. P8.8

 8.9 The matrix Q in Problem 8.8 is replaced by the following positive semidefinite matrix:

 Q =
2 0

0 0

È

Î
Í

˘

˚
˙

 Show that sufficient conditions for the existence of the asymp totically stable optimal control

solution are satisfied. Find the optimal feedback matrix K.

 8.10 Test whether sufficient conditions for the existence of the asymptotically stable optimal control

solution for the plant

 x =
0 0

0 1

È

Î
Í

˘

˚
˙ x +

1

1

È

Î
Í

˘

˚
˙ u

 with the performance index

 J =

0

Ú (x2
1 + u2) dt

 are satisfied. Find the optimal closed-loop system, if it exists, and determine its stability.

 8.11 Consider the plant

 x =
-È

Î
Í

˘

˚
˙

1 0

1 0
x +

1

0

È

Î
Í

˘

˚
˙ u

 with the performance index

 J =

0

Ú (x2
1 + u2) dt

 Test whether an asymptotically stable optimal solution exists for this control problem.

 8.12 Consider the system described by the state model:

 x =
0 1

0 2-
È

Î
Í

˘

˚
˙ x +

0

20

È

Î
Í

˘

˚
˙ u

 y = [1 0] x

 Find the optimal control law that minimizes

 J =
1
2

0

Ú [(y(t) – 1)2 + u2] dt

 Linear Quadratic Optimal Control through Lyapunov Synthesis 555

 8.13 Determine the optimal control law for the system

 x =
0 1

0 0

È

Î
Í

˘

˚
˙ x +

0

1

È

Î
Í

˘

˚
˙ u

 y =
1 0

0 2

È

Î
Í

˘

˚
˙ x

 such that the following performance index is minimized:

 J =

0

Ú (y 2
1 + y 2

2 + u2)dt

 8.14 Consider the plant

 x = Ax + Bu

 y = Cx

 A =
0 1

0 1-
È

Î
Í

˘

˚
˙ , B =

0

1

È

Î
Í

˘

˚
˙ , C = [1 0]

 with the performance index

 J =

0

Ú (x2
1 + x 2

2 + u2) dt

 Choose a control law that minimizes J. Design a state observer for implementation of the control

law; both the poles of the state observer are required to lie at s = – 3.

 8.15 Figure P8.15 shows the optimal control configuration of a position servo system. Both the state

variables—angular position q and angular velocity q—are assumed to be measurable.

 It is desired to regulate the angular position to a constant value qr = 5. Find optimum values of the

gains k1 and k2 that minimize

 J =

0

Ú [(x1 – qr)
2 +

1
2 u2] dt

 What is the minimum value of J?

qr

– –

+
k1

u 1
+ 5s

1
s

x2 = q x1 = q

k2

+

Fig. P8.15

 8.16 Consider now that for the position servo system of Problem 8.15, the performance index is

 J =

0

Ú [(x1 – qr)
2 + ru2]dt

556 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 For r = 1
10

, 1
100

, and 1
1000

, find the optimal control law that minimizes the given J. Determine

closed-loop poles for various values of r and comment on your result.

 8.17 In the control scheme of Fig. P8.17, the control law of the form u = – Ky + Nyr has been used; yr

is the constant command input.

u
N

yr + +

–

+

w

1

+ 1s

y

K

Fig. P8.17

 (a) Find K such that

 J = ()� �y u dt2 2

0

+Ú
 is minimized; �y and �u are, respectively, the deviations of the output and the control signal

from their steady-state values.

 (b) Choose N so that the system has zero steady-state error, i.e., y() = yr.

 (c) Show that the steady-state error to a constant disturbance input w, is nonzero for the above

choice of N.

 (d) Add to the plant equation, an integrator equation (z(t) being the state of the integrator),

 �z (t) = y(t) – yr

 and select gains K and K1 so that if u = – Ky – K1z, the perfor mance index

 J = ()� � �y z u dt2 2 2

0

+ +Ú
 is minimized.

 (e) Draw a block diagram of the control scheme employing integral control and show that the

steady-state error to constant distur bance w, is zero.

 8.18 Consider a plant consisting of a dc motor, the shaft of which has the angular velocity w (t), and

which is driven by the input voltage u(t). The describing equation is

 �w (t) = – 0.5w (t) + 100u(t) = Aw(t) + Bu(t)

 It is desired to regulate the angular velocity at the desired value w0 = r.

 (a) Use the control law of the form u(t) = – Kw (t) + Nr.

 Choose K that minimizes J = ()� �w
2 2

0

100+Ú u dt; �w and �u are, respectively, the deviations

 of the output and the control signal, from their steady-state values.

 Linear Quadratic Optimal Control through Lyapunov Synthesis 557

 Choose N that guarantees zero steady-state error, i.e.,

 w (= w0 = r.

 (b) Show that if A changes to A + dA, subject to (A + dA – BK) being stable, then the above

choice of N will no longer make w () = r. Therefore, the feedforward-feedback control

system is not robust under changes in system parameters.

 (c) The system can be made robust by augmenting it with an inte grator:

 z = w – r

 where z is the state of the integrator. To see this, first use the feedback of the form u = – Kw (t) –

K1z(t) and select K and K1 so that

 J = () w 2 2 2

0

100+ +Ú z u dt

 is minimized. Show that the resulting system will have w () = r, no matter how the matrix A

changes, so long as the closed-loop system remains asymptotically stable.

 8.19 Consider the system

 x(k + 1) = 0.368 x(k) + 0.632 u(k)

 Using the discrete matrix Riccati equation, find the control sequence

 u(k) = – Kx(k)

 that minimizes the performance index

 J = [() ()]x k u k

k

2 2

0

+
=

Â
 8.20 Consider the sampled-date system shown in Fig. P8.20.

 (a) Find K so that

 J =
1
2

2 2

0

[() ()] y k u k

k

+
=
Â

 is minimized; y and u are, respectively, the deviations of the output and the control signal,

from their steady-state values.

 (b) Find the steady-state value of the output.

 (c) To eliminate steady-state error, introduce a feedforward controller. The control scheme now

becomes u(k) = – Ky(k) + Nr. Find the value of N so that y() = r.

r = unit step T = 0.5 sec

–

+
K

u
Gh0 =

1 – e–sT

s G =
1
+ 1s

y

Fig. P8.20

558 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 8.21 A plant is described by the state equation

 x(k + 1) = 0.5x(k) + 2u(k) = Fx(k) + Gu(k)

 (a) Find K such that if u(k) = – Kx(k) + Nr, the performance index

 J =
1
2

2 2

0

[() ()] x k u k

k

+
=

Â

 is minimized; r is a constant reference input, and x and u are, respectively, the deviations in

state and control signal, from their steady-state values.

 (b) Find N so that x() = r, i.e., there is no steady-state error.

 (c) Show that the property of zero steady-state error is not robust with respect to changes in F.

 (d) In order to obtain robust steady-state accuracy with respect to changes in F, we may use

integral control in addition to state feedback. Describe through block diagram, the structure

of such a control scheme.

 Nonlinear Systems Analysis 559

Part III
Nonlinear Control Systems: Conventional and
Intelligent

In this part of the book, we will explore tools and techniques for attacking control problems that contain

significant nonlinearities.

Nonlinear control system design has been dominated by linear control techniques, which rely on the key

assumption of a small range of operation for the linear model to be valid. This tradition has produced

many reliable and effective control systems. However, the demand for nonlinear control methodologies

has recently been increasing for several reasons.

First, modern technology, such as applied in high-performance aircraft and high-speed high-accuracy

robots, demands control systems with much more stringent design specifications, which are able to

handle nonlinearities of the controlled systems more accurately. When the required operation range is

large, a linear controller is likely to perform very poorly or to be unstable, because the nonlinearities in

the system cannot be properly compensated for. Nonlinear controllers, on the other hand, may directly

handle the nonlinearities in large range operation. Also, in control systems there are many nonlinearities

whose discontinuous nature does not allow linear approximation.

Second, controlled systems must be able to reject disturbances and uncertainties confronted in real-world

applications. In designing linear controllers, it is usually necessary to assume that the parameters of the

system model are reasonably well known. However, many control problems involve uncertainties in

the model parameters. This may be due to a slow time variation of the parameters (e.g., of ambient air

pressure during an aircraft flight), or to an abrupt change in parameters (e.g., in the inertial parameters

of a robot when a new object is grasped). A linear controller, based on inaccurate values of the model

parameters, may exhibit significant performance degradation or even instability. Nonlinearities can be

intentionally introduced into the controller part of a control system, so that model uncertainties can be

tolerated.

Third, advances in computer technology have made the implementation of nonlinear controllers a

relatively simple task. The challenge for control design is to fully utilize this technology to achieve the

best control system performance possible.

Thus, the subject of nonlinear control is an important area of automatic control. Learning basic techniques

of nonlinear control analysis and design can significantly enhance the ability of control engineers to deal

with practical control problems, effectively. It also provides a sharper understanding of the real world,

which is inherently nonlinear.

560 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

NONLINEAR SYSTEMS ANALYSIS

No universal technique works for the analysis of all nonlinear control systems. In linear control, one can

analyze a system in the time domain or in the frequency domain. However, for nonlinear control systems,

none of these standard approaches can be used, since direct solutions of nonlinear differential equations

are generally difficult, and frequency-domain transformations do not apply.

While the analysis of nonlinear control systems is difficult, serious efforts have been made to develop

appropriate theoretical tools for it. Many methods of nonlinear control system analysis have been

proposed. Let us briefly describe some of these methods before discussing their details in the following

chapters.

Phase-Plane Analysis

Phase-plane analysis, discussed in Chapter 9, is a method of studying second-order nonlinear systems.

Its basic idea is to solve a second-order differential equation and graphically display the result as a

family of system motion trajectories on a two-dimensional plane, called the phase plane, which allow

us to visually observe the motion patterns of the system. While phase-plane analysis has a number of

important advantages, it has the fundamental disadvantage of being applicable only to systems which

can be well approximated by a second-order dynamics. Because of its graphical nature, it is frequently

used to provide intuitive insights about nonlinear effects.

Lyapunov Theory

In using the Lyapunov theory to analyze the stability of a nonlinear system, the idea is to construct

a scalar energy-like function (a Lyapunov function) for the system, and to see whether it decreases.

The power of this method comes from its generality; it is applicable to all kinds of control systems.

Conversely, the limitation of the method lies in the fact that it is often difficult to find a Lyapunov

function for a given system.

Although Lyapunov’s method is originally a method of stability analysis, it can be used for synthesis

problems. One important application is the design of nonlinear controllers. The idea is to somehow

formulate a scalar positive definite function of the system states, and then choose a control law to make

this function decrease. A nonlinear control system thus designed, will be guaranteed to be stable. Such a

design approach has been used to solve many complex design problems, e.g., in adaptive control and in

sliding mode control (discussed in Chapter 10). The basic concepts of Lyapunov theory have earlier been

presented in Chapter 8. Lyapunov theory is elaborate in Chapter 9, wherein guidelines for construction

of Lyapunov functions for nonlinear systems are given.

The describing function method, discussed in Chapter 9, is an approximate technique for studying

nonlinear systems. The basic idea of the method is to approximate the nonlinear components in nonlinear

control systems by linear “equivalents”, and then use frequency-domain techniques to analyze the

resulting systems. Unlike the phase-plane method, it is not restricted to second-order systems. Rather,

 Nonlinear Systems Analysis 561

the accuracy of describing function analysis improves with an increase in the order of the system.

Unlike Lyapunov method, whose applicability to a specific system hinges on the success of a trial-and-

error search for a Lyapunov function, its application is straightforward for a specific class of nonlinear

systems.

NONLINEAR CONTROL DESIGN

As in the analysis of nonlinear control systems, there is no general method for designing nonlinear

controllers. What we have is a rich collection of alternative and complementary techniques, each of them

best applicable to particular classes of nonlinear control problems.

Trial-and-Error

Based on the analysis methods, one can use trial-and-error to synthesize controllers. The idea is to

use the analysis tools to guide the search for a controller, which can then be justified by analysis and

simulations. The phase-plane method, the describing function method, and Lyapunov analysis can all

be used for this purpose. Experience and intuition are critical in this process. However, for complex

systems, trial-and-error often fails.

Feedback linearization discussed in Chapter 10, can be used as a nonlinear design methodology. The

basic idea is to first transform a nonlinear system into a linear system using feedback, and then use the

well-known and powerful linear design techniques to complete the control design. The approach has

been used to solve a number of practical nonlinear control problems. It applies to important classes of

nonlinear systems.

Variable Structure Sliding Mode Control

In pure model-based nonlinear control (such as the basic feedback linearization control approach), the

control law is designed based on a nominal model of the physical system. How the control system will

behave in the presence of model uncertainties is not clear at the design stage. In robust nonlinear control

(e.g., variable structure sliding mode control), on the other hand, the controller is designed based on the

consideration of both the nominal model and some characterization of the model uncertainties. Sliding

mode control techniques, discussed in Chapter 10, have proven very effective in a variety of practical

control problems.

Adaptive control is an approach to deal with uncertain systems or time-varying systems. Although the

term “adaptive” can have broad meanings, current adaptive control designs apply mainly to systems with

known dynamic structure but unknown constant or slowly-varying parameters. Adaptive controllers,

whether developed for linear systems or for nonlinear systems, are inherently nonlinear.

562 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Systematic theories exist for the adaptive control of linear systems. Frequently used adaptive control

structures are discussed in Chapter 10.

Gain-Scheduling

Gain-scheduling is an attempt to apply the well-developed linear control methodology to the control of

nonlinear systems. The idea of gain-scheduling is to select a number of operating points which cover

the range of system operation. Then, at each of these points, the designer makes a linear time-invariant

approximation to the plant dynamics, and designs a linear controller for each linearized plant. Between

operating points, the parameters of the compensators are then interpolated, or scheduled; thus resulting

in a global compensator.

Intelligent Control

In order to handle the complexities of nonlinearities and accommodate the demand for high-performance

control systems, intelligent control takes advantage of the computational structures—fuzzy systems

and neural networks—which are inherently nonlinear; a very important property, particularly if the

underlying physical mechanisms for the systems are highly nonlinear. Whereas classical control is rooted

in the theory of differential equations, intelligent control is largely rule-based because the dependencies

involved in its deployment are much too complex to permit an analytical representation. To deal with

such dependencies, the mathematics of fuzzy systems and neural networks integrates the experience and

knowledge gained in the operation of a similar plant, into control algorithm. The power of fuzzy systems

lies in their ability (i) to quantify linguistic inputs, and (ii) to quickly give a working approximation of

complex, and often unknown, system input-output rules. The power of neural networks is in their ability

to learn from data. There is a natural synergy between neural networks and fuzzy systems that makes

their hybridization a powerful tool for intelligent control and other applications. Intelligent control is one

of the most serious candidates for the future control of the large class of nonlinear, partially known, and

time-varying systems.

With no agreed upon scientific definition of intelligence, and due to space limitations, we will not venture

into the discussion of what intelligence is. Rather, we will confine our brief exposition in Chapters 11-14

to intelligent machines—neural networks, support vector machines, fuzzy interference systems, genetic

algorithms, reinforcement learning—in the context of applications in control.

 Nonlinear Systems Analysis 563

9.1 INTRODUCTION

Because nonlinear systems can have much richer and complex behaviors than linear systems, their analysis

is much more difficult. Mathematically, this is reflected in two aspects. Firstly, nonlinear equations,

unlike linear ones, cannot, in general, be solved analytically, and therefore, a complete understanding of

the behavior of a nonlinear system is very difficult. Secondly, powerful mathematical tools like Laplace

and Fourier transforms do not apply to nonlinear systems. As a result, there are no systematic tools for

predicting the behavior of nonlinear systems. Instead, there is a rich inventory of powerful analysis tools,

each best applicable to a particular class of nonlinear control problems [125–129].

Perhaps the single most valuable asset to the field of engineering is the simulation tool—constructing a

model of the proposed or actual system and using a numerical solution of the model to reveal the behavior

of the system. Simulation is the only general method of analysis applicable to finding solutions of linear

and nonlinear differential and difference equations. Of course, simulation finds specific solutions; that is,

solutions to the equations with specific inputs, initial conditions, and parametric conditions. It is for this

reason that simulation is not a substitute for other forms of analysis. Important properties such as stability

and conditional stability are not proven with simulations. When the complexity of a system precludes the

use of any analytical approach to establish proof of stability, simulations will be the only way to obtain

necessary information for design purposes. A partial list of the simulation programs available today is

contained in references [151–154].

This chapter also does not provide a magic solution to the analysis problem. In fact, no universal analytical

technique exists that can cater to our demand on analysis of the effects of nonlinearities. Our focus in this

chapter, is only on some important categories of nonlinear systems for which significant analysis (and

design) can be done.

For the so-called separable systems, which comprise a linear part defined by its transfer function, and

a nonlinear part defined by a time-independent relationship between its input and output variables, the

describing function method is most practically useful for analysis. It is an approximate method but

Nonlinear Systems Analysis

Chapter 9

564 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

experience with real systems and computer simulation results shows adequate accuracy in many cases.

Basically, the method is an approximate extension of frequency response methods (including Nyquist

stability criterion) to nonlinear systems.

In terms of mathematical properties, nonlinearities may be categorized as continuous and discontinuous.

Because discontinuous nonlinearities cannot be locally approximated by linear functions, they are also

called “hard” nonlinearities. Hard nonlinearities (such as saturation, backlash, or coulomb friction) are

commonly found in control systems, both in small range and large range operations. Whether a system

in small range operation should be regarded as nonlinear or linear depends on the magnitude of the hard

nonlinearities and on the extent of their effects on the system performance.

The continuous or so-called “soft” nonlinearities are present in every control system, though not visible

because these are not separable. Throughout the book, we have neglected these nonlinearities in our

derivations of transfer function and state variable models. For example, we have assumed linear restoring

force of a spring, a constant damping coefficient independent of the position of the mass, etc. In practice,

none of these assumptions is true for a large range operation. Also, there are situations, not covered

in this book, wherein the linearity assumption gives too small range of operation to be useful; linear

design methods cannot be applied for such systems. If the controlled systems are not too complex and

the performance requirements are not too stringent, the linearity assumptions made in this book, give

satisfactory results in practice.

Describing function analysis is applicable to separable hard nonlinearities. For this category of nonlinear

systems, as we shall see later in this chapter, the predictions of describing function analysis usually are a

good approximation to actual behavior when the linear part of the system provides a sufficiently strong

filtering effect. Filtering characteristics of the linear part of a system improve as the order of the system

goes up. The ‘low pass filtering’ requirement is never completely satisfied; for this reason, the describing

function method is mainly used for stability analysis and is not directly applied to the optimization of

system design.

Phase-Plane Analysis

Another practically useful method for nonlinear system analysis is the phase-plane method. While phase-

plane analysis does not suffer from any approximations and hence can be used for stability analysis as

well as optimization of system design, its main limitation is that it is applicable to systems which can be

well approximated by second-order dynamics. Its basic idea is to solve second-order differential equation

and graphically display the result as a family of system motion trajectories on a two-dimensional plane,

called the phase plane, which allows us to visually observe the motion patterns of the system. The

method is equally applicable to both hard and soft nonlinearities.

Lyapunov Stability Analysis

The most fundamental analysis tool is the concept of a Lyapunov function and its use in nonlinear

stability analysis. The power of the method comes from its generality. It is applicable to all kinds of

control systems; systems with hard or soft nonlinearities, and of second-order or higher-order. The

limitation of the method lies in the fact that it is often difficult to find a Lyapunov function for a given

system.

 Nonlinear Systems Analysis 565

The aim of this chapter is to introduce the two classical, yet practically important tools—the describing

function method and the phase-plane method—for a class of nonlinear systems. The two methods are

complementary to a large extent, each being available for the study of the systems which are most likely

to be beyond the scope of the other. The phase-plane analysis applies primarily to systems described by

second-order differential equations. Systems of order higher than the second are likely to be well filtered and

tractable by the describing function method.

The use of Lyapunov functions for stability analysis of nonlinear systems is also given in this chapter.

9.2 SOME COMMON NONLINEAR SYSTEM BEHAVIORS

As a minimum, it is important to be aware of the main characteristics of nonlinear behavior, only to

permit recognition if these are encountered experimentally or in system simulations.

The previous chapters have been predominantly concerned with the study of linear time-invariant control

systems. We have observed that these systems have quite simple properties, such as the following:

 a linear system �x = Ax , with x being the vector of states and A being the system matrix, has a

unique equilibrium point (if A is nonsingular; normally true for feedback system matrices);

 the equilibrium point is stable if all eigenvalues of A have negative real parts, regardless of initial

conditions;

 the transient response is composed of the natural modes of the system, and the general solution

can be solved analytically; and

 in the presence of the external input u(t), the system response has a number of interesting

properties: (i) it satisfies the principle of superposition, (ii) the asymptotic stability of the system

implies bounded-input, bounded-output stability, and (iii) a sinusoidal input leads to a sinusoidal

output of the same frequency.

The behavior of nonlinear systems, however, is much more complex. Due to the lack of superposition

property, nonlinear systems respond to external inputs and initial conditions quite differently from linear

systems. Some common nonlinear system properties are as follows [126]:

 (i) Nonlinear systems frequently have more than one equilibrium point. For a linear system, stability

is seen by noting that for any initial condition, the motion of a stable system always converges to

the equilibrium point. However, a nonlinear system may converge to an equilibrium point starting

with one set of the initial conditions, and may go to infinity starting with another set of initial

conditions. This means that the stability of nonlinear systems may depend on initial conditions.

In the presence of a bounded external input, unlike linear systems, stability of nonlinear systems

may also be dependent on the input value.

 (ii) Nonlinear systems can display oscillations of fixed amplitude and fixed period without external

excitation. These oscillations are called limit cycles. Consider the well-known Van der Pol’s

differential equation

My B y y Ky M B K�� �+ - + = > > >() ; , ,2 1 0 0 0 0 (9.1)

 which describes physical situations in many nonlinear systems. It can be regarded as describing

a mass-spring-damper system with a position-dependent damping coefficient B(y2 – 1). For

566 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

large values of y, the damping coefficient

is positive and the damper removes

energy from the system. This implies

that the system motion has a convergent

tendency. However, for small values of y,

the damping coefficient is negative and

the damper adds energy into the system.

This suggests that the system motion has a

divergent tendency. Therefore, because the

nonlinear damping varies with y, the system

motion can neither grow unboundedly

nor decay to zero. Instead, it displays a

sustained oscillation independent of initial

conditions, as illustrated in Fig. 9.1.

 Of course, sustained oscillations can also be found in linear systems, e.g., in the case of marginally

stable linear systems. However, the oscillation of a marginally stable linear system has its amplitude

determined by its initial conditions, and such a system is very sensitive to changes in system

parameters (a slight change in parameters is capable of leading either to stable convergence or

to instability). In nonlinear systems, on the other hand, the amplitude of sustained oscillations

is independent of the initial conditions, and limit cycles are not easily affected by parameter

changes.

 (iii) A nonlinear system with a periodic input may exhibit a periodic output whose frequency is either

a subharmonic or a harmonic of the input frequency. For example, an input of frequency of 10 Hz

may result in an output of 5 Hz for the subharmonic case or 30 Hz for the harmonic case.

 (iv) A nonlinear system can display jump resonance, a form of hysteresis, in its frequency response.

Consider a mass-spring-damper system

My By K y K y�� �+ + +1 2
3 = F cos wt; M > 0, B > 0, K1 > 0, K2 > 0 (9.2)

 Note that the restoring force of the spring

is assumed to be nonlinear. If in an

experiment, the frequency w is varied and

the input amplitude F is held constant,

frequency-response curve of the form

shown in Fig. 9.2, may be obtained. As

the frequency w is increased, the response

y follows the curve through the points A,

B and C. At point C, a small change in

frequency results in a discontinuous jump

to point D. The response then follows the

curve to point E upon further increase in

frequency. As the frequency is decreased

from point E, the response follows the

curve through points D and F. At point F,

a small change in frequency results in a

0
t

y t()

Fig. 9.1 Responses of Van der Pol oscillator

A

F

C
B

D

E

| |Y()jw

w

Fig. 9.2 Frequency response of a system with
jump resonance

 Nonlinear Systems Analysis 567

discontinuous jump to point B. The response follows the curve to point A for further decrease in

frequency. Observe from this description that the response never actually follows the segment CF.

This portion of the curve represents a condition of unstable equilibrium.

9.3 COMMON NONLINEARITIES IN CONTROL SYSTEMS

In this section, we take a closer look at the nonlinearities found in control systems. Consider the typical

block diagram of closed-loop system shown in Fig. 9.3. It is composed of four parts: a plant to be

controlled, sensors for measurements, actuators for control action, and a control law usually implemented

on a computer. Nonlinearities may occur in any part of the system.

Controller Actuator Plant

Sensor

–

+ y t()r t()

Fig. 9.3 General diagram of a control system

Saturation is probably the most commonly encountered nonlinearity in control systems. It is often

associated with amplifiers and actuators. In transistor amplifiers, the output varies linearly with the

input, only for small amplitude limits. When the input amplitude gets out of the linear range of the

amplifier, the output changes very little and stays close to its maximum value. Figure 9.4a shows a linear-

segmented approximation of saturation nonlinearity.

Most actuators display saturation characteristics. For example, the output torque of a servo motor

cannot increase infinitely, and tends to saturate due to the properties of the magnetic material. Similarly,

valve-controlled hydraulic actuators are saturated by the maximum flow rate.

Deadzone

A deadzone nonlinearity may occur in sensors, amplifiers and actuators. In a dc motor, we assume that

any voltage applied to the armature windings will cause the armature to rotate if the field current is

maintained constant. In reality, due to static friction at the motor shaft, rotation will occur only if the

torque provided by the motor is sufficiently large. This corresponds to a so-called deadzone for small

voltage signals. Similar deadzone phenomena occur in valve-controlled pneumatic and hydraulic

actuators. Figure 9.4b shows linear-segmented approximation of deadzone nonlinearity.

568 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Backlash

A backlash nonlinearity commonly occurs in mechanical components of control systems. In gear trains,

small gaps exist between a pair of mating gears (refer to Fig. 9.4c). As a result, when the driving gear

rotates a smaller angle than the gap H, the driven gear does not move at all, which corresponds to the

deadzone (OA segment in Fig. 9.4c); after contact has been established between the two gears, the driven

gear follows the rotation of the driving gear in a linear fashion (AB segment). When the driving gear

rotates in the reverse direction, by a distance of 2H, the driven gear again does not move, corresponding

to the segment BC in Fig. 9.4c. After the contact between the two gears is re-established, the driven gear

linearly follows the rotation of the driving gear in the reverse direction (CD segment). Therefore, if the

driving gear is in periodic motion, the driven gear will move in the fashion represented by the closed

path EBCD.

Fig. 9.4

 Nonlinear Systems Analysis 569

A critical feature of backlash, a form of hysteresis, is its multivalued nature. Corresponding to each

input, two output values are possible; which one of the two occurs depends on the history of the input.

In any system where there is a relative motion between contacting surfaces, there are several types of

friction: all of them nonlinear—except the viscous components. Coulomb friction is, in essence, a drag

(reaction) force which opposes motion, but is essentially constant in magnitude, regardless of velocity

(Fig. 9.4d). The common example is an electric motor, in which we find Coulomb friction drag due to

the rubbing contact between the brushes and the commutator.

In this book we have primarily covered the following three modes of control:

 (i) proportional control;

 (ii) integral control; and

 (iii) derivative control.

Another important mode of feedback control is the on–off control. This class of controllers have only two

fixed states rather than a continuous output. In its wider application, the states of an on–off controller may

not, however, be simply on and off but could represent any two values of a control variable. Oscillatory

behavior is a typical response characteristic of a system under two-position control, also called bang-

bang control. The oscillatory behavior may be avoided using a three-position control (on–off controller

with a deadzone). Figure 9.4e shows the characteristics of on–off controllers.

The on–off mode of control results in a variable structure system whose structure changes in accordance

with the current value of its state. A variable structure system can be viewed as a system composed of

independent structures, together with a switching logic between each of the structures. With appropriate

switching logic, a variable structure system can exploit the desirable properties of each of the structures

the system is composed of. Even more, a variable structure system may have a property that is not a

property of any of its structures. The variable structure sliding mode control law is usually implemented

on a computer. The reader will be exposed to simple variable structure systems in this chapter; details to

follow in Chapter 10.

We may classify the nonlinearities as inherent and intentional. Inherent nonlinearities naturally come with

the system’s hardware (saturation, deadzone, backlash, Coulomb friction). Usually such nonlinearities

have undesirable effects, and control systems have to properly compensate for them. Intentional

nonlinearities, on the other hand, are artificially introduced by the designer. Nonlinear control laws, such

as bang-bang optimal control laws and adaptive control laws (refer to Chapter 10), are typical examples

of intentional nonlinearities.

9.4 DESCRIBING FUNCTION FUNDAMENTALS

Of all the analytical methods developed over the years for nonlinear systems, the describing function

method is generally agreed upon as being the most practically useful. It is an approximate method,

570 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

but experience with real systems and computer simulation results, shows adequate accuracy in many

cases. The method predicts whether limit cycle oscillations will exist or not, and gives numerical

estimates of oscillation frequency and amplitude when limit cycles are predicted. Basically, the method

is an approximate extension of frequency-response methods (including Nyquist stability criterion) to

nonlinear systems.

To discuss the basic concept underlying the describing function analysis, let us consider the block

diagram of a nonlinear system shown in Fig. 9.5, where the blocks G1(s) and G2(s) represent the linear

elements, while the block N represents the nonlinear element.

N
yx+

–

r = 0
G2()sG1()s

Fig. 9.5 A nonlinear system

The describing function method provides a “linear approximation” to the nonlinear element based on

the assumption that the input to the nonlinear element is a sinusoid of known, constant amplitude. The

fundamental harmonic of the element’s output is compared with the input sinusoid, to determine the

steady-state amplitude and phase relation. This relation is the describing function for the nonlinear

element. The method can, thus, be viewed as ‘harmonic linearization’ of a nonlinear element.

The describing function method is based on the Fourier series. A review of the Fourier series will be in

order here.

9.4.1 Fourier Series

We begin with the definition of a periodic signal. A signal y(t) is said to be periodic with the period T if

y(t + T) = y(t) for every value of t. The smallest positive value of T for which y(t + T) = y(t), is called

fundamental period of y(t). We denote the fundamental period as T0. Obviously, 2T0 is also a period of

y(t), and so is any integer multiple of T0.

A periodic signal y(t) may be represented by the series [31]:

 y(t) =
a0

2
 +

n =
Â

1

[an cosnw0t + bn sinnw0t] (9.3a)

 =
a0

2
 +

n =
Â

1

 Yn sin(nw0t + fn) (9.3b)

where an =
2

0T

0

0T

Ú y(t) cosnw0t dt; n = 0, 1, 2, ... (9.3c)

 bn =
2

0T

0

0T

Ú y(t) sinnw0t dt; n = 1, 2, ... (9.3d)

 Nonlinear Systems Analysis 571

 Yn = a bn n
2 2+ (9.3e)

 fn = tan–1
a

b

n

n

Ê
ËÁ

ˆ
¯̃

 (9.3f)

In Eqn. (9.3b), the term for n = 1 is called fundamental or first harmonic, and always has the same

frequency as the repeti tion rate of the original periodic waveform; whereas n = 2, 3, ..., give second, third,

and so forth harmonic frequencies as integer multiples of the fundamental frequency.

Introducing a change of variable to y = w0t, we obtain the fol lowing alternative equations for the

coefficients of Fourier series (w0 = 2p/T0):

 an =
1

0

2

p

p

Ú y(t) cosnw0t d(w0t); n = 0, 1, 2, ... (9.4a)

 bn =
1

0

2

p

p

Ú y(t) sinnw0t d(w0t); n = 1, 2, ... (9.4b)

Certain simplifications are possible when y(t) has a symmetry of one type or another.

 (i) Even symmetry: y(t) = y(–t) results in

 bn = 0; n = 1, 2, ... (9.4c)

 (ii) Odd symmetry: y(t) = –y(–t) results in

 an = 0; n = 0, 1, 2, ... (9.4d)

 (iii) Odd half-wave symmetry: y(t ± T0/2) = –y(t) results in

 an = bn = 0; n = 0, 2, 4, ... (9.4e)

9.4.2

Let us assume that input x to the nonlinearity in Fig. 9.5 is sinusoidal, i.e.,

x = X sin w t

With such an input, the output y of the nonlinear element will, in general, be a nonsinusoidal periodic

function which may be expressed in terms of Fourier series as follows (refer to Eqns (9.3)–(9.4)):

y = Y0 + A1cos w t + B1sin w t + A2 cos 2w t + B2sin 2w t + �

The nonlinear characteristics listed in the previous section, are all odd-symmetrical/odd half-wave

symmetrical; the mean value Y0 for all such cases is zero and therefore, the output

y = A1cos w t + B1sin w t + A2 cos 2w t + B2sin 2w t + �

In the absence of an external input (i.e., r = 0 in Fig. 9.5), the output y of the nonlinear element N is

fed back to its input, through the linear elements G2(s) and G1(s) in tandem. If G2(s)G1(s) has low-pass

characteristics (this is usually the case in control systems), it can be assumed, to a good degree of

approximation, that all the higher harmonics of y are filtered out in the process, and the input x to the

nonlinear element N is mainly contributed by the fundamental component (first harmonic) of y, i.e., x

remains sinusoidal. Under such conditions, the second and higher harmonics of y can be thrown away for

572 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the purpose of analysis, and the fundamental component of y, i.e.,

y1 = A1cos w t + B1sin w t

need only be considered.

The above procedure heuristically linearizes the nonlinearity since, for a sinusoidal input, only a

sinusoidal output of the same frequency is now assumed to be produced. This type of linearization, called

the first-harmonic approximation, is valid for large signals as well, so long as the filtering condition is

satisfied.

We can write y1(t) in the form

 y1(t) = A1sin(w t + 90°) + B1sin w t = Y1 sin(w t + f1) (9.5a)

where, by using phasors,

 Y1–f1 = B1 + jA1 = B A1
2

1
2+ – tan–1(A1/B1) (9.5b)

The coefficients A1 and B1 of the Fourier series are given by (refer to Eqns 9.3)

 A1 =
1

0

2

p

p

Ú y cos w t d(w t) (9.5c)

 B1 =
1

0

2

p

p

Ú y sinw t d(w t) (9.5d)

As we shall see shortly, the amplitude Y1 and the phase shift f1 are both functions of X, but independent

of w. We may combine the amplitude ratio and the phase shift in a complex equivalent gain N(X), such

that

 N(X) =
Y X

X
X

B jA

X

1
1

1 1()
()– =

+
f (9.6)

Under first-harmonic approximation, the nonlinear element is completely characterized by the function

N(X); this function is usually referred to as the describing function of the nonlinearity.

The describing function differs from a linear system transfer function, in that its numerical value will vary

with input amplitude X. Also, it does not depend on frequency w (there are, however, a few situations

in which the describing function for the nonlinearity is a function of both, the input amplitude X, and

the frequency w (refer to [128–129]). When embedded in an otherwise linear system (Fig. 9.6), the

describing function can be combined with the ‘ordinary’ sinusoidal transfer function of the rest of the

system, to obtain the complete open-loop function. However, we will get a different open-loop function

for every different amplitude X. We can check all of these open-loop functions for closed-loop stability,

using Nyquist stability criterion.

–

+ x y
N X() G2()jw

r = 0
G1()jw

Describing
function

Fig. 9.6

 Nonlinear Systems Analysis 573

It is important to remind ourselves here that the simplicity in analysis of nonlinear systems using

describing functions, has been achieved at the cost of certain limitations; the foremost being the

assumption that in traversing the path through the linear parts of the system from nonlinearity output

back to nonlinearity input, the higher harmonics will have been effectively low-pass filtered, relative to

the first harmonic. When the linear part of the system does indeed provide a sufficiently strong filtering

effect, then the predictions of describing function analysis, usually, are a good approximation to actual

behavior. Filtering characteristics of the linear part of the system improve as the order of the system goes

up.

The ‘low-pass filtering’ requirement is never completely satisfied; for this reason, the describing function

method is mainly used for stability analysis and is not directly applied to the optimization of system

design. Usually, the describing function analysis will correctly predict the existence and characteristics

of limit cycles. However, false indications cannot be ruled out; therefore, the results must be verified

by simulation. Simulation, in fact, is an almost indispensable tool for analysis and design of nonlinear

systems; describing function and other analytical methods, provide the background for intelligent

planning of the simulations.

We will limit our discussion to separable nonlinear systems with reference input r = 0, and with

symmetrical nonlinearities (listed in Section 9.3) in the loop. Refer to [128–129] for situations wherein

dissymmetrical nonlinearities are present, and/or the reference input is nonzero.

9.5 DESCRIBING FUNCTIONS OF
 COMMON NONLINEARITIES

Before coming to the stability study by the describing function method, it is worthwhile to derive the

describing functions of some common nonlinearities. Our first example is an on–off controller with a

deadzone as in Fig. 9.7. If X is less than deadzone D, then the controller produces no output; the first

harmonic component of the Fourier series is, of course, zero, and the describing function is also zero. If

X > D, the controller produces the ‘square wave’ output y. One cycle of this periodic function of period

2p is described as follows:

 0 ; 0 £ wt < a

 M ; a £ wt < (p – a)

 y =

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô

 0 ; (p – a) £ wt < (p + a) (9.7)

 – M ; (p + a) £ wt < (2p - a)

 0 ; (2p - a) £ wt £ 2p

where X sina = D; or a = sin–1(D/X).

This periodic function has odd symmetry:

 y(w t) = – y(–w t)

Therefore, the fundamental component of y is given by (refer to Eqn. (9.4d))

 y1 = B1sinw t

574 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where B1 =
1

0

2

p

p

Ú y sinw t d(w t)

Due to the symmetry of y (refer to Fig. 9.7), the coefficient B1 can be calculated as follows:

B1 =
4

0

2

p

p

Ú y sinw t d(w t) =
4 4

2
M

t d t
M

p
w w

p
a

a

p

sin () cosÚ = (9.8)

Since A1 (the Fourier series cosine coefficient) is zero, the first harmonic component of y is exactly in

phase with X sinwt, and the describing function N(X) is given by (refer to Eqns (9.6)–(9.8))

 N(X) =

0

4
1

2

;

;

X

M

X X
X

<

- Ê
ËÁ

ˆ
¯̃

≥

Ï

Ì
Ô

Ó
Ô
Ô

D

D
p

D (9.9)

For a given controller, M and D are fixed and the describing function is a function of input amplitude

X, which is graphed in Fig. 9.8a, together with peak location and value, found by standard calculus

X

x 0

–M

M

y y

x

D
–D

a

p a–

p a+

2p a–

2p a+

3p a–

wt

a

p a–

wt

p a+ 2p a–

2p a+ 3p a–

Fig. 9.7

 Nonlinear Systems Analysis 575

maximization procedure. Note that for a given X, N(X) is just a pure real positive number, and thus, plays

the role of a steady-state gain in a block diagram of the form shown in Fig. 9.6. However, this gain term

is unusual in that it changes when X changes.

2M

pD

(a)

Re

Im
Increasing

Increasing

(b)

1

= –
-locus

A

B

= 2

N()X

2DD0 X

X

D
X

DX

D

X

D X

D
– 1
()N X

– 1
N

pD
2M

Fig. 9.8

A describing function N(X) may be equivalently represented by a plot of

 - = - – -
1 1

1
N X N X

N X
() ()

(/ ())
 (9.10)

as a function of X on the polar plane. We will use this form of representation in the next section for

stability analysis.

Rearrangement of Eqn. (9.9) gives

 - = -
-

1

4 1N X M

X

X()

(/)

(/)

pD D

D

2

2
 (9.11)

Figure 9.8b gives the representation on the polar plane, of the describing function for an on–off controller

with deadzone. It may be noted that though the points A and B lie at the same place on the negative real

axis, they belong to different values of X/D.

We choose as another example the backlash, since its behavior brings out certain features not encountered

in our earlier example. The characteristics of backlash nonlinearity, and its response to sinusoidal input,

576 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

are shown in Fig. 9.9. The output y is again a periodic function of period 2p ; one cycle of this function

is described as follows:

 x – H ; 0 £ w t < p /2

 X – H ; p /2 £ w t < (p – b)

 y =

Ï

Ì
Ô
Ô

Ó
Ô
Ô

 x + H ; (p – b) £ w t < 3p/2 (9.12)

 – X + H ; 3p /2 £ w t < (2p – b)

 x – H ; (2p – b) £ w t £ 2p

where X sinb = X – 2H; or b = sin–1
1

2
-Ê

ËÁ
ˆ
¯̃

H

X
.

Fig. 9.9 Fourier-series analysis of backlash

The periodic function does not possess odd symmetry:

y(w t) π – y(–w t),

but possesses odd half-wave symmetry:

y(w t ± p) = – y(w t)

Therefore, the fundamental component of y is given by (refer to Eqn. (9.4e))

 y1 = A1cosw t + B1 sinw t

where A1 =
1

0

2

p

p

Ú y cosw t d(w t)

 Nonlinear Systems Analysis 577

B1 =
1

0

2

p

p

Ú y sinw t d(w t)

Due to the symmetry of y, only the positive half-wave need be considered (Fig. 9.9):

 A1 =
2

0

2

2

p
w w w w w

p

p

p b

(sin)cos () () cos ()

()

X t H t d t X H t d tÚ Ú- + -

È

Î

Í
Í
Í
Í

-

 + (sin)cos ()

()

X t H t d tw w w

p b

p

-
Ú +

˘

˚

˙
˙

 =
2

0

2
X

p

p

Ú sinq cosq dq –
2

0

2
H

p

p

Ú cosq dq +
2()X H-

p

p

p b

2

()-

Ú cosq dq

 +
2X

p
p b

p

()-
Ú sinq cosq dq +

2H

p
p b

p

()-
Ú cosq dq

 = - +
-

+
3

2

2 2

2
2

X X H X

p p
b

p
b

()
sin cos

 = - + + = -
3

2

2

2
22 2X X X X

p p
b

p
b

p
bsin cos cos (9.13a)

 B1 =
2

0

2

2

p
w w w w w

p

p

p b

X t H t d t X H t d tsin sin () ()sin ()

()

-()
È

Î

Í
Í
Í
Í

+ -Ú Ú
-

 + +
˘

˚

˙
˙

-
Ú (sin)sin ()

()

X t H t d tw w w

p b

p

 =
2 2 22

0

2

0

2
X

d
H

d
X H

p
q q

p
q q

p

p p

sin sin
()

Ú Ú- +
-

 sin

()

p

p b

q q

2

-

Ú d

+ +
- -
Ú Ú

2 22X
d

H
d

p
q q

p
q q

p b

p

p b

p

sin sin

() ()

 =
X X H X

p

p
b

p
b

p
b

2

2 2

2
2+È

ÎÍ
˘

˚̇
+

-
-

()
cos sin

 =
X X X X

p

p
b

p
b b

p
b

p

p
b b

2

2

2
2

2

1

2
2+È

ÎÍ
˘

˚̇
+ - = + +È

ÎÍ
˘

˚̇
sin cos sin sin (9.13b)

578 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 It is clear that the fundamental component of y will have a phase shift with respect to X sinwt (a feature

not present in our earlier example). The describing function N(X) is given by (refer to Eqns (9.6), (9.12),

(9.13))

 N(X) =
1

X
(B1 + jA1) =

1

2

1

2
2 2

p

p
b b b+ + -È

ÎÍ
˘

˚̇
sin cosj (9.14)

 b = sin–1 1
2

-Ê
ËÁ

ˆ
¯̃

H

X

Note that N(X) is a function of the nondimensional ratio H/X; we can thus tabulate or plot a single graph

of N(X) that will be usable for any numerical value of H (refer to Table 9.1, and Fig. 9.10).

Table 9.1

H/X |–1/N(X)| –(–1/N(X))

0.000 1.000 180.0

0.050 1.017 183.5

0.125 1.066 188.5

0.200 1.134 193.4

0.300 1.259 199.7

0.400 1.435 206.0

0.500 1.687 212.5

0.600 2.072 219.3

0.700 2.720 226.7

0.800 4.024 235.1

0.850 5.330 239.9

0.900 7.946 245.6

0.925 10.560 248.9

0.950 15.800 252.8

0.975 31.500 257.9

We have so far given illustrative derivations of describing functions for on–off controller with deadzone,

and backlash. By similar procedures, the describing functions of other common nonlinearities can be

derived; some of these are tabulated in Table 9.2.

= 0

– 1.0

Re

Im

1

H
X

– 1
()N X

H
X

Fig. 9.10

 Nonlinear Systems Analysis 579

Table 9.2

Nonlinearity Describing function (input = X sinw t)

1.

–M

M N(X) =
4M

Xp

2.

M

– M

D
– D

N X

X

M

X X
X

() =

<0

4
1

2

;

;

D

D
D

p
- ≥
Ê
ËÁ

ˆ
¯̃

Ï

Ì
Ô

Ó
Ô
Ô

3.

– S
S

Slope = K

N X

K X S

K S

X

S

X

S

X
X S

() =

 <;

sin ;
2

1

2
1

p

- + - ≥
Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ï

Ì
ÔÔ

Ó
Ô
Ô

4.

Slope = K

– D
D

N X

X

K

X X X
X

() =

<0

2

2
11

2

;

sin ;

D

D D D
D

p

p
- - -Ê

ËÁ
ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙

≥

Ï

Ì
ÔÔ

Ó
Ô
Ô

-

5.

H

– H

Slope = 1

N(X) =
1

2

1

2
2

2

1
1

2

p

p
b b b

b

+ + -

= - -

È

ÎÍ
˘

˚̇
Ê
ËÁ

ˆ
¯̃

sin cos

sin

j

H

X

580 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

9.6 STABILITY ANALYSIS BY
 THE DESCRIBING FUNCTION METHOD

Consider the linear system of Fig. 9.11a. Application of Ny quist stability criterion1 to this system

involves the following steps.

 (i) Define the Nyquist contour in the s-plane that encloses the entire right-hand side (unstable region)

of the s-plane (Fig. 9.11b).

 (ii) Sketch the Nyquist plot, which is the locus of KG(s)H(s), when s takes on values along the Nyquist

contour (Fig. 9.11c).

(a)

+

–

(b)

0

R

(c)

–1

Im

Re

(d)

Im

Re

(e)

Im

Re

Y()sR()s
KG()s

H()s

Re jq
s

– j

jw
j

w

w

G j H j() ()ww

KG j H j() ()ww

1
K

1
K

w

G j H j() ()ww

Fig. 9.11

 1 Chapter 10 of reference [155].

 Nonlinear Systems Analysis 581

 (iii) The characteristic equation of the system is

 1 + KG(s)H(s) = 0

 or

 KG(s)H(s) = –1 (9.15)

 The stability of the closed-loop system is determined by investi gating the behavior of the Nyquist

plot of KG(s)H(s) with respect to the critical point (–1 + j0) in the KG(s)H(s)-plane.

 For the predominant case of systems wherein open-loop transfer function KG(s)H(s) has no poles

in the right half of the s-plane, the Nyquist stability criterion is stated below as

 If the Nyquist plot of the open-loop transfer function KG(s)H(s) corresponding to the Nyquist

contour in the s-plane, does not encircle the critical point (–1 + j0), the closed-loop system is

stable.

 (iv) The characteristic equation (9.15) may be rearranged as follows:

 G(s)H(s) = –1/K (9.16)

 For the linear system with open-loop transfer function KG(s)H(s), we can count the number of

encirclements of (–1/K + j0) point if the Nyquist plot of G(s)H(s) is constructed (Fig. 9.11d).

 (v) When the Nyquist plot of G(s)H(s) passes through (–1/K + j0) point, the number of encirclements is

indeterminate. This corre sponds to the condition where 1 + KG(s)H(s) has zeros on the imaginary

axis (i.e., the closed-loop system has poles on the imaginary axis). The gain corresponding to this

situation, will yield oscillatory behavior (we have assumed that the zeros are nonrepeated).

 (vi) The most commonly occurring situation in control system design is that the system becomes

unstable if the gain increases past a certain critical value. Stability condition for such systems,

becomes

 | G(jw)H(jw) | < 1/K at –G(jw)H(jw) = –180º

 The stability may, therefore, be examined from polar plot (plot of G(jw)H(jw) on polar plane

with w varying from 0 to) only (Fig. 9.11e).

Consider now a nonlinear system of Fig. 9.12. N(X) is the describing function of the nonlinear element

and G(s) is the transfer function of the linear part of the system. G(s) is assumed to have no poles in the

right half of the s-plane.

The validity of the block diagram shown in Fig. 9.12 is based on the assumption that the input to the

nonlinearity is a pure sinusoid x = X sinw t. This necessarily requires that r is zero, since nonzero values

of the system input, usually result in the nonlinearity input signal containing components in addition to

the assumed sine wave. So, the describing function approach is applicable when the input r is zero and

the system is excited by some initial conditions. For different values of the initial conditions, a signal

of the form x = X sinw t will be generated

at the input of an odd-symmetrical/odd

half-wave symmetrical nonlinearity, with

X varying from 0 to . This is true only

if the linear part of the system possesses

the required low-pass characteristics. For

situations where the nonlinearity input

–

+ x
N()X G()s

r = 0

Fig. 9.12 A nonlinear system

582 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

signal contains components in addition to X sinw t (such as r not being zero), the method of dual-input

describing functions may be useful (refer to [128–129]).

For a given X, N(X) in Fig. 9.12 is just a real/complex number; the condition (9.16) therefore, becomes

 G(s) = – 1/N(X) (9.17)

This modified condition differs from the condition (9.16), in the fact that the critical point (–1/K + j0),

now becomes the critical locus – 1/N(X) as a function of X. The stability analysis can be carried out by

examining the relative position of the following plots on polar plane.

 (i) Plot of G(jw) with w varying from 0 to , called the polar plot of G(jw) (note that the Nyquist

plot is the plot of G(jw) with w varying from – to +).

 (ii) Plot of – 1/N(X) with X varying from 0 to .

When the critical points of – 1/N(X) lie to the left of the polar plot of G(jw) (or are not encircled by the

Nyquist plot of G(jw)), the closed-loop system is stable; any disturbances which appear in the system

will tend to die out. Conversely, if any part of the –1/N(X) locus lies to the right of the polar plot of G(jw)

(or is enclosed by the Nyquist plot of G(jw)), it implies that any disturbances which are characterized

by the values of X corresponding to the enclosed critical points, will provide unstable operations. The

intersection of G(jw) and – 1/N(X) loci, corresponds to the possibility of a periodic oscillation (limit

cycle) characterized by the value of X on the – 1/N(X) locus, and the value of w on the G(jw) locus.

Figure 9.13a shows a G(jw) plot superimposed on a – 1/N(X) locus. The values of X, for which the

– 1/N(X) locus lies in the region to the right of an observer traversing the polar plot of G(jw) in the direction

of increasing w, correspond to unstable conditions. Similarly, the values of X, for which the –1/N(X) locus

lies in the region to the left of an observer traversing the polar plot of G(jw) in the direction of increasing

w, correspond to the stable conditions. The locus of –1/N(X) and the polar plot of G(jw) intersect at the

point A(w = w2, X = X2), which corresponds to the condition of limit cycle. The system is unstable for

X < X2 and is stable for X > X2. The stability of the limit cycle can be judged by the perturbation

technique described below.

Im Im

ReRe

(a) (b)

X

X
w

w

B X()3

A X(,)2 w2

C X()1

G j()-plotw

G j()-plotw

– 1
()N X

-locus

– 1
()N X

-locus

Fig. 9.13

 Nonlinear Systems Analysis 583

Suppose that the system is originally operating at A under the state of a limit cycle. Assume that a slight

perturbation is given to the system, so that the input to the nonlinear element increases to X3, i.e., the

operating point is shifted to B. Since B is in the range of stable operation, the amplitude of the input to

the nonlinear element progressively decreases, and hence the operating point moves back towards A.

Similarly, a perturbation which decreases the amplitude of input to the nonlinearity, shifts the operating

point to C which lies in the range of unstable operation. The input amplitude now progressively increases

and the operating point again returns to A. Therefore, the system has a stable limit cycle at A.

Figure 9.13b shows the case of an unstable limit cycle. For systems having G(jw) plots and – 1/N(X) loci

as shown in Figs 9.14a and 9.14b, there are two limit cycles; one stable and the other unstable.

Describing function method usually gives sufficiently accurate information about stability and limit

cycles. This analysis is invariably followed by a simulation study.

The transfer function G(s) in Fig. 9.12, when converted to state variable formulation, takes the form

 �x(t) = Ax(t) + bu(t); x(0) =D x0

 y(t) = cx(t)

where

 x(t) = n ¥ 1 state vector for nth order G(s);

 u(t) = input to G(s);

 y(t) = output of G(s); A = n ¥ n matrix; b = n ¥ 1 column matrix; and c = 1 ¥ n row matrix.

In Appendix A we use MATLAB Software SIMULINK to obtain response of nonlinear systems of the

form given in Fig. 9.12 with zero reference input and initial state x0.

X

Unstable

Stable

X

Stable

Unstable

Im

ReRe

Im

(a) (b)

– 1
()N X

-locus– 1
()N X

-locus

G j()-plotw
G j()-plotw

w

w

Fig. 9.14

584 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 9.1

Let us investigate the stability of a with system on–off controller, shown in Fig. 9.15. Using the describing

function of an on–off nonlinearity given in Table 9.2, we have

 - = -
1

4N E

E

()

p (9.18)

where E is the maximum amplitude of the sinusoidal signal e. Figure 9.16 shows the locus of – 1/N(E)

as a function of E, and the plot of G(jw) for K = 5. Equation (9.17) is satisfied at A since the two graphs

intersect at this point.

–

+ e

–1

1
u yr = 0

G() =s
K

s s(+ 1)(0.1 + 1)2

Fig. 9.15

The point of intersection on the G(jw) plot gives a numerical value w1 for the frequency of the limit cycle;

whereas, the same point on the – 1/N(E) locus gives us the predicted amplitude E1 of the oscillation. As

an observer traverses the G(jw) plot in the direction of increasing w, the portion O-A of the –1/N(E)

locus lies to its right and the portion A-C lies to its left. Using the arguments presented previously, we

can conclude that the limit cycle is a stable one.

Since – 1/N(E) is a negative real number, it is clear that intersection occurs at – 180° phase angle. The

frequency w1 that gives –G(jw1) = – 180° is 10.95 rad/sec. Furthermore, at point A

O
C

E

Re

Im

K = 5

K > 5
G j()w

w

–1
()N E

A E(,)1 w1

B E(,)2 w2

5

Fig. 9.16 Stability analysis of the system in Fig. 9.15

 Nonlinear Systems Analysis 585

 |G(jw1)| = -
1

1N E()

At w1 = 10.95, |G(jw1)| = 0.206 and, therefore, (refer to Eqn. (9.18)).

 - =
1

41

1

N E

E

()

p
 = 0.206

This gives E1 = 0.262.

The describing function analysis, thus predicts a limit cycle (sustained oscillation)

y(t) = – e(t) = – 0.262 sin 10.95t

For K > 5, the intersection point shifts to B (Fig. 9.16) resulting in a limit cycle of amplitude E2 > E1 and

frequency w2 = w1. It should be observed that the system has a limit cycle for all positive values of

gain K.

To gain some further insight into on–off control behavior and describing function analysis, let us modify

the system of Fig. 9.15 by letting the linear portion be of second-order with

G(s) =
5

1 0 1 1()(.)s s+ +

Figure 9.17 shows the plot of G(jw) superimposed

on the locus of – 1/N(E). The intersection of the two

graphs is now impossible, since the phase angle of

neither G(jw) nor – 1/N(E), can be more lagging than

–180°. Describing function analysis thus seems

to predict no limit cycling, whereas, the fact that

the control signal u must be either +1.0 or –1.0

dictates that the system oscillate. One possible

interpretation to this analysis would be that the

second-order linear system provides less of the low-

pass filtering assumed in the describing function

method, than did the third-order system and thus

the approximation has become inaccurate, to the

point of predicting no limit cycle when actually

one occurs. Another interpretation would be that

the curves actually do ‘intersect’ at the origin,

predicting a limit cycle of infinite frequency and infinitesimal amplitude. This latter interpretation, even

though it predicts a physically impossible result, agrees with the rigorous mathematical solution of the

differential equations: for some nonzero initial value of y, we find that y(t) oscillates about zero, with

ever-decreasing amplitude and ever-increasing frequency. We will examine this solution on the phase

plane in a later section.

Let us now modify the system of Fig. 9.15 by giving the controller a deadzone D, as shown in

Fig. 9.18. The –1/N(E) locus for this type of controller is given by Fig. 9.8b. Plots of G(jw) for different

values of K, superimposed on – 1/N(E) locus, are shown in Fig. 9.19. From this figure, we observe

Im

5

Re

E

–1
()N E

G j()w

w

Fig. 9.17
system with second–order plant

586 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

that for K = K1, the G(jw) plot crosses the

negative real axis at a point to the right

of – p D/2, such that no intersection takes

place between the graphs of G(jw) and

– 1/N(E), and therefore, no limit cycle

results. With such a gain, the –1/N(E)

locus lies entirely to the left of the G(jw)

plot; the system is, therefore, stable, i.e.,

it has effectively positive damping.

If the gain K is now increased to a value

K2, such that the G(jw) plot intersects the

–1/N(E) locus at the point A (i.e., on the

negative real axis at –p D/2), then there

exists a limit cycle. Now, suppose that the

system is operating at the point A. Any

increase in the amplitude of E takes the

operating point to the left so that it is not

enclosed by the G(jw) plot, which means

that the system has positive damping. This

reduces E till the operating point comes

back to A. Any decrease in the amplitude

of E again takes the operating point to the

left of the G(jw) plot, i.e., the system has positive damping which further reduces E, finally driving the

system to rest. Since random disturbances are always present in any system, the system under discussion

cannot remain at A. Therefore, the limit cycle represented by A is unstable.

When the gain K is further increased to K3, the graphs of G(jw) and –1/N(E) intersect at two points B

and C. By arguments similar to those advanced earlier, it can be shown that the point B represents an

unstable limit cycle and C represents a stable limit cycle. It may be noted that though the points B and C

lie at the same place on the negative real axis, they belong to different values of E/D.

It is also clear that limit cycling is predicted only for deadzone D smaller than the value given by

pD
2

 = |G(jw1)|

where w1 is the frequency at which the plot G(jw) intersects the negative real axis. A deadzone in on–off

controllers appears to be a desirable feature to avoid limit cycling. However, as we shall see later in this

chapter, a large value of D would cause the steady-state performance of the system to deteriorate.

Example 9.2

Figure 9.20a shows a block diagram for a servo system consisting of an amplifier, a motor, a gear train,

and a load (gear 2 shown in the diagram includes the load element). It is assumed that the inertia of the

gears and load element is negligible compared with that of the motor, and backlash exists between gear

1 and gear 2. The gear ratio between gear 1 and gear 2 is unity.

Fig. 9.18

–1
()N E

1
N

p D
2

= ––

C
A

B

K K= 1

K K= 2K K= 3

E/

= 2

D

E/D

E/D

Re

w

Im

G j()w

Fig. 9.19 Stability analysis of the system of Fig. 9.18

 Nonlinear Systems Analysis 587

–

e
Amplifier Motor

x Gear 1

Gear 2

y

(a)

–1

1

Slope = 1

ye

–

(b)

G() =s
5

(+ 1)s s

Fig. 9.20 A servo system with backlash in gears

The transfer function of the amplifier-motor combination, is

given by 5/s(s + 1) and the backlash amplitude is given as unity

(H = 1).

From the problem statement, the block diagram of the system

may be redrawn as shown in Fig. 9.20b. Let us investigate the

stability of this system. The –1/N(X) locus for the backlash

nonlinearity is given by Fig. 9.10 (Table 9.1). Plot of G(jw)

superimposed on –1/N(X) locus is shown in Fig. 9.21. As seen

from this figure, there are two intersections of the two loci.

Applying the stability test for the limit cycle reveals that point

A corresponds to a stable limit cycle and point B corresponds to

an unstable limit cycle. The stable limit cycle has a frequency

of 1.6 rad/sec and an amplitude of 2 (the unstable limit cycle

cannot physically occur). To avoid limit-cycle behavior, the

gain of the amplifier must be decreased sufficiently, so that the

entire G(jw) plot lies to the left of –1/N(X) locus.

Note that checking for an intersection must be done graphi-

cally/numerically, since no analytical solution for limit-cycle

amplitude or frequency is possible. A computer program that

tabulates G(jw) and –1/N(X) is useful in searching for intersec-

tions and is not difficult to write. Once the general region of an

intersection is found, we can use smaller increments of H/X and

w to pinpoint the intersection, as accurately as we wish.

9.7

The free motion of any second-order nonlinear system can always be described by an equation of the

form

 �� � � �y g y y y h y y y+ + =(,) (,) 0 (9.19)

The state of the system, at any moment, can be represented by a point of coordinates (,)y y� in a system

of rectangular coordinates. Such a coordinate plane is called a ‘phase plane’.

In terms of the state variables

 x y x y1 2= =, , � (9.20a)

–1
()N X

Re

Im
–1

1
X

B

A

G j()w

w = 1.6

1
X

= 0.5

w

Fig. 9.21 Stability analysis of the
system of Fig. 9.20

588 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

second-order system (9.19) is equivalent to the following canonical set of state equations:

�

�

x
dx

dt
x

x
dx

dt
g x x x h x x x

1
1

2

2
2

1 2 2 1 2 1

= =

= = - -(,) (,)

 (9.20b)

By division, we obtain a first-order differential equation relating the variables x1 and x2:

 dx

dx

g x x x h x x x

x

2

1

1 2 2 1 2 1

2

= -
+(,) (,) (9.21)

Thus, we have eliminated the independent variable t from the set of first-order differential equations given

by (9.20b). In Eqn. (9.21), we consider x1 and x2 as independent and dependent variables, respectively.

For a given set of initial conditions {x1(0),x2(0)}, the solution to Eqn. (9.21) may be represented by a

single curve in the phase plane, for which the coordinates are x1 and x2. The curve traced out by the state

point {x1(t),x2(t)}, as time t is varied from 0 to , is called the phase trajectory, and the family of all

possible curves for different initial conditions is called the phase portrait. Normally, a finite number of

trajectories, defined in a finite region, is considered a portrait.

One may obviously raise the question that when time solutions x1(t) and x2(t), as time t is varied from

0 to , may be obtained by direct integration of Eqns (9.20b) analytically or numerically, where is the

necessity of drawing phase portraits? In fact, as we shall see, the phase portraits provide a powerful

qualitative aid for investigating system behavior and the design of system parameters, to achieve a desired

response. Furthermore, the existence of limit cycles is sharply brought into focus by the phase portrait.

Figure 9.22a shows the output response, and the corresponding phase trajectory, for a linear second-

order servo system described by the differential equation

��y + 2z �y + y = 0; y(0) = y0, �y(0) = 0, 0 < z < 1

In terms of the state variables x1 = y and x2 = �y, the system model is given by the equations

�x1 = x2; �x2 = –2z x2 – x1; x1(0) = y0, x2(0) = 0

The origin of the phase plane (x1 = 0, x2 = 0) is the equilibrium point of the system since, at this point,

the derivatives �x1 and �x2 are zero (the system continues to lie at the equilibrium point unless otherwise

disturbed). The nature of the transient can be readily inferred from the phase trajectory of Fig. 9.22;

starting from the point P, i.e., with initial deviation but no initial velocity, the system returns to rest, i.e.,

to the origin, with damped oscillatory behavior.

Consider now the well-known Van der Pol’s differential equation (refer to Eqn. (9.1))

��y – m(1 – y2) �y + y = 0

which describes physical situations in many nonlinear systems. It terms of the state variables x1 = y and

x2 = �y, we obtain

�x1 = x2; �x2 = m(1 – x1
2)x2 – x1

Origin of the phase plane is the equilibrium point of the system. Figure 9.23 shows phase portraits for

(i) m > 0; and (ii) m < 0. In the case of m > 0, we observe that for large values of x1(0), the system response

 Nonlinear Systems Analysis 589

is damped and the amplitude of x1(t) = y(t) decreases till the system state enters the limit cycle, as shown

by the outer trajectory. On the other hand, if initially x1(0) is small, the damping is negative, hence

the amplitude of x1(t) = y(t) increases till the system state enters the limit cycle, as shown by the inner

trajectory. The limit cycle is a stable one, since the paths in its neighborhood converge towards the limit

cycle. Figure 9.23 shows an unstable limit cycle for m < 0.

The phase plane for second-order systems is indeed a special case of phase space or state space defined

for nth-order systems. Much work has been done to extend this approach of analysis to third-order

systems. Though a phase trajectory for a third-order system can be graphically visualized through its

projections on two planes, say (x1, x2) and (x2, x3) planes, this complexity causes the technique to lose

its major power of quick graphical visualization of the total system response. The phase trajectories are,

therefore, generally restricted to second-order systems only.

Stable
limit
cycle

Unstable
limit
cycle

x2 = yx2 = y

x1 = y x1 = y

(ii) m < 0(i) m > 0

Fig. 9.23 A second-order nonlinear system on the phase plane

For time-invariant systems, the entire phase plane is covered with trajectories with one, and only one,

curve passing through each point of the plane, except for certain critical points through which, either

infinite number or none of the trajectories pass. Such points (called singular points) are discussed later

in Section 9.9.

0

y

t Pt4

t1

t3

t2

x2 = y

t = 0
x1 = yt4t3

t2

t1

y0

Fig. 9.22 A second-order linear system on the phase plane

590 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

If the parameters of a system vary with time, or if a time-varying driving function is imposed, two or more

trajectories may pass through a single point in a phase plane. In such cases, the phase portrait becomes

complex and more difficult to work with and interpret. Therefore, the use of phase-plane analysis is

restricted to second-order systems with constant parameters and constant or zero input. However, it

may be mentioned that investigators have made fruitful use of the phase-plane method in investigating

second-order time-invariant systems under simple time-varying inputs, such as ramp. Some simple time-

varying systems have also been analyzed by this method. Our discussion will be limited to second-order

time-invariant systems with constant or zero input.

From the above discussion, we observe that the phase-plane analysis applies primarily to systems

described by second-order differential equations. In the case of feedback control systems, systems of

order higher than the second, are likely to be well filtered and tractable by the describing-function method

discussed earlier in this chapter. The two methods of the phase plane and of the describing function are,

therefore, complementary to a large extent; each being available for the study of the systems which are

most likely to be beyond the scope of the other.

9.8 CONSTRUCTION OF PHASE PORTRAITS

Today, phase portraits are routinely computer-generated. However, of course (as, for example, in the case

of root locus for linear systems), it is still practically useful to learn how to roughly sketch phase portraits

or quickly verify the plausibility of computer outputs.

For some special nonlinear systems, particularly piecewise linear systems (whose phase portraits can

be constructed by piecing together the phase portraits of the related linear systems), phase portraits can

be constructed analytically. Analytical methods are useful for systems modeled by differential equations

that can be easily solved. If the system of differential equations cannot be solved analytically, we can

use graphical methods. A number of graphical methods for constructing phase-plane trajectories are now

available; we will describe in this section, the method of isoclines.

9.8.1

Most nonlinear systems cannot be easily solved by analytical techniques. However for piecewise linear

systems, an important class of nonlinear systems, this method can be conveniently used, as shown in the

following examples.

Example 9.3

In this example, we consider a model of a satellite shown in Fig. 7.3. We assume that the satellite is

rigid and is in a frictionless environment. It can rotate about the reference axis as a result of torque T

applied to the satellite about its mass center by firing the thrusters (T = Fd). The system input is the

applied torque T and the system output is the attitude angle q. The satellite’s moment of inertia is J. The

input-output model of the system is

 J
d

dt
T

2

2

q
= (9.22a)

 Nonlinear Systems Analysis 591

We assume that when the thrusters fire, the thrust is constant; that is, T = A, a constant greater than or less

than zero. In terms of output variable y (= q), we obtain the equation

 J ��y = A (9.22b)

In terms of the state variables x1 = y and x2 = �y, the state equations become

 �x1 = x2; �x2 =
A

J
 (9.22c)

Elimination of t by division, yields the equation of the trajectories:

dx

dx

2

1

 =
A

Jx2

 (9.23)

or J x2 dx2 = A dx1

This equation is easily integrated; the general solution is

 x1(t) =
Jx t

A

2
2

2

()
 + C (9.24a)

where C is a constant of integration and is determined by initial conditions, i.e.,

 C = x1(0) –
Jx

A

2
2 0

2

()
 (9.24b)

For an initial state point (x1(0), x2(0)), the trajectory is a parabola passing through the point x1 = C on the

x1-axis where C is defined by Eqn. (9.24b).

A family of parabolas in the (x1, x2) plane is shown in Fig. 9.24a for A > 0. As time t increases, each

trajectory is described in the clockwise direction, as indicated by the arrows. The direction of the phase

trajectories is dictated by the relationship �x1 = x2; x1 increases with time in the upper half of the phase

plane and the state point, therefore, moves from left to right (Æ); in the lower half of the phase plane, x1

decreases with time and the state point must, therefore, move from right to left (¨).

The time interval between two points of a trajectory is given by Dt = Dx1/x2av. The trajectories may be

provided with a time scale by means of this equation. This operation is, however, often unnecessary since

the phase portrait is mainly used to display the general features of the system transients.

Fig. 9.24 Phase potraits for system (9.22)

592 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The phase portrait for A < 0 is shown in Fig. 9.24b. In the special case of A = 0 (no driving torque), the

integration of the trajectory equation (9.23) gives x2(t) = x2(0). The trajectories are, therefore, straight

lines parallel to x1-axis.

Example 9.4

Consider now the equation

 J B T�� �q q+ = (9.25a)

corresponding to a torque T driving a load comprising inertia J and viscous friction B. For a constant

torque, the equation may be expressed as

 t �� �y y A+ = (9.25b)

where y = q is the system output and A represents normalized torque; a constant greater than or less than

zero. The equivalent system is

 �x1 = x2; t �x2 = A – x2 (9.25c)

Let us take a new variable z such that

A – x2 = z; dx2 = – dz

Eliminating the time variable by division, we obtain

1
11

t

dx

dz

A z

z

A

z
= -

-
= -

This first-order equation is readily integrated.

1

t
x1 = z – A ln z + C

or
1

t
x1(t) = A – x2(t) – A ln(A – x2(t)) + C (9.26a)

where the constant of integration C is determined by the initial conditions, i.e.,

 C =
1

t
x1(0) – A + x2(0) + A ln(A – x2(0)) (9.26b)

Therefore, the trajectory equation becomes

1

t
(x1 – x1(0)) = – (x2 – x2(0)) – A ln

A x

A x

-
-

Ê
ËÁ

ˆ
¯̃

2

2 0()
 (9.26c)

The phase portrait is shown in Fig. 9.25a for A > 0.

 Nonlinear Systems Analysis 593

For the case of initial state point at the origin (x1(0) = x2(0) = 0), Eqn. (9.26c) reads

1

t
x1 = – x2 – A ln

A x

A

-Ê
ËÁ

ˆ
¯̃

2 (9.26d)

The phase trajectory described by this equation is shown in Fig. 9.25a as the curve G0. It is seen that the

trajectory is asymptotic to the line x2 = A, which is the final velocity.

A

A

x y2 =

x y1 =

G0

K < 0 K = 0 K > 0

(a) > 0A (b) < 0A

x1

x2

Fig. 9.25 Phase portraits for system (9.25)

For an initial state point (x1(0), x2(0)), the trajectory will have the same shape as the curve G0, except

that it is shifted horizontally—so that it passes through the point (x1(0), x2(0)). This is obvious from

Eqn. (9.26c) which can be written as

1

t
(x1 – K) = – x2 – A ln

A x

A

-Ê
ËÁ

ˆ
¯̃

2

where K = x1(0) + t x2(0) + t A ln
A x

A

-Ê
ËÁ

ˆ
¯̃

2 0()

For an initial state point (x1(0), x2(0)), the trajectory is G0, shifted horizontally by K units. The phase

portrait for A < 0 is shown in Fig. 9.25b. In the special case of A = 0, the phase portrait consists of a

family of straight lines of slope –1/t.

9.8.2

Consider a time-invariant second-order system described by equations of the form (refer to Eqns (9.20b))

 �x x1 2= (9.27)

�x f x x2 1 2= (,)

594 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The equation of the trajectories is

 dx

dx

f x x

x

2

1

1 2

2

=
(,) (9.28)

At a point (,)* *x x1 2 in the phase plane, the slope m* of the tangent to the trajectory can be determined

from

 f x x

x
m

(,)* *

*

*1 2

2

= (9.29)

An isocline is defined to be the locus of the points corresponding to a given constant slope m of the

trajectories, on the phase plane. All trajectories passing through the points on the curve

 f (x1, x2) = mx2 (9.30)

will have the same tangent slope m at the points on the curve; the curve, thus, represents an isocline

corresponding to trajectories of slope m. All trajectories crossing this isocline will have tangent slope m

at the points on the isocline.

The idea of the method of isoclines is to construct several isoclines and a field of local tangents m. Then,

the trajectory passing through any given point in the phase plane, is obtained by drawing a continuous

curve following the directions of the field.

Consider the Van der Pol equation (refer to Eqn. (9.1))

 �� �y y y y+ - + =m()2 1 0 (9.31)

With x1 = y and and x2 = �y, the equation of the trajectories becomes

dx

dx

x x x

x

2

1

1
2

2 1

2

1
=
- - -m()

Therefore, the points on the curve

- - -
=

m()x x x

x
m1

2
2 1

2

1

all have the same slope m. The isocline equation becomes

x
x

x m
2

1

1
2

=
- -()m m

By taking m of different values, different isoclines can be obtained. Short line segments are drawn on

the isoclines to generate a field of tangent directions. A trajectory starting at any point can be constructed

by drawing short lines from one isocline to another at average slope corresponding to the two adjoining

isoclines, as shown in Fig. 9.26.

Of course, the construction is much simpler if isoclines are straight lines.

 Nonlinear Systems Analysis 595

Example 9.5

The satellite in Example 9.3, is now placed in a feedback configuration in order to maintain the attitude

q at 0°. This feedback control system, called an attitude control system, is shown in Fig. 9.27. When q
is other than 0°, the appropriate thruster will fire to force q towards 0°. When q = x1 is greater than 0°,

u (torque T) = –U, and the trajectories of Fig. 9.24b (corresponding to A < 0) apply. When q = x1 is less

than 0°, u (torque T) = U, and the trajectories of Fig. 9.24a (corresponding to A > 0) apply. Note that

the switching of u occurs at x1 = 0. Thus the line x1 = 0 (the x2-axis) is called the switching line. From

this discussion we see that Fig. 9.28a illustrates a typical trajectory for the system corresponding to the

initial condition (x0
1, x0

2). The system response is thus a periodic motion. Figure 9.28b shows many closed

curves for different initial conditions.

U

–U

Satellite

–

1
s

1
s

u t()

x1x2

q = yq

Fig. 9.27

m = 0

–3 –2 1 2 3

Initial point

2

–3

3

Field of
tangent
directions

Isocline

Trajectory

–2

m = –1

m = –1

m = 0

a = tan–1m

x2

x1

m = 1

Fig. 9.26

596 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Switching
line

Each curve
parabolic

x2

(,)x x0
1

0
2

x1

x2

x1

(a) (b)

Fig. 9.28 Typical trajectories for the system of Fig. 9.27

By controlling the switching line in the phase plane, we can control the performance of the attitude

control system. This simple control strategy leads to a robust nonlinear control structure: the variable

structure sliding mode control. The details will follow later in this chapter.

In the following, we obtain the phase portrait of the closed-loop system of Fig. 9.27 using the method of

isoclines. The purpose here is to illustrate the method of isoclines.

The state equations are

�x x1 2=

�x U x2 1= – sgn

where sgn
;

;
x

x

x
1

1

1

1 0

1 0
=

>
- <
È

Î
Í

Then m
dx

dx

U x

x
= =

-2

1

1

2

sgn

Suppose that U is normalized to a value of unity for convenience. Then

 x
m

x2 1

1
= – sgn

For x1 > 0, sgn x1 = 1, and the isocline equation is

 x
m

2

1
= - ; x1 > 0

For x1 < 0, sgn x1 = –1, and the isocline equation is

 x
m

2

1
= ; x1 < 0

Given in Fig. 9.29, is the phase plane showing the isoclines and a typical phase trajectory. Note the

parabolic shape, as was determined analytically earlier in this example.

 Nonlinear Systems Analysis 597

2

0

–1

–2

Trajectory

1

Isocline

1
2

m =

m = 1

m =

m = – 1

m = –
1
2

m = – 1
2

m = – 1

m =

m = 1

m =
1
2

(,)x x0
1

0
2

x2

x1

Fig. 9.29 The isoclines and a typical trajectory for the system of Fig. 9.27

9.9 SYSTEM ANALYSIS ON THE PHASE PLANE

In the phase-plane analysis of nonlinear systems, two points should be kept in mind:

 Phase-plane analysis of nonlinear systems is related to that of linear systems because the local

behavior of a nonlinear system can be approximated by a linear system behavior.

 Yet, nonlinear systems can display much more complicated patterns on the phase plane, such as

multiple equilibrium points, and limit cycles.

Consider a time-invariant second-order system described by equations of the form (refer to Eqns (9.27))

 �x x1 2= ; �x f x x2 1 2= (,) (9.32)

Elimination of independent variable t gives the equation of the trajectories of phase plane (refer to

Eqn. (9.28)):

dx

dx

f x x

x

2

1

1 2

2

=
(,)

 (9.33)

In this equation, x1 and x2 are independent and dependent variables, respectively. Integration of the

equation, analytically, graphically or numerically, for various initial conditions, yields a family of phase

trajectories which displays the general features of the system transients.

9.9.1 Singular Points

Every point (x1, x2) of the phase plane has associated with it, the slope of the trajectory which passes

through that point. The slope m at the point (x1, x2) is given by the equation

m =
dx

dx

f x x

x

2

1

1 2

2

=
(),

598 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

With the function f (x1, x2) assumed to be single valued, there is usually a definite value for this slope

at any given point in phase plane. This implies that the phase trajectories will not intersect. The only

exceptions are the singular points at which the trajectory slope is indeterminate:

dx

dx

f x x

x

2

1

1 2

2

0

0
= =

(),
 (9.34a)

Many trajectories may intersect at such points. This indeterminacy of the slope accounts for the adjective

‘singular’.

Singular points are very important features on the phase plane. Examination of the singular points can

reveal a great deal of information about the properties of a system. In fact, the stability of linear systems

is uniquely characterized by the nature of their singular points. For nonlinear systems, besides singular

points, there may be more complex features such as limit cycles.

We need to know the following:

 (i) Where will the singular points be and how many will be there?

 (ii) What is the behavior of trajectories (i.e., the system) in the vicinity of a singular point?

The first question is answered by our definition of the singular point. There will be singular points at all

the points of the phase plane for which the slope of the trajectory is undefined. These points are given by

the solution of the equations

 x2 = 0; f (x1, x2) = 0 (9.34b)

Singular points of the nonlinear system (9.32), thus, lie on the x1-axis of the phase plane.

Since at singular points on the phase plane, � �x x1 2 0= = , these points, in fact, correspond to the equilibrium

states of the nonlinear system. We know a nonlinear system often has multiple equilibrium states.

To determine the behavior of the trajectories in the vicinity of a singular point (equilibrium state of the

nonlinear system), we first linearize the nonlinear equations at the singular point, and then determine the

nature of phase trajectories around the singular point by linear system analysis. If the singular point of

interest is not at the origin, by defining the difference between the original state and the singular point

as a new set of state variables, one can always shift the singular point to the origin. Therefore, without

loss of generality, we can simply consider Eqns (9.32) with a singular point at 0. Using Taylor series

expansion, Eqns (9.32) can be rewritten as

 �x = x2

 �x2 = ax1 + bx2 + g2 (x1, x2)

where g2 contains higher-order terms.

In the vicinity of the origin, the higher-order terms can be neglected and, therefore, the nonlinear system

trajectories essentially satisfy the linearized equations

 �x1 = x2

 �x2 = ax1 + bx2

Transforming these equations into a scalar second-order equation, we get

�� �x ax bx1 1 1= +

Therefore, we will simply consider the second-order linear system described by

 �� �y y yn n+ + =2 02zw w (9.35a)

 Nonlinear Systems Analysis 599

The characteristic roots of this equation are assumed to be l1 and l2:

�� �y y y s sn n+ + - -2 02
1 2zw w l l= =() () (9.35b)

The corresponding canonical state model is

 �x1 = x2; �x2 = –2zwn x2 – w2
n x1 (9.35c)

and the differential equation of the trajectories is

 dx

dx

x x

x

n n2

1

2
2

1

2

2
=
- -zw w (9.35d)

By inspection of this equation, it is easily seen that at x1 = x2 = 0, the slope dx2 /dx1 is indeterminate:

dx

dx

2

1

0

0
=

In the following, we discuss the behavior of the trajectories in the vicinity of this point with undefined

slope (the singular point).

According to the values of l1 and l2, one is led to distinguish between the six types of singular points

shown in Fig. 9.30. Let us examine each of these cases in detail.

Stable System with Complex Roots

 l1 = – a + jb , l2 = – a – jb; a > 0, b > 0

The response y(t) = C1e–a tsin(b t + C2) (9.36)

where the constants C1 and C2 are determined by the initial conditions.

(a) Stable focus (c) Center

(e) Unstable node (f) Saddle point(d) Stable node

(b) Unstable focus

x y1 =

x y2 =

x y2 =

x y1 =

x y2 =

x y1 =

x y2 =

x y1 =

x2 = l2 1x
x2 = l1 1x

x2 = l1 1xx2 = l2 1x

x y2 =

x y1 =

x y2 =

x y1 =

Fig. 9.30 Phase portraits for system (9.35)

600 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Using Eqn. (9.36), we can construct a phase portrait on the (x1, x2)-plane with x1 = y and x2 = �y. A typical

phase trajectory is shown in Fig. 9.30a which is a logarithmic spiral into the singular point. This type of

singular point is called a stable focus.

Unstable System with Complex Roots

 l1 = a + jb , l2 = a – jb ; a > 0, b > 0

The response y(t) = C1ea

t sin(b t + C2) (9.37)

The transient is an exponentially increasing sinusoid; the phase trajectory on the (x1 = y, x2 = �y)-plane is

a logarithmic spiral expanding out of the singular point (Fig. 9.30b). This type of singular point is called

an unstable focus.

Marginally Stable System with Complex Roots

 l1 = jb , l2 = – jb; b > 0

The response y(t) = C1 sin(b t + C2) (9.38)

The phase trajectories are closed curves (elliptical), concentric with the singular point (Fig. 9.30c). This

type of singular point is called a center, or a vortex.

Stable System with Real Roots

Assume that l1 and l2 are two real, distinct roots in the left half of the s-plane; l1 is the root with the

smaller modulus. The response

 y(t) = C1 e tl1 + C2 e tl2 (9.39a)

It is an overdamped system. The phase portrait in the vicinity of the singular point on the (x1 = y,

x2 = �y)-plane is shown in Fig. 9.30d. Such a singular point is called a stable node.

The phase portrait has two straightline trajectories, defined by the equations

 x2(t) = l1 x1(t); x2(t) = l2x1(t) (9.39b)

It can easily be verified that these trajectories satisfy the differential equation of the given system.

The transient term e tl2 decays faster than the term e tl1 . Therefore, as t increases indefinitely,

x1 Æ C1 e tl1 Æ 0, and x2 Æ l1C1e tl1 Æ 0, so that all the trajectories are tangential at the origin to the

straightline trajectory x2(t) = l1x1(t). The other straightline trajectory, x2(t) = l2 x1(t), is described only if

the initial conditions are such that x2(0) = l2 x1(0).

For stable systems with repeated real roots, the two straightline trajectories coalesce into a single

trajectory, again with the slope determined by the root value.

Assume that l1 and l2 are two real distinct roots in the right half of the s-plane; l1 is the smaller root.

The phase portrait in the vicinity of the singular point on the (x1 = y, x2 = �y)-plane is shown in Fig. 9.30e.

Such a singular point is called an unstable node.

 Nonlinear Systems Analysis 601

All trajectories emerge from the singular point and go to infinity. The trajectories are tangential at the origin

to the straightline trajectory, x2(t) = l1x1(t).

The phase portrait in the vicinity of the singular point on the (x1 = y, x2 = �y)-plane is shown in Fig. 9.30f.

Such a singular point is called a saddle.

There are two straightline trajectories with slopes defined by the root values. The straightline due to the

negative root, provides a trajectory that enters the singular point, while the straightline trajectory due

to the positive root, leaves the singular point. All other trajectories approach the singular point adjacent

to the incoming straightline, then curve away and leave the vicinity of the singular point, eventually

approaching the second straightline asymptotically.

Example 9.6

Consider the nonlinear system shown in Fig. 9.31. The nonlinear element is an on–off controller with

deadzone whose characteristics are shown in Fig. 9.31.

u
1

–1

–1
1

e+

–

r = const y1
(+ 1)s s

Fig. 9.31

The differential equation governing the dynamics of the system is given by

 ��y + �y = u; or ��e + �e = – f (e) (9.40)

where e = r – y; r is constant, and

 f(e) =

+ >
- < <

- < -

Ï

Ì
Ô

Ó
Ô

1 1

0 1 1

1 1

;

;

;

e

e

e

Choosing the state variables x1 = e and x2 = �e , we obtain the following first-order equations:

�x1 = x2; �x2 = – x2 – f(x1)

These equations are same as Eqns (9.25c) with t = 1 and A = – f(x1).

The phase plane may be divided into three regions:

 (i) Region I (defined by x1 > 1): The trajectories in this region are given by the equation (refer to

Eqn. (9.26c): t = 1, A = – 1)

602 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 x1 – x1(0) = – (x2 – x2(0)) + ln
1

1 0

2

2

+
+

Ê
ËÁ

ˆ
¯̃

x

x ()
 (9.41a)

 The trajectories are asymptotic to the ordinate –1.

 (ii) Region II (defined by –1 < x1 < 1): The trajectories in this region are given by the equation (refer to

Eqn. (9.26c): t = 1, A = 0)

 x1 – x1(0) = – (x2 – x2(0)) (9.41b)

 The trajectories are straightlines of slope –1.

 (iii) Region III (defined by x1 < –1): The trajectories in this region are given by the equation (refer to

Eqn. (9.26c): t = 1, A = 1)

 x1 – x1(0) = – (x2 – x2(0)) – ln
1

1 0

2

2

-
-

Ê
ËÁ

ˆ
¯̃

x

x ()
 (9.41c)

The trajectories are asymptotic to the ordinate +1.

For a step input r = 3 and zero initial conditions, the initial point of the phase trajectory is located at P in

Fig. 9.32. The figure also shows a phase trajectory, constructed using Eqns (9.41).

It is important to note that a small deadzone region is not always undesirable in on–off controllers. Let us

investigate the behavior of the system of Fig. 9.31 using on–off with (no deadzone) as a controller. For

such a controller, the width of region II (corresponding to deadzone) in the phase plane, reduces to zero.

The phase trajectory of such a system with r = 3 is shown in Fig. 9.33 : e(t) oscillates about the origin,

with ever-decreasing amplitude and ever-increasing frequency.

Comparison of Figs 9.32 and 9.33 reveals that deadzone in on–off controller characteristic helps to

reduce system oscillations, thereby reducing settling time. However, the on–off controller with deadzone

drives the system to a point within the deadzone width. A large deadzone would of course cause the

steady-state performance of the system to deteriorate.

Region III

1

– 1

– 1

1 2 3

P

Region IRegion II

Deadzone

x2

x1

Fig. 9.32 A typical trajectory for the system in
Fig. 9.31

–1

1

1 2 3

P x2

x2

Fig. 9.33 Phase trajectory for the system in

 Nonlinear Systems Analysis 603

Example 9.7

Let us investigate the performance of a second-order position control system with Coulomb friction.

Figure 9.34 is a model for a motor position servo with Coulomb friction on the motor shaft. The dynamics

of the system is described by the following differential equation:

K e – Tc sgn ()�y = Jy�� + By�

where Tc is the Coulomb frictional torque.

r = const +

–

e +

–

y
K

y1
+Js B

Tc

1
s

Fig. 9.34

For constant input r, �y = – �e and ��y = – ��e .

Therefore,

 J ��e + B �e + Tc sgn ()�e + Ke = 0

or
J

B
e e

T

B
e

K

B
ec�� � �+ + +sgn() = 0 (9.42)

Letting J/B = t, we get

 t �� � �e e
T

B
e

K

B
ec+ + +sgn() = 0 (9.43)

In terms of state variables

 x1 = e; x2 = �e

we get the following description of the system:

 �x1 = x2; t �x2 = - - -
K

B
x x

T

B
xc

1 2 2sgn() (9.44)

The singular points are given by the solution of the equations (refer to Eqns (9.34b))

0 = x2; 0 = - - -
K

B
x x

T

B
xc

1 2 2sgn()

The solution gives

x1 = –
T

K

c sgn(x2)

Thus, there are two singular points. Their location can be interpreted physically—they are at a value of

e = x1, such that |Ke| = |Tc|, i.e., the drive torque is exactly equal to the Coulomb-friction torque. We note

that both the singular points are on the x1-axis (x2 ∫ 0), and that the singular point given by x1 = Tc /K is

604 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

related to the lower-half phase plane (x2 negative), and the singular point given by x1 = – Tc /K is related

to the upper-half phase plane (x2 positive).

Let us now investigate the stability of the singular points. For �e > 0, Eqn. (9.43) may be expressed as

 t
d

dt
e

T

K

d

dt
e

T

K

K

B
e

T

K

c c c
2

2
+Ê

ËÁ
ˆ
¯̃
+ +Ê

ËÁ
ˆ
¯̃
+ +Ê

ËÁ
ˆ
¯̃ = 0 (9.45)

This is a linear second-order system with the singular point at (– Tc /K, 0) on the (e, �e)-plane. The

characteristic equation of this system is given by

l2 +
1

t
l

t
+

K

B
 = 0

Let us assume the following parameter values for the system under consideration:

 (K/B) = 5, t = 4 (9.46)

With these parameters, the roots of the characteristic equation are complex-conjugate with negative real

parts; the singular point is, therefore, a stable focus (refer to Fig. 9.30a).

Let us now investigate the system behavior when large inputs are applied. Phase trajectories may be

obtained by solving the following second-order differential equations for given initial state points (refer

to Eqns (9.35b)–(9.36)).

Region I (defined by x2 > 0):

4 5 0 1 2 1�� � �z z z z x
T

K
x xc+ + = = + =; ;

Region II (defined by x2 < 0):

4 5 0 1 2 1�� � �z z z z x
T

K
x xc+ + = = =; ;–

Figure 9.35 shows a few phase trajectories. It is observed that for small as well as large inputs, the

resulting trajectories terminate on a line along the x1-axis from – Tc/K to +Tc /K, i.e., the line joining the

Tc /K

x2

– Tc /K
x1

Fig. 9.35 Phase portrait for the system in Fig. 9.34

 Nonlinear Systems Analysis 605

singular points. Therefore, the system with Coulomb friction is stable; however, there is a possibility of

large steady-state error.

9.9.2 Limit Cycles

In the phase portrait of the nonlinear Van der Pol equation, shown in Fig. 9.26, one observes that there is

a closed-curve in the phase portrait. Trajectories inside the curve—and those outside the curve—all tend

to this curve, while a motion started on this curve will stay on it forever. This curve is an instance of the

so-called ‘limit cycle’ phenomenon. Limit cycles are unique features of nonlinear systems.

On the phase plane, a limit cycle is defined as an isolated closed curve. The trajectory has to be both

closed, indicating the periodic nature of motion, and isolated, indicating the limiting nature of the cycle

(with neighboring trajectories converging to or diverging from it). Thus, while there are many closed

curves in the satellite system in Example 9.5, these are not limit cycles because they are not isolated.

A limit cycle is stable if all trajectories in the vicinity of the limit cycle converge to it as t Æ

(Fig. 9.23a). A limit cycle is unstable if all trajectories in the vicinity of the limit cycle diverge from it

as t Æ (Fig. 9.23b).

9.10 SIMPLE VARIABLE STRUCTURE SYSTEMS

The purpose of this section is to informally introduce the reader to variable structure sliding mode

control systems. Formal introduction to sliding mode control will appear later in Section 10.5.

A variable structure system is a dynamical system, whose structure changes in accordance with the

current value of its state. A variable structure system can be viewed as a system composed of independent

structures, together with a switching logic between each of the structures. With appropriate switching

logic, a variable structure system can exploit the desirable properties of each of the structures the system

is composed of. Even more, a variable structure system may have a property that is not a property of any

of its structures. We illustrate the above ideas with two numerical examples.

Example 9.8

We consider a double integrator model

 ��e u= – (9.47)

having two structures corresponding to u = –1 and u = +1 (refer to Fig. 9.36).

r = const +

–

e
Switching
function

s

1

–1

u ys (,)e e 1

s2

Fig. 9.36 A simple variable structure system

606 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Choosing x1 = e and x2 = �e as state variables, we have

 �x x1 2= (9.48)

 �x2 = - u

The trajectories corresponding to the structure u = –1 are given by (refer to Eqns (9.24))

 x t x t x x1
1
2 2

2
1

1
2 2

20 0() () () ()= + - (9.49a)

and the trajectories corresponding to the structure u = +1 are given by

 x t x t x x1
1
2 2

2
1

1
2 2

20 0() () () ()= - + + (9.49b)

The phase-plane portraits of the two structures are shown in Figs 9.37a and 9.37b; the individual

structures are families of parabolas. Neither of the structures is asymptotically stable; each structure is

unstable. However, by choosing a suitable switching logic between the two structures, we can make the

resulting variable structure system, asymptotically stable.

Suppose the structure of the system is changed at any time the system’s trajectory crosses the vertical

axis of the state plane, that is,

 u =
+ >

- <

Ï
Ì
Ó

1 0

1 0

1

1

if

if

x

x
 (9.50)

A phase portrait of the system (9.48) with the switching logic specified by (9.50) is shown in Fig. 9.37c;

the system always enters into a limit cycle (In fact, we are familiar with the switching function given by

(9.50); it is on–off switching.

To achieve asymptotic stability, we redesign the switching logic. We note that one trajectory of each

family in Figs 9.37a and 9.37b goes through the origin. Segments A-O and B-O of these two trajectories

terminating at the origin form the curve shown by the thick line in Fig. 9.38.

B

O

A

O

(c)(a) = – 1u
(b) = + 1u

a < 0
a = 0
a > 0

b > 0
b = 0

b < 0

x2

u = –1 u = +1

x2

x1

x1

x1

x2

a = (0) –x1
x
2
2(0)

2

x
2
2(0)

2
b = (0) +x1

Fig. 9.37 Phase trjectories for the system of Fig. 9.36

 Nonlinear Systems Analysis 607

The following switching logic seems to give an optimal control performance.

 (i) If the initial state point lies at P1 on

the segment A-O (Fig. 9.38), the

state point (x1(t), x2(t)) is driven

to the origin along a segment of a

parabola corresponding to u = +1.

 (ii) If the initial point lies at P2 on

the segment B-O (Fig. 9.38), the

state point (x1(t), x2(t)) is driven

to the origin along a segment of a

parabola corresponding to u = –1.

 (iii) If the initial state point lies above

or below the curve A-O-B, then

only one switching is required to

drive the state point to the origin.

Consider the initial state point at

P3, which is above the curve A-O-B

(Fig. 9.38). The state point (x1(t), x2(t)) follows a parabola corresponding to u = +1 till it reaches

the segment B-O. This is followed by switching of the control to –1, and driving of the state point

to the origin along B-O with u = –1.

 (iv) Consider the initial point at P4, which is below the curve A-O-B (Fig. 9.38). The state point

(x1(t), x2(t)) follows a parabola corresponding to u = –1 till it reaches the segment A-O. This is

followed by switching of the control to +1, and driving of the state point to the origin along A-O with

u = +1.

 The double integrator model with the switching strategy described above is in fact an on–off closed-loop

control system shown in Fig. 9.36, in which the controller is actuated by a signal which is a function

s e e, �() of the error and its first derivative. The differential equation describing the dynamics of the

system is given by

 �� ��y u e u= = -or (9.51a)

where e = r – y; r is constant, x1 = e and x2 = �e are state variables and

 u =
+ >
- <
Ï
Ì
Ó

1 0

1 0

1 2

1 2

; (,)

; (,)

s

s

x x

x x
 (9.51b)

It is also clear from Fig. 9.38 that, for all initial conditions, the state point is driven to the origin along

the shortest-time path with no oscillations (the output reaches the final value in minimum time with no

ripples, and stays there; this type of response is commonly called a deadbeat response). Such bang-bang

control systems provide optimal control (minimum-time control) [105].

The equation of optimal switching curve A-0-B can be obtained from Eqns (9.49) by setting (refer to

Fig. 9.37)

x
x

x
x

1
2
2

1
2
2

0
0

2
0

0

2
0()

()
()

()
- = + =

O

A

B

x2

P3

x1

P4

P2

P1

Fig. 9.38

608 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

This gives x t x t x t1
1
2 2 2() () ()= - (9.52a)

Let us define the switching function s s(,) (,)e e x x� = 1 2 as

 s (,) () () ()x x x t x t x t1 2 1
1
2 2 2= + (9.52b)

s (x1, x2) > 0 implies that the state point (x1, x2) lies above the curve A-O-B. s (x1, x2) = 0 and x2 > 0

implies that the state point (x1, x2) lies on the segment A-O. s (x1, x2) = 0 and x2 < 0 implies that the state

point (x1, x2) lies on the segment B-O. s (x1, x2) < 0 implies that the state point (x1, x2) lies below the

segment A-O-B.

In terms of the optimal switching function s (x1, x2), the control law becomes

 u(t) =

+ >
- <
- <

1 0

1 0 0

1 0

1 2

1 2 2

1 2

when

when = and

when

s

s

s

(,)

(,) ()

(,)

x x

x x x t

x x

++ >

Ï

Ì
Ô
Ô

Ó
Ô
Ô 1 0 01 2 2when = ands (,) ()x x x t

 (9.53)

The optimal switching may be realized by a computer. It accepts the state point (x1, x2) and computes

the switching function given by Eqn. (9.52b). It then manipulates the on–off controller to produce the

optimal control components according to Eqn. (9.53).

Example 9.9

In this example, we discuss a suboptimal method of switching the on–off controller in Fig. 9.36. The

advantage of the method described below, is that implementation of the switching function is simple. The

cost paid is in terms of increase in settling time compared to the optimal solution.

Consider the following suboptimal switching function:

s (,)e e e K eD� �= +

The system equations now become

�� �e u u e K eD= = sgn +- ; ()
In the state variable form (,)x e x e1 2= = � ,

� �x x x x K xD1 2 2 1 2= = - +;) sgn(

The phase plane is divided into two regions by the switching line

 x1 + KD x2 = 0 (9.54)

The trajectory equation for the region defined by x1 + KD x2 < 0, is (refer to Eqn. (9.49a))

x t x t x x1
1
2 2

2
1

1
2 2

20 0() () ()= + - ()
and the trajectory equation for the region defined by x1 + KD x2 > 0, is (refer to Eqn. (9.49b))

x t x t x x1
1
2 2

2
1

1
2 2

20 0() () () ()= - + +

 Nonlinear Systems Analysis 609

In each half of the phase plane

separated by the switching line

(9.54), the system trajectories would

be parabolas. Assume that the system

under consideration starts with initial

conditions corresponding to point A

in Fig. 9.39. The on–off controller

switches when the representative point

reaches B. By geometry of the situation,

we see that the trajectory resulting

from the reversal of the drive at point

B, will bring the representative point

on a parabola passing much closer to

the origin. This will continue until the

trajectory intersects the switching line

at a point closer to the origin than the

points A1 and A2 which are points of

intersection of the switching line with

parabola passing through the origin. In

Fig. 9.39, point C corresponds to this situation. Here, an instant after the on–off controller is switched,

the system trajectory will recross the switching line and the on–off controller must switch back. The on–

off controller will, thus, chatter while the system stays on the switching line. In a second-order system,

the chattering frequency will be infinite and amplitude will be zero; the representative point, thus, slides

along the switching line. It can easily be verified that with KD = 0 (on–off controller switching on the

vertical axis), the system always enters into a limit cycle. The switching process given by the switching

line (9.54) has, thus, converted the oscillating system into an asymptotically stable one; though the goal

has been achieved in a suboptimal way.

9.11 LYAPUNOV STABILITY DEFINITIONS

The general state equation for a nonlinear system can be expressed as

 �x = f(x(t), u(t), t); x(t0) =D x
0 (9.55)

where x is the n ¥ 1 state vector, u is the p ¥ 1 input vector, and

f (·) =

f

f

fn

1

2

()

()

()

◊
◊

◊

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

�

is the n ¥ 1 function vector.

Suppose that all the states of the system (9.55) settle to constant values (not necessarily zero values) for

a constant input vector u(t) = uc. The system is then said to be in an equilibrium state corresponding to

A

C

B

Slope = –

Region II

x2

x1

A1

A2

1
KD

Region I

x K x+ < 021 D

u = –1
x K x+ > 021 D

u = + 1

Fig. 9.39

610 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the input uc. The state trajectories converge to a point in state space, called the equilibrium point. At this

point, no states vary with time. Thus, we have the following definition of equilibrium point (equilibrium

state).

If for any constant input vector u(t) = uc, there exists a point x(t) = xe = constant in state space, such that

at this point �x (t) = 0 for all t, then this point is called an equilibrium point of the system corresponding

to the input uc. Applying this definition to the system (9.55), any equilibrium point must satisfy

 f(xe, uc, t) = 0 for all t (9.56)

The number of solutions depends entirely upon the nature of f (·) and no general statement is possible.

Example 9.10

Consider the nonlinear system described by the state equations:

 �x1 = x2

 �x2 = – x1 – x2
1
 – x2

The equilibrium states of this system are given by the solutions of the following set of equations (refer

to Eqn. (9.56)):

 �xe
1 = x2

e = 0

 �xe
2 = – x1

e – (x1
e)2 – x2

e = 0

From the first equation, x2
e is equal to zero. From the second equation,

(x1
e)2 + x1

e = x1
e(x1

e + 1) = 0

which has the solutions x1
e = 0 and x1

e = – 1. Thus, there are two equilibrium states, given by

x
e1 =

0

0

È

Î
Í
˘

˚
˙ , xe2 =

-È

Î
Í

˘

˚
˙

1

0

In the stability analysis of a system, we are usually concerned with the following two notions of stability:

 (i) when a relaxed system (x(t0) = 0) is excited by a bounded input, the output must be bounded; and

 (ii) in an unforced system (u = 0) with arbitrary initial conditions, the system state must tend towards

the equilibrium point in state space.

We have seen earlier in Chapter 5 that the two notions of stability defined above are essentially equivalent

for linear time-invariant systems.

Unfortunately in nonlinear systems, there is no definite correspondence between the two notions. Most

of the important results obtained, thus far, concern the stability of nonlinear autonomous2 systems:

 �x(t) = f(x(t)); x(t0) =D x0 (9.57)

in the sense of second notion above.

 2 An unforced (i.e., u = 0) and time-invariant system is called an autonomous system.

 Nonlinear Systems Analysis 611

It may be noted that even for this class of systems, the concept of stability is not clear cut. The linear

autonomous systems have only one equilibrium state (the origin of the state space), and their behavior

about the equilibrium state completely determines the qualitative behavior in the entire state space. In

nonlinear systems, on the other hand, system behavior for small deviations about the equilibrium point

may be different from that for large deviations. Therefore, local stability does not imply stability in the

overall state space, and the two concepts should be considered separately.

Secondly, the set of nonlinear equations (refer to Eqns (9.56)–(9.57)),

 f(xe) = 0 (9.58)

may result in a number of solutions (equilibrium points). Due to the possible existence of multiple

equilibrium states, the system trajectories may move away from one equilibrium state to the other as time

progresses. Thus, it appears that in the case of nonlinear systems, it is simpler to speak of system stability

relative to the equilibrium state rather than using the general term ‘stability of a system’.

We shall confine our attention to nonlinear autonomous systems described by state equation of the form

 �x(t) = f(x(t)); f(0) = 0; x(0) =D x0 (9.59)

Note that the origin of the state space has been taken as the equilibrium state of the system. There is no

loss in generality in this assumption, since any nonzero equilibrium state can be shifted to the origin by

appropriate transformation. Further, we have taken t0 = 0 in Eqn. (9.59), which is a convenient choice

for time-invariant systems.

For nonlinear autonomous systems, local stability may be investigated through linearization in the

neighborhood of the equilibrium point. The validity of determining the stability of the unperturbed

solution near the equilibrium points from the linearized equations was developed independently by

Poincaré and Lyapunov in 1892. Lyapunov designated this as the first method. This stability determination

is applicable only in a small region near the equilibrium point.

The region of validity of local stability is generally not known. In some cases, the region may be too small

to be of any use practically; while in others the region may be much larger than the one assumed by the

designer—giving rise to systems that are too conservatively designed. We, therefore, need information

about the domain of stability. The ‘second method of Lyapunov’ (also called the ‘direct method of

Lyapunov’) is used to determine stability in-the-large. We first present direct method of Lyapunov; the

linearization method is described in Section 9.14.

The concept of stability formulated by Russian mathematician A.M. Lyapunov is concerned with the

following question:

If a system with zero input is perturbed from the equilibrium point xe at t = 0, will the state x(t) return to

x
e, remain ‘close’ to xe, or diverge from xe?

Lyapunov stability analysis is, thus, concerned with the boundedness of the free (unforced) response of

a system. The free response of a system is said to be stable in the sense of Lyapunov at the equilibrium

point xe if, for every initial state x(t0) which is sufficiently close to xe, x(t) remains near xe for all t. It is

asymptotically stable at xe if x(t), in fact, approaches xe as t .

In the following, we give mathematically precise definitions of different types of stability with respect to

the system described by Eqn. (9.59).

612 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The system described by Eqn. (9.59) is stable in the sense of Lyapunov at the origin if, for every real

number e > 0, there exists a real number d(e) > 0 such that ||x(0)|| < d results in ||x(t) || < e for all t ≥ 0.

This definition uses the concept of the vector norm. The Euclidean norm for a vector with n components

x1, x2, . . ., xn is (refer to Eqn. (5.6a))

||x|| = (x1
2 + x2

2 + � + xn
2)1/2

||x|| £ R defines a hyper-spherical region S(R) of radius R, surrounding the equilibrium point xe = 0.

In terms of the Euclidean norm, the above definition of stability implies that for any S(e) that we may

designate, the designer must produce S(d) so that the system state, initially in S(d), will never leave S(e).

This is illustrated in Fig. 9.40a.

0 0

S()d

S()e

S()e S()d

x()t

x(0) x(0)

(a) (b)

Fig. 9.40

Note that this definition of stability permits the existence of continuous oscillation about the equilibrium

point. The state-space trajectory for such an oscillation is a closed path. The amplitude and frequency of

the oscillation may influence whether it represents acceptable performance.

Example 9.11

Consider a linear oscillator described by the differential equation

��y(t) + w2 y(t) = 0

where w is the frequency of oscillations.

Define the state variables as

x1(t) = y(t), x2(t) = �y(t)

This gives the state equations

 �x1(t) = x2(t)

 �x2(t) = – w2 x1(t)

 Nonlinear Systems Analysis 613

From these equations, we obtain the following

equation for state trajectory:

dx

dx

x

x

2

1

2 1

2

= - w or x2
2 + w2 x1

2 = c2; c = constant

Several state trajectories for various values of c,

corresponding to various initial conditions of x1 and

x2, are shown in Fig. 9.41. For a specified value of e,

we can find a closed state trajectory whose maximum

distance from the origin is e. We then select a value of

d which is less than the minimum distance from that

curve to the origin. The d (e) so chosen, will satisfy

the conditions that guarantee stability in the sense of Lyapunov.

The system (9.59) is asymptotically stable at the origin if

 (i) it is stable in the sense of Lyapunov, i.e., for each S(e) there is a region S(d) such that trajectories,

starting within S(d), do not leave S(e) as t ; and

 (ii) each trajectory starting within S(d) converges to the origin as t (Fig. 9.40b).

Local and Global Stability

The definitions of asymptotic stability and stability in the sense of Lyapunov apply in a local sense

(stability in-the-small) if the region S(d) is small. When the region S(d) includes the entire state space,

the definitions of asymptotic stability and stability in the sense of Lyapunov are said to apply in a global

sense (stability in-the-large).

9.12 LYAPUNOV STABILITY THEOREMS

The Lyapunov stability analysis is based upon the concept of

energy, and the relation of stored energy with system stability.

We first give an example to motivate the discussion.

Consider the spring-mass-damper system of Fig. 9.42. The

governing equation of the system is

 �� �x Bx Kx1 1 1+ + = 0

A corresponding state variable model is

 �x1 = x2

 �x2 = – Kx1 – Bx2
(9.60)

At any instant, the total energy V in the system consists of the kinetic energy of the moving mass, and the

potential energy stored in the spring.

x1

x2

Fig. 9.41 State trajectories

B

K

x1

M = 1

Fig. 9.42 A spring-mass-damper
system

614 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 V(x1, x2) =
1
2 2

2 1
2 1

2x Kx+ (9.61)

Thus V(x) > 0 when x π 0

 V(0) = 0

This means that the total energy is positive unless the system is at rest at the equilibrium point xe = 0,

where the energy is zero.

The rate of change of energy is given by

 �V x x(,)1 2 =
d

dt
V x x

V

x

dx

dt

V

x

dx

dt
Bx(,)1 2

1

1

2

2
2
2= + = -

∂

∂

∂

∂
 (9.62)

Case I: Positive Damping (B > 0)

Let (x1
0, x2

0) be an arbitrary initial state of the system of Fig. 9.42. The solution of the differential equations

(9.60) corresponding to this initial state, gives the state trajectory x(t) for t > 0. Since the linear system

(9.60) is stable under the condition of positive damping, x(t) 0 as t .

Let us study the relation of stored energy with system stability. The initial energy in the system is

V(x1
0, x2

0) = 1
2
 (x2

0)2 + 1
2
 K(x1

0)2

As per Eqn. (9.62), the rate of change of energy is negative and, therefore, system energy V(x1, x2)

continually decreases along the trajectory x(t), t > 0. There is only one exception; when the representative

point x(t) of the trajectory reaches x2 = 0 points in the state plane, the rate of change of energy becomes

zero. However, as seen from Eqns (9.60), �x2 = – Kx1 at the points where x2 = 0. The representative

point x(t), therefore, cannot stay at the points in the state plane where x2 = 0 (except at the origin). It

immediately moves to the points at which the rate of change of energy is negative and the system energy,

therefore, continually decreases from its initial value V(x1
0, x2

0) along the trajectory x(t), t > 0, till it

reaches a value V = 0 at the equilibrium point xe = 0.

A visual analogy may be obtained by considering the surface

 V(x1, x2) = 1
2
 x2

2 + 1
2
 Kx1

2 (9.63)

This is paraboloid (a solid generated by rotation of parabola about its axis of symmetry) surface as

shown in Fig. 9.43. The value V(x1, x2) = ki (a constant) is represented by the intersection of the surface

V(x1, x2) and the plane z = ki. The projection of this intersection on the (x1, x2)-plane is a closed curve, an

oval, around the origin. There is a family of such closed curves in the (x1, x2)-plane for different values of

ki. The closed curve corresponding to V(x1, x2) = k1, lies entirely inside the closed curve corresponding to

V(x1, x2) = k2 if k1 < k2. The value V(x1, x2) = 0 is the point at the origin. It is the innermost curve of the

family of closed curves, representing different levels on the paraboloid for V(x1, x2) = ki.

If one plots a state-plane trajectory starting from the point (x1
0, x2

0), the representative point x(t) crosses

the ovals for successively smaller values of V(x1, x2), and moves towards the point corresponding to

V(x1, x2) = 0, which is the equilibrium point. Figure 9.43 shows a typical trajectory.

 Nonlinear Systems Analysis 615

Note also that V(x) given by Eqn. (9.63) is radially unbounded
3, i.e., V(x) as || x || . The ovals

on the (x1, x2)-plane extend over the entire state plane and, therefore, for any initial state x0 in the entire

state plane, the system energy continually decreases from the value V(x0) to zero.

Case II: Zero Damping (B = 0)

Under the condition of zero damping, Eqns (9.60) become

 �x = Ax

with A =
0 1

0-
È

Î
Í

˘

˚
˙

K

The eigenvalues of A lie on the imaginary axis in the complex plane; the system response is, therefore,

oscillatory in nature.

From Eqn. (9.62) we observe that when B = 0, the rate of change of energy �V (x1, x2) vanishes identically

along any trajectory; the system energy V(x1, x2) = V(x1
0, x2

0) for all t ≥ 0. The representative point x(t)

cannot cross the V-contours in Fig. 9.43; it simply moves along one of these contours.

In the example given above, it was easy to associate the energy function V with the given system.

However, in general, there is no obvious way of associating an energy function with a given set of

equations describing a system. In fact, there is nothing sacred or unique about the total energy of the

system which allows us to determine system stability in the way described above. Other scalar functions

of the system state can also answer the question of stability. This idea was introduced and formalized by

the mathematician A.M. Lyapunov. The scalar function is now known as the Lyapunov function and the

method of investigating stability using Lyapunov’s function is known as the Lyapunov’s direct method.

V k= 1

V k= 2

V k= 3

V k= 3

V k= 2

V k= 1

x2

x1

x2

x1

k1 < <k k2 3

t1 < <t t2 3

z V= ()x

(a) (b)

t1

t2

t3

(,)x x0
1

0
2

Fig. 9.43

 3 Use of the norm definition given by Eqn. (5.6b) immediately proves this result.

616 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In Section 5.2, we introduced the concept of sign definiteness of scalar functions. Let us examine here

the scalar function V(x1, x2, ..., xn) =D V(x) for which V(0) = 0 and the function is continuous in a certain

region surrounding the origin in state space. Due to the manner in which these V-functions are used

later, we define the sign definiteness with respect to a region around the origin represented as ||x|| £ K

(a positive constant) where ||x|| is the norm of x.

A scalar function V(x) is said to be positive

definite in the region ||x|| £ K (which includes the origin of the state space), if V(x) > 0 at all points of the

region except at the origin, where it is zero.

A scalar function V(x) is said to be negative

definite if [– V(x)] is positive definite.

A scalar function V(x) is said to be positive

semidefinite in the region ||x || < K, if its value is positive at all points of the region except at finite number

of points, including origin, where it is zero.

A scalar function V(x) is said to be

negative semidefinite if [– V(x)] is positive semidefinite.

A scalar function V(x) is said to be indefinite in the region

||x|| < K, if it assumes both positive and negative values, within this region.

For all x in the state plane:

 (i) V(x) = x2
1 + x2

2 is positive definite;

 (ii) V(x) = (x1 + x2)2 is positive semidefinite;

 (iii) V(x) = – x2
1 – (x1 + x2)2 is negative definite; and

 (iv) V(x) = x1x2 + x2
2 is indefinite.

An important class of scalar functions is a quadratic form:

V(x) = xT
Px

where P is a real, symmetric constant matrix. In this form, the definiteness of V is usually attributed to

P. We speak of the positive (negative) definite and the positive (negative) semidefinite P depending upon

the definiteness of V(x) = xT
Px.

Tests for checking definiteness of a matrix were described in Section 5.2. We consider an example here:

P =

10 1 2

1 4 1

2 1 1

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

As per Sylvester’s test, the necessary and sufficient condition for P to be positive definite is that all the

successive principal minors of P be positive.

 Nonlinear Systems Analysis 617

Applying Sylvester’s test to the given P, we obtain

 10 > 0

10 1

1 4
 > 0

10 1 2

1 4 1

2 1 1

-
-

- -
 > 0

Since all the successive principal minors of the matrix P are positive, V(x) = xT
Px is a positive definite

function.

In the following, we state, without proof, the basic Lyapunov stability results. For proof refer to [105].

For the autonomous system (9.59), sufficient conditions of stability are as follows:

Suppose that there exists a scalar function V(x) which, for some real number e > 0, satisfies the following

properties for all x in the region ||x|| £ e :

 (i) V(x) > 0; x π 0

 (ii) V(0) = 0

¸
˝
˛

(i.e., V(x) is positive definite function)

 (iii) V(x) has continuous partial derivatives with respect to all components of x.

 Then the equilibrium state xe = 0 of the system (9.59) is

 (iva) asymptotically stable if �V(x) < 0, x π 0, i.e., �V(x) is a negative definite function; and

 (ivb) asymptotically stable in-the-large if �V(x) < 0, x π 0, and in addition V(x) as ||x||

Example 9.12

Consider a nonlinear system described by the equations

 �x1 = x2 – x1(x2
1
 + x2

2) (9.64)

 �x2 = – x1 – x2(x2
1 + x2

2)

Clearly, the origin is the only equilibrium state.

Let us choose the following positive definite scalar function as a possible Lyapunov function:

 V(x) = x2
1
 + x2

2 (9.65)

Time derivative of V(x) along any trajectory, is given by

 �V (x) =
dV x x

dt

V

x

dx

dt

V

x

dx

dt

(,)1 2

1

1

2

2= +
∂

∂

∂

∂

 = 2x1�x1 + 2x2 �x2 = –2(x2
1 + x2

2)2 (9.66)

which is negative definite. This shows that V(x) is continually decreasing along any trajectory; hence

V(x) is a Lyapunov function. By Theorem 9.1, the equilibrium state (at the origin) of the system (9.64)

is asymptotically stable.

618 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Further, V(x) as ||x|| , i.e., V(x) becomes infinite with infinite deviation from the equilibrium

state. Therefore, as per condition (ivb) of Theorem 9.1, the equilibrium state of the system (9.64) is

asymptotically stable in-the-large.

Although Theorem 9.1 is a basic theorem of Lyapunov stability analysis, it is somewhat restrictive

because �V (x) must be negative definite. This requirement can be relaxed to �V (x) £ 0 (a negative

semidefinite �V (x)) under proper conditions. This relaxed requirement is sufficient if it can be shown that

no trajectory can stay forever at the points or on the line other than the origin, at which �V (x) = 0. This is

the case for the system of Fig. 9.42 as described at the beginning of this section.

If, however, there exists a positive definite function V(x) such that �V (x) is identically zero along a

trajectory, the system will remain in that trajectory and will not approach the origin. The equilibrium

state at the origin, in this case, is said to be stable in the sense of Lyapunov.

Theorem 9.2 For the autonomous system (9.59), sufficient conditions of stability are as follows.

Suppose that there exists a scalar function V(x) which, for some real number e > 0, satisfies the following

properties for all x in the region ||x|| £ e:

() () ;

() ()
(, ()

i

ii
i.e is positive definite fu

V

V
V

x x 0

0
x

> π

=

¸
˝
˛

0

0
nnction)

 (iii) V(x) has continuous partial derivatives with respect to all components of x.

 Then the equilibrium state xe = 0 of the system (9.59) is

 (iva) asymptotically stable if �V (x) < 0, x π 0, i.e., �V (x) is a negative definite function; or if
�V (x) £ 0 (i.e., �V (x) is negative semidefinite) and no trajectory can stay forever at the points or on

the line other than the origin, at which �V (x) = 0;

 (ivb) asymptotically stable in-the-large if conditions (iva) are satisfied, and in addition V(x) as

||x|| and

 (ivc) stable in the sense of Lyapunov if �V (x) is identically zero along a trajectory.

Example 9.13

Consider the linear feedback system shown

in Fig. 9.44 with r(t) = 0. We know that the

closed-loop system will exhibit sustained

oscillations.

The differential equation for the error signal

is

 ��e + a 2e = Ky = – Ke

Taking e and �e as state variables x1 and x2, respectively, we obtain the following state equations:

 �x1 = x2
(9.67)

 �x2 = – (K + a 2)x1

ye+

–

r = 0 K

s2 + a
2

G() =s

Fig. 9.44 Linear feedback system

 Nonlinear Systems Analysis 619

Let us choose the following scalar positive definite function as a possible Lyapunov function:

 V(x) = x2
1 + x2

2 (9.68)

Then �V (x) becomes

�V (x) = 2x1 �x1 + 2x2 �x2 = 2[1 – (K + a 2)]x1x2

�V (x) is indefinite. This implies that V(x), given by Eqn. (9.68), is not a Lyapunov function and stability

cannot be determined by its use (the system is known to be stable in the sense of Lyapunov as per the

stability definition given in Section 9.11).

We now test

 V(x) = p1x2
1 + p2 x

2
2; p1 > 0, p2 > 0

for Lyapunov properties. Conditions (i)–(iii) of Theorem 9.2 are obviously satisfied.

 �V (x) = 2p1x1x2 – 2p2(K + a 2)x1x2

If we set p1 = p2(K + a 2), �V (x) = 0 and, as per Theorem 9.2, the equilibrium state of the system (9.67)

is stable in the sense of Lyapunov.

Example 9.14

Reconsider the system of Fig. 9.44 with

 G(s) =
K

s s()+ a

If the reference variable r(t) = 0, then the differential equation for the actuating error will be

 ��e + a �e + Ke = 0

Taking e and �e as state variables x1 and x2 respectively, we obtain the following state equations:

 �x1 = x2

 �x2 = – K x1 – a x2

(9.69)

A candidate for a Lyapunov function is

V(x) = p1x2
1
 + p2 x

2
2; p1 > 0, p2 > 0,

which is a positive definite function.

Its derivative is

�V (x) = 2(p1 x1�x1 + p2 x2 �x2) = 2(p1 – p2 K)x1x2 – 2 p2a x2
2

If we take p1 = Kp2 with K > 0, a > 0, we obtain

�V (x) = –2a p2 x2
2

which is negative semidefinite.

The condition �V (x) = 0 exists along the x1-axis where x2 = 0. A way of showing that �V (x), being negative

semidefinite, is sufficient for asymptotic stability is to show that x1-axis is not a trajectory of the system

differential equation (9.69). The first equation yields �x1 = 0 or x1 = c. The x1-axis can be a trajectory only

620 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

if x2 = 0 and �x2 = 0. Since on x1-axis, �x2 = – Kc π 0, x1-axis is not a trajectory, and the equilibrium state

at the origin of the system (9.69) is asymptotically stable.

Further, since V(x) as ||x|| the equilibrium state is asymptotically stable in-the-large.

This result, obtained by Lyapunov’s direct method, is readily recognized as being correct either from the

Routh stability criterion or from the root locus.

Example 9.15

Consider the system described by the state equations

 �x1 = x2

 �x2 = – x1 – x2

Let us choose,

 V(x) = x2
1
 + x2

2

which is a positive definite function; V(x) as ||x||

This gives
�V (x) = 2 x1 �x1 + 2 x2 �x2 = –2x2

2

which is negative semidefinite. As per the procedure described in the earlier example, it can be established

that �V (x) vanishes identically only at the origin. Hence, by Theorem 9.2, the equilibrium state at the

origin is asymptotically stable in-the-large.

To show that a different choice of a Lyapunov function yields the same stability information, let us

choose the following positive definite function as another possible Lyapunov function:

V(x) = 1
2
[(x1 + x2)2 + 2 x2

1
 + x2

2]

Then �V (x) becomes

 �V (x) = (x1 + x2)(�x1 + �x2) + 2x1�x1 + x2 �x2

 = (x1 + x2)(x2 – x1 – x2) + 2x1x2 + x2 (–x1 – x2) = – (x2
1

 + x2
2)

which is negative definite. Since V(x) as || x || , by Theorem 9.2, the equilibrium state at the

origin is asymptotically stable in-the-large.

Instability

It may be noted that instability in a nonlinear system can be established by direct recourse to the instability

theorem of the direct method. The basic instability theorem is presented below.

For the autonomous system (9.59), sufficient conditions for instability are as follows.

Suppose that there exists a scalar function W(x) which, for some real number e > 0, satisfies the following

properties for all x in the region ||x || e :

 (i) W(x) > 0; x π 0;

 (ii) W(0) = 0; and

 (iii) W(x) has continuous partial derivatives with respect to all components of x.

 Nonlinear Systems Analysis 621

Then the equilibrium state xe = 0 of the system (9.59) is unstable if �W (x) > 0, x π 0, i.e., �W(x) is a positive

definite function.

 Note that it requires as much ingenuity to devise a suitable W function, as to devise a Lyapunov function

V. In the stability analysis of nonlinear systems, it is valuable to establish conditions for which the

system is unstable. Then the regions of asymptotic stability need not be sought for such conditions, and

the analyst is saved from this fruitless effort.

9.13 LYAPUNOV FUNCTIONS FOR
NONLINEAR SYSTEMS

The determination of stability through Lyapunov’s direct method centers around the choice of a positive

definite function V(x), called the Lyapunov function. Unfortunately, there is no universal method for

selecting the Lyapunov function which is unique for a given nonlinear system. Some Lyapunov functions

may provide better answers than others. Several techniques have been devised for the systematic

construction of Lyapunov functions; each is applicable to a particular class of systems.

In addition, if a Lyapunov function cannot be found, it in no way implies that the system is unstable

(stability theorems presented in the earlier section, merely provide sufficient conditions for stability).

It only means that our attempt in trying to establish the stability of an equilibrium state of the system

has failed. Also, if a certain Lyapunov function provides stability for a specified parameter region, this

does not necessarily mean that leaving that region will result in system instability. Another choice of

Lyapunov function may lead to a larger stability region.

Further, for a given V-function, there is no general method which will allow us to ascertain whether it

is positive definite. However, if V(x) is in quadratic form in xi’s, we can use simple tests given in

Section 5.2 to ascertain definiteness of the function.

In spite of all these limitations, Lyapunov’s direct method is the most powerful technique available today

for the stability analysis of nonlinear systems. Many mathematical methods for constructing Lyaunov

functions are available in the literature. Two of these methods—“Krasovskiis Method”, and the “Variable

Gradient Method”—are simple and systematic ways of constructing Lyapunov functions. However, the

mathematical approach of these methods, though effective for simple systems, is often of little use for

complex dynamic equations.

Therefore, faced with specific systems, one has to use experience, intuition, and physical insights to

search for an appropriate Lyapunov function. An elegant and powerful Lyapunov analysis may be

possible for complex systems if engineering insight and physical properties are properly exploited [126].

Example 9.16

Consider a nonlinear system governed by the equations:

 �x1 = – x1 + 2x2
1
 x2

 �x2 = – x2

622 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Note that x = 0 is the equilibrium point.

A candidate for a Lyapunov function is

V = p11x2
1
 + p22 x

2
2 ; p11 > 0, p22 > 0

which is a positive definite function.

Then

dV

dt
 = 2p11x1�x1 + 2p22 x2 �x2

 = 2p11x1(– x1 + 2x2
1x2) + 2p22x2(–x2)

 = – 2p11x2
1(1 – 2x1x2) – 2p22 x

2
2

dV/dt is negative definite if

 1 – 2x1x2 > 0 (9.70)

Therefore, for asymptotic stability we require that the condition (9.70) is satisfied. The region of state

space where this condition is not satisfied is possibly the region of instability. Let us concentrate on the

region of state space where this condition is satisfied. The limiting condition for such a region is

1 – 2x1x2 = 0

The dividing lines lie in the first and the third quadrants and are rectangular hyperbolas as shown in

Fig. 9.45. In the second and the fourth quadrants, the inequality is satisfied for all values of x1 and x2.

Figure 9.45 shows the regions of stability and possible instability. Since the choice of the Lyapunov

function is not unique, it may be possible to choose another Lyapunov function for the system under

consideration which yields a larger region of stability.

Fig. 9.45 Stability regions for the nonlinear system of Example 9.16

 Nonlinear Systems Analysis 623

9.13.1 The Krasovskii Method

In the following, we describe the Krasovskii Method of constructing Lyapunov functions for nonlinear

systems [105].

Consider the nonlinear autonomous system

 �x = f(x); f(0) = 0 (9.71)

 f = [f1 f2 � fn]
T; x = [x1 x2 � xn]

T

We assume that f(x) has continuous first partial derivatives.

We define a Lyapunov function as

 V(x) = fT(x)Pf(x) (9.72)

where P = a symmetric positive definite matrix.

Now,

 �V (x) = �fT (x)P f(x) + fT(x)P�f (x) (9.73a)

where �f (x) =
∂

∂

f x

x

x() d

dt
 = J(x)f(x);

 J(x) =

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

n

n

n n n

1

1

1

2

1

2

1

2

2

2

1 2

�

�

� � �

�
xxn

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

 (9.73b)

is the Jacobian matrix of f(x).

Substituting �f (x) in Eqn. (9.73a), we have

 �V (x) = fT(x)[JT(x)P + PJ(x)]f(x) (9.74a)

Let Q = – [JT(x)P + PJ(x)] (9.74b)

Since V(x) is positive definite, for the system to be asymptotically stable at the origin, �V (x) should be

negative definite, or equivalently, Q should be positive definite. If, in addition, V(x) as ||x || ,

the system is asymptotically stable in-the-large.

Example 9.17

As an illustration of the Krasovskii method,

consider the nonlinear system shown in

Fig. 9.46, where the nonlinear element is described

as

u = g(e) = e3

+

–

e yur = 0
g(.)

K

s s(+ 1)

Fig. 9.46 A nonlinear system

624 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The system is described by the differential equation

�� �e e+ = – Ke3; K > 0

Defining x1 = e and x2 = �e , we get the following state equations:

 �x1 = f1(x) = x2 (9.75)

 �x2 = f2(x) = – x2 – Kx3
1

The equilibrium point lies at the origin.

Now J(x) =

∂

∂

∂

∂

∂

∂

∂

∂

f

x

f

x

f

x

f

x

Kx

1

1

1

2

2

1

2

2

1
2

0 1

3 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=
- -

È

Î
Í
Í

˘

˚
˙
˙

Let P =
p p

p p

11 12

12 22

È

Î
Í

˘

˚
˙

For P to be positive definite,

 p11 > 0 (9.76a)

 p11 p22 – p2
12

 > 0 (9.76b)

The matrix

 Q = – [JT(x)P + PJ(x)]

 = –
0 3

1 1

0 1
1
2

11 12

12 22

11 12

12 22

-
-

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙
-

Kx p p

p p

p p

p p 33 11
2Kx -

È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

 = –
- - -

- - -

È

Î
Í
Í

˘

˚
˙

6 3

3 2

12 1
2

11 12 22 1
2

11 12 22 1
2

12 22

p K x p p p K x

p p p K x p p() ˙̇

For the system (9.75) to be asymptotically stable at the origin, Q should be positive definite, i.e.,

 6p12 Kx1
2 > 0 (9.76c)

 – 12p12 Kx1
2(p12 – p22) – (p11 – p12 – 3p22 K x1

2)2 > 0

or 12p12 K x1
2(p22 – p12) > (p11 – p12 – 3p22Kx1

2)2 (9.76d)

Choose p12 > 0. Inequality (9.76c) then yields the

condition x1
2 > 0, which is always met.

Choose, p11 = p12, and p22 = b p12 with b > 1.

Inequalities (9.76a) and (9.76b) are satisfied, and

inequality (9.76d) gives the condition

12(b – 1) > 9b2Kx1
2 or x1

2 <
4

3

1 1
2K b b

-
Ê

Ë
Á

ˆ

¯
˜

It can easily be shown that the largest value of x1

occurs when b = 2. Therefore,

–

x1

x2

1

3K

1

3K

Fig. 9.47 Stability region of the nonlinear
system of Fig. 9.46

 Nonlinear Systems Analysis 625

 x1
2 <

1

3K
 or –

1

3

1

3
1

K
x

K
< <

This region of asymptotic stability is illustrated in Fig. 9.47.

9.13.2 The Variable Gradient Method

In searching for a Lyapunov function, we can approach the problem in a backward manner. We begin

with an assumed form for the derivative �V (x), and go back to choose the parameters of V (x) so as to

make �V (x) negative definite. This is a useful idea in searching for a Lyapunov function. A procedure that

exploits this idea is known as the variable gradient method.

 To describe the procedure, let V (x) be a scalar function of x, and the vector function

 g(x) = gradient of V(x) =
∂
∂

∂
∂
∂
∂

∂
∂

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

V

V

x

V

x

V

x

g

g

n

()

()

()x

x

x

x
= =

1

2

1

2

�
�

ggn ()x

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (9.77)

 The derivative �V (x) along the trajectories of Eqn. (9.71) is given by

 �V (x) =
∂
∂

+
∂
∂

+ +
∂
∂

V

x
x

V

x
x

V

x
x

n
n

1
1

2
2� � � �

= () ()g x x g x f x() = () ()

T T�
 (9.78)

The idea now is to try to choose a vector function g(x), such that it would be a gradient of a positive

definite scalar function V(x) and, at the same time, �V (x) would be negative definite. However, for a

vector function g(x) to be gradient of a scalar V(x), the Jacobian matrix of g(x) (refer to Eqn. (9.73b))

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

È

Î

Í
Í
Í
Í
Í
Í

˘

g x

x

()
=

g

x

g

x

g

x

g

x

g

x

g

x

n

n n n

n

1

1

1

2

1

1 2

�

� � �

�

˚̊

˙
˙
˙
˙
˙
˙

must be symmetric, i.e.,

∂
∂

=
∂

∂
" =

g

x

g

x
i j ni

j

j

i

, , , ...,1 2 (9.79)

This is so because the Hessian matrix (refer to Eqn.(8.18))

626 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

∂

∂

∂

∂

∂
∂ ∂

∂
∂ ∂

∂
∂

x x

x

x

V V

V

x

V

x x

V

x x

V

x

n

= =
2

2

2

1
2

2

1 2

2

1

2

()

�

� � �

nn n n nx

V

x x

V

x x∂
∂

∂ ∂
∂

∂ ∂

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1

2

2

2

�

is always symmetric
∂
∂ ∂

∂
∂ ∂

Ê

Ë
Á

ˆ

¯
˜

2 2V

x x

V

x xi j j i

= .

Under the constraints (9.79), we start by choosing g(x) such that (g(x))Tf (x) is negative definite. The

function V(x) is then computed from the integral

 V d g y y y dyi n i

i

n

(() , ,...,x) g y

0

= =

=

T
y

x x

Ú ÂÚ ()1 2

10

 (9.80a)

The integration is taken over any path joining the origin to x (The line integral of a gradient vector is

independent of the path [125]). Usually, this is done along the axes; that is

V g y dy g x y dy

g

x x

n

(, , , ..., , , , ...,x) = () + ()Ú Ú1 1 1

0

2 1 2 2

0

0 0 0 0 0

1 2

+ +� xx x x y dyn n n

xn

1 2 1

0

, ,..., ,-()Ú
 (9.80b)

 By leaving some parameters of g(x) undetermined, one would try to choose them to ensure that V(x) is

positive definite.

Example 9.18

Let us use the variable gradient method to find a Lyapunov function for the nonlinear system

�

�

x x

x x x x

1 1

2 2 1 2
2

=

= +

–

–

(9.81)

We assume the following form for the gradient of the undetermined Lyapunov function.

 g(x) =
g

g

a x a x

a x a x

1

2

11 1 12 2

21 1 22 2

()

()

x

x

È

Î
Í

˘

˚
˙

+
+

È

Î
Í

˘

˚
˙= ; aij may be functions of x (9.82)

The function has to satisfy the constraints (9.79):

∂
∂

=
∂
∂

g

x

g

x

1

2

2

1

, i.e., a x
a

x
a x

a

x
12 2

12

2
21 1

21

1

+
∂
∂

= +
∂
∂

If the coefficients are chosen to be

a11 = a22 = 1; a12 = a21 = 0

 Nonlinear Systems Analysis 627

then

g1(x) = x1 and g2(x) = x2

and

 �V (x) = ()g x f x() ()
T

 = – x2
1 – x 2

2 (1 – x1x2) (9.83)

Thus, if (1 – x1x2) > 0, then �V is negative definite. The function V(x) can be computed as

V y dy y dy
x x

x x

x() = + =
+

Ú Ú1 1

0

2 2

0

1
2

2
21 2

2
 (9.84)

 This is a positive definite function and, therefore, the asymptotic stability of the origin in the region

1 > x1x2 is guaranteed.

 Note that (9.84) is not the only Lyapunov function obtainable by the variable gradient method. A different

choice of aij’s may lead to another Lyapunov function for the system.

9.14 LYPUNOV’S LINEARIZATION METHOD AND
 LOCAL STABILITY

Lyapunov’s original work, first published in 1892, included two methods for stability analysis; the so-

called Lyapunov’s first method (linearization method) and Lyapunov’s second method (direct method). The

linearization method draws conclusions about a nonlinear system’s local stability around an equilibrium

point from the stability properties of its linear approximation. The direct method is not restricted to local

motion and determines the stability of a nonlinear system (directly without linearization) by constructing

a scalar function for a system and examining the function’s time variation. We have so far discussed

Lyapunov’s second method/direct method. In the following discussion, the key results of Lyapunov’s first

method/linearization method are presented.

 (i) If the linearized system �x = Ax is strictly stable (i.e., if all the eigenvalues of A are strictly in the

left half of the complex plane), then the equilibrium point of the actual nonlinear system �x = f(x)

is locally asymptotically stable.

 (ii) If the linearized system is unstable (i.e., if at least one eigenvalue of A is strictly in the right half

of the complex plane), then the equilibrium point is locally unstable for the nonlinear system.

 (iii) If the linearized system has all eigenvalues of A in the left half of the complex plane, but also

has at least one eigenvalue having zero real part, then one cannot conclude anything from the

linear approximation (the equilibrium point may be stable in the sense of Lyapunov, locally

asymptotically stable or locally unstable for the nonlinear system.

 While the proof of these results are not detailed here, intuitive justification is obvious. If the linearized

system is strictly stable or strictly unstable, then, since the approximation is valid ‘not too far’ from the

equilibrium, the nonlinear system itself is locally stable or locally unstable. However, if the linearized

system has roots with zero real parts, the higher-order terms in Taylor series expansion (refer to

Eqns (5.11)) can have decisive effect on whether the nonlinear system is stable or unstable. Simple

nonlinear systems may be globally asymptotically stable while their linear approximations have roots

628 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

with zero real parts; one simply cannot infer any stability property of a nonlinear system from its linear

approximation with roots having zero real parts.

Today, Lyapunov’s linearization method has come to represent the theoretical justification of linear

control, while Lyapunov’s direct method has become the most important tool for nonlinear system

analysis and design. Lyapunov’s linearization method shows that linear control design is a matter of

consistency; one must design a controller such that the system remain in its ‘linear range’. It also stresses

on major limitations of linear design, i.e., how large is the linear range from stability considerations?

Such questions motivate a deeper approach to nonlinear system analysis.

REVIEW EXAMPLES

Review Example 9.1

Figure 9.48 shows the input-output waveforms of a saturating element or a limiter.

For small input signals (X < S), the output is proportional to the input. However, if the input amplitude is

sufficiently large to cause saturation (X > S), the output is a clipped sine wave. One cycle of the output,

which is a periodic function of period 2p, is described as follows:

 K x; 0 £ w t < a
 KS; a £ w t < (p – a)

 y = K x; (p – a) £ w t < (p + a)

 – KS; (p + a) £ w t < (2p – a)

 K x; (2p – a) £ w t £ 2p

where a = sin–1(S/X)

This periodic function has odd symmetry:

y(w t) = – y(– w t)

Therefore, the fundamental component of y is given by (refer to Eqn. (9.4d))

y1 = B1sinw t

where B1 =
1

0

2

p

p

Ú y sinw t d(wt)

Due to symmetry of y (refer to Fig. 9.48), the coefficient B1 can be calculated as follows:

B1 =
4 4

0

2

0

2

2

p
q q

p
q q q q

p
a

a

p

y d
K

X d S dÚ Ú Ú= +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

sin sin sin

Ï

Ì
Ô
Ô

Ó
Ô
Ô

 Nonlinear Systems Analysis 629

 =
4

2

K X
S

p
a a a a(sin cos) cos- +È

ÎÍ
˘

˚̇

B

X

1 =
2

1
2

11
2 2

K S

X

S

X

S

X

S

X

S

Xp
sin- - - Ê

ËÁ
ˆ
¯̃

+ - Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙

Therefore,

 N(X) =

2
11

2
K S

X

S

X

S

X
X S

K X S

p
sin ;

;

- + - Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙

≥

<

Ï

Ì
ÔÔ

Ó
Ô
Ô

 (9.85)

The describing functions given by Eqn. (9.85) and nonlinearity 4 in Table 9.2, have a common term of

the form

 Nc(z) =
2 1 1

1
11

2

p
sin- + - Ê

ËÁ
ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙z z z

 (9.86)

– S

KS

– KS

0
S x

x
X

y y

Slope = K

a

p a–

p a+

2p a–

2p a+

3p a–

wt

p a– 2p a+

p a+ 2p a–

wt

a

Fig. 9.48

630 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In terms of Nc(z), the describing function (9.85) may be expressed as

 N(X) = KNc

X

S

Ê
ËÁ

ˆ
¯̃

 (9.87)

The function Nc(z) is listed in Table 9.3.

Table 9.3 Values of Nc(z) given by Eqn. (9.86)

z Nc (z) z Nc (z) z Nc (z)

1.0 1.000 6.0 0.211 11.0 0.116

1.5 0.781 6.5 0.195 11.5 0.111

2.0 0.609 7.0 0.181 12.0 0.106

2.5 0.495 7.5 0.169 12.5 0.102

3.0 0.416 8.0 0.159 13.0 0.0978

3.5 0.359 8.5 0.149 14.0 0.0909

4.0 0.315 9.0 0.141 15.0 0.0848

4.5 0.281 9.5 0.134 19.0 0.0670

5.0 0.253 10.0 0.127 25.0 0.0509

5.5 0.230 10.5 0.121 30.0 0.0424

50.0 0.0255

100.0 0.0127

Review Example 9.2

Consider the nonlinear system of Fig. 9.49a, with a saturating amplifier having gain K in its linear

region. Determine the largest value of gain K for the system to stay stable. What would be the frequency,

amplitude and nature of the limit cycle for a gain K = 3?

(a)

+ e y

–

r = 0

S = 1

1

(1 + 2)(1 +)s s s

 Nonlinear Systems Analysis 631

Fig. 9.49

Solution It is convenient to regard the amplifier to have unit gain and the gain K to be attached to the

linear part. From Eqn. (9.87), we obtain, for S = 1 and K = 1, N(E) = Nc (E); the function Nc(E) is listed

in Table 9.3.

The locus of – 1/N(E) thus starts from (– 1 + j0) and travels along the negative real axis for increasing E,

as shown in Fig. 9.49b. Now, for the equation

KG (jw) = –1/N(X)

to be satisfied, G(jw) must have an angle of – 180°:

 –G(jw) = – 90° – tan–1 2w – tan–1w = –180°

This gives

2

1 2 2

w w

w

+

-
 = tan 90° = or w = 1/ 2 rad/sec.

The largest value of K for stability is obtained when KG(jw) passes through (–1 + j0), i.e.,

| () |
/

KG jw
w=1 2 = 1 or

K

1

2
3

3

2

Ê
ËÁ

ˆ
¯̃ ()Ê

ËÁ
ˆ

¯̃

 = 1 or K = 3/2

For K = 3, KG(jw) plot intersects – 1/N(X) locus, resulting in a limit cycle at (w1, E1) where w1 = 1/ 2,

while E1 is obtained from the relation

| –1/N(E1)| = |3G(jw1)| = 2 or |N(E1)| = 0.5

From Table 9.3, we obtain

E1 @ 2.5

632 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Applying the stability test for the limit cycle reveals that point A in Fig. 9.49b corresponds to a stable

limit cycle.

Review Example 9.3

Consider the servomechanism of Fig. 9.50, having a deadzone nonlinearity in the feedback loop.

With x1 = y and x2 = �y , we get

�

�

x x

x

x x

x x x

x x x

1 2

2

2 1

2 1 1

2 1 1

1 1

2 1 1

2 1 1

=

=

- - < <
- - - >
- - + < -

Ï

Ì
Ô

Ó

;

();

();ÔÔ

1

–1

–

e u

Plant

y

Slope = 2

1
(+ 1)s s

Fig. 9.50

The phase plane may be divided into three regions:

Region I (defined by –1 < x1 < 1) The isocline equation is

m
x

x
=
-

= -2

2

1

Since m is the slope of phase trajectories, all trajectories in Region I have a slope of –1. Typical trajectories

are shown in Fig. 9.51.

Region II (defined by x1 > 1) The isocline equation is

 m
x x

x
=
- - -()2 1

2

2 1

or

 x
x

m
2

12 1

1
=
- -()

+

The isoclines are straightlines intersecting the x1-axis at x1 = 1, with slope equal to –2/(m + 1). Some of

these isoclines are shown in Fig. 9.51.

 Nonlinear Systems Analysis 633

Region III (defined by x1 < –1) The isocline equation is

x
x

m
2

12 1

1
=
- +()

+
These isoclines are straightlines intersecting the x1-axis at x1 = –1, with slope equal to –2/(m + 1). Some

of these isoclines are shown in Fig. 9.51.

Some typical phase trajectories are also shown in Fig. 9.51. Note that for the given system, we have an

equilibrium zone, –1 £ x1 £ 1, with x2 = 0. The system comes to rest at any point within this zone.

Review Example 9.4

Consider the nonlinear system

 �x1 = – x1 – x2
2

 �x2 = – x2

Investigate the stability of the equilibrium points.

Solution The given system is

 �x = f(x)

or �x1 = f1(x) = – x1 – x2
2

 �x2 = f2(x) = – x2

Clearly, x = 0 is the only equilibrium point.

–1
1

x1

x2m = –1
m = 0

m = 1

m =

m = –3 m = –2

m = –1

m = –2
m = –3

m =

m = 0
m = 1

Fig. 9.51 Isoclines and typical trajectories for the system of Fig. 9.50

634 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In the following, we apply Krasovskii method to determine sufficient conditions for asymptotic stability,

in the vicinity of the equilibrium point.

A candidate for a Lyapunov function is

V(x) = fT(x)Pf(x)

Selecting P = I may lead to a successful determination of the conditions for asymptotic stability in the

vicinity of the equilibrium point.

With this choice of Lyapunov function, we have (refer to Eqns (9.74))

 �V (x) = fT(x)[JT(x) + J(x)]f(x)

where

 J(x) =

∂

∂

∂

∂

∂

∂

∂

∂

f

x

f

x

f

x

f

x

1

1

1

2

2

1

2

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =
- -

-
È

Î
Í

˘

˚
˙

1 2

0 1

2x

The matrix

 Q = – [JT(x) + J(x)] =
2 2

2 2

2

2

x

x

È

Î
Í

˘

˚
˙

Using Sylvester’s criterion (Section 5.2), we find that the matrix

Q is positive definite if

4 – 4x2
2 > 0 or | x2 | < 1

The shaded region in Fig. 9.52 is the region of asymptotic

stability. It is, however, not the largest region. Another choice

of Lyapunov function for the system under consideration, may

lead to a larger region of asymptotic stability in the vicinity of

the equilibrium point.

PROBLEMS

 9.1 For a sinusoidal input x = X sin w t, find the output waveforms for each of the nonlinearities listed

in Table 9.2. By Fourier-series analysis of the output waveforms, derive the describing function

for each entry of the table.

 9.2 Consider the system shown in Fig. P9.2.

Using the describing-function analysis,

show that a stable limit cycle exists for

all values of K > 0. Find the amplitude

and frequency of the limit cycle when

K = 4, and plot y(t) versus t.

 9.3 Consider the system shown in Fig. P9.3.

Use the describing function technique

–1

0

1

x1

x2

Fig. 9.52

–

e
M

yK

s s(1 +)2

Fig. P9.2

 Nonlinear Systems Analysis 635

to investigate the possibility of limit cycles in this system. If a stable limit cycle is predicted,

determine its amplitude and frequency.

0.1

1
e

–

y5

(0.1 + 1)s s 2

Fig. P9.3

 9.4 Using the describing-function analysis, prove that no limit cycle exists in the system shown in Fig.

P9.4. Find the range of values of the deadzone of the on–off controller for which limit cycling will

be predicted.

–

e
1

0.2

y5

(+ 1)(0.1 + 1)s s 2

Fig. P9.4

 9.5 Consider the system shown in Fig. P9.5. Using the describing-function technique, show that a

stable limit cycle cannot exist in this system for any K > 0.

–

e

Slope = 1

1

yK

s s(1 +)2

Fig. P9.5

 9.6 Consider the system shown in Fig. P9.6. Using the describing-function analysis, investigate the

possibility of a limit cycle in the system. If a limit cycle is predicted, determine its amplitude and

frequency, and investigate its stability.

Fig. P9.6

636 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 9.7 An instrument servo system used for positioning a load, may be adequately represented by the

block diagram in Fig. P9.7a. The backlash characteristic is shown in Fig. P9.7b. Show that the

system is stable for K = 1. If the value of K is now raised to 2, show that limit cycles exist.

Investigate the stability of these limit cycles. Determine the amplitude and frequency of the stable

limit cycle.

 Given:

H/X 0 0.1 0.2 0.5 0.7 0.8 0.9 0.95 1.0

|N(X)| 1 0.954 0.882 0.593 0.367 0.249 0.126 0.063 0

–N(X) 0 –6.7° –13.4° –32.5° –46.6° –55.1° –65.6° –72.8° –90°

–

e x y

Slope = 1 y

H = 1

xK

s s s(+ 1)(0.5 + 1)
N X()

(a) (b)

Fig. P9.7

 9.8 Determine the kind of singularity for each of the following differential equations. Also locate the

singular points on the phase plane.

 (a) �� �y y+ 3 + 2 y = 0 (b) �� �y y+ 5 + 6 y = 6 (c) �� �y y- 8 + 17 y = 34

 9.9 An undamped pendulum is described by the differential equation

 ml2 ��q + mgl sin q = 0

 where mg is the weight of the pendulum, and l is its length. Show that this nonlinear system

has two equilibrium points: q = 0, and q = p. Develop linear state models using Taylor series

approximation around the two equilibrium points, and therefrom identify the kind of singularity

at each point.

 9.10 A linear second-order servo is described by the equation

 ��y + 2zwn �y + w2
n y = w2

n

 where wn = 1, y(0) = 2.0, �y(0) = 0

 Determine the singular points when (i) z = 0, (ii) z = 0.15. Construct the phase trajectory in each

case.

 9.11 Consider the block diagram of a system, shown in Fig. P9.11.

 (a) Derive state variable model with x1 = e and x2 = �e .

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points

(if any) and some isoclines.

 Nonlinear Systems Analysis 637

0.1
0.1 yr = const +

–

e 7
(+ 1)s s

Fig. P9.11

 9.12 Consider the block diagram of a system, shown in Fig. P9.12.

 (a) Derive state variable model with x1 = e and x2 = �e.

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points

(if any) and some isoclines.

0.1

Slope
= 1 yr = const +

–

e 7
(+ 1)s s

Fig. P9.12

 9.13 Consider the block diagram of a system, shown in Fig. P9.13.

 (a) Derive state variable model with x1 = e and x2 = �e .

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points

(if any) and some isoclines.

– 0.1

y

0.1

+

–

er = const 7
(+ 1)s s

Fig. P9.13

 9.14 Consider the block diagram of a system, shown in Fig. P9.14.

 (a) Derive state variable model with x1 = e and x2 = �e .

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points

(if any) and some isoclines.

638 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

0.1

y

0.1

+

–

er = const 7
(+ 1)s s

Fig. P9.14

 9.15 Consider the block diagram of a system, shown in Fig. P9.15.

 (a) Derive state variable model with x1 = e and x2 = �e.

 (b) Write equations of the isoclines on the x1 versus x2 plane.

 (c) Given: x1(0) = 1, x2(0) = 0, obtain a trajectory on the x1 versus x2 plane. Show singular points

(if any) and some isoclines.

y+ +

– –

r = const e y

0.1 sgn y

1
s

1
s

Fig. P9.15

 9.16 The position control system shown in Fig. P9.16 has Coulomb friction Tc sgn(�q) at the output

shaft. Prove that the phase trajectories on (e, �e /wn)-plane are semicircles, with the center on

horizontal axis at +Tc /K for �e < 0 and –Tc /K for �e > 0.

+

–

e
J

Motor

vqR = const
T = vK1

q
KA

Tc

Fig. P9.16

 Examine the phase trajectory corresponding to qR = unit step, �q(0) = q (0) = 0; and find the value

of the steady-state error. What is the largest possible steady-state error which the system in Fig.

P9.16 can possess?

 Given:

wn = K J/ = 1.2 rad/sec; Tc /K = 0.3 rad

 where K = KAK1.

 Nonlinear Systems Analysis 639

 9.17 Consider the nonlinear system with deadzone shown in Fig. P9.17. Using the method of isoclines,

sketch some typical phase trajectories with and without deadzone, and comment upon the effect

of deadzone on transient and steady-state behavior of the system.

–

e

Slope = 2

1
u y1

(+ 1)s s

Fig. P9.17

 9.18 Consider the system shown in Fig. P9.18 in which the nonlinear element is a power amplifier

with gain equal to 1.0, which saturates for error magnitudes greater than 0.4. Given the initial

condition: e(0) = 1.6, �e (0) = 0, plot phase trajectories with and without saturation, and comment

upon the effect of saturation on the transient behavior of the system. Use the method of isoclines

for construction of phase trajectories.

0.4

0.4
ye

–

u 1
(+ 1)s s

Fig. P9.18

 9.19 (a) A plant with model G(s) = 1/s2 is placed in a feedback configuration as in Fig. P9.19a.

Construct a trajectory on the (e, �e) plane with r = 2 and y(0) = �y(0) = 0. Show that the system

response is a limit cycle. What

is the switching line of this

variable structure system?

 (b) To the feedback control

system of Fig. P9.19a, we add

a derivative feedback with

gain KD as in Fig. P9.19b.

Show that the limit cycle gets

eliminated by the introduction

of derivative-control term.

What is the switching line of

this variable structure system?

 (c) Show that if KD is large, the

trajectory may slide along the

switching line towards the

origin.

+

–

er = const
1

u y

(a)

1

s2

r = const +

–

e +

–

1
u y

(b)

1

s2

sKD

Fig. P9.19

640 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 9.20 A position control system comprises of a dc servo motor, potentiometer error detector, an on–off

controller, and a tachogenerator coupled to the motor shaft.

 The following equations describe the system:

 Reaction torque = �� �q q+ 0 5.

 Drive torque = 2 sgn(e + 0.5 �e); e = qR – q

 (a) Make a sketch of the system showing how the hardware is connected.

 (b) Construct a phase trajectory on (e, �e)-plane with e(0) = 2 and �e(0) = 0, and comment upon

the transient and steady-state behavior of the system.

 (c) What is the switching line of the variable structure system?

 9.21 (a) Describe the system of Fig. P9.21a on the (e, �e)-plane, and show that with the on–off control-

ler switching on the vertical axis of the phase plane, the system oscillates with increasing

frequency and decreasing amplitude. Obtain a phase trajectory with (e(0) = 1.4, �e(0) = 0) as

the initial state point.

 (b) Introduce now a deadzone of ±0.2 in the on–off controller characteristic. Obtain a phase

trajectory for the modified system with (e (0) = 1.4, �e(0) = 0) as the initial state point and

comment upon the effect of deadzone.

 (c) The on–off controller with deadzone is now controlled by the signal e e+()1
3

� , combining

proportional and derivative control (Fig. P9.21b). Draw the switching line on the phase plane

and construct a phase trajectory with (e(0) = 1.4, �e(0) = 0) as the initial state point. What is

the effect of the derivative-control action?

Fig. P9.21

 9.22 Consider the second-order system

�x1 = x2 ; �x2 = – u

 It is desired to transfer the system to the origin in minimum time from an arbitrary initial state.

Use the bang-bang control strategy with |u| = 1. Derive an expression for the optimum switching

curve. Construct a phase portrait showing a few typical minimum-time trajectories.

 Nonlinear Systems Analysis 641

 9.23 A plant with model G(s) =
1

1s s()+
 is placed in a

 feedback configuration as shown in Fig. P9.23.

It is desired to transfer the system from any initial

state to the origin in minimum time. Derive an

expression for optimum switching curve and

construct a phase portrait on the (e, �e)-plane

showing a few typical minimum-time trajectories.

 9.24 Consider the nonlinear system described by the equations

 �x1 = x2

 �x2 = – (1 – |x1|)x2 – x1

 Find the region in the state plane for which the equilibrium state of the system is asymptotically

stable.

 9.25 Check the stability of the equilibrium state of the system described by

 �x1 = x2

 �x2 = – x1 – x2
1
 x2

 Show that the Lyapunovs linearization method fails while the Lyapunovs direct method can easily

solve this problem.

 9.26 Consider a nonlinear system described by the equations

 �x1 = – 3x1 + x2

 �x2 = x1 – x2 – x3
2

 Using the Krasovskii method for constructing the Lyapunov function with P as identity matrix,

investigate the stability of the equilibrium state.

 Find a region of asymptotic stability using Krasovskii method.

 9.27 Check the stability of the system described by

 �x1 = – x1+ 2x2
1x2

 �x2 = – x2

 by use of the variable gradient method.

 9.28 Develop a linearized state model for the Van der Pol’s differential equation

��y + m (y2 – 1) �y + y = 0; m = 1

 and therefrom determine the local stability of the nonlinear system using Lyapunov’s first method.

 9.29 Consider the nonlinear system described by the equations

 �x1 = x1 (x2
1 + x2

2 – 1) – x2

 �x2 = x1 + x2 (x2
1 + x2

2 – 1)

 Investigate the stability of this nonlinear system around its equilibrium point at the origin.

 9.30 Consider a nonlinear system described by the differential equation

��x + [K1 + K2(�x)2] �x + x = 0

Check the stability of the equilibrium state of this system when (i) K1 > 0 and K2 > 0;

(ii) K1 < 0 and K2 < 0; and (iii) K1 > 0 and K2 < 0.

Fig. P9.23

642 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

10.1 INTRODUCTION

In the previous chapter, we covered tools and techniques for the analysis of control systems containing

nonlinearities. In the present chapter, we will discuss the deliberate introduction of nonlinearities into

the controller for performance improvement over that of a simpler linear controller. Although there are

numerous techniques, several of the most common are illustrated with examples, to give the reader an

idea of the general approach to designing nonlinear controllers.

 If the system is only mildly nonlinear, the simplest approach might be to ignore the nonlinearity in

designing the controller (i.e., to omit the nonlinearity in the design model), but to include its effect in

evaluating the system performance. The inherent robustness of the feedback control law designed for the

approximating nonlinear system is relied upon to carry it over to the nonlinear system.

 When a system is significantly nonlinear, it is traditionally dealt with by linearization (refer to Eqns

(5.11)) about a selected operating point using Taylor series. We design a linear controller based on

first-order approximation. If the controller works effectively, the perturbations in actual state about the

equilibrium state will be small; if the perturbations are small, the neglected higher-order terms will be

small and can be regarded as a disturbance. Since the controller is designed to counteract the effects of

disturbances, the presence of higher-order terms should cause no problems. This reasoning cannot be

justified rigorously, but, nevertheless, it usually works. Needless to say, it may not always work; so it is

necessary to test the design that emerges, for stability and performance—analytically, by Lyapunov’s

stability analysis for example, and/or by simulation.

 In many systems, the nonlinearity inherent in the plant is so dominant that the linearization approach

described above can hardly meet the stringent requirements on systems’ performance. This reality,

inevitably, promotes the endeavor to develop control approaches that will more or less incorporate

the nonlinear dynamics into the design process. One such approach is feedback linearization. Unlike

the first-order approximation approach, wherein the higher-order terms of the plant are ignored, this

approach utilizes the feedback to render the given system, a linear input-output dynamics. On the basis

of the linear system thus obtained, linear control techniques can be applied to address design issues.

The roughness of the linearization approach based on first-order approximation, can be viewed from two

perspectives. First, it neglects all higher-order terms. Second, the linear terms depend on the equilibrium

Nonlinear Control Structures

Chapter 10

 Nonlinear Control Structures 643

point. These two uncertainties may explain why this linearization approach is incapable of dealing with

the situation where the system operates over wide dynamic regions. Although the feedback linearization

may overcome the first drawback, its applicability is limited, mainly because it rarely leads to a design

that guarantees the system performance over the whole dynamic regime. This is because feedback

linearization is often performed locally—around a specific equilibrium point. The resulting controller is

of local nature. Another remedy to linearization based on first-order approximation, is to design several

control laws corresponding to several operating points that cover the whole dynamics of the system.

Then these linear controllers are pieced together to obtain a nonlinear control law. This approach is

often called gain scheduling. Though this approach does not account for the higher-order terms, it does

accommodate the variation of the first-order terms with respect to the equilibrium points.

Adaptive control theory provides an effective tool for the design of uncertain systems. Unlike fixed-

parameter controllers (e.g., H -theory-based robust controller), adaptive controllers adapt (adjust) their

behavior on-line to the changing properties of the controlled processes.

If a fixed-parameter automatic control system is used, the plant-parameter variations directly affect the

capability of the design to meet the performance specifications under all operating conditions. If an adaptive

controller is used, the plant-parameter variations are accounted for at the price of increased complexity of

the controller. Adaptive control is certainly more complex than fixed-parameter control, and carries with

it more complex failure mechanisms. In addition, adaptive control is both time-varying and nonlinear,

increasing the difficulty of stability and performance analysis. It is this tradeoff, of complexity versus

performance, that must be examined carefully in choosing the control structure.

The main distinctive feature of variable structure systems (VSS), setting them apart as an independent

class of control systems, is that changes can occur in the structure of the system during the transient

process. The structure of a VSS is changed intentionally in accordance with some law of structural

change; the times at which these changes occur (and the type of structure formed) are determined not by

a fixed program, but in accordance with the current value of the states of the system.

The basic idea of feedback linearization in Section 10.2 is the algebraic transformation of the dynamics

of a nonlinear system to that of a linear system, on which linear control designs can in turn be applied.

Sections 10.3–10.5 show how to reduce, or practically eliminate, the effects of model uncertainties on the

stability and performance of feedback controllers using so-called adaptive and variable structure systems.

The chapter concentrates on nonlinear systems represented in continuous-time form. Even though most

control systems are implemented digitally, nonlinear physical systems are continuous in nature and are

hard to discretize meaningfully, while digital control systems may be treated as continuous-time systems

in analysis and design if high sampling rates are used. Thus, we perform nonlinear system analysis and

controller design in continuous-time form. However, of course, the control law is generally implemented

digitally.

The objective set for this chapter is to make the reader aware of the nonlinear control structures commonly

used for dealing with practical control problems in industry. The chapter is not intended to train the

reader on designing nonlinear control systems. For a comprehensive treatment of the subject, refer to

Slotine and Li[126].

644 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

10.2 FEEDBACK LINEARIZATION

In this section, we describe basic concepts of feedback linearization intuitively with the help of an

example. Mathematical tools from differential geometry, which are useful to generalize these concepts

to a broad class of nonlinear systems, are not presented here for want of space; Slotine and Li [126], and

Zak [35] are good references for this subject.

In its simplest form, feedback linearization amounts to

cancelling the nonlinearities in a nonlinear system, so that

the closed-loop dynamics is in a linear form. This very

simple idea is demonstrated in the following example of

control design for a two-link robot.

A two-link planar robot-arm manipulator, used extensively

for simulations in the literature, is shown in Fig. 10.1. This

arm is simple enough to simulate, yet has all the nonlinear

effects common to general robot manipulators.

To determine the arm dynamics, we assume that the link

masses m1 and m2 are concentrated at the ends of the links

of lengths l1 and l2, respectively. We define the angle of the

first link q1 with respect to an inertial frame, as depicted

in Fig. 10.1. The angle of the second link q2 is defined with respect to the orientation of the first link.

Torques t1 and t2 are applied by the actuators to control the angles q1 and q2, respectively.

Let us derive the dynamics of the two-link arm from first principles using Lagrange’s equation of

motion [38]:

d

dt

L L∂

∂
-

∂

∂
=

 p p
s ; p = [q1 q2]T; s = [t1 t2]T (10.1)

with the Lagrangian L defined in terms of the kinetic energy K and potential energy P as

 L = K P(,) ()p p p - (10.2)

For link 1, we have the positions and velocities:

X l Y l

X l Y l

X

1 1 1 1 1 1

1 1 1 1 1 1 1 1

1
2

1

= =

= - =

=

cos ; sin

sin ; cos

q q

q q q q

v

22
1
2

1
2

1
2+ = Y l q

The kinetic and potential energies, for link 1, are

K m m l

P m gY m gl

1
1
2 1 1

2 1
2 1 1

2
1
2

1 1 1 1 1 1

= =

= =

v
 q

qsin

For link 2, we have the positions and velocities:

X l l

Y l l

2 1 1 2 1 2

2 1 1 2 1 2

= + +

= + +()
cos cos()

sin sin

q q q

q q q

0 X

Y
(,)X Y2 2 m2

l2

q2

m1

(,)X Y1 1

q1

l1

Fig. 10.1 A two-link robot

 Nonlinear Control Structures 645

X l2 1 1= - siq nn ()sin()

cos () cos(

q q q q q

q q q q q

1 2 1 2 1 2

2 1 1 1 2 1 2 1

- + +

= + +

l

Y l l

 ++

= + = + + + +

q

q q q q q q

2

2
2

2
2

2
2

1
2

1
2

2
2

1 2
2

1 2 1
2

1 22

)

() (v
 X Y l l l l)) cosq2

Therefore, kinetic energy for link 2 is

K m

m l m l m l l

2
1
2 2 2

2

1
2 2 1

2
1
2 1

2 2 2
2

1 2
2

2 1 2 1
2

1

=

= + + + +

v

 q q q q q q() (22 2) cosq

The potential energy for link 2 is

P m gY m g l l2 2 2 2 1 1 2 1 2= = + +()()sin sinq q q

The Legrangian for the entire arm is

L K P K K P P

m m l m l m l l

= - = + - -

= + + + +
1 2 1 2

1
2 1 2 1

2
1
2 1

2 2 2
2

1 2
2

2 1() () q q q 22 1
2

1 2 2

1 2 1 1 2 2 1 2

() cos

() sin sin

 q q q q

q q q

+

- + - +()m m gl m gl

 Equation (10.1) is a vector equation comprised of two scalar equations. The individual terms needed to

write down these two equations are

∂

∂
= + + + + +

L
m m l m l m l l

d

q
q q q q q q

1

1 2 1
2

1 2 2
2

1 2 2 1 2 1 2 22() () () cos

ddt

L
m m l m l m l l

∂

∂
= + + + + +

q
q q q q q

1

1 2 1
2

1 2 2
2

1 2 2 1 2 12() () (22 2 2 1 2 1 2 2
2

2

1

1 2 1 1

2)cos ()sin

() cos

q q q q q

q
q

- +

∂

∂
= - + -

m l l

L
m m gl m

22 2 1 2

2

2 2
2

1 2 2 1 2 1 2

gl

L
m l m l l

d

dt

L

cos()

() cos

q q

q
q q q q

+

∂

∂
= + +

∂

∂

 qq
q q q q q q q

q

2

2 2
2

1 2 2 1 2 1 2 2 1 2 1 2 2= + + -

∂

∂

m l m l l m l l

L

() cos sin

22

2 1 2 1
2

1 2 2 2 2 1 2= - + - +()m l l m gl()sin cos q q q q q q

According to Lagrange’s equation (10.1), the arm dynamics are given by the two coupled nonlinear

differential equations

t q q q1 1 2 1
2

2 2
2

2 1 2 2 1 2 2
2

2 1 2 22= [() cos] [cos]m m l m l m l l m l m l l+ + + + + q q q q q

q

2 2 1 2 1 2 2
2

2

1 2 1 1 2 2

2- +

+ + +

m l l

m m gl m gl

()sin

) cos cos ((()

[cos] sin

q q

t q q q q

1 2

2 2 2
2

2 1 2 2 1 2 2
2

2 2 1 2 1
2

+

+ + += m l m l l m l m l l qq q q2 2 2 1 2+ +m gl cos()

646 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Writing the arm dynamics in vector form, yields

() cos cosm m l m l m l l m l m l l

m l m l l

1 2 1
2

2 2
2

2 1 2 2 2 2
2

2 1 2 2

2 2
2

2 1 2

2+ + + +

+

q q

ccos

()sin

q

q

q

q q q

2 2 2
2

1

2

2 1 2 1 2 2
22

m l

m l lÈ

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ +

- +

 qq

q q

q q q

2

2 1 2 1
2

2

1 2 1 1 2 2 1 2

m l l

m m gl m gl

 sin

() cos cos()

È

Î
Í
Í

˘

˚
˙
˙

+
+ + +

mm gl2 2 1 2

1

2cos()q q

t

t+
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙= (10.3)

One may write the dynamics of the two link arms completely as

 M V G() (,) ()p p p p p s + + = (10.4)

where the symmetric inertia matrix

M(p) =
a b h q b h q

b h q b

+ + +
+

È

Î
Í

˘

˚
˙

2 2 2

2

cos cos

cos
,

and nonlinear terms

N V G(,) (,) ()p p p p p = +

are given by V(,)p p =
- +È

Î
Í
Í

˘

˚
˙
˙

+h q q q q

hq q

a q h()sin

sin
; ()

cos c2 1 2 2
2

2

1
2

2

1 1 1

G p =

e e oos()

cos()

q q

h q q

1 2

1 1 2

+
+

È

Î
Í

˘

˚
˙

e

 a = (m1 + m2)l2
1; b = m2l2

2; h = m2l1l2; e1 = g/l1

This is a special form of state model called ‘Brunovsky canonical form’. Many systems, like the robot

arm, are naturally in the Brunovsky form. Moreover, it is often possible to transform general state models

to Brunovsky form. This is accomplished by finding a suitable state-space transformation followed by an

input transformation [126].

Defining the state vector as

x
x

x
= = = =

1

2

È

Î
Í

˘

˚
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙

x

x

x

x

11

12

21

22

1

2

1

2

p

p

q

q

q

q

ÈÈ

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (10.5)

we get the following state equations:

x x

x M V G M

1 = =

= = - + +- -

p

p p p p p p

2

2
1 1()[(,) ()] ()t

(10.6a)

= - + +
= +

- -
M x V x x G x M x

f x g x

1
1 1 2 1

1
1()[(,) ()] ()

() ()

t
t (10.6b)

where f x M x V x x G x g x M x() ()[(,) ()]; () ()= - + =- -1
1 1 2 1

1
1

The control law

 s = - +-
g x f x u

1()[()] (10.7)

linearizes the system (10.6) to yield

x x

x u

1 2

2

=
= (10.8)

 Nonlinear Control Structures 647

or

x

x

x

x

x11

12

21

22

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

111

12

21

22

1

2

0 0

0 0

1 0

0 1

x

x

x

u

u

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙ (10.9)

which may be completely expressed as

x

x

0 I

0 0

x

x

0

I
u

1

2

1

2

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙= (10.10)

A two-step design procedure follows.

Step 1 Use linear system design techniques to select a feedback control u(t) using the linear model

(10.10).

Step 2 Compute the required arm torques from (10.7):

 t = - +-
g x f x u

1()[()] (10.11)

This is a nonlinear feedback control law that guarantees desired behavior. It relies on computing the

torque s using Eqn. (10.7), that makes the nonlinear dynamics (10.6) equivalent to the linear dynamics

(10.10); this is termed feedback linearization.

Let us consider a specific design problem: tracking the desired motion trajectory pd (t).

Define the tracking error as

 e(t) = pd(t) – p(t) (10.12)

Therefore,

 e e() () () () () ()t t t t t td d= ; =p p p p- - (10.13)

Defining x e x e1 2= and =, (10.14)

we can write robot-arm dynamics (10.10) in the form

x x

x

1 2

2

=

= -p pd

 (10.15a)

= + + -

= + +

- -

-

p p p p p p s

p

d

d

M V G M

M x V x x G

1 1

1
1 1 2

()[(,) ()] ()

()[(,) (()] ()

() ()

x M x

f x g x

1
1

1-

= - -

- s

p s
d

(10.15b)

The control law

 s p= - - +-
g x f x u

1()[()]
d (10.16)

linearizes the system (10.15) to yield

x

x

0 I

0 0

x

x

0

I
u

1
=

2

1

2

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ (10.17)

The following design procedure may be used.

648 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Use linear quadratic regulator design to select a feedback control u(t), that stabilizes the tracking error

system (10.17). The performance measure

 J = dt+Ú ()� �x Qx u Ru
T T

0
 (10.18)

with Q R= =diag diag1 0 1 1 0 1 0 005 0 005, . , , . ; . , .{ } { }
penalizes the joint angles q1 and q2 much more strongly than the control inputs, to achieve high speed

and accuracy. The feedback control law is of the form

 u K x K x

x x

= - -

= -[] - []
1 1 2 2

11 12 1 21 22 2

� �

� �K K K K

 (10.19)

The computed-torque controller then becomes (refer to (10.16))

 s p= - + + +-
g x f x K x K x

1
1 1 2 2()[()]� �

��

d (10.20)

The computed-torque controller is shown in Fig. 10.2, which has a multiloop structure; with a nonlinear

inner feedback linearization loop and an outer tracking loop. Simulation of this controller for the two-

link robot arm (m1 = 1, m2 = 1, l1 = 1, l2 = 1, g = 9.8; qd1(t) = sin(p t), qd2(t) = cos (p t)) was done

using MATLAB (refer to Problems A.18 and A.22 in Appendix A). Figures 10.3 show the tracking

performance.

Fig. 10.2 Computed-torque controller

Unlike the linearization approach which ignores all higher-order terms of the plant, the feedback

linearization approach utilizes the feedback, to render the given system a linear input-output dynamics.

Then, on the basis of the linear system thus obtained, linear control techniques can be applied to

address design issues. Finally, the resulting nonlinear control law is implemented to achieve the desired

dynamical behavior.

The main drawback of this technique is that it relies on exact cancellation of nonlinear terms to get

linear input-output behavior (This is equivalent to cancellation of the nonlinearity with its inverse).

Consequently, if there are errors or uncertainty in the model of the nonlinear terms, the cancellation is no

longer exact. Therefore, the applicability of such model-based approaches to feedback control of actual

systems is quite limited, because they rely on the exact mathematical models of system nonlinearities.

If the functions f(x) and g–1 (x) are not exactly known in the control scheme of Fig. 10.2, we may explore

the option of constructing their estimates by two neural networks. We shall study this option of intelligent

control in Chapter 11.

 Nonlinear Control Structures 649

10.3 MODEL REFERENCE ADAPTIVE CONTROL

When we use a model of the plant as the basis of a control system design, we are tacitly assuming that

this model is a reasonable representation of the plant. Although the design model almost always differs

from the true plant in some details, we are confident that these details are not important enough to

invalidate the design.

There are many applications, however, for which a design model cannot be developed with a reasonable

degree of confidence. Moreover, most dynamic processes change with time. Parameters may vary because

Desired
Actual

1.5

1

0.5

0

–0.5

–1

t
(a)

1

0.5

0

–0.5

–1

t

Desired
Actual

–1.5

(b)

0 1 2 3 4 5 6 7 8

q
1

0 1 2 3 4 5 6 7 8

q
2

Fig. 10.3 Desired and actual trajectories

650 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

of normal wear, aging, breakdown, and changes in the environment in which the process operates. The

feedback mechanism provides some degree of immunity to discrepancies between the physical plant and

the model that is used for the design of the control system. But sometimes, this is not enough. A control

system designed on the basis of a nominal design model may not behave as well as expected, because the

design model does not adequately represent the process in its operating environment.

How can we deal with processes that are prone to large changes, or for which adequate design models

are not available? One approach is brute force, i.e., high loop-gain: as the loop-gain becomes infinite, the

output of the process tracks the input with vanishing error. Brute force rarely works, however, for well-

known reasons—dynamic instability, control saturation, and susceptibility to noise and other extraneous

inputs.

In robust control design methods, model uncertainties are captured in a family of perturbed plant models,

where each member of the family may represent the nominal plant, but which member does so, remains

unknown. A robust controller satisfies the design requirements in connection with all the members of the

family. Robust control design techniques are sophisticated and make it possible, for the control system

design, to tolerate substantial variations in the model. But the price of achieving immunity to model

uncertainties may be a sacrifice in performance. Moreover, robust control design techniques are not

applicable to processes for which no (uncertainty) design model is available.

The adaptive control theory provides another approach to the design of uncertain systems. Unlike the

fixed-parameter controller, adaptive controllers adjust their behavior on-line, in real-time, to the changing

properties of the controlled processes. For example, in some control tasks, such as those in robot

manipulations, the systems to be controlled have parameter uncertainty at the beginning of the control

operation. Unless this uncertainty is gradually reduced on-line by an adaptation or estimation mechanism,

it may cause inaccuracy or instability for the control systems. In many other tasks, such as those in

power systems, the system dynamics may have well-known dynamics at the beginning, but experience

unpredictable parameter variations as the control operation goes on. Without continuous ‘redesign’ of the

controller, the initially appropriate controller design may not be able to control the changing plant well.

Generally, the basic objective of adaptive control is to maintain consistent performance of a system in

the presence of uncertainty or unknown variation in plant parameters. Since such parameter uncertainty,

or variation occurs in many practical problems, adaptive control is useful in many industrial contexts.

These include the following:

Robots have to manipulate loads of various sizes, weights, and mass distributions. It is very restrictive to

assume that the inertial parameters of the loads are well known before a robot picks them up and moves

them away. If controllers with constant gains are used, and the load parameters are not accurately known,

motion of the robot can be either inaccurate or unstable. Adaptive control, on the other hand, allows

robots to move loads of unknown parameters with high speed and high accuracy.

Ship Steering

On long courses, ships are usually put under automatic steering. However, the dynamic characteristics

of a ship strongly depend on many uncertain parameters, such as water depth, ship loading, and wind

and wave conditions. Adaptive control can be used to achieve good control performance under varying

operating conditions.

 Nonlinear Control Structures 651

The dynamic behavior of an aircraft depends on its altitude, speed, and configuration. The ratio of

variations of some parameters can lie between 10 to 50 in a given flight. Adaptive control can be used to

achieve consistent aircraft performance over a large flight envelope.

Process Control

Models for metallurgical and chemical processes are usually complex and also hard to obtain. The

parameters characterizing the processes vary from batch to batch. Furthermore, the working conditions

are usually time-varying (e.g., reactor characteristics vary during the reactor’s life, the raw materials

entering the process are never exactly the same, atmospheric and climatic conditions also tend to change).

In fact, process control is one of the most important application areas of adaptive control.

Adaptive control has also been applied to other areas, such as power systems.

The concept of controlling a process that is not well understood, or one in which the parameters are

subject to wide variations, has a history that predates the beginning of modern control theory. The early

theory was empirical, and was developed before digital computer techniques could be used for extensive

performance simulations. Prototype testing was one of the few techniques available for testing adaptive

control. At least one early experiment had disastrous consequences. As the more mathematically rigorous

areas of control theory were developed starting in the 1960s, interest in adaptive control faded for a time,

only to be reawakened in the late 1970s with the discovery of mathematically rigorous proofs of the

convergence of some popular adaptive control algorithms. This interest continues unabated [130–136].

Many, apparently different, approaches to adaptive control have been proposed in the literature. Two

schemes in particular have attracted much interest: ‘Self-Tuning Regulator’ (STR), and ‘Model Reference

Adaptive Control’ (MRAC). These two approaches actually turn out to be special cases of a more general

design philosophy.

In the following, we describe model reference adaptive control (MRAC); the discussion on self-tuning

regulator is given in the next section.

Generally, a model reference adaptive control system can be schematically represented by Fig. 10.4.

It is composed of four parts: a plant/process containing unknown parameters, a reference model for

compactly specifying the desired output of the control system, a feedback control law containing

adjustable parameters, and an adaptation mechanism for updating the adjustable parameters.

Controller Process

Adjustment
mechanism

Model

Controller parameters

Control
signal

y

Command
signal

ym

Fig. 10.4

652 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The plant is assumed to have a known structure, although the parameters are unknown. For linear plants,

this means that the number of poles and the number of zeros are assumed to be known, but that the

locations of these poles and zeros are not.

A reference model is used to specify the ideal response of the adaptive control system to the external

command. Intuitively, it provides the ideal plant response, which the adaptation mechanism should seek

in adjusting the parameters. The choice of the reference model is part of the adaptive control system

design. This choice should reflect the performance specifications in the control tasks, such as rise time,

setting time, overshoot or frequency-domain characteristics.

The controller is usually parameterized by a number of adjustable parameters (implying that one may

obtain a family of controllers by assigning various values to the adjustable parameters). The controller

should have perfect tracking capacity in order to allow the possibility of tracking convergence. That is,

when the plant parameters are exactly known, the corresponding controller parameters should make

the plant output identical to that of the reference model. When the plant parameters are not known, the

adaptation mechanism will adjust the controller parameters, so that perfect tracking is asymptotically

achieved. If the control law is linear in terms of the adjustable parameters, it is said to be linearly

parameterized. Existing adaptive control designs normally require linear parameterization of the

controller—in order to obtain adaptation mechanisms with guaranteed stability and tracking convergence.

The adaptation mechanism is used to adjust the parameters in the control law. In MRAC systems, the

adaptation law searches for parameters such that the response of the plant under adaptive control, becomes

the same as that of the reference model, i.e., the objective of the adaptation is to make the tracking error

converge to zero. Clearly, the main difference from conventional control, lies in the existence of this

mechanism. The main issue in adaptation design is to synthesize an adaptation mechanism which will

guarantee that the control system remains stable and the tracking error converges to zero—even if the

parameters are varied. Many formalisms in nonlinear control can be used to this end, such as Lyapunov

theory, hyperstability theory, and passivity theory[126]. In this section, we shall use Lyapunov theory.

Thus, the desired performance in an MRAC (Fig. 10.4) is given in terms of a reference model, which,

in turn, gives the desired response to the command signal. The inner control loop is an ordinary feedback

loop composed of the plant and the controller; the parameters of the controller are adjusted by the outer

loop in such a way that the error between the plant and model outputs becomes small. The key problem

is to determine the adjustment mechanism so that a stable system, which brings the error to zero, is

obtained.

From the block diagram of Fig. 10.4, one may jump to the false conclusion that MRAC has an answer to

all control problems with uncertain plants. Before using such a scheme, important theoretical problems

such as stability and convergence have to be considered. Since adaptive control schemes are both time-

varying and nonlinear, stability and performance analysis becomes very difficult. Many advances have

been made in proving stability under certain (sometimes limited) conditions. However, not much ground

has been gained in proving performance bounds.

10.3.1 Lyapunov Stability of Non-Autonomous Systems

In Chapters 8 and 9, we studied Lyapunov analysis of autonomous systems. An adaptive control system

is a non-autonomous system because the parameters involved in its dynamic equations vary with time.

Although many of the ideas in Chapters 8 and 9 can be similarly applied to the non-autonomous case, the

 Nonlinear Control Structures 653

conditions required in the treatment of non-autonomous systems are more restrictive. Scalar functions

with explicit time-dependence, V(x, t), are required while in autonomous system analysis, time-invariant

functions V(x) suffice. Asymptotic stability analysis of non-autonomous systems is generally harder than

that of autonomous systems since it is usually very difficult to find Lyapunov functions with a negative

definite derivative. When V (x, t) is only negative semidefinite, Lyapunov theorems on asymptotic

stability are not applicable.

Lyapunov Theorem for Non-Autonomous Systems

If, in a certain neighborhood of the equilibrium point 0, there exists a scalar function V(x, t) with

continuous partial derivatives such that

 V(x, t) is positive definite, and

 V (x, t) is negative semidefinite,

then the equilibrium point 0, is stable in the sense of Lyapunov [126].

Similar to the case of autonomous systems, if in a certain neighborhood of the equilibrium point, V(x, t)

is positive definite and V (x, t), its derivative along the system trajectories, is negative semidefinite, then

V(x, t) is called a Lyapunov function for the non-autonomous system.

The theorem stated above establishes stability in the sense of Lyapunov, and not asymptotic stability of

the origin. An important and simple result which partially remedies this situation is Barbalat’s lemma.

Barbalat’s lemma is a purely mathematical result concerning the asymptotic properties of functions and

their derivatives. When properly used for non-autonomous systems, it may lead to satisfactory solution

for many asymptotic stability problems.

Barbalat’s Lemma

Before describing Barbalat’s lemma itself, let us clarify a few points concerning the asymptotic properties

of functions and their derivatives. Given a differentiable function f (t), the following facts are important

to keep in mind [126]:

 If f is lower bounded (for some l > 0, the region defined by f (t) < l is bounded) and decreasing

(f £ 0), then it converges to a limit. This is a standard result in calculus.

 The fact that f (t) converges as t , does not imply that f t() Æ 0. For example, while the

function, f (t) = e–t sin(e2t) Æ 0, its derivative f t() is unbounded.

Given that a function tends towards a finite limit, what additional requirement can guarantee that its

derivative actually converges to zero? Barbalat’s lemma indicates that the derivative itself should have

some smoothness properties; it should be uniformly continuous.

A function f t() is uniformly continuous if one can always find a dR for a given R > 0, such that for any

ti and t Œ[0, dR], we have
 f t f t Ri i() ()+ - <t

Uniform continuity of a function is often difficult to assert from the above definition. A more convenient

approach is to examine the function’s derivative. A very simple sufficient condition for a differentiable

function to be uniformly continuous, is that its derivative must be bounded. Thus, if the function f (t) is twice

differentiable, then its derivative f t() is uniformly continuous if its second derivative f t() is bounded.

This can easily be seen from the finite difference theorem:

654 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For all ti and all ti + t, there exists t ¢ (between ti and ti + t), such that

 f t f t f t t ti i i i() () ()[()]+ - = ¢ + -t t

If R1 > 0 is an upper bound on the function f , then

 f t f t Ri i() ()+ - £t t1

For t Œ[0, dR] and dR = R/R1, we have

 f t f t Ri i() ()+ - <t

which is the definition of uniform continuity.

We can now state the Barbalat’s lemma (for proof, refer to [35, 126]):

If a differentiable function f (t) has a finite limit, and if f t() is uniformly continuous, then f t() Æ 0 as

t .

To apply Barbalat’s lemma to the analysis of non-autonomous systems, one typically uses the following

immediate corollary:

If a scalar function V (x, t) satisfies the following conditions:

 V (x, t) is lower bounded,

 V (x, t) is negative semidefinite, and

 V (x, t) is uniformly continuous in time,

then V (x, t) Æ 0 as t

10.3.2

We illustrate the design methodology of MRAC through a simple example. Consider a system with the

plant model of the form

 y a y b u y yp p p p p p= - + =; ()0 0D

 (10.21)

where u is the control variable, and yp is the measured state (output); ap and bp are unknown coefficients.

 Assume that it is desired to obtain a closed-loop system described by

 y a y b r y ym m m m m m= - + =; ()0 0D (10.22)

am and bm are known coefficients of the reference model.

 When the parameters of the plant are known, the following control law gives perfect model following:

 u(t) = br (t) – ayp(t) (10.23)

with the parameters

 b
b

b
a

a a

b

m

p

m p

p

= =
-

, (10.24)

An MRAC which can find the appropriate gains a(t) and b(t) when parameters ap and bp are not known,

may be obtained as follows (Fig. 10.5).

 Nonlinear Control Structures 655

Fig. 10.5

Introduce the error variable

 e(t) = yp (t) – ym (t) (10.25a)

The rate of change of the error is given by

de t

dt
a y t b u t a y t b r t

a e t a a

p p p m m m

m m p

()
[() ()] [() ()]

() [

= - + - - +

= - + - -- + -b a t y t b b t b r tp p p m()] () [()] () (10.25b)

Notice that the error goes to zero if the parameters a(t) and b(t) are equal to the ones given by (10.24).

We will now attempt to construct a parameter adjustment mechanism that will drive the parameters a(t)

and b(t) to appropriate values, such that the resulting control law (10.23) forces the plant output yp(t) to

follow the model output ym(t). For this purpose, we introduce the Lyapunov function,

V(e, a, b) = 1
2

2 2 21 1
e t

b
b a t a a

b
b b t b

p
p p m

p
p m() (()) (())+ + - + -È

Î
Í

˘

˚
˙g g

where g > 0.

This function is zero when e(t) is zero and the controller parameters a(t) and b(t) are equal to the optimal

values given by (10.24). The derivative of V is

dV

dt
e t

de t

dt
b a t a a

da t

dt
b b t b

db t
p p m p m= + + - + -()

()
[()]

()
[()]

(1 1

g g

))

dt

 = - + + - -È
ÎÍ

˘
˚̇

+a e t b a t a a
da t

dt
y t e t b bm p p m p p

2 1 1
() [()]

()
() () [(

g
g

g
tt b

db t

dt
r t e tm)]

()
() ()- +È

ÎÍ
˘
˚̇

g

If the parameters are updated as

db t

dt
r t e t

()
() ()= – g

da t

dt
y t e tp

()
() (),= g (10.26)

we get

dV

dt
a e tm= - 2 ()

656 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Thus, the adaptive control system is stable in the sense of Lyapunov, i.e., the signals e, a and b are bounded.

To ensure that tracking error goes to zero, we compute second time derivative of Lyapunov function:

d V

dt
a e t

de t

dt
m

2

2
2= - ()

()

From (10.25b), it follows that

d V

dt
a e t a e t a a b a t y t b b t b r tm m m p p p p m

2

2
2= - - + - - + -()[() (()) () (()) ())]

 = f (e, a, b, yp, r)

Since all the parameters are bounded, and yp(t) = e(t) + ym(t) is bounded, V is also bounded, which, in

turn, implies that V is uniformly continuous. Therefore, the asymptotic convergence of the tracking error

e(t) is guaranteed by Barbalat’s lemma.

Figure 10.6 shows the simulation (refer to Problem A.19 in Appendix A) of MRAC system with ap = 1,

bp = 0.5, am = 2 and bm = 2. The input signal is a square wave with amplitude 1. The adaptation gain g =

2. The closed-loop system is close to the desired behavior, after only a few transients. The convergence

rate depends critically, on the choice of the parameter g.

Reference model output
Plant output

t

–1.5

–1

–0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100

Fig. 10.6

Plots in Fig. 10.6 were generated by simulating the following sets of equations:

 (i) y t y t r t ym m m() () (); ()= - + =2 2 0 0

 This gives ym(t).

 (ii) y t y t u t yp p p() () . (); ()= - + =0 5 0 0

 u(t) = b(t)r(t) – a(t)yp (t)

 Nonlinear Control Structures 657

db t

dt
r t e t b

()
() (); () .= - =2 0 0 5

da t

dt
y t e t ap

()
() (); ()= =2 0 1

 e t y t y tp m() () ()= -

 From this set of equations, we obtain u(t) and yp(t).

10.4 SYSTEM IDENTIFICATION AND GENERALIZED

10.4.1

The types of models that are needed for the design methods presented in this book, can be grouped

into two categories: transfer function model and state variable model. If we have a transfer function

description, we can obtain an equivalent state variable description and vice versa. These equivalent

models are described by certain parameters—the elements of F, g, c matrices of the state model

x F g

x

() () ()

() ()

k k u k

y k k

+ = +
=

1 x

c

x(k) : n ¥ n state vector

u(k) : scalar input

y(k) : scalar output

or the parameters ai and bj of the transfer function

G z
Y z

U z

z z

z z

m m
m

n n
n

()
()

()
= =

+ + +

+ + +

-
+

-
b b b

a a

1 2
1

1

1
1

The category of such models gives us the parameteric description of the plant. The other category of

models such as frequency-response curves (Bode plots, polar plots, etc.), time-response curves, etc.,

gives nonparametric description of the plant.

Plant models can be obtained from the first principles of physics. In many cases, however, it is not possible

to make a complete model only from physical knowledge. In these circumstances, the designer may turn

to the other source of information about plant dynamics—the data taken from experiments directly

conducted to excite the plant, and to measure the response. The process of constructing models from

experimental data is called system identification. In this section, we restrict our attention to identification of

discrete parametric models, which includes the following steps:

 (i) Experimental planning

 (ii) Selection of model structure

 (iii) Parameter estimation

Experimental Planning

The choice of experimental conditions for parameter estimation is of considerable importance. It is clear

that the best experimental conditions are those that account for the final application of the model. This

may occur naturally in some cases; e.g., in adaptive control (discussed later in this section) the model is

658 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

adjusted under normal operating conditions. Many ‘classic’ methods depend strongly on having specific

input, e.g., sinusoid or impulse. There could be advantages in contriving such an artificial experiment

if it subjects the system to a rich and informative set of conditions, in the shortest possible time. A

requirement on the input signal is that it should sufficiently excite all the modes of the process.

One broad distinction in identification methods is between on-line and off-line experimentation. The

on-line methods give estimates recursively, as the measurements are obtained, and are the only alternative

if the identification is going to be used in an adaptive controller.

The model structures are derived from prior knowledge of the plant. In some cases the only a priori

knowledge is that the plant can be described as a linear system in a particular range. It is, then, natural to

use general representations of linear systems.

Consider a SISO dynamic system with input {u(t)} and output {y(t)}. The sampled values of these

signals can be related through the linear difference equation

 y k n y k n y k u k m u k m u kn m() () () () () ();+ + + - + + = + + + - + + +a a b b b1 1 2 11 1 nn m≥ (10.27)

ai and bj are constant (unknown) parameters.

The number of parameters to be identified, depends on the order of the selected model, i.e., n in Eqn.

(10.27). The calculations can be arranged so that it is possible to make a recursion in the number of

parameters in the model. The methods of model-order selection are usually developed for the off-line

solution.

The unknown process is not completely a black box. Some information about its dynamic behavior is

known from basic principles and/or plant experience. Therefore, some estimate of the model’s order, and

some initial values for the unknown parameters, will be available. The more we know about the process,

the more effective the postulated model will be. Consequently, we should use all available information

for its development. The order of the postulated model is a very important factor. Remember, that

complex models of high order will not necessarily produce better controller designs and may burden the

computational effort, without tangible results.

Equation (10.27) may be expressed as

y k y k y k n u k m n u k m n u kn m() () () () () (+ - + + - = + - + + - - + + +a a b b b1 1 2 11 1 -- n)

or

 y k y k y k n u k d u k d u k nn n d() () () () () (+ - + + - = - + - - + + -- +a a b b b1 1 2 11 1)) (10.28)

d = n – m ≥ 0 is the relative degree or control delay.

We shall use operator notation for conveniently writing linear difference equations. Let z–1 be the

backward shift (or delay) operator:

 z y k y k- = -1 1() () (10.29)

Then Eqn. (10.28) can be written as

A z y k B z u k() () () ()- -=1 1

where A(z–1) and B(z–1) are polynomials in the delay operator:

A z z zn
n()- - -= + + +1

1
11 a a

 Nonlinear Control Structures 659

B z z z zd
n d

n d() ()
()- - -

- +
- -= + + +1

1 2
1

1b b b

We shall present the parameter-estimation algorithms for the case of d = 1 without any loss of generality;

the results for any value of d easily follow.

For d = 1, we get the input-output model structure

 A z y k B z u k() () () ()- -=1 1
 (10.30)

where

 A z z zn
n()- -= + + +1

1
11 a a

-

 B z z z zn
n()- - - -= + + +1

1
1

2
2b b b

In the presence of the disturbance, model (10.30) takes the form

 A z y k B z u k k() () () () ()- -= +1 1 e (10.31)

where e (k) is some disturbance of unspecified character.

The model (10.31) describes the dynamic relationship between the input and output signals, expressed

in terms of the parameter vector

 p = [... ...]a a b b1 1n n
T

 (10.32)

Introducing the vector of lagged input-output data,

 e() [() () () ()];k y k y k n u k u k n= - - - - - -1 1 (10.33)

Eqn. (10.31) can be rewritten as

 y k k k() () ()= +e p e (10.34)

A model structure should be selected (i) that has a minimal set of parameters and is yet equivalent to

the assumed plant description; (ii) whose parameters are uniquely determined by the observed data; and

(iii) which will make subsequent control design simple.

The dynamic relationship between the input and output of a scalar system is given by the model (10.34).

Ignoring random effects e (k) on data collection, we have

 y k k() ()= e p (10.35)

where e(k) is given by Eqn. (10.33) and p is given by Eqn. (10.32).

Using the observations
{ (), (),..., (), (), (),..., ()}u u u N y y y N0 1 0 1

we wish to compute the values of ai and bj in parameter vector p, which will fit the observed data.

Thus, solving the parameter-estimation problem requires techniques for selecting a parameter estimate,

which best represents the given data. For this, we require some idea of the goodness of the fit of a

proposed value of p to the true p°. Because, by the very nature of the problem, p° is unknown, it is

unrealistic to define a direct parameter error between p and p°. We must define the error in a way that can

be computed from {u(k)} and {y(k)}.

660 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Let e(k,p) be the equation error comprising the extent to which the equations of motion (10.35) fail to be

true for a specific value of p when used with the specific actual data:

 e k y k k(,) () ()p e p= - (10.36)

A simple criterion representing the goodness of fit, of a proposed value of p, is given by

 J e k

k

N

() (,)p p= Â 2

1=

 (10.37)

The method called the Least Squares Method, based on minimizing the sum of the squares of the error,

is a very simple and effective method of parameter estimation.

Since y(k) depends on past data up to n earlier periods, the first error we can form is e(n,p); the subsequent

errors being e(n + 1, p), ..., e(N, p):

 e n y n n(,) () ()p e p= -

 e n y n n(,) () ()+ = + - +1 1 1p e p

 �

 e N y N N(,) () ()p e p= -
In vector-matrix notation,

 e y(,) () ()N N Np F p= - (10.38)

where e

y

(,) [(,) (,) (,)]

() [() () ()]

N e n e n e N

N n n N

T

T T T T

p p p p

F e e e

= +

= +

1

1

(() [() () ()]N y n y n y N T= +1

Note that e is (N – n + 1) ¥ 1 vector, y is (N – n + 1) ¥ 1 vector, F is (N – n + 1) ¥ 2n matrix and p is

2n ¥ 1 vector.

The principle of least squares says that the parameters should be selected in such a way that the

performance measure

 J e k N N

k n

N
T() (,) (,) (,)p p p p= =Â 2

=

e e (10.39)

is minimized

The performance measure J (p) can be written as

 J N N N NT() [() ()] [() ()]p F p F p= y y- -

 = y y y y
T T T T T TN N N N N N N N() () () () () () () ()- - +p F F p p F F p

 = y y y
T T T T T TN N N N N N N N() () () () () () () ()y – –p F F p p F F p+

 + -- -
y y y

T T T T T TN N N N N N N N N N() ()(() ()) () () () ()(() ()) (F F F F F F F F1 1 NN N) ()y

(Note that we have simply added and subtracted the same terms under the assumption that [FT(N) F(N)]

is invertible).

Hence

 J N N N N N NT T T() ()[(()(() ()) ()] ()p F F F F= - -
y y1 1

 + - ¥-((() ()) () ()) () ()p F F F F FT T T TN N N N N N1
y ((() ()) () ()p F F F- -T TN N N N1

y

 Nonlinear Control Structures 661

 The first term in this equation is independent of p, so we cannot reduce J via this term. Hence, to get the

smallest value of J, we choose p so that the second term is zero. Denoting the value of p that achieves the

minimization of J by p̂, we notice that

 ˆ [() ()] () ()p F F F= -T TN N N N1
y (10.40a)

where

 = ()
= -

P y

P

() ()

() [() ()]

N N N

N N N

T

T

F

F F 1

 (10.40b)

The least squares calculation for p̂ given by (10.40) is a ‘batch’ calculation since one has a batch of

data from which the matrix F, and vector y, are composed according to (10.38). In many cases, the

observations are obtained sequentially. If the least squares problem has been solved for N observations,

it seems to be a waste of computational resources to start from scratch when a new observation is

obtained. Hence, it is desirable to arrange the computations in such a way that the results obtained for

N observations can be used in order to get the estimates for (N + 1) observations. The algorithm for

calculating the least-squares estimate recursively is discussed below.

Let ˆ ()p N denote the least-squares estimate based on N measurements. Then from (10.40)

 ˆ () [() ()] () ()p F F FN N N N NT T= -1
y

It is assumed that the matrix [() ()]F FT N N is nonsingular for all N. When an additional measurement is

obtained, a row is added to the matrix F and an element is added to the vector y. Hence,

 F
F

e
()

()

()
; ()

()

()
N

N

N
N

N

y N
+

+
È

Î
Í

˘

˚
˙ +

+
È

Î
Í

˘

˚
˙1

1
1

1
= =y

y

The estimate p̂ N +()1 based on N + 1 measurements, can then be written as

 ˆ () [() ()] () ()

[() () ()

p F F F

F F e e

N N N N N

N N N

T T

T T

+ = + + + +

= + +

-1 1 1 1 1

1

1
y

(()] [() () () ()]

() [() ()]

N N N N y N

N N N

T T

T

+ + + +

+ = + +

-

-

1 1 1

1 1 1

1

1

F e

F F

y

P

(10.41)

Then from (10.41), we obtain

 P P() [() ()]N N N NT+ = + +() +- -1 1 11 1e e (10.42)

We now need the inverse of a sum of two matrices. We will use the well-known matrix inversion lemma1

for this purpose.

 1 Matrix inversion lemma is proved below.

 [A BCD A A B C DA B DA

I + BCDA B C DA

+ - +

- +

- - - - - -

- - -

ÈÎ ˘̊Ï
Ì
Ó

¸
˝
˛

]
1 1 1 1

1
1

1 1
=

11
1

1 1 1 1
1

1

1 1

B DA BCDA B C DA B DA

I BCDA BC C DA

ÈÎ ˘̊ ÈÎ ˘̊
- - - - - - -

- -

- +

+ - -=
-- - - - -

- -

[][]-

+ -

1 1 1
1

1

1 1

B C DA B DA

I BCDA BCDA

I

=

=

662 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Let A, C and C–1+ DA
–1

B be nonsingular square matrices; then

 [] []A BCD A A B C DA B DA+ = - +- - - - - - -1 1 1 1 1 1 1
 (10.43)

To apply (10.43) to (10.42), we make the associations

 A = P–1(N)

 B = eT(N + 1)

 C = 1

 D = e(N + 1)

Now, the following result can easily be established.

P P P P P() () () ()[() () ()] () ()N N N N N N N N NT T+ = - + + + ¥ + +-1 1 1 1 11e e e e1

Substituting the expression for P (N + 1) into (10.41), we obtain

 ˆ () { () () ()[() () ()]p e e eN N N N N N NT T+ = - + + + + ¥-1 1 1 1 1 1
P P P

 e F e() ()}[() () () ()]N N N N N y NT T+ + + +1 1 1P y

 = + + + - + ¥P y P P() () () () () () () ()N N N N N y N N NT T TF e e1 1 1

 [() () ()] () () () () ()1 1 1 11+ + + + - ¥-e e e FN N N N N N N NT T
P P y P

 e e e e eT T TN N N N N N N y N()[() () ()] () () () ()+ + + + + ¥ + +-1 1 1 1 1 1 11
P P

 = ˆ () () ()[() () ()]p e e eN N N N N NT T+ + + + + ¥-
P P1 1 1 1 1

 [() () ()] () () ()1 1 1 1 1+ + + + - + ¥e e eN N N y N N NT T
P P

 [1 + e(N + 1)P(N)eT(N + 1)]–1e(N + 1)p̂(N) – P(N) ¥

 e e e e eT T TN N N N N N N y N()[() () ()] () () () ()+ + + + + + +-1 1 1 1 1 1 11
P P

This gives

 ˆ() ˆ () ()[() () ˆ ()]

() () ()[

p p e p

e e

N N N y N N N

N N NT

+ = + + - +

= + +

1 1 1

1 1

K

K P (() () ()]

() [() ()] ()

N N N

N N N N

T+ +
+ = - +

-1 1

1 1 1

1
P

P K P

e

e

 (10.44a)

(10.44b)

(10.44c)

Equations (10.44) give the recursive least squares algorithm. Notice that for a single-output system, no

matrix inversion is required.

The Eqns (10.44) have a strong intuitive appeal. The estimate p̂(N + 1) is obtained by adding a correction

to the previous estimate p̂(N). The correction is proportional to y(N + 1) –e(N + 1)p̂(N) where the

term e(N + 1)p̂(N) is the expected output at the time N + 1, based on the previous data e(N + 1) and

the previous estimate p̂(N). Thus, the next estimate of p is given by the old estimate corrected by a

term, linear in error, between the observed output y(N + 1) and the predicted output e(N + 1)p̂(N). The

components of the vector K(N) are weighting factors that show how the correction and the previous

estimate should be combined.

Replacing N by recursive parameter k in Eqns (10.44), we rewrite the recursive least squares (RLS)

algorithm as

 ˆ () ˆ () ()[() () ˆ ()]p p e pk k k y k k k+ = + + - +1 1 1K (10.45a)

 K P P() () ()[() () ()]k k k k k kT T= + + + + -e e e1 1 1 1 1 (10.45b)

 P K P() [() ()] ()k k k k+ = - +1 1 1e (10.45c)

 Nonlinear Control Structures 663

Any recursive algorithm requires some initial value to be started up. In (10.44), we require p̂(N) and P(N)

(equivalently, in (10.45) we require p̂(k) and P(k)). We may collect a batch of N > 2n data values, and

solve the batch formula once for P(N) and p̂(N).

However, it is more common to start the recursion at k = 0 with P(0) = a I and p̂(0) = 0, where a is some

large constant. You may pick P(0) = aI, but choose p̂(0) to be the best guess that you have, at what the

parameter values are.

We have presented the least squares method ignoring random effects on data collection, i.e., e(k) in

Eqn. (10.34) has been neglected. If e(k) is white noise, the least squares estimate given by (10.45)

converges to the desired value. However, if e(k) is colored noise, the least squares estimation usually

gives a biased (wrong mean value) estimate. This can be overcome by using various extensions of the

least squares estimation.

We have seen that parameter estimation can be done either on-line or off-line. Off-line estimation may

be preferable if the parameters are constant, and there is sufficient time for estimation before control.

However, for parameters which vary (even though slowly) during operation, on-line parameter estimation

is necessary to keep track of the parameter values. Since problems in the adaptive control context usually

involve slowly time-varying parameters, on-line estimation methods are, thus, more relevant.

The main purpose of the on-line estimators is to provide parameter estimates for self-tuning control.

10.4.2 Self-Tuning Regulator

If the plant is imperfectly known, perhaps because of random time-varying parameters or because of the

effects of environmental changes on the plant’s dynamic characteristics, then the initial plant model and

the resulting control design will not be sufficient to obtain an acceptable performance for all time. It then

becomes necessary to carry out plant-identification and control-design procedures continuously, or at

intervals of time, depending on how fast the plant parameters change. This ‘self-design’ property of the

system, to compensate for unpredictable changes in the plant, is the aspect of performance that is usually

considered in defining an adaptive control system.

The identification of the dynamic characteristics of the plant should be accomplished without affecting

the normal operation of the system. To identify the plant model, we must impose a control signal on the

plant and analyze the system response. Identification may be made from normal operating data of the plant

or by use of test (additional) signals, such as sinusoidal ones of small amplitude. The plant should be

in normal operation during the test; the test signals imposed should not unduly disturb normal outputs.

Furthermore, inputs and system noise should not confuse the test. Normal inputs are ideal as test signals

since no difficulties with undesired outputs, or confusing inputs, will arise. However, identification with

normal inputs is only possible when they have adequate signal characteristics (bandwidth, amplitude,

and so on) for proper identification.

Once the plant has been identified, a decision must be made about how the adjustable parameters

(controller characteristics) should be varied to maintain acceptable performance. The control signals are

then modified according to the plant identification and control decision. The three functions:

 (i) plant identification,

 (ii) control design based on the identification results, and

 (iii) actuation based on the control design

664 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

can easily by implemented using a digital computer. Figure 10.7a shows a block diagram representation

of the adaptive control scheme. The system obtained is called a Self-Tuning Regulator (STR) because it

has facilities for tuning its own parameters. The regulator can be thought of as being composed of the

following two loops:

 (i) The inner loop is the conventional feedback control loop consisting of the plant and the regulator.

 (ii) The parameters of the regulator are adjusted on-line by the outer loop, which is composed of the

recursive-parameter estimator and design calculations.

Design

Estimation

Process parameters

Controller
parameters

Command
signal

Control
signal

Output
ProcessController

Fig. 10.7 (a) Block diagram of a self-tuning regulator

A self-tuning regulator, therefore, consists of a recursive parameter estimator (plant identifier) coupled

with a control-design procedure, such that the currently estimated parameter values are used to provide

feedback-controller coefficients. At each sampling, an updated parameter estimate is generated and

a controller is designed, assuming that the current parameter estimate is actually the true value. The

approach of using the estimates as if they were the true parameters for the purpose of design, is called

certainty equivalence adaptive control.

From the block diagram of Fig. 10.7a, one may jump to the false conclusion that such regulators can be

switched on and used blindly without any a priori considerations; the only requirement being a recursive

parameter estimation scheme and a design procedure. We have, no doubt, an array of parameter-estimation

schemes and an array of controller-design methods for plants with known parameters. However, all the

possible combinations may not have a self-tuning property, which requires that the performance of the

regulator coincides with the performance that would be obtained, if the system parameters were known

exactly. Before using a combination, important theoretical problems, such as stability and convergence,

have to be tackled. There are cases wherein self-tuning regulators have been used profitably, though

some of their properties have not been fully understood theoretically; on the other hand, bad choices have

been disastrous in some other cases.

So far, only a small number of available combinations have been explored from the stability, convergence,

and performance points of view. It is a striking fact, uncovered by Astrom and Wittenmark [132], that

in some circumstances a combination of simple least-squares estimation and minimum-variance control

has a self-tuning property. The same is true for some classes of pole-shifting regulators. Computer-based

controllers incorporating these concepts are now commercially available.

10.4.3

Clarke, Mothadi and Tuffs [120,121] proposed an alternative—Generalized Predictive Control (GPC),

to pole placement and minimum variance designs used in self-tuning regulators. The argument for

 Nonlinear Control Structures 665

introducing GPC in a self-tuning context was that it was based on a more flexible criterion than minimum

variance controllers without requiring an excessive amount of computations. Although it originated in

an adaptive control context, GPC has many attractive features which definitely makes it worthwhile

considering even for non-adaptive control structures. We first consider the GPC approach for a non-

adaptive control structure.

The generalized predictive control (GPC) differs in at least three ways from the control design methods

considered so far in this book.

 (i) In linear quadratic control (Chapter 8), the cost function is defined over the time interval [0,):

J =
1

2
[() ()]e k u k

k

2 2

0

+Â r
=

; e(k) = y – yr

 where y(k) is the actual output, yr is the reference/command value, u(k) is the control signal, and

r is a weighting factor.

 We call this control problem an infinite-horizon problem. Note that ‘infinite horizon’ does not

necessarily mean that infinite amount of time is required for the control u(k) to achieve the desired

performance; it just means that there is no fixed deadline on time yielding the desired performance.

In fact, as we know, a good design yields stability and steady-state accuracy in seconds.

 The other design methods considered in this book so far (e.g., PID, Pole-Placement) are also

based on infinite-horizon assumption, though this is not explicitly visible as in linear quadratic

control.

 (ii) The control design methods considered so far are all off-line design methods; the design

calculations are carried out in one shot before implementation (unless the design is a part of the

MRAC/Self-Tuning loops).

 (iii) The design in these methods is based on a fixed model of the plant. A model, however, is always an

approximation of the system under consideration. With time, the parameters of the model become

more and more inaccurate because of internal/external disturbances. Therefore, the control law

u(k) calculated at k = 0 would become more and more inaccurate when considered further in the

future, if adequate provision is not built-in to account for the changes in the model. This, in fact, is

the essence of feedback control; the error signal is a measure of the internal/external disturbances,

and hence changes in the model; the control law u(k) is forced to be a function of the error signal.

In GPC, we use the concepts of finite horizon, sequential design (on-line design), and the control strategy

has open-loop structure. The GPC approach can be described as follows:

 (1) Assume the measured (actual) value of the current system output is y(k). With the data known

up to time k, the value of the output y(k + j) is predicted over a certain time horizon, called the

prediction horizon N; j = 1, 2,…, N. This ‘output prediction’ is based on the explicit use of the

fixed plant model, and depends on the future values of the control variable u(k + j) within a control

horizon Nu; j = 1, 2,…, Nu; Nu £ N. If Nu < N, then u(k + j) = u(k + Nu); j = Nu + 1,…, N.

 (2) A reference trajectory r(k + j); j = 1,…, N, is defined which describes the desired system trajectory

over the prediction horizon.

 (3) The vector of future controls u(k + j) is computed such that a cost function of the following form

is minimized:

 J =

j

N

=1

Â [() ()]k j r k j u k j

j

Nu

+ - + + -()ÈÎ ˘̊Â2 2

1

1r D +

=

 (10.46)ŷ

666 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 where ŷ(k + j) is the predicted output sequence obtained with the data known up to time k,

Du(k + j –1) is a future control increment (Du(k) = u(k) – u(k – 1)) obtained from minimization

of cost function J, and r is a weighting factor. The horizons (N, Nu) and the weighting factor (r)

are design parameters. The reference trajectory r(k + j) can be a known constant, or known future

variations.

 (4) Once the minimization is achieved, the first optimized control action u(k) is applied to the plant,

and the resulting plant output is measured. This measurement of the plant output is used as initial

state of the model to perform the next iteration.

 Steps 1 to 4 are repeated at each sampling instant. The block diagram of the GPC scheme is shown in

Fig.10.7b.

The following prime characteristics distinguish GPC approach from other design methods:

 At each sample, the control signal is determined to achieve a desired behavior in the following N

steps. This is called a receding horizon strategy.

 As per the principle of optimality (Chapter 14), the first element u(k) of the sequence of controls is

optimal if the sequence, at every sample instant, had been determined to optimize the cost function

(10.46) with N = . This is because our control problem is an infinite-horizon problem. Therefore,

using finite-horizon structure in GPC is an approximation, necessitated by the requirement of

reducing the computational time for calculating u(k + j) on-line.

 The GPC scheme of Fig. 10.7b is apparently an open-loop structure; therefore, one may doubt

the robustness features of the scheme. The robustness is, in fact, built in the receding horizon

and on-line properties of the scheme: at every decision step, the generalized predictive controller

observes the state of the true system, synchronizes the estimate that it has with this, and tries to

find the best sequence of actions given the updated state.

For the problem formulation with cost function (10.46), predictions ŷ(k + j) are based on the measured

values of y(k), y(k – 1),…, and not on the predicted values ŷ(k), ŷ(k – 1),…. This virtually amounts to a

feedback loop, a source of measure of the internal/external disturbances.

Most real-world dynamical systems are inherently nonlinear. It provides motivation for the application

of GPC strategies, given nonlinear model of the plant. However, in many situations, on-line nonlinear

optimization problem makes implementation of GPC scheme impractical. For many nonlinear systems, a

linearized model is acceptable when the system is working around the operating point. The GPC scheme

with a linear predictive model is a powerful design method in the toolkit of control practitioners.

As the control variables in a GPC scheme are calculated based on the predicted output, the model needs

to be able to reflect the dynamic behavior of the system as accurately as possible. The non-adaptive

control scheme of Fig. 10.7b, when inserted in an adaptive loop such as self-tuning mode of Fig. 10.7a,

will yield an improved performance.

The derivation that follows, employs a linear predictive model.

When considering regulation about a particular operating point, even a nonlinear plant generally admits

a locally-linearized model (refer to Eqns (10.30)–(10.32)):

 A z y k B z u k k() () () () ()- -= - +1 1 1 e (10.47a)

 Nonlinear Control Structures 667

where A and B are polynomials in the backward shift operator z–1:

 A z z zn
n()- - -= + + +1

1
11 a a (10.47b)

 B z z zn
n()- - -= + + +1

1 2
1b b b (10.47c)

e (k) = some disturbance of unspecified character.

Fig. 10.7

668 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The leading elements b 1, b2, ..., of the polynomial B are set to zero to account for the dead-time of the

plant; and the trailing elements bn, bn–1,…, are set to zero if the degree of polynomial B is less than n.

Principal disturbances encountered in industrial applications are accommodated by modeling e (k) as a

white noise sequence independent of past control inputs. To obtain a controller with integral action, it is

further assumed that the term e(k) is modeled as integrated white noise:

 e
x

()
()

k
k

z
=

- -1 1
 (10.48)

when x(k) is an uncorrelated random sequence. Combining with (10.47a), we obtain

 A z y k B z u k k() () () () ()/- -= - +1 1 1 x D (10.49)

where D is the differencing operator (1 – z–1).

Considering the time instant k + j, model (10.47) equivalently reads

 A z y k j B z u k j k j() () () () ()- -+ = + - + +1 1 1D D x (10.49a)

To systematically derive a j-step ahead predictor of output, the model is reorganized by introduction of

the following identity (Diophantine equation).

 1 1 1 1= +- - - -DA z E z z F zj
j

j() () () (10.50a)

where Ej and Fj are polynomials uniquely defined, given the polynomial A and the prediction interval j;

 deg() deg() deg() :E j F A nj j= - = =1 and

 Ej = e e z e z
j j

j
j j

0 1
1

1
1() () () ()+ + +-

-
- -

 (10.50b)

 Fj = f f z f z
j j

n
j n

0 1
1() () ()+ + +- -

 (10.50c)

Multiplying Ej to both sides of (10.49) and using the identity (10.50a) gives

 () () () ()1 1- + = + - + +-z F y k j E B u k j E k jj
j j jD x

or y k j E B u k j F y k E k jj j j() () () ()+ = + - + + + D 1 x (10.51)

Given that the sequence of future control inputs (i.e., u(k + i) for i > 1) is known, and measured output

data up to time k is available, the optimal predictor for y(k + j) is the expectation conditioned on the

information gathered up to time k (since Ej is of degree j – 1, the noise components are all in the future):

 ˆ(|) (–) ()y k j k G u k j F y kj j+ = + +D 1 (10.52a)

where Gj = EjB is a polynomial of order n + j – 1

 = + + + +
+g g z g z

j j
n j

j n j
0 1

1
1

1() () () ()-
-

- -
 (10.52b)

By multiplying B/AD to both sides of identity (10.50a), we obtain

 Gj =
B

A
z F

B

A

j
jD D

– –

 =
B

A
z f f z f z

B

A

j j j
n

j n

D D
– – () () – () –

0 1
1+ + +ÈÎ ˘̊ (10.52c)

 Nonlinear Control Structures 669

The polynomial
B

A

B z

A z zD
=

()

()()

-

- --

1

1 11
 represents the z-transform of the response y(k) of the process to

unit-step input.

 Step response = g0 + g1z–1 + + gj–1z–(j–1) + gj z
– j + (10.52d)

It is obvious that the first j terms in Gj are same as the j coefficients of the step response of the process.

This gives us one way of computing Gj for the prediction equation (10.52a). Both Gj and Fj may be

computed by recursion of the Diophantine equation (10.50a), as is explained below.

With A defined as DA, we have from (10.50a)

 1 = +E A z Fj
j

j
 – (10.53a)

Since A is monic, the solution to

 1 1
1

1= +E A z F –

is obviously

E F z A1 11 1= =; []-

Assume now that the solution to (10.53a) for some j exists, and consider the equation for j + 1:

 1 1
1

1= ++
+

+E A z Fj
j

j
 –() (10.53b)

Subtracting the two gives

 0 1
1

1= ++ +
 A E E z z F Fj j

j
j j[] []- -- -

 (10.54a)

Since deg (Ej + 1 – Ej) = deg (Ej + 1) = j, it turns out to be good idea to define

 E E E e zj j j j
j

+
+= +1

1 1–
() –

 (10.54b)

where e j
j()+1

 specifies the coefficient to z–j in the polynomial Ej + 1. Using this, (10.54a) can be rewritten

as

 0 1
1

1= + ++
+ AE z z F F Aej

j
j j j

j– – ()
[–] (10.54c)

By again exploiting that A is monic, it is evident that E j = 0, leading to

 E E e zj j j
j j

+
+= +1

1() -

Consequently,

 z F F Aej j j
j– ()

–1
1

1
0+

++ =

or

 F z F Aej j j
j

+
+=1

1
[]

()-

Comparing the coefficients, we obtain

 e j
j()+1

 = f
j

0
()

 fi
j()+1

 = f f i ni
j

i
j

+ + =1 1 0 0 1
() ()

, , , ,- …a

 A = 1+ a a1
1z zn

n- -+º+

670 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The following equations provide a summary of the recursions of Diophantine equation:

 Ej +1 = Ej + f z
j j

0
() - (10.55a)

 fi
j()+1 = f f i ni

j
i

j
+ + =1 1 0 0 1
() ()

, , , ,- …a (10.55b)

with

 fn
j

+1
() = 0

 E1 = 1, and F1 = z ()1 - A (10.55c)

The only unknown quantities in the prediction equation (10.52a) are now the future control inputs. In

order to derive the control law, it is necessary to separate these from the part of the expression containing

known (past) data.

 ˆ() (–) () () ()y k G g u k F y k g u k+ = + +1 1 0 1 0D D (10.56a)

 ˆ()y k j+ = z G G u k F y k G u k j j Nj
j j j

– [–] () () (–);1 1 1D D+ + + < £ (10.56b)

where G g g z g zj j
j= + + +0 1

1
1

1–
–

–(–)
 (10.56c)

Deriving the Control Law

First the predictions derived above are expressed in the following vector notation.

 ŷ u= G i + (10.57)

where

 ŷ = [ŷ(k + 1) ŷ(k + 2) ... ŷ(k + N)]T

 u = [Du(k) Du(k + 1) ... Du(k + Nu – 1)]T

 i = [j (k + 1) j(k + 2) ...j(k + N)]T

with j (k + j) = z j–1
[] () ().G G u k F y kj j j- D +

G is a matrix of dimension N ¥ Nu:

 G =
∑ ∑

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

g

g g

g

g g gN N N Nu

0

1 0

0

1 2

0 0

0

 – – – ˙̇

 (10.58)

With the reference trajectory expressed in the form of a vector

 r = [r(k + 1) r(k + 2) r(k + N)]T,

the expression of the cost function of (10.46) can be written as

 J = () ()G i G i u r u r u u+ + - +- T r T (10.59)

 Nonlinear Control Structures 671

The sequence of future controls is determined by setting the derivative of the cost function to zero:

∂
∂
J

 u
 = 2 2G (G iT u r u)+ +–) r

 = 2 2 2G G G iT T u r u+ +(–) r = 0

or

 u I r= [G G G iT + r] ()– –1 T (10.60)

The matrix involved in the inversion is of the much reduced dimension Nu ¥ Nu. In particular, if Nu = 1

(as is usefully chosen for a ‘simple’ plant), this reduces to a scalar computation.

10.4.4

Consider a first-order system with a plant model of the form

 y k f y k gu k y y() () (); ()+ = + =1 0 0D (10.61)

where u is the control variable and y is the measured state (output); f and g are unknown coefficients.

An especially simple adaptive controller results by combining the least squares method of parameter

estimation with the generalized predictive controller. The least squares parameter-estimation algorithm

requires relatively small computational effort and has a reliable convergence, but is applicable only

for small noise-signal ratios. Several applications have shown that the combination of least squares

parameter estimation with generalized predictive control gives good results.

Let us assume that for the system given by Eqn. (10.61), the desired steady-state value for the controlled

variable y(k) is a constant reference input r. We select the generalized predictive control parameters:

r = 0.1, N = 4, Nu = 1.

If the system parameters were known, the feedback controller should take the form (10.60). Since

the parameters are assumed to be unknown, the least squares error estimates will be used in place of the

true values of f ° and g° of the parameters f and g. The parameter estimates f̂ and ĝ are derived from

the input-output measurements.

To simulate the system (refer to Problem A.20 in Appendix A), the data values were obtained from

Eqn. (10.61) assuming the true parameters

f ° = 1.1052; g° = 0.0526

and sampling interval T = 0.1 sec.

With the initial estimate ˆ ()p 0
0

0
=

È

Î
Í

˘

˚
˙ , P(0) = a I with large value of a , we use Equations (10.45) to

generate the new parameter estimate, and implement the generalized predictive control law. The plot of

Fig. 10.8 was generated using this procedure. The input signal is a square wave with amplitude 10. The

closed-loop system is close to the desired behavior after a few transients.

10.4.5

As described above, MRAC control and STR arise from different perspectives; with the parameters

in MRAC systems being updated so as to minimize the tracking errors between the plant output and

672 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

reference model output, and the parameters in STR systems being updated so as to minimize the data-

fitting error in input-output measurements. However, there are strong relations between the two design

methodologies. Comparing Figs 10.4 and 10.7a, we note that the two kinds of systems have both an inner

loop for control and an outer loop for parameters estimation. From a theoretical point of view, it can

actually be shown that MRAC and STR systems can be put under a unified framework.

The two methods can be quite different in terms of analysis and implementation. Compared with MRAC

systems, STR systems are more flexible because of the possibility of coupling various controllers with

various estimators (i.e., the separation of control and estimation). However, the stability and convergence

of self-tuning regulators are generally quite difficult to guarantee, often requiring the signals in the system

to be sufficiently rich so that the estimated parameters converge to the true parameters. If the signals are

not very rich (for example, if the reference signal is zero or a constant), the estimated parameters may not

be close to the true parameters, and the stability and convergence of the resulting control system may not

be guaranteed. In this situation, one must either introduce perturbation signals in the input, or somehow

modify the control law. In MRAC systems, however, the stability and tracking error convergence are

usually guaranteed—regardless of the richness of the signals.

10.5 SLIDING MODE CONTROL

As discussed earlier, modeling inaccuracies can have strong adverse effects on nonlinear control systems.

Therefore, any practical design must address them explicitly. A major approach to dealing with model

uncertainly is adaptive control, which we have discussed earlier in this chapter. Another major approach

is the variable structure sliding mode control, which is the subject of this section.

For the class of problems to which it applies, sliding mode controller design provides a systematic

approach to the problem of maintaining stability and consistent performance in the face of modeling

30

25

20

15

10

5

0

–5

–10

–15

Sampling instants

Plant output
Command signal

0 50 100 150 200 250

Fig. 10.8

 Nonlinear Control Structures 673

imprecisions. Sliding mode control has been successfully

applied to robot manipulators, underwater vehicles, automotive

engines, high-performance electric motors, and power systems.

We have, informally, already introduced the reader to variable

structure sliding mode control systems in Section 9.10 (revisiting

this section will be helpful). In the following, a formal

introduction is presented. For a detailed account of the subject,

refer to Slotine and Li [126], and Zak [35].

Consider a simple pendulum of mass M, suspended by a

string of length l having negligible mass. Let q be the angular

displacement as shown in Fig. 10.9. t represents the torque

applied at the point of suspension, which will be considered

to be the control input to the system. Ignoring the effects of

friction, the system can be represented mathematically as

 J t Mgl t t q q t() sin () ()+ =

where g is the acceleration due to gravity, and J = Ml2 is the moment of inertia.

By appropriate scaling, the essential dynamics of the system are captured by

 y t y t u t() sin () ()= - +a (10.62)

where a is a positive scalar

Ignoring the nonlinear sine term, we get the following linear approximation of the pendulum equation:

 y t u t() ()= (10.63a)

Choosing x1 = y and x2 = y as state variables, we have

 x = [x1 x2]T

 x t x t1 2() ()= ;

 x t u t2 () ()=

(10.63b)

The linear control methodologies (pole placement, optimal control) attempt to minimize, in some sense,

the transfer functions relating the disturbances to the outputs of interest. Here we explore discontinuous

control (variable structure control, refer to Section 9.10) methodology for disturbance rejection. The

system with two control structures, corresponding to u = + 1 and u = – 1, is considered. The variable

structure law governing the dynamics is given by

 u t
x x

x x
()

(,)

(,)
=

if

if

- >
+ <

Ï
Ì
Ó

1 0

1 0

1 2

1 2

s

s
 (10.64a)

where the switching function is defined by

 s l(,)x x x x1 2 1 2= + (10.64b)

l is a positive design scalar. The reason for the use of the term ‘switching function’ is clear, since the

function in Eqns (10.64) is used to decide which control structure is in use at any point (x1, x2) in the

phase plane. The expression in Eqn. (10.64a) is usually written more concisely as

 u t t() sgn(())= - s (10.64c)

where sgn (◊) is the sign function. This function exhibits the property that

Fig. 10.9
pendulum

674 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

s s ssgn() =

Figure 10.10a shows typical trajectories (parabolas) for u = ± k, and a typical switching line. Close to

the origin, on either side of the switching line, the trajectories point towards the line; an instant after the

control structure changes, the system trajectory will recross the switching line and the control structure

must switch back. Intuitively, high-frequency switching between the two control structures will take

place as the system trajectories repeatedly cross the line. This high frequency motion is described as

chattering. If infinite-frequency switching were possible, the motion would be trapped or constrained

to remain on the line. The motion when confined to the switching line satisfies the differential equation

obtained from rearranging s (x1, x2) = 0, namely

 x2 = – l x1 (10.65a)

or y t y t() ()= -l (10.65b)

This represents a first-order decay and the trajectories will ‘slide’ along the switching line to the origin.

Such a dynamical behavior is described as sliding mode and the switching line is termed the sliding

surface. During sliding motion, the system behaves as a reduced-order system which is apparently

independent of the control. The choice of the sliding surface, represented in our example by the

parameter l, governs the performance response whilst the control law itself, is designed to guarantee

that trajectories are driven to the ‘region’ of the sliding surface where the sliding motion takes place.

To achieve this objective, the control action is required to satisfy certain conditions, called reachability

conditions.

To develop the reachability conditions and the region of sliding motion, we consider the system (10.63b)

with u given by (10.64), i.e., u = ± 1 corresponding to the two control structures. Figure 10.10b shows

typical trajectories of the control system with these control structures, and a typical switching line.

x

x

x

x2

u k=
u k= –

x1
—s

s < 0

s = 0 s > 0

s = 0

s < 0

s > 0

—s

—s

Fig. 10.10

 Nonlinear Control Structures 675

Assume that the system under consideration starts with initial conditions corresponding to point A in Fig.

10.10b. The control switches when the representative point reaches B. By geometry of the situation, we

see that the trajectory, resulting from the reversal of the control at point B, will bring the representative

point on a parabola much closer to the origin. This will continue until the trajectory intersects the

switching line at a point closer to the origin than the points A1 and A2 which are points of intersection of

the switching line s (x1, x2), with parabolas passing through the origin: x x x1
1
2 2 2= – | | . The coordinates

of the points A1 and A2 are obtained as -Ê
ËÁ

ˆ
¯̃

2 2
2l l

, and 2 2
2l l

,
-Ê

ËÁ
ˆ
¯̃

, respectively. The region where the

sliding motion takes place, is a part of the switching line between the points A1 and A2 as is seen below.

 s s s l() () ()t t x x = +1 2

 = s l()x u2 +
 = s l s(sgn ())x2 -

 = l s sx2 -

Since

 ls l sx x2 2£

we have

 s s l s s() ()t t x £ -2

 £ -s l()x2 1

A

B

C

x2

A1

A2

x1

u = –1
u = 1

s (,) = 0x x1 2

Fig. 10.10

For values of x2 satisfying the inequality

 l x2 1< , (10.66a)

we have

 s s() ()t t < 0;
(10.66b)

 s
s

s() ()t
d

dt

T
T= =

∂
∂

Ê
ËÁ

ˆ
¯̃ —

x

x
x

676 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Inequality (10.66b) is equivalently expressed by the following two conditions:

 lim lim ()
s s

s s
Æ Æ+ +

= — <
0 0

0 T
x

and lim lim ()
s s

s s
Æ Æ

= — >
0 0

0
- -

 T
x

(10.67)

These conditions, called reachability conditions, ensure that when l |x2| < 1, the system trajectories on

either side of the line s (x1, x2) = 0 point towards the line. This is illustrated in Fig. 10.10a.

The control action, rather than prescribing the dynamic performance, ensures, instead, that the reachability

conditions are satisfied. The choice of the sliding surface governs the system performance. It should be

noted that the control action required to satisfy reachability conditions is discontinuous in nature.

The double-integrator system of Eqns (10.63) is a linear approximation of the pendulum dynamics given

in Eqn. (10.62). An alternative interpretation is that the nonlinear term a sin y(t) is a disturbance or

uncertainly in the nominal double-integrator system. The key result is that, in finite time, the phase

portrait intercepts the sliding surface and is forced to remain there. The significance of this is that, once

sliding is established, the double-integrator system and the pendulum behave in an identical fashion,

namely,

 y t y t() ()= -l

The effect of disturbance or uncertainty in the nominal double-integrator system has been completely

rejected. As such, the closed-loop system is robust, i.e., it is insensitive to mismatches between the model

used for control law design, and the plant on which it will be implemented. The control action applied to

the plant does not utilize any knowledge of the uncertainty.

The concepts of sliding mode control, developed through an example, are summarized below.

10.5.1

The problem is to regulate a dynamic system subject to parameter uncertainties and nonlinearities. A

controller is sought to force the system to reach, and subsequently remain on, a predefined surface (called

the sliding surface) within the state space. The dynamical behavior of the system, when confined to the

surface, is called the sliding motion. The advantages of obtaining such a motion are two fold: firstly, there

is a reduction in order; and, secondly, the sliding motion is insensitive to parameter variations. The latter

property of invariance towards uncertainty makes the methodology an attractive one for designing robust

control for uncertain systems.

The design approach comprises the following two components:

 The design of a sliding surface in the state space, so that the reduced-order sliding motion satisfies

the specifications imposed on the design.

 The synthesis of a control law, discontinuous about the sliding surface, such that the trajectories

of the closed-loop motion are directed towards the surface.

The closed-loop dynamical behavior obtained for using a variable structure control law, comprises two

distinct types of motion. The initial phase, often referred to as the reaching phase, occurs whilst the states

are being driven towards the sliding surface. This motion is, in general, affected by the disturbances

present. Only when the states reach the surface, and the sliding motion takes place, does the system

become insensitive to uncertainty.

 Nonlinear Control Structures 677

A sliding mode will exist if, in the vicinity of the sliding surface, the state velocity vectors are directed

towards the surface. In such a case, the sliding surface attracts trajectories when they are in its vicinity;

and, once a trajectory intersects the sliding surface, it will stay on it thereafter.

A hyper surface

 S x x xn: (, , ,) ()s s1 2 0… = =x (10.68a)

is attractive if

 (i) any trajectory starting on the surface remains there; and

 (ii) any trajectory starting outside the surface tends to it at least asymptotically.

The following conditions (called reachability conditions) ensure that the motion of the state trajectory

x(t) of the single-input dynamical system

 x = f (x, u, t) (10.68b)

on either side of the sliding surface s (x) = 0, is towards the surface.

lim ; lim s s
s sÆ Æ+

< >
0 0

0 0and
-

in some domain W of the state space

The two conditions may be combined to give

s s < 0

in the neighborhood of the sliding surface, i.e.,

 lim
s

s
s

Æ
<

0
0

d

dt
 (10.68c)

In the sliding mode, the trajectory remains on the hyper surface S for all times after hitting S, and so in

the sliding mode we require

d

dt

T
s s

= = 0
∂
∂

Ê
ËÁ

ˆ
¯̃x

x

 s ()x = 0 (10.69)

In general, if the reachability conditions are satisfied globally, i.e., W is the entire state space, then, since

1
2

2 0
d

dt
s s s= < ,

it follows that

 V ()s s= 1
2

2 (10.70)

is a Lyapunov function for s (t).

Extension of these concepts to the multi-input situations is straightforward.

We illustrate these concepts through the design of a sliding mode controller for a two-link robot.

678 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

10.5.2

The plant model, derived earlier in Section 10.2, is given by Eqns (10.6):

x1 2= =p x

 x f x g x2 = = +p s() ()
(10.71)

where

x
x

x
= = = =

1

2

È

Î
Í

˘

˚
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙

x

x

x

x

11

12

21

22

1

2

1

2

p

p

q

q

q

q

ÈÈ

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î
Í

˘

˚
˙;s =

t

t

1

2

q1 and q2 are the angles of the two links, defined in Fig. 10.1, and t1 and t2 are the torques applied by the

actuators to control the angles q1 and q2, respectively.

The design of a variable structure sliding mode controller consists of the following two phases:

 Sliding (switching) surface design so as to achieve the desired system behavior, when restricted to

the surface.

 Selecting feedback gains of the controller, so that the closed-loop system is stable to the sliding

surface.

Let us consider a specific design problem for the two-link robot under study: tracking the desired motion

trajectory pd (t).

Define the tracking error as

 e() () ()t t td= -p p (10.72a)

Therefore, e e() () (); () () ()t = - = -p p p pd dt t t t t (10.72b)

Defining x x1 2= e and = e, we can write robot dynamics (10.71) in the form (refer to Eqns (10.15))

x x

x f x g x

1 2

2

=

= p sd - -() ()

(10.73)

Here, we use linear sliding surface (although we can use nonlinear sliding surface as well) defined by

the equation

 r k() x x I x 0= +1 2 = (10.74a)

or
s

s

l

l

1

2

()

()

 x

x

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙=

1

2

11

12

0

0

1 0

0 1

x

x

x221

22

0

0 x

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙= (10.74b)

Note that

 s l l q q q q1 1 11 21 1 1 1 1 1() () () x = x x d d+ = - + -
(10.75)

 s l l q q q q2 2 12 22 2 2 2 2 2() () () x = + = - + -x x d d

We have assumed the coefficient of x21 to be unity, without loss of generality. If this were not the case,

we could divide both sides of s1 0() x = by the coefficient of x21, to ensure that coefficient of x21 is 1. The

same argument applies to the selection of unity coefficient of x22.

 Nonlinear Control Structures 679

We now combine equations of the plant and that of the sliding surface (Eqns (10.73) and (10.74)).

 x2 = –k x1

Therefore,

 x1 = –k x1 (10.76)

The above equation describes the system dynamics in sliding (observe the order-reduction of system

dynamics in sliding). The response of the system in sliding is completely specified by an appropriate

choice of the parameters l1 and l2 of the switching surface. While in sliding, the system is not affected

by model uncertainties.

After designing a sliding surface, we construct a feedback controller. The controller objective is to

drive the plant state to the sliding surface, and maintain it on the surface for all subsequent time. We

use a generalized Lyapunov approach in constructing the controller. Specifically, we use a distance

measure, V T= = +1
2

1
2 1

2
2
2r r ()s s , from the sliding surface r as a Lyapunov function candidate. Then,

we select the controller so that the time derivative of the chosen Lyapunov function candidate, evaluated

on the solution of the controlled system, is negative-definite with respect to the switching surface; thus,

ensuring the motion of the state trajectory to the surface, as it is illustrated in Fig. 10.10a. Our goal is to

find s so that

d

dt

T T1
2

0r r r r= < (10.77)

r r r k r k sT T T
d d

 = =1 2[] () (() ())x Ix x x x f x g x+ - + - -[]1 1 2

We consider the controller structure of the form

 s k= g x f x x x x
- - + + - +

Ï
Ì
Ó

¸
˝
˛

È

Î
Í1

2 1 1
1 1

2 2

() () ()
sgn()

sgn()
 d d

k

k

s

sÍÍ

˘

˚
˙
˙

 (10.78)

where k1 > 0 and k2 > 0 are the gains to be determined so that the condition r rT < 0 is satisfied. To

determine these gains, we substitute s, given by (10.78), into the expression r rT .

 r rT k

k
 = -

È

Î
Í

˘

˚
˙[]

sgn ()

sgn ()
s s

s

s
1 2

1 1

2 2

 = - -s s s s1 1 1 2 2 2k ksgn() sgn() = –k1|s1|–k2|s2| < 0

Thus, the sliding surface r() = x 0 is asymptotically attractive. The larger the values of gains, the faster

the trajectory converges to the sliding surface. Note that tolerance of sliding mode control to model

imprecision and disturbances, is high; satisfying asymptotic stability requirement, despite the presence

of uncertainties, ensures asymptotic tracking.

Simulation of this controller for the two-link robot arm (m1 = 1, m2 = 1, l1 = 1, l2 = 1, g = 9.8; qd1(t) =

sin (pt), qd2 (t) = cos(p t)) was done using MATLAB (refer to Problem A.21 in Appendix A). Figures 10.11

show the tracking performance.

680 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

–1.5

–1

–0.5

–0

0.5

1

1.5

t

Desired
Actual

(a)

–1.5

–1

–0.5

–0

0.5

1

1.5

t

Desired
Actual

(b)

q
1

0 1 2 3 4 5 6 7 8

q
2

0 1 2 3 4 5 6 7 8

Fig. 10.11 Desired and actual trajectories

 Nonlinear Control Structures 681

PROBLEMS

 10.1 The system

x x x x

x x x u

x x x x u

y x

1 1 2 3

2 2 1

3 1 1 2

1

2

2

= +
= - +
= + +
=

sin

 can be transformed to Brunovsky form by differentiating y(t) repeatedly, and substituting state

derivatives from the given system equations, until the control input u(t) appears:

y x x x x

y x x x x x

= =

=

1 1 2 3

1 2 1 2 3

+
+ +

 =

=

sin

() () ; []

x x x x x x u

f g u x x x T

1 2 3 1 2
2

1
2

1 2 3

1+ +ÈÎ ˘̊ + +ÈÎ ˘̊

∫ +x x x

 Defining variables as z y z y1 2∫ ∫, , we obtain

z z

z f g u

1 2

2

=
= +() ()x x

 This may be converted to a linear system by redefinition of the input as

 v() () () ()t f g u t∫ +x x

 so that

 u t
g

f t()
()

(() ())∫ - +
1

x
x v

 for then one obtains

 z z z1 2 2= =; v

 which is equivalent to

 y = v

 With a PD tracking control

 v = y K e K ed D P+ +
 where tracking error is defined as

 e t y t y t y td d() () (); ()∫ - is the desired trajectory;

 the closed-loop system becomes

 e K e K eD P+ + = 0

 The complete controller implied by this feedback linearization technique, is given by

 u t
g

f y K e K ed D P()
()

(())=
1

x
x- + + +

 (a) Draw the structure of the feedback linearization controller showing PD outer loop and

nonlinear inner loop.

682 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (b) Select gains KP and KD so that the closed-loop system has a natural frequency of wn =

10 rad/sec, and a damping ratio of z = 0.707.

 (c) Suppose that it is desired for the plant output y(t) to follow the trajectory yd = sin (2p t).

Simulate the system and plot actual output y(t), desired output yd(t), and the tracking error

e(t); given x(0) = [1 1 1]T.

 10.2 One useful method for specifying system performance is by means of a model that will produce

the desired output for a given input. The model need not be actual hardware. It can only be a

mathematical model simulated on a computer. In a model reference control system, the outputs

of the model and that of the plant are compared and the difference is used to generate the control

signals.

 Consider a nonlinear, time-varying plant described by

x f x= = = (,

1

2

x

x b a t x

x

x
u

È

Î
Í

˘

˚
˙ - -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

0 1 0

12

1

2()
uu t,)

 where a(t) is time-varying and b is a positive constant.

 Assume the reference model equation to be

xm

m

m n n

m

m n

x

x

x

x
= =

1

2

È

Î
Í

˘

˚
˙

- -

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ +

È

Î
Í

0 1

2

0

2

1

2
2w zw wÍÍ

˘

˚
˙
˙
v

 = Amxm + bmv

 The error vector

 e = -x xm

 Define a function

 V T()e e Pe=

 where P is positive-definite, real, symmetric matrix.

 Then V (e) is defined as

 V MT
m
T

m() ()e e A P PA e= + + 2

 where

 M tT
m= - +[]e AP x f x b(, ,)u

m
v

 The assumed V(e) function is a Lyapunov function if

 (i) A P PA Q
m

T
m+ = - is a negative-definite matrix; and

 (ii) the control u can be chosen to make the scalar quatity M nonpositive.

 Choosing the matrix Q to be

 Q = = positive definite,
q

q

11

22

0

0

È

Î
Í

˘

˚
˙

 we obtain

 V q e q e M()e = - +() +11 1
2

22 2
2 2

 Nonlinear Control Structures 683

 where

 M e e
p p

p p

x

x
n n

= []1 2
11 12

12 22
2

1

2

0 1

2

0 1È

Î
Í

˘

˚
˙

- -

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ -

w zw -- -
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ +

È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂b

x

x un n
2

0 0
1

2
2zw w v

= (() () ()e p e p b x x a t x un n n1 12 2 22
2

1 2 2
2 22+ - - - + + -ÈÎ ˘̊w zw w v

 If we choose u so that

 u t b x x a x e p e p an n n m m() () ;= - - - + + +() =w zw w2
1 2

2
2
2

1 12 2 222 v sign max || a t() |

 then

 M e p e p a t a e p e p xm= + - +
=

()[() ()]1 12 2 22 1 12 2 22 2
2sign

nonpositive

 (a) Draw a block diagram representing the structure of the model reference adaptive control

system.

 (b) For the parameters: a(t) = 0.2 sint, b = 8, z = 0.7, wn = 4; simulate the closed-loop system

and plot x x e(), (), ().t t tm and

 10.3 Consider the adaptive control design problem for a plant, approximately represented by a first-

order differential equation

 y a y b up p= +–

 where y(t) is the plant output, u(t) is its input, and ap and bp are constant plant parameters (unknown

to the adaptive controller). The desired performance of the control system is specified by a first-

order reference model

 y a y b rm m m m= - +

 where am and bm are known constant parameters, and r(t) is a bounded external reference signal.

Using Lyapunov synthesis approach, formulate a control law, and an adaptation law, such that the

resulting model-following error y(t) – ym(t), asymptotically converges to zero.

 Simulate the MRAC system with ap = 1, bp = 2, am = 3 and bm = 3, adaptation gain g = 1.5; initial

values of both parameters of the controller are chosen to be 0, indicating no a priori knowledge,

and the initial conditions of the plant and the model are both zero. Use two different reference

signals in the simulation: r (t) = 2, and r (t) = 2 sin (3t).

 10.4 The following data were collected from a cell concentration sensor, measuring absorbance in a

biochemical stream. The input u is the flow rate deviation (in dimensionless units) and the sensor

output y is given in volts. The flow rate (input) is piecewise constant between sampling instants.

The process is not at steady-state initially; so y can change even though u = 0. Fit a first-order

model

 y k a y k b u k() () ()= 1 11 1- + -

 to the data using the least-squares approach. Plot the model response and the actual data.

684 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Time(sec) u y

0 0 3.000

1 3 2.456

2 2 5.274

3 1 6.493

4 0 6.404

5 0 5.243

6 0 4.293

7 0 3.514

8 0 2.877

9 0 2.356

10 0 1.929

 10.5 Step test data have been obtained for the off-gas CO2 concentration response—obtained by

changing the feed rate to a bioreactor. At k = 0, a unit-step change in input u occurs, but the output

change at the first sample (k = 1) is not observed until the next sampling instant. The data is given

in the table below.

 Estimate the model parameters in the second-order difference equation

 y k a y k a y k b u k b u k() () () () ()= 1 2 1 21 2 1 2- + - + - + -

 from the input-output data using the least-squares approach. Plot the model response and the

actual data.

k 0 1 2 3 4 5 6 7 8 9 10

y(k) 0 0.058 0.217 0.360 0.488 0.6 0.692 0.772 0.833 0.888 0.925

 10.6 The following data were collected for a process:

Time(sec) Input u Output y

 0 1 4.0000

1 1 –2.0000

2 0 –1.0000

3 1 8.5000

4 1 –9.7500

5 1 1.6250

6 1 21.0625

7 0 –30.8438

8 1 7.1406

9 0 51.9766

10 1 –89.2461

 Nonlinear Control Structures 685

 Fit a second-order model

 y k a y k a y k b u k b u k() () () () ()+ - + - = - + -1 2 1 21 2 1 2

 to the data using the least-squares approach. Plot the model response and the actual data.

 Simulate a self-tuner based on least squares estimation of the parameters of the model, and the

pole-placement design given in Chapter 7. The system is required to track a constant input of

amplitude 10; the dynamics specified as z = 0.5, wn = 1.

 10.7 Consider a nonlinear system described by the equation

 x a t x x u+ () cos2 3 =

 where a(t) in unknown but satisfies

 1 2£ £a t()

 With the nominal value of a(t) = 1.5, we have

 x f u f x x= + -; . cos= 1 5 32

 In order to have the system track x(t) = xd(t) = sin (p t /2), we define a sliding surface

 s l= = x x x x xd+ -;

 We then have

 s l l= - + = + - +x x x f u x xd d

 Selecting

 u f x x k kd= - + - - > l ssgn(); ,0

 we get

 s s= - k sgn()

 We consider the function V = 1
2

2s . Note that V is positive-definite with respect to the sliding

surface (s = 0). The time derivative of V, evaluated on the trajectories of the closed-loop system,

is

 V

k k

.

sgn() | |

= ss

s s s

= - = - < 0

 Thus, the sliding surface is asymptotically attractive, and the system, restricted to the sliding

surface, can be made asymptotically stable by an appropriate choice of the parameter l of the

sliding surface.

 Simulate the system, and plot tracking error and control law with

 l = = = +2 0 1 1, . , () | sin |k a t t

686 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

11.1 TOWARDS INTELLIGENT SYSTEMS

Man has always dreamed of creating machines with human-like attributes. In this technological world,

there are machines that have emulated several human functions with tremendous capacity and capabilities.

Robots in manufacturing, mining, agriculture, space, ocean exploration, and health sciences, are just a

few examples.

At present, these machines are more or less ‘slaves’ to the ‘commands’. One of the tenets of recent

research in robotics and systems science is that intelligence can be cast into a machine. This is, perhaps,

an ultimate challenge to science—to create intelligent systems that emulate human intelligence.

Human intelligence possesses robust attributes with complex sensory, control, affective (emotional

processes), and cognitive (thought processes) aspects of information processing and decision making.

Biological neurons, over one hundred billion in number, in our central nervous system (CNS), play

a key role in these functions. Essentially, CNS acquires information from the external environment

through various natural sensory mechanisms such as vision, hearing, touch, taste, and smell. It integrates

the information and provides appropriate interpretation through the cognitive computing. The cognitive

process then advances further towards some attributes such as learning, recollection, and reasoning,

which results in appropriate actions through muscular control.

Recent progress in information-based technology has significantly broadened the capabilities and

application of computers. Today’s computers, however, are merely being used for the storage and

processing of numerical data. If we wish to emulate in a machine (computer), some of the cognitive

functions (learning, remembering, reasoning, perceiving, etc.) of humans, we have to generalize the

definition of information and develop new mathematical tools and hardware that must deal with the

simulation and processing of cognitive information. Mathematics, as we know it today, was developed

for the understanding of physical processes, whereas the process of cognition does not necessarily

follow these mathematical laws. Then what is cognitive mathematics? This is a difficult and challenging

question to answer. However, scientists have realized that if we re-examine some of the ‘mathematical

aspects’ of our thinking process and ‘hardware aspects’ of ‘the neurons’—the principle element of the

brain—we may succeed to some extent in the emulation process.

Intelligent Control with Neural
Networks/Support Vector Machines

Chapter 11

 Intelligent Control with Neural Networks/Support Vector Machines 687

Biological neuronal processes are enormously complex, and the progress made in the understanding of

the field through experimental observations is limited and crude. Nevertheless, it is true that this limited

understanding of the biological processes has provided a tremendous impetus to the emulation of certain

human learning behaviors, through the fields of mathematics and systems science. In neuronal informa-

tion processing, there are a variety of complex mathematical operations and mapping functions involved,

that, in synergism, act as a parallel-cascade computing structure. As system scientists, our objective is

that, based upon this limited understanding of the brain, we create an intelligent cognitive system that

can aid humans in various decision-making tasks. New computing theories under the category of neural

networks, have been evolving. Hopefully, these new computing methods with the neural network archi-

tecture as the basis, will be able to provide a thinking machine—a low-level cognitive machine for which

the scientists have been striving for so long.

The cognitive functions of the brain, unlike the computation functions of the computer, are based upon

relative grades of information acquired by the neural sensory systems. The conventional mathematical

tools, whether deterministic or probabilistic, are based upon some absolute measure of information. Our

natural sensors acquire information in the form of relative grades rather than in absolute numbers. The

‘perceptions’ and ‘actions’ of the cognitive process also appear in the form of relative grades. The theory

of fuzzy logic, which is based upon the notion of graded membership, provides mathematical power for

the emulation of the higher-order cognitive functions—the thought and perception process. A marriage

between the two evolving disciplines—neural networks and fuzzy logic—may provide a tremendous

impetus to the theory for the important field of cognitive information.

The subject of intelligent systems is in an exciting state of research and we believe that we are slowly

progressing towards the development of truly intelligent systems. The present-day versions of intelligent

systems are not truly intelligent; however, the loose usage of the term ‘intelligent’ acts as a reminder that

we have a long way to go.

11.2 INTRODUCTION TO SOFT COMPUTING AND
 INTELLIGENT CONTROL SYSTEMS

Complex dynamic systems have been integral and critical components of modern society. The

unprecedented rate at which computers, networks, and other technologies are being developed, ensures

that our dependence on such systems will continue to increase. While advances in science and technology

have enabled us to design and build complex systems, comprehensive understanding of how to control

and optimize them is clearly lacking. The mere existence of complex systems does not necessarily mean

that they are operating under the most desirable conditions with enough robustness to withstand the

limits of disturbances that inevitably arise.

Many problem-solving nonlinear control structures (refer to Chapter 10) have been developed over the

past forty years—Feedback Linearization, Model-Reference Adaptive Control, Self-Tuning Control,

Generalized Model Predictive Control, Sliding Mode Control, etc. These structures fall short of the

requirements of modern complex systems. While extensions and modifications to these conventional

architectures continues to be popular, other approaches are being explored as well.

688 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The conventional methods of control design use mathematical models derived by the application of

physical laws. The goal of mathematical modeling is to provide a set of equations that purports to

describe interrelations between the system quantities as well as the relations between these quantities

and external inputs. We can use different types of equations and their combinations, like algebraic,

differential (ordinary/partial), difference, integral, or functional equations. A mathematical model can

be viewed as a mathematical representation of the significant relevant aspects of a physical system

(significance and relevance being in relation to an application where the model is to be used).

Whenever devising algebraic, differential, difference equations (or any other model from application

of physical laws) is feasible, using a reasonable number of equations that can solve the given problem

in a reasonable time, at a reasonable cost, and with reasonable accuracy, there is no need to look for an

alternative. Today, however, there are a large number of instances in diverse fields, including control

systems, wherein at least one of these criteria is not satisfied; one, therefore seeks other avenues to solve

the given problem.

Since the inception of the notion of fuzzy logic in 1965, we started thinking about the quantitative and

qualitative aspects of control mechanisms, and introduced the notion of intelligent control systems. This

logic is capable of emulating certain functional elements of human intelligence. In partnership with other

mathematical tools such as neural networks, the field of fuzzy logic is responsible for creation of a new

field—the field of soft computing. In this decade, the field of soft computing has become a new emerging

discipline in providing solutions to complex industrial and management problems—problems that are

deeply surrounded by both qualitative and quantitative uncertainties. The elements of this emerging field

provide some mathematical strength in the emulation of human-like intelligence and in the creation of

systems that we call intelligent systems.

The conventional field of control is based on the traditional mathematical concepts. The mathematics

through which we develop scientific and engineering techniques, is based upon some precise, quantitative

aspects and rigorous concepts. Such quantitative aspects and rigorous concepts are beautiful, but they fail

to formulate the imprecise and qualitative nature of our cognitive behavior—the intelligence.

What is the character of human intelligence? Is it precise, quantitative, rigorous, and computational? The

answer is negative. We are very bad at calculations or any kind of computing. A negligible percentage

of human beings can multiply two three-digit numbers in their heads. The basic function of human

intelligence is to ensure survival in nature, not to perform precise calculations. The human brain can

process millions of visual, acoustic, olfactory (concerned with smelling), tactile (the sense of touch),

and motor data, and it shows astonishing abilities to learn from experience, generalize from learned

rules, recognize patterns and make decisions. We want to transfer some of the human mental faculties

of learning, generalizing, memorizing, and predicting into our models, algorithms, smart machines and

intelligent artificial systems, in order to enable them to survive in highly technological environment, that

is, to solve given tasks based on previous experience with reasonable accuracy, at reasonable cost, and

in a reasonable amount of time.

The basic premises of soft computing are as follows:

 The real world is pervasively imprecise and uncertain.

 The precision and certainty carry a cost.

 Intelligent Control with Neural Networks/Support Vector Machines 689

The guiding principle of soft computing, which follows from these premises is as follows:

 Exploit tolerance for imprecision, uncertainty, and partial truth, to achieve tractability, robustness,

and low solution costs.

The guiding principle of soft computing differs strongly from that of classical hard computing which

requires precision, certainty, and rigor. Many contemporary problems do not lend themselves to

precise solutions within the framework of classical hard computing; for instance, recognition problems

(handwriting, speech, objects, and images), computer graphics, mobile robot coordination, and data

compression. To be able to deal with such problems, there is often no choice but to accept solutions

that are suboptimal and inexact. In addition, even when precise solutions can be obtained, their cost is

generally much higher than that of solutions which are imprecise and yet yield results within the range

of acceptability.

Soft computing is not a single methodology, it is an evolving collection of methodologies for the

representation of ambiguity in human thinking. The core methodologies of soft computing are: fuzzy

logic, neural networks, and evolutionary computation. These methodologies have their strengths and

weaknesses. For example, fuzzy logic is most effective when human solution is available. In this context,

fuzzy logic is employed as a programming language that serves to translate a human solution into the

language of fuzzy IF-THEN rules. Neural networks do not require the availability of a human solution,

but can be trained by exemplification. The primary contribution of evolutionary computation, which

is inspired by genetic evolution in humans and animals, is algorithms for systematized random search

for obtaining the best possible solution in a huge solution space. Evolutionary algorithms are a class of

global optimization techniques.

As real-life problems become more varied and more complex, we find that no single soft-computing

methodology suffices to deal with them. To conceive, design, analyze, and use intelligent systems,

we frequently have to employ the totality of soft computing tools that are available. The constituent

methodologies in soft computing are, for the most part, complementary and synergistic rather than

competitive. What this means is that in many applications, it is advantageous to employ the constituent

methodologies in combination rather than in a stand-alone mode. In Chapters 11–14, we will employ soft

computing methodologies—in stand-alone and hybrid modes—to obtain solutions to control problems,

called intelligent control systems.

Some other general terms used in the literature with reference to intelligent systems are as follows.

Soft computing is serving as the foundation for the emerging field of computational intelligence (the

field is sometimes referred to as machine intelligence). When a machine (which almost always means

a computer system) improves its performance at a given task over time without reprogramming, it can

be said to have learned something. Machine learning is the key to machine intelligence, just as human

learning is the key to human intelligence.

There is a significant overlap in the fields of soft computing, computational intelligence, machine

learning, and machine intelligence. The meaning of various terms can change quickly and unpredictably

depending on the context in which they are used. However, the loose definitions given here will serve

our purpose in this book.

690 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

11.3 BASICS OF MACHINE LEARNING

When a computer program improves its performance at a given task over time, it can be said to have

learned something. We will accept automatic performance improvement with experience at a given task

as a rough-and-ready definition of machine learning, without delving too deeply into the philosophical

implications. In general, to have a well-defined learning problem, we must identify the following three

components [149]:

 the sources of experience;

 the class of tasks; and

 the measures of performance to be improved.

11.3.1 The Training Experience

Attempting to incorporate human-like abilities into software solutions is not an easy task. Only recently,

after an attempt to analyze an ocean of data obtained from various sensors, it became clear how complex

are the problems our senses routinely solve, and how difficult it is to replicate in software even the

simplest aspects of human information processing. How, for example, can one make machines ‘see’,

where ‘see’ means to recognize different objects and classify them into classes. For smart machines to

recognize or to make decisions, they must be trained first on a set of training examples. Each new smart

machine (software) should be able to learn the problem in its areas of operation.

In machine learning applications, there are two major sources of training experience:

 Experimental data (examples, samples, measurements, patterns, observations—expressed in the

form of numerical data).

 Structured human knowledge (experience, expertise, heuristics).

Structured human knowledge is a form of training experience that is based on the existence of a human

solution to the problem. However, the mere existence of human solution in some linguistic form is not

sufficient. One must be able to articulate to structure the human solution in the language of a learning

machine, for example, in the form of IF-THEN rules. The key idea is that the structured human knowledge

describes the operation of the process of interest from the standpoint of some (human expert) operator

of the process, and captures the empirical knowledge of operation of that process that has been acquired

through direct experience with the actual operation of the process.

When the experience is available directly in a raw form (numerical data), i.e., no expert is available to

help the learning machine, the machine by itself is required to extract the knowledge from the numerical

data. The numerical training examples typically consist of observed values of system states: x(1), x(2), …,

x
(P), and the response to each state: y(1), y(2), …, y(P). Each state x(p) is characterized by n state variables

of the system: x(p): {x1
(p),…, xn

(p)}; p = 1, 2,…, P. We have assumed a scalar response.

In general, learning is most reliable when the training examples represent the distribution of examples

over which the final system performance must be measured. If training experience consists of data that

lies in region S of state space, then S must be fully representative of situations over which the algorithm

will later be used. Current theory of machine learning rests on the crucial assumption that the distribution

of training examples is identical to the distribution of unseen examples—the data the machine has not

 Intelligent Control with Neural Networks/Support Vector Machines 691

seen during its training phase. Despite our need to make this assumption in order to obtain theoretical

results, it is important to keep in mind that the assumption is often violated in practice.

11.3.2 The Class of Tasks

In the system-science framework, a set {x
(p), y(p)}; p = 1, ..., P of training data pairs typically contains

the inputs x(p) and the desired output y(p). The design of a particular type of learning machine depends on

the type of the outcome. In control applications, for example, y is a continuous-variable, and in pattern

recognition applications, y is a categorical variable (class label).

Patterns are represented by feature vectors, x(p), in feature space

(state space). The main goal is to divide the feature space into regions assigned to the classes of patterns.

If a feature vector falls into a certain region, the associated pattern is assigned to the corresponding class.

It is a problem of interpolation: we fit a mathematical function

describing a curve, so that the curve passes, as close as possible, through all of the data points.

The learning task is inferring input-output functional dependencies from a set of training examples, in

order to predict future outcomes from observed data. The prediction of continuous variables (function

approximation tasks) is known as regression, and the prediction of categorical variables (pattern

recognition tasks) is known as classification. Of fundamental importance in closed-loop control

applications is the regression property of learning machines. Our focus in this chapter will be on this

property. It is a supervised learning task.

Supervised Learning

Function approximation is a supervised learning problem where there is an input x, an output y, and the

task is to learn the mapping from the input to the output. The approach in machine learning is that we

assume a parametric model of the form: ŷ = g(x|p), where g(◊) is the model and p are its parameters.

The machine learning program optimizes the parameters, p, such that the error is minimized, that is,

our estimates, ŷ, are as close as possible to the correct values, y, given in the training set. The name

‘supervised learning’, refers to the dependence of the ‘learner’ on the ‘supervisor’ to select informative

states, and to provide actual/observed output for each state.

Note that the supervised-learning task is to learn function g(x|p), called the target function; the only

information available is a training data set {x
(p), y (p); p = 1, 2, ..., P}. A learning algorithm that at best

guarantees that the learned target function g(◊) fits the training data well, is not our design objective. Our

aim is to use the machine for predicting output values for the data beyond the training data; for the data

that the machine has not seen during its training phase. The actual/observed output for the unseen data is

not known, and we aim to use the prediction of the machine for decision making.

Traditional mathematical models (differential/difference equations) are based on the application of

physical laws, and employ hard computing. In machine learning, on the other hand, analytical models

(target functions g(◊)) are based on direct empirical experience, and employ soft computing. Naturally, if

the physics of the problem is well understood and a traditional mathematical model is feasible, one need

not resort to machine learning methods.

692 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Lacking information on the physics of the problem, our assumption is that the best ‘model’ for prediction

is the model that is induced by the observed training data. Inductive learning methods formulate a model

based on soft-computing methodologies by finding empirical regularities over the training examples, and

these regularities induce the approximation of the target function well over other unseen examples. The

inductive learning hypothesis is as follows:

Any model found to approximate the target function well over a sufficiently large set of training examples,

will also approximate the target function well over other unobserved examples. It generalizes from the

specific training examples, hypothesizing a general function that covers these examples and other cases

beyond the training examples.

 Soft-computing methodologies provide many alternative structures for realizing the target function g(◊).
The two most commonly used structures are neural networks and fuzzy logic.

Unsupervised Learning

Another machine learning application is concerned with unsupervised learning. In supervised learning,

the aim is to learn a mapping from the input to an output whose correct values are provided by a supervisor.

In unsupervised learning, there is no such supervisor and we only have input data. The goal is to unravel

the underlying similarities, and cluster ‘similar’ input vectors together. A major issue in unsupervised

learning is that of defining ‘similarity’ between two input vectors and choosing an appropriate measure

for it.

Reinforcement Learning

In some applications, the output of the system is a sequence of actions. In such cases, a single action is

not important; what is important is the policy —the sequence of correct actions to reach the goal. There

is no such thing as the best action in any intermediate state; an action is good if it is part of a good policy.

In such a case, the machine learning program should be able to assess the goodness of policies and

learn from past good action sequences to be able to generate a policy. Such learning methods are called

reinforcement learning algorithms.

Reinforcement learning is an on-line learning procedure that rewards an action for its good output result

and punishes it for a bad output result. The evaluation of an output as good or bad depends on the specific

problem and the environment. For a control system, if the system continues to be in the desired region in

state space after an action, the output is judged as good, otherwise it is considered as bad. The reward/

penalty of an action is the reinforcement signal.

The adaptation of creatures to their environments results from the interaction of two processes, namely,

evolution and learning. Evolution is a slow stochastic process at the population level that determines

the basic structures of a species. Evolution operates on biological entities, rather than on individuals

themselves. At the other end, learning is a process of gradually improving an individual’s adaptation

capability to its environment by tuning the structure of the individual.

 Intelligent Control with Neural Networks/Support Vector Machines 693

 Evolution is based on the Darwinian model, also called the principle of natural selection, or survival

of the fittest, while learning is based on the human cognitive faculties. Evolutionary algorithms are

stochastic search methods that employ a search technique based on the Darwinian model, whereas neural

networks and fuzzy systems are learning methods based on human learning model.

 Combinations of learning and evolution, embodied by evolving neural networks and evolving fuzzy

systems, have better adaptability to a dynamic environment.

11.3.3 The Performance Measures

The design of a learning machine for optimal performance requires careful consideration of several

factors that influence the machine’s performance. Performance is not just measured as the accuracy

achieved by the machine, but aspects such as computational complexity and convergence characteristics

are just as important.

 In the following we present performance measures for a learning machine under three subheadings:

accuracy, computational complexity, and convergence.

Accuracy

The accuracy of a learning machine is dependent on its generalization capability.

The aim of machine learning is rarely to replicate the training data but the

prediction for new cases. That is, we would like to be able to generate the right output for an input

outside the training set; one for which the correct output is not known but is to be predicted for decision

making. How well a model trained on the training set predicts the right output for unseen examples in

operational situation, is called generalization.

 We assume that all the data (training data + new data in operational situation) are generated independently

from some unknown (but fixed) probability distribution W(x, y). This is a standard assumption in learning

theory; data generated this way is commonly referred to as iid (independent and identically distributed).

Our goal is to find a function g(◊) that will generalize well to unseen examples, that is, g(x) = y for

examples (x, y) other than the training examples, generated from W(x, y).

 Generalization is a very important aspect of machine learning. Since it is a measure of how well the

machine interpolates to points not used during training, the ultimate objective of machine learning is to

produce a learner with low generalization error, that is to minimize the true risk function

 EG(W, p) = ((|)) (,)g y d yx p -Ú 2 W x (11.1)

where p are adjustable parameters of the learning machine model.

Since W(x, y) is generally not known, p are found through minimization of the empirical risk function

 ET (D, p) =
1 2

1
P

g yp p

p

P

((|))() ()
x p -Â

=

 (11.2)

over a finite training data set

 D : {x
(p), y(p); p = 1, 2, ..., P} ~ W (x, y) (11.3)

When P , then empirical error ET Æ generalization error EG.

694 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 The aim of machine learning is, therefore, to learn the examples in the training set well, while providing

good generalization to examples not included in the training set. It is hoped that a small empirical

(training) error will also give a small true (generalization) error.

We can measure the generalization ability of a machine if we have access to data outside

the training set. We simulate this by dividing, often randomly, the training set we have into two parts.

We use one part for training (i.e., for building a learning machine) and the other part, called the test

set/validation set, is used for testing the generalization ability. In the validation set, for each input x,

the output y is known, but these pairs of data are unknown to the machine, since they have not been

used during training. The inputs from the validation set are given to the trained machine. The machine

outputs predictions , ŷ, which are then compared with the actual values, y ; the empirical error is then

calculated as a measure of generalization capability of the machine. Assuming large enough training and

test sets, the machine that is the most accurate on the test set is the best. After training and testing, the

machine is ready for use with the learned parameters ‘frozen’. The machine with low empirical error is

expected to give reasonable outputs for the data it has not seen before. Research shows a dependence

of generalization error on the size of the training set, the machine architecture, and the number of free

parameters in the machine model.

The learning machine design aims at 100% accuracy in predicting the training examples.

While this is sometimes a reasonable design strategy, in fact it can lead to difficulties when there is noise

in the training data, or the number of training examples is too small to produce a representative sample

of W(x, y). In either of these cases, this design approach can produce a machine that overfits the training

examples. We will say that a machine overfits the training examples if some other machine that fits the

training examples less well actually performs better on the test data.

 Overfitting of a training set means that the machine memorizes the training examples, and consequently

loses the ability to generalize. That is, machines that overfit cannot predict correct output for data patterns

not seen during training. Overfitting occurs when machine architecture is too complex (a neural network

with large number of weights, a fuzzy logic model with large number of rules, etc.), compared to the

complexity of the function underlying the data. If we have a machine model that is too complex, the data

is insufficient to constrain it and we may end up with bad prediction function. Or if there is noise in the

data, an over complex model may learn not only the underlying function but also the noise in the data

and may make it a bad fit. This is called overfitting. In such a case, having more training data helps but

only up to certain point.

 Figure 11.1 illustrates the impact of overfitting in a typical application of machine learning. The horizontal

axis of the plot indicates the complexity of the machine. The vertical axis indicates the accuracy of

predictions made by the machine. The solid line shows the accuracy of the machine over the training

examples, where the broken line indicates the accuracy measured over the test examples. Predictably,

the accuracy of the machine over the training examples increases monotonically as the machine grows in

complexity. However, the accuracy over the test examples first increases then decreases.

 If the machine is trained for too long, the excess free parameters start to memorize all the training

patterns, including the noise contained in the training set. Figure 11.2 presents an illustration of training

and generalization errors as a function of training time. From the start of the training, both the training

and generalization errors decrease— usually exponentially. In the case of oversized machines, there is a

 Intelligent Control with Neural Networks/Support Vector Machines 695

point at which the training error continuous to decrease, while the generalization error starts to increase.

This is the point of overfitting. The training should stop as soon as an increase in generalization error is

observed.

 Machine learning tasks based on real-world data are unlikely to find the noise-free data assumption

tenable. Also W(x, y) is generally unknown; empirical evidence shows that the available finite amount

of data is insufficient to represent the distribution of total data in operational situations. Therefore,

whenever the prediction comes from inductive learning, it will not, in general, be provably correct. The

question is how to improve the generalization performance. A great deal of research has gone into clever

engineering tricks and heuristics to aid in the design of learning machines which will not overfit on a

given data set, consequently giving a better generalization performance.

Fig. 11.1 Impact of machine complexity

Fig. 11.2

696 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The computational complexity of a learning machine is directly influenced by the following design

choices:

1. The machine architecture

The learning machine architecture (soft computing methodologies) is an evolving collection of

representations of the target function in the learning task. Some of the important architectures we will

be exploring in the book are

 neural networks;

 fuzzy logic models; and

 kernel functions (support vector machines).

These architectures are all competitive for a given learning task. Computational complexity of these

models are varied, but we have to balance complexity with accuracy. The more complex models of

these architectures usually yield better accuracy, but only up to a point; a trade-off is thus required in the

selection of architecture.

2. The size of free parameters

The larger the size of the parameter vector p of a model, the more calculations are needed to predict

outputs after training, and the more learning calculations are needed for training-patterns presentation.

3. The training set size

The larger the training set size, the more patterns are presented for training. Therefore, the total number

of learning calculations increases.

4. Complexity of optimization method

As will be discussed later in this book, sophisticated optimization algorithms have been developed

to obtain optimum values of machine model parameters. Optimization improves accuracy. This

sophistication comes, however, at the cost of increased computational complexity.

An acceptable trade-off between computational complexity and accuracy is a very important issue in the

design of learning systems.

Convergence

Convergence characteristics of a learning machine can be described by the ability of the machine to

converge to specified error levels (usually considering the generalization error). While convergence

analysis is an empirical approach, rigorous theoretical analysis has been done for some learning machine

architectures.

11.4 A BRIEF HISTORY OF NEURAL NETWORKS

Historically, research in artificial neural networks was inspired by the desire to produce artificial systems

capable of sophisti cated ‘intelligent’ processing similar to the human brain. The science of artificial

 Intelligent Control with Neural Networks/Support Vector Machines 697

neural networks made its first significant appearance in 1943 when Warren McCulloch and Walter

Pitts pub lished their study in this field. They suggested a simple neuron model (known today as MP

artificial neural model) and implemented it as an electrical circuit. In 1949, Donald Hebb highlighted

the connection between psychology and physiology, pointing out that a neural pathway is reinforced

each time it is used. Hebb’s learn ing rule, as it is sometimes known, is still used and quoted today.

Improvements in hardware and software in the 1950s ushered in the age of computer simulation. It

became possible to test theories about nervous system functions. Research expanded; neural network

terminology came into its own.

The perceptron is the earliest of the neural network paradigms. Frank Rosenblatt built this learning

machine device in hardware in 1958 and caused quite a stir.

The perceptron has been a fundamental building block for more powerful models, such as the ADALINE

(ADAptive LINear Elements) and MEDALINE (Multiple ADALINEs in parallel), developed by Ber nard

Widrow and Marcian Hoff in 1959. Their learning rule, sometimes known as Widrow–Hoff rule, was

simple yet elegant.

Affected by the predominately rosy outlook of the time, some people exaggerated the potential of neural

networks. Biological comparisons were blown out of proportion. In 1969, in the midst of many outrageous

claims, Marvin Minsky and Seymour Papert published ‘Perceptrons’, an influential book condemning

Rosen blatt’s perceptron. The limitations of the perceptron were sig nificant; the charge was that it could

not solve any ‘interestin g’problems. It brought to a halt, much of the activity in neural network research.

Nevertheless, a few dedicated scientists such as Teuvo Kohonen and Stephen Grossberg, continued

their efforts. In 1982, John Hopfield introduced a recurrent-type neural network that was based on the

interaction of neurons through a feedback mechanism. His approach was based on Hebb’s learning rule.

The back-propaga tion learning rule arrived on the neural-network scene at approx imately the same time

from several independent sources (Werbos; Parker; Rumelhart, Hinton and Williams). Essentially, a

refinement of the Widrow–Hoff learning rule, the backpropagation learning rule provided a systematic

means for training multilayer net works, thereby overcoming the limitations presented by Minsky.

Minsky’s appraisal has proven excessively pessimistic; networks now routinely solve many of the

problems that he posed in his book.

Research in the 1980s triggered the present boom in the scientifi c community. New and better models are

being proposed, and the limitations of some of the ‘old’ models are being chipped away. A number of

today’s technological problems are in areas where neural-network technology has demonstrated potential:

speech processing, image processing and pattern recognition, time-series prediction, real-time control and

others.

As the research on neural networks is evolving, more and more types of networks are being introduced,

while still less emphasis is being placed on the connection to the biological neural network. In fact, the

neural networks that are most popular today have very little resemblance to the brain, and one might

argue that it would be more fair to regard them simply as a discipline under statis tics.

The application of artificial neural networks in closed-loop control, has recently been rigorously studied.

One property of these networks, central to most control applications, is that of function approximation.

Such networks can generate input/output maps which can approximate any continuous function with the

required degree of accuracy. This emerging technology has given us control design techniques that do

698 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

not depend on parametrized mathematical models. Neural networks are used to estimate the unknown

nonlinear functions; the controller formulation uses these estimated results.

When neural networks are used for control of systems, it is important that results and claims are based

on firm analytical foundations. This is especially important when these control systems are to be used in

areas where the cost of failure is very high. For example, when human life is threatened, as in aircrafts,

nuclear plants, etc. It is also true that without a good theoret ical framework, it is unlikely that the research

in the disci pline will progress very far, as intuitive invention and tricks cannot be counted on to provide

good solutions to controlling complex systems under a high degree of uncertainty. Strong theo retical

results guaranteeing control system properties such as stability are still to come, although promising

results have been reported recently of progress in special cases. The potential of neural networks in

control systems clearly needs to be further explored and both, theory and applications, need to be further

developed.

The rest of the chapter gives a gentle introduction to the appli cation of neural networks in control

systems. A single chapter can in no way do justice to the multitude of interesting neural network results,

that have appeared in literature. Not only would space be required, but in the time required to detail

current results, new results would certainly arise. Instead of trying to cover a large spectrum of such a

vast field, we will focus on what is generally regarded as the core of the subject. This chapter is meant to

be a stepping-stone that could lead interested readers on to other books for additional information on the

current status, and future trends of the subject.

11.5 NEURON MODELS

A discussion of anthropomorphism to introduce neural network technology may be worthwhile—as

it helps explain the terminology of neural networks. However, anthropomorphism can lead to misun-

derstanding when the metaphor is carried too far. We give here a brief description of how the brain

works; a lot of details of the complex electrical and chemical processes that go on in the brain, have been

ignored. A pragmatic justification for such a simplifi cation is that by starting with a simple model of the

brain, scientists have been able to achieve very useful results.

11.5.1 Biological Neuron

To the extent a human brain is understood today, it seems to operate as follows: bundles of neurons, or

nerve fibers, form nerve structures. There are many different types of neurons in the nerve structure, each

having a particular shape, size and length depending upon its function and utility in the nervous system.

While each type of neuron has its own unique features needed for specific purposes, all neurons have two

important structural components in common. These may be seen in the typical biological neuron shown

in Fig. 11.3. At one end of the neuron are a multitude of tiny, filament-like appendages called dendrites,

which come together to form larger branches and trunks where they attach to soma, the body of the nerve

cell. At the other end of the neuron is a single fila ment leading out of the soma, called an axon, which

has extensive branching on its far end. These two structures have special electrophysiological properties

which are basic to the function of neurons as information processors, as we shall see next.

 Intelligent Control with Neural Networks/Support Vector Machines 699

Synapse

Cell body (Soma)

Axon

Nucleus

Dendrites

Synaptic
terminals

Fig. 11.3 A typical biological neuron

Neurons are connected to each other via their axons and den drites. Signals are sent through the axon of one

neuron to the dendrites of other neurons. Hence dendrites may be represented as the inputs to the neuron,

and the axon as its output. Note that each neuron has many inputs through its multiple dendrites, whereas it

has only one output through its single axon. The axon of each neuron forms connections with the dendrites

of many other neurons, with each branch of the axon meeting exactly one den drite of another cell at what

is called a synapse. Actually, the axon terminals do not quite touch the dendrites of the other neurons,

but are separated by a very small distance of between 50 and 200 angstroms. This separation is called

the synaptic gap.

A conventional computer is typically a single processor acting on explicitly programmed instructions.

Programmers break tasks into tiny components, to be performed in sequence rapidly. On the other hand,

the brain is composed of ten billion or so neurons. Each nerve cell can interact directly with up to

200,000 other neurons (though 1000 to 10,000 is typical). In place of explicit rules that are used by a

conventional computer, it is the pattern of connections between the neurons, in the human brain, that

seems to embody the ‘knowledge’ required for carrying out various information-processing tasks. In

human brain, there is no equiva lent of a CPU that is in overall control of the actions of all the neurons.

The brain is organized into different regions, each responsible for different functions. The largest parts of

the brain are the cerebral hemispheres, which occupy most of the interior of the skull. They are layered

structures; the most complex being the outer layer, known as the cerebral cortex, where the nerve cells

are extremely densely packed to allow greater interconnectivity. Interaction with the environment is

through the visual, auditory and motion control (muscles and glands) parts of the cortex.

In essence, neurons are tiny electrophysiological information-processing units which communicate with

each other through elec trical signals. The synaptic activity produces a voltage pulse on the dendrite which

is then conducted into the soma. Each dendrite may have many synapses acting on it, allowing massive

intercon nectivity to be achieved. In the soma, the dendrite potentials are added. Note that neurons are

able to perform more complex func tions than simple addition on the inputs they receive, but con sidering

a simple summation is a reasonable approximation.

When the soma potential rises above a critical threshold, the axon will fire an electrical signal. This

sudden burst of elec trical energy along the axon is called axon potential and has the form of an electrical

700 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

impulse or spike that lasts about 1 msec. The magnitude of the axon potential is constant and is not relat-

ed to the electrical stimulus (soma potential). However, neurons typically respond to a stimulus by firing

not just one but a barrage of successive axon potentials. What varies is the fre quency of axonal activity.

Neurons can fire between 0 to 1500 times per second. Thus, information is encoded in the nerve signals

as the instantaneous frequency of axon potentials and the mean frequency of the signal.

A synapse couples the axon with the dendrite of another cell. The synapse releases chemicals called

neurotransmitters, when its potential is raised sufficiently by the axon potential. It may take the arrival

of more than one spike before the synapse is triggered. The neurotransmitters that are released by the

synapse diffuse across the gap and chemically activate gates on the dendrites, which, when open, allow

charged ions to flow. It is this flow of ions that alters the dendritic potential and provides voltage pulse

on the dendrite, which is then conducted into the neighboring neuron body. At the synaptic junction,

the number of gates that open on the dendrite depends upon the number of neurotransmitters released.

It also appears that some synapses excite the dendrites they affect, whilst others serve to inhibit it. This

corresponds to altering the local potential of the dendrite in a positive or negative direction.

Synaptic junctions alter the effectiveness with which the signal is transmitted; some synapses are good

junctions and pass a large signal across, whilst others are very poor, and allow very little through.

Essentially, each neuron receives signals from a large number of other neurons. These are the inputs to

the neuron which are ‘weighted’. That is, some signals are stronger than others. Some signals excite (are

positive), and others inhibit (are negative). The effects of all weighted inputs are summed. If the sum is

equal to or greater than the threshold for the neuron, the neuron fires (gives output). This is an ‘all-or-

nothing’ situation. Because the neuron either fires or doesn’t fire, the rate of firing, not the amplitude,

conveys the magnitude of information.

The ease of transmission of signals is altered by activity in the nervous system. The neural pathway

between two neurons is suscep tible to fatigue, oxygen deficiency, and agents like anesthet ics. These

events create a resistance to the passage of impulses. Other events may increase the rate of firing. This

ability to adjust signals is a mechanism for learning.

After carrying a pulse, an axon fiber is in a state of complete non-excitability for a certain time called

the refractory period. For this time interval, the nerve does not conduct any signals, regardless of the

intensity of excitation. Thus, we may divide the time scale into consecutive intervals, each equal to the

length of the refractory period. This will enable a discrete-time description of the neurons’ performance

in terms of their states at discrete-time instances.

11.5.2

Artificial neurons bear only a modest resemblance to real things. They model approximately three of the

processes that biological neurons perform (there are at least 150 processes performed by neurons in the

human brain).

An artificial neuron

 (i) evaluates the input signals, determining the strength of each one;

 (ii) calculates a total for the combined input signals and com pares that total to some threshold level;

and

 (iii) determines what the output should be.

 Intelligent Control with Neural Networks/Support Vector Machines 701

Inputs and Outputs

Just as there are many inputs (stimulation levels) to a biological neuron, there should be many input

sig nals to our artificial neuron (AN). All of them should come to our AN simultaneously. In response,

a biological neuron either ‘fires’ or ‘doesn’t fire’ depending upon some threshold level. Our AN will

be allowed a single output signal, just as is present in a biological neuron: many inputs, one output

(Fig. 11.4).

Inputs

Output

Fig. 11.4 Many inputs, one output model of a neuron

Each input will be given a relative weighting, which will affect the impact of that input (Fig. 11.5). This

is something like varying synaptic strengths of the biological neurons—some inputs are more important

than others in the way they combine to produce an impulse. Weights are adaptive coeffi cients within the

network, that determine the intensity of the input signal. In fact, this adaptability of connection strength

is precisely what provides neural networks their ability to learn and store information, and, consequently,

is an essential element of all neuron models.

Inputs Connection
weightsx1

x2

xn

w1

w2

wn

Total input

Sw xi i

Fig. 11.5 A neuron with weighted inputs

Excitatory and inhibitory inputs are represented simply by posi tive or negative connection weights,

respectively. Positive inputs promote the firing of the neuron, while negative inputs tend to keep the

neuron from firing.

Mathematically, we could look at the inputs and the weights on the inputs as vectors.

702 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The input vector

 x =

x

x

xn

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (11.4a)

and the connection weight vector

 w
T = [w1 w2 ... wn] (11.4b)

The total input signal is the product of these vectors. The result is a scalar

i

n

=1

Âwi xi = wT
x (11.4c)

Although most neuron models sum their input signals in basically the same manner, as described above,

they are not all identical in terms of how they produce an output response from this input. Artificial

neurons use an activation function, often called a transfer function, to compute their activation as a

function of total input stimulus. Several differ ent functions may be used as activation functions, and, in

fact, the most distinguishing feature between existing neuron models is precisely which transfer function

they employ.

We will, shortly, take a closer look at the activation functions. We first build a neuron model, assuming

that the transfer function has a threshold behavior, which is, in fact, the type of response exhibited

by biological neurons: when the total stimulus exceeds a certain threshold value q, a constant output

is produced, while no output is generated for input levels below the threshold. Figure 11.6a shows this

neuron model. In this diagram, the neuron has been represented in such a way that the correspondence

of each element with its biological counterpart may be easily seen.

Equivalently, the threshold value can be subtracted from the weighted sum and the resulting value

compared to zero; if the result is positive, then output a 1, else output a 0. This is shown in Fig. 11.6b;

note that the shape of the function is the same but now the jump occurs at zero. The threshold effectively

adds an offset to the weighted sum.

An alternative way of achieving the same effect is to take the threshold out of the body of the model

neuron, and connect it to an extra input value that is fixed to be ‘on’ all the time. In this case, rather than

subtracting the threshold value from the weighted sum, the extra input of +1 is multiplied by a weight

and added in a manner similar to other inputs—this is known as biasing the neuron. Figure 11.6c shows

a neuron model with a bias term. Note that we have taken constant input ‘1’ with an adaptive weight ‘b’

in our model.

The first formal definition of a synthetic neuron model, based on the highly simplified considerations

of the biological neuron, was formulated by McCulloch and Pitts (1943). The two-port model (inputs-

activation value-output mapping) of Fig. 11.6 is essentially the MP neuron model. It is important to look

at the features of this unit—which is an important and popular neural network building block.

 Intelligent Control with Neural Networks/Support Vector Machines 703

It is a simple unit, thresholding a weighted sum of its inputs to get an output. It specifically does not

take any ac count of the complex patterns and timings of the actual nervous activity in real neural

systems, nor does it have any of the complicated features found in the body of biological neurons. This

ensures its status as a model, and not a copy of a real neuron.

The MP artificial neuron model involves two important processes:

 (i) Forming net activation by combining inputs. The input values are amalgamated by a weighted

additive process to achieve the neuron activation value a (refer to Fig. 11.6c).

Fig. 11.6 The MP neuron model

704 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (ii) Mapping this activation value a into the neuron output ŷ. This mapping from activation to output

may be characterized by an ‘activation’ or ‘squashing’ function.

For the activation functions that implement input-to-output compression or squashing, the range of the

function is less than that of the domain. There is some physical basis for this desira ble characteristic.

Recall that in a biological neuron, there is a limited range of output (spiking frequencies). In the MP

model, where DC levels replace frequencies, the squashing function serves to limit the output range.

The squashing function shown in Fig. 11.7a limits the output values to {0, 1}, while that in Fig. 11.7b

limits the output value to {–1, 1}. The activation function of Fig. 11.7a is called unipolar, while that in

Fig. 11.7b is called bipolar (both positive and negative responses of neurons are produced).

y

1

0 a

y

1

a

(b) Bipolar squashing function

–1

(a) Unipolar squashing function

Fig. 11.7

11.5.3

From the above discussion, it is evident that the artificial neuron is really nothing more than a simple

mathematical equation, for calculating an output value from a set of input values. From now onwards, we

will be more on a mathematical footing; the reference to biological similarities will be re duced. Therefore,

names like a processing element, a unit, a node, a cell, etc., may be used for the neuron. A neuron model

(a pro cessing element/a unit/a node/a cell of our neural network), will be represented as follows:

The input vector

 x = [x1 x2 ... xn]T;

the connection weight vector

 w
T = [w1 w2 ... wn];

the unity-input weight b (bias term), and the output ŷ of the neuron are related by the following equation:

 ŷ = s (wT
x + b) = s w x bi i

i

n

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

=1

 (11.5)

where s (◊) is the activation function (transfer function) of the neuron.

The weights are always adaptive. We can simplify our diagram as in Fig. 11.8a; adaptation need not be

specifically shown in the diagram.

 Intelligent Control with Neural Networks/Support Vector Machines 705

x1

x2

xn

wn

w2

w1

1
b

a y

x0 = 1

w0 = b

x1

x2

xn

w1

w2

wn

(b)

s ()◊
s ()◊ a

(a)

y

Fig. 11.8

The bias term may be absorbed in the input vector itself as shown in Fig. 11.8b.

 ŷ = s (a)

 = s w xi i

i

n

=0

Â
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ; w0 = b, x0 = 1 (11.6a)

 = s w x wi i

i

n

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â 0

1=

 = s (wT
x + w0) (11.6b)

In the literature, this model of an artificial neuron is also referred to as a perceptron (the name was given

by Rosenblatt in 1958).

The expressions for the neuron output ŷ are referred to as the cell recall mechanism. They describe how

the output is recon structed from the input signals and the values of the cell param eters.

The artificial neural systems under investigation and experimen tation today, employ a variety of activation

functions that have more diversified features than the one presented in Fig. 11.7. Below, we introduce the

main activation functions that will be used later in this chapter.

The MP neuron model shown in Fig. 11.6 used the hard-limiting activation function. When artificial

neurons are cascaded to gether in layers (discussed in the next section), it is more common to use a soft-

limiting activation function. Figure 11.9a shows a possible bipolar soft-limiting semilinear activation

1

–1

(a)

a a0

1

s ()a s ()a

(b)

Fig. 11.9

706 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

function. This function is, more or less, the ON-OFF type, as before, but has a sloping region in

the middle. With this smooth thresholding function, the value of the output will be practical ly 1 if the

weighted sum exceeds the threshold by a huge margin and, conversely, it will be practically –1 if the

weighted sum is much less than the threshold value. However, if the threshold and the weight ed sum are

almost the same, the output from the neuron will have a value somewhere between the two extremes. This

means that the output from the neuron can be related to its inputs in a more useful and informative way.

Figure 11.9b shows a unipolar soft-limiting function.

For many training algorithms (discussed in later sections), the derivative of the activation function

is needed; therefore, the activation function selected must be differentiable. The logistic or sigmoid

function, which satisfies this requirement, is the most commonly used soft-limiting activation function.

The sigmoid function (Fig. 11.10a):

 s (a) =
1

1 + -e al
 (11.7)

is continuous and varies monotonically from 0 to 1 as a varies from – to . The gain of the sigmoid,

l, determines the steepness of the transition region. Note that as the gain approaches infin ity, the sigmoid

approaches a hard-limiting nonlinearity. One of the advantages of the sigmoid is that it is differentiable.

This property had a significant impact historically, because it made it possible to derive a gradient search

learning algorithm for networks with multiple layers (discussed in later sections).

Fig. 11.10

The sigmoid function is unipolar. A bipolar function with similar characteristics is a hyperbolic tangent

(Fig. 11.10b):

 s (a) =
1

1

1
2

-

+
()

-

-
e

e
a

a

a

l

l
l= tanh (11.8)

The biological basis of these activation functions can easily be established. It is known that neurons

located in different parts of the nervous system have different characteristics. The neurons of the ocular

motor system have a sigmoid characteristic, while those located in the visual area have a Gaussian

characteristic. As we said earlier, anthropomorphism can lead to misunderstanding when the metaphor is

carried too far. It is now a well-known result in neural network theory that a two-layer neural network is

capable of solving any classification problem. It has also been shown that a two-layer network is capable of

solving any nonlinear function approximation problem [138, 141]. This result does not require the use of

sigmoid nonlinearity. The proof assumes only that nonlinearity is a continuous, smooth, monotonically

 Intelligent Control with Neural Networks/Support Vector Machines 707

increas ing function that is bounded above and below. Thus, numerous alternatives to sigmoid could be

used, without a biological justification. In addition, the above result does not require that the nonlinearity

be present in the second (output) layer. It is quite common to use linear output nodes since this tends to

make learning easier. In other words,

 s (a) = l a; l > 0 (11.9)

is used as an activation function in the output layer. Note that this function does not ‘squash’ (compress)

the range of output.

Our focus in this chapter will be on two-layer perceptron net works with the first (hidden) layer having

log-sigmoid

 s (a) =
1

1 + -e a
 (11.10a)

or tan-sigmoid s (a) =
1

1

-

+

-

-
e

e

a

a
 (11.10b)

activation function, and the second (output) layer having linear activation function

 s (a) = a (11.11)

The log-sigmoid function has historically been a very popular choice, but since it is related to the tan-

sigmoid by the simple transformation

 s log-sigmoid = (stan-sigmoid + 1)/2 (11.12)

both of these functions are in use in neural network models.

We have so far described two classical neuron models:

 perceptron—a neuron with sigmoidal activation function (sigmoidal function is a softer version of

the original perceptron’s hard limiting or threshold activation function); and

 linear neuron—a neuron with linear activation function.

11.6 NETWORK ARCHITECTURES

In the biological brain, a huge number of neurons are intercon nected to form the network and perform

advanced intelligent activities. The artificial neural network is built by neuron models. Many different

types of artificial neural networks have been proposed, just as there are many theories on how biological

neural processing works. We may classify the organization of the neural networks largely into two types:

a feedforward net and a recurrent net. The feedforward net has a hierarchical structure that consists

of several layers, without interconnection between neurons in each layer, and signals flow from input

to output layer in one direction. In the recurrent net, multiple neurons in a layer are interconnected to

organize the network. In the following, we give typical characteristics of the feedforward net and the

recurrent net, respectively.

11.6.1 Feedforward Networks

A feedforward network consists of a set of input terminals which feed the input patterns to a layer or

subgroup of neurons. The layer of neurons makes independent computations on data that it receives, and

passes the results to another layer. The next layer may, in turn, make its independent computations and

pass on the results to yet another layer. Finally, a subgroup of one or more neurons determines the output

708 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

from the network. This last layer of the network is the output layer. The layers that are placed between

the input terminals and the output layer are called hidden layers.

Some authors refer to the input terminals as the input layer of the network. We do not use that convention

since we wish to avoid ambiguity. Note that each neuron in a network makes its computa tion based

on the weighted sum of its inputs. There is one exception to this rule: the role of the ‘input layer’ is

somewhat different as units in this layer are used only to hold input data, and to distribute the data to

units in the next layer. Thus, the ‘input layer’ units perform no function—other than serving as a buffer,

fanning out the inputs to the next layer. These units do not perform any computation on the input data,

and their weights, strictly speaking, do not exist.

The network outputs are generated from the output layer units. The output layer makes the network

information available to the outside world. The hidden layers are internal to the network and have no

direct contact with the external environment. There may be from zero to several hidden layers. The

network is said to be fully connected if every output from a single node is channeled to every node in

the next layer.

The number of input and output nodes needed for a network will depend on the nature of the data

presented to the network, and the type of the output desired from it, respectively. The number of neurons

to use in a hidden layer, and the number of hidden layers required for processing a task, is less obvious.

Further comments on this question will appear in a later section.

A Layer of Neurons

A one-layer network with n inputs and q neurons is shown in Fig. 11.11. In the network, each input xi;

i = 1, 2, ..., n is connected to the jth neuron input through the weight wji; j = 1, 2, ..., q. The jth neuron

has a summer that gathers its weighted inputs to form its own scalar output

i

n

=1

Âwji xi + wj0; j = 1, 2, ..., q

Finally, the jth neuron outputs ŷj through its activation function s (◊):

 ŷj = s
i

n

ji i jw x w

=1

0Â +
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ; j = 1, 2, ..., q (11.13a)

 = s (wj
T
x + wj0); j = 1, 2, ..., q (11.13b)

where weight vector wj is defined as

 wj
T = [wj1 wj2 ...wjn] (11.13c)

Note that it is common for the number of inputs to be different from the number of neurons (i.e., n π q).

A layer is not con strained to have the number of its inputs equal to the number of its neurons.

 In vector-matrix notation, the layer shown in Fig. 11.11 has q ¥ 1 output vector

 ŷ =

ˆ

ˆ

ˆ

,

y

y

yq

1

2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (11.14a)

 Intelligent Control with Neural Networks/Support Vector Machines 709

Fig. 11.11

q ¥ n weight matrix

 W =

w w w

w w w

w w w

n

n

q q qn

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

w

w

w

w

1

2

3

T

T

T

q
T

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 (11.14b)

710 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

and q ¥ 1 bias vector

 w0 =

w

w

wq

10

20

0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (11.14c)

Note that the row indices on the elements of matrix W indicate the destination neuron for the weight, and

the column indices indicate which source is the input for that weight. Thus, the indices in wji say that the

signal from the ith input is connect ed to the jth neuron.

The activation vector is

Wx + w0 =

w x +

w x +

w x

1 10

2 20

0

T

T

q
T

q

w

w

w

+

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The outputs are

 ŷ1 = s (w1
T
x + w10)

 ŷ2 = s (w2
T
x + w20)

 ŷq = s (wq
T
x + wq0)

Introducing the nonlinear matrix operator G, the mapping of the input space x to output space ŷ,

implemented by the network, can be expressed as (Fig. 11.12)

 ŷ = G(Wx + w0) (11.15a)

where G(◊) =D

s

s

s

()

()

()

◊
◊

◊

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0 0

0 0

0 0

 (11.15b)

Note that the nonlinear activation functions s (◊)
on the diagonal of the matrix operator G, operate

componentwise on the activation vector of each

neuron.

The input and output vectors x and ŷ are often

called input and output patterns, respectively. The

mapping of the input pattern to an output pattern as given by (11.15), is of the feedforward and

instantaneous type since it involves no time delay between input x and the output ŷ.

Neural networks normally have at least two layers of neurons, with the first layer neurons having

nonlinear and differentiable activation functions. Such networks, as we will see shortly, can approximate

^x G (+)Wx w0 y

Fig. 11.12

 Intelligent Control with Neural Networks/Support Vector Machines 711

any continuous function. In real life, we are faced with nonlinear problems, and multilayer neural

network structures have the capability of providing solutions to these problems.

If the relationship between the input and output signals is linear, or can be treated as such, a single layer

neural network having linear neurons is the best solution. “Adaptive Linear Element” (Adaline) is the

name given to a neuron with linear activation function and a learning rule for adapting the weights.

Single-layer adaline networks have a capacity for a wide range of applications, whenever the problem at

hand can be treated as linear.

A two-layer NN, depicted in Fig. 11.13, has n inputs and two layers of neurons, with the first layer

having m neurons that feed into the second layer having q neurons. The first layer is known as the hidden

layer, with m the number of hidden-layer neurons; the second layer is known as the output layer, with

q the number of output-layer neurons. It is common for different layers to have different numbers of

neurons. Note that the outputs of the hidden layer are inputs to the following layer (output layer); and

the network is fully connect ed. Neural networks with multiple layers are called Multi-layer Perceptrons

(MLP); their computing power is significantly enhanced over the one-layer NN.

 All continuous functions (exhibiting certain smoothness) can be approximated to any desired accuracy

with a network of one hidden layer of sigmoidal hidden units, and a layer of linear output units [141]. Does

it mean that there is no need to use more than one hidden layer and/or mix different types of activation

func tions? This is not quite true. It may be that the accuracy can be improved using a more sophisticated

network architecture. In particular, when the complexity of the mapping to be learned is high, it is

likely that the performance can be improved. However, since implementation and training of the network

become more complicated, it is customary to apply only a single hidden layer of similar activation

functions, and an output layer of linear units. Our focus is on two-layer feedforward neural networks with

s ()◊

x1

x2

xn

s ()◊

s ()◊

1 1

z1

z2

zm

1

1 1

1

yq

y2

y1

S

S

S

S

S

S
Fig. 11.13

712 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

sigmoidal/hyperbolic tangent hidden units and linear output units. This is probably the most commonly

used network architecture, as it works quite well in many practical applications.

Defining the hidden-layer outputs zl allows one to write

 zl = s w x wli i l

i

n

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â 0

1=

; l = 1, 2, …, m (11.16)

 = s (wl
T
x + wl0)

where

 w
T
l =D [wl1 wl2 ... wln]

In vector-matrix notation, the hidden layer in Fig. 11.13 has m ¥ 1 output vector

 z =

z

z

zm

1

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

, (11.17a)

m × n weight matrix

 W =

w w w

w w w

w w w

n

n

ml m mn

11 12 1

21 22 2

2

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (11.17b)

and m × 1 bias vector

 w0 =

w

w

wm

10

20

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 (11.17c)

The output

 z = G(Wx + w0) (11.18a)

where G(◊) =D

s

s

s

()

()

()

◊
◊

◊

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0 0

0 0

0 0

 (11.18b)

Defining the second-layer weight matrix as

 V =

v v v

v v v

v v v

m

m

q q qm

11 12 1

21 22 2

1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (11.19a)

 Intelligent Control with Neural Networks/Support Vector Machines 713

and bias vector as

 v0 =

v

v

vq

10

20

0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

, (11.19b)

one may write the NN output as

 ŷj = v z vjl l j

l

m

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â 0

1=

; j = 1, 2, ..., q (11.20)

 = vj
T
z + vj0

where vj
T =D [vj1 vj 2 ... vjm]

The output vector

 ŷ =

ˆ

ˆ

ˆ

y

y

yq

1

2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (11.21a)

is given by the expression

 ŷ = Vz + v0

 = V(G(Wx + w0) + v0) (11.21b)

Figure 11.14 shows the input–output map.

11.6.2 Recurrent Networks

The feedforward networks (Figs 11.11–11.14) implement fixed-weight mappings from the input space to

the output space. Because the networks have fixed weights, the state of any neuron is solely determined

by the input to the unit, and not the initial and past states of the neurons. This independence of initial and

past states of the network neurons limits the use of such networks because no dynamics are involved. The

maps implemented by the feedforward networks of the type shown in Figs 11.11–11.14, are static maps.

To allow initial and past state involvement along with serial processing, recurrent neural networks utilize

feedback. Recurrent neural networks are also characterized by use of nonlinear processing units; thus,

such networks are nonlinear dynamic systems (Networks of the form shown in Figs 11.11–11.14 are

nonlinear static systems).

The architectural layout of a recurrent network takes many different forms. We may have feedback from

the output neurons of a feedforward network to the input terminals. Yet another possible form is feedback

from the hidden neurons of the network to the input terminals. When the feedforward network has two

or more hidden layers, the possible forms of feedback expand even further. Recurrent networks have a

rich repertoire of architectural layouts.

Fig. 11.14

714 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

It should be noted that many real-world problems, which one might think would require recurrent

architectures for their solution, turn out to be solvable with feedforward architectures as well. A

multilayer feedforward network, which realizes a static map can represent the input/output behavior of

a dynamic system. For this to be possible, one must provide the neural network with information about

the history of the system—typically, delayed inputs and outputs. How much history is needed, depends

on the desired accuracy. There is a trade-off between accuracy and computational complexity of training,

since the number of inputs used, affects the number of weights in the neural network—and subsequently,

the training time (Section 11.11 will give more details). One sometimes starts with as many delayed

signals as the order of the system, and then modifies the network accordingly. It also appears that using

a two hidden-layer network—instead of one hidden layer—has certain compu tational advantages. The

number of neurons in the hidden layer(s) is typically chosen based on empirical criteria, and one may

iterate over a number of networks to determine a neural network that has a reasonable number of neurons

and accomplishes the desired degree of approximation.

From numerous practical applications published over the past decade, there seems to be substantial

evidence that multilayer feedfor ward networks possess an impressive ability to perform reasonably well

in most cases of practical interest. Lately, there have also been some theoretical results that attempt to

explain the reasons for the success [138].

Our focus is on two-layer feedforward neural networks with sigmoidal/hyper bolic tangent hidden units

and linear output units. This is probably the most commonly used network architecture as it works quite

well in many practical applications.

11.7 FUNCTION APPROXIMATION WITH
 NEURAL NETWORKS

Of fundamental importance in NN closed-loop control applications is the universal function

approximation property of NNs having at least two layers (one-layer NNs do not generally have a

universal approximation capability).

The basic universal approximation result says [141] that any smooth function f(x) can be approximated

arbitrarily closely on a compact set using a two-layer NN with appropriate weights. This result has been

shown using sigmoid activations, RBF activa tions, and others. Specifically, let f(x) be a smooth function;

x = [x1 x2 ... xn]T, f(◊) = [f1(◊) f2(◊) ... fq(◊)]T, S be a com pact set in n-dimensional state space and eN be a

positive number. There exists a two-layer NN (Eqn. (11.21b)) such that

f(x) = V(G(Wx + w0) + v0) + e

with ||e|| < eN for all x Œ S, for some (sufficiently large) number m of hidden-layer neurons. The value

e (generally a function of x), is called the NN function approximation error, and it decreases as the

hidden-layer size m increases. We say that on the compact set S, f(x) is ‘within eN of the NN functional

range’. Approxima tion results have also been shown for smooth functions with a finite number of

discontinuities.

Note that in this result, the activation functions are not needed on the NN output layer (i.e., the output

layer activation func tions are linear). It also happens that the bias terms nj0 on the output layers are not

needed, though the hidden layer bias terms w 0 are required.

 Intelligent Control with Neural Networks/Support Vector Machines 715

Note further that, though the result says ‘there exists an NN that approximates f(x)’, it does not show how

to determine the re quired number of units in the hidden layer. The issue of finding the required number of

units in the hidden layer such that an NN does indeed approximate a given function f(x) closely enough, is

not an easy one (If the function approximation is to be carried out in the context of a dynamic closed-loop

feedback control scheme, the issue is thornier and is discussed in subsequent sections). This issue has been

addressed in the literature [138, 141], and a significant result has been derived about the approximation

capabilities of two-layer networks when the function to be approxi mated exhibits a certain smoothness.

Unfortunately, the result is difficult to apply for selecting the number of hidden units. The guidelines

to select the appropriate number of hidden neurons are rather empirical at the moment. To avoid large

number of neurons and the corresponding inhibitively large training times, the smaller number of

hidden layer neurons are often used in the first trial. One increases accuracy by adding more hidden

neu rons. Excessively large number of hidden units may lead to poor generalization, a key feature of the

performance of NN.

Because of the above-mentioned results, one might think that there is no need for using more than

one hidden layer, and/or different types of activation functions. This is not quite true: it may be that

accuracy can be improved using a more sophisticated network architecture. In particular, when the

complexity of the mapping to be learned is high (e.g., functions with discontinuities), it is likely that

the performance can be improved. Experimental evidence tends to show that using a two hidden-layer

network for continuous functions has sometimes advantages over a one hidden-layer network, as the

former requires short er training times.

11.7.1 The Basic Learning Mechanism

Each processing element (neuron) in a neural network has a number of inputs (xi), each of which must

store a connection weight (wji). The element sums up the weighted input (wji xi) and com putes one, and

only one, activation signal (aj). The output signal is a function (s (◊)) of the weighted sum. Figure 11.15

summarizes how a processing element works.

The function s (◊) remains fixed for the life of the processing element. It is generally decided upon as

part of the design, and it cannot be changed dynamically. In other words, the transfer function currently

cannot be adjusted or modified during the operation or running of the network.

However, the weights (wji) are variables. They

can be dynamically adjusted to produce a

given output (yj). This dynamic modifica tion

of the variable weights is the very essence of

learning. At the level of a single processing

element, this self-adjustment is very simple.

When many processing elements do it collec-

tively, we say it resembles ‘intelligence’. The

meaningful infor mation is in the modified

weights. The ability of an entire neural

network to adapt itself (change the wji values) to achieve a given output (yj), is its uniqueness.

Pairs of inputs and outputs are applied to the neural network. These pairs of data are used to teach or train

the network, and as such are referred to as the training set. Knowing what output is expected from each

Fig. 11.15 A processing element

716 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

input, the network automatically adjusts or adapts the strengths of the connections between processing

elements. The method used for the adjusting process is called the learning rule.

Neural networks deal only with numeric input data. Therefore, we must convert or encode information

from the external environment to numeric data form. Addi tionally, it is often necessary to scale data.

Inhibitory inputs are just as important as excitatory inputs. The input scheme should adequately allow

for both the types (allow positive and negative weights). A provision is also usually made for constant-

source input to serve as an offset or bias term for the transfer or activation function.

The numeric output data of a neural network will, likewise, require decoding and scaling to make it

compatible with the external environment.

Important characteristics of the network depend on:

 (i) the transfer or activation functions of the processing ele ments;

 (ii) the structure of the network (number of neurons, layers and interconnections); and

 (iii) the learning rules of the network.

11.7.2 Supervised Learning Rules

These rules compute the necessary

change in the connection weights by

presenting the network given input

pattern, comparing the obtained

response with a desired response

known a priori and then changing

the weights in the direction of

decreasing error. More clearly, in the

supervised learning mode, a neural

network is supplied with a sequence

of examples (x(1), y(1)), (x(2), y(2)), ..., (x(p), y(p)), ..., of desired input-output pairs. When each input x(p) is

fed into the neural net work, the corresponding desired output y(p) is also supplied to the neural network.

As shown in Fig. 11.16, the difference between the actual neural network (NN) output ˆ ()
y

p and the

desired output y(p) is measured in the error-signal generator, which then produces error signals for the

NN to correct its weights in such a way that the actual output will move closer to the desired output. In

the subsequent sections, commonly used learning rules (algorithms) are presented.

11.8 LINEAR LEARNING MACHINES

Linear mathematical functions are the best understood, and the simplest for neural network (NN)

learning. The classical NN literature has developed methods for linear function learning; we will refer to

the associated NN structures as linear learning machines. These techniques, which include both efficient

iterative procedures and theoretical analysis of their generalization properties, provide the framework

within which the construction of more complex (nonlinear) functions will be developed in the subsequent

Fig. 11.16

 Intelligent Control with Neural Networks/Support Vector Machines 717

sections. In this section, we present algorithms for training linear machines. These algorithms will be

relevant to the study of multilayer neural networks and support vector machines in later sections.

For learning problems with a scalar output, only one neuron (perceptron) constitutes the linear learning

machine. For multiple outputs (represented by vector y), single layer of perceptrons gives us the required

structure. We present the algorithms for the scalar-output case; extension to vector-output case is

straightforward.

11.8.1 Least Squares Algorithm

Consider the simple case of a single neuron with linear activation function. Figure 11.17 is a schematic

diagram of such a network. An input signal x = [x1, x2, ..., xn]T, comprising features and augmented by a

constant input component (bias), is applied to the neuron; weighted and summed to give an output signal

ŷ:

 ŷ = w x wi i

i

n

+Â 0

1=

(11.22a)
 = wT + w0

where w
T = w w wn1 2

...[]

Defining (n + 1) ¥ 1 vector

 x = 1 1 2x x xn
T

...[]
and 1 ¥ (n + 1) vector

 w
T = w w w wn0 1 2

... ,[]
we can express Eqn. (11.22a) as

 ŷ = w x
T (11.22b)

Fig. 11.17 Learning scheme for a linear neuron

718 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The learning task is to find the weights of the neuron (estimate the parameters of the proposed linear model

(11.22a)) using a finite number of measurements, observations, or patterns. The learning environment,

thus, comprises a training set of measured data (patterns):

 {x
(p), y(p); p = 1, 2, ..., P}

consisting of an input vector x and output or system response y, and the orresponding learning rule for

the adaptation of the weights (In the following discussion, learning algorithm is given for the case of one

neuron only, and the desired output is a scalar variable. The extension of the algorithm for y, a vector, is

straightforward). The choice of a performance criterion, or the measure of goodness of the estimation,

depends primarily on the data, and on the desired simplicity of the learning algorithm. In the neural

network field, the most widely used performance criterion (cost function) is the sum of error squares:

 E =
1
2

2

1

1
2

2

1

e yp

p

P
p p

p

P
() () ()() = -()Â Â

= =

 (11.23)

(The constant ½ is used for computational convenience only. It gets cancelled out by the differentiation

required in the error minimization process).

It is obvious that network equation (11.22b) is exactly a linear model with (n + 1) linear parameters. So

we can employ the least-squares methods, discussed in Chapter 10, to minimize the error in the sense of

least squares.

A matrix of input vectors x(p); p = 1, 2, ..., P (called the data matrix X) and vector y of the desired outputs

y(p); p = 1, 2, ..., P, are introduced as follows:

 X =

Ê 1 1 1

1
1

1
2

1

2
1

2
2

2

1 2

x x x

x x x

x x x

P

P

n n n
P

() () ()

() () ()

() () ()ËË

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

ÈÎ ˘̊= x x x
() () ()1 2 P

 (11.24a)

 y = y y y P
T

() () ()1 2
 ÈÎ ˘̊

The weights w are required to satisfy the following equations (refer to Eqn. (11.22b)):

 y(1) = w x
T ()1

 y(2) = w x
T ()2

 y(P) = w x
T P()

Therefore,

[y(1) y(2) y(P)] = w x x x
T P[]() () ()1 2

 y
T = w X

T

or y
P ¥1

 = X w
P n

T

n¥ + + ¥() ()1 1 1

ŷ

 Intelligent Control with Neural Networks/Support Vector Machines 719

In the least squares sense, the best or optimal w that minimizes E results from the equation (refer to

Eqns (10.38–10.40))

 w = () [...]XX X
T

n
Tw w w w- =1

0 1 2y (11.24b)

From a computational point of view, the calculation of optimal weights requires the pseudo-inverse of

the P ¥ (n + 1) matrix X.

An alternative solution to this type of problem is the ‘Recursive Least Squares’ (RLS) algorithm (refer to

Eqns (10.45)). For the learning problem in hand, the steps given in Table 11.1 implement the algorithm.

Table 11.1

Given is a set of P measured data points that are used for training:

{x
(p), y(p); p = 1, 2, …, P}

consisting of the input pattern vector x and the desired response y;

x = [1 x0 x1 x2 ... xn]T

The weight vector

w
T = [w0 w1 w2 ... wn]

is to be constructed.

 Perform the following training steps for p = 1, 2, …, P.

Step 1 Set the iteration index k = 0. Initialize the weight vector w 00() = and the matrix P(0) =

 aI(n+1), where a should be very large number, say, of the order of 108 to 1015.

Step 2 Apply the next (p = 1 for the first one) training pair x
() (),p py{ } to the linear neuron.

Step 3 Calculate the error for the applied data pair: e k y k k kT() () () ().+ = + - +1 1 1x w

Step 4 Calculate the vector K(k).

K() () ()[() () ()]k k k k k kT= + + + + -
P x x P x1 1 1 1 1

Step 5 Calculate the updated weight vector.

w w() () () ()k k k e k+ = + +1 1K

Step 6 Find the matrix P(k + 1)

P P x P() () () () ()k k k k kT+ = - +1 1K

Step 7 Stop the adaptation of the weights if the error is smaller than the predefined value. Otherwise set

k Æ k + 1 and go back to step 2.

11.8.2 Gradient Descent Algorithm

We have shown how, for a linear neuron, the weight values which minimize the sum-of-squares error

function can be found explicitly in terms of the pseudo-inverse of a matrix. It is important to note that

this result is possible only for the case of a linear neural network, with a sum-of-squares error function as

the performance criterion. If a nonlinear activation function, such as a sigmoid, is used, or if a different

error function is considered, then a closed-form solution is no longer possible. However, if the activation

function is differentiable, as is the case of the sigmoid, the derivatives of the error function with respect to

720 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the weight parameters can easily be evaluated. These derivatives can then be used in a variety of gradient-

based optimization algorithms for finding the minimum of the error function. Here we consider one of

the simplest of such algorithms, the steepest descent algorithm, for a single linear neuron. We will later

extend the algorithm to multilayer neural networks with sigmoidal/linear units.

 For a linear neuron of Fig.11.17, the training set comprises the pairs

{x
(p), y(p); p = 1, 2, ..., P}

The performance criterion (refer to Eqn.(11.23)) is

 E

p

P

=
1

2
=1

Â (y(p) – ŷ (p))2 =
1

2

2

1

()()e p

p

P

=

Â (11.25)

where (refer to Eqn.(11.22a))

 ˆ () () ()y w x w wp
i i

p T p

i

n

=

=

+ = +Â 0 0

1

w x (11.26)

 To understand the gradient descent algorithm, it is helpful to visualize the error space of possible weight

vectors and the associated values of the performance criterion (cost function). For linear neuron, the error

surface is parabolic with a single global minimum.

 Gradient descent search determines a weight vector that minimizes the cost function by starting with

an arbitrary initial weight vector, then repeatedly modifying it in small steps. At each step, the weight

vector is altered in the direction that produces the steepest descent along the error surface. This process

continues until the global minimum error is reached.

 Let wi(k) be the weights on the iteration index k, and the associated cost function is E(k). The search

direction given by –(∂E(k)/∂wi(k)), takes us iteratively towards the minimum point according to the rule

 wi(k + 1) = wi(k) – h
∂
∂

E k

w ki

()

()
 (11.27)

where h, the positive step-size parameter, is taken as less than 1, and is called the learning rate.

The two most useful training protocols are batch and incremental. In batch training, all patterns are

presented to the network before learning takes place. The cost function E(k) for the batch training is

given by Eqn.(11.25). A variation of this approach is to update weights for each of the training pairs. This

is known as incremental mode of training. We first consider the incremental mode.

Incremental Training

For the incremental training, the cost function at iteration k, is

 E(k) =
1

2
(()y p - ŷ ()) [()]()k e kp2 21

2
= (11.28a)

for the training pair (x(p), y(p),) with

 ˆ () () ()() ()
y k w k x w kp

i i
p

i

n

=

=

+Â 0

1

 (11.28b)

 Intelligent Control with Neural Networks/Support Vector Machines 721

Note that the components xi
(p) of the input vector x(p), and the desired output y(p) are not functions of the

iteration index k.

 The gradients with respect to weights and bias are computed as follows:

∂
∂

∂
∂

-
∂
∂

-

E k

w k
e k

e k

w k
e k

k

w k

e

i

p
p

i

p
p

i

()

()
()

()

()
()

()

()

()
()

()
()

= =

= (() ()

() ()

()
()

() ()

()

p

i
i i

p

i

n

p
i

p

k
w k

w k x w k

e k x

∂
∂

+
È

Î

Í
Í

˘

˚

˙
˙

-

∂

Â 0

1=

=

EE k

w k
e kp()

()
()()

∂
-

0

=

 The gradient descent algorithm becomes

 wi (k + 1) = wi(k) + h e(p)(k) xi
(p) ; p = 1, 2, ..., P; i = 1, 2, ..., n (11.29a)

 w0(k + 1) = w0(k) + h e(p)(k) (11.29b)

In terms of vectors, this algorithm may be expressed as

 w(k + 1) = w(k) + h e(p)(k) x (p); p = 1, 2, ..., P (11.30a)

 w0(k + 1) = w0(k) + h e(p)(k) (11.30b)

Incremental training algorithm iterates over the training examples p =1, 2, …, P; at each iteration, altering

the weights as per Eqns (11.30). The sequence of these weight updates iterated over all the P training

examples, provides a reasonable approximation to the gradient descent with respect to the batch of data.

By making the value of h reasonably small, incremental gradient descent can be made to approximate

true gradient descent arbitrarily closely.

 At each presentation of the data (x(p), y(p)), one step of training algorithm is performed which updates

both the weights and the bias. An epoch is defined as one complete run through all the P associated pairs.

When an epoch has been completed, the pair (x(1), y(1)) is presented again and another run through all the

P pairs is performed. It is hoped that after many epochs, the output error will be small enough.

Note that the approach of teaching the network one fact at a time from one data pair does not work.

All the weights set so meticulously for one fact, could be drastically altered in learning the next fact.

The network has to learn everything together, finding the best weight settings for the total set of facts.

Therefore, with incremental training, the training should stop only after an epoch has been completed.

Batch Training

Our true interest lies in learning to minimize the total error over the entire batch of training examples.

All P pairs are presented to the linear unit (one at a time) and a cumulative error is computed, after all

pairs have been presented. At the end of this procedure, the neuron weights and bias are updated once.

The result is as follows:

 w(k + 1) = w() ()()k e kp

p

P

+
È

Î

Í
Í

˘

˚

˙
˙Âh

=1

x
(p) (11.31a)

ŷ

722 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 w0(k + 1) = w k e kp

p

P

0

1

() ()()+ Âh
=

 (11.31b)

 In batch training, the iteration index corresponds to the number of times the set of P pairs is presented

and the cumulative error is compounded. That is, k corresponds to epoch number.

 Compared with the incremental mode, the batch mode is an inherent averaging process. This leads to a

better estimate of the gradients; thus to more well-behaved convergence. Both the incremental and batch

training modes are commonly used in practice; the error surface in the MLP network case, as we will see

shortly, may contain multiple local minima, and incremental training can sometimes avoid falling into

these local minima.

The sum of error squares over all the training pairs is accumulated in the incremental mode of learning.

After the learning epoch (the sweep through all the training patterns) is completed (p = P), the total error

EP is compared with the acceptable (desired) value Edes; learning is terminated if EP < Edes. Otherwise a

new learning epoch is started. In the batch mode, weight updating is performed after the presentation of

all the training examples that constitute an epoch. The error EP is compared with Edes after each iteration

of a learning epoch.

The sum of error squares is not good as stopping criterion because EP increases with the increase of the

number of data pairs. The more data, the larger is EP. Scaling of the error function gives a better stopping

criterion. The root mean square error (RMSE) is a widely used scaled error function:

ERMS =
1 2

1
P

e p

p

P

()()

=

Â
There will be no need to change the learning algorithm derived earlier. Training is performed using sum-

of-error squares as the cost function (performance criterion), and RMSE is used as a stopping criterion

at training. However, if desired, for the batch mode the learning algorithm with average square error:

Eav =
1

2

2

1
P

e p

p

P

()()

=

Â

may be used as the cost function for training the network.

11.9 TRAINING THE MULTILAYER PERCEPTRON

In the previous section, we dealt with the training of a linear neuron using least squares algorithm and

gradient descent algorithm. Both of these algorithms can easily be extended to a network with a layer

of linear neurons.

 For real-world problems, one has no previous knowledge of what kind of dependency function between

input x and output y is most suitable; a linear function may not lead to satisfactory performance. Trial-

 Intelligent Control with Neural Networks/Support Vector Machines 723

and-error design of a nonlinear function is a difficult task, but inescapable necessity. What we seek is a

clever choice of the nonlinearity. This is the approach of Multi-Layer Perceptron (MLP) networks. MLP

networks can at least in principle, provide the optimal solution to an arbitrary function approximation

problem.

 Consider the two-layer network shown in Fig. 11.13. There is nothing magical about this network; it

implements linear functions in a space where the inputs have been mapped nonlinearly using sigmoidal

transformation. It is natural to ask whether every nonlinear function can be implemented by a network

of this form. The answer is ‘yes’—any continuous function from input to output can be implemented

by a network of the form of Fig. 11.13, given sufficient number of hidden units. If x is fed to the input

terminals (including the bias), the ‘activation’ propagates in the feedforward direction, and the output

values of the hidden units are calculated. Each hidden unit is a perceptron by itself and applies the

nonlinear sigmoid to its weighted sum. If the hidden units’ outputs were linear, the hidden layer would

be of no use for function approximation; linear combination of linear combinations is another linear

combination.

One is not limited to MLP networks of the form of Fig. 11.13. More hidden layers with their own weights

can be placed after the first layer with sigmoid hidden units, thus calculating nonlinear transformations

of the first layer of hidden units and implementing more complex functions of the inputs. In practice,

we rarely go beyond one hidden layer since analyzing a network with many hidden layers is quite

complicated; but sometimes when the hidden layer contains too many hidden units, it may be sensible to

go to multiple hidden layers, preferring ‘long and narrow’ networks to ‘short and flat’ networks.

The key power provided by MLP networks is that they admit simple gradient-based training algorithms.

This is made possible because sigmoid is a continuous and differentiable function, with a useful property

that its derivative is easily expressed in terms if its output.

 Consider a sigmoidal neuron of Fig. 11.8. The activation

 a = w x wi i

i

n

+Â 0

1=

 (11.32a)

and the output

 ˆ ()y a
e a

= =s
1

1 + -
 (11.32b)

The derivative

d

da
a

d

da e e
e

a a

as ()
()

()=
1

1

1

1 2+

È

Î
Í
Í

˘

˚
˙
˙

= -
+

-
- -

-

 =
1

1 1

1

1
1

1

1+ +

È

Î
Í
Í

˘

˚
˙
˙

= -
+

-
+

È

Î
Í
Í

˘

˚
˙
˙-

-

- - -e

e

e e ea

a

a a a

 = s s()[()]a a1 - = ŷ(1 – ŷ) (11.32c)

11.9.1

 We aim to derive the backpropagation algorithm for setting the weights based on training patterns, for the

two-layer perceptron network of Fig. 11.13, which is frequently used in practice. Extension of the results

derived in this section to more general perceptron networks is straightforward.

724 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Backpropagation is one of the simplest and most general method for supervised training of MLP

networks. It is a natural extension of the gradient descent algorithm derived in the previous section for a

linear neuron. The gradient descent algorithm worked for the linear unit because the error, proportional

to the square of the difference between the actual output and the desired output, could be evaluated in

terms of input terminals-to-output layer weights. Similarly, in a two-layer network, it is a straightforward

matter to find out how the error depends on hidden-to-output layer weights. In fact, this dependency is

analogous to the linear unit case.

 But how should the input terminals-to-hidden layer weights be learned; the ones governing the nonlinear

transformation of the input vectors? If the ‘proper’ outputs for hidden units were known for any input,

the input terminals-to-hidden layer weights could be adjusted to approximate it. However, there is no

explicit ‘supervisor’ to state what the hidden units’ output should be. The power of back propagation is

that it allows us to calculate an ‘effective’ error for each hidden unit, and thus derive a learning rule for

input terminals-to- hidden layer weights.

 We begin by defining the cost function for incremental training (iterating through the training examples

one at a time):

 E(k) =
1

2

2

1

[()] ; ()
() () ()

e k e k yj
p

j
p

j

q

j
p

=

=Â - ŷ
j

(p)
(k) (11.33a)

where ˆ ()
yj

p is evaluated using the equations

 ˆ () () () (); , ..,
() ()

y k v k z k v k j qj
p

j
p

j

m

= =

=

+Â 0

1

1 (11.33b)

 z k w k x w k m
p

i i
p

i

n

() ()

() (() ()); , ..,= =

=

s +Â 0

1

1 (11.33c)

These equations directly follow from Eqns ((11.28), (11.20), (11.16)), with the difference that now we

have a layer of q linear units, rather than a single linear unit.

 For each training example p, every weight vj ; j = 1, ..., q; = 1, ..., m, is updated by adding to it Dvj :

 Dvj = – h
∂

∂
E k

v kj

()

()

 (11.34a)

 vj (k + 1) = vj (k) – h
∂

∂
E k

v kj

()

()

 (11.34b)

With linear activation function in the output layer, the update rule becomes

 vj (k + 1) = vj (k) + h ej
(p)(k) z

(p)(k) (11.34c)

 vj0(k + 1) = vj0(k) + h ej
(p)(k) (11.34d)

We now consider the hidden layer of the network. Unlike the output nodes, the desired outputs of the

hidden nodes are unknown. The backpropagation algorithm for a given input-output pair (x(p), y(p))

performs two phases of data flow. First the input pattern x(p) is propagated from the input terminals to

the output layer; and as a result of the forward flow of the data, it produces an output ŷ
(p). Then the error

 Intelligent Control with Neural Networks/Support Vector Machines 725

signals e(p) resulting from the difference between y(p) and ŷ
(p) are backpropagated from the output layer

to the hidden layer, to update the weights w i. Error backpropagation may be computed by expanding the

error derivative using the chain rule, as follows:

 w k w k
E k

w k
i i

i

() ()
()

()
+ -

∂
∂

1 = h (11.35a)

 (11.35b)

ˆ ()
yj

p
 is a function of z

(p); which, in turn, is a function of xi
(p):

ˆ ()
y v z vj

p
j

p
j

m

=

=

() +Â 0

1

z a a w x w
p

i i
p

i

n

()
();= =

=

s () +Â 0

1

Therefore,

 (11.35c)

∂

∂

ˆ ()

()

()

()

y k

z k

j
p

p

 = vj (k)

∂
∂

∂
∂

-
z k

a k

a k

a k
a k a k

p

()
()

()

(())

()
(())[(())]= =

s
s s1

 = z
(p)(k)[1 – z

(p)(k)]

∂

∂
a k

w k
x

i
i

p()

()

()

=

Therefore,

∂

∂
- - ÂE k

w k
x z k z k v k e

i
i

p p p
j j

p

j

m
()

()
[()] [()] () (

() () () ()

 =

=

1

1

kk) (11.35d)

and the update rule becomes

 w i (k + 1) = w i(k) + hd
(p)(k)xi

(p) (11.35e)

where backpropagated error

 d

() () () ()
()[(] () ()

p p p
j j

p

j

m

z k z k v k e k=

= 1

1 - Â (11.35f)

 w 0(k + 1) = w 0(k) + hd
(p)(k) (11.35g)

The backpropagation algorithm consists of repeating the following iterative procedure until the neural

network output error has become sufficiently small.

726 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Present input vector x(p) to the MLP, and compute the MLP output using

 z k w k x w k m
p

i i
p

i

n

() ()

() (() ()); , ...,=

=

s
1

0 1Â + = (11.36a)

 ˆ () () () (); , ...,
() ()

y k v k z k v k j qj
p

j
p

m

j= =

=

 1

0 1Â + (11.36b)

with initial weights w 0
(0), w i

(0), vj0
(0), vj

(0), randomly chosen.

 (11.36c)

 d

() () () ()
() () [()] ();

p p p
j j

p

j

q

k z k z k v e k=

=

1

1

- Â = 1, ..., m (11.36d)

 vj (k + 1) = vj (k) + h ej
(p)(k) z

(p)(k) (11.36e)

 vj0(k + 1) = vj0(k) + h ej
(p)(k) (11.36f)

 w i (k + 1) = w i(k) + h d
(p)(k) xi

(p)(k) (11.36g)

 w 0 (k + 1) = w 0(k) + h d
(p)(k) (11.36h)

Batch training algorithm follows on the similar lines.

11.9.2 Improvements on Gradient Descent

There are many sorts of training algorithms for NN; the basic type we have discussed in the previous

subsection is the backpropaga tion training algorithm. Though the backpropagation algorithm enjoys great

success, one must remember that it is a gradient-based technique, so that the usual caveats associated

with step sizes, local minima and so on, must be kept in mind while using it.

The NN weights and biases are typically initialized to small random (positive and negative) values. A

typical error surface graph in 1-D is shown in Fig. 11.18, which shows a local minimum and a global

minimum. If the weight is initialized as shown in Case 1, there is a possibility that the gradient descent

might find the local minimum. Several authors have determined better techniques to initialize the weights

than the random selection, particularly for the multilayer NN. Among these are Nguyan and Widrow,

whose techniques are used, for instance, in MATLAB. Such improved initialization techniques can also

significantly speed up convergence of the weights to their final values.

An improved version of gradient descent is given by Momentum Gradient Algorithm. Momentum allows

a network to respond, not only to the local gradient, but also to recent trends in error surface. The

learning rule with the inclusion of a momentum term can be written as (refer to Eqns (11.34a – 11.35a))

 Dw i(k) = –h
∂

∂
E k

w ki

()

()

 + a Dw i(k – 1); 0 £ |a | £ 1 (11.37)

 Intelligent Control with Neural Networks/Support Vector Machines 727

Without momentum, a network may get stuck

in a shallow local minimum; adding mementum

can help the NN ‘ride through’ local minima.

(Case 1 in Fig. 11.18 may not get stuck in local

minimum while learning with momentum).

In the MATLAB Neural Network Toolbox are

some examples which show that learning with

momentum can significantly speed up and

improve the performance of backpropagation.

Only small learning constants h guarantee a true

gradient descent. The price of this guarantee

is an increased total number of learning steps

that need to be made to reach a satisfactory

solution. It is desirable to monitor the progress

of learning so that h can be increased at appropriate stages of training to speed up the minimum seeking.

When broad minima yield small gradient values, then a larger value of h will result in a more rapid

convergence. However, for problems with steep and narrow minima, if the learning rate h is too large, then

the NN can overshoot the minimum cost value, jumping back and forth over the minimum, and failing

to converge, as shown in Fig. 11.18, Case 2. Adapting the learning rates can significantly speed up the

con vergence of the weights.

All the refinements: selecting better initial conditions, using learning with momentum, and using an

adaptive learning rate, are available in the MATLAB NN Toolbox.

In practice, the gradient method is quite slow. Other methods are available which converge much faster.

In most applications, it is therefore difficult to justify using the gradient method. Never theless, the method

has gained a remarkable popularity in the neural network community. The primary properties in favor of

the method are the simplicity at which it is implemented, and the modest requirement of data storage. In

most situations, the drawback associated with slow convergence motivates the use of more sophisticated

methods.

The category of fast algorithms uses standard numerical optimiza tion techniques. Three types of

numerical optimization techniques for neural network training have been incorporated in MATLAB:

Conjugate gradient; quasi-Newton; and Levenberg–Marquardt.

The reader is advised to refer to the literature [137–143] for details on improvements suggested above.

11.10 RADIAL BASIS FUNCTION NETWORKS

Radial basis function (RBF) networks have gained considerable attention as an alternative to Multi-Layer

Perceptrons (MLP) trained by the backpropagation algorithm. Both MLP networks and RBF networks

are the basic constituents of feedforward neural networks.

An RBF neuron uses radially symmetric activation function f (||x – c||), i.e., the argument of the function

is the Euclidean distance of the input vector x from a center c, which justifies the name radial basis

function (RBF). Function f(◊) can take various forms; the Gaussian form is more widely used.

Fig. 11.18

728 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

A Gaussion basis function is typically parameterized by two parameters: the center which defines its

position, and a spread parameter that determines its shape. The spread parameter is equal to the standard

deviation s in case of a one-dimensional Gaussian function (do not confuse the standard deviation

parameter s with the sigmoidal activation function s (◊)). In the case of a multivariate input vector x, the

parameters that define the shape of the hyper-Gaussian function are elements of a covariance matrix S.

With the selection of the same spread parameter s for all components of the input vector, the covariance

matrix S = diag(s2).

The input vector

x = [x1 x2 ... xn]T

and the output f (◊) of an RBF (Gaussian) neuron are related by the following equation.

 f s
s

() exp
||

x c
x c

, , =
||2

-
-Ê

ËÁ
ˆ

¯̃2 2
 (11.38)

where c is the center and s is the spread parameter of the Gaussian function.

Unlike sigmoidal neuron, there are no connection weights between the input terminals and the RBF unit

(refer to Fig. 11.19); the center c and the spread parameter s represent the weights.

RBF networks are structurally equivalent

to the two-layer perceptron network shown

in Fig. 11.13. Both have one hidden layer

with a nonlinear activation function, and an

output layer containing one or more neurons

with linear activation functions. In an RBF

network, one does not augment, both the

n-dimensional input vector x and the hidden

layer output vector with the bias term +1.

The architecture of an RBF network is presented in Fig. 11.20. The network consists of n inputs x1, x2, ...,

xn; and a hidden layer of m nonlinear processing units (refer to Eqn. (11.38)):

 f s
s

() exp
||

x c
x c

, , =
||2

-
-Ê

Ë
Á

ˆ

¯
˜

2 2
; = 1, 2, ..., m (11.39a)

The output of the network is computed as a weighted sum of the outputs of the RBF units:

 ˆ (, ,)y wj j

m

=

=

1

Â f sx c ; j = 1, 2, ..., q (11.39b)

where wj is the connection weight between the RBF unit and the j th component of the output vector.

It follows from equations (11.39) that the parameters (c , s , wj) govern the mapping properties of the

RBF neural network. It has been shown [141] that the RBF network can fit any arbitrary function with

just one hidden layer.

In the RBF network, the output of each RBF node is the same for all input points x having the same

Euclidean distance from the respective centers ci, and decreases exponentially with the distance. In

contrast, the output of each sigmoidal node in a multilayer perceptron network saturates to the same

Fig. 11.19

 Intelligent Control with Neural Networks/Support Vector Machines 729

value with increasing w xi i

i

Â . In other words, the activation responses of the nodes are of a local nature

in the RFB and of a global nature in the multilayer perceptron networks.

This intrinsic difference has important repercussions for both the convergence speed and the generalization

performance. In general, multilayer perceptrons learn slower than their RBF counterparts. In contrast,

multilayer perceptrons exhibit improved generalization properties, especially for the regions that are not

represented sufficiently in the training set.

Training RBF Networks

 There are two sets of parameters governing the mapping properties of RBF networks: the weights wj ;

j = 1, 2, ..., q; = 1, 2, ..., m, in the output layer, and the parameters {c , s } of the radial basis functions.

We select an appropriate cost function:

 E = (11.40)

 The estimation of the weights wj , the centers c , and the variances s 2
 becomes a typical task of nonlinear

optimization process:

 w k w k
E k

w k
j j

j

() ()
()

()
+ -

∂
∂

1 1= h (11.41a)

c c
c

() ()
()

()
k k

E k

k
+ -

∂
∂

1 2= h (11.41b)

 s s h
s

() ()
()

()
k k

E k

k
+ -

∂
∂

1 3= (11.41c)

k is the iteration index.

Fig. 11.20

730 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The computational complexity of such a scheme is prohibitive for a number of practical situations. When

obtaining gradient information is difficult or expensive, we may use genetic algorithm for the nonlinear

optimization problem (discussed later in Chapter 13).

Several alternative schemes have been proposed for training RBF networks. Some of these schemes learn

only the centers c of the RBF units, and therefrom determine the spread parameters s . The basic idea is

to ensure suitable overlapping of the basis functions. A rule of thumb is to take s equal to, or a multiple

of, the average distance to the several nearest neighbors of c (||c +1 – c ||).

Once the centers and the spread parameters are chosen, the weights wj in the output layer of the network

in Fig. 11.20, can be determined as follows. Output neuron j is driven by the signals f (x, c , s) produced

by the layer of RBF neurons, which are themselves driven by the input vector (stimulus) x applied to

the input terminals. Supervised learning may be visualized as learning with the help of a ‘supervisor’

having knowledge in the form of input-output examples {x
(p), y(p); p = 1, 2, ..., P}. For known RBF

centres and spread parameters, this knowledge may be translated (refer to Eqns (11.39a)) in the form :

{e(p), y(p); p = 1, ..., P}. Neuron j in the output layer is driven by the vector e(p). By virtue of the built-in

knowledge, the supervisor is able to provide the neural network with a desired response yj
(p) from e(p). The

network parameters wj are adjusted under the combined influence of the training vector e(p) and the error

ej
(p) = yj

(p)
 – ŷj

(p), which is the difference between the desired response yj
(p) and the actual response ˆ ()

yj
p

(refer to Eqns (11.39b)) of the network. The least squares estimation or the gradient descent algorithm

(refer to Section 11.7) may be used for learning the weights wj .

Although there exist some cases in which the nature of the problem suggests a

specific choice for the centers, in the general case, these centers may be selected randomly from the

training set. Provided that the training set is distributed in a representative manner over the space of all

the patterns (input vectors), this seems to be a reasonable way to choose the m centers.

If the centers are not preselected, they have to be estimated during the

training phase along with the weights wj . This can be achieved by unraveling the clustering (unsupervised

learning) properties of the data, and choosing a representative of each cluster as the corresponding center.

The Self-Organizing Map (SOM), developed by Kohonen, is an unsupervised, clustering network. Proper

clusters are formed by discovering the similarities and dissimilarities among the input data [141].

These techniques of RBF network training are used in MATLAB.

11.11 SYSTEM IDENTIFICATION WITH
 NEURAL NETWORKS

The main goal of the present chapter is to describe approaches to neural-network-based control that are

found to be practically applicable to a reasonably wide class of unknown nonlinear sys tems. Systems

identification is an integral part of such a con trol system design and, consequently, it calls for considerable

attention as well. The system identification is necessary to establish a model based on which the

controller can be designed, and it is useful for tuning and simulation before applying the controller to the

real system. In this section, attention is drawn to iden tification of neural network models for nonlinear

dynamic systems from a series of measurements on the systems.

 Intelligent Control with Neural Networks/Support Vector Machines 731

We give here a generic working procedure for system identifica tion with neural networks. Time-invariant

nonlinear dynamic systems with scalar input and scalar output are considered here. Extension to the case

of vector input and vector output is straight forward.

The multilayer feedforward network is straightforward

to employ for the discrete-time modeling of dynamic

systems for which there is a nonlinear relationship between

the system’s input and out put. Let k count the multiple

sampling periods so that y(k) specifies the present output

while y(k – 1) signifies the output observed at the previous

sampling instant, etc. It is assumed that the output of the

dynamic system at discrete-time instances can be described

as a function of number of past inputs and outputs:

 y(k) = f (y(k – 1), ..., y(k – n), u(k – 1), ..., u(k – m)); n ≥ m

(11.42)

A multilayer network can be used for approximating f (◊) if
the inputs to the network are chosen as the n past outputs

and m past inputs of the dynamic system.

When attempting to identify a model of a dynamic system,

it is a common practice to follow the procedure depicted in

Fig. 11.21.

11.11.1 Experiment

The primary purpose of an experiment is to produce a set of examples of how the dynamic system to be

identified responds to various control inputs (These examples can later be used to train neural network to

model the system). The experiment is particularly important in relation to nonlinear modeling; one must

be extremely careful to collect a set of data that describes how the system behaves over its entire range

of operation. The following issues must be considered in relation to acquisition of data (For detailed

information, refer to [131]).

Sampling Frequency

The sampling frequency should be chosen in accordance with the desired dynamics of the closed-loop

system consisting of controller and the system. A high sampling frequency permits a rapid reference

tracking and a smoother control signal, but the problems with numerical ill-conditioning will become

more pronounced. Consequently, the sampling frequency should be selected as a sensible compromise.

Input Signals

While for identification of linear systems, it is sufficient to apply a signal containing a finite number of

fre quencies, a nonlinear system demands, roughly speaking, that all combinations of frequencies and

amplitudes in the system’s oper ating range are represented in the signal. As a consequence, the necessary

Experiment

Select
model structure

Validate model

Train model

Accepted

Not accepted

Fig. 11.21
cedure

732 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

size of the data set increases dramatically with the number of inputs and outputs. Unfortunately, there is

no obvious remedy to this curse of dimensionality.

Before an input signal is selected, it is important to identify the operating range of the system. Special

care must be taken not to excite dynamics that one does not intend to incorporate in the model (e.g.,

mechanical resonances).

Processing the Data

Intelligent processing of the data is often much more important than trying a large number of different

model structures and training schemes. Many different types of process ing can be considered for

extracting the most valuable informa tion from the measured data, and to make it suitable for neural-

network modeling. Some suggestions are given in the following paragraphs.

Filtering is widely used for removing from the measured signals, noise, periodic disturbances, offsets,

and the effects of ‘unin teresting’ dynamics. When high-frequency noise/disturbances cause problems, it

is recommended to remove them by using an analog presampling filter to avoid an aliasing phenomenon.

Offset, drift, and low-frequency disturbances can be removed by filtering the data after sampling.

Sometimes, a large number of input-output pairs from a small regime of entire operating range,

dominates the data set. When training on such a data set, it is likely that the model obtained will be very

accurate in the regime that was over-represented at the expense of poor performance outside the regime.

A little ‘surgery’ on the data set might be necessary here to eliminate redundant information. Apart from

obtaining a more equal weight ing of the information, a reduction of the data set size also has the benefit

that training times will be reduced.

It is also recommended to remove outliers from the data set (or, alternatively, insert interpolated values

of the output signal). Outliers will often have a fatal impact on the training model.

Before training, it is often useful to scale all the signals so that they always fall within a specified

range, say [–1, 1]. Another approach for scaling is to normalize the mean and stan dard deviation of the

training set, e.g., to zero mean and unity standard deviation. The signals are likely to be measured in

different physical units, and without scaling there is a tendency that the signal of largest magnitude will

be too dominating. Moreover, scaling makes the training algorithm numerically robust and leads to faster

convergence.

11.11.2

The model structure selection is basically concerned with the following two issues:

 Selecting an internal network architecture

 Selecting the inputs to the network

An often-used approach is to let the internal architecture be feedforward multilayer network. Probably

the most commonly used network architecture is a two-layer feedforward network with sigmoidal/

hyperbolic tangent hidden units and linear output units. This architecture works quite well in many

practical applications. In our presentation, we use this architecture. However, the reader is referred to

more fundamental textbooks/research papers for a treatment of other types of neural networks in the

control loop.

 Intelligent Control with Neural Networks/Support Vector Machines 733

The input structure we use here consists of a number of past inputs and outputs (refer to Fig. 11.22):

 ˆ (|)y k p = v w k w v

M

i i

i

N

 s f

= =
Â Â +

Ê

Ë
Á

ˆ

¯
˜ +

1 1

0 0() (11.43a)

where ŷ is the predicted value of the output y at sampling in stant t = kT (T = sampling interval),

p = {n w i} is the vector containing the adjustable parameters in the neural network (weights),

e is the regression vector which contains past outputs and past inputs (regressors’s dependency on the

weights is ig nored):

 e(k) = [y(k – 1) y(k – n) u(k – 1) u(k – m)]T (11.43b)

 = [f1(k) f2(k) fN (k)]T

f1() = (– 1)k y k

y k(– 2)

y k n(–)

u k(– 1)

u k(– 2)

fN () = (–)k u k m

s ()◊

s ()◊

s ()◊

z1

z2

zM

nl

y k()

wl0

wli

n0

S

S

S

Fig. 11.22 Input structure

Often, it is of little importance that the network architecture has selected vector p too small or too large.

However, a wrong choice of lag space, i.e., the number of delayed signals used as regressors, may have

a disastrous impact on some control appli cations. Too small obviously implies that essential dynamics

will not be modeled, but too large can also be a problem. From the theory of linear systems, it is known

that too large a lag space may manifest itself as common factors in the identified transfer function. An

equivalent behavior must be expected in the nonlin ear case. Although it is not always a problem, common

factors (corresponding to hidden modes) may lead to difficulties in some of the controller designs.

It is necessary to determine both, a sufficiently large lag space and an adequate number of hidden units.

While it is difficult to apply physical insight towards the determination of number of hidden units, it can

often guide the proper lag space. If the lag space is properly determined, the model structure selection

problem is substantially reduced. If one has no idea regarding the lag space, it is sometimes possible to

determine it empiri cally.

734 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

11.11.3 Training

Assume now, that a data set has been acquired and that some model structure has been selected. According

to the identification procedure in Fig. 11.21, the next step is to apply the data set to pick ‘the best’ model

among the candidates contained in the model structure. This is the training stage. The training can be

computationally intensive, but it is generally one of the easiest stages in the identification. It is not very

difficult to implement a training algorithm in a computer, but one might as well resort to one of the many

available software packages, e.g., MATLAB.

The training procedure can be rephrased in more formal terms. An experiment is performed on the time-

invariant nonlinear dynamic system to collect a set of data, that describes how the system behaves over

its entire range of operation:

Experimental data: {[u(t), y(t)]; t = 1,2,3,...} (11.44a)

From the experimental data, we generate the training data. Since the system is assumed to be time-

invariant, the experimental data could be equivalently represented as

{[u(t), y(t)]; t = – n + 1, – n + 2,...,0,1,2,...}

The following P pairs {e(k), y(k); k = 1,2,...,P}, are used for training the neural network (refer to Eqns

(11.43)):

 e(1) = [y (0) y (–1) y(1– n) u(0) u(1 – m)]T; y(1)

 e(2) = [y(1) y(0) y(2– n) u(1) u(2 – m)]T; y(2) (11.44b)

 e(P) = [y(P – 1) y(P – n) u(P – 1) u(P – m)]T; y(P)

The purpose of the training is to determine a mapping from the data set to the set of candidate models

 ˆ (|) [(),]y k g kp e p= (11.45)

so that a model is obtained which provides predictions that are in some sense close to the true outputs

of the system. The most commonly used measure of closeness for this type of problems is specified in

terms of a mean square error criterion

 J(p) =
1

2
1

P
k

P

=
Â[y(k) – ŷ(k |p)]2 (11.46)

The most appealing feature of mean square error criterion is the simplicity with which a weight

update rule can be derived. The principle of the gradient (descent) iterative search method, is that at

each iteration, the weights are modified along the oppo site direction of the gradient. That is, the search

direction is selected as –
∂
∂
J

p
.

 p(i +1) = p(i) – h(i) ∂

∂

J
ip()

 (11.47)

When applying the gradient method to the training of multilayer feedforward networks, it is useful to

order the computations in a fashion that utilizes the particular structure of the network. The method, called

the backpropagation algorithm, was discussed in Section 11.9. Batch method of the backpropagation

algorithm refers to the fact that each iteration on the parameter vector requires an evaluation of the entire

data set.

 Intelligent Control with Neural Networks/Support Vector Machines 735

It is sometimes useful to identify a system online, simul taneously, with the acquirement of measurements.

Adaptive control is an example of such an application. In this case, a model must be identified and a

control system designed online, because the dynamics of the system to be controlled vary with time.

Obviously batch methods are unsuitable in such applications as the amount of computation, required in

each iteration, might exceed the time available within one sampling interval. Moreover, old data will be

obsolete when the system to be identified is time-dependent.

In a recursive algorithm, one input-output pair from the training set, [e(k), y(k)], is evaluated at a time

and used for updating the weights. In the neural network community, this is frequently referred to as

incremental or online backpropagation (refer to Section 11.9).

11.11.4

In the validation stage, the trained model is evaluated to clari fy if it represents the underlying system

adequately. Ideally, the valida tion should be performed in accordance with the intended use of the model.

As it turns out, this is often rather difficult. For instance, if the intention is to use the model for designing a

control system, the validation ought to imply that a controller was designed and its performance tested in

practice. For most applications, this level of ambition is somewhat high, and it is common to apply a series

of simple ‘standard’ tests instead of concentrating on investigating particular properties of the model.

Although this is less than ideal, it is good as a preliminary validation to quickly exclude really poor

models.

Most of the tests require a set of data that was not used during training. Such a data set is commonly

known as test or validation set. It is desirable that the test set satisfies the same de mands as the training

set, regarding representation of the entire operating range.

A very important part of the validation is to simply inspect the plot, comparing observed outputs to

predictions. Unless the sig nal-to-noise ratio is very poor, it can show the extent of over fitting as well as

possible systematic errors.

If the sampling frequency is high, compared to the dynamics of the system, a visual inspection of the

predictions will not reveal possible problems. Some scalar quantities (correlation functions) to measure

the accuracy of the predictions, have been suggested. Reliable estimates of the average generalization

error are also useful for validation purposes, but their primary application is for model structure selection.

The estimates are good for rapidly comparing different model structures to decide which one is likely

to be the best.

11.12 CONTROL WITH NEURAL NETWORKS

Neural-network-based control constitutes a very large research field, and it is difficult to give a clear

overview of the entire field. Here, in this section, an attempt has been made to outline a feasible path

through the ‘jungle’ of neural network solutions. A completely automatic procedure for control system

design is not realistic; the emphasis is on the guidelines for working solu tions.

It is believed that one of the most important lessons to be learnt from the numerous automatic control

applications developed over the past half century, is that simple solutions actually solve most problems

736 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

quite well. Regardless of the fact that all systems, to some extent, exhibit a nonlinear behavior, it turns

out that they can often be controlled satisfactorily with simple linear controllers. When neural networks

are introduced as a tool for improving the performance of control systems for a general class of unknown

nonlinear systems, it should be done in the same spirit. A consequence of this philosophy is that our

focus is on simple control structures that yield good performance in practice.

11.12.1 Inverse Model of the System used as Controller

When neural networks were originally proposed for controlling unknown nonlinear systems, one of

the first methods being report ed was on training a network to act as the inverse of the system, and use

this as a controller. This, in fact, amounts to linearization (the input-output transfer function unity) of

the nonlinear system by properly compensating for the nonlinearity involved (refer to Section 10.2).

Explained in brief, the basic principle is as follows:

Assume that the system to be controlled can be described by

 y(k) = f1[y(k – 1), ..., y(k – n), u(k – 1),..., u(k – m)] (11.48)

Perform an experiment on the system to collect a set of data, that describes how the system behaves over

its entire range of opera tion:

 {[u(k), y(k)], k = 1, 2, 3, ... } (11.49)

Using identification procedures described in the earlier section, we can infer a neural network model of

the system using this data set.

An inverse model of the system can be inferred from the data set

 {[y(k), u(k)], k = 1, 2, 3, ... } (11.50)

The output of the inverse model is u(k):

 u(k) = f2[(y(k + 1), y(k), ..., y(k – n + 1), u(k – 1),..., u(k – m + 1)] (11.51)

The inverse model can be used as controller for the system. Let the ‘desired’ closed-loop system behave

as

Y z

R z

()

()
 = M(z) = z–1; y (k + 1) = r(k) (11.52)

Substitute in Eqn. (11.51), the output y(k + 1) by the desired output—the re ference, r(k). If the network

represents the exact inverse, the control input produced by it will drive the system output at time k + 1 to

r(k). The principle is illustrated in Fig. 11.23a.

The most straightforward way of training a network as the inverse of a system, is to approach the

problem as a system-identifi cation problem analogous to the one considered in the previous section—an

experiment is performed, a network architecture is selected, and the network is trained off-line. The

difference from system identification lies in the choice of regressors and network output. They are now

selected as shown in a functional relation (11.51). The network is then trained to minimize the criterion

 J =
1

2
1

P
k

P

=
Â [u(k) – û(k |p)]2 (11.53)

We will call this procedure, the general training procedure for an inverse model.

 Intelligent Control with Neural Networks/Support Vector Machines 737

This is basically an off-line procedure. After this training phase, the structure for an on-line operation

looks like the one shown in Fig. 11.23b, that is, the neural network representing the inverse of the plant

precedes the plant. The trained neural network should be able to take the desired output value yd = r as

its input, and produce appropriate û as an input to the plant.

The practical relevance of using an inverse model of the system as a controller is limited, due to a

number of serious inconven iences. The control scheme will typically result in a poor robustness with a

high sensitivity to noise and high-frequency disturbances (corresponding to unity forward-path transfer

function in the linear case). In addi tion, one will often encounter a very active control signal, which

may adversely affect the system/actuators. If the system is linear, this occurs when its zeros are situated

close to the unit circle. In the nonlinear case, there is no unique set of zeros, but, of course, a similar

phenomenon exists.

If the inverse model is unstable (corresponding to zeros of the system outside the unit circle in the linear

case), one must anticipate that the closed-loop system becomes unstable. Unfortunately, this situa tion

occurs quite frequently in practice. Discretization of linear continuous-time models under quite common

circumstances, can result in zeros outside the unit circle—regardless that the continuous-time model has

no zeros, or all zeros are in the left half of the plane. In fact, for a model with a pole excess of at least

two, one or more zeros in the discretized model will con verge to the unit circle, or even outside, as the

sampling frequen cy is increased. It must be expected that a similar behavior can also be found in discrete

models of nonlinear systems.

Fig. 11.23

738 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Another problem with the design arises when the system to be controlled is not one-to-one, since then a

unique inverse model does not exist. If this non-uniqueness is not reflected in the training set, one can,

in principle, yield a particular inverse which might be adequate for controlling the system. Most often,

however, one will end up with a useless, incorrect inverse model.

Despite these drawbacks, in a number of domains (stable systems, and one-to-one mapping plants), this

general training architecture is a viable alternative.

11.12.2

Many of the problems mentioned in the previous subsection can be taken care of by em ploying a control

structure of the form shown in Fig. 11.24. The feedforward control is used for improving the reference

tracking, while feedback is used for stabilizing the system and for sup pressing disturbances.

Fig. 11.24

An inverse model is trained as discussed earlier (refer to Eqn. (11.51)):

 u(k) = f [y(k + 1), y(k), ..., y(k – n + 1), u(k – 1), ..., u(k – m + 1)] (11.54)

The feedforward component of the control input is then composed by substituting all system outputs by

corresponding reference values:

 uff (k) = f [r(k + 1), ..., r(k – n + 1), uff (k – 1), ..., uff(k – m + 1)] (11.55)

If the complete reference trajectory is known in advance, imple mentation of the scheme is particularly

easy. It is then possible to compute the contribution from the feedforward controller beforehand, and

store the entire sequence of control inputs {uff} for use in the computer program implementing the

control system.

Although a neural network feedforward can be useful for optimiz ing many control systems, one must

be careful not to use it uncritically. An inaccurate feedforward control may actually harm, rather than

enhance, performance.

11.12.3

In the context of training inverse models, which are to be used as controllers, the trained inverse model,

somehow, ought to be validated in terms of performance of the final closed-loop system. This points out

 Intelligent Control with Neural Networks/Support Vector Machines 739

a serious weakness asso ciated with the general training procedure for an inverse model: the criterion

(11.53) expresses the objective to minimize the discrepancy between the network output and a sequence

of ‘true’ control inputs. This is not really a relevant objective. In practice, it is not possible to achieve

zero generalization error and consequently, the trained network will have certain inaccuracies. Although

these are reaso nably small in terms of the network output being close to the ideal control signal, there

may be large deviations between the reference and the output of the system when the network is ap plied

as controller for the system. The weakness lies in the fact that the training procedure is not goal directed.

The goal is that, in some sense, the system output should follow the reference signal closely. It would be

more desirable to minimize a criteri on of the following type:

 J =
1

2
1

P
k

P

=
Â[r(k) – y(k)]2 (11.56a)

which clearly is goal directed. Unfortunately, the minimization of this criterion is not easily carried out

off-line, considering that the system output, y(k), depends on the output of the in verse model, u(k – 1).

Inspired by the recursive training algorithms, the network might alternatively be trained to minimize

 Jk = Jk –1 + [r(k) – y(k)]2 (11.56b)

This is an on-line approach and, therefore, the scheme consti tutes an adaptive controller.

Assuming that Jk –1 has already been minimized, the weights at time k are adjusted according to

 p̂(k) = p̂(k – 1) – h
de k

d

2 ()

p
 (11.57a)

where e(k) = r(k) – y(k) (11.57b)

and
de k

d

2 ()

p
 = –

dy k

d

()

p
 e(k) (11.57c)

By application of the chain rule, the gradient
dy k

d

()

p
 can be calculat ed:

dy k

d

()

p
 =

∂
∂ -

y k

u k

()

()1

du k

d

()-1

p
 (11.58a)

Jacobians of the system,
∂

∂ -
y k

u k

()

()1
, are required. These are generally unknown since the system is

unknown. To overcome this problem, a forward model of the system is identified to provide estimates

of the Jacobians:

∂

∂ -
y k

u k

()

()1
 ª

∂
∂ -

ˆ ()

()

y k

u k 1
 (11.58b)

The forward model is obtained by the system identification proce dure described in the earlier section.

Fortunately, inaccuracies in the forward model need not have a harmful impact on the training. The

Jacobian is a scalar factor and, in the simplified algorithm (11.57), will only change the step-size of the

algorithm. Thus, as long as the Jacobians have the correct sign, the algorithm will converge if the step-

size parameter is sufficiently small. We will call this procedure the specialized training procedure for the

inverse model.

740 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The deadbeat character, appearing when inverse models are used directly as controllers, will often result

in an unnecessarily fast response to reference changes. An active control signal may even harm the system

or the actuators. Consequently, it might be desirable to train the network to achieve some prescribed low-

pass behavior of the closed-loop system. Say, have the closed-loop system following the model:

 ym(k) =
B z

A z
r km

m

()

()
()

-

-

1

1
 (11.59)

The polynomials Am and Bm are selected arbitrarily, by the design er.

The control design is, in this case, related to ‘Model Reference Adaptive System’ (MRAS); a popular

type of adaptive controller (discussed earlier in Section 10.3).

Since this specialized training is an on-line approach, the combination of having many weights to adjust

and having only the slow convergence of a gradient method, will often be disastrous. Before the weights

are properly adjusted, the system may have been driven outside the operating range with possibly serious

consequences. Often general training can be used to provide a decent initialization of the network so that

the specialized training is only used for ‘fine tuning’ of the controller.

The simplified specialized training is quite easily implemented with the backpropagation algorithm

(refer to Fig. 11.25). This algorithm is applied on the inverse model NN2:

u(k – 1) = f [y(k + 1), y(k), ..., y(k – n + 1), u(k – 2),..., u(k – m)]

^

e
+

–

u

r

+

–

y

Reference
model

ym

Model

NN 1
forward
model

∂y u/∂
y

System
NN 2

inverse
model

eu

Fig. 11.25 Specialized training

 Intelligent Control with Neural Networks/Support Vector Machines 741

by assuming the following ‘virtual’ error eu(k) on the output of the controller:

de k

d

dy k

d
e k

k

u k

du k

d
e k

du k

d

2

1

1 1() ()
()

()

()

()
()

()

p p p p
= =

∂
∂

=- -
-

-
-

-
ee k

u k
e ku u()

()
() -

∂
∂

-1

p

where eu(k) =
∂

∂ -
ˆ()

()

y k

u k 1
e(k) (11.60)

∂

∂
+ -ˆ()

(–)

((–)) – (())y k

u k

NN u k NN u k

1

1 1 1 1

e

e

A better estimate of the derivative is obtained as follows:

For a multilayer feedforward network (NN 1) with one hidden layer of sigmoid units and a linear output

(Fig. 11.22),

 ŷ(k) = v w k w v

M

i i

i

N

 s f

= =
Â Â +

Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
1

0

1

0() (11.61a)

 e(k) = [y(k – 1), ..., y(k – n), u(k – 1), ..., u(k – m)] (11.61b)

The derivative of the output with respect to the regressor fi(k), is given by

∂
∂

ˆ()

()

y k

kif
 = v w ai

M

¢
=

Â s ()

1

 (11.62a)

 = v w a ai

M

s s() [()]1

1

-
=

Â

where a = w k wi i

i

N

 f ()

=
Â +

1

0
 (11.62b)

We can obtain ∂ ∂ˆ()/ (–)y k u k 1 from this relation.

11.13 SUPPORT VECTOR MACHINES

Support vector machine (SVM) theory provides the most principled approach to the design of neural

networks. Statistical learning theory provides a sound mathematical basis for the formulation of support

vector machines. SVM theory applies to pattern classification and nonlinear regression, using any one of

the following network architectures: RBF networks, MLPs with a single hidden layer, and polynomial

machines. For each of these feedforward networks, we may use the support vector learning algorithm to

implement the learning process using a given set of training data; automatically determining the required

number of hidden units.

Our interest in control problems is more on nonlinear regression. To explain how a support vector

machine works for regression problems, it is perhaps easiest to start with the case of linearly separable

patterns that could arise in the context of binary pattern classification. In this context, the main idea

of a support vector machine is to construct a hyperplane as the decision surface in such a way that the

ŷ

742 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

margin of separation between Class 1 and Class 2 examples is maximized. We will then take up the more

difficult case of linearly nonseparable patterns. With the material on how to find the optimal hypersurface

for linearly nonseparable patterns at hand, we will formally describe the construction of a support vector

machine for real-life (nonlinear) pattern recognition task. As we shall see shortly, basically the idea of a

support vector machine hinges on the following two mathematical operations:

 (i) Nonlinear mapping of input patterns into high-dimensional feature space.

 (ii) Construction of optimal hyperplane for linearly separating the features discovered in Step (i).

The final stage of our presentation will be to extend these results for application to nonlinear regression

problems.

11.13.1

Our presentation on SVM begins with the easiest classification problem: binary classification of linearly

separable data (separating functions will be hyperplanes). The presentation will gradually increase in

complexity.

Let the set of training (data) examples D be

 D = {(x1, y1), (x2, y2), ..., (xP, yP)} (11.63)

where xi i i in
T= []x x x1 2

… is an n-dimensional input vector (pattern with n-features) for the ith

example in a real-valued space X yn
iÕ ¬ ; is its class label (output value), and yi Œ + -{ }1 1, . +1 denotes

Class 1 and –1 denotes Class 2.

To build a classifier, SVM finds a linear function of the form

 f (x) = wT
x + b (11.64)

so that the input vector xi is assigned to Class 1 if f (xi) ≥ 0, and to Class 2 if f(xi) < 0, i.e.,

 y
b

b
i

T
i

T
i

=
If

If

+ + ≥

- + <

Ï
Ì
Ô

ÓÔ

1 0

1 0

w x

w x
 (11.65)

Hence f (x) is a real-valued function f X n: .Õ ¬ Æ ¬

w = [] ¬w w w1 2 …
n

T nŒ is called the weight vector and b Œ¬ is called the bias.

In essence, SVM finds a hyperplane

 w
T
x + b = 0 (11.66)

that separates Class 1 and Class 2 training examples. This hyperplane is called the decision boundary or

decision surface. Geometrically, the hyperplane (11.66) divides the input space into two half spaces: one

half for Class 1 examples and the other half for Class 2 examples. Note that hyperplane (11.66) is a line

in a two-dimensional space and a plane in a three-dimensional space.

For linearly separable data, there are many hyperplanes (lines in two-dimensional feature space;

Fig. 11.26) that can perform separation. How can one find the best one? The SVM framework provides

good answer to this question. Among all the hyperplanes that minimize the training error, find the one

 Intelligent Control with Neural Networks/Support Vector Machines 743

with the largest margin—the gap between the data points of the

two classes. This is an intuitively acceptable approach: select the

decision boundary that is far away from both the classes (Fig. 11.27).

Large-margin separation is expected to yield good classification on

previously unseen data, i.e., good generalization.

From linear algebra, we know that in w
T
x + b = 0, w defines a

direction perpendicular to the hyperplane. w is called the normal

vector (or simply normal) of the hyperplane. Without changing the

normal vector w, varying b moves the hyperplane parallel to itself.

Note also that wT
x + b = 0 has an inherent degree of freedom. We

can rescale the hyperplane to kw
T
x + kb = 0 for k Œ ¬+(positive real

number), without changing the hyperplane.

x2 Separating line
(decision boundary)

x2

Class 2

(a) Large margin separation (b) Small margin separation

Class 1 Class 1

Class 2

Separating
line

x1 x1

Fig. 11.27

Since SVM maximizes the margin between Class 1 and Class 2 data points, let us find the margin.

The linear function f (x) = wT
x + b gives an algebraic measure of the distance from x to the hyperplane

w
T
x + b = 0. We can express x as

 x x
w

w
= N r+

|| ||
 (11.67)

where xN is the normal projection of x onto the hyperplane and r is the desired algebraic distance

(Fig. 11.28). Since by definition, f bN
T

N() ,x w x= =+ 0 it follows that

 f b r bT T
N()

|| ||
x w x= =+ +Ê

ËÁ
ˆ
¯̃

+w x
w

w

 = = =r r r
T

w w

w

w

w
w

|| ||

(|| ||)

|| ||
|| ||

2

or r
f

=
()

|| ||

x

w
 (11.68)

x2

x1

Class 2

Class 1

Fig. 11.26 Possible decision
boundaries

744 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Now consider a Class 1 data point x
() ,1 1+() that is closest to the hyperplane wT

x + b = 0 (Fig. 11.28).

The distance d (1) of this data point from the hyperplane is

 d
f bT

()
() ()()

|| || || ||

1
1 1

= =
+x

w

w x

w
 (11.69a)

Similarly

 d
f bT

()
() ()()

|| || || ||

2
2 2

= =
+x

w

w x

w
 (11.69b)

where (x(2), –1) is a Class 2 data point closest to the hyperplane wT
x + b = 0.

Fig. 11.28

We define two parallel hyperplanes H(1) and H(2) that pass through x(1) and x(2), respectively. H(1) and

H
(2) are also parallel to the hyperplane wT

x + b = 0. We can rescale w and b to obtain (this rescaling, as

we shall see later, simplifies the quest for significant patterns, called support vectors)

 H

H

(1) (1)

(2) (2)

w x

w x

T

T

b

b

+ = +

+ = -

1

1

(11.70)

such that

 w x

w x

T
i

T
i

b y

b y

i

i

+ ≥ +

+ £ - -

1 1

1 1

 if =

 if =

(11.71a)

or equivalently

 y bi
T

w xi +() ≥ 1 (11.71b)

which indicates that no training data fall between hyperplanes H(1) and H(2). The distance between the

two hyperplanes is the margin M. In the light of rescaling given by (11.70),

 d d() ()

|| ||
;

|| ||

1 21 1
=

w w
=

-
 (11.72)

 Intelligent Control with Neural Networks/Support Vector Machines 745

where the ‘–’ sign indicates that x(2) lies on the side of the hyperplane wT
x + b = 0 opposite to that where

x
(1) lies. From Fig. 11.28, it follows that

 M =
2

|| ||w
 (11.73)

Equation (11.73) states that maximizing the margin of separation between classes is equivalent to

minimizing the Euclidean norm of the weight vector w.

Since SVM looks for the separating hyperplane that minimizes the Euclidean norm of the weight vector,

this gives us an optimization problem. A full description of the solution method requires a significant

amount of optimization theory, which is beyond the scope of this book. We will only use relevant results

from optimization theory, without giving formal definitions, theorems or proofs (refer to [29] for details).

Our interest here is in the following nonlinear optimization problem with inequality constraints:

minimize

subject to

f

g i mi

()

() ; , ,

x

x ≥ =0 1 … (11.74)

where x = []x x xn
T

1 2
… , and the functions f and gi are continuously differentiable.

The optimality conditions are expressed in terms of the Lagrangian function

 L f gi i

i

m

x, () ()k() - Â=

=

x xl
1

 (11.75)

where k = []l l1 m
T is a vector of Lagrange multipliers.

An optimal solution to the problem (11.74) must satisfy the following necessary conditions, called

Karush–Kuhn–Tucker (KKT) conditions:

 (i)
∂ ()

∂

L x,k

x j

 = 0; j = 1, ..., n

 (ii) gi (x) ≥ 0; i = 1, ..., m (11.76)

 (iii) li ≥ 0; i = 1, ..., m

 (iv) li gi (x) = 0; i = 1, ..., m

In view of condition (iii), the vector of Lagrange multipliers belongs to the set { ,k k Œ ¬ ≥m
0}. Also

note that condition (ii) is the original set of constraints.

Our interest, as we will see shortly, is in convex functions f and linear functions gi. For this class of

optimization problems, when there exist vectors x0 and k0 such that the point (x0, k0) satisfies the KKT

conditions (11.76), then x0 gives the global minimum of the function f (x), with the constraint given in

(11.74).

Let

L L*
*(max (() min (x x) x

x
= =

¬ ¬k
k) k k)

Œ Œm n
, L L ,, and

It is clear from these equations that for any x Œ¬n and k Œ¬m,

L L L*
*(((k k))£ £x x,)

746 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

and thus, in particular

L*
*() ()k £ L x

This holds for any x Œ¬nand k Œ¬m; so it holds for the k that maximizes the left-hand side, and the

x that minimizes the right-hand side. Thus

max min (min max (
k k

k) k)
Œ Œ Œ Œ¬ ¬ ¬ ¬

£
m n n mx x

xL Lx, ,

The two problems, min-max and max-min, are said to be dual to each other. We refer to the min-max

problem as the primal problem. The objective to be minimized, L*(x), is referred to as the primal function.

The max-min problem is referred to as the dual problem, and L*(k) as the dual function. The optimal primal

and dual function values are equal when f is a convex function and gi are linear functions. The concept of

duality is widely used in the optimization literature. The aim is to provide an alternative formulation of

the problem which is more convenient to solve computationally and/or has some theoretical significance.

In the context of SVM, the dual problem is not only easy to solve computationally, but also crucial for

using kernel functions to deal with nonlinear decision boundaries. This will be clear later in this section.

The nonlinear optimization problem defined in (11.74) can be represented as min-max problem, as is

seen below.

For the Lagrangian (11.75), we have

L*(x) = max () ()
k Œ¬

-
È

Î
Í
Í

˘

˚
˙
˙

Âm
f gi i

i

m

x xl
=1

Since gi(x) ≥ 0 for all i, li = 0 (i = 1,…, m) would maximize the Lagrangian. Thus

L*(()x) = f x

Therefore, our original constrained problem (11.74) becomes the min-max primal problem:

minimize

subject to =

x
)

Œ¬

≥

n

g i mi

L*(

() ; , ,

x

x 0 1 …

The concept of duality gives the following formulation for max-min dual problem:

maximize
k k

k)
Œ¬ ≥m ,

*(
0

L

More explicitly, this nonlinear optimization problem with dual variables k, can be written in the form:

 maximize min

=
k ≥ ¬

-
È

Î
Í
Í

˘

˚
˙
˙

Â
0 x

x x
Œ n

f gi i

i

m

() ()l
1

 (11.77)

Let us now state the learning problem in SVM.

Given a set of linearly separable training examples,

D = {(,), (,), (,)},x x x1 1 2 2y y yP P…,

 Intelligent Control with Neural Networks/Support Vector Machines 747

learning is to solve the following constrained minimization problem:

 minimize

subject to

f

y b iT

(

() ;

w w w

w x

) =

+ ≥

1
2

1 1

T

i i = ,, ,… P

 (11.78)

This formulation is called the hard-margin SVM. Solving this problem will produce the solutions for w

and b, which in turn, give us the maximal margin hyperplane wT
x + b = 0 with the margin 2/||w ||.

The objective function is quadratic and convex in parameters w, and the constraints are linear in parameters

w and b. The dual formulation of this constrained optimization problem is obtained as follows.

First we construct the Lagrangian:

 L(w, b, k) = 1
2

1

1w w w x
T

i i
T

i

i

P

y b- + -Âl [()]

=

 (11.79)

The KKT conditions are as follows:

 (i)
∂
∂

L

w
 = 0 ; which gives w = li i i

i

P

y x

=1

Â

∂
∂

L

b
 = 0; which gives li i

i

P

y

=1

Â = 0

 (ii) yi (w
T
xi + b) – 1 ≥ 0; i = 1, ..., P

(11.80)

 (iii) li ≥ 0 ; i = 1,..., P

 (iv) li [yi (w
T
xi + b) – 1] = 0; i = 1, ...,P

From condition (i) of KKT conditions (11.80), we observe that the solution vector has an expansion in

terms of training examples. Note that although the solution w is unique (due to the strict convexity of the

function f (w)), the dual variables li need not be. There is a dual variable li for each training data point.

Condition (iv) of KKT conditions (11.80) shows that for data points not on the margin hyperplanes (i.e.,

H
(1) and H(2)), l i = 0:

y bi
T

i i()w x + - > fi =1 00 l

For data points on the margin hyperplanes, li ≥ 0:

y bi
T

i i()w x + - fi ≥1 0= 0 l

However, the data points on the margin hyperplanes with li = 0 do not contribute to the solution w, as

is seen from condition (i) of KKT conditions (11.80). The data points on the margin hyperplanes with

associated dual variables li > 0 are called support vectors, which give the name to the algorithm, support

vector machines.

To postulate the dual problem, we first expand Eqn. (11.79), term by term, as follows:

 L(w, b, k) = 1
2

1 11

w w w x
T

i i
T

i

i

P

i i i

i

P

i

P

y b y- - +Â ÂÂl l l
= ==

 (11.81)

Transforming from the primal to its corresponding dual can be done by setting to zero the partial

derivatives of the Lagrangian (11.81) with respect to the primal variables (i.e., w and b), and substituting

748 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

the resulting relations back into the Lagrangian. This is simply to substitute condition (i) of KKT

conditions (11.80) into the Lagrangian (11.81) to eliminate the primal variables; which gives us the dual

objective function.

The third term on the right-hand side of Eqn. (11.81) is zero by virtue of condition (i) of KKT conditions

(11.80). Furthermore, from this condition we have

w
T
w = l l li i

T
i

i

P

i

P

i j i j i
T

j

j

P

y y yw x w x

= = =

=

1 1 1

Â Â Â
Accordingly, minimization of function L in Eqn. (11.81) with respect to primal variables w and b, gives

us the following dual objective function:

 L*(k) = l l li

i

P

i

P

i j i j i
T

j

j

P

y y-Â Â Â
= = =1

1
2

1 1

w x (11.82)

We may now state the dual optimization problem.

Given a set of linearly separable training examples{(xi, yi)}
P
i=1, find the dual variables {li}

P
i=1, that

maximize the objective function (11.82) subject to the constraints

 li yi

i

P

=

=

1

0Â (11.83)

 li ≥ 0; i = 1,..., P

This formulation is dual formulation of the hard-margin SVM.

Having solved the dual problem numerically (using MATLAB’s quadprog function, for example), the

resulting optimum li values are then used to compute w and b. w is computed using condition (i) of KKT

conditions (11.80):

 w x=

=

li yi

i

P

i

1

Â (11.84a)

and b is computed using condition (iv) of KKT conditions (11.80). For support vectors {xs, ys}, this

condition becomes li > 0, and

y bs
T

s()w x + = 1

Instead of depending on one support vector to compute b, in practice all support vectors are used to

compute b, and then their average is taken on the final value for b. This is because the values of li are

computed numerically and can have numerical errors.

 b =
1 1

1
N ySV s

T
s

s

NSV

-È

Î
Í

˘

˚
˙Â w x ;

=

 NSV = total number of support vectors (11.84b)

11.13.2

The linear separable case is the ideal situation. In practice, however, the training data is almost always

noisy, i.e., containing errors due to various reasons. For example, some examples may be labeled

 Intelligent Control with Neural Networks/Support Vector Machines 749

incorrectly. Furthermore, practical problems may have some degree of randomness. Even for two

identical input vectors, their labels may be different.

For SVM to be useful, it must allow noise in the training data. However, with noisy data, the linear SVM

algorithm presented earlier, will not find a solution because the constraints cannot be satisfied. For example,

in Fig. 11.29, there is a Class 2 point (circle) in the Class 1 region, and a Class 1 point (square) in the

Class 2 region. However, in spite of the couple of mistakes, the decision boundary seems to be good. But

the hard margin classifier presented previously cannot be used, because all the constraints.

y b i Pi i() , ,w x
T + ≥ =1; 1 …

cannot be satisfied.

wTx + = 0bx2

Class 2

w

xl

z l

||
||

w

z j

||
||

w

b
||

||
wxj

Class 1
x1

Fig. 11.29 xj and xl are error data points

So the constraints have to be modified to permit mistakes. To allow errors in data, we can relax the

margin constraints by introducing slack variables, zi (≥ 0), as follows:

w x

w x

T

T

i i i

i i i

b y

b y

+ ≥ - = +

+ £ - + = -

1 1

1 1

z

z

for

for

Thus, we have the new constraints

 y b i Pi
T

i i

i

() ; , ,w x + ≥ -
≥

1 1

0

z

z

 =

…
(11.85)

The geometric interpretation is shown in Fig. 11.29.

We also need to penalize the errors in the objective function. A natural way is to assign an extra cost for

errors, to change the objective function to

1
2

1

0w w
T

i

i

P

C C+
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ≥Âz

=

;

where C is a user specified penalty parameter. This parameter is a trade-off parameter between margin

and mistakes.

750 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The new optimization problem becomes

 minimize

subject to

1
2

=

w w

w x

T
i

i

P

i
T

i i

C

y b

+

+ ≥ -

Âz

z

1

1() ;; , ,

; , ,

i P

ii

=
≥ =

1

0 1

…

…z PP

(11.86)

This formulation is called the soft-margin SVM.

Proceeding in the manner similar to that described earlier for separable case, we may formulate the dual

problem for nonseparable patterns as follows.

The Lagrangian

 L(w, b, y, k, l) = 1
2

1 1 1

1w w w x
T

i

P

i

i

P

i
T

i i i

i

P

C y b+ - + - + -Â Â Âz l z m zi

= =

i

=

[()] (11.87)

where l i, mi ≥ 0 are the dual variables.

The KKT conditions for optimality are as follows:

 (i)
∂
∂

L

w
 = w – li i i

i

P

y x =Â 0

1=

∂
∂
L

b
 = -Âli i

i

P

y =

=

0

1

∂
∂

L

zi

 = C – li – mi = 0; i = 1 ,..., P

 (ii) yi (w
T
xi + b) – 1 + zi ≥ 0; i = 1,..., P (11.88)

 zi ≥ 0; i = 1,..., P

 (iii) li ≥ 0; i = 1,..., P

 mi ≥ 0; i = 1,..., P

 (iv) li(yi(w
T
xi + b) –1 + zi) = 0; i = 1,..., P

 mizi = 0; i = 1,..., P

We substitute the relations in condition (i) of KKT conditions (11.88) into the Lagrangian (11.87)

to obtain dual objective function. From the relation C – li – mi = 0, we can deduce that li £ C because

mi ≥ 0. Thus the dual formulation of the soft-margin SVM is

 maximize L* (k) = l l li

i

P

i j i j

j

P

i
T

j

i

P

y y

= ==1

1
2

11

Â ÂÂ- x x

 subject to =

; =

=

l

l

i i

i

P

i

y

C i P

1

0

0 1

Â
£ £ , ,…

 (11.89)

 Intelligent Control with Neural Networks/Support Vector Machines 751

Interestingly, zi and mi are not in the dual objective function; the objective function is identical to that for

the separable case. The only difference is the constraint l i £ C (inferred from C – li – mi = 0 and mi ≥ 0).

The dual problem (11.89) can also be solved numerically, and the resulting li values are then used to

compute w and b. The weight vector w is computed using Eqn. (11.84a).

The bias parameter b is computed using condition (iv) of KKT conditions (11.88):

 l zi i i iy b(())w x
T + - +1 = 0 (11.90a)

 mi z i = 0 (11.90b)

Since we do not have values for zi, we have to get around it. li can have values in the interval 0 £ li £ C.

We will separate it into the following three cases:

li = 0

We know that C – li – mi = 0. With li = 0, we get mi = C. Since mizi = 0 (Eqn. (11.90b)), this implies

that zi = 0; which means that the corresponding ith pattern is correctly classified without any error (as it

would have been with hard-margin SVM). Such patterns may lie on margin hyperplanes or outside the

margin. However, they don’t contribute to the optimum value of w, as is seen from Eqn. (11.84a).

0 < li < C

We know that C – li – mi = 0. Therefore, mi = C – li, which means mi > 0. Since mizi = 0 (Eqn. (11.90b)), this

implies that zi = 0. Again the corresponding ith pattern is correctly classified. Also from Eqn. (11.90a),

we see that for zi = 0 and 0 1< < +li i iC y b, () ; =w x
T so the corresponding patterns are support vectors.

li = C

It can easily be seen that zi π 0 in this case. But zi ≥ 0 is a constraint of the problem. So zi > 0; which

means that the corresponding pattern is mis-classified or lies inside the margin.

We can use support vectors, as in Eqn. (11.84b), to compute the value of b.

The following points need attention of the reader:

 One of the most important properties of SVM is that the solution is sparse in li. Most training data

points are outside the margin area and their li’s in the solution are 0. The data points on the margin

having li = 0, also do not contribute to solution. Only those data points that are on the margin

hyperplanes with 0 < li < C (support vectors) and inside the margin (errors; li = C) contribute to

solution. Without this sparsity property, SVM would not be practical for large data sets.

 The final decision boundary is

w
T
x + b = 0

 Substituting for w and b from Eqns (11.84), we obtain

 l l li i i

i

P
T

i i i
T

j
SVj

P

s
s s s

T
s

s

y b y
N y

yx x x x x x

= = =

=

1 1

1 1Â Â
Ê

Ë
ÁÁ

ˆ

¯
˜̃ + + -

1111

P

s

N

i

P SV

ÂÂÂ
È

Î
Í
Í

˘

˚
˙
˙==

 = 0 (11.91)

 We notice that w and b do not need to be explicitly computed. As we will shortly see, this is crucial

for using kernel functions to handle nonlinear decision boundaries.

752 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Finally, we still have the problem of determining the parameter C. The value of C is usually chosen

by trying a range of values on the training set to build multiple classifiers and then testing them

on validation set before selecting the one that gives the best classification result on the validation

set.

11.13.3 Nonlinear SVM

The SVM formulations discussed so far, require that Class 1 and Class 2 examples can be linearly

represented, i.e., the decision boundary must be a hyperplane. However, for many real-life data sets, the

decision boundaries are nonlinear. To deal with nonlinearly separable data, the same formulation and

solution techniques as far the linear case are still used. We only transform the input data from its original

space into another space (usually, a much higher dimensional space) so that a linear decision boundary

can separate Class 1 and Class 2 examples in the transformed space, which is called the feature space.

The original data space is called the input space.

Through a nonlinear mapping e, the original data set {(x1, y1),...,(xP, yP)}becomes

 {e (x1, y1),...,e(xP, yP)} (11.92)

Figure 11.30 illustrates the process. In the input space, the training examples cannot be linearly separated;

in the feature space, they can be separated linearly.

With the transformation, the optimization problem in (11.86) becomes

minimize

subject to

1
2

=

w w

w x

T
i

i

P

i
T

i i

C

y b i

+

+ ≥ -

Âz

z

1

1(()) ;e ==
≥ =

1

0 1

, ,

; , ,

…

…

P

i Pi z

 (11.93)

Fig. 11.30

 Intelligent Control with Neural Networks/Support Vector Machines 753

The corresponding dual is

minimize *

= ==

L k e e() = -Â ÂÂl l li

i

P

i j i j
T

i j

j

P

i

P

y y

1

1
2

11

((())x x)

 subject to

=

li i

i

P

y

1

Â = 0 (11.94)

 0 1£ £li C i P; , ,= …

The potential problem with this approach is that it may suffer from the curse of dimensionality. The

number of dimensions in the feature space can be huge with some useful transformations, even with

reasonable number of attributes in the input space. Fortunately, explicit transformations can be avoided

if we notice that for the dual problem (11.94), the construction of the decision boundary only requires the

evaluation of e eT
i j()x x () in the feature space. With reference to (11.91), we have the following decision

boundary in feature space:

 li j
T

i j

j

P

i

P

y be e(()x x)

==

+ =ÂÂ 0

11

 (11.95)

Thus, if we have to compute e eT
i j(x x) () in the feature space using the input vectors xi and xj directly,

then we would not need to know the feature vector e(x) or even the mapping e itself. In SVM, this is done

through the use of kernel functions, denoted by K:

 K i j
T

i j(,) (()x x x x= e e) (11.96)

Commonly used kernels include the following:

 Polynomial of degree d : K(xi, xj) = (xT
i xj + 1)d

 Gaussian RBF : K(xi, xj) = exp || ||- -Ê
ËÁ

ˆ
¯̃

1

2 2

2

s
x xi j

(11.97)

We replace e eT
i j(()x x) in (11.94) and (11.95) with kernel. We would never need to explicitly know what

e is.

However, how do we know that a kernel function is indeed a dot product in some feature space? This

question is answered by a theorem, called the Mercer’s theorem, which we will not discuss here. The

kernels in (11.97) satisfy this theorem. Refer to [138,141] for details.

11.13.4

Suppose we are given training data

{(,), , (, ; ,x x x1 1y y yP P
n

…)} Œ Œ¬ ¬

where xi Œ¬n are the input patterns, as in classification problems; and yi Œ¬ now has continuous

values. Our goal is to find a function f (x) that has at most e deviation (where e is a prescribed parameter)

from the actually obtained targets yi for all the training data, and at the same time, is as flat as possible. In

other words, we do not care about errors as long as they are less than e, but will not accept any deviation

larger than this.

754 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

For pedagogical reasons, we begin by describing the case of linear functions f, taking the form

 f b bT n() ; ,x w x w= + ¬ ¬Œ Œ (11.98)

Flatness in the case of (11.98) means that one seeks small w. One way to ensure this is to minimize the

Euclidean norm, i.e., ||w||2, This additional requirement on performance (in addition to the constraint on

maximum allowable error in estimate of yi) improves generalization.

Formally we can write this problem as a constrained optimization problem:

minimize

subject to

1
2

w w
T

i
T

iy b i P- - £ =w x e ; , ,1 …

 w x
T

i ib y i P+ - £ =e ; , ,1 …

(11.99)

The tacit assumption in (11.99) is that a function f given by (11.98) actually exists that approximates all

pairs (xi, yi) with e precision, or in other words, that the constrained optimization problem is feasible.

It should be noted that the optimization problem cannot accommodate data points with errors larger

than e; constraints cannot be satisfied for such data points. For SVM to be useful, it must allow noise in

the training data. Analogously to the ‘soft margin’ classifier described earlier, one can introduce slack

variables zi, zi
* to cope with otherwise infeasible constraints of the optimization problem (11.99). Hence

we arrive at the following formulation:

minimize

subject to

1
2

=

w w

xw

T
i i

i

P

i
T

i

C

y b

+ +()
- - £

Â z z *

1

ee z

e z

+ =

+ - £ + =
i ;

i P

b y iT
i i i

1

1

, ,

; , ,*

…

… w x PP

i Pi i =z z, ; , ...,* ≥ 0 1

 (11.100)

The constant C > 0 determines the trade-off between the flatness of f given by (11.98), and the amount

by which deviations larger than e are tolerated.

The formulation (11.100) corresponds to dealing with a so-called e-insensitive loss (error) function,

described below as

 y y y y y f

y y
i i

i i i i

i i

- =
- £ =

- -

Ï
Ì
Ô

ÓÔ
ˆ | ˆ | ; ˆ ()

| ˆ |
e

e

e

D
D0 if

otherwise

x
 (11.101)

This loss function defines an e-insensitive tube (Fig. 11.31); the loss (error) is equal to zero for training

data points inside the tube (| |),yi i- £ e the loss is zi for data ‘above’ the tube y yi i i- - =()ˆ e z and zi
*

for data ‘below’ the tube ()*
i i iy- - =e z . Only the data points outside the tube contribute to the loss

(error), with deviations penalized in a linear fashion.

As with procedures applied to SVM classifiers, the constrained optimization problem (11.100) is solved

by forming the Lagrangian:

ŷ

ŷ

 Intelligent Control with Neural Networks/Support Vector Machines 755

L b

C yT
i i i i i

T
i

(, , , , , ,)

(

* * *

*

w

w w w x

y y k k l l,

 = + +() - + - + +1
2

z z l e z bb

y b

i

P

i

P

i i i
T

i

i

P

i i i i

)

* * *

==

=

11

1

ÂÂ

Â- + + - -() - +l e z m z m zw x
**()Â

i

P

=1

 (11.102)

where w, b, zi and zi
* are the primal variables, and li, li

*, mi, mi
* ≥ 0 are the dual variables.

The KKT conditions are as follows:

 (i) ∂
∂

= - -() =

∂
∂

= -() =

∂
∂

= - - =

Â

Â

L

L

b

L
C

i i i

i

P

i i

i

P

i
i i

w
w xl l

l l

z
l m

*

*

=

=

1

1

0

0

00 1

0 1

; , ,

; , ,* *

i P

L
C i Pi i

=

∂

∂
= - - = =

…

…
z

l m
i
*

 (ii) e z

e z

z z

+ - + + ≥ =

+ + - - ≥ =

≥

i i
T

i

i i
T

i

i i

y b i P

y b i P

w x

w x

0 1

0 1

0

; , ,

; , ,

, ;

*

*

…

…

ii P= 1,...,

 (11.103)

 (iii) l l m mi i i i i P, , , ; , ,* * ≥ =0 1 …

+e–e

x

0

z*
j

x

¥

¥ ¥

¥

¥

¥

¥
¥

¥

¥

¥

¥

|yi yi– |

|yi yi– |

e + zi

zi

zi
+e

–e

e

Fig. 11.31

756 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (iv) l e z

l e z

i i i
T

i

i i i
T

i

y b i P

y b i

+ - + +() = =

+ + - -() = =

w x

w x

0 1

0 1

; , ,

; , .* *

…

...,

; , ,

; , ,* *

P

i P

i P

i i

i i

m z

m z

= =

= =

0 1

0 1

 …

…

Substituting the relations in condition (i) of KKT conditions (11.103) yields the dual objective function.

The procedure is parallel to what has been followed earlier. The resulting dual optimization problem is

maximize *

= =

L () () () (* * *k k, = - + + - - -Â Âe l l l l l li i

i

P

i i

i

P

i iy

1 1

1
2 ii j j i

T
j

j

P

i

P
* *) (l l-ÂÂ)x x

== 11

 subject to

=

()*l li i

i

P

- =Â 0

1

 l li i C, [,]* Œ 0

 (11.104)

From condition (i) of KKT conditions (11.103), we have

 w x= -()Â l li i i

i

P
*

=1

 (11.105)

Thus the weight vector w is completely described as a linear combination of the training patterns xi.

One of the most important properties of SVM is that the solution is sparse in li, li
*. For the

second factor in the following KKT conditions:

 (11.106)

are nonzero; hence l li i, *
 have to be zero. This equivalently means that all the data points inside the

e-insensitive tube (a large number of training examples belong to this category) have corresponding

l li i, * equal to zero. Further, from (11.106) it follows that only for , the dual variables l li i, *

may be nonzero. Since there can never be a set of dual variables l li i, * which are both simultaneously

nonzero, as this would require slacks in both directions (‘above’ the tube and ‘below’ the tube), we have

l li i¥ =* .0

From KKT conditions (11.103), it follows that

 C

C

i i

i i

-() =

- =

l z

l z

0

0()* *

 (11.107)

Thus the only samples (xi, yi) with corresponding l li i C, * = lie outside the e-insensitive tube around f.

For l li i C, (,),* Œ 0 we have zi, zi
*= 0 and moreover the second factor in (11.106) has to vanish. Hence b

can be computed as follows:

 b y C

b y

i
T

i i

i
T

i i

= - - ()
= - +

w x

w x

e l

e l

 for

 for

Œ

Œ

0

0

,

,
* CC()

(11.108)

 Intelligent Control with Neural Networks/Support Vector Machines 757

All data points with l li i C, (,)* Œ 0 are used to compute b, and then their average is taken as the final

value for b.

The examples that come with nonvanishing dual variables li, li
* are called support vectors.

The next step is to make SVM algorithm nonlinear. This would be achieved by simply preprocessing the

training patterns xi by a map e into some feature space, and then applying the standard SVM algorithm.

All pattern-recognition/function approximation (classification/regression) problems when solved using

SVM algorithms presented in this section, are basically quadratic optimization problems. Attempting

MATLAB functions for SVM algorithms discussed in this section, will be a rich learning experience for

the reader.

REVIEW EXAMPLES

Review Example 11.1

A high performance drive system consists of a motor and a controller integrated to perform a precise

mechanical maneuver. This requires the shaft speed, and/or position of the motor to clearly follow a

specified trajectory, regardless of unknown load varia tions and other parameter uncertainties.

A backpropagation neural network can be trained to emulate the unknown nonlinear plant dynamics by

presenting a suitable set of input/output patterns generated by the plant. Once system dynam ics have been

identified using a neural network, many convention al control techniques can be applied to achieve the

desired objective of trajectory tracking.

In this example, we study a neural-network-based identification and control strategy for trajectory

control of a dc motor.

DC Motor Model

Although it is not mandatory to obtain a motor model if a neural network (NN) is used in the motor-control

system, it may be worth doing so, from the analytical perspective, in order to establish the foundation of the

NN structure. We will use input/output patterns generated by simulation of this model for training of NN

(In a real life situation, experimentally generated input/output patterns will be used for training).

 The dc motor dynamics are given by the following equations (refer to Fig. 11.32):

 va(t) = Raia(t) + La
di

dt

a + eb(t) (11.109)

 eb(t) = Kbw (t) (11.110)

 TM(t) = KTia(t) (11.111)

 = J
d t

dt

w ()
 + Bw (t) + TL(t) + TF (11.112)

758 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

where

 va(t) = applied armature voltage (volts);

 eb(t) = back emf (volts);

 ia(t) = armature current (amps);

 Ra = armature winding resistance (ohms);

 La = armature winding inductance (henrys);

 w(t) = angular velocity of the motor rotor (rad/sec);

 TM(t) = torque developed by the motor (newton-m);

 KT = torque constant (newton-m/amp);

 Kb = back emf constant (volts/(rad/sec));

 J = moment of inertia of the motor rotor with attached mechanical load (kg-m2);

 B = viscous-friction coefficient of the motor rotor with attached mechanical load ((newton-m)/

(rad/sec));

 TL(t) = disturbance load torque (newton-m); and

 TF = frictional torque (newton-m).

The load torque TL(t) can be expressed as

 TL(t) = y (w) (11.113)

where the function y (◊) depends on the nature of the load.

For most propeller driven or fan type loads, the function y (◊) takes the following form:

 TL(t) = mw2(t)[sgnw(t)] (11.114)

where m is a constant.

DC motor drive system can be expressed as single-input, single-output system by combining Eqns

(11.109)–(11.110):

i

Ra La

ia()t

eb()t

va()t
TM

w()t
TF TL()t

J B,

Fig. 11.32

 Intelligent Control with Neural Networks/Support Vector Machines 759

 LaJ
d t

dt

2

2

w ()
+ (RaJ + LaB)

d t

dt

w()
 + (RaB + KbKT)w(t)

 + La
dT t

dt

L ()
 + Ra[TL(t) + TF] + KTva(t) = 0 (11.115)

The discrete-time model is derived by replacing all continuous differentials with finite differences.

 LaJ w w w() () ()k k k

T

+ - + -È

ÎÍ
˘

˚̇

1 2 1
2

 + (RaJ + LaB)
w w() ()k k

T

+ -È

ÎÍ
˘

˚̇

1

 + (RaB + KbKT)w (k) + La
T k T k

T

L L() ()- -È

ÎÍ
˘

˚̇

1
 + RaTL(k) + RaTF + KTva(k) = 0 (11.116)

 TL(k) = mw2(k)[sgnw (k)] (11.117)

 TL(k – 1) = mw2(k – 1)[sgnw (k)] (11.118)

 T = sampling period

w (k) =D w(t = kT); k = 0, 1, 2, ...

Manipulation of Eqns (11.116)–(11.118) yields

 w (k + 1) = K1w (k) + K2w(k – 1) + K3[sgnw(k)]w2(k) + K4[sgnw (k)]w2(k – 1) + K5va(k) + K6 (11.119)

where K1 =
2 2L J T R J L B T R B K K

L J T R J L B

a a a a b T

a a a

+ + - +
+ +

() ()

()

 K2 = –
L J

L J T R J L B

a

a a a+ +()

 K3 = –
T L R T

L J T R J L B

a a

a a a

()

()

m m+
+ +

 (11.120)

 K4 =
T L

L J T R J L B

a

a a a

m

+ +()

 K5 =
K T

L J T R J L B

T

a a a

2

+ +()

 K6 = –
T R T

L J T R J L B

F a

a a a

2

+ +()

The following parameter values are associated with the dc motor

 J = 0.068 kg-m2

 B = 0.03475 newton-m/(rad/sec)

 Ra = 7.56 W
 La = 0.055 H

 KT = 3.475 newton-m/amp

(11.121)

 Kb = 3.475 volts/(rad/sec)

760 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 m = 0.0039 newton-m/(rad/sec)2

 TF = 0.212 newton-m

 T = 40 msec = 0.04 sec

With these motor parameters, the constants K1, K2, K3, K4, K5 and K6 become

 K1 = 0.34366

 K2 = –0.1534069

 K3 = –2.286928 × 10–3
(11.122)

 K4 = 3.5193358 × 10–4

 K5 = 0.2280595

 K6 = –0.105184

Equation (11.119) can be manipulated to obtain the inverse dynamic model of the drive system as

 va(k) = f [w (k + 1), w(k), w(k – 1)] (11.123)

The right-hand side of Eqn. (11.123) is a nonlinear function of the speed w and is given by

f(w(k + 1), w (k), w(k – 1))

 =
1

5K
[w(k + 1) – K1w (k) – K2w (k – 1) – K3{sgnw (k)}w2(k) – K4{sgnw (k)}w2(k – 1) – K6] (11.124)

which is assumed to be unknown (It is assumed that the only available qualitative a priori knowledge

about the plant is a rough estimate of the order of the plant). A neural network is trained to emulate the

unknown function f (◊). The values w (k + 1), w(k) and w(k – 1), which are the independent variables of

f (◊), are selected as the inputs to the NN. The corresponding target f(w (k + 1), w (k), w(k – 1)) is given

by Eqn. (11.124). This quantity is also equal to the armature voltage va(k), as seen from Eqn. (11.123).

Randomly generated input patterns of [w (k + 1), w(k), w(k – 1)] and the corresponding target va(k),

are used for off-line training. The training data is generated within the constrained operating space. In

conforming with the mechanical and electrical hardware limitations of the motor, and with a hypothetical

operating scenario in mind, the following con strained operating space is defined:

– 30 < w (k) < 30 rad/sec

 |w (k – 1) – w (k)| < 1.0 rad/sec (11.125)

 |va(k)| < 100 volts

The estimated motor armature voltage given by the NN identifier is

 v̂a (k – 1) = N(w (k), w(k – 1), w(k – 2)) (11.126)

Trajectory Control of DC Motor using Trained NN

The objective of the control system is to drive the motor so that its speed w (k) follows a reference

(prespecified) trajectory wr(k). A controller topology is presented in Fig. 11.33. The NN trained to

emulate inverse dynamics of the dc motor, is used to estimate the motor armature voltage v̂a (k), which

 Intelligent Control with Neural Networks/Support Vector Machines 761

enables accurate trajectory control of the shaft speed w(k). Refer to Appendix B for realization of the

controller.

Review Example 11.2

In this example, we study a neural-network–based identification and control strategy for temperature

control of a water bath.

The plant consists of a laboratory 7-liter water bath as depicted in Fig. 11.34. A personal computer reads

the temperature of the water bath through a link consisting of a diode-based tempera ture sensor module

(SM) and an 8-bit A/D converter. The plant input, produced by the computer, is limited between 0 and

5 volts, and controls the duty cycle for a 1.3 kW heater via a pulse-width-modulation (PWM) scheme.

z–1

z–2

wr (+ 1)k
va()k w (+ 1)k

NN
inverse
model

DC
motor

Plant

Controller

Fig. 11.33

Computer

A/D

SM

Stirrer

PWM

u

h

D/A

Fig. 11.34 Water bath control system

762 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The temperature of water in a stirred tank is described by the equation

 C
dy t

dt

()
 =

Y y t

R

0 - ()
 + h(t) (11.127)

where y(t) is the temperature of water in the tank (ºC), h(t) is the heat flowing into the tank through

the base heater (watts), Y0 is the temperature of the surroundings (assumed constant, for simplicity), C

denotes the tank thermal capacity (Joules/ºC), and R is the thermal resistance between tank borders and

surroundings. Assuming R and C as essentially constant, we can obtain discrete-time description of the

thermal system as follows:

 x(t) =D y(t) – Y0
(11.128)

 x t() = –
1

RC
x(t) +

1

C
h(t) = –a x(t) + b h(t)

The discrete-time state equation (sampling period = T):

 x(k + 1) = F x(k) + gh(k)
(11.129)

where F = e–aT; g = b
0

T

Ú e–at dt =
b

a
[1 – e–aT]

We modify this model to include a saturating nonlinearity, so that the water temperature cannot exceed

some limitation. The nonline ar plant model then becomes (obtained from real plant by experimen tation)

 y(k + 1) = F y(k) +
g

y k1 0 5 40+ exp [. ()]-
u(k) + (1 – F)Y0 (11.130)

 a = 1.00151 × 10–4

 b = 8.67973 × 10–3 (11.131)

 Y0 = 25ºC

 T = 30 sec

 u = input to the PWM, limited between 0 and 5 volts.

With these parameters, the simulated system is equivalent to a SISO temperature control system of a water

bath, that exhibits linear behavior up to about 70ºC and then becomes nonlinear and saturates at about

80ºC.

The task is to learn how to control the plant described in Eqn. (11.130), in order to follow a specified

reference yr(k), minimiz ing some norm of error e(k) = yr(k) – y(k) through time. It is assumed that the

model in Eqn. (11.130) is unknown; the only available qualitative a priori knowledge about the plant is

a rough estimate of the order of the plant.

A neural network is trained to emulate the inverse dynamics of the plant. Assume that at instant k + 1,

the current output y(k + 1), the P – 1 previous values of y, and P previous values of u are all stored in

memory. Then the P pairs (xT(k – i), u(k – i)); i = 0, 1, ..., P – 1, xT(k) = [y(k + 1), y(k)], can be used as

patterns for training the NN at time k + 1. A train of pulses is applied to the plant and the corresponding

input/output pairs are recorded. The NN is then trained with reasonably large sets of data, chosen from

the experimentally obtained data bank, in order to span a considerable region of the control space (We

will use input/output patterns generated by simulation of the plant model for training the NN).

 Intelligent Control with Neural Networks/Support Vector Machines 763

A controller topology is presented in Fig. 11.35. It is assumed that the complete reference trajectory yr(k)

is known in advance. The feedforward component of the control input is then composed by substituting all

system outputs by corresponding reference values. Refer to Appendix B for realization of the controller.

NN
inverse
model

PID
controller

Plant

+ +
+

–

Water
bath

z–1

uff ()k

yr(+ 1)k

ufb ()k

u k() y k(+ 1)

Dynamic
feedforward

Fig. 11.35

PROBLEMS

 11.1 It is believed that the output y of a plant is linearly related to the input u; that is,

ŷ w u w= +1 2

 (a) What are the values of w1 and w2 if the following measurements are obtained:

 u = 2, y = 5, u = –2, y = 1.

 (b) One more measurement is taken: u = 5,

y = 7. Find a least-squares estimate of

w1 and w2 using all the three measure-

ments.

 (c) Find the unique minimal sum of error

squares in this linear fit to the three

points.

 11.2 Consider the network in Fig. P11.2. An input

signal x comprising features and augmented

by a constant input component (bias) is

applied to the network with linear activation

function. The network gives the output ŷ .

 (a) Organize the weights as row vectors:

 wj
T

 = [wj1 wj2
...wjn wj0];

 j = 1, 2, …, q

 and write the equations (model) that this network represents.

1

.

.

.

.

.

.

x1

x2

xn

w11

w12

w1n

w10

y1

y2

yq

Fig. P11.2

764 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (b) The learning environment comprises a training set of P data pairs {x
(p), y(p); p = 1, 2, ..., P}

consisting of the input vector x and output vector y.

 Prove that the gradient descent learning rule for the network is

wj (k + 1) = wj (k) + hej (k) x

 where k is the iteration index, h is the learning rate parameter, and e y yj j j= - ˆ

 11.3 Consider the RBF network shown in Fig. 11.20. There are two sets of parameters governing the

mapping properties of this network: the weights wji; i = 1,2,...m; j = 1,2,...,q, in the output layer

and the center ci of the radial basis functions. The simplest form of RBF network training is with

fixed centers. In particular, they are commonly chosen, in a random manner, as a subset of the

input data set. A sufficient number of centres randomly selected from the input data set, would

distribute according to the probability density function of the training data, thus providing an

adequate sampling of the input space. Because the centers are fixed, the mapping performed

by the hidden layer is fixed as well. Derive gradient descent training algorithm to determine the

appropriate settings of the weights in the network output layer so that the performance of the

network mapping is optimized.

 11.4 It is desired to design a one-layer NN with one input x and one output ŷ that associates input

x(1) = –3 with the target output y(1) = 0.4, and input x(2) = 2 with the target output y(2) = 0.8.

Determine the parameters w and w0 of the network

 ŷ = s (wx + w0)

 with unipolar sigmoidal (log-sigmoid) activation function, that minimize the error

 E = y y() () () ()1 1
2

2 2
2

-() + -()È
ÎÍ

˘
˚̇

 11.5 Streamline the notation in Chapter 11 for a three-layer NN. For instance, define Wh1 as weights of

Hidden layer 1 with m nodes; Wh2 as weights of Hidden layer 2 with p nodes; and V as weights of

output layer with q nodes.

 Input variables : xi; i = 1, ..., n

 Outputs of hidden layer 1 : z ; = 1, ..., m

 Outputs of hidden layer 2 : tr; r = 1, ..., p

 Outputs of output layer : ŷj; j = 1, ..., q

 Desired outputs : yj

 Learning constant : h

 Derive the backpropagation algorithm for the three-layer network, assuming the output layer has

linear activation and the two hidden layers have unipolar sigmoidal activations.

 11.6 Consider a four-input single-node perceptron with a bipolar sigmoidal function (tan-sigmoid)

s (a) =
2

1
1

+
-

-e a

 where ‘a’ is the activation value for the node.

 (a) Derive the weight update rule for {wi} for all i. The learn ing rate h = 0.1. Input variables:

xi; i = 1, 2, 3, 4. Desired output is y.

 (b) Use the rule in part (a) to update the perceptron weights incrementally for one epoch. The set

of input and desired output patterns is as follows:

ŷ ŷ

 Intelligent Control with Neural Networks/Support Vector Machines 765

 x
(1) = [1 –2 0 –1]T, y(1) = –1

 x
(2) = [0 1.5 –0.5 –1]T, y(2) = –1

 x
(3) = [–1 1 0.5 –1]T, y(3) = 1

 The initial weight vector is chosen as

w
T
0 = [1 –1 0 0.5]

 The perceptron does not possess bias term.

 (c) Use the training data and initial weights given in part (b) and update the perceptron weights

for one epoch in batch mode.

 11.7 We are given the two-layer backpropagation network shown in Fig. P11.7.

 (a) Derive the weight update rules for {n } and {w i} for all i and . Assume that activation

function for all the nodes is a unipolar sigmoid function

s (a) =
1

1+ -e a

 where ‘a’ represents the activation value for the node. The learning constant h = 0.1. The

desired output is y.

y

1

1

1

x1
w11

w12

w21

x2
w22

w10

w20

s ()◊

s ()◊

z1

n1

n2

z2

n0

s ()◊

S

S

S

Fig. P11.7

 (b) Use the equations derived in part (a) to update the weights in the network for one step with

input vector x = [1 0]T, desired output y = 1, and the initial weights:

 w10 = 1, w11 = 3, w12 = 4, w20 = –6, w21 = 6, w22 = 5

 n0 = –3.92, n1 = 2, and n2 = 4

 (c) As a check, compute the error with the same input for initial weights and updated weights

and verify that the error has de creased.

 11.8 We are given the two-layer backpropagation network in Fig. P11.8.

 Derive the weight update rules for {n } and {w } for all . Assume that activation function for all

the nodes is a bipolar sigmoid function

s (a) =
2

1
1

+
-

-e a

 where ‘a’ is the activation value for the node. The learning constant is h = 0.4. The desired output

is y.

766 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

y

1

1

1

1

s ()◊

s ()◊

s ()◊

s ()◊

w1

w2

wm

x

w10

w20

wm0

z1

z2

zm

nm

n2

n1

n0

S

S

S S

Fig. P11.8

 11.9 We are given the two-layer back propagation network shown in Fig.P11.9.

Fig. P11.9

 (a) Derive the weight update rules in incremental mode for {v } and {w i} for all i and ; the

iteration index is k. Assume that the activation function for all nodes in the hidden layer is

s (a) =
1

1+ -e a

 and the activation function for the node in the output layer is

s ()a =
e e

e e

a a

a a

-

+

-

-

 The learning constant h = 0.2. The desired output is y.

 (b) Use the equations derived in part (a) to update the weights in the network for one step with

input vector x = [0.5 –0.4]T, desired output y = 0.15, and the initial weights:

 w11 = 0.2, w12 = 0.1, w21 = 0.4, w22 = 0.6, w31 = 0.3, w32 = 0.5; v1 = 0.1, v2 = 0.2 and v3 = 0.1.

Fuzzy Logic and Neuro-Fuzzy Systems 767

12.1 INTRODUCTION

 In the previous chapter, we were mostly concerned with learning from experimental data (examples,

samples, measurements, patterns, or observations). Our emphasis was on the following machine learning

problem setting:

 There is some unknown dependency (mapping, function) y = f(x) between some high-dimensional input

vector x and a scalar output y (or vector output y). The only information available about the underlying

dependency is a training data set {x
(p), y(p); p = 1,2,…,P}. We employed neural networks to learn this

dependency. The number of neurons, their link structure, and the corresponding weights were the subjects

of learning procedure.

 It may be noted that depending upon the problem, the neural-network weights have different physical

meanings, and sometimes it is hard to find any physical meaning at all. Neural network learning is, thus,

a ‘block box’ design situation (Fig. 12.1a) in which the process is entirely unknown but there are known

examples {x
(p), y(p); p = 1,2,…,P}. The knowledge (information) is available only in the form of data

pairs; the neural network is required to be trained using this knowledge before the machine could be used

for prediction.

 A large amount of data can constitute a proportionally large amount of information. But this comes with

a level of uncertainty. As we come to know more, we also know how much we do not know, and our

awareness of the concept of complexity seems to increase. We tend to forego some precise data and allow

uncertainty to creep into our perception. This is when we start describing things in a slightly vague and

fuzzy manner.

 Consider, for example, a real-life situation in process industry. Control of large and complex processes

is facilitated by using distributed computer control systems (DCCS). Acquisition of process data, i.e.,

collection of instantaneous values of process variables, and status messages of plant control facilities

(valves, pumps, motors, etc.) needed for efficient direct digital control; processing of collected data;

plant hardware monitoring, system check and diagnosis; closed-loop control and logic control func-

tions; etc., are the routine tasks of DCCS. Enormous amount of data (constituting a proportionally large

amount of information) is, thus, generated. Closed-loop control design using machine learning paradigm

Chapter 12

Fuzzy Logic and
Neuro-Fuzzy Systems

768 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

based on the knowledge (information) embedded in the data, is feasible. This approach is, however, sel-

dom used in process industry.

 In a man–machine control system, an experienced process operator employs, consciously or

subconsciously, a set of IF-THEN rules to control a process. The operator estimates the important

process variables (such as error, rate of change of error) at discrete time instants, and based on this

information, s/he manipulates the control signal. The estimation of the process variables is not done in

numerical form; it is rather done in linguistic form. For example, s/he may categorize the variable ‘error’

into the following labels:

‘error is negative’

‘error is near zero’

‘error is positive’

Analogously, s/he defines the categories of ‘rate of change of error’ and ‘change of control’.

 The categories (linguistic labels) of the process variables are, in general, vague and qualitative.

Their purpose is to describe in a qualitative way control strategies based on human experience and

understanding. A commonly used way of expressing the knowledge (information) based on human

experience and understanding is through IF-THEN rules. A typical rule in this kind of knowledge base

will be of the form:

IF error is near zero AND rate of change of error is near zero THEN change of control is zero

Fig. 12.1 Neural networks and fuzzy logic models as examples of ‘black box’ ‘white box’, and
‘grey box’ modeling approaches [138]

Fuzzy Logic and Neuro-Fuzzy Systems 769

 Process operators have no difficulties with understanding and interpreting this kind of rules because

they have the background to hearing problems and solutions described like this. However, providing

a computer with the same level of understanding is a difficult task. How can we represent ‘expert

knowledge’ that uses vague and ambiguous terms, in a computer? Can it be done at all?

 In the label ‘near zero’, the word near seems to be comprehended effortlessly by the human brain, but

what of computing systems? What does near mean in the context of process control? The range –0.1 to

+0.1 or the range –1 to +1, or …? Is there a way we can make number crunching systems understand

this? If it is ascertained in a machine that any error less than or equal to | 1 | means near zero, and

anything outside this range is negative/positive, then does it mean that 1.001 is not ‘near zero’ while 1 is

‘near zero’? This is an exaggeration in the real world.

 The rule-base representing the expert knowledge can be significantly improved if we consider more

categories for process variables. For example, linguistic label ‘positive’ may be subdivided into positive

small, positive medium, and positive large. The increased granularity of the categories results in finer

formulated rules. There is, however, a trade-off between accuracy and complexity.

 Fuzzy logic deals with how we can capture the essence of human comprehension and embed it on the

system, allowing for a gradual transition from one category to another. This comprehension as per Lofti

Zadeh, the founder of the fuzzy logic concept, confers a higher machine intelligence level to computer

systems.

 In the previous chapter, our focus was on machine learning problem setting based on the knowledge

(information) available in the form of numerical data. Our focus in this chapter is on another machine

learning problem setting where language serves as a way of expressing imprecise knowledge, and

the tolerance for imprecision about the vague environment we live in. Most human knowledge is

imprecise, uncertain and usually expressed in linguistic terms. In addition, human ways of reasoning

are approximate, nonquantitative and linguistic in nature. Fuzzy logic is a tool for transforming such

linguistically expressed knowledge into workable algorithm called a fuzzy logic model. In its newest

incarnation, fuzzy logic is called ‘computing with words’.

 The point of departure in fuzzy logic is the existence of human solution. If there is no human solution,

there will be no knowledge to model and, consequently, no sense in applying fuzzy logic. However, the

existence of human solution is not sufficient. One must be able to articulate to structure the human solu-

tion in the language of fuzzy IF-THEN rules. Almost all structured human knowledge can be expressed

in the form of IF-THEN rules. The fuzzy logic modeling is thus a ‘white box’ design situation in which

the solution to the problem is known, that a, structured human knowledge (experience, expertise, heuris-

tics) about the process exists (Fig. 12.1b). Interpretability of the fuzzy logic model for decision making

is an important characteristic of this setting of machine learning problems.

Neural networks and fuzzy logic models are modeling tools. They perform in the same way after the

learning stage of neural networks or the embedding of human knowledge about some specific task in

fuzzy logic structure, is finished. Whether the more appropriate tool for solving a given problem is a

neural network or a fuzzy logic model, depends upon the availability of previous expert knowledge (in

linguistic form) about the system to be modeled and the amount of measured data. The less previous

expert knowledge exists, the more likely it is that a neural network approach will be used to attempt a

solution. The more knowledge available, the more suitable the problem will be for fuzzy logic modeling.

770 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Through integration of the techniques of fuzzy logic models and neural networks, we can reap the

benefits of both the fuzzy logic models and the neural networks. One such integrated system, a neuro-

fuzzy system, transforms the burden of designing fuzzy logic systems to the training and learning of

neural networks. That is, the neural networks provide learning abilities to the fuzzy logic systems.

Neuro-fuzzy systems are functionally fuzzy logic models; they only utilize learning ability of neural

networks to realize the key components of the fuzzy logic model. Integrated systems may also be formed

by incorporating fuzzy logic into the neural network models. In such an integration, called a fuzzy-

neural network, the numerical parameters (such as input-output data, weights, etc.) of a neural network

are fuzzified. Fuzzy-neural networks are fuzzified neural networks, and thus are functionally neural

networks.

 Instances involving some knowledge and some data correspond to ‘grey box’ design situation

(Fig. 12.1c) covered by the paradigm of neuro-fuzzy and fuzzy-neural models.

 Embedding existing structured human knowledge into fuzzy logic models and neuro-fuzzy models, will

be the subject of discussion in this chapter.

12.2

In a man–machine system, there arises the problem of processing information with the ‘vagueness’ that

is characteristic of man. We consider here a real-life situation in process control.

The basic structure of a feedback control system is shown in Fig. 12.2a. G represents the system to

be controlled (plant or process). The purpose of the controller D is to guarantee a desired response

of the output y. The process of keeping the output y close to the set-point (reference input) yr, despite

the presence of disturbances, fluctuations of the system parameters, and noisy measurements, is called

regulation. The law governing corrective action of the controller is called the control algo rithm. The

output of the controller is the control action u.

The general form of the control law (implemented using a digital computer) is

 u(k) = f(e(k), e(k – 1), ..., e(k – m), u(k – 1), ..., u(k – m)) (12.1)

providing a control action that describes the relationship bet ween the input and the output of the

controller. In Eqn. (12.1), e = yr – y represents the error between the desired set-point yr and the output

of the controlled system; parameter m defines the order of the controller; and f (◊) is, in general, a

nonlinear function. k is an index representing sampling instant; T is the sampling interval used for digital

implementation (Fig. 12.2b). To distinguish control law (12.1) from the control schemes based on fuzzy

logic/neural networks, we shall call this, conventional control law.

A common feature of conventional control is that the control algorithm is analytically described by

equations—algebraic, difference, differential, and so on. In general, the synthesis of such control

algorithms requires a formalized analytical descrip tion of the controlled system by a mathematical

model. The con cept of analyticity is one of the main paradigms of conventional control theory. We will

also refer to conventional control as model-based control.

When the underlying assumptions are satisfied, many of the model-based control techniques provide good

stability, robustness to model uncertainties and disturbances, and speed of response. However, there are

Fuzzy Logic and Neuro-Fuzzy Systems 771

many practical deficiencies of these control algorithms. It is, generally, difficult to accurately represent a

complex process by a mathematical model. If the process model has parameters whose values are partially

known, ambiguous or vague, the control algorithms that are based on such incomplete informa tion will not,

usually, give satisfactory results. The environment with which the process interacts may not be completely

predicta ble, and it is normally not possible for a model-based algorithm to accurately respond to a

condition that it did not anticipate. Skilled human operators are, however, controlling complex plants

quite successfully on the basis of their experience, without having quantitative models.

 Regulatory control objectives, typical of many industrial appli cations, are

 (1) to remove any significant errors in process output y(t) by appropriate adjustment of the controller

output u(k);

 (2) to prevent process output from exceeding some user-specified constraint yc, i.e., for all t, y(t)

should be less than or equal to yc; and

 (3) to produce smooth control action near the set-point, i.e., minor fluctuations in the process output

are not passed further to the controller.

A conventional PI controller uses an analytical expression of the following form to compute the control

action:

 u(t) = K ¢c e t
T

e d
I

() ()+
È

Î
Í

˘

˚
˙Ú

1
t t (12.2)

where K ¢c is the controller gain, and TI is integral or reset time.

When this expression is differentiated, we obtain

 u(t) = ¢K ec (t) +
K

T

c

I

¢
e(t)

e yu

–

D G

Controller

+yr

Plant

(a) Basic structure of a feedback control system

(b) Basic structure of a digital control system

Fig. 12.2

772 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The discrete-time version of this equation may be written as

u k u k

T

() ()- -1
 = K ¢c

e k e k

T

K e k

T

c

I

() () ()- -È

ÎÍ
˘

˚̇
+

¢1

or Du(k) = Kcv(k) + KI e(k) (12.3)

where

 Du(k) = incremental change in control variable = u(k) – u(k – 1);

 e(k) = error variable = yr – y(k); and

 v(k) = time rate of change of error1 =
e k e k

T

() ()- -1
.

The control objectives, listed earlier, would require variable gains when the process output is in different

regions around the set-point. Figure 12.3 illustrates the type of control action de sired; Du should be ‘near

zero’ in the set-point region, very large in the constraint region, and normal in between.

Set-point
region

Smooth u

Normal
region

Time

Constraint
region

yc

yr

u

u uÆ max

Fig. 12.3

A simple PI controller is inherently incapable of achieving all of the above control objectives, and has to

be implemented with addition al (nonlinear) control laws for set-point and constraint regions, making the

control scheme a complex adaptive control scheme which would allow the desired gain modification when

required.

On the other hand, an experienced process operator can easily meet all the three control objectives. An

expert operator employs, consciously or subconsciously, a set of IF-THEN rules to control a process

 1 A PD controller in position form is

u(k) = Kce(k) + KDv(k)

 We see that PD controller in position form is structurally related to PI controller in incremental form.

Fuzzy Logic and Neuro-Fuzzy Systems 773

(Fig. 12.4). He estimates the error e(k) and time rate of change of error v(k) at a specific time instant,

and based on this information he changes the control by Du(k).

 A typical production rule of the rule-base in Fig. 12.4 is of the form:

 IF (process state) THEN (control action) (12.4)

instead of an analytical expression defining

the control variable as a function of process

state. The ‘process state' part of the rule is

called the rule premise (or antecedent), and

contains a description of the process state at

the kth sampling instant. This description is

done in terms of particular values of error

e(k), velocity (time rate of change of error)

v(k), and the constraint. The ‘control action’, part of the rule is called the conclusion (or consequent), and

contains a description of the control variable which should be produced given the particular process state

in the rule antecedent. This description is in terms of the value of the change-in-control, Du(k).

Negative values of e(k) mean that the current process output y(k) has a value above the set-point yr, since

e(k) = yr – y(k) < 0. The magnitude of a negative value describes the magnitude of the difference yr – y.

On the other hand, positive values of e(k) express the knowledge that the current value of the process

output y(k) is below the set-point yr. The magnitude of such a positive value is the magnitude of the

difference yr – y.

Negative values of v(k) mean that the current process output y(k) has increased compared with its previous

value y(k – 1), since v(k) = – (y(k) – y(k – 1))/T < 0. The magnitude of such a negative value describes

the magnitude of this increase. Positive values of v(k) express the knowledge that y(k) has decreased its

value when compared to y(k – 1). The magnitude of such a value is the magni tude of the decrease.

Positive values of Du(k) mean that the value of the control u(k – 1), has to be increased to obtain the value

of the control for the current sampling time k. A value with a negative sign means a decrease in the value

of u(k – 1). The magnitude of such a value is the magnitude of increase/decrease in the value u(k – 1).

The possible combinations of positive/negative values of e(k) and v(k) are as follows:

 (1) positive e, negative v

 (2) negative e, positive v

 (3) negative e, negative v

 (4) positive e, positive v

The combination (positive e(k), negative v(k)) implies that y < yr, since e(k) = yr – y(k) > 0; and

 y > 0, since v(k) = – (y(k) – y(k – 1))/T < 0. This means that the current process output y(k) is below the

set-point and the controller is driving the system upward, as shown by point D in Fig. 12.5. Thus, the

current process output is approaching the set-point from below. The combination (negative e(k), positive

v(k)) implies that y > yr, and y < 0. This means that the current process output is above the set-point

and the controller is driving the system downward, as shown by point B in Fig. 12.5. Thus the current

process output is approaching the set-point from above. The combination (nega tive e(k), negative v(k))

implies that y > yr and y > 0. This means that the current process output y(k) is above the set-point and

the controller is driving the system upward, as shown by point C in Fig. 12.5. Thus the process output

Fig. 12.4

774 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

is moving further away from the set-point and approaching overshoot. The combina tion (positive e(k),

positive v(k)) implies that y < yr and y < 0. This means that the current process output is below the

set-point and the controller is driving the system downward, as shown by point A in Fig. 12.5. Thus the

process output is moving further away from the set-point and approaching undershoot.

0.5

0

A

B

C

D

1.5

2

k5 10 15 20 25 30 35 40

yr

y k()

Fig. 12.5

In a man–machine control system of the type shown in Fig. 12.4, experience-based knowledge of the

process operator and/or control engineer is instrumental in changing the control by Du(k), for a given

estimate of error e(k) and time rate of change of error v(k).

 (i) If both e(k) and v(k) (positive or negative) are small (or zero), it means that the current value of the

process output variable y(k) has deviated from the set-point but is still close to it. The amount of

change Du(k) in the previous control u(k – 1) should also be small (or zero) in magnitude, which

is intended to correct small deviations from the set-point.

 (ii) Consider the situation when e(k) has large negative value (which implies that y(k) is significantly

above the set-point). If v(k) is positive at the same time, this means that y is moving towards the

set-point. The amount of change Du to be introduced is intended to either speed up or slow down

the approach to the set-point. For example, if y(k) is much above the set-point (e(k) has a large

negative value) and it is moving towards the set-point with a small step (v(k) has small positive

value), then the magnitude of this step has to be significantly increased (Du(k) Æ large negative

value).

 (iii) e(k) has either a small value (positive, negative, zero) or a large positive value, which implies that

y(k) is either close to the set-point or significantly below it. If v(k) is positive at the same time,

this means that y is moving away from the set-point. Then, a positive change Du(k) in the previous

control u(k – 1) is required to reverse this trend and make y start moving towards it, instead of

moving away from the set-point.

 (iv) Consider a situation when e(k) has large positive value (which implies that y(k) is significantly

below the set-point) and v(k) is negative (which implies that y is moving towards the set-point).

Fuzzy Logic and Neuro-Fuzzy Systems 775

The amount of change Du to be introduced is intended to either speed up, or slow down, the

approach to the set-point. For example, if y(k) is much below the set-point (e(k) has large positive

value), and it is moving towards the set-point with somewhat large step (v(k) has large negative

value), then the magnitude of this step need not be changed (Du(k) Æ 0), or only slightly enlarged

(Du(k) Æ small positive value).

 (v) e(k) has either a small value (positive, negative, zero) or a large negative value, and this implies

that y(k) is either close to the set-point or significantly above it. If v(k) is negative at the same

time, y is moving away from the set-point. Thus, a negative change Du(k) in the previous control

u(k – 1) is required to reverse this trend and make y start moving towards it instead of moving

away from the set-point.

The variables e, v and Du are described as consisting of a finite number of verbally expressed values

which these variables can take. Values are expressed as tuples of the form {value sign, value magnitude}.

The ‘value sign’ component of such a tuple takes on either one of the two values: positive or negative.

The ‘value magnitude’ component can take on any number of magnitudes, e.g., {zero, small, medium,

big}, or {zero, small, big}, or {zero, very small, small, medium, big, very big}, etc.

The tuples of values may, therefore, look like: Negative Big (NB), Negative Medium (NM), Negative

Small (NS), Zero (ZO), Positive Small (PS), Positive Medium (PM), Positive Big (PB) or an enhanced

set/subset of these values.

We consider here a simple rule-based controller which employs only three values of the variables e, v,

and Du: Negative (N), Near Zero (NZ), Positive (P), for e and v; and Negative (N), Zero (Z), Positive (P)

for Du. A typical production rule of the rule-base in Fig. 12.4 is

 IF e(k) is Positive and v(k) is Positive THEN Du(k) is Positive (12.5)

Let us see now what such a rule actually means. A positive e(k) implies that y(k) is below the set-point.

If v(k) is positive at the same time, it means that y(k) is moving away from the set-point. Thus, a positive

change Du(k) in the previous control u(k – 1) is required to reverse this trend.

Consider another rule:

 IF e(k) is Positive and v(k) is Negative THEN Du(k) is Zero (12.6)

This rule says that if y(k) is below the set-point, and is moving towards the set-point, then, no change in

control is required.

We will present the rule-base in table format,

shown in Fig. 12.6. The cell defined by the

intersection of the third row and third column

represents the rule given in (12.5), and the cell

defined by the inter-section of the third row and

first column represents the rule given in (12.6).

 The rule-base shown in Fig. 12.6 is designed to remove any sig nificant errors in process output by

appropriate adjustment of the controller output. Note that the rule

 IF e(k) is Near Zero and v(k) is Near Zero THEN Du(k) is Zero (12.7)

ensures smooth action near the set-point, i.e., minor fluctua tions in the process output are not passed

further to the con troller.

Fig. 12.6

776 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The rule-base of Fig. 12.6 is thus effective for control action in the set-point region and the normal region

in Fig. 12.3. However, we require additional rules for the constraint region. The following three rules

prescribe a control action when the error is in the constraint region, approaching it or leaving it.

 (i) IF e(k) is in constraint region THEN value of Du(k) is drastic change.

 This rule specifies the magnitude of additional DU(k) to be added to the one already determined

by the rules of Fig. 12.6 when e(k) is in the constraint region.

 (ii) IF e(k) enters constraint region, THEN start summing up the values of Du(k) determined by

constraint Rule 1.

 (iii) IF e(k) leaves constraint region, THEN subtract the total value of Du(k) determined by constraint

Rule 2.

The man–machine control system of Fig. 12.4 has the capability of representing and manipulating data

that is not precise, but rather fuzzy. The error variable is ‘near zero’, change in con trol is ‘drastic’, etc.,—

are the type of linguistic information which the expert controller is required to handle. But what is a

‘drastic change’ in control? The property ‘drastic’ is inherently vague, meaning that the set of signals it

is applied to, has no sharp boundaries between ‘drastic’ and ‘not drastic’. The fuzzi ness of a property lies

in the lack of well-defined boundaries of the set of objects to which the property applies.

Problems featuring uncertainty and ambiguity have been success fully addressed subconsciously by

humans. Humans can adapt to unfamiliar situations and they are able to gather information in an efficient

manner, and discard irrelevant details. The informa tion gathered need not be complete and precise and

could be general, qualitative and vague because humans can reason, infer and deduce new information

and knowledge. They can learn, per ceive and improve their skills through experience.

How can humans reason about complex systems, when the complete description of such a system often

requires more detailed data than a human could ever hope to recognize simultaneously, and assimilate

with understanding? The answer is that humans have the capacity to reason approximately. In reasoning

about a complex system, humans reason approximately about its behavior, thereby maintaining only a

generic understanding about the problem.

The seminal work by Dr. Lotfi Zadeh (1965) on system analysis based on the theory of fuzzy sets,

has provided a mathematical strength to capture the uncertainties associated with human cognitive

processes, such as thinking and reasoning. The conven tional approaches to knowledge representation,

lack the means for representing the meaning of fuzzy concepts. As a consequence, the approaches based

on classical logic and probability theory, do not provide an appropriate conceptual framework for dealing

with the representation of commonsense knowledge, since such knowledge is by its nature, both, lexically

imprecise and non-categorical. The development of fuzzy logic was motivated, in large measure, by the

need for a conceptual framework which can address the issue of uncer tainty and lexical imprecision.

Fuzzy logic provides an inference morphology, that enables approximate human reasoning capabilities

to be applied to knowledge-based systems.

Since the publication of Zadeh’s seminal work Fuzzy Sets in 1965, the subject has been the focus of

many independent research investigations by mathematicians, scientists and engineers from around the

world. Fuzzy logic has rapidly become one of the most successful of technologies today, for developing

sophisticated control systems. With its aid, complex requirements may be imple mented in amazingly

simple, easily maintained and inexpensive controllers. Of course, fuzzy logic is not the best approach

Fuzzy Logic and Neuro-Fuzzy Systems 777

for every control problem. As designers look at its power and expres siveness, they must decide where

to apply it.

The criteria, in order of relevance, as to when and where to apply fuzzy logic are as follows:

 Human (structured) knowledge is available.

 A mathematical model is unknown or impossible.

 The process is substantially nonlinear.

 There is lack of precise sensor information.

 It is applied at the higher levels of hierarchical control systems.

 It is applied in generic decision-making problems

Possible difficulties in applying fuzzy logic, arise from the following:

 Knowledge is subjective.

 For high-dimensional inputs, the increase in the required number of rules is exponential.

 Knowledge must be structured, but experts bounce between a few extreme poles: they have trouble

structuring the knowledge; they are too aware of their ‘expertise’; they tend to hide knowledge;

and there may be some other subjective factors working against the whole process of human

knowledge transfer.

Note that the basic premise of fuzzy logic is that a human solution is good. When applied, for example,

in control systems, this premise means that a human being is a good controller. Today, after several

thousands successful applications, there is more or less convergence on trustworthiness of this premise.

The word ‘fuzzy’ may sound to mean intrinsically imprecise, but there is nothing ‘fuzzy’ about fuzzy

logic. It is firmly based on multivalued logic theory and does not violate any well-proven laws of logic.

Also fuzzy logic systems can produce answers to any required degree of accuracy. This means that

these models can be very precise if needed (There is a trade-off between precision and cost). However,

they are aimed at handling imprecise and approximate concepts that cannot be processed by any other

known modeling tool. In this sense, fuzzy logic models are invaluable supplements to classical hard

computing techniques. For example in a hierarchical control system, classical control at the lowest level,

supplemented by fuzzy logic control at higher levels provides good hybrid solution in many situations.

Our focus in this chapter is on the essential ideas and tools necessary for the construction of the fuzzy

knowledge-based models, that have been successful in the development of intelli gent controllers.

Fuzzy control and modeling use only a small portion of the fuzzy mathematics that is available; this

portion is also mathematically quite simple and conceptually, easy to understand. This chapter begins

with an introduction to some essential con cepts, terminology, notations and arithmetic of fuzzy sets and

fuzzy logic. We include only a minimum, though adequate, amount of fuzzy mathematics necessary

for understanding fuzzy control and modeling. To facilitate easy reading, this background material is

presented in a rather informal manner, with simple and clear notation as well as explanation. Whenever

possible, excessively rigorous mathematics is avoided. This material is intended to serve as an introductory

foundation for the reader to understand not only the fuzzy controllers presented later in this chapter but

also others in the literature. We recommend references [137, 138, 142–145] for further reading on fuzzy

set theory.

778 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

12.3

Up to this point we have only quantified, in an abstract way, the knowledge that the human expert has

about how to control the plant. Next, we will show how to use fuzzy logic to fully quantify the meaning

of linguistic descriptions so that we may automate in the fuzzy controller, the control rules specified by

the expert.

12.3.1

Knowledge is structured information and knowledge acquisition is done through learning and experience,

which are forms of high-level processing of information. Knowledge representation and processing are

the keys to any intelligent system. In logic, knowledge is represented by propositions and is processed

through reasoning, by the application of various laws of logic, including an appropriate rule of inference.

Fuzzy logic focuses on linguistic variables in natural language, and aims to provide foundations for

approximate reasoning with imprecise propositions.

In classical logic, a proposition is either TRUE, denoted by 1, or FALSE, denoted by 0. Consider the

following proposition p:

‘Team member is female’

Let X be a collection of 10 people: x1, x2, ..., x10, who form a project team. The entire object of discussion

is

X = {x1, x2, ..., x10}

In general, the entire object of discussion is called a ‘universe of discourse’, and each constituent member

x is called an ‘ele ment’ of the universe (the fact that x is an element of X, is written as x Œ X).

If x1, x2, x3 and x4 are female members in the project team, then the proposition p on the universe of

discourse X is equally well represented by the crisp (nonfuzzy) set A defined below.

A = {x1, x2, x3, x4}

The fact that A is a subset of X is denoted as A Ã X.

The proposition can also be expressed by a mapping mA from X into the binary space {0, 1}.

mA : X Æ {0, 1}

such that

mA =
0

1

5 6 7 8 9 10

1 2 3 4

; , , , , ,

; , , ,

x x x x x x x

x x x x x

=

=

Ï
Ì
Ó

That is to say, the value mA(x) = 1 when the element x satisfies the attributes of set A; 0 when it does not.

mA is called the characteristic function of A.

Next, supposing that, within X, only x1 and x2 are below age 20; we may call them ‘minors’. Then

B = {x1, x2}

Fuzzy Logic and Neuro-Fuzzy Systems 779

consists of minor team members. In this case

mB(x) =
1

0

1 2; ,

;

x x x=Ï
Ì
Ó otherwise

B is obviously a subset of A; we write B Ã A.

We have considered the ‘set of females A’, and the ‘set of minors B’ in X. Is it also possible to consider

a ‘set of young females C’? If, for convenience, we consider the attribute ‘young’ to be same as ‘minor’,

then C = B; but, in this case, we have created a sharp boundary, under which x2 who is 19 is still young

(mC(x2) = 1), but x3 who just turned 20 today is no longer young (mC (x3) = 0). In just one day, the value

changed from yes (1) to no (0), and x3 is now an old maid.

However, is it not possible that a young woman becomes an old maid over a period of 10 to 15 years, so

that we ought to be patient with her? Prof. Zadeh admitted values such as 0.8 and 0.9 that are intermediate

between 0 and 1, thus creating the concept of a ‘fuzzy set’. Whereas a crisp set is defined by the charac-

teristic function that can assume only the two values {0, 1}, a fuzzy set is defined by a ‘membership

function’ that can assume an infinite number of values; any real number in the closed interval [0, 1].

With this definition, the concept of ‘young women’ in X can be expressed flexibly in terms of membership

function (Fuzzy sets are denoted in this book by a set symbol with a tilde under strike).

mC
~

: X Æ [0, 1]

such that

mC
~
 =

1

0 9

0 2

0

1 2

3

4

; ,

. ;

. ;

;

x x x

x x

x x

=
=
=

Ï

Ì
Ô
Ô

Ó
Ô
Ô otherwise

The significance of such terms as ‘patient’ and ‘flexibly’ in the above description may be explained

as follows. For example, we have taken mC
~

(x3) = 0.9, but suppose that x3 objects that ‘you are being

unfair; I really ought to be a 1 but if you insist we can compromise on 0.95’. There is a good amount of

subjectivity in the choice of membership values. A great deal of research is being done on the question

of assignment of membership values. However, even with this restriction, it has become possible to deal

with many problems that could not be handled with only crisp sets.

Since [0, 1] incorporates {0, 1}, the concept of fuzzy set can be considered as an extended concept,

which incorporates the concept of crisp set. For example, the crisp set B of ‘minors’ can be regarded as

a fuzzy set B~ with the membership function:

mB~
(x) =

1

0

1 2; ,

;

x x x=Ï
Ì
Ó otherwise

Example 12.1

One of the most commonly used examples of a fuzzy set is the set of tall people. In this case, the universe of

discourse is poten tial heights (the real line), say, from 3 feet to 9 feet. If the set of tall people is given the

780 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

well-defined boundary of a crisp set, we might say all people taller than 6 feet are officially considered

tall. The characteristic function of the set A = {tall men} then, is

mA(x) =
1

6

for 6

0 for 3

£
£ <

Ï
Ì
Ó

x

x

Such a condition is expressed by a Venn diagram shown in Fig. 12.7a, and a characteristic function

shown in Fig. 12.8a.

Universe
X

Crisp
boundary

b

a

A
mA() = 1x

mA() = 0x

(a) The crisp set and the universe of discourseA

Universe
X

A
mA() = 1x

mA() = 0x
Fuzzy

boundary

(b) The fuzzy set and the universe of discourseA

Fig. 12.7

mA

b a

x

1

0 6 9
(a) Characteristic function of crisp set A

mA

(b) Membership function of fuzzy set A

x9630

0.3

0.9
1

Fig. 12.8

For our example of universe X of heights of people, the crisp set A of all people with x ≥ 6 has a sharp

boundary: individual, ‘a’ corresponding to x = 6 is a member of the crisp set A, and indi vidual ‘b’

corresponding to x = 5.9 is unambiguously not a member of set A. Is it not an absurd statement for the

situation under consideration? A 0.1" reduction in the height of a person has changed mA from 1 to 0, and

the person is no more tall.

It may make sense to consider the crisp set of all real numbers greater than 6 because the numbers belong

to an abstract plane, but when we want to talk about real people, it is unreasonable to call one person

Fuzzy Logic and Neuro-Fuzzy Systems 781

short and another one tall, when they differ in height by the width of a hair. But if this kind of distinction

is unworka ble, then what is the right way to define the set of all people? Much as with our example of

‘set of young females’, the word ‘tall’ would correspond to a curve that defines the degree to which any

person is tall. Figure 12.8b shows a possible member ship function of this fuzzy set A~; the curve defines

the transi tion from not tall to tall. Two people with membership values 0.9 and 0.3 are tall to some

degree, but one significantly less than the other.

Note that there is inherent subjectivity in fuzzy set descrip tion. Figure 12.9 shows a smoothly varying

curve (S-shaped) for transition from not tall to tall. Compared to Fig. 12.8b, the membership values are

lower for heights close to 3¢ and are higher for heights close to 6¢. This looks more reasonable; however,

the price paid is in terms of a more complex function, which is more difficult to handle.

1

0
3 6 9

x

mA

Fig. 12.9 A
~

Figure 12.7b shows the representation of a fuzzy set by a Venn diagram. In the central (unshaded) region

of the fuzzy set, mA~
(x) = 1. Outside the boundary region of fuzzy set, mA~

(x) = 0. On the boundary region,

mA~
(x) assumes an intermediate value in the interval (0, 1). Presumably, the membership value of an x in

fuzzy set, A~, approaches a value of 1 as it moves closer to the central (unshaded) region; it approaches a

value of 0 as it moves closer to leaving the boundary region of A~.

Thus, so far we have discussed the representation of knowledge in logic. We have seen that the concept

of fuzzy sets makes it possible to describe vague information (knowledge). But descrip tion alone will not

lead to the development of any useful pro ducts. Indeed, a good deal of time passed after fuzzy sets were

first proposed, until they were applied at the industrial level. Howe ver, eventually it became possible to

apply them in the form of ‘fuzzy inference’, and fuzzy logic theory has now become legit imized as one

component of applied high technology.

In fuzzy logic theory, nothing is done at random or haphazardly. Information containing a certain amount

of vagueness is expressed as faithfully as possible, without the distortion produced by forcing it into a

‘crisp’ mould, and it is then processed by applying an appropriate rule of inference.

‘Approximate reasoning’ is the best known form of fuzzy logic processing and covers a variety of

inference rules.

Fuzziness is often confused with probability. The fundamental difference between them is that fuzziness

deals with determinis tic plausibility, while probability concerns the likelihood of nondeterministic

(stochastic) events. Fuzziness is one aspect of uncertainty. It is the ambiguity (vagueness) found in the

defini tion of a concept, or the meaning of a term. However, the uncer tainty of probability generally

782 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

relates to the occurrence of phenomena, not the vagueness of phenomena. For example, ‘There is a

50–50 chance that he will be there’ has the uncertainty of randomness. ‘He is a young man’, has the

uncertainty in definition of ‘young man’. Thus, fuzziness describes the ambiguity of an event, whereas

randomness describes the uncertainty in the occurrence of an event.

We can now give a formal definition to fuzzy sets.

12.3.2

A universe of discourse, X, is a collection of objects all having the same characteristics. The individual

elements in the universe X will be denoted as x.

A universe of discourse and a membership function that spans the universe, completely define a fuzzy

set. Consider a universe of discourse X with x representing its generic element. A fuzzy set A~ in X has

the membership function mA~
(x) which maps the elements of the universe onto numerical values in the

interval [0, 1]:

 mA~
(x) : X Æ [0, 1] (12.8a)

Every element x in X has a membership function mA~
(x) Œ [0, 1]. A~ is then defined by the set of ordered

pairs:

 A~ = {(, ()) | , () [,]}
~ ~

x x x X xA Am mŒ Œ 0 1 (12.8b)

A membership value of zero implies that the corresponding element is definitely not an element of the

fuzzy set A~. A membership function of unity means that the corresponding element is defi nitely an

element of fuzzy set A~. A grade of membership greater than zero, and less than unity, corresponds to a

noncrisp (or fuzzy) membership of the fuzzy set A~
. Classical sets can be consid ered as special case of

fuzzy sets with all membership grades equal to unity.

A fuzzy set A~ is formally given by its membership function mA~
(x). We will identify any fuzzy set with

its membership function, and use these two terms interchangeably.

Membership functions characterize the fuzziness in a fuzzy set. However, the shape of the membership

functions, used to describe the fuzziness, has very few restrictions indeed. It might be claimed that the

rules used to describe fuzziness are also fuzzy. Just as there are an infinite number of ways to characterize

fuzziness, there are an infinite number of ways to graphically depict the membership functions that

describe fuzziness. Although the selection of membership functions is subjective, it cannot be arbitrary;

it should be plausible.

To avoid unjustified complications, mA~
(x) is usually constructed without a high degree of precision. It

is advantageous to deal with membership functions involving a small number of parame ters. Indeed,

one of the key issues in the theory and practice of fuzzy sets is how to define the proper membership

functions. Primary approaches include (1) asking the control expert to define them; (2) using data from

the system to be controlled, to generate them; and (3) making them in a trial-and-error manner. In more

than 25 years of practice, it has been found that the third approach, though ad hoc, works effectively and

efficiently in many real-world applications.

Numerous applications in control have shown that only four types of membership functions are needed

in most circumstances: trape zoidal, triangular (a special case of trapezoidal), Gaussian, and bell-shaped.

Fuzzy Logic and Neuro-Fuzzy Systems 783

Figure 12.10 shows an example of each type. Among the four, the first two are more widely used. All

these fuzzy sets are continuous, normal and convex.

A fuzzy set is said to be continuous if its membership function is continuous.

A fuzzy set is said to be normal if its height is one (The largest membership value of a fuzzy set is called

the height of the fuzzy set).

The convexity property of fuzzy sets is viewed as a generaliza tion of the classical concept of crisp sets.

Consider the uni verse X to be a set of real numbers ¬. A subset A of ¬ is said to be convex if, and only

if, for all x1, x2 Œ A and for every real number l satisfying 0 £ l £ 1, we have

 lx1 + (1 – l)x2 Œ A (12.9)

1 1

0 0x x

0 0x x

1 1

(a)

(c)

(b)

(d)

m()x

m()x m()x

m()x

Fig. 12.10

It can easily be established that any set defined by a single interval of real numbers is convex; any set

defined by more than one interval, that does not contain some points between the intervals, is not convex.

An alpha-cut of a fuzzy set A~ is a crisp set Aa that contains all the elements of the universal set X that

have a membership grade in A~ greater than or equal to a (refer to Fig. 12.11). The convexity property

of fuzzy sets is viewed as a generalization of the classical concept of convexity of crisp sets. In order to

make the generalized convexity consistent with the classical defini tion of convexity, it is required that

a-cuts of a convex fuzzy set be convex for all a Œ (0, 1] in the classical sense (0-cut is excluded here since

it is always equal to ¬ in this sense and thus includes – to +). Figure 12.11a shows a fuzzy set that

is convex. Two of the a-cuts shown in this figure are clearly convex in the classical sense, and it is easy

to see that any other a-cuts for a > 0 are convex as well. Figure 12.11b illustrates a fuzzy set that is not

convex. The lack of convexity of this fuzzy set can be demonstrated by identifying some of its a-cuts

(a > 0) that are not convex.

784 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The support of a fuzzy set A~ is the crisp set of all xŒX such that mA~
(x) > 0. That is

 supp ()~A = { | () }
~

x X xAŒ m > 0 (12.10)

The element x Œ X at which mA~
(x) = 0.5, is called the crosspoint.

A fuzzy set A~ whose support is a single point in X with mA~
(x) = 1, is referred to as a fuzzy singleton.

Example 12.2

Consider the fuzzy set described by membership function depicted in Fig. 12.12, where the universe

of discourse is

 X = [32ºF, 104ºF]

This fuzzy set A~ is linguistic ‘warm’,

with membership function

mA~
(x) =

0 64

64 6 64 70

1 70 74

78 4 74 78

0

;

() / ;

;

()/ ;

;

x

x x

x

x x

x

< ∞
- ∞ ∞ £ < ∞

∞ < £ ∞
∞ - < £ ∞

>> ∞

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô 78

The support of A~ is the crisp set

x x| 64 78∞ < < ∞{ }

Example 12.3

Consider a natural language form expression:

‘Speed sensor output is very large’

Fig. 12.11

1

x

mA

64° 70° 74° 78° 104°32°F

Fig. 12.12

Fuzzy Logic and Neuro-Fuzzy Systems 785

 The formal, symbolic translation of this natural language expres sion, in terms of linguistic variables,

proceeds as follows:

 (i) An abbreviation ‘Speed’ may be chosen to denote the physical variable ‘Speed sensor output’.

 (ii) An abbreviation ‘XFast’ (i.e., extra fast) may be chosen to denote the particular value ‘very large’ of

speed.

 (iii) The above natural language expression is rewritten as ‘Speed is XFast’.

 Such an expression is an atomic fuzzy proposition. The ‘meaning’ of the atomic proposition is

then defined by a fuzzy set XFast
~

, or a membership function mXFast
~

(x), defined on the physical domain

X = [0 mph, 100 mph] of the physical variable ‘Speed’.

Many atomic propositions may be associated with a linguistic variable, e.g.,

 ‘Speed is Fast’

 ‘Speed is Moderate’

 ‘Speed is Slow’

 ‘Speed is XSlow’

Thus, the set of linguistic values that the linguistic variable ‘Speed’ may take is

{XFast, Fast, Moderate, Slow, XSlow}

These linguistic values are called terms of the linguistic varia ble. Each term is defined by an appropriate

membership function.

It is usual in approximate reasoning to have the following frame associated with the notion of a linguistic

variable:

 A A X A~ ~
, , ,

~~
L Lm (12.11)

where A~ denotes the symbolic name of a linguistic variable, e.g., speed, temperature, level, error, change-

of-error, etc. LA
~

 is the set of linguistic values that A~ can take, i.e., LA
~

 is the term set of A~
. X is the

actual physical domain over which linguistic variable A~ takes its quantitative (crisp) values, and mLA
~

 is a

membership function which gives a meaning to the linguistic value in terms of the quantitative elements

of X.

Example 12.4

Consider speed, interpreted as a linguistic variable with X = [0mph, 100mph]; i.e., x = ‘speed’. Its term

set could be

{Slow, Moderate, Fast}

 Slow
~

 = the fuzzy set for ‘a speed below about 40 miles per hour (mph)’, with membership function

mSlow~

 Moderate
~

 = the fuzzy set for ‘a speed close to 55 mph’, with membership function mModerate
~

.

 Fast
~

 = the fuzzy set for ‘a speed above about 70 mph’, with member ship function mFast~
.

786 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The frame of speed is

Speed Speed X Speed~ ~
, , ,

~
L Lm

where

 LSpeed
~

 = { , , }
~

Slow Moderate Fast
~ ~

 X = [0, 100] mph

m m mSlow Moderate Fast
~ ~ ~

, , are given in Fig. 12.13.

The frame of speed helps us to decide the degree to which an atomic proposition associated with ‘speed’

is satisfied, given a specific physical value of speed. For example, for crisp input

 Speed = 50 mph

 mSlow
~

(50) = 1/3

 mModerate
~

(50) = 2/3

 mFast
~

(50) = 0

Therefore, the proposition ‘Speed is Slow’ is

satisfied to a degree of 1/3, the proposition

‘Speed is Moderate’ is satisfied to a degree of

2/3, and the proposition ‘Speed is Fast’ is not

satisfied.

An extension of ordinary fuzzy sets is to allow the membership values to be a fuzzy set—instead of a

crisply defined degree. A fuzzy set whose membership function is itself a fuzzy set, is called a Type-2

fuzzy set [143]. A Type-1 fuzzy set is an ordinary fuzzy set. We will limit our discussion to Type-1 fuzzy

sets. The reference to a fuzzy set in this chapter, implies a Type-1 fuzzy set.

12.3.3

There are a variety of fuzzy set theories which differ from one another by the set operations (complement,

intersection, union) they employ. The fuzzy complement, intersection and union are not unique

operations, contrary to their crisp counterparts; differ ent functions may be appropriate to represent these

operations in different contexts. That is, not only membership functions of fuzzy sets, but also operations

on fuzzy sets, are context-dependent. The capability to determine appropriate membership functions,

and meaningful fuzzy operations in the context of each particular application, is crucial for making fuzzy

set theory practically useful.

The intersection and union operations on fuzzy sets are often referred to as triangular norms (t-norms),

and triangular conorms (t-conorms; also called s-norms), respectively. The reader is advised to refer to

[143] for the axioms which t-norms, t-conorms, and the complements of fuzzy sets are required to satisfy.

Fig. 12.13

Fuzzy Logic and Neuro-Fuzzy Systems 787

In the following, we define standard fuzzy operations, which are generalizations of the corresponding

crisp set operations.

Consider the fuzzy sets A~ and B~
 in the universe X.

 A~ = {(, ()) | ; () [,]}
~ ~

x x x X xA Am mŒ Œ 0 1 (12.12)

 B~
 = {(, ()) | ; () [,]}

~ ~
x x x X xB Bm mŒ Œ 0 1 (12.13)

The operations with A~ and B~
 are introduced via operations on their membership functions mA~

(x) and

mB~
(x) correspondingly.

The standard complement, A
~

, of fuzzy set A~
 with respect to the universal set X , is defined for all x Œ X

by the equation

 m
A

x
~

() =D 1- " ŒmA x x X
~

() (12.14)

The standard operation, A B
~ ~

« is defined for all x Œ X by the equa tion

 mA B x
~ ~

()« =D min [(), ()]
~ ~

m mA Bx x ∫ mA x
~

() Ÿ mB x x X
~

() " Œ (12.15)

where Ÿ indicates the min operation.

The standard union, A B
~ ~

» , is defined for all x Œ X by the equation

 mA B x
~ ~

()» =D max [(), ()] () ()
~ ~ ~ ~

m m m mA B A Bx x x x∫ ⁄ " x ŒX (12.16)

where ⁄ indicates the max operation.

12.3.4

Consider two universes (crisp sets) X and Y. The Cartesian pro duct (or cross product) of two sets X and

Y (in this order) is the set of all ordered pairs, such that, the first element in each pair is a member of X,

and the second element is a member of Y. Formally,

 X ¥ Y = {(x, y); x Œ X, y Œ Y} (12.17)

where X ¥ Y denotes the Cartesian product.

A fuzzy relation on X ¥ Y, denoted by R
~

, or R
~

(X, Y) is defined as the set

 R~ = {((,), (,)) |(,) , (,) [,]}
~ ~

x y x y x y X Y x yR Rm mŒ ¥ Œ 0 1 (12.18)

where mR x y
~

(,) is a function in two variables, called membership function of the fuzzy relation. It gives

the degree of membership of the ordered pair (x, y) in R~, associating with each pair (x, y) in X ¥ Y, a real

number in the interval [0, 1]. The degree of membership indicates the degree to which x is in relation

with y. It is clear that a fuzzy relation is basically a fuzzy set.

788 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Example 12.5

Consider an example of fuzzy sets: the set of people with normal weight. In this case, the universe of

discourse appears to be all potential weights (the real line). However, the knowledge representation in

terms of this universe, is not useful. The normal weight of a person is a func tion of his/her height.

Body Mass Index (BMI) =
Weight kg

(Height, m)2

Normal BMI for males is 20–25, and for females is 19–24. Values between 25 to 27 in men and 24 to 27

in women indicate overweight; and those over 27 indicate obesity. Of course, values below 20 for men

and below 19 for women indicate underweight.

The universe of discourse for this fuzzy set is more appropriate ly the Cartesian product of two universal

sets: X, the set of all potential heights, and Y, the set of all potential weights. The Cartesian product space

X ¥ Y is a universal set which is a set of ordered pairs (x, y), for each x Œ X and each y Œ Y.

A subset of the Cartesian product X ¥ Y, satisfying the knowledge attribute ‘normal weight’ is a set of

(height, weight) pairs. This is called a relation R
~

. The membership value for each ele ment of R~ depends

on BMI. For men, a BMI of 27 and more could be given a membership value of 0, and a BMI of less

than 18 could also be given a membership value of 0; and membership value between 0 and 1 for BMI

between 18 and 27.

Example 12.6

Because fuzzy relations, in general, are fuzzy sets, we can define the Cartesian product to be a relation

between two or more fuzzy sets. Let A~ be a fuzzy set on universe X, and B~
 be a fuzzy set on universe

Y; then the Cartesian product between fuzzy sets A~
 and B~

 will result in a fuzzy relation R~, which is

contained within the full Cartesian product space, or

 A B
~ ~

¥ = R~ Ã X ¥ Y (12.19a)

where the fuzzy relation R~
 has membership function

 mR x y
~

(,) = mA B
~ ~

¥ (x, y) = min [(), ()]
~ ~

m mA Bx y "x Œ X, "y Œ Y (12.19b)

Note that the min combination applies here because each element (x, y), in the Cartesian product, is

formed by taking both elements x, y together, not just the one or the other.

As an example of the Cartesian product of fuzzy sets, we consider premise quantification. Atomic fuzzy

propositions do not, usually, make a knowledge base in real-life situations. Many propositions connected

by logical connectives may be needed. A set of such compound propositions, connected by IF-THEN

rules, makes a knowl edge base.

Consider two propositions defined by

p =D x is A~
q =D y is B~

where A~ and B~ are the fuzzy sets:

Fuzzy Logic and Neuro-Fuzzy Systems 789

 A~ = x x x XA, ()m

() Œ{ }
 B~ = y y y YB, ()m

() Œ{ }

The meaning of the linguistic terms ‘x is A~
’, and ‘y

is B~
’ is quantified via the membership functions

mA x
~

() and mB y
~

(), respec tively. Now, we seek to

quantify the linguistic premise ‘x is A~ and y is B~
’

of the rule:

 IF x is A~
 and y is B~

 THEN z is C
~

 (12.20a)

The main item to focus on is, how to quantify the

logical and operation that combines the mean-

ing of two linguistic terms. As said earlier, there

are actually several ways (t-norms) to define

this quantification. In the following, we use min

operation:

 m premise x y(,) = min [(), ()]
~ ~

m mA Bx y "x Œ X, "y Œ Y (12.20b)

Does this quantification make sense? Notice that this way of quantifying the and operation in the premise,

indicates that you can be no more certain about the conjunction of two statements, than you are about the

individual terms that make them up.

The conjunction operator (logical connective and), implemented as Cartesian product, is described in

Fig. 12.14.

 m premise x y(,) = mA B
~ ~

¥ (x, y) = min [(), ()]
~ ~

m mA Bx y " Œ " Œx X y Y, (12.20c)

Example 12.7

We consider here quantification of ‘implication’ operator via fuzzy logic. Consider the implication

statement

IF pressure is high THEN volume is small

The membership function of the fuzzy set A~ = ‘big pressure’,

 mA x
~

() =

1 5

1 5 4 1 5

0

;

() / ;

;

x

x x

≥
- - £ £

Ï

Ì
Ô

Ó
Ô otherwise

is shown in Fig. 12.15a. The membership function of the fuzzy set B~ = ‘small volume’,

 mB y
~

() =

1 1

1 1 4 1 5

0

;

() / ;

;

y

y y

£
- - £ £

Ï

Ì
Ô

Ó
Ô otherwise

x

B

y
A

A B¥

mA B¥ (,)x y

Fig. 12.14
implemented as Cartesian product

790 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

is shown in Fig. 12.15b.

Fig. 12.15

If p is a proposition of the form ‘x is A~
’ where A~ is a fuzzy set on the universe X, e.g., ‘big pressure’, and q

is a proposition of the form ‘y is B
~

’ where B
~

 is a fuzzy set on the universe Y, e.g., ‘small volume’, then one

encounters the following problem:

How does one define the membership function of the fuzzy implica tion A~ Æ B~?

There are different important classes of fuzzy implication operators based on t-norm and t-conorm.

In many practical applications, one uses Mamdani’s implication operator to model causal relationship

between fuzzy variables:

 mA B x y
~ ~

(,)Æ = min [(), ()]
~ ~

m mA Bx y " Œ " Œx X y Y, (12.21)

The fuzzy implication A~ Æ B~ is a fuzzy relation in the Cartesian product space X¥Y.

Note that Mamdani’s implication operator gives a relation which is symmetric with respect to A~ and

B~. This is not intuitively satisfying, because ‘implication’ is not a commutative operation. In practice,

however, the method provides good, robust results. The justification for the use of the min operator to

represent the implication, is that we can be no more certain about our consequent than our premise.

12.4 FUZZY INFERENCE

Problems featuring uncertainty and ambiguity have been success fully addressed subconsciously by

humans. Humans can adapt to unfamiliar situations and they are able to gather information in an efficient

manner and discard irrelevant details. The informa tion gathered need not be complete and precise, and

could be general, qualitative and vague, because humans can reason, infer and deduce new information

and knowledge. They can learn, per ceive and improve their skills through experience.

How can humans reason about complex systems, when the complete description of such a system often

requires more detailed data than a human could ever hope to recognize simultaneously, and assimilate

with understanding? The answer is that humans have the capacity to reason approximately. In reasoning

about a complex system, humans reason approximately about its behavior, thereby maintaining only a

generic understanding about the problem.

Fuzzy Logic and Neuro-Fuzzy Systems 791

The fuzzy set theory has provided a mathematical strength to capture the uncertainties associated

with human congnitive pro cesses, such as thinking and reasoning. Fuzzy logic provides an inference

morphology that enables approximate human reasoning capabilities to be applied to knowledge-based

systems.

Fuzzy conditional, or fuzzy IF-THEN production rules are symboli cally expressed as

 IF (premise) THEN (consequent)i i
i

N{ } = 1

Here N is the number of rules.

Two major types of fuzzy rules exist: Mamdani fuzzy rules, and Sugeno fuzzy rules.

12.4.1

In Mamdani fuzzy rules, both the premises and the consequents are fuzzy propositions (atomic/

compound). Consider first the case of a rule with atomic propositions. For example:

 ‘IF x is A~ THEN y is B~ ’ (12.22a)

If we let X be the premise universe of discourse, and Y the consequent universe of discourse, then the

relation between the premise A~ and consequent B~ can be described using fuzzy sets on the Cartesian

product space X ¥ Y. Using Mamdani’s implication rule,

 R~ = A~ Æ B~
 mR x y

~
(,) = mA B x y

~ ~
(,)Æ

 = min [(), ()]
~ ~

m mA Bx y " Œ " Œx X y Y, (12.22b)

When the rule premise or rule consequent are compound fuzzy propositions, then the membership

function, corresponding to each such compound proposition, is first determined. The above operation

is applied to represent IF-THEN relation. Quite often, in control applications, we come across

logical connective and (conjunction operation on atomic propositions), which, as we have seen in

Example 12.6, may be implemented by Cartesian product.

The rules of inference in fuzzy logic govern the deduction of final conclusion from IF-THEN rules for

known inputs (Fig. 12.16). Consider the statements:

 rule : IF x is A~
 THEN y is B~

 input : x is A~
¢ (12.23)

 inference : y is B~
¢

Here the propositions ‘x is A
~

’, ‘x is A~
¢’, ‘y is B

~
’ and ‘y is B~

¢’ are characterized by fuzzy sets A~, A~
¢, B~,

and B~
¢, respectively.

 A~ = {(, ()) | ; [,]}
~ ~

x x x XA Am mŒ Œ 0 1

 A~
¢ = {(, ()) | ; [,]}

~ ~
x x x XA Am m¢ ¢Œ Œ 0 1 (12.24)

 B~ = {(, ()) | ; [,]}
~ ~

y y y YB Bm mŒ Œ 0 1

 B~
¢ = {(, ()) | ; [,]}

~ ~
y y y YB Bm m¢ ¢Œ Œ 0 1

Fuzzy sets A~
 and A~

¢ are close but not equal, and same is valid for the sets B~
 and B~

¢.

Fig. 12.16 Inference mechanism

792 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Inference mechanism is based on matching of two fuzzy sets A~
¢ and R~, and determining membership

function of B~
¢ according to the result. Note that X denotes the space in which the input A~

¢ is defined, and

it is subspace of the space X ¥ Y in which the rule-base relation R~ is defined. It is, therefore, not possible

to take the intersection of A~
¢ and R~

; an operation required for matching the two sets, to incorporate the

knowledge of the membership functions of both the input and the rule base. But when A~
¢ is extended to

X ¥ Y, this is possible.

Cylindrical extension of A~
¢ (a fuzzy set defined on X) on X ¥ Y is the set of all tuples (x, y) Œ X ¥ Y, with

membership degree equal to mA x¢~
(), i.e.,

 mce A x y()
~

(,)¢ = m ¢A x
~

() for every y Œ Y (12.25)

Now, the intersection operation, to incorporate the knowledge of membership functions of input and rule

base, is possible. It is given by

ce A R()~ ~¢ «
In terms of membership functions, this operation may be expressed as

 m mce A Rx y x y()
~ ~

(,) (,)¢ Ÿ = min[mce A()~¢ (x, y), mR~
(x, y)] " Œ " Œx X y Y,

 mR x y
~

(,) = mA B x y
~ ~

(,)Æ = min[mA~
(x), mB~

(y)]

 mce A x y()
~

(,)¢ = m ¢A x
~

()

Therefore,

 mS~
(x, y) = mce A()

~
¢ (x, y) Ÿ mR~

(x, y) = min(mA¢~
(x), min(mA~

(x), mB~
(y))) (12.26)

By projecting this matched fuzzy set (defined on X ¥ Y) over the inference subspace Y, we can determine

the membership func tion m ¢B
~

(y) of the fuzzy set B~¢ (defined on Y).

Projection of mS~
(x, y) (a fuzzy set defined on X ¥ Y) on Y, is a set of all y Œ Y with membership grades

equal to max{ (,)}; max
~x
S

x
x ym means maximum with respect to x while y is considered fixed, i.e.,

 m proj S()~
(y) = max{ (,)}

~x
S x ym (12.27)

Projection on Y means that yi is assigned the highest membership degree from the tuples (x1, yi),

(x2, yi), (x3, yi), ..., where x1, x2, x2, ... Œ X and yi Œ Y. The rationale for using the max operation on the

membership functions of S
~

 should be clear in view of the fact that we have a many-to-one mapping.

The combination of fuzzy sets with the aid of cylindrical exten sion and projection, is called composition.

It is denoted by �.

If A~
¢ is a fuzzy set defined on X and R~ is a fuzzy relation de fined on X ¥ Y, then the composition of A~

¢
and R~ resulting in a fuzzy set B~

¢ defined on Y is given by

 B~
¢ = ¢A R

~ ~
� = proj ((

~
)

~
)ce A R¢ « on Y (12.28)

Note that, in general, intersection is given by a t-norm, and projection by a t-conorm, resulting in many

definitions of composition operator. In our applications, we will mostly use min operator for t-norm and

max operator for t-conorm. Therefore, we have the following compositional rule of inference:

 m ¢B~
(y) = max{min((), min((), ()))}

~ ~ ~x
A A Bx x ym m m¢ (12.29)

This inference rule, based on max-min composition, uses Mamdani’s rule for implication operator.

Fuzzy Logic and Neuro-Fuzzy Systems 793

In control applications, as we shall see later, the fuzzy set ¢A
~

 is fuzzy singleton, i.e.,

 m ¢A~
(x) =

1

0

0for

for all other

x x X

x X

= Œ
Œ

Ï
Ì
Ó

 (12.30)

This results in a simple inference procedure, as is seen below.

 m ¢B
~

(y) =
min((), ()) ,m m

A Bx y x x y Y

x y Y

for

for all other ,

= " Œ

" Œ

Ï
Ì
Ô

ÓÔ

0

0
 (12.31)

Graphical representation of the procedure is shown in Fig. 12.17.

x
y

x0

mA()x

mA()x0

mB()y

mB¢()y

Fig. 12.17 Inference procedure for singleton fuzzy system

When the rule (12.20a) has a compound proposition in premise part, connected by logical connectives,

then mA~
 in (12.31) is replaced by m premise. For rules with AND’ed premise, one might use min or product

t-norm for calculating m premise (we have used min in Eqn. (12.20b)); and for rules with OR’ed premise,

we may use max t-conorm for the calculation of m premise. Of course, other t-norms and t-conorms are

also premissible.

 Singleton fuzzy system is most widely used because of its sim plicity and lower computational

requirements. However, this kind of fuzzy system may not always be adequate, especially in cases where

noise is present in the data. Nonsingleton fuzzy system becomes necessary to account for uncertainty in

the data.

12.4.2

Unlike Mamdani fuzzy rules, Sugeno rules are functions of input variables on the rule consequent. A

typical rule, with two input variables and one output variable, is of the form:

 IF x1 is A~ and x2 is B
~

 THEN y = f (x1, x2) (12.32a)

where f (◊) is a real function.

 In theory, f (◊) can be any real function, linear or nonlinear. It seems to be appealing to use nonlinear

functions; rules are more general and can potentially be more powerful. Unfortunately, the idea is

impractical; properly choosing or determining the mathematical formalism of nonlinear functions for

every fuzzy rule in the rule base, is extremely difficult, if not impossible. For this reason, linear functions

794 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

have been employed exclusively in theoretical research, and practical development, of Sugeno fuzzy

models. For a system with two input variables and one output variable, ith rule in the rule base is of the

form:

 IF x1 is A
i

~
()

 and x2 is B
i

~
()

 THEN y(i) = ai,0 + ai,1 x1 + ai,2 x2 (12.32b)

where the ai, j are real numbers.

We can view the Sugeno fuzzy system as a nonlinear interpolator between the linear mappings that are

defined by the functions in the consequents of the rules. It is important to note that a Sugeno fuzzy system

may have any linear mapping as its output function which contributes to its generality. One mapping that

has proven to be particularly useful, is to have a linear dynamic system as the output function so that the

ith rule (12.32b) takes the form:

 IF x1 is A
i

~
()

 and x2 is B
i

~
()

 THEN x(t) = Ai x(t) + biu(t); i = 1, 2, ..., R (12.32c)

where A
i

~
()

 and B
i

~
()

 are the fuzzy sets of the ith rule, and Ai and bi are state and input matrices (of

appropriate dimensions) of the local description of the linear dynamic system. Such a fuzzy system can

be thought of as a nonlinear interpolator between R linear systems. The premise membership functions

for each rule quantify whether the linear system in the consequent is valid for a specific region on the state

space. As the state evolves, different rules turn on, indicating that other combinations of linear models

should be used. Overall, we find that the Sugeno fuzzy system provides a very intuitive representation of

a nonlinear system as a nonlinear interpolation between R linear models [145].

We will limit our discussion to the more widely used controllers—the Mamdani type singleton fuzzy

logic systems. Sugeno architecture will be employed for data-based fuzzy modeling.

12.5

Figure 12.18 shows the basic configuration of a fuzzy logic controller (FLC), which comprises four

principal components: a rule base, a decision-making logic, an input fuzzification interface, and an

output defuzzification interface. The rule base holds a set of IF-THEN rules, that quantify the knowledge

that human experts have amassed about solving particular problems. It acts as a resource to the decision-

making logic, which makes successive decisions about which rules are most relevant to the current

situation, and applies the actions indicated by these rules. The input fuzzifier takes the crisp numeric

inputs and, as its name implies, converts them into the fuzzy form needed by the decision-making logic.

At the output, the defuzzification inter face combines the conclusions reached by the decision-making

logic and converts them into crisp numeric values as control actions.

We will illustrate the FLC methodology, step by step, on a water-heating system.

Consider a simple water-heating system shown in Fig. 12.19. The water heater has a knob (HeatKnob)

to control the steam for circulation through the radiator. The higher the setting of the HeatKnob, the

hotter the water gets, with the value of ‘0’ indi cating the steam supply is turned off, and the value of ‘10’

indicating the maximum possible steam supply. There is a sensor (TempSense) in the outlet pipe to tell us

the temperature of the outflowing water, which varies from 0ºC to 125ºC. Another sensor (LevelSense)

tells us the level of the water in the tank, which varies from 0 (= empty) to 10 (= full). We assume that

Fuzzy Logic and Neuro-Fuzzy Systems 795

Fig. 12.18 A simple fuzzy logic control system block diagram

Water outlet

TempSense

0

10

LevelSense

Radiator

Steam
boiler

0

10
HeatKnob

Steam
exhaust

Water inlet

0°C 125°C

Fig. 12.19

796 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

there is an automatic flow control that determines how much cold water flows into the tank from the main

water supply; whenever the level of the tank gets below 4, the flow control turns ON, and turns OFF

when the level of the water gets above 9.5.

Figure 12.20 shows a FLC diagram for the water-heating system.

Water inlet

Input

Output
Input

Fuzzy logic
controller

HeatKnob

LevelSense

TempSense

Water outlet

Go

Gi2

Gi1

Fig. 12.20

 The design objective can be stated as:

Keep the water temperature as close to 80ºC as possible, in spite of changes in the hot water flowing out

of the tank, and the cold water flowing into the tank.

Three fuzzy variables characterize the

behavior of the water-heating system.

Input Variables: TempSense and LevelSense

Output Variable: HeatKnob

 For x = outlet water temperature (linguistic variable TempSense), the universe of discourse is

X = [0ºC,125ºC]

 For y = level of water in the tank (linguistic variable Level Sense), the universe of discourse is

Y = [0,10]

 For z = HeatKnob setting (linguistic variable HeatKnob), the universe of discourse is

Z = [0,10]

The frame of TempSense is

TempSense TempSense X TempSense~ ~
, , ,

~
L Lm

Fuzzy Logic and Neuro-Fuzzy Systems 797

where LTempSense
~

 is the set of linguistic values that TempSense can take. We may use the following

fuzzy subsets to describe the linguistic values:

XSmall (XS); Small (S); Medium (M); Large (L); XLarge (XL)

i.e.,

LTempSense
~

 = {XSmall, Small, Medium, Large, XLarge}

The frame of LevelSense is

 LevelSense LevelSense Y LevelSense~ ~
, , ,

~
L Lm

L LevelSense
~

 = {XSmall, Small, Medium, Large, XLarge}

In our system, we have just one output which is the HeatKnob. We take the following frame for this

linguistic variable:

HeatKnob HeatKnob Z HeatKnob~ ~
, , ,

~
L Lm

LHeatKnob
~

 = {VeryLittle, ALittle, AGoodAmount, ALot, AWholeLot}

Since the membership

function essentially embodies all fuzziness for a particular fuzzy set, its description is the essence of

a fuzzy property or operation. Because of the importance of the ‘shape’ of the membership function,

a great deal of attention has been focussed on development of these functions. Many ways to develop

membership functions, i.e., to assign membership values to fuzzy variables, have been reported in the

literature—methods based on Inference, Neural Networks, Genetic Algorithms, Induc tive Reasoning,

etc. The assignment process can be intuitive, or it can be based on some algorithmic or logical operations.

We shall rely on intuition in our application examples.

The input variables TempSense and LevelSense,

as well as the output variable HeatKnob, are

restricted to positive values. In Table 12.1 and

Fig. 12.21, we show a possible assignment for

ranges and triangular membership functions

for TempSense. Simi larly, we assign ranges

and fuzzy membership functions for Level-

Sense in Table 12.2 and Fig. 12.22; and

HeatKnob in Table 12.3 and Fig. 12.23. The

optimization of these assignments is often

done through trial and error for achieving

optimum performance of FLC.

The following guidelines were kept in mind while determining range of fuzzy variables as related to the

crisp inputs.

 (i) Symmetrically distribute the fuzzified values across the uni verse of discourse.

Crisp Input Range Fuzzy Variable

0–20 XSmall

10–35 Small

30–75 Medium

60–95 Large

85–125 XLarge

798 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (ii) Use an odd number of fuzzy sets for each variable so that some set is assured to be in the middle.

The use of 5 to 7 sets is fairly typical.

 (iii) Overlap adjacent sets (by 15% to 25%, typically).

Now that we have the inputs and the outputs in terms of fuzzy

variables, we need only specify what actions to take, under what conditions; i.e., we need to construct a

set of rules that de scribe the operation of the FLC. These rules usually take the form of IF-THEN rules,

and can be obtained from a human expert (heuristics).

The rule-base matrix for our example is given in Table 12.4. Our heuristic guidelines, in determining this

matrix, are the following:

 (i) When the temperature is low, the HeatKnob should be set higher than when the temperature is

high.

 (ii) When the volume of water is low, the HeatKnob does not need to be as high as when the volume

of water is high.

 Decision table

TempSense Æ
LevelSense

Ø

XS S M L XL

XS AGoodAmount ALittle VeryLittle

S ALot AGoodAmount VeryLittle VeryLittle

M AWholeLot ALot AGoodAmount VeryLittle

L AWholeLot ALot ALot ALittle

XL AWholeLot ALot ALot AGoodAmount

In FLCs we do not need to specify all the cells in the matrix. No entry signifies that no action is taken. For

example, in the column for TempSense = XLarge, no action is required since the temperature is already

at or above the target temperature.

Crisp Input Range Fuzzy Variable

0–2 XSmall

1.5–4 Small

3–7 Medium

6–8.5 Large

7.5–10 XLarge

Crisp Input Range Fuzzy Variable

0–2 VeryLittle

1.5–4 ALittle

3–7 AGoodAmount

6–8.5 ALot

7.5–10 AWholeLot

Fuzzy Logic and Neuro-Fuzzy Systems 799

m ()x
XS XLLMS

x

1

1201101009080700 10 40 50 603020

Fig. 12.21

XS LMSm ()y

1

XL

1 2 3 4 5 6 7 8 9 10
y

0

Fig. 12.22

m ()z

1

1 2 3 4 5 6 7 8 9 100
z

VeryLittle ALittle
AGoodAmount

ALot

AWholeLot

Fig. 12.23

800 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Let us examine a couple of typical entries in the table: For LevelSense = Small, and TempSense = XSmall,

the output is HeatKnob = ALot. Now for the same temperature, as the water level rises, the setting

on HeatKnob should also rise—to compen sate for the added volume of water. We can see that for

Level Sense = Large and TempSense = XSmall, the output Heat Knob = AWholeLot.

We can translate the table entries into IF-THEN rules. We give here a couple of rules.

 IF TempSense is Small and LevelSense is Small THEN set HeatKnob to ALot.

 IF TempSense is XSmall and LevelSense is Large THEN set HeatKnob to AWholeLot.

Using standard ideas from control

engineering, we have introduced gains Gi1 and Gi2 with the input variables, as shown in Fig. 12.20, and at

the same time we also put a gain Go between FLC and the plant. Change in the scaling gains, at the input

and output of FLC, can have a significant impact on the performance of the resulting control system, and

hence they are often convenient parameters for tuning.

 First, let us consider the effect of input scaling gain Gi1. Note that we can actually achieve the same effect

as scaling via Gi1, by simply changing the labeling of the temperature axis for the membership function of

the input variable TempSense. The case when Gi1 = 1 corresponds to our original choice of the membership

functions in Fig. 12.21. The choice of Gi1 = 0.5 as the scaling gain for the FLC with these membership

functions, is equivalent to having the membership functions shown in Fig. 12.24 with Gi1 = 1. Thus,

the choice of a scaling gain Gi1 results in scaling the horizontal axis of the membership functions by

1/Gi1 (multiplica tion of each number on the horizontal axis of Fig. 12.21 by 1/0.5 produces Fig. 12.24;

membership functions are uniformly ‘spread out’ by a factor of 1/0.5). Similar statements can be made

about Gi2 (Fig. 12.25).

Figure 12.23 shows our choice of output membership functions with Go = 1. There is a proportional

effect between the scaling gain Go and the output membership functions as shown in Fig. 12.26 for

Go = 2.

If, for the process under consideration, the effective universes of discourse for all inputs and output are

common, say, [0, 1], then we may say that the FLC is normalized. Clearly, scaling gains can be used to

normalize the given FLC. Denormalization of the output of such a FLC will yield the required control

action.

MS
m ()x XS XLL

0 40
0.5

20
0.5

60
0.5

80
0.5

100
0.5

120
0.5

x

Fig. 12.24

Fuzzy Logic and Neuro-Fuzzy Systems 801

It is important to realize that the scaling gains are not the only parameters that can be tuned to improve

the performance of the fuzzy control system. Membership function shapes, position ing, and number and

type of rules are often the other parameters to tune.

We set Gi1 = Gi2 = Go = 1 for our design problem.

Fuzzy sets are used to quantify information in the rule

base, and the inference mechanism operates on fuzzy sets and produces fuzzy sets. Inputs to the FLC

are the measured output variables of the controlled process, which are crisp variables. And input to the

controlled process (control action) is required to be crisp. Therefore, we must specify how the fuzzy

system will convert the numeric (crisp) inputs to the FLC into fuzzy sets (a process called ‘fuzzification’).

Also we must specify how the fuzzy system will convert the fuzzy sets produced by inference mechan ism

into numeric (crisp) FLC output (a process called ‘defuzzifi cation’), which is the input to the controlled

process.

Fuzzification can be defined as a mapping from an observed input space to fuzzy sets in a specified

universe of discourse. A natural and simple fuzzification approach is to convert a crisp measurement into

a fuzzy singleton within the specified universe of discourse. This approach is based on the assumption

that the observed data is crisp, and not corrupted by random noise.

MSXS XLLm ()y

0 4
0.5

6
0.5

8
0.5

10
0.5

2
0.5

y

Fig. 12.25

m ()z

z

AWholeLot
ALot

AGoodAmount
ALittleVeryLittle

0 2 2¥ 4 2¥ 6 2¥ 8 2¥ 10 2¥
Fig. 12.26

802 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

To understand fuzzification, we consider an example. Assume that at a particular point in time,

LevelSense = 6.5 and TempSense = 65ºC. These are the crisp inputs directly from the sensors. Figures

12.21 and 12.22 show the membership functions for the input variables and indicate with vertical lines the

measured values of LevelSense and TempSense. These vertical lines are, in fact, graphical representation

of the two fuzzy singletons ob tained by the fuzzification process.

We see that with singleton fuzzification, combining

the fuzzy sets that were created by the fuzzification process to represent the inputs with the premise

membership functions for the rules, is particularly simple. It simply reduces to computing the mem-

bership values of the input fuzzy sets for the given inputs.

From Fig. 12.21 we find that for input TempSense = 65ºC, mM
~

(65) = 0.45, mL
~

(65) = 0.28, and all

other membership functions are off (i.e., their values are zero). Therefore, the proposition ‘Temp Sense is

Medium’ is satisfied to a degree of 0.45, the proposi tion ‘TempSense is Large’ is satisfied to a degree of

0.28; all other atomic propositions associated with TempSense are not satisfied.

From Fig. 12.22 we find that for input LevelSense = 6.5, mM
~

(6.5) = 0.25, mL
~

(6.5) = 0.38; all other

membership functions are off.

We next form membership values of premises of all the rules. From the induced decision table (Table 12.5),

we observe that the rules that have the premise terms:

 (i) TempSense is Medium and LevelSense is Medium

 (ii) TempSense is Large and LevelSense is Medium

 (iii) TempSense is Medium and LevelSense is Large

 (iv) TempSense is Large and LevelSense is Large

have m premise > 0. For all other rules, m premise = 0.

Determining applicability of each rule is called ‘firing’. We say that, a rule fires at time t if its premise

membership value at time t is greater than zero. The inference mechanism seeks to determine which rules

fire, to find out which rules are relevant to the current situation. The inference mechanism combines the

recommendations of all the rules, to come up with a single conclu sion.

 Induced Decision table

TempSenseÆ
LevelSense

Ø

mXS
~

= 0 mS
~

= 0 mM
~

.= 0 45 mL
~

.= 0 28 mXL
~

= 0

mXS
~

 = 0 0 0 0 0 0

mS
~

 = 0 0 0 0 0 0

mM
~

 = 0.25 0 0 AGoodAmount VeryLittle 0

mL
~

 = 0.38 0 0 ALot ALittle 0

mXL
~

 = 0 0 0 0 0 0

Fuzzy Logic and Neuro-Fuzzy Systems 803

For crisp input TempSense = 65ºC, and LevelSense = 6.5, four rules fire. m premise for the four rules (refer

to Table 12.5), which amounts to firing strength in each case, can be calculated as follows:

 (i) mTempSense LevelSense
~ ~

¥ = min(0.45,0.25) = 0.25

 (ii) mTempSense LevelSense
~ ~

¥ = min(0.28,0.25) = 0.25

 (iii) mTempSense LevelSense
~ ~

¥ = min(0.45,0.38) = 0.38

 (iv) mTempSense LevelSense
~ ~

¥ = min(0.28,0.38) = 0.28

From the induced decision table

(Table 12.5), we observe that only four cells contain nonzero terms. Let us call these cells active. The

active cells correspond to the following rules:

 (i) TempSense is Medium and LevelSense is Medium : p1

 Set HeatKnob to AGoodAmount : q1

 IF p1 THEN q1

 m premise()1 = 0.25

 minference(1) is obtained by ‘chopping off’ the top of mAGoodAmount
~

 func tion of the output variable

HeatKnob, as shown in Fig. 12.27a.

 (ii) TempSense is Large and LevelSense is Medium : p2

 Set HeatKnob to VeryLittle : q2

 IF p2 THEN q2

 m premise()2 = 0.25

 minference(2) is shown in Fig. 12.27b.

 (iii) TempSense is Medium and LevelSense is Large : p3

 Set HeatKnob to ALot : q3

 IF p3 THEN q3

 m premise()3 = 0.38

 minference(3) is shown in Fig. 12.27c.

 (iv) TempSense is Large and LevelSense is Large : p4

 Set HeatKnob to ALittle : q4

 IF p4 THEN q4

 m premise()4 = 0.28

 minference(4) is shown in Fig. 12.27d.

The reader should note that for different crisp measurements TempSense and LevelSense, there will be

different values of m premise and, hence, different minference functions will be obtained.

In the

previous step, we noticed that the input to the inference process is the set of rules that fire; its output is

the set of fuzzy sets that represent the inference reached by all the rules that fire. We now combine all

the recommendations of all the rules to determine the control action. This is done by aggregat ing (union

operation) the inferred fuzzy sets. Aggregated fuzzy set, obtained by drawing all the inferred fuzzy sets

on one axis, is shown in Fig. 12.28. This fuzzy set represents the desired control action.

804 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

1

z
1 2 3 4 5 6 7 8 9 10

magg()z
z* = 4.66

Fig. 12.28 Aggregated fuzzy set

Defuzzification is a mapping from a space of fuzzy control ac tions defined by fuzzy sets on an

output universe of discourse, into nonfuzzy (crisp) control actions. This process is necessary because

crisp control action is required to actuate the control.

There are many approaches to defuzzification. We will consider here the ‘Center of Area’ (COA) method,

which is known to yield superior results.

We may discretize the universe Z into q equal (or almost equal) subintervals by the points z1, z2, ..., zq–1.

The crisp value z*, according to this method is

 z* =

z z

z

k k

k

q

k

k

q

m

m

agg

=

agg

=

()

()

1

1

1

1

-

-

Â

Â
 (12.33)

m ()z

AGoodAmount

VeryLittle

ALot ALittle

1.0

0.25

7 z3

1.0

0.25

0 2
(a) (b)

(d)(c)

1.0

0.38

8.56 1.5 4

1.0

0.28

Fig. 12.27 Inference for each rule

Fuzzy Logic and Neuro-Fuzzy Systems 805

From Fig. 12.28, we obtain

 S zk magg = 1 × 0.25 + 1.5 × 0.25 + 2 × 0.28 + 3 × 0.28 + 4 × 0.25

 + 5 × 0.25 + 6 × 0.25 + 7 × 0.38 + 8 × 0.38 = 11.475

 S magg = 0.25 + 0.25 + 0.28 + 0.28 + 0.25 + 0.25 + 0.25 + 0.38 + 0.38 = 2.57

Therefore,

z* =
11 475

2 57

.

.
 = 4.46

The physical interpretation of z* is that, if the area is cut of a thin piece of metal or wood, the center of

the area will be the center of gravity.

In fact, there is hardly any need of discretization of the uni verse for situations like the one shown in

Fig. 12.28; we can split up geometry into pieces and place a straight edge (cen troid) through the figure

to have it perfectly balanced with equal area of the figure on either side. Analytical expres sion for z* is

 z* =
m

m

agg

agg

()

()

z zdz

z dz

z

z

Ú
Ú

 (12.34)

This completes the design for the simple example we chose.

12.6

The Mamdani architecture is widely used for capturing expert knowledge. It allows us to describe the

expertise in more intuitive, more human-like manner. On the other hand, the Sugeno architecture is by

far the most popular candidate for data-based fuzzy modeling.

Basically, a fuzzy model is a ‘Fuzzy Inference System (FIS)’ composed of four principal components:

a fuzzification interface, a knowledge base, a decision-making logic, and a defuzzification interface.

Figure 12.29 shows the basic configuration of FIS for data-based modeling.

Fig. 12.29

806 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

We consider here, a single-output FIS in the n-dimensional input space. Let us assume that the following

P input-output pairs are given as training data for constructing FIS model:

 x
() (), , , ,p py p P={ }1 2 … (12.35)

where x
() () () ()p p p

n
p

T

x x x= 1 2 ÈÎ ˘̊ is the input vector of pth input-output pair and y(p) is the corresponding

output.

The fuzzification interface performs a mapping that converts crisp values of input variables into fuzzy

singletons. A singleton is a fuzzy set with a membership function that is unity at a single particular

point on the universe of discourse (the numerical-data value), and zero everywhere else. Basically, a

fuzzy singleton is a precise value and hence no fuzziness is introduced by fuzzification in this case. This

strategy, however, has been widely used in fuzzy modeling applications because it is easily implemented.

 There are two factors that determine a database (i) a fuzzy partition of an input space, and (ii) membership

functions of antecedent fuzzy sets. Assume that the domain interval of the ith input variable xi, is equally

divided into Ki fuzzy sets labeled A~i1, A~i2, ..., AiKi~
, for i = 1, 2, ..., n. Then the n-dimensional input space

is divided into K1 ¥ K2 ¥ � ¥ Kn fuzzy partition spaces:

 (, , ,)~ ~ ~A A Aj j njn1 21 2
… ; j1 = 1, 2, ..., K1; ...; jn = 1, ..., Kn (12.36)

Though any type of membership functions (e.g., triangle-shaped, trapezoid-shaped, bell-shaped, etc.)

can be used for fuzzy sets, we employ the symmetric triangle-shaped fuzzy sets, Ai ji~
, with the following

membership functions:

 mA i ji~
() () ; , , ,

(,)

(,)

x x
x c

w
j Ki i j i

i i j

i j
i ii

i

i

= = -
-

=D
m 1

2
1 2 … (12.37)

c i ji(,) is the center of the membership function, where the

membership grade is equal to 1, and w i ji(,) denotes the width of

the membership function (Fig. 12.30).

By means of the input-output data, the range x xi i
min max,ÈÎ ˘̊ of

the ith input variable is determined, where

 x x x xi
p P

i
p

i
p P

i
pmin

{ , , }

() max

{ , , }

()
min , max= =

= =1 1… …

 (12.38a)

The center position of each membership function with respect

to the ith variable is determined by

 c x j x x K c xi j i i i i i i ii(,)
min max min

(,)
min() () /() ; ;= =+ - - -ÈÎ ˘̊1 1 1 cc xi K ii(,)

max= (12.38b)

To achieve sufficient overlap from one linguistic label to another, we take

 w c ci j i j i ji i i(,) (,) (,)()= -+2 1 (12.38c)

Figure 12.31 shows an example where the domain interval of x1 is divided into K1 = 5 fuzzy sets.

The rule base consists of a set of fuzzy IF-THEN rules in the form ‘IF a set of conditions are satisfied

THEN a set of consequences can be inferred’. Different types of consequent parts have been used in

1

mi j ii
()x

c(,)i ji
w(,)i ji

xi

Fig. 12.30 Parameters of a mem

Fuzzy Logic and Neuro-Fuzzy Systems 807

fuzzy rules; the two commonly used fuzzy models are based on Mamdani’s approach and Sugeno’s

approach. We restrict our discussion to Sugeno architecture: the domain interval of y is represented by

R linear functions, giving rise to R fuzzy rules. All the rules corresponding to the possible combinations

of the inputs are implemented. The total number of rules R for an n-input system is : K1 ¥ K2 ¥ ¥ Kn.

The format of fuzzy rules is,

Rule r: IF x1 is A j1 1~
 and and xn is Anjn~

 THEN

 ˆ ; , , ,() () () ()y a a x a x r Rr r r
n
r

n= + + + =0 1 1 1 2… … (12.39)

The consequent part is a linear function of the input variables xi; a0, a1, ..., an are the (n + 1) parameters

that determine the real consequent value. The aim of the linear function is to describe the local linear

behavior of the system. Each rule r gives rise to a local linear model. The selected R rules are required

to approximate the function that theoretically underlines the system behavior most consistently, with the

given sample of input-output data (12.35) (When ŷ is a constant in (12.39), we get a Sugeno model in

which the consequent of a rule is specified by a singleton).

The decision-making logic employs fuzzy IF-THEN rules from the rule base to infer the output by a

fuzzy reasoning method. The contribution of each local linear model (i.e., each rule) in the estimated

output of the FIS is dictated by the firing strength of the rule. We use product strategy to assign firing

strength m (r) to each rule r = 1, 2, …, R.

Given an input vector, x
() () ()

, , ...,p p p
n
p

T
x x x= 1 2

ÈÎ ˘̊ , the degree of compatibility of x(p) to the rth fuzzy

IF-THEN rule is the firing strength m(r) of the rule, and is given by (note that we have used product

t-norm operator on the premise part of the rule)

m m m m() () () () ()

(,)

() () () ()r p
j

p
j

p
nj n

p

i j I

x x x
n

i

x = ¥ ¥ ¥

=
Œ

1 1 2 21 2

P
rr

ii j i
p

xm ()
()

 (12.40)

where Ir is the set of all Ai ji~
 associated with the premise part of rule r.

The main idea of the Sugeno architecture is that in each input fuzzy region A A Aj j njn1 21 2~ ~ ~¥ ¥ ¥ of the

input domain, a local linear system is formed. The membership function m() ()()r p
x of each region

is a map indicating the degree of the output of the associated linear system to the region. A simple

defuzzification procedure is to take the output of the system as the ‘fuzzy’ combination of the outputs of

local systems in all regions:

Fig. 12.31

808 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 ŷ =

()
() () () ()

()

a a x a x
r r

n
r

n
r

r

R

r

r

R

0 1 1

1

1

+ + +Â

Â

 m

m

=

=

 (12.41a)

 = ()
() () () ()a a x a x
r r

n
r

n
r

r

R

0 1 1

1

+ + +Â m
=

 (12.41b)

where m
m

m

()
()

()

r
r

r

r

R
=

=1

Â
 (12.41c)

is the normalized firing strength of rule r; a ratio of firing strength of rule r to the sum of the firing

strengths of all the rules.

Note that the output of the fuzzy model can be determined only if the parameters in rule consequents

are known. However, it is often difficult or even impossible to specify a rule consequent in a polynomial

form. Fortunately, it is not necessary to have any prior knowledge of rule consequent parameters for the

Sugeno fuzzy modeling approach to deal with a problem. These parameters can be determined using

least squares estimation method as follows.

Given the values of the membership parameters and a training set of P input-output patterns x
() (), ;p py{

p = 1,2,...,P}, we can form P linear equations in terms of the consequent parameters.

 y(p) = m m() () () () () () () () (
() ()1

0
1

1
1

1
1 2

0
2

x x
()p p

n n
p pa a x a x a+ + +ÈÎ ˘̊ +

)) () () () ()+ + +È
Î

˘
˚ +a x a x

p
n n

p
1

2
1

2

 + + + +ÈÎ ˘̊m () () () () () ()() ; , ,R p R R p
n
R

n
pa a x a x p Px

() =0 1 1 1 2 (12.42)

where m() ()()r p
x is the normalized firing strength of rule r, fired by the input pattern x(p).

In terms of vectors

 x
()p

 = 1 1 2x x x
p p

n
p

T
() () ()

 ÈÎ ˘̊

 p
(r) = a a a

r r
n
r

0 1
() () ()

 ÈÎ ˘̊

 Q = a a a a a a an n
R

n
R

0
1

1
1 1

0
2 2

0
() () () () () () ()

 ÈÎ ˘̊

(12.43)

we can write the P linear equations as follows:

 y(1) = m m m() () () () () () () () () ()() () ()1 1 1 1 2 1 2 1 1
x x x x xp pÈÎ ˘̊ + ÈÎ ˘̊ + +

R
pp

() ()R
x

1ÈÎ ˘̊

 y(2) = m m m() () () () () () () () () ()() () ()1 2 1 2 2 2 2 2 2
x x x x xp pÈÎ ˘̊ + ÈÎ ˘̊ + +

R
pp

() ()R
x

2ÈÎ ˘̊

 y(P) = m m m() () () () () () () () () ()() () ()1 1 2 2
x x x x x

P P P P R P
p pÈÎ ˘̊ + ÈÎ ˘̊ + + pp

() ()R P
xÈÎ ˘̊

(12.44)

Fuzzy Logic and Neuro-Fuzzy Systems 809

These P equations can be rearranged into a single vector-matrix equation:

y

y

y P

()

()

()

1

2

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 =

x x x x x x

x

() () () () () () () () ()

()

() () ()1 1 1 1 2 1 1 1

2

[] [] []
[]

T T T
Rm m m

TT T T
R

P
T

m m m

m

() () () () () () () ()

() (

() () ()1 2 2 2 2 2 2

1

x x x x x

x

[] []

[]

)) () () () () () () ()() () ()x x x x x
P P

T
P P

T
R P[] []

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

m m2

˙̇

[]

[]

[]

()

()

()

p

p

p

1

2

T

T

R T

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

 (12.45a)

or y = XT QT (12.45b)

In the Sugeno fuzzy model given above, we have used most intuitive approach of implementing all

possible combinations of the given fuzzy sets as rules. In fact, if data is not uniformly distributed, some

rules may never be fired. This and other drawbacks are handled by many variants of the basic ANFIS

model, described in the next section.

12.7

Fuzzy logic and neural networks are natural complementary tools in building intelligent systems. While

neural networks are computational structures that perform well when dealing with raw data, fuzzy logic

deals with reasoning, using linguistic information acquired from domain experts. However, fuzzy systems

lack the ability to learn and cannot adjust themselves to a new environment. On the other hand, although

neural networks can learn, they are opaque to the user. The merger of a neural network with a fuzzy

system into one integrated system, therefore, offers a promising approach to building intelligent systems.

Integrated systems can combine the parallel computation and learning abilities of neural networks, with

the human-like knowledge representation and explanation abilities of fuzzy systems. As a result, neural

networks become more transparent, while fuzzy systems become capable of learning.

The structure of a neuro-fuzzy system is similar to a multilayer neural network. In general, a neuro-fuzzy

system has input terminals, output layer, and hidden layers that represent membership functions and

fuzzy rules.

Roger Jang [142] proposed an integrated system that is functionally equivalent to a Sugeno fuzzy

inference model. He called it an Adaptive Neuro-Fuzzy Inference System or ANFIS. Similar network

structures have also been proposed for Mamdani fuzzy inference model [137]. However, the Sugeno

model is by for the most popular candidate for data-based fuzzy modeling. Our brief presentation of the

subject is, therefore, focused on ANFIS based on Sugeno fuzzy model.

12.7.1

Figure 12.32 shows the ANFIS architecture. For simplicity, we assume that the ANFIS has two inputs,

x1 and x2, and one output y. Each input is represented by two fuzzy sets, and the output by a first-order

polynomial. The ANFIS implements the following four rules:

810 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Rule 1: IF x1 is A11~
 and x2 is A21~

 THEN y(1) = a 0
(1) + a1

(1)x1 + a2
(1)x2

Rule 2: IF x1 is A12~
 and x2 is A22~

 THEN y(2) = a0
(2) + a1

(2)x1 + a2
(2)x2

Rule 3: IF x1 is A12~
 and x2 is A21~ THEN y(3) = a0

(3) + a1
(3)x1 + a2

(3)x2

Rule 4: IF x1 is A11~
 and x2 is A22~

 THEN y(4) = a0
(4) + a1

(4)x1 + a2
(4)x2

(12.46)

where A11~
 and A12~

 are fuzzy sets on the universe of discourse, of input variable x1, A21~
 and A22~

 are fuzzy

sets on the universe of discourse of input variable x2; a0
(r), a1

(r) and a2
(r) is a set of parameters specified for

rule r.

Let us now discuss the purpose of each layer in ANFIS of Fig. 12.32.

Fig. 12.32

The inputs to the nodes in the first layer are the input fuzzy sets of the ANFIS. Since these

fuzzy sets are fuzzy singletons, numerical inputs are directly transmitted to the first-layer nodes.

Nodes in this layer represent the membership functions associated with each linguistic term of input

variables. Every node here is an adaptive node. Links in this layer are fully connected between input

terminals and their corresponding membership function nodes. Membership functions can be any

appropriate parameterized function; we use Gaussian function.

 m mA i i j ii ji i
x x

~
() ()=D = exp

(,)

(,)

-
-Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

x c

w

i i j

i j

i

i

2

 (12.47)

The nodes are labeled Ai ji~ ; i = 1, 2; ji = 1, 2. Total number of nodes in this layer is, therefore, four.

c i ji(,) is the center (mean) and w i ji(,) is the width (variance), respectively, of the membership function

corresponding to the node Ai ji~ ; xi is the input and mi ji
 is the output of the node. The adjusted weights in

Layer 1 are c i ji(,)’s and w i ji(,)’s. As the values of these parameters change, the Gaussian function varies

accordingly; thus exhibiting various forms of membership functions of fuzzy set Ai ji~ . Parameters in this

layer are referred to as premise parameters.

Every node in this layer is a fixed node labeled P, whose output is the product of all the

incoming signals. Each node output represents firing strength of a rule. In fact, other t-norm operators

could also be used as node functions.

Fuzzy Logic and Neuro-Fuzzy Systems 811

Each node, representing a single Sugeno fuzzy rule, has the output

 m m()

(,)
() ()r

i j I
ij i

i r
i

xx = Œ
D P (12.48)

where Ir is the set of all Ai ji~
 associated with the premise part of rule r.

Every node in this layer is a fixed node labeled N. The rth node calculates the ratio of the rth

rule’s firing strength, to the sum of all rules’ firing strengths:

 m()r
 =

m

m

()

()

r

r

r

R

=1

Â
 = Normalized firing strength of rule r (12.49)

Every node is this layer is an adaptive node, is connected to the respective normalization

node in the previous layer, and also receives inputs x1 and x2. It calculates the weighted consequent value

of a given rule as

 ˆ ()y r = m()r a a x a x
r r r

0
()

1
()

1 2
()

2+ +È
Î

˘
˚ (12.50)

where m()r
 is the normalized firing strength from layer 3, and a0

(r), a1
(r) and a2

(r) are the parameters of this

node. Parameters in this layer are referred to as consequent parameters.

Each node in Layer 4 is a local linear model of the Sugeno fuzzy system; integration of outputs of all

local linear models yields global output.

The single node in this layer is a fixed mode labeled S, which computes the overall output

as the summation of all incoming signals:

 ŷ = () ;
() () () ()a a x a x R
r r r r

r

R

0 1 1 2 2

1

4+ + =Â m
=

 (12.51)

12.7.2

An ANFIS uses a hybrid learning algorithm that combines the least squares estimator and the gradient

descent method. First, initial activation functions are assigned to each membership neuron. The function

centers of the neurons connected to input xi, are set so that the domain of xi is divided equally, and the

widths are set to allow sufficient overlapping of the respective functions.

In an ANFIS training algorithm, each epoch is composed of a forward pass and a backward pass. In the

forward pass, a training set of input patterns (input vector x) is presented to the ANFIS, neurons outputs

are calculated on the layer-by-layer basis, and the rules consequent parameters are identified by the

least squares estimator. In the Sugeno fuzzy inference, an output ŷ is a linear function. Thus, given the

values of the membership parameters and a training set of P input-output patterns, we can form P linear

equations in terms of the consequent parameters (refer to Eqns (12.45)). Least-squares solution of these

equations yields the consequent parameters.

As soon as the rule consequent parameters are established, we can compute actual network output, ŷ,

and determine the error

 e = y – ŷ (12.52)

812 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

In the backward pass, the backpropagation algorithm in applied. The error signals are propagated back,

and the premise parameters are updated according to the chain rule.

The goal is to minimize the error function

 E =
1
2

2(y y- ˆ) (12.53)

The error at Layer 5:

∂
∂
E

ŷ
 = (ˆ)y y- (12.54)

Back propagating to Layer 3 via Layer 4 (refer to Eqn. (12.51)),

∂

∂

E
rm()

 =
∂
∂

∂

∂

∂
∂

+ +ÈÎ ˘̊E

y

y E

y
a a x a x

r

r r r

ˆ

ˆ

ˆ
()

()

() () ()

m
= 0 1 1 2 2 (12.55)

Back propagating to Layer 2 (refer to Eqn. (12.49)),

∂

∂

E
rm()

 =
∂

∂

∂

∂

∂

∂

-È

Î
Í
Í

˘

˚
˙
˙

E E
r

r

r r

r r

rm

m

m m

m m

m()

()

() ()

() ()

()

()
=

1
 (12.56)

The error at Layer 1:

 Ir is the set of all Ai ji~ associated with the premise part of rule r. Reverse pass: I i ji(,) is the set of all rule

nodes in Layer 2 connected to (i, ji)
th node (corresponding to Ai ji~) of Layer 1.

Back propagating error to Layer 1 (refer to Eqn. (12.48)),

∂

∂
E

iji
m

 =
∂

∂
∂
∂

Œ
Â E

r

r

i jr I i
i ji

m

m

m()

()

(,)

(12.57a)

 =
∂

∂

È

Î
Í
Í

˘

˚
˙
˙Œ

Â E
r

r

i jr I i
i ji

m

m

m()

()

(,)

From Eqn. (12.47), we obtain

∂

∂

mi j

i j

i

i
c(,)

 = 2 2mi j i i j i ji i i
x c w() /(,) (,)- (12.57b)

∂

∂

mi j

i j

i

i
w(,)

 = 2 2 3mi j i i j i ji i i
x c w() /(,) (,)

- (12.57c)

Denoting the iteration index by k (refer to Eqn. (11.27)),

 c ki ji(,) ()+1 = c k
E k

c k
i j

i j
i

i

(,)
(,)

()
()

()
-

∂
∂

h (12.58a)

 w ki ji(,) ()+1 = w k
E k

w k
i j

i j
i

i

(,)
(,)

()
()

()
-

∂
∂

h (12.58b)

where h is the learning rate.

For given input-output pairs (x(p), y(p); p = 1, 2, ..., P), the batch-updating algorithm back propagates the

cumulative error resulting from the difference between y(p); p = 1,..., P, and ˆ ;()y p p = 1,..., P, from output

layer to the previous layers to update weights of the network.

Fuzzy Logic and Neuro-Fuzzy Systems 813

In this section, we have described a method that can be used to construct identifiers of dynamical systems

that, in turn, could be employed to construct neuro-fuzzy control systems. The idea behind the method is

to apply the backpropagation algorithm to a fuzzy logic system.

Neuro-fuzzy control refers to the design methods for fuzzy logic controllers that employ neural network

techniques. The design methods for neuro-fuzzy control are derived directly from methods for neural

control. Thus, if we replace the NN blocks in Figs 11.23–11.25 with ANFIS blocks, then we end up with

neuro-fuzzy control systems.

REVIEW EXAMPLES

Review Example 12.1

We consider here the simplest fuzzy PI control scheme for a servo motor with the control model (refer

to Fig. 12.33a)

Y s

U s

()

()
 = G(s) =

1

3 6s s(.)+
 (12.59)

The objective of the fuzzy controller is to control angular position y(t) of the servo motor to achieve a

given set-point yr, within desired accuracy.

 The discretized model for the plant (refer to Chapter 3) is

 Gh0G(z) =
Y z

U z

()

()
 =

0 0237 0 0175

1 1 407 0 407

1 2

1 2

. .

. .

z z

z z

- -

- -
+

- +
 y(k) = 1.407y(k – 1) – 0.407y(k – 2) + 0.0237u(k – 1) + 0.0175u(k – 2) (12.60)

The proposed fuzzy controller (refer to Fig. 12.33b) has the following two input variables:

 e(k) = error between the set-point and actual position of the shaft;

 v(k) = rate of change of error;

and one output variable:

 Du(k) = incremental voltage signal to the driver circuit of the motor.

 Universe of discourse for e(k) = {–Le, Le}

 Universe of discourse for v(k) = {–L
v
, L

v
}

 Universe of discourse for Du(k) = {–HDu, HDu}

Clockwise and counterclockwise rotations are defined as positive and negative, respectively.

The two input variables are quantized to two fuzzy subsets: Positive ()
~
P , Negative ()

~
N ; and the output

variable is quantized to three fuzzy subsets: Positive ()
~
P , Zero ()

~
Z , Negative ()

~
N . Triangular membership

functions are used.

The scaling factors GE (gain for error variable), and GV (gain for velocity variable) describe input

normalization:

 e*(k) = GE × e(k); GE = L /Le

814 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Fig. 12.33 Structure for a fuzzy controller

 v
*(k) = GV × v(k); GV = L/L

v

where e*, v* Œ {–L, L}

The output Du* of the fuzzy controller is denormalized to Du, by the relation

 Du(k) = GU¢ ¥ Du*(k); GU ¢ = HDu /H

where Du* Œ {–H, H}

Without loss of generality, we take L = H = 1 (refer to Fig. 12.34).

The fuzzy PI controller uses the following four fuzzy rules:

 IF e*(k) is P
~

 and v
*(k) is P

~
 THEN Du*(k) is P

~
 IF e*(k) is P

~
 and v*(k) is N

~
 THEN Du*(k) is Z

~
 IF e*(k) is N

~
 and v*(k) is P

~
 THEN Du*(k) is Z

~
 IF e*(k) is N

~
 and v*(k) is N

~
 THEN Du*(k) is N

~

The initial value of the system output and the initial velocity are set to zero, as is the initial output of the

fuzzy PI con troller.

Fuzzy Logic and Neuro-Fuzzy Systems 815

The scaling factors GE, GV and GU¢ of the fuzzy controller may be tuned by trial and error. Refer to

Appendix B for realization of the controller.

N 1 P

–1 0 1

N P

–1 0 1

Z

1

0.5

e*, v* Du*

m

m

Fig. 12.34

Review Example 12.2

Figure 12.32 shows the schematic diagram of an ANFIS, used to model a process with two inputs, x1

and x2, and one output y. Two fuzzy sets A
~11

 and A
~12

 have been utilized to represent x1; and x2 has been

expressed using two other fuzzy sets A
~21

 and A
~22

. The membership function distributions of x1 and x2

are shown in Fig. 12.35.

 There is a maximum of 2 ¥ 2 possible rules (refer to (12.46)); the values of the coefficients of the

consequent part of the rules are as follows:

 a0
(1) = 0.10, a0

(2) = 0.11, a0
(3) = 0.13, a0

(4) = 0.14, a1
(1) = 0.2, a1,

(2) = 0.2, a1
(3) = 0.3,

 a1
(4) = 0.3, a2

(1) = 0.3, a2
(2) = 0.4, a2

(3) = 0.3, a2
(4) = 0.4.

The objective is to determine the predicted output ŷ of ANFIS when x1 = 1.1 and x2 = 6.0.

 For given values of x1 and x2, we find, using the principle of similar triangles, from Fig. 12.35 (Layer 1

in Fig. 12.32):

 mA
~11

 (x1) =
2 01 1 1

2 01 1
1 0 900990

. .

.
.

-
-

Ê
ËÁ

ˆ
¯̃

¥ =

 mA
~ 12

 (x1) =
1 1 1

2 01 1
1 0 099010

.

.
.

-
-

Ê
ËÁ

ˆ
¯̃

¥ =

 mA
~ 21

 (x2) =
10 6

10 5
1 0 8

-
-

Ê
ËÁ

ˆ
¯̃

¥ = .

 mA
~ 22

 (x2) =
6 5

10 5
1 0 2

-
-

Ê
ËÁ

ˆ
¯̃

¥ = .

816 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Fig. 12.35

All the possible four rules, given in (12.46), will be fired. Firing strengths of the rules are (Layer 2 in

Fig. 12.32; Eqn. (12.48)):

 m(1) (x) = 0.900990 ¥ 0.8 = 0.720792

 m(2) (x) = 0.099010 ¥ 0.2 = 0.019802

 m(3) (x) = 0.099009 ¥ 0.8 = 0.079208

 m(4) (x) = 0.900990 ¥ 0.2 = 0.180198

The normalized firing strengths of the rules are (Layer 3 in Fig. 12.32; Eqn. (12.49)):

 m()1 = m m() ()1

1

4
r

r =

Â = m(1) = 0.720792

 m()2 = m(2), m()3 = m(3), m()4 = m(4)

Weighted consequent values of the rules are (Layer 4 in Fig. 12.32; Eqn. (12.50)):

 ˆ ()y 1 = 0.720792(0.10 + 0.2 ¥ 1.1 + 0.3 ¥ 6.0) = 1.528079;

 ˆ ()y 2 = 0.054059; ˆ ()y 3 = 0.179010; ˆ ()y 4 = 0.517168

Predicted output of the ANFIS, is (Layer 5 in Fig. 12.32; Eqn. (12.51)):

 ŷ = 2.278316

Fuzzy Logic and Neuro-Fuzzy Systems 817

PROBLEMS

 12.1 (a) In the following, we suggest a membership function for fuzzy description of the set ‘real

numbers close to 2’:

 A
~ = { , ()}

~
x xAm

 where

 mA
~

(x) =

0

4 3

0

1

1 3

3

2- + -
<

£ £
>

Ï

Ì
Ô

Ó
Ô

x x

x

x

x

;

;

;

 Sketch the membership function (arc of a parabola) and determine its supporting interval,

and a-cut interval for a = 0.5.

 (b) Sketch the piecewise quadratic membership function

 mB
~

(x) =

2 1

1 2 2

2 3

0

1 3 2

3 2 5 2

5 2 3

2

2

2

()

()

()

;

;

;

;

/

/ /

/

x

x

x

x

x

x

-

- -

-

£ <
£ <
£ £

otherwisse

Ï

Ì

Ô
Ô

Ó

Ô
Ô

 and show that it also represents ‘real number close to 2’. Deter mine its support, and a-cut for

a = 0.5.

 12.2 (a) The well known Gaussian distribution in probability is defined by

 f (x) =
1

2

1

2

2

s p

m

se

x
-

-Ê
ËÁ

ˆ
¯̃

; – < x <

 where m is the mean and s is the standard deviation of the dis tribution. Construct a normal,

convex membership function from this distribution (select parameters m and s) that

represents ‘real numbers close to 2’. Find its support, and a-cut for a = 0.5. Show that the

membership function

 mA
~

(x) = 1

1 2 2+ -()x

 also represents ‘real numbers close to 2’. Find its support, and a-cut for a = 0.5.

 12.3 Consider the piecewise quadratic function

f(x) =

0

2
2

1 2
2

1

2

2

;

;

;

;

x a

x a

b a
a x

a b

x b

b a

a b
x b

b x

<

-
-

Ê
ËÁ

ˆ
¯̃

£ <
+

-
-
-

Ê
ËÁ

ˆ
¯̃

+
£ <

£ <<

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô c

818 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Construct a normal, convex membership function from f (x) (select parameters a, b and

c) that represents the set ‘tall men’ on the universe {3, 9}. Determine the crosspoints and

support of the membership function.

 12.4 (a) Write an analytical expression for the membership func tion mA
~

(x) with supporting interval

[–1, 9] and a-cut interval for a = 1 given as [4, 5].

 (b) Define what we mean by a normal membership function and a convex membership function.

Is the function described in (a) above (i) normal, (ii) convex?

 12.5 (a) Let the fuzzy set A
~

 be the linguistic ‘warm’ with member ship function

mA
~

(x) =

0

1

0

1

1

1 1
1 1

1 2

2

2 2
2 2

2

;

;

;

;

;

x a

x a

b a
a x b

b x b

x a

b a
b x a

x a

<
-
-

£ £

£ £
-
-

£ £

≥

Ï

Ì

Ô
ÔÔ
Ô
Ô

Ó

Ô
Ô
Ô
Ô

 a1 = 64ºF, b1 = 70ºF, b2 = 74ºF, a2 = 78ºF

 (i) Is A
~

 a normal fuzzy set?

 (ii) Is A
~

 a convex fuzzy set?

 (iii) Is A
~

 a singleton fuzzy set?

 If answer to one or more to these is ‘no’, then give an example of such a set.

 (b) For fuzzy set A
~

 described in part (a), assume that b1 = b2 = 72ºF.

 Sketch the resulting membership function and determine its sup port, crosspoints and a-cuts

for a = 0.2 and 0.4.

 12.6 Consider two fuzzy sets A
~

 and B
~

; membership functions mA
~

(x) and mB
~

(x) are shown in Fig. P12.6.

The fuzzy variable x is tem perature.

 Sketch the graph of mA
~

(x), mA B
~ ~

« (x) and mA B
~ ~

» (x).

 Which t-norm and t-conorm have you used?

1 1

0 0
x x

mA()x mB()x

20°C10°C15°C

Fig. P12.6

Fuzzy Logic and Neuro-Fuzzy Systems 819

 12.7 Consider the fuzzy relation R
~

 on the universe X ¥ Y, given by the membership function

mR
~

(x, y) =
1

1 100 3 4[()]+ -x y
,

 vaguely representing the crisp relation x = 3y. All elements satisfying x = 3y have unity grade of

membership; elements satis fying, for example, x = 3.1y have membership grades less than 1. The

farther away the elements are from the straight line, the lower are the membership grades.

 Give a graphical representation of the fuzzy relation R
~

.

 12.8 Assume the membership function of the fuzzy set A
~

, big pres sure, is

 mA~
(x) =

1 5

1
5

4
1 5

0

;

;

;

x

x
x

≥

-
-

£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô otherwise

 Assume the membership function of the fuzzy set B
~

, small volume, is

 mB
~

(y) =

1 1

1
1

4
1 5

0

;

;

;

y

y
y

£

-
-

£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô otherwise

 Find the truth values of the following propositions:

 (i) 4 is big pressure.

 (ii) 3 is small volume.

 (iii) 4 is big pressure and 3 is small volume.

 (iv) 4 is big pressure Æ 3 is small volume.

 Explain the conjunction and implication operations you have used for this purpose.

 12.9 Consider the following statements:

 Input : ¢A
~

 is very small

 Rule : IF ¢A
~

 is small THEN ¢B
~

 is large

 Inference : ¢B
~

 is very large

 If R
~

 is a fuzzy relation from X to Y representing the implication rule, and ¢A
~

 is a fuzzy subset of

X, then the fuzzy subset ¢B
~

 of Y, which is induced by ¢A
~

, is given by

 ¢B
~

 = ¢A
~

 R
~

 where � operation (composition) is carried out by taking cylin drical extension of ¢A
~

, taking the

intersection with R
~

, and pro jecting the result onto Y.

 Define cylindrical extension, intersection and projection opera tions that lead to max-min

compositional rule of inference.

12.10 Input : x is ¢A
~

 and y is ¢B
~

 Rule 1 : IF x is A1~
 and y is B1~

 THEN z is C1~
 Rule 2 : IF x is A2~

 and y is B2~
 THEN z is C2~

 Inference : z is ¢C
~

820 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Taking arbitrary membership functions for A B C A B1 1 1 2 2~
,

~
,

~
,

~
,

~
 and C2~

, outline the procedure of

determining ¢C
~

 corresponding to the crisp inputs x = x0 and y = y0. Use t-norm ‘min’ for conjunction

operation, Mamda ni’s implication operation and max-min compositional rule of inference.

 12.11 Fig. P12.11 shows the fuzzy output of a certain control problem. Defuzzify by using the center of

area method, to obtain the value of crisp control action.

m

3/4

1/2

1/4

1

2 3 41 5 6 7 8 9 10
z

Fig. P12.11

 12.12 Consider the fuzzy system concerning the terminal voltage and speed of an electric motor,

described by the membership functions

x 100 150 200 250 300

mA
~

(x) 1 0.8 0.5 0.2 0.1

y 1600 1800 2000 2200 2400

mB
~

(y) 1 0.9 0.7 0.3 0

 Input : Voltage is rather small (x is ¢A
~

)

 Rule : IF voltage is small (x is A
~

) THEN speed is small (y is B
~

)

 Inference : Speed is rather small (y is ¢B
~

)

 Assume that the input fuzzy set ¢A
~

 is a singleton at x0 = 125. Determine the inference fuzzy set ¢B
~

of the fuzzy system. Defuzzi fy this set to obtain crisp value for speed.

 Use piecewise continuous approximations of graphs of mA
~

(x) and mB
~

(y) to describe your solution.

 12.13 Consider the two-input, one-output fuzzy system:

 Input : x is ¢A
~

 and y is ¢B
~

 Rule 1 : IF x is A1~
 and y is B1~

 THEN z is C1~
 Rule 2 : IF x is A2~

 and y is B2~
 THEN z is C2~

 Inference : z is ¢C
~

Fuzzy Logic and Neuro-Fuzzy Systems 821

 The fuzzy sets Ai~
, Bi

~
 and Ci~

; i = 1, 2, have the membership func tions

 mA1~
(x) =

x
x

x
x

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

2

3
2 5

8

3
5 8

;

;

 mA2~
(x) =

x
x

x
x

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

3

3
3 6

9

3
6 9

;

;

 mB1~
(y) =

y
y

y
y

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

5

3
5 8

11

3
8 11

;

;

 mB2~
(y) =

y
y

y
y

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

4

3
4 7

10

3
7 10

;

;

 mC1~
(z) =

z
z

z
z

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

1

3
1 4

7

3
4 7

;

;

 mC2~
(z) =

z
z

z
z

-
£ £

-
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

3

3
3 6

9

3
6 9

;

;

 Assume fuzzy sets ¢A
~

 and ¢B
~

 are singletons at x0 = 4 and y0 = 8. Determine the inference fuzzy set

¢C
~

 of the fuzzy system. Defuzzi fy ¢C
~

.

 12.14 The control objective is to design an automatic braking system for motor cars. We need two analog

signals: vehicle speed (V), and a measure of distance (D) from the vehicle in the front. A fuzzy

logic control system will process these, giving a single output, braking force (B), which controls

the brakes.

m

PMPS PL PS PM PL

m

10 20 30 40 50 600 V(km/hr) 10 20 30 40 50 600 D(m)

PS PM PL

20 40 60 80 1000 Braking force (%)B

m

1 1

1

Fig. P12.14

822 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Term set for each of the variables (V, D, and B) is of the form:

 {PS (positive small), PM (positive medium), PL (positive large)}

 Membership functions for each term-set are given in Fig. P12.14.

 Suppose that for the control problem, two rules have to be fired:

 Rule 1: IF D = PS and V = PM THEN B = PL

 Rule 2: IF D = PM and V = PL THEN B = PM

 For the sensor readings of V = 55 km/hr, and D = 27 m from the car in front, find graphically

 (i) the firing strengths of the two rules;

 (ii) the aggregated output; and

 (iii) defuzzified control action.

 12.15 The control objective is to automate the wash time when using a washing machine. Experts select

for inputs dirt and grease of the clothes to be washed, and for output parameter the wash time, as

follows:

 Dirt =D {SD (small dirt), MD (medium dirt), LD (large dirt)}

 Grease =D {NG (no grease), MG (medium grease), LG (large grease)}

 Washtime =D {VS (very short), S (short), M (medium), L (long), VL (very long)}

 The degrees of the dirt and grease are measured on a scale from 0 to 100; washtime is measured

in minutes from 0 to 60.

 mSD
~

(x) =
50

50

- x
; 0 £ x £ 50 mVS

~
(z) =

10

10

- z
; 0 £ z £ 10

 mMD
~

(x) =

x

x

x

x

50

100

50

0 50

50 100-

£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

;

;
 mS

~
(z) =

z

z

z

z

10

25

15

0 10

10 25-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

;

;

 mLD
~

(x) =
x - 50

50
; 50 £ x £ 100 mM

~
(z) =

z

z

z

z

-

-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

10

15

40

15

10 25

25 40

;

;

 mNG
~

(y) =
50

50

- y
; 0 £ y £ 50 mL~

(z) =

z

z

z

z

-

-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

25

15

60

20

25 40

40 60

;

;

 mMG
~

(y) =

y

y

y

y

50

100

50

0 50

50 100-
£ £
£ £

Ï

Ì
ÔÔ

Ó
Ô
Ô

;

;
 mVL~

(z) =
z - 40

20
; 40 £ z £ 60

 mLG
~

(y) =
y - 50

50
; 50 £ y £ 100

Fuzzy Logic and Neuro-Fuzzy Systems 823

 The selected rules are as follows:

Grease Æ
Dirt

Ø

NG MG LG

SD VS M L

M D S M L

LD M L VL

 12.16 A fuzzy controller is acting according to the following rule base (N = negative, M = medium,

P = positive):

 R1 : If x1 is N AND x2 is N, THEN u is N

 R2 : If x1 is N OR x2 is P, THEN u is M

 R3 : If x1 is P OR x2 is N, THEN u is M

 R4 : If x1 is P AND x2 is P, THEN u is P

 The membership functions of the input and output variables are given in Fig. P12.16. Actual

inputs are x1 = 2.5 and x2 = 4. Which rules are active and what will be the controller action u? Find

u by applying standard fuzzy operations: min for AND, and max for OR.

1 112 223 334 44
u

N N
N

P PP
1 11

0 00

M

x2x1

mmm

Fig. P12.16

 12.17 Consider the following fuzzy model of a system with inputs x and y and outpur z:

 Rule 1 : If x is A3 OR y is B1, THEN z is C1

 Rule 2 : If x is A2 AND y is B2, THEN z is C2

 Rule 3 : If x is A1, THEN z is C3

 The membership functions of the input and output variables are given in Fig. P12.17. Actual

inputs are x1 and y1. Find the output z by applying standard fuzzy operation: min for AND, and

max for OR.

1 1

0.5
0.7

0.2 0.1

1

0
z

A1 A2 A3 B1 C1 C2 C3

y1
yx1 20 35

3025

7055

60 65

100
x

mm m

B2

Fig. P12.17

Find a crisp control output for the

following sensor readings:

Dirt = 60; Grease = 70

824 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 12.18 A fuzzy controller is acting according to the following rule base (N = negative, P = positive):

 R1 : If x1 is N AND x2 is N, THEN u is k1

 R2 : If x1 is N OR x2 is P, THEN u is k2

 R3 : If x1 is P OR x2 is N, THEN u is k2

 R4 : If x1 is P AND x2 is P, THEN u is k3

 The membership functions of the input variables are given in Fig. P12.16 and the membership

functions of the output variable (which is a controller action) u are singletons placed at k1 = 1, k2

= 2, k3 = 3. Actual inputs are x1 = 2.5 and x2 = 4. Find u by applying standared fuzzy operations:

min for AND, and max for OR.

 12.19 Consider a two-dimensional sinc equation defined by

y = sinc(,)
sin()sin()

x x
x x

x x
1 2

1 2

1 2

=

 Training data are sampled uniformly from the input range [–10, 10] ¥ [–10, 10]. With two

symmetric triangular membership functions assigned to each input variable, construct a Sugeno

fuzzy model architecture for the sinc function. Give defining equations for determination of the

premise and consequent parameters of the model.

 12.20 To identify the nonlinear system

y = 1 1
0 5

2
1

3
1 5

2
+ + +()- -() () (). .x x x

 we assign two membership functions to each input variable. Training and testing data are sampled

uniformly from the input ranges [1,6] ¥ [1,6] ¥ [1,6], and [1.5,5.5] ¥ [1.5,5.5] ¥ [1.5,5.5],

respectively. Extract Sugeno fuzzy rules from the numerical input-output training data that could

be employed in an ANFIS model.

 12.21 Assume that a fuzzy inference system has two inputs x1 and x2, and one output y. The rule base

contains two Sugeno fuzzy rules as follows:

 Rule 1: IF x1 is A11~
 and x2 is A21~

 THEN y(1) = a0
(1) + a1

(1) x1 + a2
(1) x2

 Rule 2: IF x1 is A12~
 and x2 is A22~

 THEN y(2) = a0
(2) + a1

(2) x1 + a2
(2) x2

 Aij~
 are Gaussian functions.

 For given input values x1 and x2, the inferred output is calculated by

ŷ =
m m

m m

() () () ()

() ()

1 1 2 2

1 2

y y+
+

 where m(r), r = 1, 2 are firing strengths of the two rules. Product inference is used to calculate the

firing strengths of the rules.

 Develop ANFIS architecture for this modeling problem, and derive learning algorithms based on

least squares estimation and the gradient-descent methods.

 12.22 Consider a fuzzy model (Mamdani architecture) for a manufacturing process. The process

is characterized by two input variables, x1 and x2, and one output variable y. The membership

function distribution (isosceles triangles of base widths q1, q2, q3) of x1, x2 and y are shown in

Fig. P12.22, and a rule base is given in Table P12.22. Determine the output of the model for x1 =

10, x2 = 28.

Fuzzy Logic and Neuro-Fuzzy Systems 825

x2 Æ
 x1

 Ø

A21

A22

A23

A24

A11

S

S

M

L

A12

S

M

L

L

A13

M

M

L XL~

A14

M

L XL~ XL~

Fig. P12.22

826 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 12.23 Consider a fuzzy model (Sugeno architecture) for a manufacturing process. The process is

characterized by two input variables, x1 and x2, and one output variable, y. The membership

function distributions of x1 and x2 are shown in Fig. P12.23. Domain intervals of xi are divided

into Ki = 3 fuzzy sets. Therefore, there is a maximum of K1 ¥ K2 = 9 feasible rules. The output of

the rth rule is expressed as

ˆ()y r
 = aj

(r) x1 + bk
(r) x2

 where j, k = 1, 2, 3; a1
(r) = 1, a2

(r) = 2 and a3
(r) = 3 if x1 is found to be

A11,

A12 and

A13, respectively;

b1
(r) = 1, b2

(r) = 2, b3
(r) = 3 if x2 is found to be

A21,

A22 and

A23, respectively. Determine the output

of the model if x1 = 6.0 and x2 = 2.2.

Fig. P12.23

 Optimization with Genetic Algorithms 827

13.1 EVOLUTIONARY ALGORITHMS

The adaptation of creatures to their environments results from the interaction of two processes: evolution

and learning. Evolution is a slow stochastic process at the population level that determines the basic

structures of a species. Evolution operates on biological entities, rather than on the individuals themselves.

At the other end, learning is a process of gradually improving an individual’s adaptation capability to its

environment by tuning the structure of the individual.

Evolution is based on the Darwinian model, also called the principal of natural selection or survival of

the fittest. All the living organisms have a specific genetic material containing information about them

and allowing them to transfer their features to new generations. During reproduction, a new organism is

created, which takes certain features after its parents, but also has certain features specific to itself. This

organism starts to live in a given environment. If it turns out that it is well fit to the environment, it will

transfer its genetic material to its offspring. The individual that is poorly fit to the environment will find

it difficult to live in this environment and hence, transfer its genetic material to subsequent generations.

 The presented idea has been applied to solve optimization problems. It turns out that an analogous

approach to numerical calculations can be proposed using so-called evolutionary algorithms. The

environment is defined on the basis of the problem to be solved. A population of individuals constituting

potential solutions of a given problem lives in this environment. With the use of appropriately defined

fitness function, we check to what extent they are adapted to the environment. Individuals exchange

solutions (genetic material) and generate new solutions. Among the potential solutions, only the best-fit

ones ‘survive’. A family of evolutionary algorithms constitutes classical genetic algorithms, evolution

strategies, evolutionary programming, and genetic programming.

 Recently, more and more computational techniques inspired by biological adaptive systems (such as the

collective behavior of animals and insects, as well as the immune systems of mammals) are emerging.

The three well-known population-based optimization methods in this category are particle swarm

optimization, the immune algorithm, and the ant-colony optimization. All these algorithms belong to a

branch of swarm intelligence, an emergent collective intelligence of groups of simple agents. They are

general optimization methods and can be used for discrete and continuous function optimization.

Chapter 13

Optimization with
Genetic Algorithms

828 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 Our focus in this chapter is on genetic algorithm—an evolutionary algorithm which is both the simplest

and the most general, for optimization. The application of genetic algorithm to the learning of neural

networks as well as to the structural and parametric adaptations of fuzzy systems, will also be described.

13.2 GENETIC ALGORITHMS

13.2.1

Biological evolution is an appealing source of inspiration for addressing optimization problems. Evolution

is, in effect, a method of searching among an enormous number of possibilities for ‘solu tions’. In biology,

the enormous set of possibilities is the set of possible genetic sequences, and the desired ‘solutions’ are

highly fit organisms—organisms well able to survive and repro duce in their environments. Of course,

the fitness of a biological organism depends on many factors—for example, how well it can weather

the physical characteristics of the environment, and how well it can compete with, or cooperate with,

the other organisms around it. The fitness criteria continually changes as creatures evolve; so evolution

is searching a constantly changing set of possibilities. Searching for solutions in the face of changing

conditions is precisely what is required for adaptive computer programs. Furthermore, evolution is a

massively parallel search method: rather than work on one species at a time, evolution tests and changes

millions of species in parallel. Finally, the ‘rules’ of evolution are remarkably simple: species evolve

by means of random variation (via mutation, recombination and other parameters), followed by natural

selection in which the fittest tend to survive and reproduce; thus, propagating their genetic material to

future generations. Yet, these simple rules are thought to be responsible, in large part, for the extraordinary

variety and complexity we see in the biosphere.

Knowledge of biological terminology, though not necessary, may help better appreciation of genetic

algorithms. All living organisms consist of cells, and each cell contains the same set of one or more

chromosomes—strings of DNA (deoxyribonucleic acid). A chromosome can be conceptually divided

into genes—functional blocks of DNA, each of which encodes a particular protein. Very roughly, one

can think of a gene as encoding a trait, such as eye color. The different possible ‘settings’ for a trait

(e.g., blue, brown, hazel) are called alleles. Each gene is located at a particular locus (position) on the

chromosome.

Many organisms have multiple chromosomes in each cell. The com plete collection of genetic material (all

chromosomes taken together) is called the organism’s genome. The term genotype refers to the particular

set of genes contained in a genome. The genotype gives rise, under foetus and later development, to the

organism’s phenotype—its physical and mental characteristics, such as eye color, height, brain size and

intelligence.

Organisms whose chromosomes are arrayed in pairs are called diploid; organisms whose chromosomes

are unpaired are called haploid. In nature, most sexually reproducing species are di ploid, including

human beings. In diploid sexual reproduction, recombination (or crossover) occurs: in each parent,

genes are exchanged between each pair of chromosomes to form a gamete (a single chromosome), and

then gametes from the two parents pair up to create a full set of diploid chromosomes. In haploid sexual

reproduction, genes are exchanged between the two parents’ sin gle-strand chromosomes. Offsprings are

subject to mutation, in which single nucleotides (elementary bits of DNA) are changed from the parents

 Optimization with Genetic Algorithms 829

to offsprings; mutation may cause the chromosomes of children to be different from those of their

biological parents. The fitness of an organism is typically defined as the probabili ty that the organism

will live to reproduce (viability), or as a function of the number of offspring the organism has (fertility).

The basic idea of a genetic algorithm is very simple. The term chromosome typically refers to a candidate

solution to a problem, typically stored as strings of binary digits (1s and 0s) in the computer’s memory.

The ‘genes’ are short blocks of adjacent bits that encode a particular element of the candidate solution

(e.g., in the context of multiparameter function optimization, the bits encoding a particular parameter

might be considered to be a gene). An ‘allele’ in a bit string, is either 0 or 1. Crossover typically consists

of exchanging genetic material between two single-chromosome haploid parents. Mutation consists of

flipping the bit at a randomly-chosen locus.

Most applications of genetic algorithms employ haploid individu als, particularly, single-chromosome

individuals. The genotype of an individual, in a genetic algorithm using bit strings, is simply the

configuration of bits in that individual’s chromosome.

13.2.2

The current literature identifies three main types of search methods: calculus-based, enumerative and

random. Calculus-based methods have been studied extensively. These subdivide into two main classes:

indirect and direct. Indirect methods seek local extrema by solving the usually nonlinear set of equations,

result ing from setting the gradient of the objective function equal to zero. Given a smooth, unconstrained

function, finding a possible peak starts by restricting search to those points with slopes of zero in all

directions. On the other hand, direct (search) meth ods seek local optima by hopping on the function and

moving in a direction related to the local gradient. This is simply the notion of hill climbing: to find the

local best, climb the func tion in the steepest permissible direction.

Both the calculus-based methods are local in scope: the optima they seek are the best in a neighborhood

of the current point. Clearly, starting the search procedures in the neighborhood of the lower peak will

cause us to miss the main event (the higher peak). Furthermore, once the lower peak is reached, further

improvement must be sought through random restart or other trick ery. Another problem with calculus-

based methods is that, they depend upon the existence of derivatives (well-defined slope values). Even if

we allow numerical approximation of derivatives, this is a severe shortcoming. The real world of search

is fraught with discontinuities and vast multimodal (i.e., consisting of many ‘hills’) noisy search spaces;

methods depending upon re strictive requirements of continuity and derivative existence, are unsuitable

for all, but a very limited, problem domain.

Enumerative schemes have been considered in many shapes and sizes. The idea is fairly straightforward:

within a finite search space, the search algorithm starts looking at objective function values at every point

in the space, one at a time. Although the simplic ity of the type of algorithm is attractive, and enumeration

is a very human kind of search, such schemes have applications wherein the number of possibilities is

small. Even the highly touted enumerative scheme, dynamic programming, breaks down on problems of

moderate size and complexity.

Random walks and random schemes that search and save the best, in the long run, can be expected

to do no better than enumerative schemes. We must be careful to separate the strictly random search

830 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

methods from randomized techniques. The genetic algorithm is an example of a search procedure that

uses random choice as a tool, to guide a highly exploitative search through a coding of parameter space.

Using random choice as a tool in a directed search process seems strange at first, but nature contains

many examples.

The traditional schemes have been used successfully in many applications; however, as more complex

problems are attacked, other methods will be necessary. We shall soon see how genetic algorithms help

attack complex problems [146].

The GA literature describes a large number of successful applica tions, but there are also many cases

in which GAs perform poorly. Given a potential application, how do we know if a GA is a good

method to use? There is no rigorous answer, though many re searchers share the intuitions that if

the space to be searched is large, is known not to be perfectly smooth and unimodal, or is not well

understood; or if the fitness function is noisy; and if the task does not require a global optimum to

be found—i.e., if quickly finding a sufficiently good solution is enough—a GA will have a good

chance of being competitive or surpassing other methods. If the space is not large, it can be searched

exhaus tively by enumerative search methods, and one can be sure that the best possible solution has

been found, whereas a GA might give only a ‘good’ solution. If the space is smooth and unimodal,

a gradient ascent algorithm will be much more efficient than a GA. If the space is well understood,

search methods using domain-specific heuristics can often be designed to outperform any

general-purpose method such as a GA. If the fitness function is noisy, a one-candidate-solution-at-a-time

search method such as simple hill climbing might be irrecoverably led astray by the noise; but GAs, since

they work by accumulating fitness statis tics over many generations, are thought to outperform robustly

in the presence of small amounts of noise.

These intuitions, of course, do not rigorously predict when a GA will be an effective search procedure,

competitive with other procedures. It would be useful to have a mathematical characteri zation of how

the genetic algorithm works, that is, predictive. Research on this aspect of genetic algorithms has not yet

produced definite an swers.

13.2.3

Simple genetic algorithms require the natural parameter set of the problem to be coded as a finite-

length string of binary bits 0 and 1. For example, given a set of two-dimensional data ((x, y) data

points), we want to fit a linear curve (straight line) through the data. To get a linear fit, we encode the

parameter set for a line y = q1x + q2, by creating independent bit strings for the two unknown constants q1

and q2 (parameter set describing the line) and then joining them (concatenating the strings). A bit string

is a combination of 0s and 1s, which represents the value of a number in binary form. An n-bit string can

accommodate all integers up to the value 2n –1.

For problems that are solved by the genetic algorithm, it is usually known that the parameters, that are

manipulated by the algorithm, will lie in a certain fixed range, say {qmin, qmax}. A bit string may then be

mapped to the value of a parameter, say qi, by the mapping

 Optimization with Genetic Algorithms 831

 qi = qmini +
b

L2 1-
 (qmaxi – qmin i) (13.1)

where ‘b’ is the number in decimal form that is being represented in binary form (e.g., 152 may be

represented in binary form as 10011000), L is the length of the bit string (i.e., the number of bits in each

string), and qmax and qmin are user-specified con stants, which depend on the problem in hand.

The length of the bit strings is based on the handling capacity of the computer being used, i.e., how

long a string (strings of each parameter are concatenated to make one long string repre senting the whole

parameter set) the computer can manipulate at an optimum speed.

Let us consider the data set in Table 13.1. For performing a line (y = q1x + q2) fit, as mentioned earlier,

we encode the parameter set (q1, q2) in the form of binary strings. We take the string length to be 12 bits.

The first six bits encode the parameter q1, and the next six bits encode the parameter q2.

Data number x y

1 1.0 1.0

2 2.0 2.0

3 4.0 4.0

4 6.0 6.0

The strings (000000, 000000) and (111111, 111111), represent the points (qmin1, qmin2) and (qmax1, qmax2),

respectively, in the parameter space for the parameter set (q1, q2). Decoding of (000000) and (111111) to

decimal form gives 0 and 63, respective ly. However, problem specification may impose different values

of minimum and maximum for qi. We assume that the minimum value to which we would expect q1 or

q2 to go would be –2, and the maximum would be 5.

Therefore,

qmini = –2, and qmaxi = 5

Consider a string (a concatenation of two substrings)

 000111 010100 (13.2)

representing a point in the parameter space for the set (q1, q2). The decimal value of the substring

(000111) is 7 and that of (010100) is 20. This, however, does not give the value of the parameter set (q1,

q2) corresponding to the string in (13.2). The mapping (13.1) gives the value:

q1 = qmin1 +
b

L2 1-
 (qmax1 – qmin1) = –2 +

7

2 16 -
 (5 – (–2)) = –1.22

q2 = qmin2 +
b

L2 1-
 (qmax2 – qmin2) = –2 +

20

2 16 -
 (5 – (–2)) = 0.22

832 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

A fitness function takes a chromosome (binary string) as an input, and returns a number that is a measure

of the chromosome’s performance on the problem to be solved. Fitness function plays the same role in

GAs as the environment plays in natural evolution. The interaction of an individual with its environment,

provides a measure of fitness to reproduce. Similar ly, the interaction of a chromosome with a fitness

function, provides a measure of fitness that the GA uses when carrying out reproduction. Genetic

algorithm is a maximization routine; the fitness function must be a non-negative figure of merit.

It is often necessary to map the underlying natural objective function to a fitness function form through

one or more mappings. If the optimization problem is to minimize cost function J (p), where p denotes

the parameter set, then the following cost-to-fitness transformation may be used:

 J(p) =
1

J ()p + e
 (13.3)

where e is a small positive number. Maximization of J can be achieved by minimization of J ; so the

desired effect is achieved.

Another way to define the fitness function is to let

 J(p(k)) = – J (p(k)) + max (())
()p

p
k

J k{ } (13.4)

The minus sign in front of the J (p(k)) term turns the minimiza tion problem into a maximization problem

and max (())
()p

p
k

J k{ } term is needed to shift the function up, so that J (p(k)) is always positive; k is the

iteration index.

A fitness function can be any nonlinear, nondifferentiable, discontinuous, positive function because the

algorithm only needs a fitness value assigned to each string.

For the problem in hand (fit a line through a given data set), let us choose a fitness function. Using

decoded values of q1 and q2 of a chromosome, and the four data values of x given in Table 13.2, calculate

ˆ()y p = q1x (p) + q2; p = 1, 2, 3, 4

These computed values of ˆ ()y p are compared with the correct values y(p), given in Table 13.2, and

square of errors in estimating the y’s is calculated for each string. The summation of the square of errors

is subtracted from a large number (400 in this problem) to convert the problem into a maximization

problem:

 J(p) = 400 – ˆ –() ()y yp p

p

()Â
2
; p = [q1 q2] (13.5)

The fitness value of the string (13.2) is calculated as follows:

 q1 = –1.22, q2 = 0.22

For x = 1.0, ˆ ()y 1 = q1x + q2 = –1.00

For x = 2.0, ˆ ()y 2 = – 2.22

For x = 4.0, ˆ ()y 3 = – 4.66

 Optimization with Genetic Algorithms 833

For x = 6.0, ˆ ()y 4 = – 7.10

 J(p) = 400 – ˆ () ()y yp p

p

-()
=

Â
2

1

4

 = 131.586

The basic element processed by a GA is the string formed by concatenating substrings, each of which is

a binary coding of a parameter of the search space. If there are N decision variables in an optimization

problem, and each deci sion variable is encoded as an n-digit binary number, then a chromosome is a

string of n ¥ N binary digits. We start with a randomly selected initial population of such chromosomes;

each chromosome in the population represents a point in the search space, and hence, a possible solution

to the problem. Each string is then decoded to obtain its fitness value, which determines the probability

of the chromosome being acted on by genetic operators. The population then evolves, and a new

generation is created through the application of genetic operators (The total number of strings included

in a population, is kept unchanged throughout generations, for computational economy and efficiency).

The new generation is expected to perform better than the previous gen eration (better fitness values).

The new set of strings is again decoded and evaluated, and another generation is created using the basic

genetic operators. This process is continued until convergence is achieved within a population.

Let q j(k) be a single parameter in chromosome j of generation k. Chromosome j is composed of N of

these parameters:

 p
j(k) = [q1

j(k), q2
j(k), …, qN

j(k)] (13.6)

The population of chromosomes, in generation k:

 P(k) = {p j(k)| j = 1, 2, ..., S} (13.7)

where S represents the number of chromosomes in the population. We want to pick S to be big enough, so

that the population ele ments can cover the search space. However, we do not want S to be too big, since

this increases the number of computations we have to perform.

For the problem in hand, Table 13.2 gives an initial population of 4 strings, the corresponding decoded

values of q1 and q2, and the fitness value for each string.

String number String q1 q2 J

1 000111010100 –1.22 0.22 131.586

2 010010001100 0.00 –0.67 323.784

3 010101101010 0.33 2.67 392.41

4 100100001001 2.00 –1.00 365.00

S J 1212.8

Av.J 303.2

Max.J 392.41

834 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Evolution occurs as we go from generation k to the next genera tion k + 1. Genetic operations of selection,

crossover and muta tion are used to produce a new generation.

Basically, according to Darwin, the most qualified (fittest) creatures survive to mate. Fitness is

determined by a creature’s ability to survive predators, pestilence, and other obstacles to adulthood

and subsequent reproduction. In our una bashedly artificial setting, we quantify ‘most qualified’ via a

chromosome’s fitness J(p j(k)). The fitness function is the final arbiter of the string-creature’s life or

death. Selecting strings according to their fitness values means that the strings with a higher value have

a higher probability of contributing one or more offspring in the next generation.

Selection is a process in which good-fit strings in the popula tion are selected to form a mating pool,

which we denote by

 M(k) = {m
j(k) | j = 1, 2, ..., S} (13.8)

The mating pool is the set of chromosomes that are selected for mating. A chromosome is selected for

mating pool according to the probability proportional to its fitness value. The probability for selecting

the ith string is

 pi =
J k

J k

i

j

j

S

p

p

()

()

()

()Â
= 1

 (13.9)

For the initial population of four strings in Table 13.2, the probability for selecting each string is calculated

as follows:

 p1 =
131 586

131 586 323 784 392 41 365

131 586

1212 8

.

. . .

.

.+ + +
= = 0.108

 p2 =
323 784

1212 8

.

.
 = 0.267; p3 =

392 41

1212 8

.

.
 = 0.324; p4 =

365 00

1212 8

.

.
 = 0.301

To clarify the meaning of the formula and, hence, the selection

strategy, Goldberg [146] uses the analogy of spinning a unit-

circumference roulette wheel; the wheel is cut like a pie into S

regions where the ith region is associated with the ith element of

P(k). Each pie-shaped region has a portion of the circumfer ence

that is given by pi in Eqn. (13.9).

The roulette wheel for the problem in hand is shown in Fig. 13.1.

String 1 has solution probability of 0.108. As a result, String 1

is given 10.8% slice of the roulette wheel. Similarly, String 2 is

given 26.7% slice, String 3 is given 32.4% slice and String 4 is

given 30.1% of the roulette wheel.

You spin the wheel, and if the pointer points at region i when the

wheel stops, then you place pi into the mating pool M(k). You

26.7%

10.8%
1

2

4

3

32.4%

30.1%

0
100

10.8

37.5

67.6

 Optimization with Genetic Algorithms 835

spin the wheel S times, so that S strings end up in the mating pool. Clearly, the strings which are more fit

will end up with more copies in the mating pool; hence, chromosomes with larger-than-average fitness,

will embody a greater portion of the next generation. At the same time, due to the probabilistic nature

of the selection process, it is possible that some relatively unfit strings may end up in the mating pool.

For the problem in hand, the four spins might choose strings 3, 3, 4 and 2 as parents (String 1 also may

be selected in the process of roulette wheel spin; it is just the luck of the draw. If the roulette wheel were

spun many times, the average results would be closer to the expected values).

We think of crossover as mating in biological terms, which, at the fundamental biological level, involves

the process of combining chromosomes. The crossover operation operates on the mating pool M(k).

First, specify the ‘crossover probability’ pc (usually chosen to be near one, since, when mating occurs in

biological systems, genetic material is swapped between the parents).

 The procedure for crossover consists of the follow ing steps:

 (i) Randomly pair off the strings in the mating pool M(k). If there are an odd number of strings in

M(k), then, for instance, simply take the last string and pair it off with another string which has

already been paired off.

 (ii) Consider chromosome pair (p j, pi) that was formed in Step 1. Generate a random number r Œ [0, 1].

 (a) If r < pc, then crossover p j and pi. To crossover these chromosomes, select at random a ‘cross

site’ and exchange all bits to the right of the cross site of one string, with those of the other.

This process is pictured in Fig. 13.2. In this exam ple, the cross site is position four on the

string, and hence we swap the last eight bits between the two strings. Clearly, the cross site

is a random number between one and the number of bits in the string, minus one.

 (b) If r > pc, then the crossover will not take place; hence, we do not modify the strings.

 (iii) Repeat Step 2 for each pair of strings that is in M(k).

For the problem in hand, Table 13.3 shows the power of crossover. The first column shows the four strings

selected for mating pool. We randomly pair off the strings. Suppose that random choice of mates has

selected the first string in the mating pool, to be mated with the fourth. With a cross site 4, the two strings

cross and yield two new strings as shown in Table 13.3. The remaining two strings in the mating pool are

crossed at site 9; the resulting strings are given in the table.

836 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

String

number

Mating pool Couples After crossover q1 q2 J

3 010101 101010 0101 | 01 101010 010110 001100 0.44 – 0.67 370.574

3 010101 101010 0100 | 10 001100 010001 101010 – 0.11 2.67 378.311

4 100100 001001 010101 101 | 010 010101 101001 0.33 2.56 392.794

2 010010 001100 100100 001 | 001 100100 001010 2.00 –0.89 362.972

S J 1504.7

Av.J 376.163

Max.J 392.794

In nature, an offspring inherits genes from both the parents. The crossover process creates children

strings from the parent strings. The children strings thus produced, may or may not, have combination

of good substrings from parents strings, but we don’t worry about this too much, because if good strings

are not created by crossover, they will not survive too long because of the selection operator. If good

strings are created by crossover, there will be more copies of it in the next mating pool generated by the

selection operator.

Besides the fact that crossover helps to model the mating part of the evolution process, why should the

genetic algorithm perform crossover? Basically, the crossover operation perturbs the param eters near

good positions to try to find better solutions to the optimization problem. It tends to help perform a

localized search around the more fit strings (since, on average, the strings in the generation k mating pool

are more fit than the ones in the gen eration k population).

Selection according to fitness, combined with

crossover, gives genetic algorithms the bulk of their

processing power. Mutation plays a secondary role in

the operation of GAs. Mutation is needed because,

occasionally, chro mosomes may lose some potentially

useful genetic material. In artificial genetic systems,

mutation is realized by inverting a randomly chosen

bit in a string. This is illustrated in Fig. 13.3.

Besides the fact that this helps to model mutation in a biologi cal system, why should the genetic algorithm

perform mutation? Basically, it provides random excursions into new parts of the search space. It is

possible that we will get lucky and mutate to a good solution. It is the mechanism that tries to make sure

that we do not get stuck at a local maxima, and that we seek to explore other areas of the search space

to help find a global maximum for J(p). Usually, the mutation probability pm is chosen to be quite small

(e.g., less than 0.01) since this will help guar antee that all the strings in the mating pool are not mutated

so that any search progress that was made is lost (i.e., we keep it relatively low to avoid degradation to

exhaustive search via a random walk in the search space).

 Optimization with Genetic Algorithms 837

After mutation, we get a modified mating pool M(k). To form the next generation for the population, we

let

 P(k + 1) = M(k) (13.10)

where this M(k) is the one that was formed by selection and modified by crossover and mutation. Then

the above steps repeat, successive generations are produced, and we thereby model evolu tion (of course,

it is a very crude model).

While the biological evolutionary process continues, perhaps indefinitely, we would like to terminate our

artificial one and find the following:

 (1) The population string—say, p*(k)—that best maximizes the fitness function. Notice that, to

determine this, we also need to know the generation number k where the most fit string existed (it

is not necessarily in the last generation). A computer code, implementing the genetic algorithm,

keeps track of the highest J value, and the generation number and string that achieved this value

of J.

 (2) The value of the fitness function J(p*(k)).

There is then the question of how to terminate the genetic algo rithm. There are many ways to terminate

a genetic algorithm, many of them similar to termination conditions used for conventional optimization

algorithms. To introduce a few of these, let e > 0 be a small number and n1 > 0 and n2 > 0 be integers.

Consider the following options for terminating the GA:

 (1) Stop the algorithm after generating the generation P(n1)—that is, after n1 generations.

 (2) Stop the algorithm after at least n2 generations have occurred and, at least n1 steps have occurred

when the maximum (or average) value of J for all population members has increased by no more

than e.

 (3) Stop the algorithm once J takes on a value above some fixed value.

The above possibilities are easy to implement on a computer but, sometimes, you may want to watch the

parameters evolve and decide yourself when to stop the algorithm.

A set of parameters is predefined to guide the genetic algorithm, such as follows:

 (1) the length of each decision variable encoded as a binary string;

 (2) the number of chromosomes to be generated and operated in each generation, i.e., population size;

 (3) the crossover probability pc;

 (4) the mutation probability pm; and

 (5) and the stopping criterion.

Example 13.1

Consider the problem of maximizing the function

838 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 J(q) = q 2 (13.11)

where q is permitted to vary between 0 and 31.

To use a GA, we must first code the decision variables of our problem as some finite length string. For

this problem, we will code the variable q simply as a binary unsigned integer of length 5. With a five-

bit unsigned integer, we can obtain numbers between 0 (00000) and 31 (11111). The fitness function is

simply defined as the function J(q).

To start off, we select an initial population at random. We select a population of size 4. Table 13.4 gives

the selected initial population, decoded q values, and the fitness function values J(q). As an illustration of

the calculations done, let’s take a look at the third string of the initial population, string 01000. Decoding

this string gives q = 8, and the fitness J(q) = 64. Other q and J(q) values are obtained similarly.

The mating pool of the next generation may be selected by spin ning a roulette wheel. Alternatively, the

roulette-wheel tech nique may be implemented using a computer algorithm:

 (i) Sum the fitness of all the population members, and call this result the total fitness SJ.

 (ii) Generate r, a random number between 0 and total fitness.

 (iii) Return the first population member whose fitness, added to the fitness of the preceding population

members (running total), is greater than or equal to r.

We generate numbers randomly from the interval [0, 1170] (refer to Table 13.4). For each number, we

choose the first chromosome for which the running total of fitness is greater than, or equal to, the random

number. Four randomly generated numbers are 233, 9, 508, 967; String 1 and String 4 give one copy to

the mating pool, String 2 gives two copies, and String 3 gives no copies.

With the above active pool of strings looking for mates, simple crossover proceeds in two steps:

(1) strings are mated randomly, and (2) mated-strings couples crossover. We take the crossover proba-

bility pc = 1. Looking at Table 13.5, we find that, random choice of mates has selected the second string

in the mating pool to be mated with the first. With a crossing site of 4, the two strings 01101, and 11000

cross and yield two new strings, 01100 and 11001. The remaining two strings in the mating pool are

crossed at site 2; the resulting strings are given in Table 13.5.

String number Initial population q J(q) Running total

1 01101 13 169 169

2 11000 24 576 745

3 01000 8 64 809

4 10011 19 361 1170

S J 1170

Av.J 293

Max.J 576

 Optimization with Genetic Algorithms 839

Mating pool New population q J(q)

0110 1

1100 0

01100 12 144

11001 25 625

11 000

10 011

11011 27 729

10000 16 256

S J 1754

Av. J 439

Max. J 729

 The last operator, mutation, is performed on a bit-by-bit basis. We assume that the probability of muta-

tion in this test is 0.001. With 20 transferred bit positions, we should expect 20 ¥ 0.001 = 0.02 bits to

undergo mutation during a given generation. Simula tion of this process indicates that no bits undergo

mutation for this probability value. As a result, no bit positions are changed from 0 to 1, or vice versa,

during this generation.

Following selection, crossover and mutation, the new population is ready to be tested. To do this, we

simply decode the new strings created by the simple GA, and calculate the fitness func tion values from

the q values thus decoded. The results are shown in Table 13.5. While drawing concrete conclusions from

a single trial of a stochastic process is, at best, a risky business, we start to see how GAs combine high-

performance notions to achieve better performance. Both the maximal and average performance have

improved in the new population. The population average fitness has improved from 293 to 439 in one

generation. The maximum fitness has increased from 576 to 729 during that same period.

13.3

Fuzzy inference systems (discussed in Chapter 12) are highly nonlinear systems with many input and

output variables. The knowledge base for the design of these systems (refer to Fig.12.29) consists of data

base (membership functions for input and output variables) and rule base. Crucial issues in the design are

the tasks of selecting appropriate membership functions, and the generation of fuzzy rules. These tasks

require experience and expertise. Genetic algorithms may be employed for

 tuning of membership functions, while the rule base remains unchanged;

 generating a rule base when a set of membership functions for input/output variables remains

unchanged; or

 for both of these tasks simultaneously.

We will limit our presentation to the first task, i.e., tuning of membership functions while the rule base

remains unchanged.

840 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

13.3.1

The effectiveness of the fuzzy system operation could be increased by appropriate tuning of the fuzzy

sets. The GA modifies membership functions by changing the location of characteristic points of their

shapes. The information on characteristic points of the membership functions is coded in chromosomes.

After the appropriate representation of fuzzy sets in the chromosome has been selected, the GA operates

on the population of individuals, i.e., on the population of chromosomes containing coded shapes of

fuzzy membership functions, according to the genetic cycle comprising the following steps:

 1. Decoding each of the individuals (chromosomes) of the population, recreating the set of

membership functions, and constructing an appropriate fuzzy system. The rule base is predefined.

 2. Evaluating the performance of the fuzzy system on the basis of the difference (error) between

the system’s responses and the desired values. This error defines the individual’s (chromosome’s)

fitness.

 3. Selection and application of genetic operators, such as crossover and mutation, and obtaining a

new generation.

Example 13.2

Let us consider the application of GA to the fuzzy model of a manufacturing process, described in

Problem 12.22. The process is characterized by two input variables, x1 and x2, and one output variable,

y. The membership function distributions of the inputs and the output are shown in Fig. P12.22, and the

predefined rule base is given in Table P12.22.

 The membership functions have the shape of isosceles triangles, which may be described by means of

characteristic points in the following manner: the vertices of the triangles are fixed, and the base-widths

q1, q2, and q3 (refer to Fig. P12.22) are tunable. The ranges of the tunable parameters are assumed to be

2 £ q1 £ 4; 5 £ q2 £ 15; 0.5 £ q3 £ 1.5 (13.12)

Let us code these fuzzy sets in chromosomes by placing

characteristic parameters one by one, next to each other

(Fig.13.4). Starting from the leftmost position, L bits are

assigned for parameter q1. Each of the parameters q1, q2,

q3, may be assigned different number of bits depending

on their ranges. However, for simplicity of presentation, we assign L = 5 in each of the three cases. Thus,

the GA-string is 15 bits long.

An initial population for the GA is created at random. We assume that the first chromosome of this

randomly selected population is

 10110 01101 11011 (13.13)

 The mapping rule (13.1) is used to determine the real values of the parameters qi; i = 1, 2, 3, represented

by this string. The decoded value b of the binary substring 10110 is equal to 22. Therefore, the real value

of q1 is given by (refer to Fig.P12.22, and parameter values (13.12))

q1 = q q q1 1 1 52 1
2

22

2 1
4 2 3 419355min max min () .+

-
-() +

-
-

b
L

= =

q1 q2 q3

 Optimization with Genetic Algorithms 841

 The real values of q2 and q3, corresponding to their respective substrings in (13.13), are 9.193548 and

1.370968, respectively. Figure 13.5 shows the modified membership distributions of input and output

variables.

 The GA optimizes the database (tunes the membership functions) with the help of a set of training

examples. Assume that we are given P training examples {x
(p), y(p); p = 1,2,…,P}. Further, we take first

training example (p = 1) as {x1 = 10, x2 = 28, y = 3.5}.

 For the inputs x1 = 10, x2 = 28, we calculate the predicted value of the output, ŷ, of the fuzzy model when

the model parameters are given by the first chromosome in the initial population. This is done using the

procedure given in Section 12.4. This will give us the absolute value of error in prediction: e1 = | 3.5 – ŷ|.

 From this procedure, repeated on all the training examples, we can obtain the average value of absolute

errors in prediction,

842 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 e =
1

1
P

ep

p

P

=
Â

Since GA is a maximization algorithm, we may choose the fitness function

 J =
1

e + e

where e is a small positive number,

 The population of GA-strings is then modified using different operators, such as selection, crossover and

mutation, and after a few generations, the GA will be able to evolve an optimal fuzzy system.

 Neural-network learning is a search process for the minimization of a performance criterion (error

function). In order to make use of existing learning algorithms, one needs to select a lot of parameters

such as the number of layers, the number of units in each layer, the manner of their connection, the

activation functions, as well as learning parameters. Learning process is usually carried out with the use

of error backpropagation for connection weights, and trial-and-error approach for the other parameters.

These design steps sometimes need quite a lot of time and experience, but genetic algorithms can be

helpful here.

Genetic algorithms can be introduced into neural networks at many different levels:

 learning of connection weights including biases;

 determination of optimal architecture; or

 the simultaneous determination of architecture and weights.

We will limit our presentation to the first task, i.e., the use of genetic algorithms to the problems of

optimization of neural network weights.

 The gradient-based algorithms for learning weights of neural networks usually run multiple times to avoid

local minima, and also gradient information must be available. Two of the most important arguments for

the use of genetic algorithms to the problems of optimization of neural network weights, are

 a global search of space of weights, avoiding local minima; and

 useful for problems where obtaining gradient information is difficult or expensive.

It is important to mention that when gradient information is readily available, the gradient-based methods

could be more effective in terms of computation speed, than the GA for weight optimization of neural

networks. In fact, there is no clear winner in terms of the best training algorithm, since the best method

is always problem dependent. The hybrid of genetic algorithm and gradient algorithm is an effective

alternative.

 Optimization with Genetic Algorithms 843

With a fixed topology, the weights of a neural network are coded in a chromosome. Each individual of

the population is determined by a total set of neural network weights. The order of placing the weights in

the chromosome is arbitrary, but cannot be changed after the process of learning begins.

The fitness of individuals will be evaluated on the basis of the fitness function, defined as the sum of

squares of errors, being the differences between the network desired signal and network output signal

for different input data.

The genetic algorithm operates on the population of individuals (chromosomes representing neural

networks with the same architecture but with different weights values) according to the typical genetic

cycle comprising the following steps:

 1. Decoding each individual of the current population to the set of weights and constructing the

corresponding neural network with this set of weights; while the network architecture and the

learning rule are predefined.

 2. Calculating the total mean squared error of the difference between the desired signals and output

signals for all the input data. This error determines the fitness of the individual (constructed

network).

 3. Selection and application of genetic operators, such as crossover and mutation, and obtaining a

new generation.

REVIEW EXAMPLES

Review Example 13.1

Although applied in many complex industrial processes, fuzzy logic-based expert systems experience

a deficiency in knowledge acquisition, and rely, to a great extent, on empirical and heuris tic knowledge

which, in many cases, cannot be elicited objective ly. Fuzziness describes event ambiguity. It measures

the degree to which an event occurs, not whether it occurs. Fuzzy controller design involves the

determination of the linguistic state space, definition of membership grades of each linguistic term, and

the derivation of the control rules. The information on the above aspects can be gathered by interviewing

process operators, pro cess knowledge experts, and other sources of domain knowledge and theory.

The choice of a FLC depends more on the intuition of the design er, and its effectiveness depends on the

following parameters:

 (i) Selection of rule set.

 (ii) Number, shape and size of the membership functions of the input and output variables.

 (iii) Value of the normalizing factors for the input variables to the FLC.

 (iv) Value of the denormalizing factors for the output variables of the FLC.

Genetic Algorithm (GA) has a capability to guide in poorly under stood, irregular spaces. In the

following, we illustrate the use of GA in designing a FLC for the thermal system described in Review

Example 11.2. We design FLC by tuning only the normaliz ing and denormalizing factors.

844 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 The proposed fuzzy controller has two input variables (refer to Figs 12.33):

 e(k) – error between set-point and actual temperature of the tank,

 v(k) – rate of change of error;

and one output variable:

 Du(k) – incremental heat input to the tank.

The universe of discourse for all the three variables may be taken as [–1, 1]. Proposed membership

functions are shown in Fig. 13.6.

The selected rules are as follows:

Rate of

change of errorÆ

Error

Ø

N NZ P

N N N Z

NZ N Z P

P Z P P

The initial value of the system output is Y0. The initial veloci ty, and the initial output of the Fuzzy PI

controller are set to zero.

The scaling factors GE, GV and GU ¢ of the fuzzy controller may be tuned using genetic algorithm. Refer

to Appendix B for realization of the controller.

N P
1

1

Z P
1

N

–1 0 1

m

NZ

–0.1 0.1–1
e*, v*

m

Du*

 Optimization with Genetic Algorithms 845

Review Example 13.2

Problem P11.9 is concerned with optimization of the connection weights of the neural network shown

in Fig. P11.9, using gradient algorithm. In the following, we describe how a binary-coded GA could be

used (instead of gradient algorithm) to update the connection weights of this network.

 One of the GA-strings is given below, in which five bits (L = 5) are used to represent each connection

weight (all the weights are assumed to vary in the range 0.0 to 1.0):

{w11 w12 w21 w22 w31 w32 v1 v2 v3} =

10110 01011 01101 11011 10001 00011 11001 11110 11101 (13.14)

The parameter w11 is represented by the binary substring 10110. Its decoded value is b = 22. It varies in

the range of {w11
min

 , w11
max

 } = {0.0, 1.0}. Using the mapping rule (13.1), its real value can be determined

as follows:

w11 = w
b

w w
L11 11 11 52 1

0 0
22

2 1
1 0 0 0 0 709677min max min . (. .) .+

-
-() +

-
-= =

Similarly, the real values of all the parameters represented by the GA-string (13.14) can be calculated.

The real values are:

{w11, w12, w21, w22, w31, w32, v1, v2, v3} =

{0.709677, 0.354839, 0.419355, 0.870968, 0.548387, 0.096774, 0.806452,

0.967742, 0.935484} (13.15)

The first training pattern of the data {x
(p), y(p), p = 1,2,…. , P} is assumed to be {x1 = 0.6, x2 = 0.7,

y = 0.9}. The outputs of the hidden units for an input {x1 = 0.6, x2 = 0.7} and the connection weights

given by (13.15), are found as follows:

a1 = 0.674194; a2 = 0.861291; a3 = 0.396774; z1 = 0.662442; z2 = 0.702930; z3 = 0.597912

The activation value a of the neuron in the output layer is obtained as follows:

 a = v1z1 + v2z2 + v3z3 = 1.773820

and the predicted output of the network is

 ŷ =
e e

e e

a a

a a

-

+

-

-
 = 0.9440

Since the target output for this training pattern is equal to 0.9, the error in prediction is found to be equal

to 0.0440.

A population of GA-strings represents a number of candidate neural networks. When the batch mode of

training is adopted, the whole training data is passed through the neural network represented by a GA

string. This gives Mean Square Error (MSE):

 MSE =
1

1
P

p

P

=

Â (y(p) – ŷ
(p))2 (13.16)

846 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Since GA is a maximization algorithm, we may choose the fitness function

 J =
1

MSE + e
 (13.17)

where e is a small positive number.

The population of GA-strings is then modified using the selection, crossover, and mutation operators.

The GA, through its search, is expected to evolve an optimal neural network.

PROBLEMS

 13.1 The objective is to use GA to find the value of x that maximizes the function

 f (x) = sin (p x/256)

 over the range 0 £ x £ 255, where values of x are restricted to integers. The true solution to the

problem is x = 128, having function value equal to one.

 Explain the steps involved in GA. Use a random population of size 8, represent each individual in

the population with an 8-bit binary string (8 strings is the population), choose fitness function

 F(x) = f (x)/ S f (x)

 with summation over 8 strings, take crossover probability pc = 0.75 and zero mutation probability.

Show only one iteration by hand calculation.

 13.2 The objective is to minimize the function:

 f (x1, x2) = (x2
1 + x2 – 11)2 + (x2

2 + x1 – 7)2

 in the interval 0 £ x1, x2 £ 6. The true solution to the problem is [3, 2]T having a function value

equal to zero.

 Take up this problem to explain the steps involved in GA: maxi mizing the function

 F(x1, x2) =
1 0

1 0 1 2

.

. (,)+ f x x
; 0 £ x1, x2 £ 6.

 Step 1: Take 10 bits to code each variable. With 10 bits, what is the solution accuracy in the

interval (0, 6)?

 Step 2: Take population size equal to total string length, i.e., 20. Create a random population of

strings.

 Step 3: Consider the first string of the initial random popula tion. Decode the two substrings and

determine the corresponding parameter values. What is the fitness function value correspond ing

to each string? Similarly for other strings, calculate the fitness values.

 Step 4: Select good strings in the population to form the mating pool.

 Step 5: Perform crossover on random pairs of strings (the crosso ver probability is 0.8).

 Step 6: Perform bitwise mutation with probability 0.05 for every bit.

 The resulting population is the new population. This completes one iteration of GA and the

generation count is incremented by 1.

 Optimization with Genetic Algorithms 847

 13.3 A fuzzy logic-based expert system is to be developed that will work based on Sugano’s architecture

to predict the output of a process. The Data Base of the fuzzy system is shown in Fig.P13.3; x1

and x2 are two inputs with specified minimum values x1
min and x2

min
 respectively. The base-widths

q1 and q2 are assumed to vary in the ranges:

 0.8 £ q1 £ 1.5; 4.0 £ q2 £ 6.0

 There is a maximum of R = 4 feasible rules; the output of rth rule (r = 1, 2, …,R) is expressed as

follows:

 ˆ ()y r = a0
(r) + a1

(r)x1 + a2
(r)x2

 The parameters a0
(r), a1

(r), a2
(r) are assumed to vary in the range:

 0.001 £ a0
(r), a1

(r), a2
(r) £ 1.0

 To optimize the performance of the fuzzy system using GA, a set of training examples {x
(p), y(p);

p = 1, …, P} is used. A typical GA-string in the population of solutions is of the form:

 {q1 q2 a0
(1) a1

(1)a2
(1) a0

(2) a1
(2) a2

(2) a0
(3) a1

(3) a2
(3)a0

(4) a1
(4) a2

(4)}

 with 4 binary bits assigned to represent each of the parameters.

 Randomly select an initial population of solutions, and determine the deviation in prediction for

the training example {x
(1), y(1)} = {x1

(1) = 1.1, x2
(1) = 6.0, y(1) = 5.0} using the first GA-string.

 13.4 A fuzzy logic-based expert system is to be developed that will work based on Mamdani’s

architecture to predict the output of a process. The Data Base of the fuzzy system is shown in

Figs P13.3 and P13.4; x1 and x2 are two inputs with specified minimum values x1
min and x2

min,

respectively, and y is the output with specified minimum value ymin. The basewidths q1, q2 and q3

of these isosceles triangles are tunable. The ranges of the tunable parameters are assumed to be

 0.8 £ q1 £ 1.5; 4.0 £ q2 £ 6.0,; 0.5 £ q3 £ 3

848 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 The Rule Base of the fuzzy system is given in Table P13.4.

x2Æ
x1

Ø

A21

A22

A11

S

M

A12

M

L

 To optimize the performance of the fuzzy system using GA, a set of training examples {x
(p), y(p);

p = 1,…, P} is used. A typical GA-string in the population of solutions is of the form

{q1 q2 q3}

 with 4 binary bits assigned to represent each of the parameters.

 Randomly select an initial population of solutions, and determine the deviation in prediction for

the training example {x
(1), y(1)} = {x1

(1) = 1.1, x2
(1) = 6.0, y(1) = 5.0} using the first GA-string.

 13.5 Reconsider the neural network shown in Fig. P11.9, modified to include the bias weights: w10, w20

and w30, for the hidden units and bias weight, v0, for the output unit. All the bias weights vary in

the range 0.0 to 1.0.

 A binary-coded GA is used to update connection weights including biases. Extend the procedure

given in Review Example 13.2 to this modified network.

 Intelligent Control with Reinforcement Learning 849

14.1 INTRODUCTION

Reinforcement learning is a machine intelligence approach that emphasizes on learning by the individual

from direct interaction with its environment. This contrasts with classical approaches (discussed earlier

in Chapters 11 and 12) to machine learning which have focused on learning from exemplary supervision

or from expert knowledge of the environment. In this chapter, the coverage of reinforcement learning is

to be regarded as an introduction to the subject; a springboard to advanced studies. The inclusion of the

topic has been motivated by the observation that reinforcent learning control has the potential of solving

many nonlinear control problems.

Reinforcement learning is based on the common sense idea that if an action is followed by a satisfactory

state of affairs, or by an improvement in the state of affairs (as determined in some clearly defined

way), then the tendency to produce that action is strengthened, i.e., reinforced. Extending this idea to

allow action selections to depend on state information, introduces aspects of feedback. A reinforcement

learning system is, thus, any system that through interaction with its environment improves its

performance by receiving feedback in the form of a scalar reward (or penalty)—a reinforcement signal,

that is commensurate with the appropriateness of the response. The learning system is not told which

action to take, as in forms of machine learning discussed earlier in Chapters 11 and 12, but instead must

discover which actions yield the most reward by trying them. In the most interesting and challenging

cases, actions may affect not only the immediate reward but also the next situation, and through that

all subsequent rewards. These two characteristics—trial-and-error search and cumulative reward—

are the two important distinguishing features of reinforcement learning. Although the system’s initial

performance may be poor, with enough interaction with the environment, it will eventually learn an

effective strategy for maximizing cumulative reward.

Reinforcement learning is emerging as an important alternative to classical problem-solving approaches

to intelligent control (Chapters 11 and 12), because it possesses many of the properties for intelligent

control that classical approaches lack. Much of the classical intelligent control is an empirical science—

the asymptotic effectiveness of the learning systems has been validated only empirically. Recent advances

Intelligent Control with
Reinforcement Learning

Chapter 14

850 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

relating reinforcement learning to dynamic programming are providing solid mathematical foundation;

mathematical results that guarantee optimality in the limit for an important class of reinforcement

learning systems, are now available [147].

Reinforcement learning systems do not depend upon models of the environment, because they learn

through trial-and-error experience with the environment. However, when available, they can exploit this

knowledge to determine a good initial control policy; this results in faster convergence to optimal policy.

The use of neural networks (or other associative memory structures such as fuzzy systems) makes

reinforcement learning tractable on the realistic control problems with large state spaces. A neural

network has the key feature of generalization; experience with a limited subset of state space is usefully

generalized to produce a good approximation over a much larger subset. Intelligent control architectures

incorporating aspects of both the reinforcement learning and the supervised learning, generalize from

previously experienced states to ones that have never been experimented with. Empirical results based

on such architectures, have shown robust, efficient learning on a variety of nonlinear control problems.

14.2 ELEMENTS OF REINFORCEMENT

 LEARNING CONTROL

Consider building a controller for stabilization of dynamic system; the controller has a set of sensors to

observe the state of the dynamic system. In classical adaptive control strategies, the controller adjusts

its behavior on-line, in real-time, to the changing properties of the controlled process, measured as

a deviation of the actual process response from the process-model response. Reinforcement learning

control is, in fact, a new adaptive control strategy wherein the controller’s performance depends on a

sequence of decisions made by experimenting with the controlled process (model not known a priori)

and observing the consequences.

In a general formulation of reinforcement learning framework for solving sequential decision problems,

we see the reinforcement learning problem as a straightforward framing of the problem of learning from

interaction to achieve a goal. The learner and the decision-maker is called an agent. The thing it interacts

with, comprising everything outside the agent, is called the environment. These interact continually; the

agent selecting actions and the environment responding to these actions and presenting new situations

(states of the environment) to the agent. Figure 14.1 diagrams a generic agent perceiving its environment

through sensors and acting upon that environment through effectors. Reinforcement learning is learning

what to do—how to map states to actions—so as to maximize a numerical reward. The agent is not told

which actions to take; it must instead discover which actions yield the most reward by trying them. To

obtain a lot of reward, a reinforcement learning agent must prefer actions that it has tried in the past and

found to be effective in producing reward. But to discover such actions, it has to try actions that it has not

selected before. The agent has to exploit what it already knows by being greedy to maximize reward, but

it has also to explore in order to make better action selections in the future. The dilemma is that neither

exploitation nor exploration can be pursued exclusively without failing at the task. The agent must try

a variety of actions and progressively favor those that appear to be most effective. Although the agent’s

initial performance may be poor, with enough interaction with the environment, it will eventually learn

an effective policy for maximizing reward.

 Intelligent Control with Reinforcement Learning 851

Fig. 14.1 A generic agent

Beyond the agent and the environment, one can identify four main sub-elements of a reinforcement

learning system—a policy, a reward function, a value function and horizon of decisions. A policy defines

the learning agent’s way of behaving at a given time. Roughly speaking, a policy is a mapping from

perceived states of the environment to actions to be taken when in those states. A reward function defines

immediate reward for an action responsible for the current state of the environment. Roughly speaking,

it maps states of the environment to a scalar, a reward, indicating the intrinsic desirability of the state.

Whereas a reward function indicates what is good in the immediate sense, a value function specifies

what is good in the long run. Roughly speaking, the value of a state is the cumulative reward an agent

can expect to accumulate over the future as a result of sequence of its actions, starting from that state.

Whereas rewards determine the immediate, intrinsic desirability of environmental states, values indicate

the long-term desirability of states after taking into account the states that are likely to follow, and the

rewards available in those states. An agent’s sole objective is to maximize the cumulative reward (value)

it receives in the long run.

The value function depends on whether there is a finite horizon or an infinite horizon for decision making.

A finite horizon means that there is a fixed time after which nothing matters—the game is over, so to

speak. With a finite horizon, the optimal action for a given state could change over time. We say that the

optimal policy for a finite horizon is nonstationary.

With no fixed time limit, on the other hand, there is no reason to behave differently in the same state at

different times. Hence, the optimal action depends only on the current state, and the optimal policy is

stationary. Polices for the infinite-horizon case are, therefore, simpler than those for finite-horizon case.

Note that ‘infinite horizon’ does not necessarily mean that all state sequences are infinite; it just means

that there is no fixed deadline. If the environment contains terminal states and if the agent is guaranteed

to get to one eventually, then we will never come across infinite sequences.

Our focus in this chapter is on reinforcement learning solutions to control problems. The controller

(agent) has a set of sensors to observe the state of the controlled process (environment); the learning task

is to learn a control strategy (policy) for choosing control signals (actions) that achieve minimization of

a performance measure (maximization of cumulative reward).

In control problems, we minimize a performance measure; frequently referred to as cost function. The

reinforcement learning control solution seeks to minimize the long-term accumulated cost the controller

852 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

incurs over the task time. The general reinforcement learning solution seeks to maximize the long-

term accumulated reward the agent receives over the task time. Since in control problems, reference of

optimality is a cost function, we assign cost to the reward structure of the reinforcement learning process;

the reinforcement learning solution then seeks to minimize the long-term accumulated cost the agent

incurs over the task time. The value function of the reinforcement learning process is accordingly defined

with respect to cost structure.

The stabilizing control problems we have been discussing in this book, are all infinite-horizon problems.

Here also, we will limit our discussion to this class of control problems.

Some reinforcement learning systems have one more element—a model of the environment. This is

something that mimics the behavior of the environment. For example, given a state and action, the model

might predict the resultant next state and next cost.

Early reinforcement learning systems were explicitly model-free, trial-and-error learners. Nevertheless, it

gradually became clear that reinforcement learning methods are closely related to dynamic programming

methods, which do use models. Adaptive dynamic programming has emerged as a solution method for

reinforcement learning problems wherein the agent learns the models through trial-and-error interaction

with the environment, and then uses these models in dynamic programming methods.

We have used the vector x to represent the state of a physical system: x = [x1 x2 ... xn]T, where xi:

i = 1, ..., n, are state variables of the system. State x, a vector of real numbers, is a point in the state

space. In reinforcement learning (RL) framework, we will represent the state by ‘s’; thus s is a point in

the n-dimensional state space. Similarly, the vector u has been used for control. We will represent this by

the action ‘a’ in our RL framework.

If the environment is deterministic, then an agent’s action a will transit the state of the environment from

s to s¢ deterministically; there is no probability involved. In fact, the transfer function models or state

variable models, used in the book so far, for plants/controlled processes, are approximate models based

on the assumption of deterministic behavior.

If the environment is stochastic, then transition of s to s¢ under action a will be different each time action

a is applied in state s. This is captured by a probabilistic model. If the environment is deterministic, but

uncertain, then also transition of s to s¢ under action a will not be unique each time action a is applied

in state s. Since uncertainty in environments is the major issue leading to complexity of the control

problem, we will be concerned with probabilistic models.

 (1) A specification of the outcome probabilities for each admissible action in each possible state is

called the transition model.

 P(s, a, s¢): probability of reaching state s¢ if action a is applied in state s.

 (2) In control problems, the transitions are Markovian—the probability of reaching state s¢ from s

depends only on s and not on the history of earlier states.

 (3) In each state s, the agent receives a reinforcement r(s), which measures the immediate cost of the

action.

 (4) The specification of a sequential decision problem for a fully observable environment, with a

Markovian transition model and cost for each state, is called a Markov Decision Process (MDP).

 (5) The basis of our reinforcement learning framework is Markov decision processes.

 Intelligent Control with Reinforcement Learning 853

14.3 METHODS FOR SOLVING THE REINFORCEMENT

LEARNING PROBLEM

 Dynamic programming is a well-known, general-purpose method to deal with complex systems to find

optimal control strategies for nonlinear and stochastic dynamic systems. It addresses the problem of

designing closed-loop policies off-line under the assumption that an accurate model of the stochastic

dynamic system is available. The off-line design procedure typically yields a computationally efficient

method for determining each action as a function of the observed system state.

There are two practical issues related to the use of dynamic programming:

 (1) For many real-world problems, the number of possible states and admissible actions in each state

are so large that the computational requirements of dynamic programming are overwhelming

(‘curse of dimensionality’).

 (2) Dynamic programming algorithms require accurate model of the dynamic system; this prior

knowledge is not always available (‘curse of modeling’).

Over the past three decades, a focus of researchers has been to develop methods capable of finding

high-quality approximate solutions to problems where exact solutions via classic dynamic programming

are not attainable in practice due to high computational complexity and lack of accurate knowledge

of system dynamics. In fact, reinforcement learning is a field that represents this stream of activities.

All of the reinforcement learning can be viewed as attempts to achieve the same effect as dynamic

programming, only with less computation and without assuming a perfect model of the dynamic system.

By focusing computational effort along behavioral patterns of interactions with the environment, and

by using function approximation (neural network) for generalization of experience to states not reached

through interactions, reinforcement learning can be used on-line for problems with large state spaces and

with lack of accurate knowledge of system dynamics.

 There is a close relationship between reinforcement learning and using dynamic programming to

solve sequential decision problems. In both, the environment is characterized by a set of states, a

set of admissible actions, and a cost function. In both, the objective is to find a decision policy that

minimizes the cumulative cost over time. There is an important difference though. When solving a

sequential decision problem using dynamic programming, the agent (presumably the designer of the

eventual control system) has a complete (albeit stochastic) model of the environment’s behavior. Given

this information, the agent can compute the optimal control policy with respect to the model, as will be

outlined in the next section. In reinforcement learning, the set of states, and the set of admissible actions

are known a priori, but the effects of action on the environment and on the cost is not known. Thus,

the agent cannot compute an optimal policy a priori (off-line). Instead, the agent must learn an optimal

policy by experimenting in the environment. Reinforcement learning system is, thus, an on-line system.

In an on-line learning system, the learner moves about the real environment and observes the results. In

this case, our primary concern is usually the number of real-world actions that the agent must perform to

converge to an acceptable policy (rather than the number of computational cycles, as in off-line learning).

The reason is that in many practical domains, the costs in time and in dollars of performing actions in the

external world dominate the computational costs.

854 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

On-line learning can be performed in two elementary ways:

 (1) Temporal difference learning

 (2) Adaptive dynamic programming

14.3.1

If one had to identify an idea as central and novel to reinforcement learning, it would undoubtedly

be Temporal Difference (TD) learning. Temporal difference learning can be thought of as a version

of dynamic programming, with the difference that TD methods can learn on-line in real-time, from

raw experience without a model of the environment’s dynamics. TD methods do not assume complete

knowledge of the environment; they require only experience—sample sequences of states, actions and

costs from actual interaction with the environment. Learning from actual experience is striking because

it requires no prior knowledge of the environment’s dynamics, yet can obtain optimal behavior.

The principle advantage of dynamic programming is that, if a problem can be specified in terms of

Markov decision process, then it can be analyzed and an optimal policy obtained a priori. The two

principle disadvantages of dynamic programming are as follows: (1) for many tasks, it is difficult to

specify the dynamic model; and (2) because dynamic programming determines a fixed control policy a

priori, it does not provide a mechanism for adapting the policy to compensate for disturbances and/or

modeling errors (nonstationary dynamics).

Reinforcement learning has complimentary advantages as follows: (1) it does not require a prior

dynamical model of any kind, but learns on experience gained directly from the environment; and (2)

to some degree, it can track the dynamics of nonstationary systems. The principle disadvantage of

reinforcement learning is that, in general, many trials (repeated experiences) are required to learn an

optimal control strategy, especially if the system starts with a poor initial policy.

This suggests that the respective weaknesses of these two approaches may be overcome by integrating

them. That is, if a complete, possibly inaccurate, model of the task is available a priori, model-based

methods (including dynamic programming) can be used to develop initial policy for a reinforcement

learning system. A reasonable initial policy can substantially improve the system’s initial performance

and reduce the time required to reach an acceptable level of performance. Conversely, adding an adaptive

reinforcement learning component to an otherwise model-based fixed controller, can compensate for an

inaccurate model.

In this chapter, we limit our discussion to naive reinforcement learning systems.

14.3.2

An adaptive dynamic programming agent works by learning the transition model of the environment

through interaction with the environment. It then plugs the transition model and the observed costs in the

dynamic programming algorithm. Adaptive dynamic programming is, thus, an on-line learning system.

The process of learning the model itself is easy when the environment is fully observable. In the simplest

case, we can represent the transition model as a table of probabilities. We keep track of how often each

action outcome occurs, and estimate the transition probability P(s, a, s¢) from the frequency with which

state s¢ is reached when executing action a in state s.

 Intelligent Control with Reinforcement Learning 855

Our focus in this chapter is on temporal difference learning. We begin with an introduction to dynamic

programming, and then using this platform, develop temporal difference methods of learning.

14.4 BASICS OF DYNAMIC PROGRAMMING

 We first define a general formulation of the problem of learning sequential control strategies. To do so,

we consider building a learning controller for stabilization of an inverted pendulum (Fig. 5.16). The

controller, or agent, has a set of sensors to observe the state of its environment (the dynamic system:

inverted pendulum mounted on a cart). For example, a controller may have sensors to measure angular

position q and velocity �q of the pendulum, and horizontal position z and velocity �z of the cart; and

actions implemented by applying a force of u newtons to the cart. Its task is to learn control strategy, or

policy, for choosing actions that achieve its goals.

A common way of obtaining approximate solutions for continuous state and action tasks is to quantize

the state and action spaces, and apply finite-state dynamic programming (DP) methods. The methods we

explore later in this chapter make learning tractable on the realistic control problems with continuous

state spaces (infinitely large set of quantized states).

Suppose that our stabilization problem demands that the pendulum must be kept within ± 12° from

vertical, and the cart must be kept within ± 2.4m from the center of the track.

We define the following finite sets of possible states S and available actions A.

State Æ 1 2 3 4 5 6

Pend. angle(deg); q < –6 –6 to –1 –1 to 0 0 to 1 1 to 6 > 6

Pend. velocity; �q < –50 –50 to 50 > 50

Cart position(m); z < –0.8 –0.8 to 0.8 > 0.8

Cart velocity; �z < –0.5 –0.5 to 0.5 > 0.5

Actions Æ 1 2 3 4 5 6 7

Apply force of

u newtons

 –10 –6 –2 0 2 6 10

Define: x1, = q , x2 = �q, x3 = z, x4 = �z. Vector x = [x1 x2 x3 x4]T defines a point in the state space; the distinct

point corresponding to x is the distinct state s of the environment (pendulum on a cart). Therefore, there

are 6 ¥ 3 ¥ 3 ¥ 3 = 162 distinct states: s(1), s(2),..., s(162), of our environment. The finite set of states, in our

learning problem, is thus given as

 S : {s(1), s(2),..., s(162)}

The action set size is seven: a(1), a(2),..., a(7). The finite set of available actions in our learning problem,

is thus given as

 A : {a(1), a(2),..., a(7)}

856 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

We assume the knowledge of state transition model:

P(s, a, s¢): probability of reaching state s¢ if action a is applied in state s;

for all s Œ S, and for all a Œ A

Note that our model is stochastic; it captures the uncertainties involved in the environment.

 In each state s, the agent receives a reinforcement r (s), which measures the immediate cost of action.

For the particular inverted pendulum example, a cost of ‘–1’ may be assigned to failure states (q >12°;

q < –12°), and a cost of ‘0’ may be assigned to every other state. Note that cost structure for a learning

problem is an important design parameter. It controls the convergence speed of a learning algorithm. The

functions P(◊) and r(◊) are part of the environment and not necessarily known to the agent.

 The specification of a sequential design problem for a fully observable (the agent knows where it is)

environment with a Markovian decision model and cost for each state, is a Markov Decision Process

(MDP). An MDP is defined by the tuple (S,A,P,r) where S is the set of possible states the environment can

occupy; A is the set of admissible actions the agent may execute to change the state of the environment,

P is the state transition probability, and r is the cost function. Usually S and A are distinct and finite; we

assume that

S : {s(1), s(2),..., s(N)}; A : {a(1), a(2),..., a(M)}

where N represents the total number of distinct states of the environment, and M represents the total

number of admissible actions in each state.

Let us now consider the structure of solution to the problem. Any fixed action sequence (open-loop

structure) will not solve the problem because due to uncertainties in the behavior of the environment,

the agent might end up in a failure state; i.e., the scheme lacks the robustness properties. Therefore,

a solution must specify what the agent should do far any state that the environment might reach. The

resulting feedback loop is a source of a measure of internal/external disturbances. A solution of this kind

is called a policy. We usually denote a policy by p.

A stationary policy p for an MDP is a mapping p : S Æ W(A), where W(A) is the set of all probability

distributions over A. p (a,s) stands for the probability that policy p chooses action a in state s. Since each

action a(1), a(2),..., a(M) is a candidate for state s, policy p(a,s) for s is a set of action-selection probabilities

associated with a(1),..., a(M); their sum equals one.

A stationary deterministic policy p is a policy that commits to a single action choice per state, that is,

a mapping p : S Æ A from states to actions. In this case, p(s) indicates the action that the agent takes

in state s. For every MDP, there exists an optimal deterministic policy, which minimizes the expected,

total discounted cost (to be defined shortly) from any initial state. It is, therefore, sufficient to restrict the

search for the optimal policy only within the space of deterministic policies.

The next question we must decide is how to calculate the value of a state. Recall that the value of a state

is the cumulative cost an agent can expect to incur over the future as a result of sequence of its actions,

starting from that state. A sequence of actions for a given task will force the environment through a

sequence of states. Let us call it environment trajectory of a given task. In an infinite-horizon problem,

the number of actions for a task is not fixed; therefore, number of distinct states in an environment

 Intelligent Control with Reinforcement Learning 857

trajectory is not fixed. A typical state sequence in a trajectory may be expressed as {s0, s1, s2,...} where,

each st; t = 0,1,2,3,..., could be any of the possible environment states s(1),..., s(N).

Given the initial state st and the agent’s policy p. The agent selects an action p(st), and the result of this

action is next state st+1. The state transition model, P(s, a, s¢), gives a probability that the next state st+1

will be s¢ Œ S, given that the current state st = s and the action at = a. Since each state s(1), s(2),..., s(N) is a

candidate to be the next state s¢, the environment simulator gives a set of probabilities: P(st, at , s
(1)), ...,

P(st, at, s
N); their sum equals one. Thus, a given policy p generates not one state sequence (environment

trajectory), but a whole range of possible state sequences, each with a specific probability determined by

the transition model of the environment.

The quality of a policy is, therefore, measured by the expected value (cumulative cost) of a state, where

the expectation is taken over all possible state sequences that could occur. For MDPs, we can define the

‘value of a state under policy p’ formally as

 V p(s) = E r st
t

t

p g ()

=0

Â
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
 (14.1)

where Ep{◊} denotes the expected value given that the agent follows policy p. This is a discounted cost

value function; the discount factor g is a number between 0 and 1(0 £ g < 1)

Note that

g gt
t

t

t

t

r s r() max

= =0 0

Â Â£ = rmax/(1– g)

Thus, the infinite sequence converges to a finite limit when costs are bounded and g < 1.

The discount factor g determines the relative value of delayed versus immediate costs. In particular,

costs incurred t steps into the future are discounted exponentially by a factor of g t. Note that if we set g

= 0, only the immediate cost is considered. If we set g closer to 1, future costs are given greater emphasis

relative to the immediate cost. The meaning of g substantially less than 1 is that future costs matter to

us less than the costs paid at this present time. The discount factor is an important design parameter in

reinforcement learning scheme.

The final step is to show how to choose between policies. An optimal policy is a policy that yields the

highest expected value. We use p* to denote an optimal policy.

 p* = arg min ()E r st
t

t

p
p

g
=0

Â
È

Î

Í
Í

˘

˚

˙
˙
 (14.2)

The ‘arg min’ notation denotes the values of p at which Ep [◊] is minimized. p*(s) is, thus, a solution

(obtained off-line) to the sequential decision problem. Given p*, the agent decides what to do in real

time by observing the current state s and executing the action p*(s). This is the simplest kind of agent,

selecting fixed actions on the basis of the current state. A reinforcement learning agent, as we shall

see shortly, is adaptive; it improves its policy on the basis of on-line, real-time interactions with the

environment.

In the following we describe algorithms for finding optimal policies of the dynamic programming agent.

858 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

14.4.1

The dynamic programming technique rests on a very simple idea known as the principle of optimality

[105].

An optimal policy has the property that whatever the initial state and initial decisions are, the remaining

decisions must constitute an optimal policy with regard to the state resulting from the previous decisions.

Consider a state sequence (environment trajectory) resulting from the execution of optimal policy p* :

{s0, s1, s2,...} where each st : t = 0,1,2..., could be any of the possible environment states s(1), s(2),..., s(N).

The index t represents stages of decisions in the sequential decision problem.

The dynamic programming algorithm expresses a generalization of the principle of optimality. It states

that the optimal value of a state is the immediate cost for that state plus the expected discounted optimal

value of the next state, assuming that the agent chooses the optimal action. That is, the optimal value of

a state is given by

 V *(s) = r s P s a s V s
a s

() min (, ,) ()*+ ¢ ¢
¢

Âg (14.3)

This is one form of the Bellman optimality equation for V*. For finite MDPs, this equation has a unique

solution.

The Bellman optimality equation is actually a system of N simultaneous nonlinear equations in N

unknowns, where N is the number of possible environment states. If the dynamics of the environment

(P(s,a,s¢)) and the immediate costs underlying the decision process (r(s)) are known, then, in principle,

one can solve this system of equations for V* using any one of the variety of methods for solving systems

of nonlinear equations. Once one has V*, it is relatively easy to determine an optimal policy:

 p*(s) = arg min (, ,) ()*

a s
P s a s V sS

¢
¢ ¢ (14.4)

Note that V*(s) = Vp*
 (s):

 V *(s) = min ()V s s Sp

p

for all Œ (14.5)

The solution of Bellman optimality equation (14.3) directly gives the values V* of states with respect to

optimal policy p*. From this solution, one can obtain optimal policy using Eqn. (14.4).

Equation (14.5) suggests an alternative route to finding optimal policy p*. It uses Bellman equation for

V p, given below.

 Vp (s) = r s P s s s V s

s

() (, (),) ()+ ¢ ¢
¢

Âg p p (14.6)

Note that this equation is a system of N simultaneous linear equations in N unknowns, where N is

the number of possible environment states (Eqns (14.6) are same as Eqns (14.3) with ‘min’ operator

removed). We can solve these equations for V p(s) by standard linear algebra methods.

Given an initial policy p0, one can solve (14.6) for V p 0 (s). Once we have V p 0, we can obtain improved

policy p1, using the strategy given by Eqn. (14.4):

 p1(s) = arg min (, ,) ()
a s

P s a s V s¢ ¢
¢

Â p0 (14.7)

 Intelligent Control with Reinforcement Learning 859

The process is continued:

p p p pp p
0 1 2

0 1Æ Æ Æ Æ Æ Æ ÆV V V�
* *

Each policy is guaranteed to be a strict improvement over the previous one (unless it is already optimal).

Because a finite MDP has only a finite number of policies, this process must converge to an optimal

policy p* and optimal value function V* in a finite number of iterations.

Thus, given a complete and accurate model of MDP in the form of knowledge of the state transition

probabilities P(s, a,s¢) and immediate costs r(s) for all states s Œ S and all actions a Œ A, it is possible—at

least in principle—to solve the decision problem off-line. There is one problem: the Bellman equations

(14.3) are nonlinear because of the ‘min’ operator; solution of nonlinear equations is problematic. The

Bellman equations (14.6) are linear and therefore, can be solved relatively quickly. For large state spaces,

time might be prohibitive even in this relatively simpler case.

In the following, we describe basic forms of two dynamic programming algorithms: value iteration and

policy iteration—a step towards answering the computational complexity problems of solving Bellman

equations.

14.4.2

As used for solving Markov decision problems, value iteration is a successive approximation procedure

for solving the Bellman optimality equation (14.3), whose basic operation is ‘backing up’ estimates of

optimal state values. We can solve Eqn. (14.3) using a simple iterative algorithm:

 V s r s P s a s V sl
a

l

s

() () () min (, ,) ()+
¢

¨ + ¢ ¢Â1 g (14.8)

The algorithm begins with arbitrary guess V0(s) for each s Œ S. The sequence of V1(s),V2(s),…, is then

obtained. The algorithm converges to the optimal values V*(s) as the number of iterations l approaches

infinity (We use the index l for the stages of iteration algorithm, whereas we have used earlier the index t

to denote the stages of decisions in the sequential decision problem). In practice, we stop once the value

function changes by a small amount. Then a greedy policy (choosing the action with the lowest estimated

cost) with respect to the optimal set of values is obtained as an optimal policy.

The computation (14.8) is done off-line, i.e., before the real system starts operating. An optimal policy,

that is, an optimal choice of a Œ A for each s Œ S, is computed either simultaneously with V*, or in real

time, using Eqn.(14.4).

A sequential implementation of iteration algorithm (14.8) requires temporary storage locations so that all

the iteration-(l + 1) values are computed based on the iteration-l values. The optimal values V* are then

stored in a lookup table. In addition to a problem of the memory needed for large tables, there is another

problem of time needed to accurately fill them. If there are N states, and M is the largest number of

admissible actions for any state, then each iteration which consists of backing up the value of each state

exactly once requires about M ¥ N2 operations. For the large state sets, typical in many control problems,

it is difficult to try to complete even one iteration, let alone repeat the process until it converges to V*

(curse of dimensionality).

860 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The iteration of synchronous DP algorithm defined in (14.8) backs up the value of every state once to

produce the new approximate value function. We call this kind of operation as full backup; it is based

on all possible next states rather than on a sample next state. We think of the backups as being done in a

sweep through the state space.

Asynchronous DP algorithms are not organized in terms of systematic sweep of the entire set of states in

each iteration. These algorithms backup the values of the states in any order whatsoever, using whatever

values of other states happen to be available. The values of some states may be backed up several

times before the values of others are backed up once. To converge correctly, however, an asynchronous

algorithm must continue to back up the values of all the states.

Of course, avoiding sweeps does not necessarily mean that we can get away with less computation.

It just means that our algorithm does not need to get locked into any hopelessly long sweep before it

can make progress. We can try to take advantage of this flexibility by selecting the states to which we

apply backups so as to improve the algorithm’s rate of progress. We can try to order the backups to

let value information propagate from state to state in an efficient way. Some states may not need their

values backed up as often as other states. Some state orderings produce faster convergence than others,

depending on the problem.

14.4.3

A policy iteration algorithm operates by alternating between two steps (the algorithm begins with

arbitrary initial policy p0).

(i) Policy evaluation step

Given the current policy pk, we perform policy evaluation step that computes V kp (s) for all s Œ S, as the

solution of the linear system of equations (Bellman equation)

 V kp (s) = r s P s s s V sk

s

k() (, (),) ()+ ¢ ¢
¢

Âg p p (14.9)

in the N unknowns V kp (s).

To solve these equations, an iteration procedure similar to the one used in value iteration algorithm

(given by (14.8)) may be used.

 V s r s P s s s V sl k l

s

k k

+
¢

¨ + ¢ ¢Â1
p pg p() () (, (),) () (14.10)

(ii) Policy improvement step

Once we have V kp , we can obtain improved policy p k+1 (refer to Eqn.(14.7)) as follows:

 pk +1(s) = arg min (, ,) ()
a s

P s a s V sk¢ ¢
¢

Â p (14.11)

The two-step procedure is repeated with policy p k+1 used in place of pk, unless we have V kp +1(s) ª V kp (s)

for all s; in which case, the algorithm is terminated with optimal policy p* = pk.

Policy iteration algorithm can be viewed as an actor–critic system. In this interpretation, the policy

evaluation step is viewed as the work of a critic, who evaluates the performance of the current policy

 Intelligent Control with Reinforcement Learning 861

pk, i.e., generates an estimate of the value function V kp from states and reinforcement supplied by the

environment as inputs. The policy improvement step is viewed as the work of an actor, who takes into

account the latest evaluation of the critic, i.e., the estimate of the value function, and acts out the improved

policy pk+1.

The algorithm we have described so far requires updating the values/policy for all states at once. It turns

out that this is not strictly necessary. In fact, on each iteration, we can pick any subset of states and apply

updating to that subset. This algorithm is called asynchronous policy iteration. Given certain conditions

on the initial policy and value function, asynchronous policy iteration is guaranteed to converge to an

optimal policy. The freedom to choose any states to work on means that we can design much more

efficient heuristic algorithms—for example, algorithms that concentrate on updating the values of states

that are likely to be reached by a good policy.

14.5 TEMPORAL DIFFERENCE LEARNING

The novel aspect of learning that we address now is that it assumes the agent does not have knowledge of

r(s) and P(s,a,s¢), and therefore it cannot learn solely by simulating actions with environment model (off-

line learning not possible). It has no choice but to interact with the environment and learn by observing

consequences.

Figure 14.2 gives a general setting of the agent-environment interaction process. Time advances by

discrete unit length quanta; t = 0,1,2,… At each time step t, the agent senses the current state st Œ S of the

environment, chooses an action at Œ A, and performs it. The environment responds by giving the agent a

cost rt = r(st), and by producing the succeeding state st+1 Œ S.

Fig. 14.2

The environment is stochastic in nature—each time the action at is applied in the state st, the succeeding

state st+1 could be any of the possible states in S : s(1), s(2),…, s(N). For the stochastic environment, the

agent, however, explores in the space of deterministic policies (a deterministic optimal policy is known

to exist for Markov decision process). Therefore, for each observed environment state st , the agent’s

policy suggests a deterministic action at = p(st).

The task of the agent is to learn a policy p : S Æ A that produces the lowest possible cumulative cost over

time (greedy policy). To state this requirement more precisely, the agent’s task is to learn a policy p that

minimizes the value V p given by (14.1).

Reinforcement learning methods specify how the agent updates its policy as a result of its experience.

The agent could use alternative methods for gaining experience and using it for improvement of its

862 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

policy. In the so called Monte Carlo method, the agent executes a set of trials in the environment using

its current policy p. In each trial, the agent starts in state s(i) (any point s(1),…,s(N) of state space) and

experiences a sequence of state transitions until at reaches a terminal state. In infinite-horizon discounted

cost problems under consideration, terminal state corresponds to the equilibrium state. A learning episode

(trial) is infinitely long, because the learning is continual. For the purpose of viewing the infinite-horizon

problem in terms of episodic learning, we may define a stability region around the equilibrium point

and say that the environment has terminated at a success state if the state continues to be in stability

region for a prespecified time period (In a real-time control, any uncertainty (internal or external) will

pull the system out of stability region and a new learning episode begins). Failure states (situations

corresponding to ‘the game is over and it is lost’) if any, are also terminal states of the learning process.

In a learning episode, agent’s percepts supply both the current state and the cost incurred in that state.

Typical state sequences (environment trajectories) resulting from trials might look like this:

(1) s s s s s sr r r r r
()

()
()

()
()

()
()

()
()

()
(1

1
5

5
9

9
5

5
9

9
1() Æ () Æ () Æ () Æ () Æ 00

10

11
11

)
()

()
()

()
()

() Æ

Æ () Æ ()
r

r
SUCCESS

r SUCCESSs s

(2) s s s s sr r r r r
()

()
()

()
()

()
()

()
()

()
1

1
5

5
9

9
10

10
11

11
() Æ () Æ () Æ () Æ () ÆÆ

Æ () Æ () Æ ()s s sr r
SUCCESS

r SUCCESS
()

()
()

()
()

()
7

7
11

11

(3) s s s s sr r r r
FAILURE

r
()

()
()

()
()

()
()

()
()

(
1

1
2

2
3

3
7

7
() Æ () Æ () Æ () Æ ()

FFAILURE)

Note that each state percept is subscripted with the cost incurred. The objective is to use the information

about costs to learn the expected value V p(s) associated with each state. The value is defined to be the

expected sum of (discounted) costs incurred if policy p is followed (refer to Eqn.(14.2)).

When a nonterminal state is visited, its value is estimated based on what happens after that visit. Thus,

the value of a state is the expected total cost from that state onward, and each trial (episode) provides

samples of the value for each state visited. For example, the first trial in the set of three given above,

provides one sample of value for state s(1):

 (i) r(1) + g r(5) + g 2r(9) + g 3r(5) + g 4r (9) + g 5r(10) + g 6r(11) + g 7r(SUCCESS) ;

 two samples of values for state s(5):

 (i) r(5) + g r(9) + g 2r(5) + g 3r(9) + g 4r (10) + g 5r(11) + g 6r(SUCCESS);

 (ii) r(5) + g r(9) + g 2r(10) + g 3r(11) + g 4r (SUCCESS);

 two samples of values for state s(9):

 (i) r(9) + g r(5) + g 2r(9) + g 3r(10) + g 4r (11) + g 5r(SUCCESS);

 (ii) r(9) + g r (10) + g 2r(11) + g 3r(SUCCESS);

 and so on.

Thus, at the end of each episode, the algorithm calculates the observed total cost for each state visited,

and updates the estimated value for that state accordingly just by keeping a running average for each state

in a table. In the limit of infinitely many trials, the sample average will converge to the true expectation

of Eqn. (14.2).

 Intelligent Control with Reinforcement Learning 863

The Monte Carlo method differs from dynamic programming in the following two ways:

 (i) First, it operates on sample experience, and thus can be used for direct learning without a model.

 (ii) Second, it does not build its value estimates for a state on the basis of estimates of the possible

successor states (refer to Eqn. (14.6)); it must wait until the end of the trial to determine the update

in value estimates of states. In dynamic programming methods, the value of each state equals its

own cost plus the discounted expected value of its successor states.

The Temporal Difference (TD) learning methods combine the sampling of Monte Carlo, with the value

estimation scheme of dynamic programming. TD methods update value estimates based on cost of one-

step real-time transition and learned estimate of successor state, without waiting for the final outcome.

Typically, when a transition occurs from state s to state s¢, we apply the following update to Vp(s):

 V p(s) ¨ V p(s) + h (r (s) + g V p(s¢) – V p(s)) (14.12)

where h is the learning parameter.

Because the update uses the difference in values between successive states, it is called the temporal-

difference or TD equation, TD methods have an advantage over dynamic programming methods in that

they do not require a model of the environment. Advantage of TD methods over Monte Carlo is that they

are naturally implemented in an on-line fully incremental fashion. With Monte Carlo methods, one must

wait until the end of a sequence, because only then is the value known, whereas with TD methods, one

need only wait one time step.

Note that the update (14.12) is based on one state transition that just happens with a certain probability,

whereas in (14.6), the value function is updated for all states simultaneously using all possible next

states, weighted by their probabilities. This difference disappears when the effects of TD adjustments

are averaged over a large number of transitions. The interaction with the environment can be repeated

several times by restarting the experiment after success/failure state is reached. For one particular state,

the next state and received reinforcement can be different each time the state is visited. Because the

frequency of each successor in the set of transitions is approximately proportional to its probability, TD

can be viewed as a crude but efficient approximation to dynamic programming.

The TD equation (14.12) is, in fact, approximation of policy-evaluation step of policy iteration algorithm

of dynamic programming (refer to previous section for a recall), where the agent’s policy is fixed and the

task is to learn the values of states. This, as we have seen, can be done without a model of the system.

However, improving the policy using (14.11) still requires the model.

One of the most important breakthroughs in reinforcement learning was the development of model-free

TD control algorithm, known as Q-learning.

14.6

In addition to recognizing the intrinsic relationship between reinforcement learning and dynamic

programming, Watkins [148,150] has made an important contribution to reinforcement learning by

suggesting a new algorithm called Q-learning. The significance of Q-learning is that when applied to a

Markov decision process, can be shown to converge to the optimal policy, under appropriate conditions.

Q-learning is the first reinforcement learning algorithm to be shown convergent to the optimal policy for

decision problems involving cumulative cost.

864 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

The Q-learning method learns an action–value representation instead of learning value function. We will

use the notation Q(s,a) to denote the value of doing action a in state s. Q-function is directly related to

value function as follows:

 V(s) = min (,)
a

Q s a (14.13)

Q-functions may seem like just another way of storing value information, but they have a very important

property: a TD agent that learns a Q-function does not need a model for either learning or action

selection. For this reason, Q-learning is called a model-free method.

The connections between Q-learning and dynamic programming are strong: Q-learning is motivated

directly by value-iteration, and its convergence proof is based on a generalization of the convergence

proof for value-iteration.

We can use the value-iteration algorithm (14.8) directly as an update equation for an iteration process

that calculates exact Q-values, given an estimated model:

 Q s a r s P s a s Q s al

s
a

l+
¢

¢
¨ + ¢ ¢ ¢È

Î
˘
˚Â1(,) () (, ,) min (,)g (14.14)

It converges to the optimal Q-values, Q*(s,a).

Once one has Q*(s,a) for all s Œ S and all a Œ A, it is relatively easy to determine an optimal policy:

 p*(s) = arg min (,)*

a

Q s a (14.15)

This does, however, require that a model is given (or is learned (adaptive dynamic programming)),

because Eqn. (14.14) uses P(s, a, s¢).

The temporal-difference approach, on the other hand, requires no model. The update equation for TD

Q-learning is (refer to Eqn. (14.12))

 Q s a Q s a r s Q s a Q s a
a

(,) (,) () min (,) (,)¨ + + ¢ ¢È
Î

˘
˚

-()¢
h g (14.16)

which is calculated whenever action a is executed in state s leading to s¢.

The Q-learning algorithm (14.16) backs up the Q-value for only a single state-action pair at each time

step of control, where the state-action pair consists of the observed current state and the action actually

executed. Specifically, assume that at time step t in real-time control, the agent observes state st and

has available the estimated Q-values produced by all the preceding stages of real-time Q-learning (the

estimates stored in a lookup table with one entry for each state-action pair). We denote these estimates

by Qt(s,a) for all admissible state-action pairs. The agent selects an action at Œ A using this information

available in lookup table:

at = arg min (,)
a

t tQ s a

After executing at, the agent receives the immediate cost rt = r(st) while the environment state changes to

st+1. The Q-values in the lookup table are then updated as follows.

For the state-action pair (st,at):

 Qt+1(st, at) = Q s a r Q s a Q s at t t t t
a

t t t t t(,) min (,) (,)+ + () -È
ÎÍ

˘
˚̇

+h g 1 (14.17a)

 Intelligent Control with Reinforcement Learning 865

For other admissible state-action pairs, the Q-values remain unchanged:

 Qt+1(s, a) = Qt (s, a) " (s, a) π (st, at) (14.17b)

Watkins [148, 150] has shown that the Q-learning system that

 (1) decreases its learning parameter at an appropriate rate (e.g., ht = 1/tb, where 0.5 < b < 1); and

 (2) visits each state-action pair infinitely often, is guaranteed to converge to an optimal policy.

Convergence, thus, requires that the agent selects actions in such a fashion that it visits every possible

state-action pair infinitely enough. By this we mean that if action a is an admissible action from state

s, then over time the agent must execute action a from state s repeatedly with nonzero frequency as the

length of its action sequence approaches infinity.

In the Q-learning algorithm given by Eqns (14.17), the strategy for the agent in state st at time step t

is to select the action a that minimizes Qt(st,a), thereby exploiting the current approximation of Q* by

following a greedy policy. However, with this strategy, the agent runs the risk that it will over commit to

actions that are found during early stages to have low Q-values, while failing to explore other actions that

can have even lower values. In fact, the convergence condition requires that each state-action transition

occurs infinitely often. This will clearly not happen if the agent always follows the greedy policy.

The Q-learning agent must, therefore, follow the policy of exploration and exploitation: exploration

ensures that all admissible state-action pairs are visited enough to satisfy the Q-learning convergence

condition, and exploitation seeks to minimize the cost by following a greedy policy.

Many exploration schemes have been used in the RL literature. The simplest one is to behave greedily

most of the time, but every once a while, say with small probability e, instead select an action at random,

uniformly, independently of the action-value estimates. We call methods using this near-greedy action

selection rule e-greedy methods.

14.6.1

We have so far assumed that the Q-values learned by the agent are represented in a tabular form with one

entry for each state-action pair. This is a particularly clear and instructive case, but of course, it is limited

to tasks with small numbers of states and actions. The problem is not just the memory needed for large

tables, but the computational time needed to experience all the state-action pairs for generation of data

to accurately fill the tables.

Very few decision and control problems in the real world fit into lookup table representation strategy

for solution; the number of possible states and actions in the real world is often much too large to

accommodate the computational and storage requirements. The problem is more severe when state/

action spaces include continuous variables—to use a table, they should be discretized to finite size, which

may cause errors. The only way to learn anything at all on these tasks is to generalize from previously

experienced states to ones that have never been seen. In other words, experience with a limited subset of

state space be usefully generalized to produce a good approximation over a much larger subset.

Fortunately, generalization from examples has already been extensively studied, and we do not need to

invent totally new methods for use in Q-learning. To a large extent, we need only combine Q-learning

with off-the-shelf architectures for inductive generalization—often called function approximation

because it takes examples from desired Q-function and attempts to generalize from them to construct

866 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

an approximation of the entire function. Function approximation is an instance of supervised learning

(discussed in Chapters 11 and 12). In principle, any of the methods studied in this field can be used in

Q-learning.

In parametric methods, the tabular (exact) representation of the real-valued functions Q(s,a) is replaced

by a generic parametric function approximator Q̂ (s, a; w) where w are the adjustable parameters of the

approximator. Learning Q(s,a) for all s Œ S and a Œ A amounts to learning parameters w of Q̂ (s, a; w)

The new version of Q-learning equation (14.16) is

 w w r s Q s a Q s a
Q s a

i i
a

¨ + + ¢ ¢È
ÎÍ

˘
˚̇

-() ∂

∂¢
h g() min (, ;) (, ;)

(, ,)
w w

w

wwi

 (14.18)

This update rule can be shown to converge to the closest possible approximation to the true function

when the function approximator is linear in the parameters.

Unfortunately, all bets are off when nonlinear functions—such as neural networks–are used. For many

tasks, Q-learning fails to converge once a nonlinear function approximator is introduced. Fortunately,

however, the algorithm does converge for large number of applications. The theory of Q-learning with

nonlinear function approximator still contains many open questions; at present it remains an empirical

science.

For Q-learning, it makes more sense to use an incremental learning algorithm that updates the parameters

of function approximator after each trial. Alternatively, examples may be collected to form a training set

and learned in batch mode, but it slows down learning as no learning happens while a sufficiently large

sample is being collected.

We give an example of neural Q-learning. Let Q̂t (s, a; w)denote the approximation to Qt(s,a) for all

admissible state-action pairs, computed by means of a neural network at time step t. The state s is input to

the neural network with parameter vector w producing the output Q̂t (s, a; w)" a Œ A. We assume that the

agent uses the training rule of (14.17) after initialization of Q̂ (s, a; w) with arbitrary finite values of w.

Treating the expression inside the square bracket in (14.17a) as the error signal involved in updating the

current value of parameter vector w, we may identify the target (desired) value of Q̂t at time step t as

 ˆ (, ;)Q s at t t
target

w = r Q s at
a

t t+ ()+g min (;),1 w (14.19)

At each iteration of the algorithm, the weight vector w of the neural network is changed slightly in a way

that brings the output Q̂t (st, at; w) closer to the target Q̂t
target

(st, at; w)for the current (st,at) pair. For other

state-action pairs, Q-values remain unchanged (Eqn. (14.17b)).

14.7

The Q-learning algorithm, described in the previous section, is an off-policy TD method: the learned

action-value function Q directly approximates Q*, the optimal action-value function, independent of the

policy being followed; optimal action for state s is then obtained from Q*. The Q-learning is motivated

by value iteration algorithm in dynamic programming.

 Intelligent Control with Reinforcement Learning 867

The alternative approach, motivated by policy iteration algorithm in dynamic programming, is an on-

policy TD method. The distinguishing feature of this method is that it attempts to evaluate and improve

the same policy that it uses to make decisions.

In Section 14.5 on TD learning, we considered transitions from state to state and learned the value of

states (Eqn. (14.12)) when following a policy p. The relationship between states and state-action pairs is

symmetrical. Now we consider transitions from state-action pair to state-action pair and learn the value

of state-action pairs, following a policy p. In particular, for on-policy TD method, we must estimate Qp(s,

a) for the current policy p and for all states s Œ S and actions a Œ A. We can learn Qp using essentially

the same TD method used in Eqn. (14.12) for learning Vp:

 Q s a Q s a r s Q s a Q s ap p p ph g(,) (,) () (,) (,)¨ + + ¢ ¢ -() (14.20)

where a¢ is the action executed in state s¢.

This rule uses every element of the quintuple of events, (s, a, r, s¢, a¢), that make up a transition from one

state-action pair to the next. This quintuple (State-Action-Reinforcement-State-Action) gives rise to the

name SARSA for this algorithm. Unlike Q-learning, here the agent’s policy does matter. Once we have

Qp(s,a), improved policy can be obtained as follows:

 pk+1(s) = arg min (,)
a

Q s ap
 (14.21)

Since tabular (exact) representation is impractical for large state and action spaces, function approximation

methods are used. Approximations in the policy-iteration framework can be introduced at the following

two places:

 (i) The representation of the Q-function: The tabular representation of the real-valued function

Qp(s,a) is replaced by a generic parametric function approximation Q̂p (s, a; w) when w are the

adjustable parameters of the approximator.

 (ii) The representation of the policy: The tabular representation of the policy p(s) is replaced by a

parametric representation p̂ (s; p) where p are the adjustable parameters of the representation

The difficulty involved in use of these approximate methods within policy iteration is that the off-the-

shelf architectures and parameter adjustment methods cannot be applied blindly; they have to be fully

integrated into the policy-iteration framework.

868 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

APPLICATIONS

 1. Siouris, G.M.; Missile Guidance and Control Systems; New York: Springer-Verlag, 2004.

 2. Lawrence, A.; Modern Inertial Technology: Navigation, Guidance, and Control; 2nd Edition, New

York: Springer-Verlag, 1998.

 3. Leonhard, W.; Control of Electric Drives; 3rd Edition, New York: Springer-Verlag, 2001.

 4. Bose, B.K.; Modern Power Electronics and AC Drives; Englewood Cliffs, NJ : Prentice-Hall,

2001.

 5. Sen, P.C.; Thyristor DC Drives; 2nd Edition, New York: Wiley-Interscience, 1991.

 6. Seborg, D.E., T.F. Edgar, and D.A. Mellichamp; Process Dynamics and Control; 2nd Edition, New

York: John Wiley, 2004.

 7 Lee, J., W. Cho, and T.F.Edgar, An Improved Technique for PID Controller Tuning from Closed-

Loop Tests, AICHE J., Vol. 36, No. 36, No. 12,pp.1891–1895, 1990.

 8 Ziegler, J.G., and N.B. Nichols, Optimum Settings for Automatic Controllers, Trans. ASME, Vol.

64, pp. 759–768, 1942.

 9 Perry, R.H., and D. Green (ed.), Perry's Chemical Engineering Handbook, 6th Edition, New York:

McGraw-Hill, 1997.

 10. Shinskey, F.G.; Process Control Systems; 4th Edition, New York: McGraw-Hill, 1996.

 11. Astrom, K.J., and T. Hagglund; PID Controllers: Theory, Design, and Tuning; 2nd Edition, Seattle,

WA: International Society for Measurement and Control, 1995.

 12. Corripio, A.B.; Tuning of Industrial Control Systems; Research Tringle Park, North Carolina:

Instrument Society of America, 1990.

 13. Stephanopoulos, G.; Chemical Process Control—An Introduction to Theory and Practice;

Englewood Cliffs, NJ: Prentice-Hall, 1984.

 14. Steven, B., and F. Lewis; Aircraft Control and Simulation; New York: Wiley-Interscience, 2003.

 15. Nelson, R.C.; Flight Stability and Automatic Control; 2nd Edition, New York: McGraw-Hill, 1997.

 16. Etkin, B., and L.D. Reid; Dynamics of Flight: Stability and Control; 3rd Edition, New York: John

Wiley, 1996.

 17. Craig, J.J.; Introduction to Robotics: Mechanics and Control; 3rd Edition, Englewood Cliffs, NJ:

Prentice-Hall, 2003.

 18. Koivo, A.J.; Fundamental for Control of Robotics Manipulators; New York: John Wiley, 1989.

 19. Asada, H., and K. Youcef-Toumi; Direct Drive Robots: Theory and Practice; Cambridge,

Massachusetts: The MIT Press, 1987.

References

 References 869

 20. Valentino, J.V., and J. Goldenberg; Introduction to Computer Numerical Control (CNC) 3rd

Edition, Englewood Cliffs, NJ: Prentice-Hall, 2002.

 21. Groover, M.K; Automation, Production Systems, and Computer-Integrated Manufacturing; 2nd

Edition, Englewood Cliffs, NJ: Prentice-Hall, 2000.

 22. Olsson, G., and G. Piani; Computer Systems for Automation and Control; London: Prentice-Hall

International, 1992.

 23. Hughes, T.A.; Programmable Controllers; 4th Edition, North Caroline: The Instrumentation,

Systems, and Automation Society, 2004.

 24. Petruzella, F.D.; Programmable Logic Controllers; 3rd Edition, New York: McGraw-Hill, 2004.

 25. Bolton, W.; Programmable Logic Controllers; 3rd Edition, Buslingfon, MA: Newnes Publication,

2003.

 26. Beards, C.F.; Vibration Analysis and Control System Dynamics; 2nd Edition, Englewood Cliffs,

NJ: Prentice-Hall, 1995.

MATHEMATICAL BACKGROUND

 27. Noble, B, and J.W. Daniel; Applied Linear Algebra; 3rd Edition, Englewood Cliffs, NJ: Prentice-

Hall 1988.

 28. Lancaster, P., and M. Tismenetsky; The Theory of Matrices; 2nd Edition, Orlando, Florida:

Academic Press, 1985.

 29. Lathi, B.P.; Linear Systems and Signals; 2nd Edition, New York; Oxford University Press, 2005.

 30. Oppenheim, A.V., R.W. Shafer, and J.R. Buck; Discrete-Time Signal Processing; 2nd Edition,

Englewood Cliffs, NJ: Prentice-Hall, 1999.

 31. Oppenheim, A.V., A.S. Willsky and S. Hamid Nawab; Signals and Systems; 2nd Edition, Upper

Saddle River, NJ : Prentice-Hall, 1997.

 32. Brown, J.W., and R.V. Churchill; Complex Variables and Applications; 7th Edition, New York:

McGraw-Hill, 2003.

 33. Lefschetz, S.; Differential Equations: Geometric Theory; 2nd Edition, New York : Dover

Publications, 1977.

DYNAMICAL SYSTEMS AND MODELING

 34. Palm, W.J., III; System Dynamics; New York: McGraw-Hill, 2004.

 35. Zak, S.H.; Systems and Control; New York: Oxford University Press, 2003.

 36. Ogata, K.; System Dynamics; 4th Edition, Englewood Cliffs, NJ: Prentice-Hall, 2003.

 37. Clark, R.N.; Control System Dynamics; New York: Cambridge University Press, 1996.

 38. Belanger, P.R.; Control Engineering: A Modern Approach; Orlando, Florida: Saunders College

Publishing, 1995.

 39. Moschytz, G.S.; Linear Integrated Networks: Fundamentals; New York: Van Nostrand Reinhold,

1974.

 40. Schwarz, R.J., and B. Friedland; Linear Systems; New York: McGraw-Hill, 1965.

 41. Mason, S.J., Feedback Theory: Further Properties of Signal Flow Graphs, Proc., IRE, Vol.44, No. 7,

pp. 920-926, July 1956.

 42. Mason, S.J., Feedback Theory: Some Properties of Signal Flow Graphs, Proc. IRE, Vol. 41, No. 9,

pp.1144–1156, Sept.1953.

870 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

INDUSTRIAL CONTROL DEVICES

 43. Necsulescu, D.; Mechatronics; Singapore: Pearson Education, 2002.

 44. Gupta, S.; Elements of Control Systems; Upper Saddle River, N.J: Pearson Education, 2002.

 45. Kilian, C.T.; Modern Control Technology: Components and Systems; 2nd Edition, Singapore:

Delmar Publishers, 2002.

 46. Morris, N.M.; Control Engineering; 4th Edition, London: McGraw-Hill, 1991.

 47. De Silva, C.W.; Control Sensors and Actuators; Englewood Cliffs, NJ: Prentice-Hall, 1989.

 48. Anderson, W.R.; Controlling Electrohydraulic Systems; New York: Marcel Dekker, 1988.

 49. Parr, E.A.; Industrial Control Handbook, Vol.1–Vol.3; Oxford: BSP Professional Books, 1987.

 50. Schuler, C.A., and W.L. McNamee; Industrial Electronics and Robotics; New York: McGraw-Hill,

1986.

 51. Kenjo, T.; and S. Nagamori; Permanent-magnet and Brushless DC Motors, Oxford: Clarendon

Press, 1985.

 52. Kenjo, T.; Stepping Motors and their Microprocessor Controls; Oxford Clarendon Press, 1984.

 53. Ahrendt, W.R., and C.J. Savant, Jr.; Servomechanism Practice; 2nd Edition, New York: McGraw-

Hill, 1960.

 54. Kuo, S., and W.S.Gan; Digital Signal Processors: Architectures, Implementations, and

Applications; Upper Saddle River, NJ: Pearson Education, 2005.

 55. Pack, D., and S. Barrett; 68HCI2 Microcontroller: Theory and Applications; Upper Saddle River,

NJ: Prentice-Hall, 2002.

 56. Wolf, W.; Computers as Components: Principles of Embedded Computing System Design; San

Franscisco: Morgan Kaufmann, 2001.

 57. Mackenzie, I.; The 8051 Microcontroller; Upper Saddle River, NJ: Prentice-Hall, 1998.

FEEDBACK CONTROL THEORY

 58. Franklin, G.F., J.D. Powell, and A. Emami-Naeini; Feedback Control of Dynamical Systems; 5th

Edition, Upper Saddle River, NJ: Pearson Education, 2005.

 59. Dorf, R.C., and R.H. Bishop; Modern Control Systems, 10th Edition, Upper Saddle River, NJ:

Pearson Education, 2004.

 60. Nise, N.S.; Control Systems Engineering; 4th Edition, Danvers, MA: John Wiley, 2003.

 61. Kuo, B.C., and F. Golnaraghi; Automatic Control Systems; 8th Edition, Danvers, MA: John Wiley,

2003.

 62. D’Azzo, J.J., C.H. Houpis, and S.N.Sheldon; Linear Control System Analysis and Design with

MATLAB; 5th Edition, New York: Marcel Dakker, 2003.

 63. Wilkie, J.,M. Johnson, and R. Ketabi; Control Engineering: An Introductory Course; New York:

Palgrave, 2003.

 64. Dorsey, J.; Continuous and Discrete Control Systems; New York: McGraw-Hill, 2002.

 65. Stefani, R.T., B. Shahian, C.J. Savant, and G.H. Hostetter; Design of Feedback Control Systems;

4th Edition, New York: Oxford University Press, 2002.

 66. Ogata, K.; Modern Control Engineering; 4th Edition, Englewood Cliffs, NJ: Prentice-Hall, 2001.

 67. Goodwin, G.C., S.F. Graebe, and M.E. Salgado; Control System Design; Upper Saddle River, NJ:

Pearson Education, 2001.

 References 871

 68. Phillips, C.L., and R.D. Harbor; Feedback Control Systems; 4th Edition, Englewood Cliffs, NJ:

Prentice-Hall, 1999.

 69. Shinners, S.M.; Modern Control System Theory and Design; 2nd Edition, New York: John Wiley,

1998.

 70. Raven, F.H.; Automatic Control Engineering; 5th Edition, New York: McGraw-Hill, 1995.

 71. Wolovich, W.A.; Automatic Control Systems: Basic Analysis and Design; Orlando, Florida:

Saunders College Publishing, 1994.

 72. Doebelin, E.O.; Control System Principles and Design; New York; John Wiley, 1986.

 73. Truxal, J.G.; Automatic Feedback Control System Synthesis; New York: McGraw-Hill, 1995.

ROBUST CONTROL

 74. Dullerud, G.E., and F. Paganini; A Course in Robust Control Theory; New York: Springer-Verlag,

2000.

 75. Zhou, K., and J.C. Doyle; Essentials of Robust Control; Englewood Cliffs, NJ: Prentice-Hall,

1997.

 76. Saberi, A., B.M. Chen, and P. Sannuti; Loop Transfer Recovery–Analysis and Design; London:

Springer-Verlag, 1993.

 77. Doyle, J.C., B.A. Francis, and A.R. Tannenbaum; Feedback Control Theory; New York: MacMilian;

Publishing Company, 1992.

 78. Francis, B.A.; A course in the Control Theory, Lecture Notes in Control and Information Seciences;

No. 88, Berlin: Springer-Verlag, 1987.

 79. Rosenwasser, E., and R. Yusupov; Sensitivity of Automatic Control Systems; Boca Ratno, FL: CRC

Press, 2004.

DIGITAL CONTROL

 80. Franklin, G.F., J.G. Powell, and M.L. Workman; Digital Control of Dynamic Systems; 3rd Edition,

San Diejo, CA: Addision-Wesley, 1997.

 81. Astrom, K.J., and B. Wittenmark; Computer-Controlled Systems; 3rd Edition, Englewood Cliffs,

NJ: Prentice-Hall, 1996.

 82. Santina, M.S., and A.R. Stubberud; Sample-Rate Selection; Boca Raton, FL: CRC Press, 1996.

 83. Santina, M.S., and A.R. Stubberud; Quantization Effects; Boca Raton, FL: CRC Press, 1996.

 84. Ogata, K.; Discrete-Time Control Systems; 2nd Edition, Upper Saddle River, NJ: Pearson

Education, 1995.

 85. Santina, M.S., A.R. Stubberud, and G.H. Hostetter; Digital Control System Design; 2nd Edition,

Stamford, CT: International Thomson Publishing, 1994.

 86. Phillips, C.L., and H.T. Nagla, Jr.; Digital Control System Analysis and Design; 3rd Edition, Upper

Saddle River, NJ: Pearson Education, 1994.

 87. Kuo, B.C.; Digital Control Systems; 2nd Edition, Orlando, Florida: Saunders College Publishing,

1992.

 88. Houpis, C.H., and G.B. Lemont; Digital Control Systems: Theory, Hardware, and Software; 2nd

Edition, New York: McGraw-Hill, 1992.

872 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 89. Hristu-Varsakelis, D., and W.S. Levine(eds); Handbook of Networked and Embedded Control

Systems; Boston: Birkhauser Publishers, 2005.

 90. Ibrahim, D.; Microcontroller Based Temperature Monitoring and Control; Woburn, MA: Newnes,

2002.

 91. Chidambaram, M.; Computer Control of Processes; New Delhi: Narosa Publishers, 2002.

 92. Ozkul, T.; Data Acquisition and Process Control using Personal Computers; New York: Marcel

Dekkar, 1996.

 93. Rigby, W.H., and T. Dalby; Computer Interfacing: A Practical Approach to Data Acquisition and

Control; Englewood Cliffs, NJ: Prentice-Hall, 1995.

 94. Tooly, M.; PC-Based Instrumentation and Control; 2nd Edition, Oxford: Newnes: Publications,

1995.

 95. Gupta, S., and J.P. Gupta; PC Interfacing for Data Acquisition and Process Control; 2nd Edition,

Research Triangle Park, North Carolina : Instrument Society of America, 1994.

 96. Gopal, M.; Digital Control Engineering; New Delhi: New Age International, 1988.

 97. Rao, M.V.C, and A.K. Subramanium; “Elimination of singular cases in Jury’s test” IEEE Trans.

Automatic Control, Vol.AC-21, pp.1q14–115, 1976.

 98. Jury, E.I., and J. Blanchard; “A Stability Test for Linear Discrete-time Systems in Table Form”,

Proc. IRE., Vol.49, pp.1947–1948, 1961.

STATE SPACE AND LINEAR SYSTEMS

 99. Tewari, A.; Modern Control Design with MATLAB and Simulink; Singapore: John Wiley, 2003.

 100. Chen, C-T.; Linear System Theory and Design; 3rd Edition, New York: Oxford University Press,

1998.

 101. DeRusso, P.M., R.J. Roy, C.M. Close, and A.A. Desrochers; State Variables for Engineers; 2nd

Edition, New York: John Wiley, 1998.

 102. Szidarovszky, F., and A.T. Bahill; Linear System Theory; 2nd Edition, Boca Raton, FL: CRC Press,

1998.

 103. Antsaklis, P.J., and A.N. Michel; Linear Systems; New York: McGraw-Hill, 1997.

 104. Rugh, W.I.; Linear System Theory; 2nd Edition, Upper Saddle River, NJ: Prentice-Hall, 1995.

 105. Gopal, M.; Modern Control System Theory; 2nd Edition, New Delhi: New Age International, 1993.

 106. Brogan, W.L.; Modern Control Theory; 3rd Edition, Englewood Cliffs, NJ: Prentice-Hall, 1991.

 107. Friedland, B.; Control System Design: An Introduction to State-Space Methods; New York: McGraw-

Hill, 1986.

 108. Zadeh, L.A., and C.A. Desoer; Linear System Theory: A State Space Approach; New York: McGraw-

Hill, 1963.

MULTIVARIABLE AND OPTIMAL CONTROL

 109. Bertsekas, D.P.; Dynamic Programming and Optical Control; 3rd Edition, Belnont: Athena

Sientific, 2005.

 110. Naidu, D.S.; Optimal Control Systems; Boca Raton, FL: CRC Press, 2003.

 111. Camacho, E.F., and C. Bordons; Model Predictive Control; 2nd Edition, London: Springer-Verlag,

2003.

 References 873

 112. Bryson, A.E.; Applied Linear Optimal Control: Examples and Algorithms; Cambridge, UK :

Cambridge University Press, 2002.

 113. Locatelli, A.; Optimal Control: An Introduction; Basel, Switzerland: Birkhauser Verlag, 2001.

 114. Chen, T., and B. Francis; Optimal Sampled-Data Control Systems; 2nd Edition, London: Springer,

1996.

 115. Lewis, F.L., and V.L. Syrmos; Optimal Control; 2nd Edition, New York: John Wiley, 1995.

 116. Zhou, K., J.C. Doyle, and K. Glover; Robust and Optimal Control; Upper Saddle River, NJ: Prentice-

Hall, 1996.

 117. Anderson, B.D.O., and J.B. Moore; Optimal Control: Linear Quadratic Methods; Englewood

Cliffs, NJ: Prentice-Hall, 1990.

 118. Grimble, M.J., and M.A., Johnson; Optimal Control and Stochastic Estimation: Theory and

Applications; Vol.I, Chichester: John Wiley, 1988.

 119. Albertos, P., and A. Sala; Multivariable Control Systems: An Engineering Approach; Springer,

2004.

 120. Clarke, D.W., C. Mothadi, and P.S. Tuffs “Generalized predictive control–Part I. The basic

algorithm”, Automatica, vol. 23, No. 2, pp. 137–148; 1987.

 121. Clarke, D.W., C. Mothadi, and P.S. Tuffs “Generalized predictive control–Part II. Extensions and

interpretations”, Automaticam vol. 23, No. 2, pp. 149–160; 1987.

 122. Fortman, T.E., and K.L. Hitz, An Introduction to Linear Control Systems, New York: Marcel

Dekker, 1977.

 123. Kautsky, J., N.K. Nichols, and P. Dooren; “Robust pole assignment by linear state feedback”, Int.,

J.Control, Vol.41, No.5, pp.1129–1155, 1985.

 124. Doyle, J.C., and G. Stein; “Robustness with Observers”, IEEE Trans. Automatic Control, Vol.AC-

24, No.4, pp.607-611, 1979.

NONLINEAR CONTROL SYSTEMS

 125. Khalil, H.K.; Nonlinear Systems; 3rd Edition, Upper Saddle River, NJ: Prentice-Hall, 2001.

 126. Slotine, J-J.E., and W.Li.; Applied Nonlinear Control; Englewood Cliffs, NJ: Prentice-Hall, 1991.

 127. Itkis,U.; Control Systems of Variable Structure; New York: John Wiley, 1976.

 128. Atherton, D.P.; Nonlinear Control Engineering; London: Van Nostrand Reinhold, 1975.

 129. Minorsky N.; Theory of Nonlinear Control Systems; New York: McGraw-Hill, 1969.

SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL

 130. Narendra, K.S., and A.M. Annaswamy; Stable Adaptive Systems; New York: Dover Publications,

2005.

 131. Ljung, L.; System Identification: Theory for the User; 2nd Edition, Englewood Cliffs, NJ: Prentice-

Hall, 1998.

 132. Astrom, K.J., and B. Wittenmark; Adaptive Control; 2nd Edition, Reading, MA: Prentice-Hall,

1994.

 133. Landau, I.D.; System Identification and Control Design; Englewood Cliffs, NJ: Prentice-Hall,

1990.

874 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 134. Sastry, S., and M. Bodson; Adaptive Control: Stability, Convergence and Robustness; Englewood

Cliffs, NJ: Prentice-Hall, 1989.

 135. Grimble, M.J., and M.A. Johnson; Optimal Control and Stochastic Examination: Theory and

Applications; Vol.II, Chichester: John Wiley, 1988.

 136. Harris, C.J., and S.A. Billings (eds); Self-Tuning and Adaptive Control: Theory and Applications;

2nd Edition, London: Peter Peregrinus, 1985.

INTELLIGENT CONTROL

 137. Negnevitsky, M.; Artificial Intelligence: A Guide to Intelligent Systems; 2nd Edition, Essex, UK:

Pearson Education, 2005.

 138. Kccman, V.; Learning and Soft Computing; Cambridge, MA: The MIT Press, 2001.

 139. Norgaard, M.O., Ravn, N.K. Poulsen, and L.K. Hansen; Neural Networks for Modelling and

Control of Dynamic Systems; London: Springer-Verlag, 2000.

 140. Lewis, F.L., S. Jagannathan, and A. Yesildirek; Neural Network Control of Robot Manipulators and

Nonlinear Systems; London, Taylor & Francis, 1999.

 141. Haykin, S.; Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice-Hall, 1998.

 142. Jang, J-S.R., C-T. Sun, and E. Mizutani; Neuro-Fuzzy and Soft Computing: A Computational

Approach to Learning and Machine Intelligence; Upper Saddle River, NJ: Pearson Education,

1997.

 143. Lin C.T., and C.S. George Lee; Neural Fuzzy Systems; Upper Saddle River, NJ: Prentice-Hall,

1996.

 144. Ying, Hao; Fuzzy Control and Modelling: Analytical Foundations and Applications; New York:

IEEE Press, 2000.

 145. Passino, K.M., and S. Yurkovich; Fuzzy Control; California: Addison-Wesley, 1990.

 146. Goldberg, D.E.; Genetic Algorithms in Search Optimization, and Machine Learning; Reading,

Massachusetts, Addison-Wesley, 1989.

 147. Werbos, P., A. Handbook of Learning and Approximate Dynamic Programming, New York: Wiley-

IEEE Press, August 2004.

 148. Sutton. R.S., and A.G. Barto, Reinforcement Learning: An Introduction Cambridge, Mass.: MIT

Press, 1998.

 149. Mitchell, T.M., Machine Learning, Singapore: McGraw-Hill, 1997.

 150. Bertsekas, D.P., and J.N. Tsitsiklis, Neruo-Dynamic Programming, Belmont, Mass: Athena

Scientific, 1996.

TECHNICAL COMPUTING

 151. National Programme on technology enhancement learnning

 Course: Electrical Engineering (control Engineering)

 Faculty Coordinator: Prof. M. Gopal

 Web Content: Matlab Modules for Control System Principles and Design

 www.nptel.iitm.ac.in

 References 875

 152. MATLAB & Simulink Software

 www.mathworks.com

 The MathWorks, Inc.

 3 Apple Hill Drive

 Natick, MA 01760-2098, USA

 153. MATHEMATICA Software

 www.wolfram.com

 Wolfram Research, Inc.

 100 Trade Center Drive

 Champaign, IL 61820-7237, USA

 154. MAPLESOFT Software

 www.maplesoft.com

 Maplesoft

 615 Kumpf Drive

 Waterloo, Ontario

 Canada N2V1K8

COMPANION BOOK

 155. Gopal, M.; Control Systems: Principles and Design; 4th Edition, New Delhi: Tata McGraw-Hill,

2012.

876 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

Caution

For some problems (especially the design problems) of the book, many alternative solutions are possible.

The answers given in the present section, correspond to only one possible solution for such problems.

 2.1 (a) x1, x2: Outputs of unit delayers, starting at the right and proceeding to the left.

 F =
0 1

0 368 1 368-

È

Î
Í

˘

˚
˙

. .
; g =

0

1

È

Î
Í
˘

˚
˙

 c = [0.264 0.368]

 (b) 0.368

1.368

– 0.368

0.2641
Y()zR()z

z–1 z–1

Y z

R z

()

()
 =

0 368 0 264

1 368 0 3682

. .

. .

z

z z

+

- +

 2.2 (a) y(k + 2) + 5y(k + 1) + 3y(k) = r(k + 1) + 2r(k)

 (b) x1, x2: Outputs of unit delayers, starting at the right and proceeding to the left.

 F =
0 1

3 5- -

È

Î
Í

˘

˚
˙ ; g =

1

3-

È

Î
Í

˘

˚
˙ ; c = [1 0]

 (c)
Y z

R z

()

()
 =

z

z z

+

+ +

2

5 32

Answers to Problems

 Answers to Problems 877

 2.3 (a) y(k + 1) +
1

2
 y(k) = – r (k + 1) + 2r(k);

Y z

R z

()

()
 =

- +

+

z

z

2

1

2

 (b) y(k) =

-

-Ê
ËÁ

ˆ
¯̃

=

≥

Ï

Ì
Ô

Ó
Ô

-

1

5

2

1

2

0

1
1k

k

k

;

;
 (c) y(k) =

2

3

5

3

1

2
- -Ê

ËÁ
ˆ
¯̃

k

; k ≥ 0

 2.4 (a) y(k) = Ab (a)k – 1; k ≥ 1 (b) y(k) =
Ab

a1-
[1 – (a)k]; k ≥ 0

 (c) y(k) =
Ab

a1
2-()

[ak + (1 – a)k – 1]; k ≥ 0

 (d) y(k) = Re
A

e
e

j

k j kb

a
a

-
-

È

ÎÍ
˘

˚̇W
W()

 2.5 (a) y(k) = (–1)k – (–2)k; k ≥ 0

 (b) y(k) = 1 +
1

2

1

2 4 4

Ê
ËÁ

ˆ
¯̃

-È

ÎÍ
˘

˚̇

k
k k

sin cos
p p

; k ≥ 0

 2.6 y(0) = 0, y(1) = 0.3679, y(2) = 0.8463, y(k) = 1; k = 3, 4, 5, ...

 2.7 y(k) = 3(2)k – 2; k ≥ 0

 2.8 (a) y(k) = – 40d (k) + 20d(k – 1) – 10(0.5)k + 50(– 0.3)k; k ≥ 0

 (b) y(k) = – 16 + (0.56)k[7.94 sin(0.468k) + 16 cos(0.468k)]; k ≥ 0

 2.9 (a) y(k) = – 0.833(0.5)k – 0.41(– 0.3)k + 0.476(–1)k + 0.769; k ≥ 0

 (b) y(k) = –10k(0.5)k + 2.5(0.5)k – 6.94(0.1)k + 4.44: k ≥ 0

 2.10 y() = K

 2.13 (a) No (b) Yes

 2.14 No

 2.16 (b) T = p / 2

 2.19 (i) (ii)

z-plane
Im

Re

Unit circle
Radius = e–aT

Unit circle

Im z-plane

Re

q = w
0T

q =
w 0T

878 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 2.20 G(z) =
1-

-

-

-
e

z e

T

T
; y(k) = 1 – e–kT; k ≥ 0

 2.21
Y z

R z

()

()
 =

10

16

0 76

1 0 46

z

z z

+
- -

È

Î
Í

˘

˚
˙

.

()(.)

 2.25 u(k) – u(k – 1) = Kc 1 1
2

1 2+ +
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ
- +Ê
ËÁ

ˆ
¯̃

- + -
¸
˝
˛

T

T

T

T
e k

T

T
e k

T

T
e k

I

D D D() () ()

 U(z) = Kc 1
1

1
1

1

1+
-

Ê
ËÁ

ˆ
¯̃
+ -

È

Î
Í

˘

˚
˙-

-T

T z

T

T
z

I

D () E(z)

 2.26 (ii) D(z) = 0.4074
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 9391

0 9752

.

.

 2.27 (a) U(z) = Kc 1
2

1

1

1
+

+
-

Ê
ËÁ

ˆ
¯̃
+

-Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

T

T

z

z

T

T

z

zI

D E(z)

 (b) u(k) = Kc e k
T

T

e i e i T

T
e k e k

I i

k
D()

() ()
[() ()]+

- +
+ - -

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂=
Â

1

1

2
1

 2.28 (a) y(k) =
1

1+ aT
y(k – 1) +

T

aT1+
r(k) (b) y(k) = (1 – aT)y(k – 1) + Tr(k – 1)

 2.29 b
a

T T
+ +Ê

ËÁ
ˆ
¯̃

1
2

y(k) –
a

T T
+Ê

ËÁ
ˆ
¯̃

2
2

y(k – 1) +
1
2T

y(k – 2) = 0; y(0) = a, y(–1) = a – Tb

 3.1
Y z

R z

()

()
 =

G G z G G z

G G z G G H z

h h

h h

0 1 0 2

0 1 0 21

() ()

() ()+

 3.2
Y z

R z

()

()
 =

G G z

G G z H z

h

h

0

01

()

() ()+

 3.3 Y(z) =
G G z G R z

G G HG z

h

h

0 2 1

0 2 11

() ()

()+

 3.4 Y(z) = GpH2R(z) +
D z G G z

D z G G z

h p

h p

() ()

() ()

0

01+
 [H1R(z) – GpH2R(z)]

 3.5
Y z

R z

()

()
 =

D z G G G z

D z G G z G G G z

h

h h

() ()

()[() ()]

0 1 2

0 1 0 1 21+ +
;

X z

R z

()

()
 =

D z G G z

D z G G z G G G z

h

h h

() ()

()[() ()]

0 1

0 1 0 1 21+ +

 3.6 Y(z) =
GW z

D z G G zh

()

() ()1 0+

 3.7 Gh0G(z) = 0.0288
z

z z

+
- -

È

Î
Í

˘

˚
˙

0 92

1 0 7788

.

() (.)
;

q

q
L

R

z

z

()

()
 =

G G z

G G z

h

h

0

01

()

()+

 Answers to Problems 879

 3.8
w

w

()

()

z

zr

 = 159.97
K K

z K

F P

P

+
+ -

Ê
ËÁ

ˆ
¯̃159 97 0 1353. .

 3.9
Y z

R z

()

()
 = 0.0095

z z

z z z

(.)

. . .

+

- + -
È

ÎÍ
˘

˚̇

0 92

2 81 2 65 0 8193 2

 3.10 (i)
Y z

R z

()

()
 =

0 45 0 181

0 081 0 1812

. .

. .

z

z z

+

+ +
 (ii)

Y z

R z

()

()
 =

0 45 0 181

0 368 0 45 0 1812 2

. .

. . .

z

z z z

+

- + +

 3.13 0 < K < 4.293

 3.14 (i) The system is stable for 0 < K < 4.723.

 (ii) The system is stable for 0 < K < 3.315.

 3.15 K

200.34

20.34

0
0.01 0.1

Unstable
region

T

 3.16 0 < K < 0.785.

 3.17 For T = 0.001 sec, the response y(k) is very close to y(t).

0.5

0

Time (sec)

1.0

1.5

2.0

0.02 0.03 0.04 0.050.01

T = 0.01 sec
y k()

y t()

880 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 3.18 y(k) = 1.02 (0.795)k sin(0.89k); k ≥ 0

 3.19 y(0) = 0; y(0.5T) = 0.393; y(T) = 0.632; y(1.5T) = 0.528

 y(2T) = 0.465; y(2.5T) = 0.493; y(3T) = 0.509; y(3.5T) = 0.502; �

 3.22 (a) K = 30ºC/(kg/min); tD = 5 min; t = 60 min

 (b) Kc = 0.545; TI = 13.75 min; tD = 2.2 min

 3.23 Kc = 2.13; TI = 666.66 sec

 4.1 Kp = ; K
v
 = K1/K2; Ka = 0.

 4.2 D1(s) =
25 1

62 5 1

s

s

+
+.

; D1(z) = 0.4
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 939

0 975

.

.

 Velocity error constants are equal

 4.3 0, 1/3.041,

 4.4 Underdamped response with z = 0.199 and wn = 8.93.

 4.5 (a) Y(z) =
[() () ()] ()

() ()

D z D z D z G G z

D z G G z

h

h

2 1 3 0

1 01

+
+

 R(z) +
GW z

D z G G zh

()

() ()1 1 0+

 (b) Y(z) = D3(z)R(z) +
GW z

D z G G zh

()

() ()1 1 0+
 (c) D1(z) can be made large to reject the disturbances

 4.7 S(z) =
z

z

-
-

0 607

0 214

.

.
; wb = 2 rad/sec

 4.8 GM = 8 dB; FM = 28º; nb = 1.6 rad/sec; wb = 1.35 rad/sec

 4.9 (a) Increase plant gain by a factor of 10; FM = 30º

 (b) D(z) = 4.2423
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 2308

.

.

 (c) D(z) = 0.141
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 98

0 998

.

.

 (d) nb1 = 4.8; nb2 = 9.8; nb3 = 1.04

 (e) Yes

 4.10 D(z) = 37.333
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 9048

0 1111

.

.
; K

v
 =

 In the low-frequency range, –Gh0G(jn) is about –180º; therefore, a lag compensator cannot fulfil

the requirement of 50º phase mar gin.

 4.11 (a) K = 50; FM = 20º; wb = 9.27 rad/sec.

 (c) With lag compensator D1(z) = 0.342
z

z

-
-

0 923

0 973

.

.
, FM = 54º, wb = 4.23 rad/sec

 With lag-lead compensator D1(z)D2(z); D2(z) = 2.49
z

z

-
-

0 793

0 484

.

.
; FM = 60º, wb = 7.61 rad/sec

 Answers to Problems 881

 4.12 (a) K = 61.25 (b) Unstable

 (c) D(z) = 0.122K
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 6

0 951

.

.

 4.13 (b) 0 < K < 2.1; K = 0.38

 4.14 (a) K = 2.3925

 (b) (i) K = 1.4557; (ii) K = 0.9653

 4.15 (a) K = 0.88; 1.33 rad/sec (b) K = 0.072; t = 2.3 sec

 (c) K = 0.18; wn = 0.644 rad/sec

 4.16 0 < A < 3.33

 4.17 (a) t = 0.4854 (b) K = 5.1223

 4.18 (a) D1(z) = 13.934
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 8187

0 1595

.

.
 (b) K

v
 = 3

 (c) D2(z) =
z

z

-
-

0 94

0 98

.

.

 4.19 D(z) = 1.91
z

z

-
-

Ê
ËÁ

ˆ
¯̃

0 84

0 98

.

.

 4.20 (a) z1, 2 = 0.78 ± j0.18

 (b) Pole of D(z) at z = 0; (K/2) = 0.18

 (c) Ka = 0.072

 (d) z3 = 0.2; the third pole causes the response to slow down.

 4.21 D(z) = 150
z

z

-
+

Ê
ËÁ

ˆ
¯̃

0 72

0 4

.

.

 4.22 (a) D(z) = 135.22
(.) (.)

(.) (.)

z z

z z

- -
+ -

Ê
ËÁ

ˆ
¯̃

0 9048 0 6135

0 9833 0 7491

 (b) D(z) = 104.17
(.) ()

(.) (.)

z z

z z

- +
+ +

Ê
ËÁ

ˆ
¯̃

0 9048 1

0 9833 0 5
; 0.15

 4.23 D(z) =
4 8 3 9

1

1

1

. .-

-

-

-
z

z

 5.1 x1 = qM, x2 = �qM , x3 = motor armature current ia, x4 = genera tor field current if ; y = qL

 A =

0 1 0 0

0 0 025 3 0

0 12 190 1000

0 0 0 4 2

-
- -

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

; b =

0

0

0

0 2.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; c = [0.5 0 0 0]

882 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.2 A =

0 1 0

0 1 20

0 0 5

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

2 5.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

 5.3 x1 = qM, x2 = �qM , x3 = ia

 A =

0

0

40

1

0 5

0 5

2

0

19

21

2

1 2-

-

- + -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

k k

.

(.)

; b =

0

0

2

1k

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

; c =
1

20
0 0

È

ÎÍ
˘

˚̇

 5.4 A =

-

- + - +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

B

J

K

J

k K K K

L

R k K

L

T

t c b

a

a c

a

() ()1 2

; b =

0

1k K

L

c

a

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0]

 5.5 (a) A =
-
-
È

Î
Í

˘

˚
˙

11 6

15 8
; b =

1

2

È

Î
Í
˘

˚
˙ ; c = [2 –1]

 (b)

U

U

1 1

Y

–3

–11 –15

–2

–1

2

2

8

6

1

X2s–1 s–1

X1 = Y

X1s–1

X2s–1

 (c)
Y s

U s

()

()
 =

1

3 22s s+ +

 5.6 (a) A =
0 1

0 0

È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í
˘

˚
˙ (b) A =

1 1

1 1- -
È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í
˘

˚
˙

 (c) |lI – A | = |lI – A | = l2

 Answers to Problems 883

 5.7 G(s) =
1

3 3 1

1 3

1 2
D

s s s

s s s

s s

()

()

+ +
- +

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 H(s) =
1

1

2
D

s

s

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; D = s3 + 3s2 + 1

 5.9 x1, x2, x3: outputs of integrators, starting at the right and proceeding to the left.

 A =

0 1 0

0 2 1

2 1 2

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [2 – 2 1]

 5.10 x1, x2, x3, x4: outputs of integrators

 Top row: x1, x2 = y1; Bottom row: x3, x4 = y2

 A =

0 0 0 4

1 3 0 0

0 1 0 0

0 0 1 4

-
-
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; B =

3 0

1 2

0 3

0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; x(0) =

0

0

0

0

1

2

y

y

()

()

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; C =
0 1 0 0

0 0 0 1

È

Î
Í

˘

˚
˙

 5.11 (a) G(s) =
s

s s

+
+ +

3

1 2()()
 (b) G(s) =

1

1 2()()s s+ +

 5.12 G(s) =
1 3 5 4 3

2 2 3 12 2D

- + -

- + - +

È

Î
Í
Í

˘

˚
˙
˙

s s

s s s s

()

()
; D = s3 – 4s2 + 6s – 5

 5.13 (a) A =

- -

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 0 5 3 5

4 5 0

0 1 0

. .

; b =

0

0

1-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 1 0]

 (b) G(s) =
14

1 2 7()()()s s s+ + +

 5.14 (a) x1 = output of lag 1/(s + 2); x2 = output of lag 1/(s + 1)

 A =
-
- -
È

Î
Í

˘

˚
˙

2 1

1 1
; b =

0

1

È

Î
Í
˘

˚
˙ ; c = [– 1 1]; d = 1

 (b) x1 = output of lag 1/(s + 2); x2 = output of lag 1/s; x3 = output of lag 1/(s + 1).

 A =

-
-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 1 1

1 0 0

1 0 1

; b =

0

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 1 1]

884 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.15 x1 = output of lag 1/(s + 1); x2 = output of lag 5/(s + 5); x3 = output of lag 0.4/(s + 0.5); x4 = output

of lag 4/(s + 2).

 A =

- - -
- - -

- - -
- - -

È

Î

Í
Í
Í
Í

˘

˚

1 0 0

0 5 5 5

0 4 0 4 0 5 0

0 0 4 2 4

1 1

2 2

1 1

2 2

K K

K K

K K

K K

. . .

˙̇
˙
˙
˙

; B =

K

K

K

K

1

2

1

2

0

0 5

0 4 0

0 4

.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; C =
1 1 0 0

0 0 1 1

È

Î
Í

˘

˚
˙

 5.16 (i) A =
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
; b =

1

1

È

Î
Í
˘

˚
˙ ; c = [2 – 1]

 (ii) A =

0 0 2

1 0 5

0 1 4

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

5

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]

 (iii) A =

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [2 6 2]; d = 1

 5.17 (i) A =

0 0 0

1 0 2

0 1 3

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

1

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]

 (ii) A =

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 0 0]

 (iii) L =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

; b =

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [–1 2 1]; d = 1

 5.18 (a) A =

0 1 0

0 0 1

0 100 52- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [5000 1000 0]

 (b) L =

0 0 0

0 2 0

0 0 50

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

50

31 25

18 75

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

.

; c = [1 1 1]

 5.19 (a) L =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1 0

0 1 0

0 0 2

; b =

0

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [1 1 1]

 (b) y(t) = 2.5 – 2e– t – te –t – 0.5e –2t

 Answers to Problems 885

 5.20 (i) l1 = 1, l2 = 2; v1 =
1

0

È

Î
Í
˘

˚
˙ ; v2 =

1

1

È

Î
Í
˘

˚
˙

 (ii) l1 = –1, l2 = –2; v1 =
1

1

È

Î
Í
˘

˚
˙ ; v2 =

2

1

È

Î
Í
˘

˚
˙

 (iii) l1 = –1, l2 = –2, l3 = –3; v1 =

1

1

1

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v2 =

1

2
1
2

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v3 =

1

3

3

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.21 (b) l1 = –2, l2 = –3, l3 = –4; v1 =

1

2

4

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v2 =

1

3

9

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; v3 =

1

4

16

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 5.22 (a) P =

1 1 1

1 1 1 1 1

2 2 1

- + - - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j j

j j

 (b) Q =

1
2

1
2

1
2

1
2

0

0

0 0 1

-È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

j

j

 5.23 l1 = –1, l2 = 2; v1 =
1

1

È

Î
Í
˘

˚
˙ ; v2 =

1

2

È

Î
Í
˘

˚
˙ ; eAt =

2

2 2 2

2 2

2 2

e e e e

e e e e

t t t t

t t t t

- -

- -

- - +

- - +

È

Î
Í
Í

˘

˚
˙
˙

 5.24 (a) eAt =

3
2

1
2

3 3
2

3
2

3

1
2

1
2

3 1
2

3
2

3

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- - +

- - +

È

Î

Í
Í

˘

˚

˙
˙

 (b) eAt =

3
2

1
2

3 1
2

1
2

3

3
2

3
2

3 1
2

3
2

3

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- + - +

È

Î

Í
Í

˘

˚

˙
˙

 5.25 (a) eAt =
3 2

6 6 2 3

2 3 2 3

2 3 2 3

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- + - +

È

Î
Í
Í

˘

˚
˙
˙

 (b) eAt =
()

()

1 2 2

2 1 2

2 2

2 2

+

- -

È

Î
Í
Í

˘

˚
˙
˙

- -

- -

t e t e

t e t e

t t

t t

886 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 5.26 (a)

1

1 1

u

–2 –2

1

s–1

x2 x1

s–1

s–1

x02

s–1

x01

 (b)
X s

x

1

1
0

()
 = G11(s) =

1 2

1

1 2

3

/ /

s s+
+

+
;

X s

x

1

2
0

()
 = G12(s) =

1 2

1

1 2

3

/ /

s s+
+
-
+

X s

x

2

1
0

()
 = G21(s) =

1 2

1

1 2

3

/ /

s s+
+
-
+

;
X s

x

2

2
0

()
 = G22(s) =

1 2

1

1 2

3

/ /

s s+
+

+

X s

U s

1()

()
 = H1(s) =

1

1s +
;

X s

U s

2 ()

()
 = H2(s) =

1

1s +

 (c) (i) x(t) =
1

2

1
0

2
0 3

1
0

2
0

1
0

2
0 3

1
0

2
0

e x x e x x

e x x e x x

t t

t t

- -

- -

+ + -

+ + - +

È

Î
Í

() ()

() ()ÍÍ

˘

˚
˙
˙

 (ii) x(t) =
1

1

-

-

È

Î
Í
Í

˘

˚
˙
˙

-

-

e

e

t

t

 5.27 x1(t) =
1

3
 – e–2t +

2

3
e–3t; x2(t) = 2(e–2t – e–3t); x3(t) = –2(2e–2t – 3e–3t); y(t) = x1(t)

 5.28 (a) Asymptotically stable (b) y(t) =
1

2
 + 2e–t –

3

2
e–2t

 5.29 y1(t) = 3 –
5

2
e–t – e–2t +

1

2
e–3t; y2(t) = 1 + e–2t – 2e–3t

 5.30 (a) A =
-È

Î
Í

˘

˚
˙

6 0 5

4 5

.

-
; b =

7

0

È

Î
Í
˘

˚
˙ ; c = [0 1]

 (b) y(t) =
28

3

1

4
1

1

7
14 7() ()- - -È

ÎÍ
˘

˚̇
- -e et t

 5.31
x

x

1

2

1

1

()

()

È

Î
Í

˘

˚
˙ =

2 7183

2

. -È

Î
Í

˘

˚
˙

k

k
 for any k π 0

 Answers to Problems 887

 5.32 (a) Modes: e tl1 , e tl2 , e tl3 , l1 = –1, l2 = –2, l3 = –3

 (b) x(0) =

k

k

k

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3

3

; k π 0

 5.33 (b) x(0) =
k

k-
È

Î
Í

˘

˚
˙; k π 0

 5.34 eAt =
2

2 2 2

2 2

2 2

e e e e

e e e e

t t t t

t t t t

- - - -

- - - -

- -

- -

È

Î
Í
Í

˘

˚
˙
˙

 A =
0 1

2 3- -
È

Î
Í

˘

˚
˙

 5.37 Controllable but not observable.

 5.38 (i) Controllable but not observable (ii) Controllable but not observable

 (iii) Both controllable and observable (iv) Both controllable and observable

 (v) Both controllable and observable

 5.39 (i) Observable but not controllable (ii) Controllable but not observable

 (iii) Neither controllable nor observable

 5.40 (i) G(s) =
1

2s +
; state model is not controllable

 (ii) G(s) =
s

s s

+
+ +

4

2 3()()
; state model is not observable

 5.41 (a) l1 = 1, l2 = –2, l3 = –1; unstable

 (b) G(s) =
1

1 2()()s s+ +
; stable

 5.42 (a) A =
0 1

0 1-
È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í
˘

˚
˙ ; c = [10 0]

 (b) A =

0 1 0

0 0 1

0 2 3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [20 10 0]

 (c) A =

0 0 0

1 0 2

0 1 3

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; b =

20

10

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]

888 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 6.1 G(z) =
1

1

4 1 3 3

1 3 4

2

D

z z

z z z z

z z z

- + + +
- - + +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

() ()

()

z; D = z3 + 3z2 + 4z + 1

 H(z) =
1

3 7

7 9 3

3 7

2

2

D

- -

- - +
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

z z

z z

z

 6.3 G(z) =
2 2

2 1
2

z

z z

+

- +

 6.4 G(z) =

2 2
4

4 14 30

3 4
2

3 9
1
2

z z

z z z

+
+
- - -

+ - -
- +

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

D D D

D D D

; D = z2 – z + 1
2

 6.5 x1, x2, x3: Outputs of unit delayers, starting at the top of the column of unit delayers and proceeding

to the bottom.

 F =

1
2

1
4

1
2

1
3

2

0 1

0 3

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g =

1

1

2

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [5 6 –7]; d = 8

 6.6 x1, x2, x3: Outputs of unit delayers. x1 and x2 in first row, starting at the left and proceeding to the

right.

 F =

0 1 0

3 0 2

12 7 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; G =

1 0

0 0

0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; C =
0 2 0

0 0 1

È

Î
Í

˘

˚
˙ ; D =

2 0

0 1

È

Î
Í

˘

˚
˙

 6.7 (i) F =
0 1
2
3

1
3

-
È

Î
Í

˘

˚
˙ ; g =

0

1

È

Î
Í
˘

˚
˙ ; c = [–1 –2]; d = 3

 (ii) F =

0 0

1 0 1

0 1 1

3
4

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g =

0 5

3

4

.

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]; d = –2

 6.8 (i) F =

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 2 0

0 0 3

; g =

1

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [–1 2 1]; d = 1

 Answers to Problems 889

 (ii) F =

1
3

1
3

1
3

1 0

0 1

0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; C = [5 –2 3]; d = 0

 6.9 (i) F =

0 0 3

1 0 7

0 1 5

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g =

0

0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [0 0 1]; d = 0

 (ii) F =
-

-
È

Î
Í

˘

˚
˙

1 0

0 2
; g =

1

1

È

Î
Í
˘

˚
˙ ; c = [–2 7]; d = 0

 (iii) F =

0 1 0

0 0 1

3 7 5- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; c = [2 1 0]; d = 0

 6.10 F
k =

1 5 0 5 3 0 5 3 1

1 5 3 1 0 5 1 5 3

. . () . [()]

. [()] . . ()

- -

- - - +

È

Î
Í
Í

˘

˚
˙
˙

k k

k k

 6.11 y(k) = -
17

6
(–0.2)k +

22

9
 (–0.8)k +

25

18
; k ≥ 0

 6.12 y1(k) = 5
1

2

Ê
ËÁ

ˆ
¯̃

k

 + 10 -Ê
ËÁ

ˆ
¯̃

1

2

k

 + 2; k ≥ 0; y2(k) = 3
1

2

Ê
ËÁ

ˆ
¯̃

k

 + 2 -Ê
ËÁ

ˆ
¯̃

1

2

k

 + 1; k ≥ 0

 6.13 (a) l1 = –1, l2 = –1, l3 = –2; Modes: (–1)k, k(–1)k–1, (–2)k

 (b) x(k) =

k k

k

k

()

()

()

-

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-1

1

2

1

 6.14 (a) G(z) = Z [Gh0(s)Ga(s)] =
0 2838 0 1485

1 1353 0 13532

. .

. .

z

z z

+

- +

 F =
0 1

0 1353 1 1353-
È

Î
Í

˘

˚
˙

. .
; g =

0

1

È

Î
Í
˘

˚
˙ ; c = [0.1485 0.2838]

 (b) From controllable companion form continuous-time model:

 F =
1 0 4323

0 0 1353

.

.

È

Î
Í

˘

˚
˙ ; g =

0 2838

0 4323

.

.

È

Î
Í

˘

˚
˙ ; c = [1 0]

 6.15 F =
0 696 0 246

0 123 0 572

. .

. .

È

Î
Í

˘

˚
˙ ; g =

-È

Î
Í

˘

˚
˙

0 021

0 747

.

.
; c = [2 – 4]; d = 6

 6.16 x(k + 1) = Fx(k) + g1u(k) + g2w(k); F =
1 0 1

0 0 99

.

.

È

Î
Í

˘

˚
˙ ; g1 =

0 005

0 1

.

.

È

Î
Í

˘

˚
˙ ; g2 =

0

0 01.

È

Î
Í

˘

˚
˙

890 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 6.17 F =
0 741 0

0 222 0 741

.

. .

È

Î
Í

˘

˚
˙ ; G =

259 182 0

36 936 259 182

.

. .

È

Î
Í

˘

˚
˙ ; C =

1 0

0 1

È

Î
Í

˘

˚
˙

 6.18 (a) 0.3679
z

z z

+
- -

È

Î
Í

˘

˚
˙

0 7181

1 0 3679

.

()(.)

 (b)
Y z

R z

()

()
 =

0 3679 0 2642

0 63212

. .

.
;

z

z z

+

- +
 F =

0 1

0 6321 1-
È

Î
Í

˘

˚
˙

.
; g =

0

1

È

Î
Í
˘

˚
˙ ; c = [0.2642 0.3679]

 6.19 (a) G(z) = Z [Gh0(s)Ga(s)] =
0 4512 0 1809

0 36792

. .

.

z

z z

+

-
;

 F =
0 1

0 0 3679.

È

Î
Í

˘

˚
˙ ; g =

0

1

È

Î
Í
˘

˚
˙ ; c = [0.1809 0.4512]

 (b) �y(t) = –y(t) + u(t – 0.4); x1(k) = y(k); x2(k) = u(k – 1);

 F =
0 3679 0 1809

0 0

. .È

Î
Í

˘

˚
˙ ; g =

0 4512

1

.È

Î
Í

˘

˚
˙ ; c = [1 0]

 6.20 x1(k) = x(k); x2(k) = u(k – 3); x3(k) = u(k – 2); x4(k) = u(k – 1);

 F =

0 3679 0 2387 0 3935 0

0 0 1 0

0 0 0 1

0 0 0 0

. . .È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

; g =

0

0

0

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 6.21 x1 = y; x2 = �y; x3(k) = u(k – 1);

 F =

1 2

0 1

0 0 0

T TD D

D

t t

t

(/)-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; g =

() /T

T

D

D

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

t

t

2 2

1

; c = [1 0 0]

 6.23 (a) x1 = output of lag 1/s; x2 = output of lag 1/(s + 1); x3 = output of lag 1/(s + 2).

 x(k + 1) =

7

4

1

2

1

4
1

1

2
1 2

1

2

1

2

2 2

2

- - + - + -

- + - -

- - - - -

- - - -

T e e e e e

e e e e

T T T T T

T T T T

()

ee

e e

T

T T

-

- -- +

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

2

2 21

2

1

2
0

x(k)

 +

- + + -

- +

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

- -

- -

-

3

4

1

2

1

4

1

2

1

2

1

2

1

2

2

2

2

T e e

e e

e

T T

T T

T

r(k)

 Answers to Problems 891

 6.24 x(k + 1) =
0 4 0 233

0 698 0 0972

. .

. .- -
È

Î
Í

˘

˚
˙ x(k) +

0 2

0 233

.

.

È

Î
Í

˘

˚
˙ r(k); y(k) = [1 0]x(k)

 6.25 x(k + 1) =

0 6 0 233 0 2

0 465 0 0972 0 233

1 0 2

. . .

. . .- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x(k) +

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r(k)

 6.26 u(k) = 50e(k) – 41e(k – 1)

 x1 = y; x2= �y; x3(k) = e(k – 1)

 x(k + 1) =

0 75 0 1 0 205

5 0 99 4 1

1 0 0

. . .

. .

-
- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x(k) +

0 25

5

1

.È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r(k)

 6.27 (a) Both controllable and observable

 (b) Both controllable and observable

 6.28 T = np ; n = 1, 2, ...

 6.29 T π n; n = 1, 2, 3, ...

 6.30 (a) l1 =
1

4
, l2 =

1

2

 (b) G(z) =
1

1

4
z -

 (c) Controllable but not observable

 7.2 (a) k1 = 74, k2 = 25, k3 = 3

 (b) ˆ�x = (A – mc) x̂ + bu + my; mT = [3 7 – 1]

 (c) With reference to Fig. 7.7:

 x̂e =
ˆ

ˆ

x

x

2

3

È

Î
Í

˘

˚
˙ ;

a e

e ee

11 1

1

a

a A

È

Î
Í

˘

˚
˙ =

0 1 0

0 0 1

6 11 6- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

;
b

e

1

b

È

Î
Í

˘

˚
˙ =

0

0

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

; m =
-È

Î
Í

˘

˚
˙

2

17

 7.3 (a) k = [3 7 –1]; �x = (A – bk)x

 (b) m
T = [74 25 3]

 (c)

�

�

�

x

x

x

3

1

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

-
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

6 0 1

6 0 0

11 1 0

3

1

2

x

x

x

 +

0

1

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 u =
a

x

x

x

b
u

e

e ee e

11 1

1

3

1

2

1a

a A b

È

Î
Í

˘

˚
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
+
È

Î
Í

˘

˚
˙

 With reference to Fig. 7.7:

 x̂e =
ˆ

ˆ

x

x

1

2

È

Î
Í

˘

˚
˙ ; m =

16

4

È

Î
Í

˘

˚
˙

892 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 7.4 ˆ�x = (A – mc) x̂ + Bu + m(y – du); mT = [–1 3]

 7.5 With reference to Fig. 7.7:

 x̂e = ẑ2;
a a

a A

e

e ee

11 1

1

È

Î
Í

˘

˚
˙ =

2 2

1 1- -
È

Î
Í
Í

˘

˚
˙
˙

;
b

be

1È

Î
Í

˘

˚
˙ =

1

0

È

Î
Í
Í

˘

˚
˙
˙

; m = 4.5; x̂ =
y z

y z

+
+

È

Î
Í

˘

˚
˙

ˆ

ˆ

2

22

 7.6 (a) A =
0 9

1 0

È

Î
Í

˘

˚
˙ ; b =

9

0

È

Î
Í
˘

˚
˙ ; c = [0 1]

 (b) k =
2

3
3

È

ÎÍ
˘

˚̇

 (c) ˆ�x = (A – mc) x̂ + bu + my; mT = [81 12]

 (d) k = 1

9

2

9

È

ÎÍ
˘

˚̇

 7.7 (a) A =
0 1

00
2-

È

Î
Í
Í

˘

˚
˙
˙w

; b =
0

1

È

Î
Í
˘

˚
˙ ; c = [1 0]

 (b) k1 = 3w 2
0; k2 = 4w0

 (c) ˆ�x = (A – mc) x̂ + bu + my; mT = [20w0 99w 2
0]

 (d) With reference to Fig. 7.7:

 x̂e = x̂2;
a a

a A

e

e ee

11 1

1

È

Î
Í

˘

˚
˙ =

0 1

00
2-

È

Î
Í
Í

˘

˚
˙
˙w

;
b

be

1È

Î
Í

˘

˚
˙ =

0

1

È

Î
Í
Í

˘

˚
˙
˙

; m = 10w0

 7.8 (a) k = [29.6 3.6]

 (b) ˆ�x = (A – mc)x̂ + bu + my; mT = [16 84.6]

 (c) With reference to Fig. 7.9:

U s

Y s

()

()- = D(s) =
778 16 3690 72

19 6 151 22

. .

. .

s

s s

+

+ +

 (d)

�

�

�

�

x

x

x

x

1

2

1

2

ˆ

ˆ

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 =

0 1 0 0

20 6 0 29 6 3 6

16 0 16 1

84 6 0 93 6 3 6

1

2. . .

. . .

- -
-
- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
x

xÍÍ
Í
Í

˘

˚

˙
˙
˙
˙

 7.9 (a) A =
0 1

0 0

È

Î
Í

˘

˚
˙ ; b =

0

1

È

Î
Í
˘

˚
˙; c = [1 0]

 (b) k = [1 2]

 (c) ˆ�x = (A – mc) x̂ + bu + my; mT = [5 25]

x̂1

x̂2

 Answers to Problems 893

 (d) With reference to Fig. 7.9:

U s

Y s

()

()-
 = D(s) =

40 4 0 619

6 414 33 072

. (.)

. .

s

s s

+

+ +

 (e) With reference to Fig. 7.7:

 x̂e = x̂2 ;
a a

a A

e

e ee

11 1

1

È

Î
Í

˘

˚
˙ =

0 1

0 0

È

Î
Í
Í

˘

˚
˙
˙

;
b

be

1È

Î
Í

˘

˚
˙ =

0

1

È

Î
Í
Í

˘

˚
˙
˙

; m = 5

 (f)
U s

Y s

()

()- = D(s) =
8 07 0 62

6 41

. (.)

.

s

s

+
+

 7.10 (a) k1 = 4; k2 = 3; k3 = 1; N = k1

 (b) m
T = [5 7 8]

 7.11 k = [–1.4 2.4]; ki = 1.6

 7.12 k1 = 4; k2 = 1.2; k3 = 0.1

 7.13 k1 = 1.2; k2 = 0.1; k3 = 4

 7.14 m
T = [5 6 5]

 7.15 KA = 3.6; k2 = 0.11; k3 = 0.33

 7.16 KA = 40; k2 = 0.325; k3 = 3

 7.17 k1 = a2/b; k2 = (a1 – a)/b; N = k1

 7.18 k1 = – 0.38; k2 = 0.6; k3 = 6

 7.19 (a) k1 = 3; k2 = 1.5

 (b) For a unit-step disturbance, the steady-state error in the output is 1/7.

 (c) k1 = 2; k2 = 1.5; k3 = 3.5, Steady-state value of the output = 0

 7.20 (a) k = [3 1.5] (b) N = 7

 (c) For a unit-step disturbance, the steady-state error in the output is 1/7.

 (d) k1 = 2; k2 = 1.5; k3 = 3.5

 7.21 (a) K = 0.095; N = 0.1 (b) For A + d A = – 0.6, w () =
10

10 1.
r

 (c) K1 = 0.105; K2 = 0.5

 7.22 k1 = – 4; k2 = – 3/2; k3 = 0

 7.23 x̂(k + 1) = (F – mc)x̂(k) + Gu(k) + m[y(k) – du(k)]; mT =
3

2

11

16
0-È

ÎÍ
˘

˚̇

 7.24 k = [–0.5 – 0.2 1.1]; x(k + 1) = (F – gk)x(k)

 7.25 x(k + 1) = Fx̂(k) + gu(k)

 x̂(k + 1) = x (k + 1) + m[y(k + 1) – cx(k + 1)]; mT = [6.25 – 5.25]

894 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 7.26

x k

x k

x k

2

1

3

1

1

1

()

()

()

+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 =

0 0 1

1 0 0

0 2 0 5 1 1

0

0

1

2

1

3- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
+
È

Î. . .

()

()

()

x k

x k

x k

ÍÍ
Í
Í

˘

˚

˙
˙
˙

u(k) =
f e

e ee

11 1

1

f

f F

È

Î
Í

˘

˚
˙

x k

x k

x k

2

1

3

()

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 +
g

e

1

g

È

Î
Í

˘

˚
˙ u(k)

 ̂xe(k) = [x̂1(k) x̂3(k)]T

 x̂e(k + 1) = (Fee – mf1e)x̂e(k) + (ge – mg1)u(k) + (fe1 – m f11)y(k) + my(k + 1); mT = [0 1.1]

 7.27 (a) k =
111

76

18

19
-È

ÎÍ
˘

˚̇

 (b) x̂(k + 1) = (F – mc) x̂ (k) + bu(k) + m[y(k) – du(k)]; mT = [8 –5]

x k

x k

k

k

1

2

1

1

1

1

()

()

()

()

+
+
+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 =

2 1 5 84 3 79

1 1 4 38 2 84

8 8 11 84 5 21

5 5 0 38 8 84

- -
- -

- -
- - -

È

Î

Í
Í
Í
Í

˘

˚

. .

. .

. .

. .

˙̇
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

x k

x k

k

k

1

2

()

()

()

()

 7.28 (a) F =
0 1

0 16 1- -
È

Î
Í

˘

˚
˙

.
; g =

0

1

È

Î
Í
˘

˚
˙ ; c = [1 0]

 (b) k1 = 0.36; k2 = –2.2

 (c) x̂2(k + 1) = (–1 – m) x̂2(k) + u(k) – 0.16y(k) + m y(k + 1); m = –1

 (d)

–

Y()zU()z z

z z

–2

–1 –1(1 + 0.8)(1 + 0.2)

2.56(1 + 0.1375)

1 – 2.2

z

z

–1

–1

 7.29 (a) x(k) = Qz(k); Q =
1 1

0 1

-È

Î
Í

˘

˚
˙ ; u = – 0.36 z1(k) + 2.2z2(k)

 (b) ẑ2 (k + 1) = (–1 – m)ẑ2(k) + u(k) – 0.16 y(k) + my(k + 1); m = –1

 (c)
U z

Y z

()

()-
 = D(z) =

2 56 1 0 1375

1 2 2

1

1

. (.)

.

+

-

-

-
z

z

 7.30 (a) F =
1 0 1

0 1

.È

Î
Í

˘

˚
˙ ; g =

0 005

0 1

.

.

È

Î
Í

˘

˚
˙

 (b) k1 = 13; k2 = 3.95

x̂1

x̂2

x̂1

x̂2

 Answers to Problems 895

 (c) x̂(k + 1) = (F – mc)x̂(k) + gu(k) + my(k); mT = [2 10]

 (d)
U z

Y z

()

()-
 = D(z) =

65 5 0 802

0 46 0 262

. (.)

. .

z

z z

-

+ +

 7.31 (a) F =
1 0 0952

0 0 905

.

.

È

Î
Í

˘

˚
˙ ; g =

0 00484

0 0952

.

.

È

Î
Í

˘

˚
˙ ; c = [1 0]

 (b) k1 = 105.1; k2 = 14.625

 (c) x̂(k + 1) = (F – mc) x̂(k) + gu(k) + my(k); mT = [1.9 8.6]

 (d) x̂2(k + 1) = (0.905 – 0.0952m)x̂2(k) + (0.0952 – 0.00484m)u(k) – my(k) + my(k + 1); m = 9.51

 7.32 (a) y(k + 1) = 0.368y(k) + 0.632u(k) + 0.632w(k)

 (b) K = 0.3687; N = 1.37

 (c) Steady-state error for a unit-step disturbance is 0.73.

 (d) K1 = 0.553; K2 = 2.013

 8.1 Asymptotically stable in-the-large.

 8.2 Unstable.

 8.3 Equilibrium state xe = [2 0]T is asymptotically stable.

 8.4 K > 0

 8.5 0 < K < 8

 8.6 Asymptotically stable.

 8.7 Asymptotically stable.

 8.8 K = [1 3]

 8.9 K = [1 2]

 8.10 Sufficient conditions not satisfied.

 u = – [–1 4]x; optimal closed-loop system is asymptotically stable.

 8.11 Asymptotically stable optimal solution does not exist.

 8.12 u = – x1 – 0.23x2 + r; r = desired output yd = 1

 8.13 u = – x1 – 6x2

 8.14 u = – x1 – x2; ˆ�x = (A – MC) ˆ�x + Bu + My; MT = [5 4]

 8.15 k1 = 2; k2 = 0.275; J0 = 93.2375

 8.16 r = 0.1; K = [3.1623 0.5968]; Poles: – 0.6377, – 4.9592

 r = 0.01; K = [10 1.7082]; Poles: – 2.2361, – 4.4721

 r = 0.001; K = [31.6228 4.3939]; Poles: – 4.6970 ± j3.0921

 8.17 (a) K = 2 – 1 (b) N = 2

 (c) Steady-state error to unit-step disturbance is 1/ 2

 (d) K = K1 = 1

896 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 (e)

+

– –

+ + +
r

u

w

y
1
+ 1s

1
s

 8.18 (a) K = 0.095; N = 0.1 (b) For A + dA = – 0.6, w() =
10

10 1.
r

 (c) K = 0.105; K1 = 0.1

 8.19 u(k) = – 0.178x(k)

 8.20 (a) K = 0.277 (b) y() = 0.217r

 (c) N = 1.277

 8.21 (a) K = 0.2 (b) N = 0.45

 (c) For F + dF = 0.3, x() =
0 9

1 1

.

.
r

 9.2
8M

p
; 1 rad/sec; y(t) =

-8M

p
 sint

 9.3 0.3; 10 rad/sec

 9.4 D < 0.131

 9.6 4.25; 2 rad/sec, stable limit cycle

 9.7 3.75; 1 rad/sec

 9.8 (a) Stable node; (0, 0) point in (y, �y)-plane

 (b) Stable node; (1,0) point in (y, �y)-plane

 (c) Unstable focus; (2,0) point in (y, �y)-plane

 9.9 For q = 0, the singular point is center; for q = p, it is saddle.

 9.10 (i) Singularity (1,0) in (y, �y)-plane is a center

 (ii) Singularity (1,0) in (y, �y)-plane is a stable focus.

 9.11 (a) For – 0.1 < x1 < 0.1, ��x1 + �x1+ 7x1 = 0 (b) Isocline equations:

 For x1 > 0.1, ��x1 + �x1 + 0.7 = 0 x2 =
–7

1

1x

m +
; – 0.1 < x1 < 0.1

 For x1 < –0.1, ��x1 + �x1– 0.7 = 0 x2 =
– .0 7

1m +
; x1 > 0.1

 x2 =
0 7

1

.

m +
; x1 < – 0.1

 (c) A singular point at the origin

 9.12 (a) For – 0.1 < x1 < 0.1, ��x1 + �x1 = 0 (b) Isocline equations:

 For x1 < – 0.1, ��x1 + �x1+ 7 (x1 + 0.1) = 0 m = – 1; – 0.1 < x1 < 0.1

 Answers to Problems 897

 For x1 > 0.1, ��x1 + �x1+ 7 (x1 – 0.1) = 0 x2 =
– – .7 0 7

1

1x

m +
; x1 < – 0.1

 x2 =
– .7 0 7

1

1x

m

+
+

; x1 > 0.1

 (c) Singular point at (x1 = ± 0.1, x2 = 0)

 9.13 (a) ��x1 + �x1+ 0.7 sgn x1 = 0 (b) Isocline equations:

 x2 =
– .0 7

1m +
; x1 > 0

 x2 =
0 7

1

.

m +
; x1 < 0

 (c) No singular points

 9.14 (a) For – 0.1 < x1 < 0.1, ��x1 + �x1= 0 (b) Isocline equations:

 For x1 > 0.1, ��x1 + �x1+ 0.7 = 0 m = – 1 ; – 0.1 < x1 < 0.1

 For x1 < – 0.1, ��x1 + �x1– 0.7 = 0 x2 =
– .0 7

1m +
; x1 > 0.1

 x2 =
0 7

1

.

m +
; x1 < – 0.1

 (c) No singular points

 9.15 (a) ��x1 + 0.1 sgn �x1+ x1 = 0 (b) Isocline equation:

 x2 =
– – . sgnx x

m

1 20 1

 (c) Singular point at (x1 = ∓ 0.1, x2 = 0)

 9.16 Steady-state error to unit-step input = – 0.2 rad; Maximum steady-state error = ± 0.3 rad.

 9.17 Deadzone helps to reduce system oscillations, and introduces steady-state error.

 9.18 Saturation has a slowing down effect on the transient.

 9.20 The system has good damping and no oscillations but exhib its chattering behavior. Steady-state

error is zero.

 9.21 (b) (i) Deadzone provides damping; oscillations get re duced.

 (ii) Deadzone introduces steady-state error; maximum error = ± 0.2.

 (c) By derivative-control action, (i) settling time is reduced, but (ii) chattering effect appears.

 9.23 x1 = e, x2 = �e; Switching curve: x1 = – x2 +
x

x

2

2| |
 ln 1 2

2

2

+
Ê

ËÁ
ˆ

¯̃
x

x| |

 9.24 |x1| < 1; origin is the equilibrium state.

 9.25 Asymptotically stable in-the-large; origin is the equilibrium state.

 9.26 Asymptotically stable; origin is the equilibrium state.

 9.27 1 > 2x1x2; origin is the equilibrium state

 9.28 Locally unstable

898 Digital Control and State Variable Methods: Conventional and Intelligent Control Systems

 9.29 Origin is asymptotically stable for x 2
1 + x 2

2 < 1

 9.30 (i) Globally asymptotically stable (ii) Unstable (iii) Asymptotically stable for

 0 < x 2
2 < K1/K2

 10.1 KP = 100; KD = 14.14

 10.4 a1 = 0.8187; b1 = 1.0877

 10.5 a1 = 0.9845; a2 = – 0.1222; b1 = 0.0579; b2 = 0.1011

 10.6 a1 = 1.5; a2 = 2; b1 = 1; b2 = 3

 11.1 (a) w1 = 1, w2 = 3 (b) w1 = 0.86442, w2 = 2.8892

 (c) 0.21626

 11.4 w = 0.36; w0 = 0.666

 11.6 (b) w(1) = [0.974 –0.948 0 0.526]T;

 w(2) = [0.974 –0.956 0.002 0.531]T

 w(3) = [0.947 –0.929 0.016 0.505]T

 (c) w = [0.9482 –0.9298 0.0155 0.505]T

 11.7 (b) w10 = 1.00043; w11 = 3.00043;

 w12 = 4; w20 = – 5.9878; w21 = 6.0123;

 w22 = 5; v0 = – 3.9078; v1 = 2.012;

 v2 = 4.0061

 (c) With initial weights, ŷ = 0.51; With updated weights, ŷ = 0.5239

 11.9 (a) vl(k + 1) = vl (k) + h(y – ŷ)
4

2()e e
z

a a+
È

Î
Í

˘

˚
˙-

 wli (k + 1) = w k y
e e

v
e

e
xli a a

a

a i() ()
() ()

+ -
+

È

Î
Í

˘

˚
˙ +

È

Î
Í
Í

˘

˚
˙
˙-

-

-
h

4

12 2

 (b) v1 = 0.095474, v2 = 0.195694, v3 = 0.095716; w11 = 0.199895,

 w12 = 0.100084, w21 = 0.399785, w22 = 0.600172, w31 = 0.299895, w32 = 0.500084

 12.1 (a) Supporting Interval: [1 3] (b) Support: [1 3]

 a-cut interval: 2 0 5 2 0 5- +È
Î

˘
˚. . a-cut: [1.5 2.5]

 12.2 (a) s =
1

2p
; m = 2; Support unbounded (–); a-cut: [1.53 2.47]

 (b) Support: (–); a-cut: [1 3]

 12.3 a = 3 ft; b = 6 ft; c = 9 ft; Support: [3 9]; Cross point: 4.5

 12.4 (a) mA~
 = A

x
x

x

x
x

~

;

;

;

+
- £ £

£ <
-
-

£ £

Ï

Ì

Ô
Ô

Ó

Ô
Ô

1

5
1 4

1 4 5

9

4
5 9

 (b) It is normal and convex.

ŷ

 Answers to Problems 899

 12.5 (a) (i) Yes (ii) Yes (iii) No

 (b) Support: [64 78]; Cross points: 68, 75; a-cut a=0 2. : [65.6 76.8]; a-cut a=0 4. : [67.2 75.6]

 12.8 (i) mA~
(4) = 0.75 (ii) mB

~
(3) = 0.5

 (iii) mA B
~ ~¥

(x, y) = 0.5 (iv) mA B
~ ~
Æ (x, y) = 0.5

 12.11 z* = 6.76

 12.12 1857.28

 12.13 m ¢C
~

(z) = max min , () , min , ()
2

3

1

31 2
m m

� �
C Cz z

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

 z*
COA = 4.7

 12.14 (i) 0.25, 0.62

 (ii) magg(z) = max min . , () , min . , ()0 25 0 62m m
�

�PL PMz z() (){ }
 (iii) z* = 53.18

 12.15 34.40

12.16 Rules 2, 3, and 4 are active; u* = 2.663

12.17 67.4

12.18 2.3

 12.22 2.974

12.23 12.04

900 Index

A

Acceleration error constant 220

Ackermann’s formula 445, 471

Accuracy (NN) 693

Activation functions; 702

 bipolar 704

 Gaussian 728

 hyperbolic tangent 706

 linear 707

 log-sigmoid 707

 sigmoidal 706

 tan-sigmoid 707

 unipolar 704

Adaptive control system;

 model-reference 649–657, 671

 self-tuning 663–671

A/D converter; 22, 27

 circuits 29–31

 model 127

Adjoint of a matrix 288

Aliasing 81–83

Alpha-cut; fuzzy set 783–784

Analytic function 55

ANFIS 809–813

Antecedent; IF-THEN rule 773

Anti-aliasing filter 24, 87

Artificial neural network

 (see Neural network)

Artificial neuron

 (see Neuron model)

Asymptotic stability 72, 367, 503, 613

Autonomous systems 610

B

Backlash nonlinearity; 568

 describing function 575–578

Index

Backpropagation training;

 batch-mode 721–722

 gradient descent method 719–722

 incremental-mode 720–721

 learning rate 720

 momentum term 726

 multilayer network 722–727

 single-layer network 716–722

 weight initialization 726

Backward difference approximation of

 derivatives 99–103

Bandwidth; 229, 232

 on Nichols chart 244

Batch-mode training 721–722

Bell-shaped fuzzy set 782–783

Berbalat’s lemma 653–654

Bias (NN) 702

BIBO stability 66–72, 367

Bilinear transformation; 105–108

 with frequency prewarping 237

Bode plots:

 lag compensation 239–241

 lag-lead compensation 241

 lead compensation 239–240

C

Cancellation compensation 256, 263, 265–266

Canonical state models;

 controllability form 364

 controllable companion form 316–319, 394

 first companion form 316–319, 394

 Jordan form 320–325, 396–399

 observability form 366

 observable companion form 319–320, 395

 second companion form 319–320, 395

 Index 901

Cascade programming

 of controllers 144–145

Cartesian product 787

Cayley-Hamilton theorem 314

Center of area defuzzification 804–805

Center point; phase portrait 600

Characteristic equation 59, 328

Chattering 674

Chromosome (GA) 828

Classical logic 778

Coding 26

Companion form of state model:

 controllable 316–319, 394

 first form 316–319, 394

 observable 319–320, 395

 second form 319–320, 395

Companion matrices 320

Compensation:

 cancellation 256, 263, 265–266

 lag on Bode plots 239–241

 lag on root-locus plots 257–263

 lead on Bode plots 239–240

 lead on root-locus plots 254–257

Complement; fuzzy set 787

Complementary strips in s-plane 92

Compositional rule of inference 792

Composition; max-min 792

Computational time delay 24

Computer control systems (see Digital

 control systems)

Condition number of a matrix 292

Conclusion; IF-THEN rule 773

Conjunction; fuzzy set 789

Consequent; IF-THEN rule 773

Constant-wn loci 96

Constant-z loci 95–96

Controllability:

 definition 354–355, 414

 tests 356, 362, 371, 414, 416, 419

Controllability canonical form of state

 model 364

Controllability loss due to sampling 417–419

Controllability matrix 356, 371, 414, 419

Controllable companion form of state

 model 316–319, 394

Controllable eigenvalues (poles) 365

Controller tuning 148

 based on GA 839–842, 844

 based on process reaction curve 154–159

 based on ultimate gain and period 153–154

 digital PID 159–162

Convergence (NN) 696

Convex fuzzy set 783

Convolution sum 42

Coulomb friction 569, 603–605

Crisp set 778

Crossover (GA) 835–836

Cross point; fuzzy set 784

Cross product 787

Cross site (GA) 835

Current state observer 473–474

Cylindrical extension; fuzzy relation 792

D

D/A converter; 22, 27

 circuits 28–29

 model 127–128

Damping ratio; correlation with

 peak overshoot 224

 phase margin 232

 resonance peak 232

Data-based modeling 690, 767

Deadbeat control systems 480–481

Deadbeat state observer 481

Dead-time 135–137, 405–407

Deadzone nonlinearity 567

 describing function 579

 phase portrait 632–633

Decoding 27

Defuzzification 804–805

Describing function method 569–573

 stability analysis 580–583

 table 579

Detectability 528

Determinant of a matrix 287

Diagonal matrix 285

Difference equations 40–41

Digital controller implementation 140

 cascade realization 144–145

 direct realization 142–144

 nonrecursive 142, 145

 parallel realization 145

 recursive 142

Digital control systems; 4, 24

 advantages of 21

 configuration 3–4, 23–24

 implementation problems 22–23

902 Index

Digital PID controllers 117–118

 position algorithm 159–160

 velocity algorithm 160–161

 tuning 159–162

Digital signals (see Discrete-time signals)

Direct digital control 9

Direct digital design 126

Direct method of Lyapunov 611, 617–620

Direct programming of controllers 142–144

Discrete-time impulse 32, 47

Discrete-time signals 31

 sinusoidal sequence 32–33, 49

 unit-ramp sequence 48

 unit-sample sequence 32, 47

 unit-step sequence 32, 47

Discretization 90–108

Distributed computer control system 10

Disturbance rejection 232–234

Dominant poles 226–227

Duality 452

E

Eigenvalue assignment

 (see Pole-placement by state feedback)

Eigenvalues 292, 296, 328

 controllable 365

 observable 366

Eigenvectors 328–332

 computation 332–338

 generalized 336

Encoder; shaft 169–172

Encoding 26

Epoch; NN training 721

Equilibrium state 464, 477, 502, 598, 610

Equivalence transformation 307

Error constants

 acceleration 220

 position 219

 velocity 219

Euclidean matrix norm 292

Euclidean vector norm 290–291

Evolutionary algorithms 827

F

Feedback control systems

 nonunity feedback 18, 217

 state feedback 297

 unity feedback 18, 217

Feedback linearization 644–649

Feedback network (see Recurrent network)

Feedfarward action

 state-feedback servo 463–465, 476–477, 522

Feedforward neural network 707

 dynamic map 733

 input-output map 710, 713

 multilayer 711–713

 single layer 708–711

Filter

 anti-aliasing 24, 87

 finite impulse response 142

 infinite impulse response 142

 low pass 84

 nonrecursive 142, 145

 recursive 142

 zero-order hold 76, 77–79, 85–87

Final value theorem

 z-transform 55–56

Finite impulse response system 142

Firing strength; IF-THEN rule 803, 807

First companion form of

 state model 316–319, 394

First-harmonic approximation 572

First method of Lyapunov 611, 627–628

First-order hold 76

Fitness function 832

Focus; phase portrait 600

Forward difference approximation of

 derivatives 101–103

Fourier series 570–571

Frequency folding (see Aliasing)

Frequency prewarping 237

Frequency response 63–65

 specifications 227–229, 232

Frequency warping 101, 108, 237

Full-order state observer 449–452

 current observer 473–474

 prediction observer 472–473

Function approximation (NN) 691, 714–715

Function approximation (SVM) 753–757

Fuzzification 794

Fuzzy cartesian product 788

Fuzzy complement 787

Fuzzy conjunction 789

Fuzzy-genetic systems 839–840

Fuzzy implication 790

Fuzzy inference; 790

 compositional rule 792

 Index 903

Fuzzy intersection 787

Fuzzy logic 778

Fuzzy logic control 794–805

 GA-based tuning 839–842, 844

Fuzzy modeling 805–809

Fuzzy propositions 791

Fuzzy relation 787

 composition 792

 cylindrical extension 792

 projection 792

Fuzzy rules (IF-THEN)

 Mamdani rules 791–793

 singleton rules 793

 Sugeno rules 793–794

Fuzzy singleton 784, 793

Fuzzy sets

 a-cut 783–784

 bell-shaped 782–783

 convex 783

 cross point 784

 Gaussian 782–783

 normal 783

 singleton 784

 support 784

 trapezoidal 782–783

 triangular 782–783

Fuzzy union 787

G

Gain margin 230–231

Gaussian activation (NN) 728

Gaussian fuzzy set 782–783

Generalization (NN) 693

Generalized eigenvectors 336

Generalized predictive control 665–671

Genetic algorithm (GA)

 chromosome 829

 coding 831

 controller tuning 839–842, 844

 crossover 835–836

 cross site 835

 fitness function 832

 mating pool 834

 mutation 836

 reproduction 835–836

 Roulette wheel parent selection 834–835

Genetic-fuzzy systems 839–840

Genetic-neural systems 842–843

Global stability 505, 513

Gradient descent method (NN) 719–722

Grammian matrix 294, 295

H

Hessian matrix 511

Hidden layer (NN) 711

Hierarchical control systems 10–11

Hold operation

 first-order 76

 zero-order 76, 77–79

Homogeneous state equations

 solution 340, 409

Hyperbolic tangent activation (NN) 706

I

IAE performance index 511

Identification of models

 least squares method 657–663

 fuzzy–based 805–809

 NN-based 730–735

Identity matrix 285

IF-THEN rule

 antecedent 773

 conclusion 773

 consequent 773

 firing 803, 807

 implication 790

 premise 773

Implication; fuzzy set 790

Impulse; discrete-time 32, 47

Impulse-invariance method for

 discretization 90–94

Impulse modulator model of sampler 43–45

Impulse response model 41–43

Incremental-mode training (NN) 720–721

Indefinite scalar function 616

Inference; fuzzy system 790, 792

Infinite impulse response system 142

Inherent nonlinearities 569

Initialization (NN) 726

Inner product of vectors 290, 294

Instability theorem; Lyapunov 620–621

Integral action

 state-feedback servo 466–468, 477–479, 523

Intelligent control 688

Intentional nonlinearities 569

Intersample ripples 200–201, 417

Intersection; fuzzy set 787

Inverse model (NN) 736

904 Index

Inverse of a matrix 288

Inverted pendulum 350–353

ISE performance index 512

Isoclines method 593–597

ITAE performance index 511

ITSE performance index 512

J

Jacobian matrix 623

Jordan canonical form of

 state model 320–325, 396–399

Jump resonance 566

Jury stability criterion 73–75

K

Kernal functions 753

KKT conditions 745

Krasovskii method 623–625

L

Ladder diagram 190–198

Lag compensation on

 Bode plots 239–241

 root-locus plots 257–263

Lag-lead compensation 240

Lagrange’s equation 644

Lead compensation on

 Bode plots 239–240

 root-locus plots 254–257

Learning; machine 689, 690–696

Learning in NN;

 reinforcement 692, 850–867

 supervised 691, 716

 unsupervised 692

Least squares estimation 657–663

 recursive 661–663

Limit cycles 605

Linear activation (NN) 707

Linear SVM 748–752

Linearization

 feedback linearization 644–649

 first-harmonic approximation 572

 method of Lyapunov 611, 627–628

 Taylor’s series 302

Linear dependence of vectors 293

Linear independence of vectors 293, 294–295

Linear system stability tests

 Jury 73–75

 Lyapunov 506–509

Local stability 505, 513

Logic

 classical 778

 fuzzy 778

Log-sigmoid activation (NN) 707

Lowpass filter 84

Luenberger state observer 450

Lyapunov equations 507, 509

Lyapunov functions

 for linear systems 506–509

 for nonlinear systems 621–626

Lyapunov instability theorem 620–621

Lyapunov stability analysis

 direct method 611, 617–620

 first method 611, 627–628

 linearization method 611, 627–628

 non-autonomous systems 653–654

 second method 611, 617–620

M

Machine learning 689, 690–696

Mamdani architecture; FLC 791–793

Markov Decision Process 852

Mapping of s-plane to z-plane 46

 constant-wn loci 96

 constant-z loci 95–96

Mapping of z-plane to w-plane 236

Mapping of w-plane to z-plane 236

Marginal stability 72

Mating pool (GA) 834

Matrix

 adjoint 288

 condition number 292

 determinant 287

 diagonal 285

 eigenvalues 292, 296, 328

 Grammian 294, 295

 Hessian 511

 identity 285

 inverse 288

 Jacobian 623

 negative definite 296

 negative semidefinite 296

 nonsingular 288

 norm; Euclidean 292

 norm; spectral 292

 null 285

 nullity 331

 orthogonal 292

 partitioned 289

 Index 905

 positive definite 296

 positive semidefinite 296

 rank 289, 294

 singular 288

 singular values 292

 skew-symmetric 287

 symmetric 286

 trace 289

 transpose 286

 triangular 285–286

 unit 285

 zero 285

Matrix exponential 338–339

 properties 339

Matrix exponential evaluation by

 Cayley-Hamilton technique 344–346, 412

 inverse Laplace transform 341

 numerical algorithm 401–402

 similarity transformation 342–343, 410–411

Matrix Riccati equation 526, 537

Max-min composition 792

Measurement noise 233

Membership functions (see Fuzzy sets)

MIMO systems; definition 14, 37–38

Minor-loop feedback 7

Model reference adaptive

 control 649–657, 671

Modes 363

Momentum gradient algorithm 726

Multilayer NN 711–713

Multiloop control systems 10

Multiple-rate sampling 24

Multivariable control

 systems 367–368, 419–420

Mutation (GA) 836

N

Negative definite matrix 296

Negative definite scalar function 296, 616

Negative semidefinite matrix 296

Negative semidefinite scalar function 296, 616

Neural Network

 dynamic map 733

 feedforward 707

 for control 735–741

 for function approximation 714–715

 for model identification 730–735

 input-output map 710, 713

 multilayer perceptron 711–713

 RBF 727–730

 recurrent 713–714

 single-layer perceptron 708–711

Neural Network Modeling 730–735

Neural Network Training

 (see Backpropagation training)

Neural Network Performance

 accuracy 693

 convergence 696

 generalization 693

 overfitting 694

 validation 694

Neural Q-earning 866

Neuron:

 artificial 700

 biological 698

 model 704

Neuro-control

 feedforward-feedback 738

 inverse model 736

 model-reference adaptive 738–741

Neuro-fuzzy systems 809–813

Neuro-genetic systems 842–843

Nichols chart; bandwidth

 determination 244

Nodal point; phase portrait 600

Non–autonomous systems 653–654

Nonhomogeneous state equations

 solution 348–349, 408, 409

Nonlinearities

 backlash 568, 575–578

 Coulomb friction 569, 603–605

 deadzone 567, 632–633

 describing function table 579

 on–off 569, 573–575, 601–602

 saturation 567, 628–630

Nonlinear SVM 752–753

Nonlinear system stability

 describing function 580–583

 Lyapunov functions 621–626

Nonminimum-phase transfer

 function 238

Nonrecursive controller 142, 145

Nonsingular matrix 288

Nonsingleton fuzzy system 793

Nonunity feedback system 18, 217

Norm:

 Euclidean; matrix 292

 Euclidean; vector 290–291

 spectral; matrix 292

906 Index

Normal fuzzy set 783

Nullity 331

Null matrix 285

Nyquist stability criterion 230–231

O

Observability

 definition 355–356, 415

 tests 359–360, 362, 371, 415, 416, 419

Observability canonical form of state model 366

Observability loss due to sampling 417–419

Observability matrix 360, 371, 415, 419

Observable companion form of state

 model 319–320, 395

Observable eigenvalues (poles) 366

Observer (see State observer)

On–off controllers 569, 605–609

 describing functions 573–575

 phase portraits 601–602

Optimal servo system; with integral control 523

Optimal state estimators (see Optimal

 state observers)

Optimal state observers 521–522

Optimal state regulator 518, 523–529, 534–537

Optimization of parameters 510

Order of a system 38, 58

Orthogonal matrix 292

Orthogonal vectors 292

Orthonormal vectors 292

Output feedback (see Partial state feedback)

Output layer (NN) 711

Output regulator 519

Overfitting (NN) 694

P

Parallel programming of controllers 145

Parameter estimation

 least squares method 657–663

 recursive 661–663

Parameter optimization 510

Partial state feedback 539–545

Partitioned matrix 289

Pattern recognition 691

Peak overshoot 223

 correlation with damping ratio 224

Peak resonance 229

 correlation with damping ratio 232

Peak time 223, 224

Perceptron 705

Performance index (also see Quadratic

 performance index)

 IAE 511

 ISE 512

 ITAE 511

 ITSE 512

Performance specifications

 frequency-response 227–229, 232

 time-response 222–225

Permanent-magnet stepping motors 174–176

Phase margin 230–231

 correlation with damping ratio 232

Phase-plane analysis 587–590

Phase portraits 588

 Construction by analytical method 590–593

 Construction by isocline method 593–597

Phase trajectory 588

PID controller analog, 153–162

PID controller, digital (see Digital PID controller)

Pole-placement by state feedback 441–445, 470–471

 Ackermann’s formula 471

 multi-input systems 447–448

Poles and zeros 47

Pole-zero cancellation 256, 263, 265–266

Policy iteration 860

Position error constant 219

Position form of digital PID algorithm 159–160

Positive definite matrix 296

Positive definite scalar function 296, 616

Positive semidefinite matrix 296

Positive semidefinite scalar function 296, 616

Prediction state observer 472–473

Predictive control 665–671

Premise; IF-THEN rule 773

Prewarping 237

Primary strip in s-plane 92

Process reaction curve 155–157

Programmable logic controller; 13, 181

 applications 199

 building blocks 185–190

 ladder diagram 190–198

 programming 198

Projection; fuzzy relation 792

Proper transfer function 311

Q

Q-learning 863–864

Quadratic forms of scalar functions 295

 negative definite 296

 Index 907

 negative semidefinite 296

 positive definite 296

 positive semidefinite 296

Quadratic performance index

 ISE 512

 output regulator 519

 state regulator 519, 534

Quantization errors 22, 25–27

Quarter-decay ratio response 153–154

R

Ramp sequence 48

Rank of a matrix 289, 294

RBF network 727–730

Realization of a transfer function:

 cascade programming 144–145

 direct programming 142–144

 first companion form 316–319, 394

 Jordan form 320–325, 396–399

 parallel programming 145

 second companion form 319–320, 395

Rectangular rules for integration 102

Recurrent networks 713–714

Recursive controller 142

Recursive least squares estimation 661–663

Reduced-order state observer 455–457, 474

Regulator; definition 4

Reinforcement learning control 850–867

Relaxed system 41

Reproduction (GA) 835–836

Resolvent algorithm 312–313

Resolvent matrix 313

Resonance frequency 229, 232

Resonance peak 229

 correlation with damping ratio 232

Riccati equation 526, 537

Rise time 222, 224

Robot manipulator control 644–649, 677–680

Robust control systems 14, 234–235

Robust observers 463

Root locus method 249–254

 construction rules table 250–251

Root locus plots

 lag compensation 257–263

 lead compensation 254–257

Root sensitivity 202–204

Roulette-wheel parent selection (GA) 834–835

S

Saddle point; phase portrait 601

Sampled-data control systems 4, 24

 state model 399–402

 transfer function 128–132

Sample-and-Hold:

 circuit 78–79

 model 85–86

Sampler impulse modulator model 43–45

Sampling

 multiple rate 24

 uniform 24

Sampling effects; 22–23

 on controllability and observability 417–419

 on stability 134–135

 on steady-state error 222

Sampling frequency 43

Sampling period; 43

 selection 87–89

Sampling rate 43

Sampling theorem 84

SARSA-learning 866-867

Satellite attitude control system 438–440, 590–592

Saturation nonlinearity; 567

 describing function 628–630

Scalar product of vectors 290, 294

Second companion form of state

 model 319–320, 395

Second method of Lyapunov 611, 617–620

Self-tuning control 663–671

Sensitivity analysis 202–204, 234–235

Separation principle 458–460, 475

Servo design with state feedback

 with feedforward control 463–465, 476–477, 522

 with integral control 466–468, 477–479, 523

Servo system; definition 4

Set-point control system

 definition 4

Settling time 223, 224

Shaft encoder 169–172

S/H device

 circuit 78–79

 model 77–78

Sigmoid activation (NN) 706

Similarity transformation 307

Single layer NN 708–711

908 Index

Singleton fuzzy system 784, 793

Singular matrix 288

Singular points 597–599

 center 600

 focus 600

 node 600

 saddle 601

 vortex 600

Singular values of a matrix 292

Sinusoidal sequence 32–33, 49

SISO systems; definition 14, 38–39

Skew-symmetric matrix 287

Sliding-mode control 672–677

s-norm; fuzzy sets 786

Soft-computing 687–689

Solution of

 homogeneous state equations 340, 409

 nonhomogeneous state

 equations 348–349, 408, 409

Specifications (see Performance specifications)

Spectral norm of a matrix 292

s-plane to z-plane mapping 46

Stability

 asymptotic 72, 367, 503, 613

 BIBO 66–72, 367

 global 505, 613

 in-the-large 613

 in the sense of Lyapunov 503, 612

 in-the-small 613

 local 505, 613

 marginal 72

 Nyquist 230–231

 sampling effects 134–135

 zero-input 72–73

Stability tests for linear systems

 Jury 73–75

 Lyapunov 506–509

Stability tests for nonlinear systems

 describing function 580–583

 Lyapunov 621–626

Stabilizability 524

State diagram 308, 394

State feedback 297, 437–438

State model 37–39, 302, 367, 392, 419

 conversion to transfer

 function 308–311, 368, 393, 419

 equivalence with transfer

 function 362–367, 416–417

 sampled plant 399–402

 system with dead-time 405–407

State models; canonical (see canonical state

 models)

State observers 448, 472

 current 473–474

 deadbeat 480–481

 full-order 449–452, 472–474

 prediction 472–473

 reduced-order 455–457, 474

 robust 463

State observer design through

 matrix Riccati equation 521–522

State regulator design through

 matrix Riccati equation 518, 523–529, 534–537

 pole-placement 437, 444–445, 470–471

State transition equation 413

State transition matrix; 340

 properties 340–341

State transition matrix evaluation by

 Cayley-Hamilton technique 344–346, 412

 inverse Laplace transform 341

 inverse z-transform 409–410

 numerical algorithm 401–402

 similarity transformation 342–343, 410–411

Steady-state error 218–221

 sampling effects 222

Steady-state error constants (see Error constants)

Step-invariance method for

 discretization 96–98

Step motors (see Stepping motors)

Stepper motors (see Stepping motors)

Stepping motors

 in feedback loop 8

 interfacing to microprocessors 178–180

 permanent magnet 174–176

 torque-speed curves 178, 179

 variable-reluctance 177–178

Step sequence 32, 47

Strictly proper transfer function 311

Suboptimal state regulator 539–545

Sugeno architecture, data-based

 modeling 793–794

Supervised learning (NN) 691, 716

Support; fuzzy set 784

Support vector machines 741

 function approximation 753–757

 hard-margin linear 742–748

 nonlinear 752–753

 soft-margin linear 748–752

Sylvester’s test 296–297

Symmetric matrix 286

 Index 909

System identification

 least squares method 657–663

 fuzzy-based 805–809

 NN-based 730–735

T

Tan-sigmoid activation (NN) 707

Taylor series 302

t-conorm; fuzzy sets 786

Temporal difference learning 854, 861–863

Time-response specifications 222–225

t-norm; fuzzy sets 786

Trace of a matrix 289

Tracking control systems

 definition 4

Training NN (see Backpropagation training)

Transfer function

 definition 57

 equivalence with state model 362–367, 416–417

 nonminimum-phase 238

 order 58

 poles and zeros 47

 proper 311

 sampled-data systems 128–132

 strictly proper 311

 systems with dead-time 135–137

 zero-order hold 77–78

Transportation lag (see Dead-time)

Transpose of a matrix 286

Trapezoidal fuzzy set 782–783

Trapezoidal rule for integration 105–106

Triangular fuzzy set 782–783

Triangular matrix 285–286

Tuning of process controller (see Controller

 tuning)

Type number of a system 219

Type-1 system 220–221

Type-2 system 221

Type-0 system 220

U

Ultimate gain 153

Ultimate period 153

Uniform sampling 24

Union; fuzzy set 787

Unit circle in z-plane 46

Unit delayer 35, 59

Unit matrix 285

Unit-ramp sequence 48

Unit-sample sequence 32, 47

Unit-step sequence 32, 47

Unit vector 292

Unity feedback systems 18, 217

Universal approximation property (NN) 724

Universe of discourse 778

Unsupervised learning (NN) 692

V

Validation (NN) 694

Value iteration 859

Variable gradient method 625–627

Variable reluctance stepping motors 177–178

Variable structure control 605–608

Vectors

 inner product 290, 294

 linearly dependent 293

 linearly independent 293, 294–295

 norm; Euclidean 290–291

 orthogonal 292

 orthonormal 292

 scalar product 290, 294

 unit 292

Velocity error constant 219

Velocity form of digital algorithm 160–161

Vender Pol’s oscillator 565, 588

Vortex point; phase portrait 600

W

Warping 101, 108, 237

Weights (NN) 704

w-plane; 236

 z-plane mapping 236

w-transform 236–239

Z

Zero-input stability 72–73

Zero matrix 285

Zero-order hold 76

 circuit 78–79

 filtering characteristic 85–86

 time-delay approximation 87, 162

 transfer function model 77–78

Zeros and poles 47

Ziegler-Nichols tuning

 based on process reaction curve 154–159

 based on ultimate gain and period 153–154

910 Index

z-plane

 s-plane mapping 46

 unit circle 46

 w-plane mapping 236

z-plane synthesis 263–268

z-transfer function (see Transfer function)

z-transform

 definition 46

 final value theorem 55–56

 inverse 53

 pairs 51

 pairs for systems with dead-time 137

 properties 48, 49

 shifting theorems 50–52

	Cover
	Contents
	Part I Digital Control: Principles and Design in Transform Domain
	1. Introduction
	1.1 Control System Terminology
	1.2 Computer-Based Control: History and Trends
	1.3 Control Theory: History and Trends
	1.4 An Overview of the C lassical Approach to Analog Controller Design

	2. Signal Processing in Digital Control
	2.1 Why Use Digital Control?
	2.2 Configuration of the Basic Digital Control Scheme
	2.3 Principles of Signal Conversion
	2.4 Basic Discrete-Time Signals
	2.5 Time-Domain Models for Discrete-Time Systems
	2.6 The z-Transform
	2.7 Transfer Function Models
	2.8 Frequency Response
	2.9 Stability on the z-Plane and the Jury Stability Criterion
	2.10 Sample-and-Hold Systems
	2.11 Sampled Spectra and Aliasing
	2.12 Reconstruction of Analog Signals
	2.13 Practical Aspects of the Choice of Sampling Rate
	2.14 Principles of Discretization
	Review Examples
	Problems

	3. Models of Digital Control Devices and Systems
	3.1 Introduction
	3.2 z-Domain Description of Sampled Continuous-Time Plants
	3.3 Z-Domain Description of Systems with Dead-Time
	3.4 Implementation of Digital Controllers
	3.5 Tunable PID Controllers
	3.6 Digital Temperature Control System
	3.7 Digital Position Control System
	3.8 Stepping Motors and Their Control
	3.9 Programmable Logic Controllers
	Review Examples
	Problems

	4. Design of Digital Control Algorithms
	4.1 Introduction
	4.2 z-Plane Specifications of Control System Design
	4.3 Digital Compensator Design using Frequency Response Plots
	4.4 Digital Compensator Design using Root Locus Plots
	4.5 z-Plane Synthesis
	Review Examples
	Problems

	Part II State Variable Methods in Automatic Control: Continuous-Time and Sampled-Data Systems
	5. Control System Analysis Using State Variable Methods
	5.1 Introduction
	5.2 Vectors and Matrices
	5.3 State Variable Representation
	5.4 Conversion of State Variable Models to Transfer Functions
	5.5 Conversion of Transfer Functions to Canonical State Variable Models
	5.6 Eigenvalues and Eigenvectors
	5.7 Solution of State Equations
	5.8 Concepts of Controllability and Observability
	5.9 Equivalence Between Transfer Function and State Variable Representations
	5.10 Multivariable Systems
	Review Examples
	Problems

	6. State Variable Analysis of Digital Control Systems
	6.1 Introduction
	6.2 State Descriptions of Digital Processors
	6.3 State Description of Sampled Continuous-Time Plants
	6.4 State Description of Systems with Dead-Time
	6.5 Solution of State Difference Equations
	6.6 Controllability and Observability
	6.7 Multivariable Systems
	Review Examples
	Problems

	7. Pole-Placement Design and State Observers
	7.1 Introduction
	7.2 Stability Improvement by State Feedback
	7.3 Necessary and Sufficient Conditions for Arbitrary Pole-Placement
	7.4 State Regulator Design
	7.5 Design of State Observers
	7.6 Compensator Design by the Separation Principle
	7.7 Servo Design: Introduction of the Reference Input by Feedfor ward Control
	7.8 State Feedback with Integral Control
	7.9 Digital Control Systems with State Feedback
	7.10 Deadbeat Control by State Feedback and Deadbeat Observers
	Review Examples
	Problems

	8. Linear Quadratic Optimal Control through Lyapunov Synthesis
	8.1 Introduction
	8.2 The Concept of Lyapunov Stability
	8.3 Lyapunov Functions for Linear Systems
	8.4 Parameter Optimization and Optimal Control Problems
	8.5 Quadratic Performance Index
	8.6 Control Configurations
	8.7 Optimal State Regulator
	8.8 Optimal Digital Control Systems
	8.9 Constrained State Feedback Control
	Review Examples
	Problems

	Part III Nonlinear Control Systems: Conventional and Intelligent
	9. Nonlinear Systems Analysis
	9.1 Introduction
	9.2 Some Common Nonlinear System Behaviors
	9.3 Common Nonlinearities in Control Systems
	9.4 Describing Function Fundamentals
	9.5 Describing Functions of Common Nonlinearities
	9.6 Stability Analysis by the Describing Function Method
	9.7 Concepts of Phase-Plane Analysis
	9.8 Construction of Phase Portraits
	9.9 System Analysis on the Phase Plane
	9.10 Simple Variable Structure Systems
	9.11 Lyapunov Stability Definitions
	9.12 Lyapunov Stability Theorems
	9.13 Lyapunov Functions for Nonlinear Systems
	9.14 Lypunov’s Linearization Method and Local Stability
	Review Examples
	Problems

	10. Nonlinear Control Structures
	10.1 Introduction
	10.2 Feedback Linearization
	10.3 Model Reference Adaptive Control
	10.4 System Identification and Generalized Predictive Control in Self-Tuning Mode
	10.5 Sliding Mode Control
	Problems

	11. Intelligent Control with Neural Networks/Support Vector Machines
	11.1 Towards Intelligent Systems
	11.2 Introduction to Soft Computing and Intelligent Control Systems
	11.3 Basics of Machine Learning
	11.4 A Brief History of Neural Networks
	11.5 Neuron Models
	11.6 Network Architectures
	11.7 Function Approximation with Neural Networks
	11.8 Linear Learning Machines
	11.9 Training The Multilayer Perceptron Network–Backpropagation Algorithm
	11.10 Radial Basis Function Networks
	11.11 System Identification with Neural Networks
	11.12 Control with Neural Networks
	11.13 Support Vector Machines
	Review Examples
	Problems

	12. Fuzzy Logic and Neuro-Fuzzy Systems
	12.1 Introduction
	12.2 Fuzzy Rules-Based Learning
	12.3 Fuzzy Quantification of Knowledge
	12.4 Fuzzy Inference
	12.5 Designing A Fuzzy Logic Controller (Mamdani Architecture)
	12.6 Data Based Fuzzy Modeling (Sugeno Architecture)
	12.7 System Identification and Control with Neuro-Fuzzy Systems
	Review Examples
	Problems

	13. Optimization with Genetic Algorithms
	13.1 Evolutionary Algorithms
	13.2 Genetic Algorithms
	13.3 Genetic-Fuzzy Systems
	13.4 Genetic-Neural Systems
	Review Examples
	Problems

	14. Intelligent Control with Reinforcement Learning
	14.1 Introduction
	14.2 Elements of Reinforcement Learning Control
	14.3 Methods for Solving the Reinforcement Learning Problem
	14.4 Basics of Dynamic Programming
	14.5 Temporal Difference Learning
	14.6 Q-Learning
	14.7 Sarsa-Learning

	References
	Answers to Problems
	Index

